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Abstract

FINDING effective clustering methods for a high dimensional dataset is challenging due to the curse of
dimensionality. These challenges can usually make the most of basic common algorithms fail in high-

dimensional spaces from tackling problems such as large number of groups, and overlapping. Most domains
uses some parameters to describe the appearance, geometry and dynamics of a scene. This has motivated the
implementation of several techniques of a high-dimensional data for finding a low-dimensional space. Many
proposed methods fail to overcome the challenges, especially when the data input is high-dimensional, and the
clusters have a complex.

REGULARLY in high dimensional data, lots of the data dimensions are not related and might hide the
existing clusters in noisy data. High-dimensional data often reside on some low dimensional subspaces.

The problem of subspace clustering algorithms is to uncover the type of relationship of an objects from one
dimension that are related in different subsets of another dimensions. The state-of-the-art methods for subspace
segmentation which included the Low Rank Representation (LRR) and Sparse Representation (SR). The former
seeks the global lowest-rank representation but restrictively assumes the independence among subspaces,
whereas the latter seeks the clustering of disjoint or overlapped subspaces through locality measure, which,
however, causes failure in the case of large noise.

THIS thesis aims are to identify the key problems and obstacles that have challenged the researchers in recent
years in clustering high dimensional data, then to implement an effective subspace clustering methods

for solving high dimensional crimes domains for both real events and synthetic data which has complex data
structure with 168 different offence crimes. As well as to overcome the disadvantages of existed subspace
algorithms techniques. To this end, a Low-Rank Sparse Representation (LRSR) theory, the future will refer to as
Criminal Data Analysis Based on LRSR will be examined, then to be used to recover and segment embedding
subspaces. The results of these methods will be discussed and compared with what already have been examined
on previous approaches such as K-mean and PCA segmented based on K-means. The previous approaches
have helped us to chose the right subspace clustering methods. The Proposed method based on subspace
segmentation method named Low Rank subspace Sparse Representation (LRSR) which not only recovers the
low-rank subspaces but also gets a relatively sparse segmentation with respect to disjoint subspaces or even
overlapping subspaces.

BOTH UCI Machine Learning Repository, and crime database are the best to find and compare the best subspace

clustering algorithm that fit for high dimensional space data. We used many Open-Source Machine Learning

Frameworks and Tools for both employ our machine learning tasks and methods including preparing, transform-



x

ing, clustering and visualizing the high-dimensional crime dataset, we precisely have used the most modern and

powerful Machine Learning Frameworks data science that known as SciKit-Learn for library for the Python

programming language, as well as we have used R, and Matlab in previous experiment.
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Chapter 1

Introduction

Man is the best computer we can put aboard a spacecraft, and

the only one that can be mass produced with unskilled labor

(Wernher von Braun) .

1.1 Background

Whenever we look around, there always activities which have been monitored and recorded,
for example people movements on CCTV, communication by phones, emails or even by the
social media. As a result, high-dimensional data has been created and need to be interpreted
into meaningful content, consequently, advance techniques on how to learn, compress, store,
transmit, and process the data are highly needed.

AI research always focus on tasks that easier for machine and even simple applications such
as rapid calculations, playing chess, automated theorem proving are easily to be master
by computer, but historically hard for humans. The advancement of Artificial Intelligence
(AI) failed over past 60 years, and the main goal to make machines understand the human
language, still Is too early.

The gap between the amount of digitally available data and human ability to analyse and
understand is becoming wider. Numerous methods that offer excellent results need too many
resources to be applied to modern datasets. Problems that were considered “solved” decades
ago re-appear, as increasing the amount of input data exponentially opens up new challenges,
require new methods to solve. There are always more challenging problems, a trickier dataset,
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Figure 1.1 Four main Machine Learning blocks techniques

another group of dissatisfied users. The most exciting Machine Learning problems always
seem to be one step ahead of any available, proven “solutions”.

(ML) Machine Learning is concerned with discovering useful patterns in large datasets, often
for making decisions or predictions. a large set of statistical and programmatic techniques (i.e.,
clustering, etc.). Machine learning employs both clustering data and statistical techniques
with the explicit goal of enabling machines to understand a set of data. Techniques may be
supervised or unsupervised. Often these techniques are used in conjunction with statistical
methods for elucidating complex relationships such as non-linear [10].

In the field of ML and AI, there are many techniques that are used to extract features and
inherent structures from a high dimensional data such as image or sequence of images, to
cluster the data into groups or classes. Extracted features, i.e. straight-lines and segments, or
clustering, i.e. Subspace Clustering (SC).

The current state-of-the-art Machine Learning (ML) techniques that contain many math-
ematical models often hard to understand and tough for human experts to translate. In
addition to the challenges, their output not often translates straight forward to different or
new information about the problem. Powerful ML Algorithm needed to summarise not only
single data but high dimension space to be described as less information as possible.

In ML, there are four main different blocks of techniques: Data, Features, Algorithm, and
Evaluation as in Figure 1.1. The Data set or the questions that determine must always inspire
us, and then extracting the data in the form of features, that feed these features to the machine
learning algorithm as hart of the clustering and machine learning techniques. Finally, the
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evaluation process that is used validate the performance of algorithm. we can sum them up
into the following 1.1.

The goals of the prediction and description are achieved by using the following primary data
mining tasks; classification, or clustering. The classification task is learning a function that
maps (classifies) a data item into one of several predefined classes. Regression is a to data
item to a real-valued prediction variable, while the clustering is a common descriptive task
where one seeks to identify the group inherent in the data.

K-means The purpose of clustering, in general, is to group the data based on the similarities
or dissimilarities. There are many famous clustering algorithms for example, k-means cluster,
two-step cluster, and hierarchical clustering. For applications in which a number of clusters
are required, K-means is very useful; similarly, the k-means clustering technique groups
based on similarity

Modified K-means There are some obstacle and limitations when applying K-means on
the large dataset, as described in [11]. Modified K-means algorithm was proposed to over
come the K-means issues an designed to reduce the complexity algorithm. The algorithm
was constructed based on the density of the different regions, and the idea was that object
that displayed the minimum distance for a data point became the cluster for that data point.
Modified k-means features an alternative way of calculating and computing the frequency of
each data point in segments and dividing the entire space into more than a few segments. The
partition of the space is used to calculate the frequency of the input vector in every part and
to pick the highest k-frequency section. The modified k-means approach is used to optimise
the current k-means algorithm. The K-means limitation resolved by running the algorithm
for different numbers of k values but still fail with big data and high dimensional space.

1.1.1 Criminal Data Analysis

Criminal Data Analyst recently have increased the use of Machine Learning algorithms such
as clustering as an effective method. Many of these methods have been used to find patterns
or for prediction purpose, but still there is great need in developing perfect model and most
of these methods must take into account many factors such as labelling the availability data,
calculating Times, and counting frequents[12].

The crime patterns are always changing and growing [13]. The crime data that stored
from several sources have a tendency to increase steady. To solve the problems previously
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mentioned, data mining method apply numerous learning algorithms to extract hidden
knowledge from huge volume of data. Data mining techniques for finding patterns and
trends in crimes. It can assist in solving crimes much quickly and can assist to warn for
potential criminal activities . Various data mining method are exploited for other goal such
as criminality, science, finance, banking, email filtering, healthcare and other industries.
nonetheless [14].

Criminal analysis is analytical process that provides useful information to assist in the
planning to prevent growing of criminal activities, and it also involves in many tasks for
identifyng patterns to help in a more effective manner. In criminal analysis, it can be much
harder to grasp the motivations for patterns when the pattern changed to create a better plan
for the future occasions, as it includes several factors.

Figure 1.2 Geo-spatial plot of crimes, each red dot represents a crime incident.[1]

The following following direction been study as the main crime types that been the interest of
scientist and investigator: Traffic Violation and Border Control, Violent Crime, The Narcotics
, and Cyber Crime [15]

In social science, criminal analysis is a cluster analysis which used to identify areas where
there are greater incidences of particular types of crime. By identifying these distinct areas
or "hot spots" 1

1"hot spots" The densely populated group of crime is used to visually locate the ‘hot-spots’ of crime such as
fig. 1.2. However, when we speak of clustering from a data-mining standpoint, we refer to similar kinds of
crime in the given geography of interest. [1]
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Figure 1.3 Criminal Analysis Process Loop

where a similar crime has happened over a period of time, it is possible to manage law
enforcement resources more effectively like assisting to identify suspects.

The study of Data mining in the criminology analysis can be considered into areas, like
crime pattern detection and crime control. De Bruin et. al. [16] introduced a framework
for crime trends using a new distance measure for all individuals based on their profiles,
then cluster them accordingly. Still, the outcomes must be carefully analysed to guarantee
that are important. This regularly requires heuristic methodologies, which again make few
assumptions about the data and or the clusters to be found. This study about the crime pattern
analysis helps the detectives, but not replace them.

Criminal Data Process Issues

Criminal analysis tasks often evolve as a loop of intertwined process: Data Collection
and Integration, data-retrieval, processing, visualisation, Crime Pattern, Performance, and
interpretation. The aims and rule depends on a given project as given in fig. 1.3. various
information used by different type of analyst operators such as police and Internet services
and operational databases [17]. The databases retrieval can be from a particular source and
it requires a specific tools, then database can be searched, filtered, or analysed with the
use of algorithms such as data mining , pattern recognition algorithms [18] or hypothesis
testing based on social networks approach [19], [20]. Frequently, there is a specific range of
operations which can be executed on a data coming from a given source. The result of the
data processing stage is usually a subset of the initial data, that can be seen in big picture by
using visualization types [17].
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A major issue crime analysts confront is why their statistics do not match the “official”
statistics reported to the FBI. From the discussion above, we can see how this happens; any
of the following could be true: The crime analyst downloaded the data at a different time than
the Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS)
data were downloaded . The crime analyst uses state crime codes, not UCR or NIBRS codes.
The crime analyst uses only those crimes determined by the police (not the victim) to be a
crime.

The crime analyst counts by number of reports, not the number of victims or by the hierarchy
of crimes. All of these types of data serve a purpose in providing a picture of crime [21].
Numerous studies have shown that crime data analysis is sensitive in nature and require
domain knowledge before applying any dimensionality reduction techniques as it may result
low level of accuracy. The problems of interacting with large datasets in Intelligence-Analysis
require analysts to process large amounts of data into actionable intelligence, i.e. information
that can be used to initiate investigations or police actions that may be able to prove innocence
or guilt.

Such data can be structured or un-structured, quantitative and qualitative, of multiple formats,
e.g. text, documents, images, videos, or streaming data such as social media or news feeds; be
from multiple sources, be of varying quality and reliability, sparse, streaming, and represent
rapidly changing situations. It is no longer humanly possible to sift through all the necessary
data. Systems are needed to support this task. This presents many difficulties and challenges
to the intelligence analysts. Given any set of data, there are endless combinations of attributes
to represent the data. This study [22] shows guidance on best practice for using crime and
policing statistics to improve understanding and interpretation of the data and to help build
and maintain public trust in official information, and to follow the framework which is based
on three principle: Trustworthiness, Quality and Value. Together, these pillars support public
confidence in statistics. For this work we will focused more on the Quality which is about
the data, and how they are processed into applied mathematics. Following the Review of
Economic Statistics report [23] , the Code recognises that independence of production is
not, on its own, enough to guarantee worthwhile statistics. The statistics must be the best
available estimate of what they aim to measure, and should not mislead.

To achieve this, the data must be relevant, the methods must be sound and the assurance
about the outputs must be clear. These aspects of statistical production are at the heart of the
practices in the Quality pillar [22].
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To conclude, the changing and increasing of crime lead to the issues of understanding the
crime behaviour, predicting, detection, and managing of the big data . Research interests
have attempt to resolve these issues. yet, these still gaps in the crime detection accuracy. This
extend the challenges even more of crime detection. The challenges include modelling of
suitable algorithms, data preparation and transformation, and processing [15] .

1.1.2 Big Data Analysis

The age of big data has arrived. Merely the existed data analytics tools is not be able to deal
with large quantity of data. How to develop an algorithm or a high performance system to
better analyse the big data and to find the useful pattern in big dataset is demanding and
becoming researcher focuses. [24]

The Properties Of Big Data

Yet is very difficult for analyst to extract information in big data because it requires large
parallel processing since the data is heterogeneous. But what is the difference between the
term heterogeneous and homogeneous? In Computer Science : HeTero = Variables of
different nature in the same data set. Categorical +binary+ ... where HoMo =Variables

of same nature in the same data set. Onlybinary, ... on the other hand In Data Clustering:
it also described that HoMogeneous : i.e data that belong to the same cluster should be
as similar as possible. where HeTerogeneous : i.e data that belong to different clusters
should be as different as possible. In General definitions: HeTero = a combining form
meaning "Different" and “Other” , where HoMo = a combining form meaning “Same", and
"Identical”

The different content such as history, cookies, social networks and personal information
which is gathered and turn data to big data, and these gathered data hen become one of
the important element in extracting precious knowledge even in real time, and this can be
achieved its objectives by studying these trends. The best way to evaluate the quality of Big
Data is by its productivity and performance. [25].

Important Issues Of Big Data

As mentioned in Literature reviews, the traditional data mining algorithms are not design for
parallel computing; consequently, they are not particularly useful for the big data mining.
Many recent studies attempted to change the traditional data mining algorithms to make them
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Figure 1.4 Big Data Properties
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Figure 1.5 Big Data and Three Vs

applicable to big data framework such as Hadoop-based platforms. Unfortunately, most of
the studies attempted failed to make the data mining and soft computing algorithms work on
Hadoop because different algorithms are required for specific domain have the property of
big data. Become more difficult to use similar framework for criminal data as it require the
background in Hadoop and its data mining algorithms to modify or to develop new design.
Another issue is that the most data mining algorithms are designed for centralized computing,
and they can only work to the entire data at the same time. Therefore, it is very difficult to
make them work on a parallel computing system [26].

In addition to this , also Big Data requires a revolutionary step forward from traditional data
analysis, characterized in [27] ,[28],[29],[30] by its three main components: variety, velocity
and volume as shown in fig. 1.5, and we will refer to it in our research as the Three Vs.
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1.1.3 Dimension Reduction

Like clustering methods, dimensionality reduction algorithm such as Principal Component
Analysis (PCA) explore the inherent structure in the data, but in this case in an unsupervised
manner or in order to summarise or describe data using less information. This can be useful
to visualize dimensional data or to simplify data which can then be used in a supervised
learning method. Many of these methods can be used in classification and regression.

There are several dimension reduction procedures, but why do we need dimension reduction?
considering a dataset represented as an n × d real value matrix D, which encodes information
about n observations of d variables. Therefore, an important data-preprocessing procedure is
to conduct dimension reduction method which finds a compressed representation of D that is
of lower dimensions but preserves as much information in D as possible.

Principal component analysis (PCA) is well-known dimension reduction method. It aims to
project the data to a low-dimensional orthogonal subspace that captures as much of the data
variance as possible. The achievement of PCA for dimension reduction and to find the initial
centroid for k-means was far better than the traditional K-means. PCA achieves the optimal
result among all the linear projection methods in minimizing the squared error introduced by
the projection. all the same, PCA will conduct the eigenspace decomposition on the sample
covariance matrix is computational challenging when both n and d are large[31].

Principle Component Analysis (PCA)

PCA takes a dataset consisting of a set of tuples, representing points, in a high-dimensional
space and finds the directions along which the tuples line up best, and The idea is to treat the
set of tuples as a matrix M and find the eigenvectors for MMT or MT M.

Mathematically for PCA, the transformation is defined by a set of p−dimensional vectors
of weights or coefficients w(k) = (w1, . . . ,wp)(k) that maps each row vector x(i) of X to a new
vector of principal component scores t(i) = (t1, . . . , tl)(i) in such a way that the individual
variables t1, . . . , tl of t considered over the data set successively inherit the maximum possible
variance from x, with each coefficient vector w constrained to be a unit Vector. A particular
disadvantage of PCA is that the principal components are usually linear combinations of all
input variables. Sparse PCA overcomes this disadvantage by finding linear combinations
that contain just a few input variables. PCA limitation As noted above, the results of PCA
depend on the scaling of the variables. A scale-invariant form of PCA has been developed.
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Data mining algorithms face the curse of dimensionality problem . It is a serious problem
as it will impede the operation of most data mining algorithms as the computational cost
increase. Although the data analytic framework and traditional algorithms are inefficient for
big data caused by the environment, devices, systems. Several open issues caused by the
big data will be addressed as the platform/framework and data mining perspectives in this
section to explain what dilemmas we may confront because of big data [32].

Feature selection (FS)

This section will underline the most influential dimensionality reduction algorithms according
to the division established into Feature Selection (FS) and space transformation based
methods. As the dimensionality increases, the computational cost increases exponentially.
To overcome this problem, it is necessary to find a way to reduce the number of features in
consideration. Two techniques are often used: (1) Feature subset selection. and (2) Feature
extraction [33]. FS is “the process of identifying and removing as much irrelevant and
redundant information as possible” [34]. The goal is to obtain a subset of features from the
original data set that appropriately describes it. This subset is commonly used to train a
model, with added benefits reported in the specialized literature [35] ,[36].

FS can remove irrelevant and redundant features which may induce accidental correlations
in learning algorithms, diminishing their generalization abilities. The use of FS is also
known to decrease the risk of over-fitting in the algorithms used later. FS reduces the search
space determined by the features, thus making the learning process faster and less memory
consuming. The use FS can also help in the tasks not directly related to the data mining
algorithm applied to the data. FS can be used in the data collection stage, saving cost in time,
sampling, sensing and personnel used to gather the data. Models and visualizations made
from the data with fewer features will be easier to understand and to interpret. Maximum
Relevance (MR) feature selection is a well known approach to selects m features that have a
large output relevancy [37]. The feature screening method [38] is also a MR-method. MR
face no challenge to apply and can be applicable to the high-dimensional data.

Nonetheless, since MR approach can only be used for the input-output relevance, and can
not used for the input-input relevance, as they tend to choose the redundant features, where
often we can find that the selected features from the redundant always are very similar. For
that reason this method not useful in high-dimensional data.
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Feature extraction (FE)

Feature extraction techniques combine the original set of features to obtain a new set of
less-redundant variables [39]. For example, by using projections to low-dimensional spaces.
Polynomial Expansion expands the set of features into a polynomial space. This new space is
formed by an n-degree combination of the original dimensions. VectorAssambler combines
a set of features into a single vector column. Single Value Decomposition (SVD) is matrix
factorization method that transform a real/complex matrix M (mxn) into a factorized matrix
A. The research explored large matrices, there is not for the complete factorization but only
to maintain the top-k singular values and vectors. In such way, the dimensions of the implied
matrices will be reduced. They also assume that n is much smaller than m (tall-and-skinny
matrices) in order to avoid a severe degradation of the algorithm’s performance. Principal
component analysis (PCA) tries to find a rotation such that the set of possibly correlated
features transforms into a set of linearly uncorrelated features. The vectors used in this
orthogonal transformation are called principal components. This method is also designed for
matrices with a less number of features.

In the next chapter, we will demonstrate how we used the PCA approach to assign the data
points to each clusters.

1.1.4 Clustering in High Dimensional Space

The presence of too much information as in fig. 1.6 shown can make any task such as
data mining quite difficult , and finding a pattern between documents, or clustering high
dimensional data has lot of attention as an open research topic, For example. subspace
clustering that partition the data points drawn from a union of subspaces according to their
underlying subspaces, and such approaches have found widespread applications in many
fields, e.g., pattern recognition, data compression, and image processing. Our research focus
on social science area and specially on the criminal data analysis, and we trust this research
will be an interdisciplinary approach between computer science and criminal justice.

Typically, two main branches recognised as subspace clustering approach (Top- down and
the Bottom-up) which established based on their search strategy. Figure fig. 1.7 showing the
Subspace Clustering Algorithms by search technique which is presented a subspace clustering
algorithms map organized by the search methods and the measure used to determine locality
[2].
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Figure 1.6 Data increasingly massive, high-dimensional [2]

Figure 1.7 Hierarchy of Subspace Clustering Algorithms based on search methods

Top- down algorithms finding the initial clustering in the full set of dimensions and evaluate
the subspaces of each cluster, then iteratively improving the results. The other approach is
the Bottom-up approaches that to find dense regions in low dimensional spaces and then
combine them to form clusters. Feature selection was one of the method been employed to
improve cluster quality, and examine the dataset as a whole. These algorithms perform by
removing noise and redundant dimensions.

Another reason that many clustering algorithms struggle with high dimensional data is the
curse of dimensionality. when the dimensions increases, measures of the become meaningless,
and dimensions expand until they equidistant from each other. The problem is become worse
when the objects from one dimension are related in different ways in different subsets of
dimensions.

In the graph fig. 1.8 we can see the curse of dimensionality. creating new dimension stretches
the points to that dimension, pushing them further apart. which led to high dimensional data
that is sparse. So the Data in one dimension is relatively tightly packed.
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Figure 1.8 The curse of dimensionality [3]

The main problem of the high dimensionality is to find the clusters embedded in subspaces
of high dimensional data, and often tackled by specifying the subspace or the subset of the
dimensions which must be determined by the user [3]. The objective of subspace is to reduce
the computational complexity of clustering performed on high-dimensional data.

The dimensions in big data are often lead in confusion caused by the noise data to hide
clusters, and the reason is that the dimension sometimes irrelevant. Subspace clustering is
solution for the traditional clustering which is look to find clusters in opposite subspaces
in the same dataset. Subspace clustering algorithms find clusters in multiple overlapping
subspaces by focus its search for relevant dimensions granting them to look within cluster
[2].

Principal Component Analysis (PCA)

Principal component analysis (PCA) is one of the effective tool of high-dimensional data
reduction. PCA is an unsupervised technique computed by the use of eigenvalue decompo-
sition [40]. PCA is very versatile, it is the oldest and remains the most popular technique
in multivariate analysis, and Its goal is to extract the valuable information from the data, to
represent it as a set of new orthogonal variables called principal components and to show the
match or the similarity of the variables observations as points in maps [41].

PCA includes a mathematical operation that maps a number of correlated variables into a
smaller set of uncorrelated variables, called the principal components. The first principal
component represents as much as possible of the variability in the data. The rest of the
components describe the remaining variability. The goal of PCA [42] :

• Extract the most important information from the data table and as much variance with
the fewest components
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• Compress the size of the data set by keeping only this important information

• Simplify the description of the data set

• Conceptually the goal of PCA is to reduce the number of variables of interest into a
smaller set of components

• Analyse variance and reduce the observed variables

Subspace Clustering (SC)

Subspace is an expansion of traditional clustering and some recognise it as an extension of
the feature selection to find clusters in various spaces inside a dataset, and to reduce the
computational complexity of the cluster performed on high dimensional data, by sometimes
called compressed subspace clustering approach by random projection [2].

Subspace techniques has variety of applications, including text, web documents, image
segmentation, medical image processing, and network data analysis, etc. Basic clustering
algorithms use all dimensions of an input dataset to learn each object described [43].

In high dimensional data, yet, some of the dimensions often are irrelevant. These irrelevant
dimensions sometimes called hiding clusters in noisy data, then it can be confusing once
clustering algorithms applied, but Subspace methods eliminate the irrelevant, noisy and
redundant dimensions by analysis of the entire dataset.

There are two branches of subspace clustering based on their search procedure [2]:

• Top-down algorithms find an initial clustering in the full set of dimensions and
evaluate the subspaces of each cluster, iteratively improving the results.

• Bottom-up approaches find dense regions in low dimensional spaces and combine
them to form clusters.

Figure fig. 1.9 (Left) Three subspaces, each of which is of dimension one, are sampled, where
samples are represented by different markers. (Right) After being randomly projected to a
two dimensional space, these samples are clustered and the structures of subspaces, denoted
by lines, are revealed.

Subspace Approaches

Typically, there are two steps in subspace approaches to clustering, namely, subspace structure
recovery from possibly corrupted observed data and subspace segmentation for clustering.
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Figure 1.9 Three subspaces, each of which is of dimension one .

First, we need to extract the principal dimensions which the data have spanned, whereas next
is to segment the data into clusters obeying subspace structures [44].

Clustering concept in general can be separated into two classes: Density based clustering
and Graph-based clustering. High density regions in feature spaces separated by low density
regions are defined as clusters [45].

The limitation of both types of methods is the need to build an effective similarity matrix
for high-dimensional data, and in following chapter will review these limitations of these
methods in details showing the proposed methods to overcome these drawbacks.

Feature Selection methods (FS)

The technique of extracting a subset of relevant features is called feature selection (FS) [46].
(FS), data sets include a large number of features. researcher mostly choose of Feature
engineering methods the Feature selection (FS)to feature transformation (FT). The different
between the Feature Transformation and Selection is that, the FS methods reduces the
dimensionality of data by selecting only a subset of measured features to create a model, and
also pick only relevant of dimensions from a dataset to make their similar groups of objects
with subset of their attributes [47], but on the other hand, the FT is a group of methods that
create new features, the methods of transformation are useful for dimension reduction where
transformed features describe original features without loss of information features. Feature
transformation methods are contrasted with the methods presented in FS, where dimension
reduction is achieved by computing an optimal subset of predictive features measured in the
original data.

FS can enhance the interpretability of the model, speed up the learning process, and improve
the learner performance. There exist different approaches to identify the relevant features.
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Model construction uses the selecting process of a subset of relevant features (variables,
predictors), variable selection methods also known as Feature selection methods [48]. Feature
selection plays vital role in creating an effective predictive model [49]. The reason of using
feature selection is to allow the machine learning algorithm to train , and help to reduces the
complexity of a model and makes it simple to interpret. In addition to this, feature selection
also used to improve the accuracy of the model if the right subset is chosen, and to reduces
over-fitting problem. There are several methodologies used in Feature selection to subset
feature space to help models our perform efficiently: Filter Methods, Wrapper Methods, and
Embedded Methods [48].

The difference between them is that, in the Filter Methods, the features are selected based
of their scores of the correlation with the outcome variable, but still filter methods do not
remove multicollinearity in which two or more predictor variables in a multiple regression
model are highly correlated, so the multicollinearity needed to be dealt with before training
models for any data. In wrapper methods, based on the inference that been drawn from
previous model the subset of features used to train a model using them, as well as we could
add or remove features from our subset. The difficulty is that these methods are usually
computationally very expensive. The figures below illustrate the main differences between
the filter and wrapper methods for feature selection [50].

These algorithms find a subset of dimensions on which to perform clustering by removing
irrelevant and redundant dimensions. Unlike feature selection methods which examine the
dataset as a whole, subspace clustering algorithms localize their search and are able to
uncover clusters that exist in multiple, possibly overlapping subspaces [2].

Feature selection algorithms have difficulty when clusters are found in different subspaces.
Feature selection clears irrelevant and redundant dimensions by investigating the whole
dataset while Subspace clustering algorithms limit the search for related dimensions to
discover clusters in overlapping subspaces.

• Filter methods measure the relevance of features by their correlation with dependent
variable where wrapper methods measure the usefulness of a subset of feature by
actually training a model on it.

• Filter methods are much faster compared to wrapper methods as they do not involve
training the models. On the other hand, wrapper methods are computationally very
expensive as well.
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• Filter methods use statistical methods for evaluation of a subset of features while
wrapper methods use cross validation.

• Filter methods might fail to find the best subset of features in many occasions but
wrapper methods can always provide the best subset of features. Using the subset
of features from the wrapper methods make the model more prone to overfitting as
compared to using subset of features from the filter methods.

Subspace clustering need to adapt a search method that must limit the scope to consider
different subspaces for each different cluster, hence, the next chapter will review the previous
work and present the techniques and limitation used subspaces clustering.

Motivations

The current state-of-the-art Machine Learning techniques are difficult to understand due to
the model complexity, for example a when building modules blocks for creating experiments,
and each module will be accomplished by a specific machine learning algorithm, function, or
code applied on data such as developing a predictive model or finding a cluster/pattern in
big dataset . Finding patterns can be time-consuming, especially for large sets that changes
overtime which requires additional knowledge to be discovered such as knowing how the
data has changed over time.

Intelligence find it very difficult to solve crimes especially once work on multiple and massive
date, indeed there already involvement from both researchers and agencies in discovering
effective method that can help to predict and prevent future potential crime. So far most
of techniques have been used in clustering have not reach the expectation in such domain.
Even with many data mining techniques have been developed recently there is still hard to
learn and find important knowledge or discovering patterns from high dimensional data, for
example patterns detection never was an easy tasks for a computer data analyst or detective to
identify these patterns by simple querying. Patterns cannot be discovered using the traditional
visual analytic, query languages, or even some other basic clustering algorithm. The most of
cluster algorithms resultant are not up to the level of the expectation when the dimensions of
the dataset are high and usually kind of dataset have noisy and flawless.

This will motivate the implantation of a number of techniques of a high-dimensional data set
for finding a low-dimensional space. As well as the use of AI and ML techniques in crime
data analyse will make it easy to find and develop efficient clustering algorithm that will
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speed up the process of solving crime for the law enforcement officers, and to bring close
both researchers and agencies in discovering effective method that can help to predict and
prevent future potential crime.

This study will help to meet the high level of the expectation from the cluster algorithms
resultant the dimensions of the dataset are high and usually kind of dataset have noisy and
flawless. The implantation of a number of techniques of a high-dimensional data set for
finding a low-dimensional space.

Therefore, This research will lead to formulate crime pattern detection as machine learning
task and to to support police investigator in solving crimes from complex data. as well as
this research will identify the problems and obstacles that have challenged the researchers
in recent years in high dimensional data reduction and specifically in clustering criminal
data, and then to propose a applied method to assist many of the disadvantages of existed
techniques. Let us have a glimpse on the scope of research in the area to show how the
research presented in this thesis can be fitted into this diversity.

1.2 Research Problem and Approach

1.2.1 Research Questions

This research will identify the key problems of clustering high dimensional data by reviewing,
studies, and discuss the related works of subspace algorithms such as Low rank representation
and SC theory, and then to compare the results with previous methods that been examined
on criminal data, then to proposed method for high dimensional data that will be referred to
as Criminal Data Analysis Based on Low Rank Sparse Representation (LRSR) to subspace
clustering algorithm.

1.2.2 Objectives

The previous approaches that has been implemented has guided us to look for the right
method which has helped to come over the drawback of the traditional clustering techniques
by the use of the LRR and SC of subspace clustering. The following questions are the
research questions, aims and objectives, as it organised and ordered at the time where each
approached has been studied, and evaluated against each problems that been review.
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• Does the process of the date requires analysts, Such data may be structured or un-
structured, quantitative and qualitative, of multiple formats?

• Analysing the target application and data , such as How big the data?, What is the data,
and what can be knowing before clustering? and Summarising of the original set with
with visual content?

• Understand the recent constraints under which the data was created ?

• Investigated the effectiveness of the proposed measure on several other real-world data
sets.

• Identify the best fit and useful Clustering algorithm to start with for most of data type
to identify a set of categories to describe, partitioning, and prepare the data for other
AI techniques in Criminal data ?

• Identify the patterns in the relationships between data and cluster, and discover the
hidden structure in unlabelled data of unsupervised learning?

• K-means implementations on such data?

• Identify the the cluster and the meaning of each group?

• What are limitations and challenges to implement k-means on such data?

• Determining the optimal number of initial point .

• Modified K-means implementations on such data?

• What data are considered as high dimensional space?

• What are limitations and challenges to implement Modified k-means on such data?

• What is process of dimensionality redundancy, and how to make better data redundancy
in high dimensional space?

• How PCA preform when implemented on criminal data?

• What are the draw backs of the use of PCA segmented by k mean as criminal data
redundancy ?

• What is best methods to be used as effective technique to obtain a set that could identify
as the patterns in High Dimensional space?

• Why, and How to Identify the subspaces that contain clusters?
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• Converting file or documents to data matrices and the time-consuming involve of
convert this data frame into a matrix.

• what different between implementing the tradition PCA and the advanced data redun-
dancy?

• What effective subspace clustering methods for high dimensional space especially for
criminal datasets as rapidly changes and new information often can be added.

• How to isolate the overlapping clusters that appear in a another space?

• How to update and modify the best existing choosing approach ?

• Dose the result and techniques have fulfilled The main objective of subspace clustering
helps to find high quality clusters in good time?

• The challenges and issues on how effectively to deal with the large amount of discov-
ered patterns, and searching for useful and interesting patterns, especially when the
Data come from multiple sources?

• What are the collision between New document is added, the index, and the the compet-
ing tasks are? and why is it consider as the main challenges.

1.2.3 Methodologies

The methodologies for our research based on the analytical of methods that implemented to
identify the key problems and obstacles that have challenged the researchers in clustering
high dimensional data. The existed subspace algorithms techniques such as LRR and SC will
be reviewed, tested, and examined to be used to recover and segment embedding subspaces.

The finding and results of these methods will be discussed and compare with what already
have been examined on previous approaches such as k-means and PCA segmented based on K-
means. The previous approaches has helped us to chose the right subspace clustering methods
to overcome their drawbacks and limitations. Both UCI Machine Learning Repository, and
crime domain dataset used to find and compare the best subspace clustering algorithm that fit
for high dimensional space data.

To visualize high-dimensional data in application, we used Statistics and Machine Learning
Toolbox such as R, and Matlab in our experiment. Experiments are conducted to analyse the
performance this new algorithms to overcome the limitation of existing subspace algorithms
techniques.
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1.3 Thesis Contributions

The main original contributions presented throughout this thesis theoretically and practically.
The complete suggested methods have been studied and other prominent approaches in
literature will be tested. besides, the methods have been studied are recently and effective in
any data set, also these techniques will be helpful within the scientific community, through
the publication the results of the research will be tested and applied the on our main criminal
dataset as well as on the other public domain data for evaluation and comparison. There are
goal-related issues have been addressed such as Missing data, Irrelevant/redundant data ,
Imbalanced data, and Data mining process instantiations .Theses issues it will be mentioned
later for each specific data .

The experiments are conducted to analyse the effects of the proposed algorithms to come over
the disadvantages of existed subspace algorithms techniques. Theses methods will be apply
on both UCI Repository, and VAST database used to find and compare the best subspace
clustering algorithm that fit for high dimensional space data.

1.4 Thesis Outline

This thesis is structured as follows:

• Chapter 1 provides an introduction of AI, documents clustering, criminal data analysis,
clustering in high dimensional data including PCA and subspace clustering. The second
part of this chapter provides the motivation, Research question and objectives.

• Chapter 2 provides an extensive literature survey by reviewing numerous data mining
methods attempts to cluster high dimensional data, follow by the review of the related
and recent work of advanced subspace clustering algorithms.

• Chapter 3 provides an experiment of PCA segmented of k-means that has been applied
to the domain of the application of VAST, and use to find the best approach for future
subspace clustering in high dimensional space for criminal data analysis in future.

• Chapter 4 provides the Low Rank subspace Sparse Representation (LRSR) model
for subspace clustering, then propose an efficient scheme to solve the proposed LRSR
model . The last section of this chapter is to provides introduction of two theorems
regarding the convergence of analysis of the augmented Lagrangian multiplier algo-
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rithms for sub-problems LRSR-1 and LRSR-2. As well as Sub-problem LRSR-1 which
can be applied to future model.

• Chapter 5 Provided our experiment we aiming to use the LRSR capability of clustering
overlapped subspaces as well as the robustness against large noise. The method
should prove the convergence of a subspace clustering framework called LRSR, which
obtains the optimal solution based on both low rank representation (LRR) and sparse
representation (SR).

• Chapter 6 Conclusion and Future Work which concludes the thesis by giving a
summary of the work and highlighting the main contributions of this research. It also
underlines the limitations of the method and provides a number of suggestions for the
future work. Followed by the Bibliography.



Chapter 2

Literature Review

2.1 Data Mining

“ Data becomes useful knowledge of something that matters when it builds a bridge between

a question and an answer.

This connection is the signal.”

(Stephen Few) .

In statistics, pattern recognition, and artificial intelligence (machine learning), algorithms
are based on the assumption that data can be loaded into the machine main memory. A
perspective from databases, a field fundamental to (KDD) Knowledge Discovery, Data is
provided by Imielinski and Mannila, who identify challenges posed by KDD for database
technology and postulate a new direction and view for both [10].

There are a different group of algorithms and procedures that target selective domain of big
data and learners. For instance, to consider Supervised learning, it could be categorized into
regression and classification. When the class attribute is discrete, it is called classification;
and in the case of continuous class attribute, it is regression. Decision tree learning, naive
Bayes classifier, k nearest neighbor (kNN) classifier, and classification with network infor-
mation are classification methods. Logistic and linear regression are regression methods.
Unsupervised learning is the unsupervised partition of instances into groups of identical
objects [51]. Clustering is generally categorized into three sub-domains. They are supervised,
unsupervised, and semi-supervised:
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Unsupervised clustering: It basically focuses on maximizing the intra-cluster similarity
and minimizing the inter-cluster similarity when a similarity/dissimilarity measure is pro-
vided. It uses a specific objective function (e.g., a function that minimizes the intra-class
distances to find tight clusters). K-means and hierarchical clustering are the most widely
used unsupervised clustering techniques in segmentation.

Semi-supervised clustering: Along with the similarity measure, semi-supervised clustering
tends to utilize other guiding domain information to enhance the clustering results. This
domain information can be pair-wise constraints between the observations or target variables
for some of the observations. Based on these three vital learning paradigms, a lot of theory
mechanisms and application services have been proposed in order to deal with data tasks.

2.1.1 K-means Clustering Algorithm

K-means is an iterative algorithm and performs two mechanisms: first, the cluster assignment
step, and second, the group centroid step, which is sometimes called the move step. The
K-means algorithm must have at least the following steps or procedures:

• The first step is a cluster assignment step, which calls cluster centroids by randomly
initializing the cluster’s centroid vectors into two or more points. This step must always
start with k centres

• The second step is a move centroid step, which is sometimes named the update step, in
which the cluster centroid points that initialised in the assignment step are moved to
the average of the points in the same group. In this step, we must cluster each point
with the centre nearest to it.

• To compute the distance from the data vector to the cluster, the next equation was used:
Where d is the dimension.

d(Zp Mj) =

√√√√ 2

∑
k=1

(Z p,k−M j,k) (2.1)

Where zp is the pth data point, and MJ is centroid of ith cluster. Each data vector
calculates the distance between the data vector and each cluster centroid, which will
use the minimum data vector to assign that cluster and calculate the distance using the
above equation
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• The centroid of the cluster is then recalculated using the following equation

Mj = 1/nj(∑ Zp)∇Zp ∈ Cj (2.2)

Where n j is the number of data point in cluster j [52].

• Repeat the previous step until the centres converges, which means that we re-run these
steps until we have found no more changes.

There are two undefined aspects of the algorithm. One is the set of starting centres and the
other is the stopping condition. Two inputs must be taken into consideration in order to
apply the K-means algorithm. The first input is parameter K, which indicates the number of
clusters we are looking for, and the second input is the K-means, which takes as the input the
unlabelled training set of just the Xs, where

xi ∈ IRn (2.3)

K-means drawback and limitation Even with the simplicity of K-means implementation,
the method has many drawbacks and limitations, and not very flexible. One of the main
reasons why many researchers have presented improvements to K-means algorithms where
the Initial choice of the cluster number needs to be specified and known by the user [52]
which called the initial centre point and the fact that there is no correct way of doing it. The
other limitation of K-means is that the parameter K does not provide for external constraints.
According to Singh and Bhatia in their paper [52], the Initial choice of the cluster number
needs to be specified and known by the user. In the next section, we will mention in detail
the K-means limitations that solved by the modified K-means.

2.1.2 Modified K-means Clustering Algorithm

Modified K-means that illustrated on paper [4] by Singh Raghuwanshi, PremNarayan Arya
that compared both algorithm, they have claimed it works well with large datasets but not
with high dimensional space. Modified K-means algorithm avoids getting into locally optimal
solution in some degree, and reduces the adoption of cluster-error criterion [4]. Results of
theier study shows with Graph, the comparison the following between K-means and Modified
approach K-means on the basis of large number of records and execution time using this
algorithm. Modified K-means approach better performance, comparison the figure fig. 2.1
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showing the differences in the execution time in milliseconds between the Modified approach
and the standard K-means algorithm.

Figure 2.1 K-means and Modified approach Comparison [4]

In paper [52], a novel research on the initial point of the centroid named as the modified
K-means algorithm has completed. The algorithm was constructed based on the density
method of the different regions when the centroid of the cluster located in the first iteration
with the maximum density of the data points.

Algorithm was applied to pick the initial centroid then enhanced the initial centroid selection
by the use of the most populated space as centroid of the cluster, after dividing the space into
many parts, then counted the frequency of the data points in each segment. So, the centroid
calculated using the mean of each segment and locating the cluster’s initial centroid. The
distance calculated between each cluster’s centroid was used to assign the data point to the
appropriate cluster’s centroid and then, for each centroid, the minimum distance calculated
from the remaining centroid, and this was made into a half.

The process of the algorithm will be repeated until the data point was assigned to any of the
remaining clusters. The data point has been assigned to correct the cluster’s centroid; the
first step involved half of the minimum distance from ith cluster’s centroid to the remaining
cluster’s centroid. The second step involved considering any data point to compute its
distance from ith centroid and then comparing it with dC(i). Then, in the third step, if it was
equivalent or a smaller amount than dC(i) , then the data point was assigned to the ith cluster.
Finally, the second step repeated until the end of the condition was achieved.

Modified K-means algorithm Drawback and Limitations Thus, the modified K-means
approach is used to optimise the current K-means algorithm, and K-means limitation which
is running the algorithm for different numbers of k values but still fail with big data and
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high dimensional space. Therefore a better technique his needed for massive data and high
dimensional space such as Crime dataset for better result.

Applying any clustering technique, the data must take into account the data structure and
its input factors. The different between the K-means and hierarchical algorithms are that
K-means clustering segments the dataset into k distinct clusters based on the distance to the
centroid of a cluster, whereas hierarchical clustering uses the method of creating a cluster
tree to construct a multilevel hierarchy of clusters. Consequently, either the similarity or
the dissimilarity should be meaningful. Yet K-means method has many drawbacks and
limitations, as well as is the initial centre point and the fact that there is no correct way of
doing it, and that why many work been presented to improve K-means algorithms. These are
the reasons why many researchers have presented improvements to K-means algorithms.

2.2 Dimensionality Reduction Algorithms

The most popular dimensionality reduction algorithms are Principal Component Analysis
(PCA) Principal Component Regression (PCR), Partial Least Squares Regression (PLSR),
sammon mapping, Multidimensional Scaling (MDS), Linear Discriminant Analysis (LDA),
and Locally Linear Embedding (LLE) . Also both feature transformation and feature selec-
tion techniques included as clustering techniques for high dimensional data that represent
dimension reduction in space with high dimension. As well as the subspace recognised as an
extension of the feature selection to find clusters in various spaces inside a dataset, and to
reduce the computational complexity of the cluster performed on high dimensional data.

Reducing the dimensionality of a vectors is generally a basic task in pattern recognition step
to accomplish practical feasibility. Typically this is finished by using domain knowledge.
Dimensionality decrease is additionally important in exploratory data examination, where
the reason regularly is to map onto a low-dimensional space for human eyes to have an better
insight and to increase some knowledge to the data [53]. The next chapter will review these
techniques and their limitation.

2.2.1 Manifold Learning

Manifold learning is an approach for non-linear dimensionality reduction. Isomap [54]
Similar to PCA, and is the first manifold learning method which uses geodesic distance
to measure the similarity between data in high dimensional space [55]. Locally Linear
Embedding (LLE) is another powerful algorithm in manifold learning. LLE supposes that
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each point can be represented by a linear combination of its several neighbour points. It
computes the the local combination weight matrix W in the original space firstly. Then it
minimizes the reconstructed error in the new space, in which each point is reconstructed
by W. [56]. However, LLE adopts k-nearest neighbors method to generate the manifold.
Choosing a very small neighborhood is not a satisfactory solution, which may fragment the
manifold into a large number of disconnected regions [57].

Choosing a too large neighborhood may cause “short-circuit”. Besides, target dimension
also has an effect on the performance of LLE. A too small dimension can not preserve
the structure and relationships in the high-dimensional space after data are mapped into a
low-dimensional space [58]. LLE has strengths has the similar strengths to IsoMap which has
the features of Graph-base, eigenvector method, Polynomial time algorithm, No local optima,
Non-iterative, Single heuristic parameter. On the other hand LLE has also weaknesses such
as sensitive to “short-cuts”, No asymptotic guarantees, and No way to estimate intrinsic
manifold dimension. So, in the next section the better cluster algorithm will be reviewed to
come over theses limitation.

2.2.2 Principal Component Analysis (PCA)

In cluster there are many different models in Multivariate analysis, each with its own type
of analysis, as Principal components analysis (PCA) that creates a new set of orthogonal
variables that contain the same information as the original set. It rotates the axes of variation
to give a new set of orthogonal axes, ordered so that they summarize decreasing proportions
of the variation. PCA consider as is a statistical procedure that orthogonally transforms the
original n coordinates of a data set into a new set of n coordinates called principal components.
Principal components analysis which multivariate clustering analysis that creates a new set
of orthogonal variables that contain the same information as the original set, and then It give
a new set to summarize decreasing proportions of the variation [42].

In PCA, As a result of the transformation, the first principal component has the largest
possible variance; each succeeding component has the highest possible variance under the
constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components. Keeping
only the first m < n components reduces the data dimensionality while retaining most of the
data information, i.e. the variation in the data. Data column ranges need to be normalized
before applying PCA, and the new coordinates (PCs) are not real system-produced variables
any more [59].
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Figure 2.2 PCA concept

There are many important applications in which the data under study can naturally be
modelled as a low-rank plus a sparse contribution. All the statistical applications, in which
robust principal components are sought. The first principal component represents as much of
the variability in the data as possible. The succeeding components describe the remaining
variability. The steps involved in PCA are:

Figure 2.3 Steps involve in PCA [42]

PCA Implementation in General The eigenvectors and eigenvalues of a covariance (or
correlation) matrix represent the "core" of a PCA: The eigenvectors (principal components)
determine the directions of the new feature space, and the eigenvalues determine their
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magnitude. In other words, the eigenvalues explain the variance of the data along the new
feature axes. but Later, will explain the computational of the eigenvectors (the principal
components) of a dataset that collected in a projection matrix. Each of those eigenvectors is
associated with an eigenvalue which can be interpreted as the "length" or "magnitude" of
the corresponding eigenvector. If some eigenvalues have a significantly larger magnitude
than others that the reduction of the dataset via PCA onto a smaller dimensional subspace by
dropping the "less informative" eigenpairs is reasonable [42].

1. Eigendecomposition - Computing Eigenvectors and Eigenvalues: the eigenvalues
explain the variance of the data along the new feature axes, in other word , the
eigenvectors and eigenvalues of a correlation matrix represent the "core" of a PCA,
and the PCA which is the eigenvectors determine the directions of the new feature
space, and the eigenvalues determine their magnitude.

Covariance Matrix: The classic approach to PCA is to perform the eigendecompo-
sition on the covariance matrix , which is a d×d matrix where each element represents
the covariance between two features. The covariance between two features is calculated
in following equation eq. (2.4):

σ jk =
1

n−1 ∑
N
i=1(xi j −−→x j )(xik −−→xk ) (2.4)

The calculation of the covariance matrix summarize via the following matrix
equation eq. (2.5) :

∑ =
1

n−1
((X− x)T (X− x)) (2.5)

The mean vector is a d × d-dimensional vector where each value in this vector
represents the sample mean of a feature column in the dataset.

Correlation Matrix: the eigendecomposition of the covariance matrix (if the in-
put data was standardized) yields the same results as a eigendecomposition on the
correlation matrix, since the correlation matrix can be understood as the normalized
covariance matrix.

Singular Vector Decomposition: While the eigendecomposition of the covariance
or correlation matrix may be more intuitive, most PCA implementations perform a
Singular Vector Decomposition (SVD) to improve the computational efficiency. So,
they have perform an SVD to confirm that the result are indeed the same.
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2. Selecting Principal Components:

Sorting Eigenpairs: The PCA is to reduce the dimensionality of the original feature
space by projecting it onto a smaller subspace, where the eigenvectors will form the
axes. However, the eigenvectors only define the directions of the new axis, since
they have all the same unit length 1 . In order to decide which eigenvector(s) can
dropped without losing too much information for the construction of lower-dimensional
subspace, we need to inspect the corresponding eigenvalues: The eigenvectors with the
lowest eigenvalues bear the least information about the distribution of the data; those
are the ones can be dropped. In order to do so, the common approach is to rank the
eigenvalues from highest to lowest in order choose the top k eigenvectors.

Explained Variance: After they have sorted the eigenpairs, the next question
is "how many principal components are we going to choose for our new feature
subspace?" A useful measure is the so-called "explained variance," which can be
calculated from the eigenvalues. The explained variance tells us how much information
(variance) can be attributed to each of the principal components.

3. Projection Matrix: the really is that, the construction of the projection matrix that
will be used to transform the Iris data onto the new feature subspace. Although, the
name "projection matrix" has a nice ring to it, it is basically just a matrix of our
concatenated top k eigenvectors. They have reduced the 4-dimensional feature space
to a 2−dimensional feature subspace, by choosing the "top 2" eigenvectors with the
highest eigenvalues to construct our d × k−dimensional eigenvector matrix W.

4. Pro jection Onto the New Feature Space: In this last step we will use the 4× 2−
dimensional projection matrix W to transform our samples onto the new subspace via
the equation Y = X W, where Y is a 150×2 matrix of our transformed samples.

Applying PCA The following approaches explained the summarise of the PCA steps [60]
:

• Standardize the data.

• Obtain the Eigenvectors and Eigenvalues from the covariance matrix or correlation
matrix, or perform Singular Vector Decomposition.
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• Sort eigenvalues in descending order and choose the k eigenvectors that correspond
to the k largest eigenvalues where k is the number of dimensions of the new feature
subspace K ≤ d

• Construct the projection matrix W from the selected k eigenvectors.

• Transform the original dataset X via W to obtain a k−dimensional feature subspace Y .

In paper [42] the dataset used to apply PCA was taken from UCI repository web site. The
data set refers to clients of a wholesale distributor. The entire work is carried out using
"RStudio" to simulate the algorithm. The data set refers to 440 customers of a wholesale: 298
from the Horeca (Hotel/Restaurant/Cafe) channel and142 from the Retail channel. They are
distributed into two large Portuguese city regions (Lisbon and Oporto) and a complementary
region. As it learned from their paper, they have used the rules for selecting the number of
principal components, and the rules are:

1. Use the ’elbow’ method of the scree plot (on right).

2. Pick the number of components which explain 85

3. Here retain the first three principal components.

PCA Implemented where the data set have many variables (440) , and it was be better to
apply dimensionality reduction method first to make the information easier to visualize and
analyse later, but as in the paper claimed there was strong correlation found in the Grocery
and Detergent − 0.92, Milk and Detergent − 0.66 and Milk and Grocery− 0.73 . There is
somewhat high correlation between Channel and Detergents paper / Grocery. In this paper
[42] PCA used with K–means and Fuzzy C–means algorithm. The work concludes that the
computational time of PCA + Fuzzy C–means is less than PCA + K–means algorithm for
the chosen application. Also, the performance of FCM algorithm is comparatively much
better than the K-Means algorithm. In high dimensional space such algorithms will not work
as best as subspace clustering as it will fail to find the cluster that contain in other dimension.

PCA comparing to Linear Discriminant Analysis (LDA) As we mentioned that one of
the most popular dimensionality reduction algorithms also Linear Discriminant Analysis
(LDA), and it is as same as the Principal Component Analysis (PCA) in its popularity. Both
LDA and PCA are linear transformation methods. PCA yields the directions (principal
components) that maximize the variance of the data, whereas LDA also aims to find the
directions that maximize the separation (or discrimination) between different classes, which
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Figure 2.4 PCA comparing to LDA

can be useful in pattern classification problem (PCA "ignores" class labels). In other words,
PCA projects the entire dataset onto a different feature (sub)space, and LDA tries to determine
a suitable feature (sub)space in order to distinguish between patterns that belong to different
classes [61].

LDA approach is very similar to a PCA, but in addition to finding the component axes that
maximize the variance of data LDA interested in the axes that maximize the separation
between multiple classes as in fig. 2.4 .

2.3 Subspace Clustering Approaches

Clustering concept in general can be separated into two classes: Density based clustering
and graph-based clustering. Graph based clustering in fig. 2.5 showing the network of 107
journals show clusters obtained by a factor analysis on the journal-to-journal citation export
matrix, and the edges are only shown between journals that have a citation pattern with a
cosine greater than 0.2, and the thickness of an edge reflects the citation proximity/cosine of
the connected journals. [5]

While the density based clustering class in fig. 2.6 showing the Data Driven Community
Identification and Analysis , and the Data Driven Community Identification and Analysis the
contrived geographical boundaries as delineated by zip codes have little relationship with the
communities that grow [6].
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Figure 2.5 Graph based clustering [5]
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Figure 2.6 Density based clustering [6]

Density based algorithms [62], [63], [64], follow this pattern to discover density regions of
clusters in feature spaces. lately, Rodriguez et al. [65] propose a strategy for Clustering by fast
search and find of density peaks, and this approach based on the rule that cluster centres are
characterized by a density higher than their neighbours and by large distance from points with
higher densities Clusters irrespective of their shapes and outliers can be spotted consequently.
Generalized Principal Component Analysis (GPCA) [66] is an algebraic method by fitting
the data with polynomials. The drawback is that it is hard to estimate polynomials for GPCA
when data contains large noises. Statistical approaches usually use independent samples
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drawn from a mixture of probabilistic distributions to model data generation processes. It
can be tackled by Expectation-Maximization (EM) algorithm with alternating between data
clustering and subspaces estimation or estimating the mixture structure by iteratively finding
a min-max estimation [67]. The Bayesian Ying Yang harmony learning technique [68], [69]
is a unified statistical framework of modelling unsupervised learning and recent investigations
[70] show that this theory can be successfully applied for determining the dimension for
principal subspaces and selecting the cluster number. However, the optimization of statistical
methods is difficult and the usage of the EM also leads to a local minimum.

Graph based clustering methods consist of two steps: subspace segmentation for constructing
the affinity/similarity matrix and traditional spectral clustering using the affinity matrix.
There are two categories: local spectral clustering and global spectral clustering methods.
The typical representatives of local graph clustering based approaches are Local Subspace
Affinity (LSA) [71] and Locally Linear Manifold Clustering (LLMC) [72]. For example,
Zelnik et al. [73] use local information to build a similarity matrix between pairs of points.
These methods are not good at handling corrupted data and sensitive to outliers. In addition,
the number of neighbourhood has an impact on the performance of these methods.

2.3.1 Spectral Clustering Algorithms (SC)

Many various methods that used to process big data practitioners. Spectral Clustering
Algorithms is Subspace Clustering methods, is well known to relate to partitioning of a
big data, and it come under the Graph-based clustering class. SC Algorithms identified the
data points as nodes in a weighted graph, and is to partition the nodes into several sets with
the minimum sum of edge weights between each set. SC Algorithms is the Graph-based
clustering methods that consist of two steps:

1. Subspace segmentation for constructing the affinity/similarity matrix

2. Traditional SC Algorithms using the affinity matrix. In the following sections.

Graph-based clustering such as spectral clustering [74], [75] identified data points as nodes
in a weighted graph. Pair-wise dissimilarity weighs the edges between nodes. The key idea is
to partition the nodes into several sets with the minimum sum of edge weights between each
set. Meila and Shi [76] also propose a Markov Random Walk view of spectral clustering
and proposes the Modified Normalized Cut algorithm based on the traditional K-Means
algorithm, which can handle an arbitrary number of clusters.
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The limitation of both types of methods is the need to build an effective similarity matrix for
high-dimensional data.

In high-dimensional data, computing distances directly in the original space are not reliable
if using the traditional methods such as k-nearest neighborhood (KNN) as the features
are usually sparsely distributed. Subspace segmentation algorithms overcome the (KNN)
limitation by finding clusters embedded in a low-dimensional subspace. late subspace
clustering algorithms are mainly categorized into algebraic methods, statistical methods or
graph-based methods.

The technique of spectral clustering is widely used to segment a range of data from graphs
to images. SC Algorithms identified the data points as nodes in a weighted graph. Then
Pair-wise dissimilarity weighs the edges between nodes. The key is to partition the nodes
into several sets with the minimum sum of edge weights between each set. it make use of
the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality
reduction before clustering in fewer dimensions. The similarity matrix is provided as an
input and consists of a quantitative assessment of the relative similarity of each pair of points
in the dataset. Data points often in SC as nodes of a connected graph and clusters are found
by partitioning this graph, based on its spectral decomposition, into subgraphs.[77]

Spectral clustering algorithms derive from spectral graph partitioning theory . In SC, let
G = (V,E) represent an undirected finite graph without loops and multiple edges, v is the
vertices of the graph G and the edges E connect to every pair of vertices with an associated
weight . According to [78], the quality of a cluster should be determined by how similar
the points within a cluster. There are some other partition , such as Minimum cut [79],
Normalized cut [74], Multiway Normalized cuts and so on [80].

Notation:
Given a set of {xi}N

i=1,xi ∈Rd and the weight of each pair of vertices vi and measured by 8i j

≤ 0,

The similarity matrix of the graph is the matrix S with ij entry Sij = 8ij . The degree of vertex
is the sum of all the weights adjacent to , so it can be defined as di=ij1N 8ij , and the diagonal
matrix

D =


d1 0 0

0 . . . 0
0 0 dN

obtained
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2.3.2 Low-Rank Representation (LRR)

Low Rank Representation (LRR) [81], [82], [83], [84] is considered as the global approaches
of seeking the intrinsic data structure. For example, Low-Rank Representation [85], [83],
[86], is a general version of Robust principal component analysis (RPCA) [84] , which is
based on minimizing the rank of the representation coefficient matrix. RPCA recovers a
low-rank component and a sparse component from the observed high-dimensional data. It
not only seeks the low-dimensional subspace but also handles large corruptions effectively.
While RPCA take into account that data lies in a single low-rank subspace, LRR consider data
from mixed subspaces by seeking the lowest-rank representation among all the candidates
that can represent data well.

Theoretical analysis in [87] reveal that LRR is fundamentally equivalent to a work in two
steps: RPCA to recover the subspace, followed by segmenting subspaces by the right singular
vectors. However, RPCA lean on bringing the data points into a common low-dimensional
subspace which may give rise to reduce the distances among data points of different subjects
and reduce the principal angles among subspaces which may result in an affinity matrix being
dense in between-classes. While LRR recovers an affinity matrix with dense within class
affinities, the between-class affinities may be also dense especially when subspaces are not
independent.

Low rank representation (LRR) [83], [86], [87] aims to find a low-rank coefficient matrix to
capture the structure of data sets. When data is clean, the sparse coding like model is defined
as follows:

min
Z

||Z||∗

s.t.X = XZ
(2.6)

It has been proven [83], [86] that the solution is given by Z = VXV T
X where the column vectors

in VX are right singular vectors of X. In fact, we can regard it as the least squares solution of
the regression problem X = X Z. Intuitively it is very unlikely for the entries in VXV T

X to be
zero. However, LRR is good at seeking the global structure of subspaces and removing data
outliers simultaneously. To handle corrupted high-dimensional data, LRR defines a nuclear
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norm minimization as follows:

min
Z,E

||Z||∗+λ ||E||2,1 ,

s.t.X = AZ +E,
(2.7)

where ||∑ ||2,1= ∑
n
j=1

√
∑

n
j=1([E]i j)

2 is the ℓ2,1 -norm, A is called dictionary and the
parameter λ is a trade-off the minimization between ||Z||∗ and ||E||2,1.

Usually, the original data X have to be utilize to represent the dictionary. However, when
the original data is contaminated with large noises or corruptions, they cannot represent
the embedded subspaces well. Hence, it is essential to seek a clean dictionary, for which
the dictionary atoms are drawn from multiple subspaces. Since ℓ2,1 -norm encourages the
column of E to be zero, the underlying assumption is that the corruptions are sample-specific,
that is to say, some data vectors are corrupted and the others are clean.

LRR has better performance than SSC in capturing the global subspace structure and
protecting the within-class homogeneity. However, LRR assumes that data in independent
subspaces is more rigorous than in disjoint subspaces.

Subspace Recovery and RPCA

High dimensional data often reside in some low-dimensional structures rather than distributed
uniformly in the high dimensional ambient space. hence,recovering the low-dimensional
structure can remove the disturbance of high dimensional noise and enhance the performance
of clustering to a large extent.

Given that data corrupted with gross errors and outliers are ubiquitous in modern applications,
how to recover clean data is essential for clustering. Robust subspace recovery is a basic
problem, for which we assume that clean data set was sampled from several fixed subspaces
while outliers/corruptions may be spread in the whole ambient space. One attempt is to
recover the underlying fixed subspaces from the corrupted observed data. Modelling of high-
dimension data with low-dimensional subspaces is the most useful paradigm in subspace
recovery. Principal component analysis (PCA) is the well-known subspace recovery technique
in which one minimizes the sum of squared errors of data points in the assumption that data
are from a single fixed unknown subspace. However, its sensitivity to grossly corrupted
observations often puts its robustness in jeopardy. That is, a single grossly corrupted entry in
data could render the estimated subspace far from the true one.



2.3 Subspace Clustering Approaches 41

A number of different approaches exist for Robust PCA, including an idealized version of
Robust PCA, which aims to recover a low-rank matrix L0 from highly corrupted measurement
tsM = L0+S0.. Various methods like [88] [89] are proposed to reinforce the performance
of subspace recovery. Among these methods, Robust principal component analysis (RPCA)
[90] is ground breaking, since it provides rigorous analysis of exact low rank recovery with
an unspecified

ed rank. Given a large data matrix X, it may be decomposed as X = L + E, where L has low
rank and E is sparse. RPCA estimates the two components by simply minimizing a weighted
combination of the nuclear norm and the ℓ1 norm, defined as follows,

min
L,E

||L||∗+λ ||E||1,

s.t.X = L+E,
(2.8)

where X ∈ RMX N , L denotes the matrix of clean data lying in a low dimensional subspace
and E can be considered as the deviation of X from the intrinsic low dimensional subspace.
For video sequences, E represents moving objects in the low-dimensional background. To
solve the optimization problem 2.8, ADM [91] achieves much higher accuracy and better
convergence performance than other algorithms [92], [93]. The main cost of these algorithms
is Singular Values Decomposition (SVD) in each iteration. However, RPCA cannot be
directly applied to clustering since RPCA assumes that data are drawn from a single subspace.
Therefore, RPCA tends to bring data points into a common low dimensional subspace
which may result in lessening the distances between data points of different subjects and the
principal angles between subspaces in a practical application.

2.3.3 Subspace Segmentation (SS)

Subspace segmentation refers to the problem of segmenting high-dimensional data according
to their underlying subspaces.

Let {Se}n
ℓ =1 be a set of n linear subspaces with dimensions {Se}n

ℓ =1. A given collection
of data points X = [x1,x2, . . . ,xn] lies in the union of n unknown subspaces. The sparse
subspace clustering proposed in [7] relies on the so called data self-expressive property in
the sense that each data point in a union of subspaces can be efficiently expressed as a linear
combination of all the other data points, i.e. , xi = Xz i,zi i = 0. And the sparsity penalty will
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drive this expression to be only dependent of data points in the same subspace as the data
point xi . In the ideal scenario for the whole dataset, we wish to recover a coefficient matrix
Z of X which has Block−Diagonal structure.

Independent Subspaces A collection of subspaces {Si}n
i = 1 is said to be independent if

dim(⊕n
i =1 Si) = ∑

n
i =1 dim(Si), where ⊕ denotes the direct sum operator.

Disjoint Subspaces A collection of subspaces {Si}n
i = 1 is said to be disjoint if for every

pair of subspaces we have dim(Si ⊕ S j) = dim(Si) + dim(S j ). Independent subspace condition
is much stronger than disjoint condition especially when there are more than two subspaces.

Block-Diagonal Property of the Coefficient Matrix Given a data set X drawn from n
disjoint subspaces {S1, . . . ,Sn}, we assume data points within a subspace are indexed se-
quentially, X = [X1, . . . ,Xn] such that Xl ⊂ Sl (for ι = 1,2, . . . ,n). The data self-expressive
property gives

X = [X1, . . . ,Xn] = [X1Z1, . . . ,XnZn] = XZ

When the coefficient matrix Z has the following structure

Z =


Z1 0 . . . 0
0 Z2 . . . 0
...

... . . . 0
0 0 0 Zn

 , (2.9)

we say that the data set X satisfies the block-diagonal property. For example, there are several
experimental results of the synthetic data drawn from disjoint subspaces and contaminated
with large noises, and we will evaluate the proposed method LRSR recovers a relatively nice
Block-Diagonal structure of the data.

2.3.4 Sparse Subspace Clustering (SSC)

Sparse Subspace Clustering (SSC) is the result of the development of compressive sensing
in signal processing, (SSC) [7], [94], [95] apply features of sparse representation (SR) for
subspace clustering. Elhamifar and Vidal [7] implemented subspace segmentation based on
finding the sparsest representations for the data set.

According to the theoretical work [7], [94], [95] the subspace-sparse recovery holds when the
smallest singular value measuring how well representing each subspace is smaller than the
smallest principal angle among other subspaces. However, the search of sparsity separates
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within cluster points in the same cluster into several small singletons particularly when some
data points are corrupted.

Sparse subspace clustering aims at revealing disjoint subspaces from data by seeking the
sparsest representation solution as follows:

min
Z,E

||Z||1 +λ ||E||1,

s.t.X = XZ +E,diag(Z) = 0,
(2.10)

where E corresponds to a matrix of sparse error entries. In the noise free cases, Elhamifar
and Vidal [7] proves that when the distribution of data in each subspace and the least prin-
cipal angle with each of other subspaces satisfy certain Conditions, then the following ℓ1

minimization can be successful in subspace sparse recovery, i.e.,

[
z∗

z∗_

]
= arg min

∣∣∣∣∣
∣∣∣∣∣
[

Z

Z_

]∣∣∣∣∣
∣∣∣∣∣
1

s.t. xi = [Xi X_i]

[
Z

Z_

]
,

where xi is in the subspace spanned by Xi and the solution satisfies z∗ ̸= 0, z∗_ = 0. After
solving zi for each data point xi and normalizing the columns of Z , W = (|Z|+ |ZT |) can
be used as an affinity matrix for spectral clustering. SSC has a good performance for
disjoint subspaces or subspaces with non trivial intersections if the principal angles between
subspaces are not too small [96], [97] .

Figure 2.7 Disjoint subspaces [7]

Figure 2.7 Disjoint subspaces {S1,S2,S3}: The black dotted line denotes the subspace inter
section of S1andS2S3. Left: the "Polytope" 1

1"Polytope " subset P of Rd is called polyhedron if it is the set of solutions to a system of linear inequalities,
and called convex polytope if it is a convex polyhedron and bounded. When a convex polyhedron and call
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that arising from defied geometric computation in general dimensional space, thus polytope
γ1P1 reaches x later than that of γ1P1 when appropriately increasing both |γ1| and |γ−1|, hence
a sparse recovery does not hold for this case. Right: The smallest singular value of S1 is
bigger than the smallest principal angle between S2 or S3, then the polytope 1P1 reaches x for
a smaller |γ1| than that of i.e., x can be represented by γ1P1. Hence the sparse recovery holds.
See [7].

Figure 2.7 shows that if the smallest principal angle of S1 between S2 and S3 is larger than a
certain value related to the data distribution in S1, then the sparse representation criterion
can guarantee a coefficient matrix with strictly diagonal −block structure [7], . However, in
actual situations, SSC always over-segments datasets by constructing a sparse within-class
affinity matrix especially when data is greatly corrupted. Thus, the sparse representation Z
is actually not a low-rank one. On the other hand, SSC is not good at removing outliers, thus
it often has bad performance when data are greatly corrupted. In fact, low rank property is
more desired for the purpose of clustering. For example, a diagonal matrix is sparse but not
in low rank, then it is not meaningful for clustering.

Based on the advantages of subspace clustering and to improve the performance of these
methods, we will propose subspace segmentation method Low Rank subspace Sparse Repre-
sentation (LRSR) which not only recovers the low-rank subspaces but also get a relatively
sparse segmentation with respect to disjoint subspaces or even overlapping subspaces.

2.4 Criminal Data and Big Data Analysis

“Advances in technology, which allow analyses of large quantities of data,

are the foundation for the relatively new field known as crime analysis.”

(Deborah Osborne, [99])

Crimes are unpleasant social activity and as can damage any society if exist in several ways.
In the past solving crimes has been the privilege at the criminal justice and law enforcement,
and to solve , identify , or track crime become the reason for growing use of the technologies.
The crime dataset often either kept private or public information, but information about the

them simply polytopes and polyhedra as shown in fig. 2.7. However, In many applications involving convex
polytopes, what is most important is the combinatorial type of the polytope of how many faces are there in each
dimension, and which faces are incident. [98]
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offender often only viewed by authorities , which make the study of such domain more
sensitive and complicated in nature [100].

The Big Data spans across three dimensions: Volume, Velocity and Variety as shown in
fig. 1.4 . There characteristics of Big Data are [101]:

• Volume: often refer to the size of data, and this size often is very large and calculated
in Terabytes or Petabytes. In addition to this, the big data can be explained in the
following terms of:

– Records per Area

– Transactions

– Table

• Velocity : used to describe the measure of how fast the data is rated at which it is being
generated, for example 250 billion users to upload their images, and there are Various
applications based on data rate are:

– Batch: Batch means running the query in a scheduled and sequential way without
any intervention. Execution is on a batch of input

– Real Time: Real time data is defined as the information which is delivered
immediately after its collection. There is no delay in the timeliness of information
provided.

– Interactive means executing the tasks which require frequent user interaction.

– Streaming: The method of processing the data as it comes in is called streaming.
The insight into the data is required as it arrives.

• Variety : It extends beyond the structured data, including unstructured data of all
varieties such as text, audio, video, posts, log files etc.

Big data known for massive data sets that has large, and more varied and complex structure
that led to difficulties in analysing, storage, and visualizing. As well big data need advanced
ML methods for better further processes or results. The process of investigating into big data
help in discovering hidden patterns and relations. For this fact, big data implementations
require the use of technicalities for an insights that open new sources of research value. There
are three characteristic of big data: volume, variety, and velocity as in fig. 1.5. The volume
of the data is its size, and how enormous it is. Velocity refers to the rate with which data is
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changing, or how often it is created. Finally, variety includes the different formats and types
of data, as well as the different kinds of uses and ways of analysing the data [102].

2.4.1 Definition of The Domain Problems

There are a few objectives to comprehend the domain problem in big data analysis. first
is to understand the basic of the dataset, by identifying ideas and connections that are not
represented clearly in the dataset, but rather are a vital piece of any clarification of what the
dataset about or how it was evolve. An increasingly extraordinary objective may be to build
a total arrangement of necessities, for example, data quality and data pre-processing [103] .

However, there are critical questions to be answered ahead of making decision of which ML
methods to select, as it is significant to evaluate what kind of problem we try to be solve? e.g.
is it classification, clustering, or dose data have very high dimension space, also is the data
labelled? It’s necessary tasks that equally important as applying , improving and evaluating
any advance ML algorithms such as subspace clustering algorithms.

2.4.2 Big Data Knowledge Discovery and Data mining

Data mining assist in patterns discovery of observed data. Two primary mathematical
approach [104] are used in model fitting: statistical and logical. Knowledge Discovery from
Data (KDD) designed to get information from complicated data sets [105]. Reference [10]
outlines the KDD at the following steps:

• Application domain prior to information and defining purpose of process from cus-
tomer’s perspective.

• Generates subset data points for knowledge discovery.

• Removing noise, handling missing data fields, collecting required information to model
and calculating time information and known changes.

• Finding useful properties to present data depending on purpose of job.

• Mapping purposes to a particular data mining methods.

• Choose data mining algorithm and method for searching data patterns.

• Researching patterns in expressional form.
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Table 2.1 DATA MINING TECHNIQUES AND THEIR ROLES

Techniques Roles

Classification Pre-Defined Examples
Clustering Identification of similar classes of objects.
Prediction Regression Technique.
Association Rules Find frequent item set findings among large data sets.
Neural Networks Derive meaning from data to extract/detect patterns that are complex.
Decision Trees set representation of decisions using Classification and Regression Tree
Nearest Neighbour method Classify dataset records based on the K-records most similar .

• Returning any steps 1 through 7 for iterations also this step can include visualization
of patterns.

• Using information directly, combining information into another system or simply
enlisting and reporting.

Data mining and knowledge discovery in databases are similar to each other and to other
related fields such as statistics, ML , and databases. Data Mining is one of the step process
of KDD that consists of collection and preprocessing of data, data mining, interpretation,
evaluation of discovered knowledge and finally post processing [106].

Understanding of the Big data

The KDD primary aim is to achieve meaningful of the dataset through the development of
new methods of data mining by the KDD process is to map immense and heterogeneous data
into understandable, and more in useable form [104], [107]. There are different data mining
techniques to extract information from a dataset and transform it into an understandable
format for further use. table 2.1 shows different Data Mining Techniques and their roles.

Important goals of data mining are predictions and descriptions. Description to discover
patterns describing the data where predictions to predict unknown values of other variables
of interest [108], [109] . In [110] been proposed methods that learning function to maps a
data item into one of several predefined categories refer to it as classification. On the other
hand Apte and Hong in [111] recommended that classification technique of data mining are
used same as knowledge discovery applications. Where regression it is result of that classifier
because regarded as a predictive method than classification problem as it maps data point to a
prediction variable. However clustering known as descriptive method where it does identify
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set of categories that describe the data [112], [113],[114]. Summarization include methods
similar to calculating the mean and the standard deviations. There are some methods that as
well include the abstract rules derivation , visualization method, and functional discovery of
relationships amongst variables [104], [107]. Also summarization method often used for an
interactive exploratory of dataset for the purpose of analysis and an automated generation.

The comparison from [8] shows the different between machine learning paradigms to over-
come big data challenges is display in fig. 2.8 that illustrate the comparison of various big
data parameters targeted by machine learning paradigms.

Figure 2.8 Comparison of various big data parameters targeted by machine learning paradigms
[8]

Dealing with the Big Data

Data preparation is an important part of the machine learning process, as it helps to improve
the performance of the operators of data analytic which is the part of KDD process to finding
the hidden information in the data, such as data mining [24]. It is a monotonous process, a
very significant part of data preparation is to assess the quality of any dataset. Nowadays, the
data that need to be analyzed are not just large, but they are composed of various data types,
and even including streaming data [26].

To make the whole process of knowledge discovery in databases (KDD) more clear, Fayyad
and his colleagues summarized the KDD process by a few operations in [115], which are
selection, preprocessing, transformation, data mining, and interpretation/evaluation. As
shown in Fig. fig. 2.9 , with these operators at hand, we will be able to build a complete data
analytic system to gather data first and then find information from the data and display the
knowledge to the user .
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Input
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Figure 2.9 The process of knowledge discovery in databases

2.4.3 Data Quality and Preparation

Data preparation is a cardinal step in data analysis. As a large amount important/unimportant
of information is available in dataset, many are interested in transforming these information
into quality dataset that can be used for further purposes. This bring forth the urgent need
for data analysis. as well poor quality data probably result in inconsistent quality of insights
to apply data mining or for visualisation implementation. The quality data help in better
transformation process and able to change the dataset into useful KDD and information
[116].

Figure 2.10 Data Quality and Preparation Time consuming

Data quality and preparation its very long and challenging tasks. If we look at fig. 2.10 we
can see the task of data clean and preparation time often could be from 60 % up too 80 %
from th total of the project time . Data visualization can be a part of the analyse or present
stages.
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Data pre-processing is necessary task for acquire quality outcome from the knowledge
discovery algorithm under condition [117]. Data cleaning, data integrity, high dimension
are the main concerns in preparing the data for analysis. As the dimension increases the
computational cost related likewise will increases exponentially. To address this problem
it is very much necessary to reduce the number of features to be considered [118]. One
solution is to use feature selection and extraction algorithms. There are two approaches
for dimension reduction first is the Feature subset selection and the second approach is the
Feature Extraction. In next section will review each of these techniques in more details

Big Data Challenges

The main challenges of Big Data are data variety, volume, and Velocity. Many are struggling
to deal with the increasing volumes of data. There are many proposed techniques In order
to solve these issues, such as the need of reducing the amount of data being stored without
losing the value of the data to help for prediction and for finding the patterns. The difficulty
often related to data capture, storage, search, sharing, analytic or visualization etc. But The
main goals of high-dimensional data analysis is to develop effective methods to accurately
predict any future observations, as well is to discover the relationship between any features
and response for scientific purposes. What are the challenges of Analysing Big Data? Big
Data are characterized by high dimensionality and large sample size. These two features
raise three unique challenges: (i) high dimensionality brings noise accumulation, spurious
correlations and incidental homogeneity; (ii) high dimensionality combined with large sample
size creates issues such as computational cost and algorithmic instability; (iii) the massive
samples in Big Data are typically aggregated from multiple sources at different time points
using different technologies. This creates issues of heterogeneity, experimental variations
and statistical biases, and requires us to develop more adaptive and robust procedures [31].

2.4.4 Feature Engineering

Coming up with features is difficult, time-consuming, requires expert knowledge.

"Applied machine learning" is basically feature engineering.

(Andrew Ng, [119]) .

Many machine learning models are algebraic, thus their input must be numerical, and there
are several models used to transformed non-numerical data. n machine learning projects, the
focus shifts to representation than to focus on coding as programmer. A high dimensional
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Figure 2.11 Data scientists time consume

data often its feature space is solved by feature selection and feature extraction methods to
improves the performance of machine learning algorithms goal such as automated feature
learning, this called feature engineering. Feature engineering is the process of using domain
knowledge of the data to create features that make machine learning algorithms work, and
to create new input features from your existing ones. The feature selection and feature
extraction techniques remove the irrelevant features from the text documents and reduce the
dimensionality of feature space [120].

Data scientists usually spend the most time on exploring the data, cleaning the data, and
Feature engineering more than in algorithm selection, training , and evaluation as in fig. 2.11.

Features: A feature is an attribute shared by all of the independent units on which analysis
or prediction is to be done. Any attribute could be a feature, as long as it is useful to the
model [121]. The process of feature engineering is:[122]

1. Brainstorming or Testing features;

2. Deciding what features to create;

3. Creating features;

4. Checking how the features work with the model;

5. Improving the features if needed;

6. Go back to brainstorming/creating more features until the work is done [122].
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A. Feature Selection

“Feature selection is itself useful, but it mostly acts as a filter,

“ muting out features that aren’t useful in addition to your existing features.

(Robert Neuhaus)

Feature selection has become a essential before applying any classification methods, but
Unlike feature extraction methods, feature selection techniques do not change the original
representation of the data [123]. A subset from available features data are selected for the
process of learning algorithm and its often in feature selection process. The best subset is the
one with least number of dimensions that most contribute to learning accuracy [124]. Both
feature subset selection and feature extraction methods have same objective which is to avoid
overfitting. Feature selection in this case are considered the simplest method, in which the
number of features is reduced by selecting only the most meaningful and important features
according to their criterion for example as high levels of activity.

Feature selection has been used on various ranges of data, including both low and high
dimensional data, although it is primarily utilized with high dimensional data to remove
redundant and unwanted features. The methods of feature selection are f ilter, wrapping, and
embedded. These are pre-processing techniques to analyse the benefit of features, disregard
the effects of selected feature subset on performance of learning algorithm. Performing a
feature selection to get knowledge discovery, interpretability and to gain some insights, and
to overcome the curse of dimensionality. Feature selection methods can be used to identify
and remove unneeded, irrelevant and redundant attributes from data that do not contribute to
the accuracy of a predictive model or may in fact decrease the accuracy of the model [120] .

table 2.2 [9]. f ilters extract features from the dataset without any learning applied, and
suitable for very large features, only the accuracy is not secured, and evaluates the value
of features without using any learning algorithm, also evaluates the features using formula
based on the attribute of data [125], [126]. Wrappers uses ML techniques to evaluate most
useful features [127], accuracy measured of wrappers approach by the algorithm is really
high [128], and to assess the value of features by employ a predetermined learning algorithm
to the dataset to seek quality of the selected subsets [126], [129]. This approach is best
accuracy, merely have high computational complexity and lacks generality. Embedded

method have best computational complexity than wrapper approach, which combine the
feature selection step and the classifier construction and it consider as greedy algorithms
based on (SFS) sequential feature selection which fail to find feature set that maximize the
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Table 2.2 Feature subset selection Algorithms[9]

METHODS ALGORITHM FEATURES
Filter FOCUS RELIEF Suitable for large

features
Wrapper Forward selection High accuracy

Backward elimination
Feature subset FAST Improves classifier
selection performance
Embedded Sequential Forward Selection(SFS) Forward Selection

Interacts with the classifier
Better computational complexity.
Models feature dependencies.

measures independence between two variables, and in this case between features vector and
the labels. This failure due to the sparsity of high−dimensional data. Evaluating between
two scalar variables is feasible through histograms, and this approach has found use in
feature selection rather than in feature transformation [130] [131] [132]. In concept, finding
a transformation to lower dimensions might be possible than selecting features [133].

B. Feature Transformation

Feature transformation is a group of methods that create new features called also predictor
variables. Feature selection is a subset of feature transformation. While some machine
learning packages might transform categorical data to numeric automatically based on some
default embedding method, many other machine learning packages don’t support such inputs.
There many other methods to use to prepare the data in specific ways before fitting a machine
learning model. Principal component analysis (PCA) it is well known but has nothing to
do with discriminative features optimal for clustering, since it is only concerned with the
covariance of all data regardless of the class. Rotation is a simple linear transformation.
Several preprocessing methods such as principal component analysis (PCA) perform such
linear transformations, which permit reducing the space dimensionality and exhibit better
features [134]. Rotations in feature space often simplify feature selection. However, it may
be very useful in reducing noise in the data. So called linear discriminant analysis (LDA)
can be used to derive a discriminative transformation that is optimal for certain cases [133].

Categorical Transformation , Categorical data need to be transformed as some algorithms
cannot work with categorical data directly because cannot operate on label data directly, and
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they require all input variables and output variables to be numeric, and in this problem of
converting categorical data to Numerical Data there three mutual methods [135] :

1. One hot encoding (OHE)

2. Feature hashing (FHE)

3. Encoding to ordinal variables

All of these methods above are used either with Random−Forest −Loglolss or Logistic−
Regression−Loglolss, thus we do not wanted to use the utility function to create dummy
variable by encoding to ordinal variables which is converting the category into numeric
values as It is inappropriate to use the encoding to ordinal variables as this method will not
make any sense to code f irst value = 1 and the second = 2 ..etc. , it is just random and it will
assume that these values are similar to another relying to the value number only rather than
encoding each category as a one hot encoding (OHE) vector (or dummy variables) [135] .

2.4.5 Feature Extraction

In general, features can be as relevant, irrelevant, or redundant. Feature extraction aims is to
choice features as a pre-processing. A subset from available selected features data are for the
process of learning algorithm. The best subset is the one least number of dimensions that
most contribute to learning accuracy. There are four expression of feature extraction: feature
construction, feature subset generation, evaluation criterion definition such as relevance
index or predictive power), and evaluation criterion estimation . The feature construction is
independent technique but the rest of the aspects are related somehow to feature selection.
Filters and wrappers distinguish by the evaluation criterion. It is usually understood that
f ilters are used criteria not involving any ML, whereas wrappers use the performance of
a ML trained using a given f eaturesubset [134].The Pearson correlation coefficient is a
individual feature ranking, and it is also closely related to the T − test statistic, and the
Naßve_Bayes ranking index.

However, the feature extraction step followed by clustering on feature vectors in reduced-
dimension space, and the feature vector is just a vector that contains information describing
an object’s important characteristics. Feature extraction and dimension reduction can be
combined in one step using; principal component analysis (PCA), linear discriminant analysis
(LDA), canonical correlation analysis (CCA), or non-negative matrix factorization (NMF)
techniques [136]. Feature subset selection apply by removing features that are not relevant
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or are redundant. The subset of features selected should give the best performance according
to some objective function [137].

2.5 Summary and Discussion

Data mining technique are used to analyse data and extract useful information from large
amount of data ,and KDD is the methods development to find the relevant in any dataset.
To predict or to cluster data mining techniques used as part of the most KDD software and
visualization. KDD give rise in good decision-making. Machine learning is an ideal tool for
extracting the hidden patterns in the data and making efficient predictions on the same. One
of the primary advantages of this paradigm is the minimal dependency on the human factors
that make it to deliver its best among disparate and wide variety of sources. It is powered
by data running at the machine scale. It performs well when the data is to be dealt with is
large in volume, high in speed and diverse in variety. Unlike conventional analysis of data,
machine learning thrives with growing data. The more data is entered into a machine, the
more it can learn and apply the results for advanced quality insights.

Also, there often only three groups who are highly interested in the Big Data topic; First, is
the Machine Learning algorithm and Data scientist group who interest is to approach the
problem to find the optimize model to get perfect performance on the data based on the
income and on what they have considered, where the second group who under the AI and
(IoT)Internet of Things where they focused more on the impact that cloud migration and
streaming will have on big data implementations and then how they will set their goals. The
third group whom focus more on businesses side more than the research view, for example
books that explores the consequences and benefits of the expanding big data and what are the
benefits of big data growing at an astronomical rate. the Big Data often have one of the three
main characters, big quantities refer to Volume , high speed of which data been generated
called Velocity, and different types of data refer to it as Variety.

The dimensionality reduction often does not obstruct the performance of classification
algorithms. Whereas with reduced number of transformed feature exponential reduction
in computation time can be observed for Big data. nonetheless, the algorithm rely on the
character of data being processed. Pre-processing of Big data algorithms for preparing better
representative feature sets highly needed for better predictions, as it essential for prediction
of data analysis.
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Some argues that to achieve least number of dimensions is best to reduce data and PCA best
example but applying PCA apply a PCA before in order to reduce the dimensionality of
features, we may conserve the most cumulative percentage of inertia (98-99 % . Moreover,
depending of our features, maybe we must not use PCA at this stage. you should perform
feature selection for relevant subset , i.e. discard the features that are little or not relevant
for discrimination. PCA takes care of input space only, hence does not say anything about
the relevance of your features for classification. PCA may provide a compact repesentation
of your input data by finding linear combination of the features; but if the features are
irrelevant, linear combinations of them will not help. Therefore, you should first perform
feature selection, and, once you have discarded irrelevant features, perform PCA on them.
PCA may, or may not, be useful, depending on the geometry of the data in the space of
relevant features.

To apply any clustering technique, the data must take into account the data structure and
its input factors. The difference between the K-means and hierarchical algorithms are that
K-means clustering segments the dataset into k distinct clusters based on the distance to the
centroid of a cluster, whereas hierarchical clustering uses the method of creating a cluster
tree to construct a multilevel hierarchy of clusters.

Consequently, either the similarity or the dissimilarity should be meaningful. Yet K-means
method has many drawbacks and limitations, as well as is the initial centre point and the
fact that there is no correct way of doing it, and that why many work been presented to
improve K-means algorithms. These are the reasons why many researchers have presented
improvements to K-means algorithms. Therefore, Clustering will be in general a perfect
choice and Subspace Clustering in particular is the best technique to exploit that can further
improve our application performance. So, in our Advanced LRSR for Big Data application
section we will show how our domain been consider as big data domain and how we have
tackled the issues related to such domain and how we have reached our the optimal module
for Big Data. The aim of this research is to present a comparative analysis of the Machine
Learning algorithms to best reconcile Big Data challenges drawn on the basis of optimized
performance with respect to time and accuracy obtained in analytic and in prediction.

In this section we have introduced what is the big data, big data analysis, and challenges. In
next chapter , we will test and evaluate these methods against the methods on two real-world
datasets.



Chapter 3

PCA Segmented K-Means Clustering

3.1 Chapter Overview

In this chapter 1 where a similar crime has happened over a period of time, it is possible to
manage law enforcement resources more effectively like assisting to identify suspects. will
show our experimental of the approaches and methods of PCA segmented of K-means that
has been applied to a dataset of a crime domain . besides a summary and discussion will be
provided, which has led us to find the best approach for future subspace clustering in high
dimensional space for criminal data analysis in future.

3.2 Background of the Application

The outcome will be obtained from the record, which was a result of tracking the park
visitors’ information over three days. This will allow us to achieve various hidden predictive
patterns by analysing all the observations from large VAST databases. One incident occurred
at the park during the weekend. A crowd had gathered at the park to honour a local soccer
celebrity. Local police appeared on the scene shortly after the park visitors discovered some
vandalism. Security guards were questioned to eliminate the possibility of an inside job.
Visitors use park applications to check-in, to go on rides, and to communicate with fellow
visitors. If visitors do not have compatible phones, they are provided with loaned devices.
Visitors are assigned IDs and must use the app to check into rides and other attractions. The
park equipped with sensor beacons that record movements within the park. The sensors each

1Published at IEEE 2016 International Conference on Machine Learning and Cybernetics (ICMLC)[138]
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cover a 5m x 5m grid cell. All the pathways are covered by these sensors including both the
park and all the ride check-in locations. Locations are not recording while people are on
rides or inside attractions, including restaurants, stores, and restrooms. App users may send
text messages to anyone within their preferred group (for example, a family could have their
private group). An app user may also make a friend at the park and can send and receive
texts if both persons accept the friend invitations.

3.2.1 The Data Values

VAST data has two datasets, Movement and Communication, which captured from the park
attendees’ apps during one weekend (Friday, Saturday, and Sunday).

3.2.2 Movement Data

Table 3.1 Movement data

Timestamp Id Type X Y
06/06/14 08:00:11 1591741 check-in 63 99

The values are as follows; timestamp, person-id, type of activity (either check-in or move-
ment), X is coordinate, and Y is coordinate. The park area is gridded to assist in specifying
locations. The data file contains movement information around the grid, with coordinate
locations. This data appears as in Table table 3.1. The movement data size is 103MB. People
either move from grid square to grid square or check in at rides, which means they either get
in line or enter a ride. The information from the data as in table 3.1 for ID 1591741 show
that a visitor checked into a ride located at (63,99) at 8:00:11 AM. So each visitor travels
through the park their locations was recorded once they checked in . However , when there is
no record during a particular second of time, it means that the individual has not moved out
of their previous grid square but when visitor was not tracked after they check into a ride
then they will eventually appear back on the grid when the ride is over.
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3.2.3 Communications Data

Table 3.2 Communication data example

Timestamp from to location
2014-06-06 09:21:35.000 790661 1920255 Tundra Land

This the second data file and contains communications information. The values are as
follows: timestamp, from (the sender ID), to (the recipient ID), and location ( the area where
communications occurred). The location can be named as follows: Entry Corridor, Kiddie
Land, Tundra Land, Wet Land, or Coaster Alley. The records are shown in table 3.2. The
communications data size is 180MB. Graph 1 illustrates the difference in both data. The
dimensions of the communications data include having four variables, with movement data
being the fifth.
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Figure 3.1 Information Recorded In Vast Dataset

3.2.4 Problems and Challenges

The scenario was in an amusement park. The simulated park covers a vast geographic space
(approx.500x500m2). Patterns can be found in the movement through the park and in the
communications among visitors, including expected regular visit patterns and unexpected
patterns.

Our tasks in the investigation were to focus on the movement of people around the park, how
people move and communicate in the park, how patterns change and how the data change
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and evolve over time. As we mentioned earlier, the dataset is large, and each data has a
different size and values. Once the investigation is completed, the following questions should
be answered: How big is the group type? Where does this type of group like to go in the
park? How common is this kind of group? What are the other observations about this type of
group? What can you infer about the group? If improvement in the park needed to be made
to meet this group’s needs, what would it be?

3.3 Experiments

The following steps taken into account before starting the test:

• Define the goal

• Gather and clean data

• Analyses and explore

• Choose technique and methods to extract and mining data

• Identify and Apply algorithm that we need to find pattern and predict result o Build
model to finds pattern match and/or predicts result

• Evaluate results Iterate from explore and analyse the data (on-going feedback)

• Make decisions

3.3.1 Patterns Identifying Tasks

Cluster and Visualization Using R

Following graph 3.2 shows all the data before clustering, and visualizing the Friday Move-
ment data in their three dimension, plotted it in 3D as follows:

The experimental tasks were time-consuming, especially with such a large set of data for
identifying the patterns of large groups. The Friday movement data is visualised in three
dimensions and plotted in 3D, as displayed in figure 3.2. R environment been used for both
the data miners and the graphics. The original data must always be visualised in a graphical
format to help make decisions about how many numbers should be to consider as K clusters.
As we can see in Fig 3.3, the data point on left is the location of all the datasets after being
plotted. This is the same as the real footpath in right figure for the park map data points.
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Figure 3.2 Visualization for all the dataset before clustering in 2D and 3D
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Figure 3.3 Location of all data on MATLAB same as The real Park map

3.3.2 Determining the Number of Clusters

For the clustering problem, we have been giving unlabelled data sets, and we would like to
have an algorithm to group the data into subsets. In this clustering approach, the number
of clusters needed to be decided in advance. The best way we found to determine the
appropriate number of clusters was to plot the data as figure 3.4. From the dataset we have
chosen Saturday and Sunday timestamps frequencies obtained by the SQL to compare data
as figure 3.4.

Considering all the factors, in particular for the criminal data analysis, is a crucial aspect of
making a decision that could lead us to a potential suspect.
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Figure 3.4 Determine the appropriate number of clusters

One factor at a time could still be used in the early stage of the analysing to assist later
in determining how many clusters is need, but, determining how many clusters needed on
only one factor it is inaccurate , because the ID and location as important values as the
frequency of the timestamps . For example, in figure fig. 3.4, the plotting of the frequency
of the Saturday and Sunday timestamps could easily help us to identify some patterns. The
previous graph shows how many moves happened at a particular time on Saturday.

3.3.3 K-means Implementation

In our application, the first step in the loop of the K-means is the cluster assignment step, in
which the cluster will go through each vector giving it a data set, and depending on whether
it is closer or less close to the cluster centroid points, it will assign each data point to one of
the cluster centroids.

The clustering algorithm goes through the data set, which records the time and id of each
customer in the park. Then, when we plot them, we will be able to see each of the data points
and how far or close they are to each centroid point they were assigned to. When we have
decided that the number of the clustering = 3, then K = 3. Therefore, the X and Y are with
the 3C j centroid locations. The group we found can be seen in the following graph.

3.3.4 Modified K-means Implementation

We ran the algorithm for different numbers of k values, as in figure fig. 3.5, for k = 3 and
k = 5. We then used the modified K-means algorithm based on the density. As we defined
the best value of k as equalling 5, the space will be partitioned into 5multipliedby5, which is
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Figure 3.5 Clusters Obtained of k = 3 and k = 5

the same as the k ∗ k segments, as shown in figure 7. We then have to count the frequency of
the data points in each section, as shown in the following Table.

Figure 3.6 K-Means Results Partitioned into Different Segments

Then we have count the frequency of data point in each section, as shown in following table
III .

There are many segments that show the highest frequency for a given k. Therefore, there is no
merge for the segments due to the importance of each segment. Consequently, the centroids
of the cluster are measured in all the segments. The centroid will be calculated using the
mean of each segment. The cluster centroid then initialized, and we then assign each data
point to each cluster’s centroid by calculating the distance between each cluster’s centroid
and each data point. We then calculate the distance from any of the points from the centroid
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Table 3.3 Number of data points in different segment

Segment Number
((0,0),(20,20)) 0
((0,20),(36, 67)) 7280
((21,40),(15,93)) 11074
((41,60),(20,40)) 11842
((0,60),(20,80)) 0
((61,80),(23,99)) 24520
((0,80),(20,100)) 0
((81,100),(38,88)) 11032
((80,0),(100,20)) 0

to compare them with what has calculated with each cluster’s centroid and each data point.
We then recalculate all the data points of each cluster individually. The clusters’ centroids
will change for each iteration. This phase must reiterate until the end of this condition is
achieved.

3.4 Evaluation

K-Means was very important method for the data to be clustered, but it is not efficient enough
to handle the criminal data analysis. Nevertheless, an improved version of this method was
needed, and so on. The modified k-means algorithm approach used in our experiments which
has improved the ability to overcome the limitations of the K-means algorithm, which was
included the running of the algorithm for different k-value numbers and adjusting the initial
point of the centroid location. By applying the modified k-means cluster, we have quickly
identified how many K-means clusters needed to initialize the centroid point that lead to
better clustering. But often modified k-means does not function well for high dimension,
so an better version of this method was required, so we apply the PCA on original data set
and obtain a reduced dataset containing possibly uncorrelated variables. PCA performs well
when the data is disturbed by A random sample is a sequence of independent, identically
distributed (IID) Guassian noise.

It means That PCA works well as long as the value of noise is not big enough. PCA it
used by the feature transformation methods to help to reduce the data space to creates a new
set of orthogonal variables that keep the same information as the original set, and then to
find summarized set, but PCA dose not have as subspace clustering search methods and an
evaluation criteria, and so the PCA used in feature transformation techniques does not help in
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this instance, since relative distances are preserved and the effects of the irrelevant dimension
remain.

3.5 Summary and Discussion

The Subspace Clustering of High Dimensional that we proposed to be use , is to interact with
the input of the data based on the problems considered, and the algorithms will grouped data
in way based on how they work. nonetheless, if the data is discomposed by arbitrary large
noise, PCA will show a ineffective result, often even opposite to the possible solution, and
that why author effective methods is needed, where will propose in the next chapter.





Chapter 4

Low Rank Sparse Representation for
Subspace Clustering

4.1 New Affinity Metric for Low Rank Representation

To construct an affinity matrix offering more discriminative information for clustering, Liu
et al. [83]. provide a post-processing step of low-rank representation LRR for subspace
segmentation, and the LRR used to recover the subspace structures from the data that has
errors, and (LRR) used [86]. Given a set of data samples each of which can be represented
as a linear combination of the bases in a dictionary, LRR aims at finding the lowest-rank
representation of entire data together. The computational procedure of LRR is to solve a
nuclear norm [139] regularized optimization problem, which is convex and can be solved
in polynomial time. By choosing a specific dictionary, it is shown that LRR can well solve
the subspace clustering problem: when the data is clean, LRR prove exactly recovers the
row space of the data; for the data contaminated by outliers . Their experiments confirm a
significant improvement over clustering performance. In the following section, we will give
a further analysis and formally formulate it as a similarity measure criterion and name it as
LRR-COS.

Denote L = AZ the clean data recovered by LRR and its SVD L = UrSrV T
r ∈ RM × N ,

rank(L) = r . In fact, the column vectors of Ur denotes basis vectors spanning the column
space of L and the corresponding singular value of Sr specifies how important a basis vector
is.
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Column vectors in VT
r ∈ Rr × N are new representation of the data L under the scaled and

rotated coordinate system UrSr . The low-rank representation Z = VrVT
r is actually the

pairwise similarity metric defined by inner product: [Z]i j = vT
i v j,vi = [VT

r ]:,i v j = [VT
r ]:, j .

It is well-known that the similarity metric defined by cosines between representation vectors
is more reasonable than using the inner product especially when subspaces are disjoint or not
strictly independent. Therefore, we define a new affinity matrix for the graph as follows:

[
W
]

i j =

(
vT

i v j

∥ vi ∥2∥ v j ∥2

)2

,vi = [VT
r ]:, i,v j = [VT

r ]:, j. (4.1)

Using squared cosine values (.)2 in equation 4.1 is to ensure that the values of the affinity
matrix W are positive.

In the ideal noise-free cases, when we take SVD Z = Uz ∑z VT
z , we can infer that

Uz =Vz = Vr and ∑z is the identity matrix. In general, we deduce that Uz(∑z)
1/2 ≈Vr .

Then given the coefficient matrix Z obtained by LRR, we construct the affinity matrix W as
follows:

[
W
]

i j =

(
uT

i u j

∥ ui ∥2∥ u j ∥2

)2

,ui = [UW ]:, i,u j = [UW ]:, j. (4.2)

where UW = Uz(∑z)
1/2 .

4.2 LRSR and Optimization Algorithms

In this section, we first propose Low Rank subspace Sparse Representation (LRSR) model
for subspace clustering, then propose an efficient scheme to solve the proposed LRSR model
via the linearized ADM [140] framework.

4.2.1 The LRSR model

As analysed above, low rank representation can capture global information critical for
revealing low rank subspace structure and can remove large disturbance in original data. LRR
has excellent performance in regard to analysing corrupted data drawn from independent
subspaces. However, using the original data contaminated with large noises as the dictionary
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is by no means a nice choice. Moreover, LRR often fails in the case of disjoint subspaces or
overlapping subspaces.
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(a) LRR (b) SSC (c) LRR-COS (d) LRSR

Figure 4.1 Disjoint subspace data X with ambient dimension

Figure fig. 4.1 : Disjoint subspace data X with ambient dimension, subspace dimension and
subspace angle (1000,100,42.3): Percentage of outliers 0.005 ||X ||2F is 16.7% Images above
are the results of LRR, SSC, LRR-COS and LRSR from the left to the right with the SG
Accuracy 48.79%, 82.35%, 62.56%, 86.08% respectively.

For example, in the data used in the experiment shown in fig. 4.1, the first and the third
subspace are independent but the second subspace has intersections with each of the others.
Then, we get a coefficient matrix that is far from the ideal Block-Diagonal one. Further, to
achieve a strict Block-Diagonal coefficient matrix without post-processing step, LRR is only
applied to data from orthogonal subspaces. SSC is superior to LRR in this regard. However,
it is weaker in recovering the global subspace structure from the corrupted data than LRR.
The result of SSC in Figure fig. 4.1 shows that SSC does not remove the impact of large
noises.

Motivated by the above observation and analysis, we propose a method to combine the low
rank and sparse representation for subspace clustering especially for the cases when the
subspaces are not independent and data are corrupted by large noises. For example, the
corruptions caused by the uneven illumination leads to a relatively large number of within
cluster data points spread to other subspaces. Therefore, local methods like SSC may bring
about points from different subspaces into the same subspace with the uneven illumination
corruption. Nevertheless, LRR is better at handling corruptions than SSC. The collection
of face images of multiple subjects lie close to a union of several 9-dimensional subspaces
[141].

However, we cannot ensure the face image subspaces are orthogonal or independent to each
other. In other words, LRR recovers an affinity matrix with dense between-class affinities.
Therefore, we extend the framework by learning a clean dictionary (bases for subspaces)
which satisfies the convergence condition of SSC, i.e., favouring relatively smaller within-
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subspace distances and larger principal angle between subspaces. The model proposed is
defined as follows:

Ĵ = LRSR min
Z,A,J,E

||A||∗ + ||Z||∗ + λ2||J||1 + λ1 ||E||2,1 ,

s.t. X = AZ +E, Z = J − diag( j).
(4.3)

Different from SSC and LRR models, the proposed model (4.3) aims to recover both a
clean dictionary A and a low-rank-sparse coefficient matrix Z simultaneously. E represents
the sample-specific corruptions. As rank (A∗Z∗) ≤ min {rank(A∗),rank(Z∗)} , A∗Z∗ is the
low rank recovery of the original data. The optimization problem (4.3) can be solved in an
alternative iteration fashion, in which we need to solve two following sub-problems:

1 Fixing Z and J, solve (4.3) for A and E by the following problem, denoted by LRSR-1,

min
A,E

||A||∗ + λ1||E||2,1

s.t. X = AZ + E.
(4.4)

2 Fixing A and E, solve (4.3) for Z and J by the following problem, denoted by LRSR-2,

min
Z,J

||Z||∗ + λ2||J||1

s.t. X = AZ,

Z = J − diag( j).

(4.5)

Sub-problem (LRSR-1) can be considered as a subspace segmentation extension for RPCA.
As discussed in [142], RPCA cannot handle well mixed data, since it assumes the whole
dataset is drawn from a single subspace. LRSR-1 is a general one that can leverage the
influence of both RPCA and sparse-coding subspace segmentation for data sampled from a
union of subspaces. Based on the analysis in the previous subsections, we now propose to
solve each sub-problem by the linearized ADM method [140].



72 Low Rank Sparse Representation for Subspace Clustering

4.2.2 Alternating scheme for LRSR

We will develop an alternating scheme for solving both LRSR-1 and LRSR-2,respectively.
Both LRSR-1 and LRSR-2 fall in the ADMM framework or its extension [92], it is straight-
forward to formulate an iterative algorithm for them. Let us start with LRSR-1 by using the
augmented Lagrangian multiplier method. The augmented Lagrangian function of problem
LRSR-1 is defined as

ζ 1 (A,E,Y1) = ||A||∗ + λ1||E||2,1 +
〈

AZ +E −X ,Y1

〉
+ µ

2 ∥ AZ +E −X ∥2
F ,

where Y1 ∈ RM × N is the Lagrangian multiplier and µ < 0 is a penalty parameter to be
adaptively updated. Then the Alternating Direction Method (ADM) [92] for minimizing ζ 1
can be written into the following iteration procedure:

Ak+1 = ||A||∗+
µk

2
||AZ +Ek −X +Y k

1 /µk ||
2
F , (4.6)

Ek+1 = λ1||E||2,1+
µk

2
||Ak+1 +Z +E −X +Y k

1 /µk ||
2
F , (4.7)

Y k+1
1 = Y k+1 +µK(Ak+1Z +Ek+1 −X), (4.8)

µ +1 = min(ρµk,µmax), (4.9)

Both ρ and µ max in (4.9) are tunable parameters controlling the convergence of the
algorithm.

ADM is very efficient, provided that the resulting sub-problems (4.6) and (4.7) have closed-
form solutions. In fact, according to [[143], lemma 3.3 ] , a closed-form solution to (4.7) is
given as follows:

[Ek+1];,i = max
{
||hi||2 −

λ1

µk
,0
}

hi

||hi||2
,

where H = X −Ak+1Z −
Y k

1

µk

(4.10)



4.2 LRSR and Optimization Algorithms 73

where hi is the i− th column vector of H.

Although (4.7) has a closed-form solution as defined in (4.10), there is no known closed-
form solution to (4.6) because of the involving coefficient Z. Fortunately, the linearized
ADM method [140] has been proposed to solve 4.6 efficiently without introducing auxiliary
variables.

In (4.6) , denote F(A) = ∥ AZ +Ek −X +Y k
1 /µk ∥2

F . Taking the linearized approximation of
F(A) at the current Ak, we have

F(A)≈ F(Ak) +
〈
▽F(Ak),A−Ak

〉
+ τA

2 ∥ A−Ak ∥2
F

where τ A > ρ(ZT Z) is the proximal parameter, ρ(ZT Z) denotes the spectral radius of ZT Z,
and ▽F(Ak) denotes the gradient of the function F(A) at Ak. (4.6) can be reformulated by
linearized ADM as follows:

Ak+1 = argmin
A

||A||∗+
µkτA

2
||A−Ak +YA/(µkτA)||2F , (4.11)

Where Ya = (Y K
1 +µk(AkZ +Ek −X))ZT .

Problem (4.11) has a closed-form solution given by the thresholding operator, see [[93] ,
Theorem 2.1],

AK+1 =Uδ1/µKτA(Σ)V T ,where AK −YA(µkτA) =UΣV T ,

δ
1

µkτA
(Σ) = max(Σ− 1

µkτA
,0)+min(Σ− 1

µkτA
,0)

(4.12)

Now we consider the subproblem LRSR-2, which it is reasonable to be reformulated by
introducing an auxiliary variable Q as follows:

min
Z,Q,J

||Q||∗ + λ2||J||1

s.t. X −E = AZ, Q = Z, Z = J−diag(J).
(4.13)

The corresponding augmented Lagrangian function of (4.13) is

ζ2(Z,Q,J) = ||Q||∗+λ1||J||1 +
βk

2
||X −E −AZ +Y2/βk||2F .

+
βk

2
||Z − J+diag(J)+Y3/βk||2F +

βk

2
||Z −Q+Y4/βk||2F .

(4.14)
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Similar to deriving the iterative procedure for problem LRSR-1, we can propose the following
iterative updating scheme for minimizing ζ 2 (Z,Q,J):

Zk+1 = (AT A+2I)−1(Jk +AT (X −E +
1

µK
Y K

2 )− 1
βk

(Y k
3 +Y k

4 )), (4.15)

Qk+1 =Uδ1/βk(Σ)V T , where Zk +Y K
4 /βk = UΣV T , (4.16)

Jk+1 = T −diag(T ), whereT = δ1(Zk +Y k
3 /βk), (4.17)

Y k+1
2 = Y k

2 +βk(X −E −AZk), (4.18)

Y k+1
3 = Y k

3 +βk(Zk − Jk), (4.19)

Y k+1
4 = Y k

4 +βk(Zk −Qk), (4.20)

βk+1 = min(ρβk,βmax), (4.21)

4.3 Stopping Criteria for LRSR-1 and LRSR-2

The KKT conditions optimization, is the Karush–Kuhn–Tucker (KKT) conditions that are
derivative tests necessary for a solution in non-linear programming to be optimal, provided
regularity conditions are satisfied. KKT conditions of LRSR-1 are that there exists a triple
(A∗,E∗,Y ∗

1 ) such that

A∗Z +E∗−X = 0 ,

Y ∗
1 ZT ∈ ∂ ||A||∗, Y ∗

1 ∈ ∂ ||E||2,1

The triple (A∗,E∗,Y ∗
1 ) is called a KKT point. So the first stopping criterion is the feasibility:

||Ak+1Z + Ek+1 −X ||F/||X ||F < ε1 (4.22)
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Furthermore, (Ak+1 ,Ek+1 , Y1
k+1) should satisfy the second KKT condition as follows:

−µkτA(Ak+1 −Ak)ZT +Y k+1
1 ZT ∈ ∂ ||A||∗,

−µk [E
k+1 −Ek +(Ak+1 −Ak)ZT ] +Y k+1

1 ∈ λ1∂ ||E||2,1 ,
(4.23)

For Y1
k+1 to satisfy the KKT conditions of the problem in (4.23), both µkτA ∥ Ak+1 −A ∥2

F

and µk ∥ Ek+1 - Ek ∥2
F should be small enough. Hence, we have the second stopping criterion

for LRSR-1:

max(||Ek+1 − Ek||F/||X ||F ,

µkτA||Ak+1 −Ak||F/||XZT ||F < ε2)
(4.24)

The stopping criteria of LRSR-2 can be obtained in the similar way as follows:

max(||X −E −AZk+1||F/||X ||F ,

||Zk+1 − Jk+1 +diag(Jk+1)||F/||Zk+1||F)< ε1
(4.25)

− µk||Zk+1 −Zk||F/||AT X − E||F < ε2 (4.26)

Finally we summarize the iterative scheme for solving eq. (4.3) in Algorithm 1 and the general
framework of LRSR for subspace clustering in Algorithm 2 in the following Experiments
chapter.

4.4 Experiments on Hopkins dataset

HOPKINS 155 DATASET from vision lab has been created with the goal of providing an
extensive benchmark for testing feature based motion segmentation algorithms. It contains
video sequences along with the features extracted and tracked in all the frames. The ground-
truth segmentation is also provided for comparison purposes. The data is stored.
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4.4.1 Experiments with Synthetic Data

Three disjoint subspaces been consider {Si}3
i = 1 of the same dimension d embedded in the

D− dimensional ambient space, where both D and d are to be specified below. We further
assume that S1 is orthogonal to S3, and S2 is to be constructed specifically below.

Denote by Ui ∈ RD × d the orthogonal basis of Si (i = 1 and 3) . we make sure that rank
([ U1 U3] ) = 2d, rank ([ U2 U3] ) = 2d , rank ([ U1 U2] ) = 2d , but rank ([ U1 U2 U3] ) ̸= 3d to
satisfy the condition of disjoint subspaces. Then we constructed U2 as a linear combination
of U1 and U3.

Then we randomly divide both U1 and U3 , individually, into 2 parts ( 50 % each ) denoted
by U1 =

∆ [ U11 U12] and U3 =
∆ [ U31U32] .

Then we defined U2 = [ U21U22] in the same size as U1 , where the columns in U21 are
linearly combined by [ U11U31] and the columns in U22 are linearly combined by [ U12U32]

at random.

Then we randomly generated the same number of data points nd = 100 in each subspace.

In our experiment, we set D = 1000 and d = 36,48,72,84,120, respectively.

The matrix X = [ X1,X2,X3] , is formed by the samples generated from disjoint subspaces
S1,S2,S3 respectively, with larger Laplacian noises of mean 0:005 ∥X∥F added, and the
amount of the Laplacian noises at 16:7 % .

Each data point xi coming from Ski (ki = 1, or 2 or 3 ) , denote its new representation by zT
i

zT
i =∆ [ zi1

T ,zi2
T ,zi3

T ] , where zi j denotes the representation coefficients corresponding to the
points in S j . We measure the subspace segmentation accuracy by the following SG criterion
:

SG Accurancy =
1

3ng

3nd

∑
i=1

∥ziki∥2

∥zi∥2
∈ [ 0,1] , ki = {1,2,3}. (4.27)

where each term inside the summation indicates the fraction of the l2-norm of zi over the
same subspaces. However, because of the unknown dictionary A in LRSR, we should ensure
the column vector ai, (i = 1 . . . m) in A correspond to which subspace as follows:

ki = arg max
i

∥ XT
j ai ∥2

F / ∥ X jai ∥2
F ( j = 1 ,2 ,3 ) (4.28)
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Then we can use (4.11) to evaluate the subspace segmentation performance of LRSR. In the
synthetic experiment, we set λ = 1.2 for SSC, λ = 9 for LRR but this parameter has tiny
influence on the result and {λ1 = 0 : 40, λ 2 = 0.73} for LRSR.

In Figure fig. 4.1, we demonstrate the coefficient matrix Z of LRR, SSC, LRR-COS and
LRSR. As we can see from the figure, LRR leads to non-zero coefficients among subspaces
{S2,S3} and subspaces {S2,S1}. As to the SSC sub-figure, the noises impact can be explicitly
observed. LRR-COS can handle both the segmentation and the large corruptions better than
LRR but lack within-class connectivity. Obviously, the coefficient matrix given by LRSR has
a relatively ideal diagonal block structure. What’s more, we also show the infuence of the
subspace dimension to segmentation accuracy in Figure fig. 4.2.

We can conclude that LRSR has the best result and LRR-COS behaves better than LRR.
Rather than simply measuring the clustering error by computing the percentage of the
misclassified points in total points [7], [86], we introduce an evaluation metric, the F-
measure [144], involving both of precision rate and recall rate for evaluating the clustering
performance, defined in the following way: First calculate F(i) for the i-th manual annotation
subset as

(4.29)

where Pi and C j denote the i-th manual annotation subset and the j-th clus340 tering subset
respectively. np and nc are the numbers of them. Then the F-measure, the global evaluation
metric for clustering, is defined as follows:

(4.30)

where ni is the number of manual annotation set Pi.
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Figure 4.2 of LRR, LRR-COS, SSC and LRSR on the synthetic data of three disjoint
subspaces with ambient dimension, subspace angel, large noises mean (1000,44.5,0:005 ),
while x-axis represents the intrinsic subspace dimension.

4.4.2 Clustering

Given face images of multiple subjects with a fixed pose and varying illumination, we
consider the clustering problem according to subjects. It has been shown that, under the
Lambertian assumption, images of a subject with a fixed 345 pose and varying illumination
lie close to a linear subspace of dimension 9 [141]. Thus, the collection of face images of
multiple subjects lie close to a union of several 9-dimensional subspaces. In reality, the errors
correspond to the cast shadows and specularities in the face images and can be modelled as
sparsely outlying entries.

Figure 4.3 given face images of di erent subjects shoot under di erent light- ing conditions
(top), our goal is to cluster images that belong to the same subject (bottom).

In this section, we evaluate the clustering performance of LRSR and LRR-COS as well as
the state-of-the-art methods on the Extended Yale B dataset. For example, Figure fig. 4.3
shows face images of five subjects from Extended Yale B.
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The dataset consists of 192×168 pixel cropped face images of n = 38 individuals, where there
are Ni = 64 frontal face images for each subject acquired under various lighting conditions.
We down sample the images to 48×42 pixels and treat each 2016-dimensional vectorized
image as a data point. The face images are corrupted by errors such as shades or highlight.

Face[2] 5 Subjects 5 Subjects 10 Subjects 15 Subjects 20 Subjects
SSC 0.712±.100 0.724±.094 0.680±.148 0.595±.186 0.609±.154
SSC-N 0.821±.079 0.940±.047 0.816±.119 0.830±.108 0.802±.127
LRR 0.783±.08 0.754±.150 0.696±.173 0.723±.163 0.697±.160
LRR-COS 0.853±.08 0.951±.048 0.843±.117 0.821±.174 0.816±.156
LRSR 0.878±.068 0.941±.052 0.909±.089 0.867±.111 0.877±.182

Table 4.1 F-measures of different methods on the Extended YaleB database

In this experiments, we trial on five groups of n subjects, n ∈ {58101520}. We use F-
measure (eq. (4.30)) as the evaluation metric. Table table 4.1 shows the F-measure of
different algorithms for diffierent groups of subjects. In this experiments, we set λ = 0.12 for
LRR,λ= 1.5 for SSC and λ 1 = 0.6, λ2 = 0.01 for LRSR.

Without post-processing its coefficient matrix, LRR has the lowest F-measure among all the
algorithms. The post-processing method (LRR-COS) significantly improves the clustering
performance. It recovers the row space of original face images. SSC also has dis-satisfactory
performance because of the cast shadows and specularities in face images. SSC seeks the
locality information of each sample. For face images, the neighbourhood of each data point
contains points that belong 370 to other subjects and, in addition, the number of neighbours
from other subjects increases when we increases the number of subjects. LRSR has the best
performance among all the algorithms. In the case of 20 subjects, LRSR outperforms the
LRR-COS by about 8 percent in F-measures.

4.4.3 Segmentation

Motion segmentation refers to the problem of separating a video sequence into multiple
spatio-temporal regions corresponding to different rigid-body motions in the scene. The
motion segmentation problem can be preceded by first extracting a set of feature points
{X f i ∈ R2}N

i=1 from the video sequences f = 1, ...,F using standard tracking methods. Each
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(a) A checkerboard (b) An arm (c) A cars10

Figure 4.4 Example image frames of three categories motion sequences Checkerboard,
Articulated and Traffic from the Hopskins 155 database Marked Featured points in each
sub-fgure with the same colour correspond to the same motion.

data point yi, which is also called a feature trajectory, corresponds to a 2F-dimensional vector
obtained by stacking the feature points {X f i in the video as

(4.31)

Then the problem reduces to clustering these points trajectories according to different rigid-
body motions. Under the affne projection model, all feature trajectories associated with
a single rigid motion lie in a linear subspace of dimension at most 4 in R2F [145], [146].
Hence, motion segmentation reduces to clustering of data points in a union of subspaces.

In this subsection, we apply LRSR to motion segmentation problem and evaluate it on the
Hopkins155 motion database, which is available on-line at

Table 4.2 F measures with 2 motions

2 motions Checkerboard Articulated Traffic
SSC 0.731 0.17 0.953 0.031 0.961 0.102
LRR 0.821 0.207 0.90 0.129 0.989 0.307
LRSR 0.878 0.068 0.941 0.118 0.967 0.216

Table table 4.2 is the F-measures of different methods on the Hopkins155 with 2 motions
respectively, where λ 1 = 0.2, 2 = 0.01 for LRSR
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Table 4.3 F measures with 3 motions

2 motions Checkerboard Articulated Traffic
SSC 0.701±0.145 0.931±0.174 0.940±0.095

LRR 0.815±0.256 0.883±0.202 0.964±0.223

LRSR 0.878±0.213 0.962±0.161 0.967±0.107

Table table 4.3 is F-measures of different methods on the Hopkins155 with 3 motions
respectively, where λ 1 = 0.2, 2 = 0.01 for LRSR

Table 4.4 F-measures of different methods on the four Hopkins sequences with outliers and
missing data

Hopkinsadd books carsturning carsbus nrbooks3
SSC 0.278 0.278 0.278 0.278
SSCN 0.278 0.278 0.278 0.278
LRR 0.278 0.278 0.278 0.278
LRSR 0.278 0.278 0.278 0.278
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4.5 Evaluation

In this section, we evaluate the performance of our proposed LRSR applied to big and
Criminal Data Analysis comparing to algorithms which has applied on both synthetic data.
we proved of a subspace clustering framework called LRSR Applied to Criminal Data
Analysis is better than the PCA segmented and K-means, as it obtains the optimal solution
based on both LRR and sparse representation. Our proposed application can successfully
reveal multiple subspace structures and to recover the low-dimensional subspaces and to
seek a low-rank and sparse representation for clustering. However, there still remain several
problems with the current LRSR model. Our future work will includes the investigation of a
systematic way to estimate the parameters. In addition, we are also interested in extending
the current model from unsupervised clustering to semi-supervised clustering that is capable
of involving prior knowledge.

We first introduce two theorems regarding the convergence of the augmented Lagrangian
multiplier algorithms for sub-problems LRSR-1 and LRSR-2.

Sub-problem LRSR-1 is similar to the transposed standard LRR model, thus the convergence
analysis in [140] can be applied to this model. We present a convergence theorem below.

Theorem 1 If {µk} is non-decreasing and upper bounded, τA > ρ (ZZT ), then the sequence

Ak,Ek,Y1
k generated by and eq. (4.6) eq. (4.9) converges to a KKT point of LRSR-1.

For the revised LRSR-2 model eq. (4.13), there are three blocks of primary variables. For
the cases of more than two blocks of primary variables, a naive linearized version of ADM
may not converge. As suggested in [147], a parallel version has been adopted in eq. (4.15)
to eq. (4.21) . From the convergence analysis in [147], we immediately have the following
theorem.

Theorem 2 If{βk} is non-decreasing and upper bounded, then the sequence (Zk,Jk,Y2
k, Y3

k,

Y4
k ) generated by eq. (4.15) - eq. (4.21) converges to a KKT point of LRSR-2.

Proof Please refer to the proof in [147].

Theorem 3 Let the sequence of LRSR-1 {(Ak,Ek)} converge to (A j
∗, E j

∗) and that of

LRSR-2 {(Zk,Jk)} to (Z j
∗, J j

∗) we can prove that sequence of Ĵ LRSR (A j
∗, E j

∗, Z j
∗, J j

∗)

decreases and a local minimal can be obtained.
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Proof According to the models of LRSR-1 and LRSR-2 in eq. (4.4) and eq. (4.4), respectively,
we can obtain that

Ĵ LRSR (A∗
J ,E

∗
J ,Z

∗
J ,J

∗
J ) ≥ Ĵ LRSR (A∗

J+1,E
∗
J+1,Z

∗
J ,J

∗
J )

≥ Ĵ LRSR (A∗
J+1,E

∗
J+1,Z

∗
J+1,J

∗
J+1)

(4.32)

The objective function decreases at each alternating minimization step. Therefore, the
sequences Ĵ LRSR (At , Et , Zt , Jt), (t = 1,2, . . .) is decreasing. From both Theorems
theorem 1 and theorem 2, the sequence ({At , Et , Zt , Jt}) is bounded, so, without loss of
generality, we have an accumulation point (A∞, E∞, Z∞, J∞) such that it is local minimum of
Ĵ LRSR.

4.6 Summary and Discussion

Subspace clustering framework called LRSR Applied to Criminal Data Analysis, obtains the
optimal solution based on both low rank representation (least number of dimensions) and
sparse representation. Low rank subspace recovery detected corruptions and limiting the self-
expressive coefficient matrix to be sparse for disjoint subspaces, and algorithm successfully
reveal multiple subspace structures. LRSR algorithm aims to optimize nuclear norm of
the dictionary to recover the low-dimensional subspaces and to seek a low-rank and sparse
representation for clustering. Numerical experiments have confirmed the comparable/superior
performance of the methods over for both synthetic data and real application data (Criminal
Data ). As shown in Figure fig. 4.4, the database consists of 155 sequences of two and three
motions which can be divided into three main categories: Checkerboard, Articulated and
Traffic sequences.

The trajectories are extracted automatically by a tracker and outliers are manually removed.
Therefore, the trajectories are only corrupted by noises without any missing entries or outliers.
We perform the model learning with the original 2F-dimensional feature trajectories and
utilize the metric of F-measure to evaluate the performance of the methods. The average and
median F-measures are listed in Table table 4.2 and table 4.3. In order to compare LRSR
with the state-of-the-arts, we also list the results of LRR, SSC and SSC-N. SSC-N has a
post-processing step by only retaining the k + 1 -largest elements in each column of the
coefficient matrix, i.e., keeping the k+1 -nearest neighbours of each sample. Without the
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post-processing, SSC has the highest error among all the algorithms. On the other hand, the
post-processing over the sparse-representation matrix by only reserving the k + 1 -largest
coefficient in each column significantly improves the performance (SSC-N). In Table Table
table 4.2 and table 4.3, we show the results of LRR, SSC and LRSR evaluated on the Hopkins
database of 2 motions and 3 motions sequences. As the motion sequences were obtained
using an automatic tracker, and errors in tracking were manually corrected for each sequence,
it is reasonable to believe that these sequences only contain small noises. In fact there has
been very few attempts to deal with heavily corrupted trajectories. All the methods perform
well for video sequences without missing data and outliers. In Table table 4.4, we also
demonstrate the results for four video sequences with missing data and corruption. From the
table, we can see SSC with post-processing performs better relatively. LRSR performs better
than LRR and SSC without post-processing.

The method been applied as partitioning dataset graph-based clustering class, and two steps
to apply SC algorithms: subspace segmentation for constructing the affinity/similarity matrix
and SC algorithms using the affinity matrix. However the implementation of SC not only
to segmented and have graph-based class but also by embedding the data into subspace of
eigenvectors of an affinity matrix. Then to computing an affinity matrix A based on S.A , and
must be made it of positive values and be symmetric. The optimization of statistical methods
is usage of approaches such as the EM can leads to a local minimum, as statistical approaches
normally use independent samples drawn from a mixture of probabilistic distributions to
model data generation processes.

In this section, we evaluated the performance of our proposed algorithms on both synthetic
data and the data will be exploited in next chapter for criminal data, then we will conclude
the overall research and finding, then present our future work.



Chapter 5

Criminal Analysis with LRSR Clustering

This chapter will explain the tasks for the approach that been carried out to complete the
project, and in fig. 5.2 we can see the Data-flow diagram and summary sketch for the tasks
been carried out as the prototype integration for all phases as in fig. 5.1. As reviewed earlier
in chapter 2, big data have one of the three main characters, big quantities refer to Volume,
high speed of which data been generated called Velocity, and different types of data refer
to it as Variety as in fig. 1.5. To evaluate the performance of any algorithms on big data
such as crime data is best to understand the problem of the domain, examine and prepare the
dataset, extract initial knowledge form the prepared/transformed dataset, then to apply an
algorithm that will learn better, and last to discover and extract the knowledge.

Understanding 
of the problem 

domain

Understanding 
of the data

Preparation 
of the data

ML Clustering 
Algorithms

Knowledge 
Discovery  

from the ML

Evaluation 
and 

Validation

Discovered 
Knowledge

Understanding and Definition of the Problem  domain 

Data gathering and Dataset Insight

Data Quality and Preparation, Cleaning, transformation, HD Reduce Data  ..etc 

Results of ML algorithms and Validation

Unsupervised ML algorithms such as  SC, SSC , LRR ..etc 

To extract knowledge from prepared data

Pattern , use of the DK to 
extended knowledge  

Figure 5.1 Knowledge Discovery Dataset and Machine learning blueprint
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5.1 Knowledge Discovery Dataset and Machine learning
Workflow.

Our Knowledge Discovery Dataset and machine learning module designed based on those
Five elements that help in producing the following blueprint and core steps:

Figure 5.2 Knowledge Discovery Dataset and Machine learning Workflow for tasks been
carrying out

1. Exploratory Analysis: First, "get to know" the data. This step was efficient, and
critical.

2. Data Preparation : Include, cleaned, transformation our data to avoid many common
pitfalls. that led to get the best of the algorithms.

3. KDD and Feature Engineering: helped our algorithms "focus" on what’s important
by creating new features.

4. ML Clustering Algorithm applied of the best most appropriate algorithms.

5. Evaluation and validation Result of our models, evaluate and validate task. This task
will never be established if we have not complete the previous tasks.

In this section and based on what we have reviewed of techniques that exploited in chapter 2,
we bring forth a practical approach that combined many approaches that used for both
Criminal datasets analysis and big data. Theses fig. 5.1 techniques are the result of methods
that exploited from both advanced ML algorithms and KDD "Data Engineers" that has
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assisted in forming a strategy that bets dealt with crime data that has the characteristics of
both big-data/high-dimensional dataset. We divided it into seven 7 tasks as in fig. 5.1. We
have shaped and determined on these tasks form the outcome of the deep review and examine
many approaches. for instance we have considered step 2, 3, and 4 from the KDD process
as in fig. 2.10, as well as task 5, 6, 7 from Machine Learning algorithm methods and from
data engineers. In addition, we have emphasized later on this section the benefit of using the
above tasks before the advanced LRSR on Crime data. In this chapter, we will discuss how
we have tackled the issue raised applying each task to such domain, as well in this section
we will evaluate the result and how we have reached our the optimal module for big data.
The following list is the strategies we accomplished that been divided into seven main tasks:
1) Understanding and Definition of the domain Problem. 2) Understanding of the Data, such
as how was gathered , what insight we have , and how it visualize initially. 3) Data Quality
, such as preparation and cleaning missing, duplicated values, Categorical data. 4) KDD ,
such as transformation and selection into target data to extract knowledge from the prepared
data. 5) ML Clustering algorithms on crime data such as Unsupervised SC,SSC, LRR ,
LRSR algorithms. 6) Evaluate and Validation algorithms results. 7) Discovered Knowledge,
Interpretation of the result such as patterns, and use of the Discovered Knowledge to extended
knowledge. Next, each of the above tasks in fig. 5.1 applied, and discussed in following
sections.

Understanding 
of the problem 

domain

Understanding 
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Pattern , use of the DK to 
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Figure 5.3 Understand the Problem domain
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5.2 Understanding the Domain Problem

The objectives in this phase were to cover the domain problem in big and criminal data
analysis. First, was the basic understanding of the dataset, and by identifying relation that
is not clear on the dataset, rather what the dataset about or how it evolved. Thus, these
fulfilled at each section for dataset expedients. However, there were critical questions been
answered that justified our choice of which ML clustering methods been selected. It was a
necessary task that equally important as applying, improving or evaluating algorithms. To
understand the problem of any domain, these questions were answered: First, is to identify
the information, shape, size, and the type of the original attributes of the whole dataset.
Second is to specify the data type of each attribute. A third is to discover/deal with the
missing/duplicated attributes.

5.3 Crime Datasets
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Exploratory Analysis for Understanding the Dataset

We well first need to answer a set of questions about the dataset such as; How many
observations do I have?, How many features?, What are the data types of my features? , Are
they numeric?, Categorical? , and Do I have a target variable?

Data Gathering: experiment was on two dataset, the first dataset based on real crimes we
will refer to it as Local VALCRI Research Data. The second dataset is city of Chicago
crime data. This dataset reflects reported incidents of crime that occurred in the City of
Chicago from 2001 to present. Data is extracted from the Chicago Police Department’s
CLEAR system. Running the experiments on synthetic datasets will not be best choice as
real world data sets, as synthetic data sets may not well represent real world data, and both
data sets has no label or class assigned to the instances. However

Data Insight

Best approach to get an close insight to what is the dataset about is to visualize the dataset
before data preparation and quality tasks, and in this section we will visualize both dataset.

1. The VALCRI crime Dataset representative of a range of offence types that are appro-
priate to a typical offender for the major crime type, and the Time Period covered from
April 2015 to March 2018. The VALCRI dataset Synthetic Data, and has 1.13M rows and 19
Columns. Each row is a Reported Crime. This dataset was based on real crimes that is of
adequate size and complexity, and to subsequently develop to create and synthesise data that
is good as the real data. This data set made available to the research community at Middlesex
Unsisterly in London at other Organisation in European countries only.

2. The City of Chicago dataset initially can be described in table 5.2. The Chicago dataset
has 6.79M rows and 22 Columns. Each row is a Reported Crime.

Table 5.1 Both Dataset Informations

VALCRI dataset Chicago dataset

Data type float64(2), int64(3), object(14) float64(4) , int64(6) , object(10)
Memory usage 1.4+ MB 1.5+ MB
Values 19 22
Rows 1.13M 6.79M
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Table 5.2 Total record of all values presented in the Both dataset

VALCRI dataset Chicago dataset

Column ∑ record Type Column Total record Type

Crime Ref 10000 int64 ID 10000 int64
Crime Num 10000 object Case Number 10000 object
Date First Committed 10000 object Date 10000 object
Time First Committed 10000 object Block 10000 object
Day First Committed 10000 object IUCR 10000 object
Date Last Committed 10000 object Primary Type 10000 object
Time Last Committed 8626 object Description 10000 object
Day Last Committed 8626 object Location Description 9981 object
Street 9976 object Arrest 10000 bool
District 9074 object Domestic 10000 bool
Town 9952 object Beat 10000 int64
Post Code 7618 object District 10000 int64
Offence 10000 object Ward 10000 int64
MO Desc 1805 object Community Area 10000 int64
Beat Num 10000 object FBI Code 10000 object
HOMC Code 9419 float64 X Coordinate 9969 float64
HOOC Code 9419 float64 Y Coordinate 9969 float64
Northing 10000 int64 Year 10000 int64
Easting 10000 int64 Updated On 10000 object

Latitude 9969 float64
Longitude 9969 float64
Location 9969 object
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Table 5.3 VALCRI Example observations before ML

Record Values

Crime Ref 81690360
Crime Num 99Y4/463197/19
Date First Committed 8-Mar-17 12:00:00 AM
Time First Committed 30-Oct-15 09:40:00 PM
Date Last Committed 18-Mar-17
Time Last Committed 30-Oct-15 09:55:00 PM
Day_Last_Committed SAT
Day_First_Committed SAT
Street BUNTINGS LANE
District LORDS ORCHARD
Town CARSINGTON
Post_Code B38 8AP
Offence TAKE MOTOR/VEH W/O OWNER CONSENT
MO_Desc BURGLARY ENTRY:REAR:WINDOW:CASEMENT:PLASTIC:SM
Beat_Num E426
HOMC_Code 48.0
HOOC_Code 2.0
Northing 279100
Easting 403600
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Table 5.4 Chicago Example observations before ML

Record Values

ID 10000092
Case Number HY189866
Block 0 47XX W OHIO ST
IUCR 041A
Primary Type BATTERY
Description AGGRAVATED: HANDGUN
Location STREET
Beat 1111
Arrest False
Domestic False
Ward 28.0
Community Area 25.0
FBI Code 04B
X Coordinate 1144606.0
Y Coordinate 1903566.0
Year 2015
Updated On
Latitude 41.891399
Longitude -87.744385
Location (41.891398861 -87.744384567)
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Table 5.5 Chicago dataset attribute description

Column Name Description Type

Block The partially redacted address where the incident occurred Text
IUCR Illinois Uniform Crime Reporting code Text
Primary Type The primary description of the IUCR code Text
Description The secondary description of the IUCR code Text
Arrest Indicates whether an arrest was made Checkbox
Domestic Indicates whether the incident was domestic-related Checkbox
Beat Indicates the beat where the incident occurred Text
District Indicates the police district where the incident occurred Text
Ward City Council district where the incident occurred Number
Community Area community area where the incident occurred Text

Crime Dataset Example

This task will display example observations from both dataset. This will give us the "feel"
for the values of each feature to check out if the values makes sense. The table 5.3 the
examples of crime dataset values and entries of both data. VALCRI dataset has 19 entries ,
and there are very important entries, first, the type of Offence that have a total 168 different
type Offences been found at VALCRI crime dataset; for example: " TAKE MOTOR/VEH
W/O OWNER CONSENT " and it is one of the most important attribute, and there is an
average frequent of 700 counts for each unique values. The second important attribute is the
MO_Desc column that have a total 1407 different type crime Description that been found
at VALCRI crime dataset; for example: " BURGLARY ENTRY : REAR : WINDOW :
CASEMENT : PLASTIC : SM " which also one of the most important attribute in our dataset,
and there is an average frequent of 37 counts for each unique values . The goal is to detect
much more complex patterns where in real life there are numerous attributes for the crimes
information available. In this table 5.3 values can be seen of each feature from VALCRI
dataset before the process of KDD and ML been applied. In table 5.4 we can see the example
of each feature from Chicago dataset before the process of KDD and ML been applied. For
more description of Chicago city data, we including the attribute description in the following
table 5.5.
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Figure 5.5 Data Preparation and Pre-processing

Data preparation is the third phase and tasks as in fig. 5.5 that we have included for our
KDD and Criminal data analysis, known also as data pre-processing and data engineers. In
this phase and after the data gathered and cleaned , the dataset need to be prepared in the
format that ML can fit. We combined for this objective many tasks to solve the issues of Data
Preparation and Pre-processing such as the Missing, Duplicated values, or outliers Values .

5.4.1 Crime Datasets Cleaning

Adopting this process it is very crucial to get the data ready for ML and to understand the
domain, these process must be applied before any data reduction to learn about the data. The
process that our domain that has undergone it has a significant positive impact on the final
result for both dealing with crime big dataset and finding the best algorithm. Data preparation
is a very important part of the machine learning process. Data Preparation was the most
time-consuming aspect of this task. No matter how sophisticated the analysis technique that
we have used, If we did not spend the time and effort to create good data for the analysis, we
never got any good results. Therefore, in this section, we will illustrate how we make both
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datasets in the right format for further analysis by solving both dataset quality issues as in
the following sections

VALCRI and Chicago Missing Values

Missing data was existed in both data and it was a deceptively big issue in applied machine
learning. First, we could not ignore missing values in our dataset, and we handle them
carefully and individually for the very practical reason that most algorithms do not accept
missing values. Most data science and engineers use the "Common sense" which is not
reasonable in our domain. Data cleaning is time consuming and is the most important
tasks before applying any ML algorithms. From our experience, the most worse commonly
recommended ways of dealing with missing data is the dropping observations method which
is harmful for the learning process. Dropping observations that have missing values is sub-
optimal because when we drop observations, we then drop information, and in the real world,
we often need to make predictions on new data even if some of the features are missing.

We needed to understand the data more by identifying the missing values, to do this we have
first is to count the missing values using insull methods available to us in fig. 5.6 panda for
DataFrame , where the counts that equal zero 0 is showing the feature that has no missing
values . This method as in returned a boolean same-sied object indicating if values are null.
we will then sum these values to find the column that have positive null values. Also we have
visualize their distributions explained in section Figure 5.4.1 illustrated in fig. 5.7 .

Second, we have identified what type of the entry of each missing values, and then we found
that our data contain both missing values of the numeric and categorical that have NaN and
empty . We have split the tasks by type of missing values by their parent data-type. Missing
values often been solved either by Impute and Drop methods , and as we mentioned that
the use of dropping values or remove missing values it going to work in some cases when
the proportion of missing values is relatively low (< 10%), but in our case it will make big
impact and we then lose a large size of data. Likewise if we replace the values with 1 or 0
only then this will replace with 0(or−1). While this would help to run our models, but it can
be extremely dangerous as sometimes these values can be misleading. Before display our
result of our approach we need first to demonstrate and visualisation these missing values in
next section followed by the method we employ and the result.
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Figure 5.6 insull methods identifying the missing values
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Plot the Numerical and Categorical missing values

(a) Matrix (b) Bar

(c) HeatMap (d) Dendrogram

Figure 5.7 Missing values VALCRI Dataset

(a) Matrix (b) Bar

(c) HeatMap (d) Dendrogram

Figure 5.8 Missing values Chicago dataset

5.4.2 Handling Missing and Result

The graphs in fig. 5.7 and in fig. 5.8 shows the visualization of the present missing values
of both dataset, and we presented using Matrix, Bar, HeatMap, and Dendrogram plot to
have big picture of the data distribution. We have used the HeatMap as in fig. 5.7c also
works great for picking out data completeness relationships between variable pairs, and the
correlation heat-map measures nullity correlation on: how strongly the presence or absence
of one variable affects the presence of another. As well we have used the the Dendrogram
as in fig. 5.7d which allows us to more fully correlate variable completion, revealing trends
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deeper than the pairwise ones visible in the correlation heat-map. We also add Bar Chart as
in the is a fig. 5.7b for more visualization of nullity by column.

We could of use the IMPUTE methods but "missingness" is always informative in itself,
and we have to tell our algorithm that we have value that is missing , so if we have built
a model to impute our values, then these missing values is sub-optimal because the value
was originally missing but if we filled it in, then it will leads to a loss in information, and
no matter how advanced our imputation method was. Simply if Impute used, then we are
not adding any real information, we just reinforcing the patterns already provided by other
features.

Thus, How we handle missing Values? We inform our algorithm that a value was missing
by: 1.) We Labelled the Missing categorical values as ′Missing′!. so we have essentially
added a new class for the feature. This tells the algorithm that the value was missing. 2.)
Missing numeric data Flag the observation with an indicator variable of missingness in only
targeted column, by for instant d f [1]. f illna(0, inplace = True), which filled the original
missing value with 0 to meet the technical requirement of no missing values. However, by
using this technique of flagging and filling, we have essentially allowed the algorithm to
estimate the optimal constant for missingness, instead of just filling it in with the mean, Std
or most frequent values.

In the table bellow we can see as in fig. 5.9 that if the counts that equal zero 0 it is showing
the feature that has no missing values. There are not too many missing values in Chicago
dataset unalike VALCRI data that have many missing values. First we have find out number
of missing values by which called value_counts as in fig. 5.9, for example in the city of
Chicago dataset; the Street column have many missing Categorical values = 19 as in fig. 5.6,
and we have found out the highest common values in that column is Categorical: "Location
Description " which we use We Labelled the Missing categorical values as ′Missing′!. In
VALCRI dataset we found the HOMC_Code has total of = 581 missing Numerical values
replaced by the 0 value

Finally, and after dealing with missing values in the both dataset we can see the result as
in table 5.7. The result showing NO missing values exist. The graphs also in fig. 5.10 and
fig. 5.11 shows the visualisation of the VALCRI and Chicago dataset after handled the
missing values .
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Table 5.6 Labelled Missing categorical values with ′Missing′

Town_count Town counts
0 LEAFORD 43
1 Missing 48
2 YEARSLEY 106
3 UPPER TURNBURY 133
4 INDORAM 146
5 YAFFORTH 153
6 CARNDON 167
7 TORMINGTON 187
8 TURNBURY 229
9 YUPPLETON 244
10 ELLIBOURNE 363
11 TILTON MARSH 409
12 YAULE 542
13 YARNFORTH 799
14 YORKTON 899
15 DEWMAPLE 1100
16 CARSINGTON 4432

Figure 5.9 Result of Imputing all Missing values in VALCRI dataset
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(a) A Matrix (b) Bar

(c) A HeatMap

Figure 5.10 VALCRI dataset Visualization after dealing missing values

(a) A Matrix (b) Bar

(c) A HeatMap (d) A Dendrogram

Figure 5.11 Chicago dataset Visualization after removing missing values

After dealing with missing values in the both dataset as in table 5.7 .

Crime data Plot Numerical and Categorical Distributions

It was very helpful and revealing to plot the data to see the distributions of our both type of
features. It was easy to deal with the numeric values but the categorical features cannot be
visualized through histograms, Instead we use bar plots. We have mad notes about the result
which has helped in choice most appropriate approach for furtherest ML transformation
tasks. it dose cleared the invisible of seeing the large characterisation of the dataset, such as
a potential outlier in one of our features that need to be more examine.
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Table 5.7 Total record of both dataset after dealing with missing values

VALCRI dataset Chicago dataset

Column ∑ record Type Column Total record Type

Crime Ref 10000 int64 ID 10000 int64
Crime Num 10000 object Case Number 10000 object
Date First Committed 10000 object Date 10000 object
Time First Committed 10000 object Block 10000 object
Day First Committed 10000 object IUCR 10000 object
Date Last Committed 10000 object Primary Type 10000 object
Time Last Committed 10000 object Description 10000 object
Day Last Committed 10000 object Location Description 10000 object
Street 10000 object Arrest 10000 bool
District 10000 object Domestic 10000 bool
Town 10000 object Beat 10000 int64
Post Code 10000 object District 10000 int64
Offence 10000 object Ward 10000 int64
MO Desc 10000 object Community Area 10000 int64
Beat Num 10000 object FBI Code 10000 object
HOMC Code 10000 float64 X Coordinate 10000 float64
HOOC Code 10000 float64 Y Coordinate 10000 float64
Northing 10000 int64 Year 10000 int64
Easting 10000 int64 Updated On 10000 object

Latitude 10000 float64
Longitude 10000 float64
Location 10000 object
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In particular, we looked out for sparse classes, which are classes that have a very small
number of observations, and a "class" was result of finding the unique value for a categorical
feature in both data. For example, the following bar plot will shows the distribution for all
feature for all crimes in both dataset for each classes for each feature.

VALCRI Visualization and Distributions

VALCRI dataset can be seen in fig. 5.12 that we can see the crime in District fig. 5.12b ,
town fig. 5.12a, at day fig. 5.12c , and in time.

(a) Per Town

(b) Per District

(c) Per Date 1st Committed (d) Per Date last Committed

Figure 5.12 Crimes in VALCRI

Chicago City Visualization and Distributions

We can see the crime in Chicago City in fig. 5.13 over the years as in fig. 5.13a, Per Day Of
Month as in fig. 5.13b, and Per Hour fig. 5.13c. We can as well there are different types of
crimes as in fig. 5.14 which we separated them per month fig. 5.14a , also we have discovered
what is the highest type of Crimes Committed in the city , as well as the relatives amounts of
each type of crime as in fig. 5.14b. As well visualisation has helped us to see crimes and the
arrest rates as in fig. 5.15 per community area fig. 5.15a, per ward fig. 5.15b, and per district
of crimes committed in the city as in fig. 5.15c
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(a) crimes per year since 2011 (b) crimes Per Month all years

(c) crimes Per Day all years (d) different crimes Per Hour all years

Figure 5.13 Chicago crime dataset visualization

(a) different of all Per month all years (b) different of crimes per month all years

Figure 5.14 Different types of Chicago crime dataset
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(a) Chicago city Arrest Rates Per District (b) Chicago city Arrest Rates Per Ward

(c) Chicago city Arrest Rates Per Community Area

Figure 5.15 Arrest rates per communities of Chicago crime dataset

Dealing with Duplicate data

Dealing with duplicate data can occur when merging data from multiple sources. Here in
table 5.12 we can see that in both dataset we have duplicate values in all records. Best
approach but not in crime data is to remove the duplicated older record and keep the recent.
However in our domain dealing with duplicated values is sensitive and if we have removed
these values then the future result might be affected especially when analysing crime or
finding pattern and relation in the dataset .

Values Dropping

We have dropped two particular columns from both data have unnecessary information
such as Crime_ref, Crime_Num,MO_Desc, Northing, Easting, Time_First_Committed, and
Time_Last_Committed as stated in table 5.3. These values dose not have a valuable contribute
to the learning process based on the total count of each unique values and the class distribution
explained in table 5.12. We have used function data.drop() in pandas.DataFrame library
for data manipulation and analysis in python. As result of this task we have memory usage
decrease from 1.2 MB to 937.6+ KB and data size of (10000, 12). Nevertheless, at the end
of this chapter a discussion of these result in details will be giving .
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VALCRI dataset and Covariance

The problem with covariance to keeps the scale of the variables X and Y , which lead problems
with Interpretation as in eq. (5.1) , because we can’t compare variances over data sets with
different scales such as time and longitude.

This makes interpretation difficult and comparing covariances to each other impossible.
For example, Cov(X ,Y ) = 5.2 and Cov(Z,Q) = 3.1 tell us that these pairs are positively
associated, but it is difficult to tell whether the relationship between X and Y is stronger than
Z and Q without looking at the means and distributions of these variables. This is where
correlation are useful by standardizing covariance by Spearman’s Correlation.

Figure 5.16 Correlation HeatMap for all dataset values in VALCRI

The number wont tell how strong that relationship is, but can be fixed by dividing the
covariance which by the standard deviation to get the correlation coefficient. Yet, there were
different result of correlation for the data before and after scaling . We can see in fig. 5.17a
correlation among features before scaling less than once scaled as in ??

covx,y =
∑

N
i=1(xi − x̄)(yi − ȳ)

N −1
(5.1)

The reason why we have chose to calculate the correlation coefficient as it has advantages
over covariance for determining strengths of relationships. Covariance can take on practically
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(a) Correlation After Scaled (b) Correlation Before Scaled

Figure 5.17 Arrest rates per communities of Chicago crime dataset

any number while a correlation is limited: −1 to +1. also, correlation is more useful for
determining how strong the relationship is between the two variables ,and it does not have
units, and finally , correlation is n’t affected by changes in the center (i.e. mean) or scale of
the variables. In next section we will explain the result of this method.

Knowledge Base Crime dataset Correlations distribution

Finally, Knowledge Base Crime dataset Correlations distribution an important step in our
frame work that has allowed us to look at the relationships between numeric features and
other numeric features before and after feature transformation.

What are Correlation in both dataset We have looked out for which features are strongly
correlated with the other variable that we need to target, and is there any interesting or
unexpected strong correlations between other features. Our aim was to gain more intuition
about the dataset that helped us throughout the rest of the workflow.

So, What are the correlation in both dataset among attributes. why we looked for a mutual
relationship or association between quantities in both dataset, as it assist in predicting one
quantity from another and we will use it for many other modelling techniques in next chapter.
We measured the association between random variables. There are several methods we
used for calculating the correlation coefficient, each measuring different types of strength of
association. Bellow, we show how to calculate correlation problem. First we were interested
in explaining of correlation between all data values, and in fig. 5.16 we can observe the
values by the Heat Map method.
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Spearman’s Correlation

We have investigate the correlation between the feature start by the exploit of the Spearman
correlation which not only measure that calculates the strength of the relationship between
the relative movements of the two variables , but also Spearman rank correlation coefficient
can be defined as a special case of Pearson ρ applied to ranked or sorted variables. Unlike
pearson, Spearman as is not restricted to linear relationships. Instead, it measures monotonic
association and only strictly increasing or decreasing, but not mixed which between two
variables and relies on the rank order of values. Where Pearson, as Pearson correlation
measures the linear association between continuous variables. In other words, this coefficient
quantifies the degree to which a relationship between two variables can be described by a
line.

The formula we used for Spearman’s as in eq. (5.2) coefficient looks very similar to that
of Pearson as in eq. (5.3) , from the distinction of being computed on ranks instead of raw
scores:

ρ = 1− 6∑d2
i

n(n2 −1)
(5.2)

where d in eq. (5.2) = the pairwise distances of the ranks of the variables xi and yi . n = the
number of samples, while the estimate for eq. (5.3) shown in .

ρ =
cov(X ,Y )

σxσy
(5.3)

the the estimate of eq. (5.3) :

r =
∑

n
i=1(xi − x)(yi − y)√

∑
n
i=1(xi − x)2(yi − y)2

(5.4)

The difference between Spearman and Pearson correlations is the Spearman’s coefficient
often show is 1 as in fig. 5.18a. where then Pearson correlation often weaker in this case as
in fig. 5.18a, but it is still showing a very strong association due to the partial linearity of the
relationship.
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Figure 5.19 VALCRI non Scale Correlation

Figure 5.20 VALCRI Scale Correlation

(a) Spearman correlations (b) Pearson correlations

Figure 5.18 Result difference between Spearman and Pearson correlations

VALCRI Correlation Vs non Scale Correlation result

We compute non Scale pairwise correlation of columns as in fig. 5.19, excluding NA/null
values. Also we Compute correlation measures the linear association between continuous
variables as in

Next we will introduce how Crime Data Transformation approach in High Correlation values

5.4.3 Crime Data Transformation

For both dataset was very helpful finding the number of Unique Data Points from VALCRI
as in table 5.12 , then make these as dummies. The reason of why we have Transformed
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String to numeric values and we have converted categorical variable into dummy/indi-
cator variables, because most machine learning packages might transform categorical data
to numeric automatically based on some default embedding method, many other machine
learning packages don’t support such inputs. In next sections we will explain our approach
on dealing with these values

VALCRI categorical Transform

We have converted categorical variable into dummy/indicator variables. Dummies made by
creating multiple dummy variables, that handling categorical features to be numeric. Then,
we included a categorical values using dummy encoding FUNCTIONS. We have the follow-
ing values: Day_First_Committed, Day_Last_Committed, Town, Date_First_Committed,
and Date_Last_Committed .

VALCRI dummy encoding function We implemented by creating a new into separate
new df, then df1 = data+dummies df 2 = d f 1+dummies df 3 = d f 2+dumies. The data
re-created in new df dataset by dropping the original ’columns name’ column then join the
new columns with the original dataframe as in fig. 5.22 , then the df has many columns. We
create these dummy variables because Handling categorical features expects all features to
be numeric. thus we can not include a categorical feature in our model, and we transform
them to sensible numeric values by the use of dummy encoding. For example; leaving the
encoding as 1 = Mon, 2 = Tue, 3 = Wed, and 4 = Thu ..etc. , have an issue of systematic order,
and dummy encoding needed to have better and random learning and to avoid systematic
learning. Utility function used to create dummy variable, then columns added for categories
that only appear in our set then we added dummy columns to DataFrame as in fig. 5.21.

Figure 5.21 dummy encoding FUNCTION
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Figure 5.22 join the new columns

VALCRI Transform String to numeric values The following values: District and Beat
Num, HOMC_Code, HOOC_Code, Offence, District, Beat_Num,Street, and Post Code
have a String values as in table 5.9, and been transformed into Numerical values as seen in
table 5.10 it will not prevent from been handled by the data mining and ML, because most of
these techniques uses only numerical attribute. We replaced string by numeric which help
us to see and to generates dataset’s distribution that summarized data as in table 5.14. The
different of dummy encoding used earlier that; replacing strings values with a encoding it
will cause an order in the data, which then it will consider as a continuous numerical values
that induce an order which simply should not exist in our dataset and avoided.

Table 5.8 String replace with numerical values in VALCRI

District Beat Num
LORDS ORCHARD E426
CRAMINGTON E320n
NAYBAIRN E536
ISTREAY BROOK M541
CHARLMERE H457

Table 5.9 String values

District Beat Num
176 146
135 49
194 170
662 130
404 35

Table 5.10 Numerical values

The result of Transform String to numeric values and dummy encoding FUNCTION applied
that we have created new columns that becomes an array = 654.4 KB and (10000, 62).
However, a discussion of these result in details will be available at the end of this chapter.

VALCRI Transformation Categories to Numeric Values

In VALCRI dataset in table 5.2 we have these values as categories as ob ject type : District ,
Town , Street , Post Code , Offence , MO Desc, and Beat Num types. Therefore we have
transformed these categories values to numerical attributes as in table 5.10



5.4 Crime Data Preparation 111

5.4.4 Result of Dataset Transformation and Quality

This section demonstrate the result of the data quality and preparation tasks beforehand the
KDD process and fitting the ML algorithms. Result presented in table 5.11 showing the
result of the dimensions, size and data type after dataset gone under data quality, insight,
preparation and values transformation tasks as part of the better understanding of the dataset.
Many tasks has been implemented such as dealing with missing, duplicated, and categorical
values. These result shows the improvement made on the datasets been ready for complex
tasks such as transformation , learning , reduction and Clustering. The result of these tasks
has helped in finding the best data representations of both crime dataset that led to fit the data
ML algorithms.

Name of New data Columns dtypes memory usage
data 19 float64(2), int64(3), object(14) 1.4 MB
ScaleDum 186 float64(185), int32(1) 14.2 MB
ScaleNoDum 20 float64(19), int32(1) 1.5 MB
DumNotScaleNum 225 int64(225) 17.2 MB
DumNotScaleClean 186 float64(2), int32(1), int64(183) 14.2 MB
NoDumNoScaleNum 20 int32(1), int64(19) 1.5 MB
NoDumNoScaleNotNum 19 float64(2), int64(3), object(14) 1.4 MB

Table 5.11 Data Quality and Transformation task Result

In next section we will move further to advanced data pre-processing for transformation and
data selection such as normalization, standardization, data selection, and data reduction.
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Figure 5.23 Knowledge Discovery

5.5 Knowledge Discovery Dataset

This section covered the knowledge discovered from the Pre-pared dataset to be preprocessing
values into processed data fit to ML algorithmics experiments. This section presented how
features selected form transformed and prepared dataset, as well as presented the identified
related features by the use of both statistical and correlation distribution that identifies the
high correlated attributes, then we will discussion how we extracted features and knowledge
form the processing dataset by the Normalization, and standardization approaches. In next
section we will start by viewing the big picture and the best way is to begin with virtualisation
of both dataset to view the respective values for each task.

5.5.1 Crime Dataset Class Distribution

In this task we are demonstrate the number of instances (rows) that belong to each class. We
can view this as an absolute count as table 5.12. For example, we can see from VALCRI
dataset; that each class has almost different number of instances (max 10000 and min 7 and
avarage of of the dataset). However, this dose not tell us anything about the data ,but it can
assist to have an insight how the data was and in feature analysis. The following section
will demonstrate how we learn more about the datasets and how has helped us in finding out
what are the distribution of the numerical feature of each values across the samples of both
dataset as in early insights. As well the insight and it’s visualisations will be shown and after
the results.
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Dataset and shape description In both dataset we determine the over-fitting values by
the use shape of a dataset’s distribution as it help to over come the inability to analysis the
dataset, so for description and shape distribution we found the VALCRI dataset it has string
values as in table 5.10 that unable us to generates descriptive statistics that summarize the
central tendency, dispersion and shape of a dataset’s distribution solved in the next section.

Statistical Summary Both dataset prior to transformation This task is to observe at a
summary of each attribute, we have a very large standard deviation in both data , but isn’t
necessarily a negative or harmful to the ML module as it has the same units as the original
data ; as it often reflects a large amount of variation in the group and calculated and the fact
that it measures a distance from the mean such as the Crime_Ref value in VALCRI dataset
seen in the table 5.13 . Also this step and observation have confirmed that our data have an
outliers which we going to cover in separate section, and once the Std. it’s almost as large as
the average then we haev an outlier which it was the case in VALCRI data and alomots for
all values . For instant: the Northing values of the VALCRI dataset was 6.339500 , and the
standard deviation of the entire record turns out to be 10.740371.

Subset of each values in both dataset If we look to find features or subset in high dimen-
sion then we need first to look at the good subset, and the best is the one least number of
dimensions that most contribute to learning accuracy, thus we have observed and looked at
the number of unique Data Points of each values at the VALCRI dataset we can see that there
is some values that have lower data points to be consider in future learning accuracy as we
see in table 5.12. Chicago city on the other hand, have also number of unique Data Points of
each values as subset, we can see that there is some values that have lower data points to be
consider in future learning accuracy as we see in table 5.16. We can see in fig. 5.25 the pie
chart and how the percentage of each total number of subset of each values represented in
VALCRI, which has helped on seeing the board picture of the distribution.
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Table 5.12 Class Distribution of Both dataset Data Points numbers of each values

VALCRI dataset Chicago dataset

Column ∑ unique Points Column ∑ unique Points
Crime_Ref 10000 ID 10000
Town 16 Date 5060
Street 4365 Block 6645
Post Code 5564 IUCR 218
Offence 168 Description 208
MO_Desc 1407 Domestic 2
Beat_Num 682 Beat 277
Day_First_Committed 7 District 22
Day_Last_Committed 7 Ward 50
District 300 Year 8
Crime_Num 10000 Latitude and Longitude 8720
Date_First_Committed 15 Location 8720
Time_First_Committed 684
Date_Last_Committed 15
Time_Last_Committed 780
HOMC_Code 60
HOOC_Code 51
Northing 323
Easting 456

Table 5.13 Statistical Summary of VALCRI Dataset

Crime_Ref HOMC_Code HOOC_Code Northing Easting

count 1.000000e+04 10000.000000 10000.000000 10000.000000 10000.000000
mean 1.235783e+08 247.776800 6.339500 266288.150000 376033.670000
std 6.425597e+05 8787.140178 10.740371 77747.511254 108600.244607
min 8.169036e+07 1.000000 0.000000 0.000000 0.000000
25% 1.231698e+08 34.000000 2.000000 281400.000000 396300.000000
50% 1.236152e+08 48.000000 3.000000 286600.000000 404900.000000
75% 1.239961e+08 58.000000 10.000000 291900.000000 411400.000000
max 1.244137e+08 399898.000000 105.000000 880200.000000 438900.000000
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H

Figure 5.24 Both dataset Data Points numbers of each values

Table 5.14 Statistical Summary of Chicago Dataset

Beat District Ward Community Area Year

count 6.71E+06 6.71E+06 6.10E+06 6.09E+06 6.71E+06
mean 1.19E+03 1.13E+01 2.27E+01 3.76E+01 2.01E+03
std 7.03E+02 6.95E+00 1.38E+01 2.15E+01 4.97E+00
min 1.11E+02 1.00E+00 1.00E+00 0.00E+00 2.00E+03
25% 6.22E+02 6.00E+00 1.00E+01 2.30E+01 2.00E+03
50% 1.11E+03 1.00E+01 2.20E+01 3.20E+01 2.01E+03
75% 1.73E+03 1.70E+01 3.40E+01 5.80E+01 2.01E+03
max 2.54E+03 3.10E+01 5.00E+01 7.70E+01 2.02E+03
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Table 5.15 number of subset of each values in VLACRI

A) Offence crime counts B) Town crime counts
0 THEFT MOT. VEHIC. 1216 0 CARSINGTON 4432
1 BURGLARY DWELLING 971 1 DEWMAPLE 1100
2 BURGLARY BUILDING 768 2 YORKTON 899
3 DAMAGE TO VEHICLE 726 3 YARNFORTH 799
4 TAK.VEH OWN. CONS. 631 4 YAULE 542

C) District crime counts D) Street crime counts
0 TOWN CENTRE 967 0 HIGH HALDEN LANE 226
1 FORTHINGTON 286 1 COLWINSTONE ROAD 75
2 FINGLES PARK 195 2 IVESON GREEN 64
3 OSSIAN COMMON 171 3 CLARKE BROW 59
4 THIRLBY 162 4 YARROW CRESCENT 57

E) Post_Code crime counts F) Day_First_Committed counts
0 DY5 1SY 27 0 SUN 1831
1 B76 8XL 17 1 TUE 1618
2 B26 3QJ 17 2 WED 1593
3 WS1 15 3 THU 1557
4 B10 0HH 15 4 MON 1372

G) Day_Last_Committed counts H) Beat_Num counts
0 WED 1451 0 - 584
1 TUE 1435 1 F324 106
2 SUN 1390 2 M324 89
3 THU 1328 3 F306 89
4 MON 1195 4 H316 83

I) Date_Last_Committed counts MO BURGLARY Desc_count counts
0 - 1374 0 ENTRY:WOOD:FORCED... 37
1 06-Jan-17 791 1 ENTRY:FRONT:DOOR... 14
2 08-Jan-17 777 2 ENTRY:FRONT:FORCE... 12
3 10-Jan-17 774 3 ENTRY:FRONT:CASEMENT... 11
4 07-Jan-17 757 4 ENTRY:FRONT:DOOR:... 10
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Table 5.16 number of subset of each values in Chicago

A) Year crime counts B) Ward crime counts
0 2002 486752 0 28.0 278114
1 2001 485745 1 42.0 243700
2 2003 475934 2 24.0 239304
3 2004 469380 3 2.0 236533
4 2005 453703 4 27.0 220424

C) District crime counts F) Beat crime counts
0 8.0 456941 0 423 52343
1 11.0 428814 1 421 51401
2 7.0 396775 2 624 46471
3 25.0 387891 3 1533 45395
4 6.0 386346 4 511 45071
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(a) Offence Unique values (b) Town Unique values

(c) District Unique values (d) Street Unique values

(e) Post Code Unique values (f) Day 1st Com Unique values

(g) Day Lst Com Unique values (h) Data Lst Com Unique values

(i) Baet Num Unique values

Figure 5.25 Total of number of each Unique values VALCRI dataset
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(a) Year Unique values (b) Ward Unique values

(c) District Unique values (d) Domestic Unique values

(e) Description Unique values (f) Beat Unique values

Figure 5.26 Total of number of each Unique values Chicago dataset
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VALCRI and Chicago City Outliers

Outlier in our data have the values that are considerably different than the rest of the other
data samples in a data set. Here an example of how we detected Outliers through the use of
summary plots of the data before applying our approach, for instant and In PARTICULARLY
form VALCRI dataset as in fig. 5.27 we found the Offence value as in fig. 5.27a and District
as fig. 5.27b have an outliers among the other values where the Town centre is the highest
record of the Offence value and Theft from motor vehicle are the highest of the District
value. As well we have outlier in Day Last Committed value where the WED appeared
2726 times becoming the highest in the record as in fig. 5.27c

As we seen in above graph 5.27 that we have an Outliers in Offence, District, Town Day
Last/First Committed, Twon, and Street Values. we acknowledge that most of engineers they
tend to remove outliers regardless their values or meaning in the domain, but we confirm that
not all outliers are undesirable. In VALCRI dataset Outliers can significantly important and
are exactly what we’re looking for, for example in fig. 5.27e we have an outlier represent the
most Towns associated with most crimes, so in this can we must keep the town values with it
outliers, So when detected outliers, we didn’t move them out. Instead, we examined them
more closely and we will show how we dealt with these values to make these values of these
attribute available to analysis in next section.

Moreover, we found an attributes in VALCRI dataset have undesirable outliers and it can
increases the error variance and reduces the power of statistical tests as in fig. 5.27g where
it has numeric entries and have high unique numbers 300 by 750 counted for each of these
unique number . Therefore In this cases these outliers are not the focus of our analysis, and
we removed these outlier from our data set.

In next section , we will display tasks that involves deciding on which features to use ,
removed, added or combined to extracted important, non-redundant features from our data.

VALCRI and Chicago Over-fitting

We aimed to avoid over-fitting in the final output of the pre-proceed tasks, which is one of
the most harmful pitfalls in machine learning, because it will lead to an over-fit model that
has "memorized" the noise in the dataset, instead of learning the true underlying patterns.
For most applications, the stakes won’t be quite that high, but in big data and more precisely
crime data we often find an over-fitting that still the largest issue must avoid. We’ll use few
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(a) Number of Crimes Reported in District Values (b) The 50 Most Recent Reported Crimes Offence

(c) Days of Reported Crimes in Day Last Commit-
ted Values (d) Day First Committed Values

(e) Towns associated with most crimes in Town
Values

(f) Street associated with most crimes in Street
Values

(g) Northing Values

Figure 5.27 VALCRI outliers
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strategies for preventing over-fitting first, by choosing the right algorithms and then tuning
them correctly.

In this section we will cover how we selected data that are not over fitting and prepare our
dataset into target data, and we have found the Street, Post Code, and MO Desc values
from VALCRI dataset have factors which have over 1000 unique labels as in table 5.12, and
it cause over-fitting for the model making to not be able to learn and understand the data well
, and if we keep these values it will over-fit.

5.6 Crime Dataset Feature Engineering

Feature extraction and dimension reduction can be combined in one step using principal
component analysis (PCA), linear discriminant analysis (LDA), or Recursive Feature Elimi-
nation (RFE). We aimed to apply Feature extraction to select features as a pre-processing
step followed by clustering on feature vectors in reduced-dimension space.

The reason extract features because we have high dimensional dataset, and when the dimen-
sionality increases the computational cost also increases, usually exponentially, besides we
have in our dataset many attributes not yet suitable for feature selection or reduction task.
To overcome this problem it is necessary to find a way to reduce the number of features in
consideration. Two techniques we used (1) Feature subset selection. (2)Feature extraction.

This section will demonstrate how we first have standardize, normalize the dataset before
presenting the reduced method we have applied followed by the reduced features result.
This section will also explain the different results obtained from normalised and scaled and
Feature extraction and dimension reduction .

5.6.1 Crime data Feature Transformation

At this point, both dataset been through very important tasks such as data quality, and
preparation tasks that produced data clean, non-missing , non-duplicated , and non-categorical
values that allowed us to improve the dataset even further. In this section we are going to
illustrator how we have transformed the existing values into usable and useful features for
ML tasks. The transformation of the data going to help in improving the accuracy of the
algorithm later.
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VALCRI Standardising and Scaling

Even we have dealt with missing ,duplicated, strings, categorical values, yet still some issue
need to be resolved such as having attributes as in table 5.17 that not yet suitable for ML
tasks such feature selection, Extraction or reduction. These values are not in one unite scale
and would have different result even if we wanted to measure the relationship between them
or operate a simple Statistical calculation such as finding the Distribution of the dataset to
finds Std. or Mean as in table 5.25.

Approach We dealt with the issue by standardising and scaling dataset by Standardize
features by removing the mean and scaling to unit variance. This approach standardization is
so-called Min-Max scaling as in eq. (5.6). It is one of the Two common feature transforma-
tions. This step is very important when dealing with parameters of different units and scales,
to reduce noise and variability to make the data easier to analyse. The standard score of a
sample ‘x‘ is calculated as in eq. (5.5) :

z = (x−u)/s (5.5)

where ‘u‘ is the mean of the training samples or zero , and ‘s‘ is the standard deviation of
the training samples or one. Centring and scaling happened independently on each feature
by computing the relevant statistics on the samples in the training set. Mean and standard
deviation are then stored to be used on later data using the ‘trans f orm‘ method used in
Python as in.

Bottom-up approaches:

We have code the following equations for standardization and scaling. However, in this
approach, we scaled the data to a fixed range. A Min-Max scaling is done via the following
equation:

Xnorm =
X −Xmin

Xmax−Xmin
(5.6)

X̄ =
∑x
n

(5.7)
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Table 5.17 VALCRI Data Non-Scaled scaling Feature

Time_LasT Street District Town Post_Code Offence MO_Desc Beat_Num

586 663 146 1 1887 137 1407 176
779 27 49 1 1491 50 1407 135
732 977 171 1 228 50 1407 194
779 2921 130 2 4455 45 1407 662
749 1933 35 12 4633 48 1407 404

Var(X) =
∑x2

n
− x̄2 (5.8)

Var(Y ) =
∑x2

n
− x̄2 (5.9)

This approach simply Standardization refers to shifting the distribution of each attribute to
have a mean of zero and a standard deviation of one (unit variance). It allowed us to achieved
Standardize features that by removing the mean as in eq. (5.7) and scaling it to unit variance
as in eq. (5.8) and calculate covariance as in eq. (5.9). indeed as we seen first by finding
the (1.) Mean of each values for example (Offences after dummies against the other values
), then use that mean to calculate the (2.) variance of selected values then (3.) covariance
between each of them , and we can see the result on VALCRI data. In this table table 5.17
we can see the dataset before scaling , and in this table 5.18 we can see after the scaling.
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Table 5.18 VALCRI Data AFTER scaling Feature

Time_Last Street District Town Post_Code Offence MO_Desc Beat_Num

0.541707 -1.191202 -0.189722 -0.794902 -0.817479 0.962637 0.403912 -0.668432
1.357332 -1.704752 -1.332349 -0.794902 -1.068313 -0.755064 0.403912 -0.869735
1.158708 -0.937657 0.104770 -0.794902 -1.868323 -0.755064 0.403912 -0.580055
1.357332 0.632063 -0.378197 -0.613202 0.809144 -0.853782 0.403912 1.717740
1.230551 -0.165717 -1.497265 1.203800 0.921893 -0.794551 0.403912 0.451007
1.289715 -0.815729 1.577227 -0.613202 0.287839 -0.755064 0.403912 1.663732
-1.896714 -0.538767 0.045871 1.203800 0.999170 0.172890 0.403912 0.470646
1.357332 1.621212 -1.520824 -0.794902 0.809144 1.258792 0.403912 -0.555506
-1.926296 -0.281185 1.117821 -0.613202 0.133918 -0.893269 -0.949981 1.590084
1.357332 0.326839 1.200278 0.476999 0.745802 -0.735320 0.403912 0.691588
1.357332 0.531129 0.964685 -0.794902 -1.450899 0.962637 0.403912 -1.164324
1.357332 -0.052671 -0.236841 -0.794902 0.809144 -1.722504 0.403912 1.315135

1 %\ b e g i n { l s t l i s t i n g }
2 i m p o r t numpy as np
3 i m p o r t pandas as pd
4 i m p o r t s k l e a r n
5 from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r , MinMaxScaler
6

7 # S t a n d a r d i z e t ime s e r i e s d a t a
8 from pandas i m p o r t S e r i e s
9 from math i m p o r t s q r t

10

11 # l o a d t h e d a t a s e t
12 s e r i e s = S e r i e s . f rom_csv ( " IntNoDum . csv " , e r r o r _ b a d _ l i n e s = F a l s e , nrows =

10000)
13

14 # p r e p a r e d a t a f o r s t a n d a r d i z a t i o n
15 v a l u e s = s e r i e s . v a l u e s
16 v a l u e s = v a l u e s . r e s h a p e ( ( l e n ( IntNoDum ) , 1 ) )
17

18 # t r a i n t h e s t a n d a r d i z a t i o n
19 s c a l e r = S t a n d a r d S c a l e r ( )
20 s c a l e r = s c a l e r . f i t ( IntNoDum )
21 p r i n t ( ’Mean : %f , S t a n d a r d D e v i a t i o n : %f ’ % ( s c a l e r . mean_ , s q r t ( s c a l e r .

va r_ ) ) )
22

23 # s t a n d a r d i z a t i o n t h e d a t a s e t and p r i n t t h e f i r s t 5 rows
24 n o r m a l i z e d = s c a l e r . t r a n s f o r m ( IntNoDum )
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25 f o r i i n r a n g e ( 5 ) :
26 p r i n t ( n o r m a l i z e d [ i ] )
27

28 # i n v e r s e t r a n s f o r m
29 i n v e r s e d = s c a l e r . i n v e r s e _ t r a n s f o r m ( n o r m a l i z e d )
30 f o r i i n r a n g e ( 5 ) :
31 p r i n t ( i n v e r s e d [ i ] )
32

33 Re tu rn :
34

35 Mean : 4999 .500000 , S t a n d a r d D e v i a t i o n : 2886 .751332
36 [ 1 . 5 5 1 0 5 1 5 1 ]
37 [ 1 . 3 2 0 3 4 2 3 4 ]
38 [ 1 . 6 6 0 1 7 0 7 1 ]
39 [ −0.48272256]
40 [ −0.96631115]
41 [ 9 4 7 7 . ]
42 [ 8 8 1 1 . ]
43 [ 9 7 9 2 . ]
44 [ 3 6 0 6 . ]
45 [ 2 2 1 0 . ]

Listing 5.1 Valcri Dataset Standardisation

5.6.2 Crime Dataset Feature Extraction

Data Reduction of the transformed data

In previous section we have solved the values that are not in one unite scale , still we have
high dimensional data need to be reduce in order to discover pattern or relation among
features. Next section will illustrate our approach in crime data domain.

Feature Extraction With PCA Choosing appropriate features to building better ML mod-
ule started earlier in this chapter, all these tasks help our knowledge of domain increase
which has been the key role in understanding of the application in deciding features to add,
drop or modify. We reduced the FEATURE VECTOR by building the derived values to came
up with the smallest set of features that have the best captures of the characteristics of our
domain and tested through PCA explain in next paragraph.
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Crime_Ref Post_Code Offence ... MO_Desc Beat_Num kmeans
0 81690360 1887 137 .. 1407 176 2
1 122679527 1491 50 .. 1407 135 0
2 122679664 228 50 ... 1407 194 0
3 122679801 4455 45 ... 1407 662 0
4 122680623 4633 48 ... 1407 404 0

Table 5.19 VALCRI Before reduction PCA through KDD

VALCRI Data Reduction based PCA Data Reduction in many ways and we chose
feature selection known also as Attribute Subset Selection , we applied PCA Projection to
the original data which has 19 columns as in table 5.2. The original data projected into new 2
dimensions, we earlier have specified in advance the number of principal components we
wanted to use. Then we can just call the fit() method with our data frame and check the
results. and there usually no a particular meaning assigned to each principal component after
dimensionality reduction. The new components is the two main dimensions of variation. We
have exploited (PCA) as feature extraction method. We fond the eigenvectors of a covariance
matrix with the highest eigenvalues as in table 5.22 and we used those to project the data into
a new subspace of equal or less dimensions .

We have converted the matrix of n features into a less than n features as new dataset. That
have reduced the number of features by constructing a new, smaller number variables which
capture a significant portion of the information found in the original features. However, the
goal of this section not to explain the concept of PCA, but rather to demonstrate the result of
PCA in scaled and non-scaled crime dataset.

Principal Component Analysis applied by the following Scatter matrix:

S =
n

∑
k=1

(xxxk −mmm) (xxxk −mmm)T (5.10)

where

mmm =
1
n

n

∑
k=1

xxxk (mean vector) (5.11)

Table as in table 5.22 show the original data as in table 5.19 with 19 features then reduced
by PCA explained by eq. (5.10) , and fit the n_componenet = 50 . Graph in fig. 5.28 shows
the data reduced before dealing with missing values , features creation, transformation such
as scaling or standardising .This graph shows the number of components as X label and
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cumulative explained variance ratio as in Y label, which explain the parameter returns a
vector of the variance explained by each dimension. Thus PCA explained variance ratio = [i]

gives the variance explained solely by the i + 1 st dimension. Also explained variance ratio
can be derived from singular values. However the graph in fig. 5.29 we can see the VALCRI
data reduction after cleaning dataset , dealing with missing values , categorical data type ,
and scaling to one unite variate.

Figure 5.28 VALCRI data reduction Before KDD

Figure 5.29 VALCRI data reduction After KDD

This table 5.20 represent the The new components as two main dimensions of variation after
KDD, then we combine the result of PCA with the DataFrame to a final PCA representation
of VALCRI as in table 5.21 .
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principal component 1 principal component 2
0 8.042236 29.623526
1 1.348689 2.602439
2 1.297932 2.224275
3 1.361436 2.351033
4 1.788163 1.948504

Table 5.20 VALCRI PCA components ONLY after KDD

This table 5.21 represent the PCA component concatenating with the VALCRI clustering
dataset.

principal component 1 principal component 2 kmeans
0 8.042236 29.623526 2
1 1.348689 2.602439 0
2 1.297932 2.224275 0
3 1.361436 2.351033 0
4 1.788163 1.948504 0

Table 5.21 The components of PCA Joined with clustering of VALCRI dataset

Note that the PCA of 2 component pca.explainedvarianceratio between 0.14289058, 0.13561101.
We also have used dimensionality reduction of 19 component represented as in table 5.22. In
common, data projected it into a lower dimensional space uses the LAPACK implementation
of the full SVD or a randomized truncated, and SVD by the method of Halko et al. 2009,
depending on the shape of the input data and the number of components to extract. we used
the following PCA module :

1 from s k l e a r n . d e c o m p o s i t i o n i m p o r t PCA
2

3 pca = PCA( n_components =19)
4 pca . f i t ( ScaleNoDum )
5

6 PCA( copy=True , i t e r a t e d _ p o w e r = ’ a u t o ’ , n_components =19 , r a n d o m _ s t a t e =None
,

7 s v d _ s o l v e r = ’ a u t o ’ , t o l = 0 . 0 , w h i t en = F a l s e )

Listing 5.2 Dimensionality reduction Algorithms of 19 component
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The table 5.22 show the result of the lower dimensional space uses the LAPACK implemen-
tation of the full SVD .

0.33535608 0.09047108 0.08393101 0.06178246
0.05991306 0.05278035 0.04775955 0.041053
0.03771201 0.03451236 0.03107427 0.02719704
0.02459588 0.01886537 0.01704837 0.01445389
0.01232751 0.00697453 0.00151566

Table 5.22 Processed VALCRI dataset dimensionality reduction into 19 component

1 from s k l e a r n . d e c o m p o s i t i o n i m p o r t PCA
2 from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r
3

4 f e a t u r e s = d a t a
5 # S e p a r a t i n g o u t t h e f e a t u r e s
6 x = df . l o c [ : , f e a t u r e s ] . v a l u e s
7

8 # S e p a r a t i n g o u t t h e t a r g e t
9 y = df . l o c [ : , [ ’ t a r g e t ’ ] ] . v a l u e s

10

11 # S t a n d a r d i z i n g t h e f e a t u r e s
12 x = S t a n d a r d S c a l e r ( ) . f i t _ t r a n s f o r m ( x )
13

14

15 pca = PCA( n_components =19)
16 pca . f i t ( x _ c o l s )
17

18

19 p r i n t ( pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _ )
20 p l t . f i g u r e ( f i g s i z e = ( 1 5 , 7 ) )
21 p l t . p l o t ( np . cumsum ( pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _ ) )
22 p l t . x l a b e l ( ’ number o f components ’ )
23 p l t . y l a b e l ( ’ c u m u l a t i v e e x p l a i n e d v a r i a n c e ’ ) ;

Listing 5.3 PCA Algorithms on the original dataset
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5.6.3 Crime Dataset Features Selection

As we explained earlier this step is referred to by many names, data munching, data drangling
and data pre-processing. The two broad categories of data wrangling are feature selection
and feature transformation, we will discuss how we have applied those techniques.

Removing High Correlation in VALCRI dataset As we discussed in the previous section
for outliers that we found an attributes in VALCRI dataset have undesirable outliers and
which increases the error as in fig. 5.27g and these outliers are not the focus of our analysis,
so we removed these outlier from our data set: so the graph in fig. 5.16 allowed us to write a
function that we can identify the High Correlation then we created correlation matrix as in
fig. 5.30 then we dropped the feature columns with correlation greater than 0.95 that store
these values .

Then we examined these values HOMC_Code′, ′HOOC_Code′, ′District_Coded′, and
′Beat_Num_Coded values we could see the result as in fig. 5.32 we as well have plot
the correlated values as fig. 5.31 to see more distribution among them for final examination
before dropping them. However there still more values needed to be investigated to include
in the feature selection to extracting better knowledge form both dataset.

Removing High Correlation in VALCRI dataset At this point, both dataset been through
very crucial tasks such as data quality, and preparation tasks that produced data frame clean,
have non-missing , non-duplicated , non-categorical and non-string values that allowed us
even to improve dataset further to have datasets without over-fitting and without outliers as
result of several of feature transformation tasks

Removing features with low variance we used the removing features with low variance
approach to remove feature that has low variance as selection method as in fig. 5.34 . As was
expected, there seems to be a strong negative correlation between some values as in fig. 5.32
and we can also see visualisation as in fig. 5.33

Then we created a scatter plot matrix using the scatter_matrix method that was available
in "panda" 1 to analyse and access the data structures , then we removes all features whose
variance does not meet some threshold. It removed all zero-variance features, and features

1"panda" library providing high-performance, easy-to-use data structures and data analysis tools for the
Python programming language
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that have the same value in all samples. we removed all features that are either one or zero
(on or off) in more than 80% of the samples, and the variance of such variables is given by:

Var[x] = p(1− p)

sel =VarianceT hreshold(threshold = (.8∗ (1− .8)))

Figure 5.30 correlation matrix
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Figure 5.31 Dropped correlated values

Figure 5.32 correlation relationship between quantities in VALCRI dataset

Figure 5.33 heatmap plot of correlation
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Figure 5.34 Removing features with low variance

Selection of relevant attributes We select features according to the K highest scores as in
table 5.23, and it is a linear model for testing the individual effect of each of many regressors.
This is a scoring function used in a feature selection procedure for selection procedure. This
is done in 2 steps:

1. . The correlation between each regressor and the target is computed, that is in ,

2. . It is converted to an F score then to a p-value.

((X [:, i]−mean(X [:, i]))∗ (y−meany))/(std(X [:, i])∗ std(y)). (5.12)

1 # m u t u a l _ i n f o _ r e g r e s s i o n (X, y ) −> E s t i m a t e mutua l i n f o r m a t i o n f o r a
c o n t i n u o u s t a r g e t v a r i a b l e .

2 s e l e c t o r s = [ ]
3 # l i s t o f s t a t i s t i c a l f u n c t i o n s
4 f u n c t i o n s = [
5 f _ c l a s s i f ,
6 m u t u a l _ i n f o _ c l a s s i f ,
7 f _ r e g r e s s i o n
8 ]
9

10 f o r f i n f u n c t i o n s :
11 s e l = S e l e c t K B e s t ( f , k =2)
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Score of: f_ classif
[ 0.90545032 462.95684224 1.16536537 1.25053537 1.31882654
1.20222728 2.38467875 144.34844196 21.63406883 2.23198286 The
1.66605654 inf 6.35195037 2.59147342 43.53029523
2.90684633]

Table 5.23 Selection of relevant attributes

[0.03852959 0.07821626 0.03924847 0.02345777 0.03834957 0.02258495
0.05979153 0.02761926 0.11281638 0.03182307 0.01098285 0.26777654
0.0571776 0.02855646 0.13683155 0.02623814]

Table 5.24 Selection of SelectKBest attributes

12 s e l . f i t (X, Y)
13 s e l e c t o r s . append ( s e l )
14

15 pd . DataFrame (X) . head ( )

Listing 5.4 SelectKBest relevant attributes Algorithms

Selection of SelectKBest attributes we used the select best method by the use of the
RandomForestClassi f ier() as in table 5.24 which uses averaging to improve the predictive
accuracy and control over-fitting. table bellow shows the best features of the dataset

This section will conclude and demonstrate the result of the tasks been completed including
identify the class distribution for feature selection and extraction which show in the table
big different from the primary dataset and that helps extracting and selecting only relevant
features for better Clustering representations of both crime dataset .

As well it is important to highlight the data also have different in the result of the Statistical
calculation such as finding the Distribution of the dataset as in table 5.25.

The following table table 5.27 to compare ALL dataset with different result before and after
scaling. Each Dataset has other name to the original dataset with different features, size ,
shape , and type. As well as each data can have different memory usage. However, this table
for the purpose for illustration of the scale impact on the dataset before feature extraction,
selection and before clustering.
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Table 5.25 VALCRI Data Non-Scaled Statistic Distribution

Street District Town Post_Code Offence MO_Desc Beat_Num

count 10000.000 10000.000 10000.000 10000.000 10000.00 10000.000 10000.00
mean 2138.229600 162.105900 5.374800 3177.579500 88.24330 1273.943100 312.14190
std 1238.499761 84.896316 5.503849 1578.809915 50.65164 329.436839 203.68371
min 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000
25% 1043.750000 87.000000 1.000000 1824.000000 44.00000 1407.000000 136.00000
50% 2076.000000 168.000000 2.000000 3661.500000 79.00000 1407.000000 306.00000

Table 5.26 VALCRI Data Scaled Statistic Distribution

Street District Town ... Offence Beat_Num

count 1.000000e+04 1.000000e+04 1.000000e+04 ... 1.000000e+04 1.000000e+04
mean -9.874324e-17 9.243994e-17 3.984757e-16 ... -1.109879e-15 -1.094813e-15
std 1.000050e+00 1.000050e+00 1.000050e+00 ... 1.000050e+00 1.000050e+00
min -1.726554e+00 -1.909553e+00 -9.766018e-01 ... -1.742248e+00 -1.532560e+00
25% -8.837582e-01 -8.847222e-01 -7.949017e-01 ... -8.735258e-01 -8.648247e-01
50% -5.024846e-02 6.943051e-02 -6.132015e-01 ... -1.824968e-01 -3.015561e-02

Table 5.27 Data set Feature transformation comparison result

Name Features Numeric Folat Object Sclaed Dummies Missing

0 data 19 2 3 14 False No
1 IntNoDum 19 19 0 0 False No
2 Missing0filling 19 2 3 14 False No
3 NoDumScaled 18 18 0 0 True No
4 dumNoscaled 185 183 2 0 False Yes
5 dumScaled 185 0 185 0 True Yes
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Figure 5.35 Fitting all cluster Algorithms modules

5.6.4 Fitting all clusters modules

We train our module and fit all clustering modules to get the best feature selection , and
we used Kmeans of 200 iteration, agglom algorithms that have linkage ward, and spectral

affinity algorithms , as in fig. 5.35

1 from s k l e a r n i m p o r t c l u s t e r
2 k _ c l u s t e r s = 3
3 r e s u l t s = [ ]
4 a l g o r i t h m s = {}
5

6 # K−Means C l u s t e r i n g
7 a l g o r i t h m s [ ’ kmeans ’ ] = c l u s t e r . KMeans ( n _ c l u s t e r s = k _ c l u s t e r s , n _ i n i t =200)
8 # A g g l o m e r a t i v e C l u s t e r i n g
9 a l g o r i t h m s [ ’ agglom ’ ] = c l u s t e r . A g g l o m e r a t i v e C l u s t e r i n g ( n _ c l u s t e r s =

k _ c l u s t e r s , l i n k a g e =" ward " )
10 # S p e c t r a l C l u s t e r i n g
11 a l g o r i t h m s [ ’ s p e c t r a l ’ ] = c l u s t e r . S p e c t r a l C l u s t e r i n g ( n _ c l u s t e r s =

k _ c l u s t e r s )
12 # A f f i n i t y P r o p a g a t i o n
13 a l g o r i t h m s [ ’ a f f i n i t y ’ ] = c l u s t e r . A f f i n i t y P r o p a g a t i o n ( damping = 0 . 6 )

Listing 5.5 Fitting all cluster Algorithms modules
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5.7 Clustering Algorithms on Crime Dataset

Understanding 
of the problem 

domain

Understanding 
of the data

Preparation 
of the data
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Evaluation 
and 

Validation

Discovered 
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Understanding and Definition of the Problem  domain 

Data gathering and Dataset Insight

Data Quality and Preparation, Cleaning, transformation, HD Reduce Data  ..etc 

Results of ML algorithms and Validation 

Unsupervised ML algorithms such as  SC, SSC , LRR ..etc 

To extract knowledge from prepared data

Pattern , use of the DK to 
extended knowledge  

Figure 5.36 ML Clustering algorithms

The following results of unsupervised clustering algorithms applied to VALCRI data before
and after KDD process , this result to compare the the initial dataset clustering algorithms
result against dataset that been processed. There is already significant improvement as in
following tables .

This section 5.7 show the result of the cluster of VALCRI dataset has been Transformed to
Numeric using Dummies function but not scaled

This section 5.7 show the result of the cluster of VALCRI dataset that has been Numerically
Transformed Data and Scaled.

This section 5.7 show the result of the cluster of VALCRI dataset that has been Scaled Data
but not Numerically Transformed .

This section 5.7 show the result of the cluster of VALCRI dataset that that not Numerically
Transformed nor Scaled .

Result of clustering all KDD dataset tasks This section 5.7 show the comparison result
of clustering all VALCRI datasets at each tasks.
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Street District Post_Code MO_Desc Beat_Num cluster
0 664 146 1887 -1 176 6
1 28 49 1491 -1 135 6
2 978 170 228 -1 194 6
3 2921 130 -1 -1 662 5
4 1934 35 4632 -1 404 2
5 1129 295 3632 -1 651 5
6 1472 166 4754 -1 408 2
7 4146 33 -1 -1 199 6
8 1791 256 3389 961 636 5

Table 5.28 Clustering Transformed Data to Numeric but not scaled

Figure 5.37 Clustering Transformed Data to Numeric but not scaled

Street District Post_Code MO_Desc Beat_Num cluster
0 27.0 49.0 1491.0 -1.0 135.0 7
1 977.0 170.0 228.0 -1.0 194.0 7
2 2920.0 130.0 -1.0 -1.0 662.0 2

Table 5.29 Clustering Numerically Transformed Data and Scaled

Street District Post_Code MO_Desc Beat_Num cluster
0 -1.704752 -1.332349 -1.068313 0.403912 -0.869735 4
1 -0.937657 0.104770 -1.868323 0.403912 -0.580055 4
2 0.632063 -0.378197 0.809144 0.403912 1.717740 7

Table 5.30 Clustering Scaled Data but not Numerically Transformed
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Figure 5.38 Clustering Numerically Transformed Data and Scaled

Figure 5.39 Clustering Scaled Data but not Numerically Transformed

Street District Post_Code MO_Desc Beat_Num cluster
0 663 146 1887 1407 176 3
1 27 49 1491 1407 135 2
2 977 171 228 1407 194 2

Table 5.31 Clustering Data that not Numerically Transformed nor Scaled
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Figure 5.40 Clustering Data that not Numerically Transformed nor Scaled

Feature dtypes memory clust_labels
data 19 float64(2),int64(3),obj(14) 1.4 MB N/A
ScaleDum 186 float64(185),int32(1) 14.2 MB 0.076
ScaleNoDum 20 float64(19),int32(1) 1.5 MB 0.098
DumNotScaleNum 225 int64(225) 17.2 MB 0.0874
DumNotScaleClean 186 float64(2),int32(1),int64(183) 14.2 MB 0.3506
NoDumNoScaleNum 20 int32(1),int64(19) 1.5 MB 0.334
NoDumNoScaleNotNum 19 float64(2),int64(3),obj(14) 1.4 MB N/A

Table 5.32 ALL Clustering Data comparison Results
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5.7.1 Robust PCA Data Reduction

Apply Robust PCA We apply RPCA using same as dataset output used for PCA in table 5.22
in previous section and we add the following:

RPCA = R _pca(X_scaled)

L, S = rpca.fit(max_iter=1000, iter_print=1)

iteration: 1, error: 63.29131964419159

To

iteration: 87, error: 0.009832057513205499

result show that

L is a Low Rank and S is Sparse Matrix of the data.

Change max_iter = 10000, for better results

5.7.2 Spectral Clustering Algorithms (SC)

1. Data preparing from prepared dataset

2. Choosing our model

3. Fit model 80

4. Evaluation model 20

5. Hyperparameter

6. Prediction

Spectral clustering algorithms is subspace clustering methods, is well acknowledged to
partitioning of a big data, and it come under the Graph-based clustering class. SC algorithms
identified the data points as nodes in a weighted graph, and is to partition the nodes into
several sets with the minimum sum of edge weights between each set. It is one of the two
subspace clustering algorithms steps of the graph-based clustering methods that followed the
subspace segmentation step which is to for constructing the affinity/similarity matrix , so the
SC algorithms uses the affinity matrix to partitioning big dataset .



5.7 Clustering Algorithms on Crime Dataset 143

Benchmark Data Sets The data set from Package called ’mlbench’ which is a package
with libraries that is included in "R" 2 , ’mlbench’ is a collection of artificial and real-world
machine learning benchmark problems, including, e.g., several data sets from the UCI
repository.

• Details of the data: Name obj, the summary can be found in table 5.33:

Table 5.33 obj data summary

Length Class Mode
x 200 -none- numeric
classes 100 factor numeric

Results of creating data as obj Example of the data, we can see the head of the data as
example in table 5.34:

Table 5.34 obj data Example

x.1 x.2 classes
1 - 0.02253048 -0.4623878442 2
2 0.35187374 0.1379108955 1
3 0.16041228 0.8232393527 2
4 - 0.17414471 - 0.3863506083 2
5 0.30719916 0.1787081512 1
6 0.25101613 0.2070397047 1

inputs The inputs of the spirals problem are points on two entangled spirals. If sd > 0, as
in fig. 5.41, ever the best wat to get sense of the data is to Visual it before the implementing
the SC algorithms.

Usage:

specc : specc(my.data,centers = 2)

Function: mlbench.spirals(n,cycles = 1,sd = 0)

mlbench.spirals(100,1,0.025)

Arguments for Function ’mlbench.spirals’ :

2R is a language and environment for statistical computing and graphics. R provides a wide variety of statis-
tical such as linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,
clustering, . . . ). The topics that have used in this Benchmark Problems such as DNA, BreastCancer ,
Letter Recognition, bayesclass and Vote .
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Figure 5.41 obj data plot before SC algorithms applied

n : number of patterns to create

cycles : the number of cycles each spiral makes

sd: standard deviation of data points around the spirals

Value : Returns an object of class ”mlbench.spirals”

The Value of mlbench.spirals Returns an object of class with components: x input values
classes factor vector of length n with target classes

Table 5.35 ’Specc’ Arguments

x: the matrix of data to be clustered.
data: an optional data frame containing the variables in the model.
centers : a random set of rows in the eigenvectors matrix are chosen as the initial centers.
kernel : this function used in computing the affinity matrix.
kernlab provides the most popular kernel functions
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Arguments for Spectral Clustering ’Specc’ Note that the kernlab mentioned in table
above has provides the most popular kernel functions which can be used by setting the kernel
parameter to the following strings:

• rbfdot Radial Basis kernel function "Gaussian".

• polydot Polynomial kernel function.

• vanilladot Linear kernel function.

• tanhdot Hyperbolic tangent kernel function.

• laplacedot Laplacian kernel function.

• besseldot Bessel kernel function.

• anovadot ANOVA RBF kernel function.

• splinedot Spline kernel.

• stringdot String kernel.

The kernel parameter can also be set to a user defined function of class kernel by passing the
function name as an argument.

Value: An S4 object of class specc which extends the class vector containing integers
indicating the cluster to which each point is allocated.

The following points contain useful information:

• centers A matrix of cluster centers.

• size The number of point in each cluster.

• withinss The within-cluster sum of squares for each cluster .

• kernelf The kernel function used.

Table 5.36 my.data sample

x.1 x.2
1 -0.09012193 -1.849551377
2 1.40749495 0.551643582
3 0.64164912 3.292957411
4 -0.69657885 -1.545402433
5 1.22879663 0.714832605
6 1.00406453 0.828158819
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Extra step x: the matrix of data to be clustered, but the data: mentioned in table 5.34 has
been scaled to my.data <−4∗ob j $ x and then named under my.data , and in we can see
how data changed :
Visual the implementing the SC algorithms :
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−
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−
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0
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2
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my.data[,1]

m
y.

da
ta

[,2
]

Figure 5.42 my.data from obj data

Implementation of SC

Usually any spectral algorithm is formed of the following three basic stages: pre-processing,
spectral-representation and clustering as it is summarized in The steps bellow:

1. Project your data into Rn

2. Define an Affinity matrix , using an Adjacency matrix or Gaussian Kernel K

3. Construct the Graph Laplacian from A by normalization

4. Solve an Eigenvalue problem

5. select k eigenvectors corresponding to the k lowest eigenvalues to define a k-dimensional

subspace
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6. Map each point to a lower-dimensional representation based on one or more eigenvec-
tors

7. Clustering by assign points to two or more classes, based on the new representation.

To implement the SC by embedding the data into the subspace of the eigenvectors of an
affinity matrix.

Compute Similarity Matrix

- Spectral clustering needs a similarity or affinity 8 (x,y) measure determining how close
points x and y are from each other.

- Let’s denote the similarity matrix S, as the matrix that at Si j = 8 (xi,x j) gives the similarity
between observations xi and x j .

- Common similarity measures are: + Euclidean distance: 8 (xi,x j) = ||xi - x j||2 + Gaussian
Kernel: s (xi,x j) = exp (-α||xi - x j||2)

- compute S for my.data dataset using the gaussian kernel:

1 s <− f u n c t i o n ( x1 , x2 , a l p h a =1) {
2 exp(− a l p h a * norm ( as . m a t r i x ( x1−x2 ) , t y p e ="F" ) )
3 }
4

5 make . s i m i l a r i t y <− f u n c t i o n (my . da t a , s i m i l a r i t y ) {
6 N <− nrow (my . d a t a )
7 S <− m a t r i x ( r e p (NA,N^2) , n c o l =N)
8 f o r ( i i n 1 :N) {
9 f o r ( j i n 1 :N) {

10 S [ i , j ] <− s i m i l a r i t y (my . d a t a [ i , ] , my . d a t a [ j , ] )
11 }
12 }
13 S
14 }
15

16 S <− make . s i m i l a r i t y (my . da t a , s )
17 S [ 1 : 8 , 1 : 8 ]

Listing 5.6 compute S for my.data using the gaussian kernel

Results of the Affinity Matrix Representation on the my.data shown in the fig. 5.43
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Figure 5.43 my.data Similarity Matrix

Affinity Matrix Representation

Then to to compute an affinity matrix A based on S.A ,and of positive values and be symmetric.
to build a representation of a graph connecting by applying a k-nearest neighbour filter.
However , to be symmetric, if Ai j is selected as a nearest neighbour, so will A ji

1 make . a f f i n i t y <− f u n c t i o n ( S , n . n e i g h b o o r s =2) {
2 N <− l e n g t h ( S [ , 1 ] )
3

4 i f ( n . n e i g h b o o r s >= N) { # f u l l y c o n n e c t e d
5 A <− S
6 } e l s e {
7 A <− m a t r i x ( r e p ( 0 ,N^2) , n c o l =N)
8 f o r ( i i n 1 :N) { # f o r each l i n e
9 # on ly c o n n e c t t o t h o s e p o i n t s w i th l a r g e r s i m i l a r i t y

10 b e s t . s i m i l a r i t i e s <− s o r t ( S [ i , ] , d e c r e a s i n g =TRUE) [ 1 : n . n e i g h b o o r s ]
11 f o r ( s i n b e s t . s i m i l a r i t i e s ) {
12 j <− which ( S [ i , ] == s )
13 A[ i , j ] <− S [ i , j ]
14 A[ j , i ] <− S [ i , j ] # t o make an u n d i r e c t e d graph , i e , t h e m a t r i x becomes

symmet r i c
15 }
16 }
17 }
18 A
19 }
20

21 A <− make . a f f i n i t y ( S , 3 ) # use 3 n e i g h b o o r s ( i n c l u d e s s e l f )



5.7 Clustering Algorithms on Crime Dataset 149

22 A[ 1 : 8 , 1 : 8 ]

Listing 5.7 Affinity Matrix Representation computation

Results of the Affinity Matrix Representation on the my.data shown in the fig. 5.44,
However, the an Affinity it is not the standard Euclidean metric but we here used Affinity
Matrix to determines how close, or Similar, two points in space.

Figure 5.44 Affinity Matrix Representation on the my.data

After computing the affinity matrix, replaced clustering is by a graph-partition problem,
where connected graph components are interpreted as clusters. The graph are partitioned
and that edges connecting different clusters should have low weights, and edges within the
same cluster have high values. Spectral clustering is the technique that can construct this
type of graph.

Degree Matrix D ’Diagonal Value’

The degree matrix D where each diagonal value is the degree of the respective vertex and all
other positions are zero:

1 D <− d i a g ( a p p l y (A, 1 , sum ) )
2 D[ 1 : 8 , 1 : 8 ]

Listing 5.8 Diagonal Value

Results of the Degree Matrix D ’Diagonal Value’ on the A which is based on A.S shown in
the fig. 5.45

Compute the Unnormalized Graph Laplacian

compute the unnormalized graph Laplacian ( U = D - A ) and/or a normalized version (L).
However the Laplacian variants used :
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Figure 5.45 Diagonal Value ’Degree Matrix’

• Simple Laplacian: I - D−1A , where D−1 is the transition matrix. The spectral clustering
yields groups of nodes such that the random walk seldom transitions from one group
to another.

• Normalized Laplacian

• Generalized Laplacian:

we use the unnormalized U

1 U <− D − A
2 round (U[ 1 : 1 2 , 1 : 1 2 ] , 1 )

Listing 5.9 The normalized Laplacian

Results of the The normalized Laplacian fig. 5.46 Assuming k clusters, the next step is to

Figure 5.46 normalized Laplacian
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find the k smallest eigenvectors.

1 k <− 2
2 evL <− e i g e n (U, symmet r i c =TRUE)
3 Z <− e v L $ v e c t o r s [ , ( n c o l ( e v L $ v e c t o r s )−k +1) : n c o l ( e v L $ v e c t o r s ) ]

Listing 5.10 The smallest eigenvectors

The it h row of Z defines a transformation for observation xi .
Results : Now we will see how they are Let’s check that they are well-separated by plotting
the Z to the obj class as in fig. 5.47

Figure 5.47 transformation for observation xi defines by Z

Eigenvalue Spectrum for the Value of ’k’

Note that , by now in this transformed space it becomes easy for a standard k-means clustering
to find the appropriate clusters. However, at first was hard to determinate on know how much
clusters there are, but the eigenvalue spectrum has a gap that give us the value of k:

1 s i g n i f ( evL$va lues , 2 )

Listing 5.11 The smallest eigenvectors

Results of the smallest eigenvectors can be found in here fig. 5.49 :
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Figure 5.48 The smallest eigenvectors Results

Results : can be seen of plotting the values that the eigenvalue spectrum has a gap as in
fig. 5.49 , however, the This gap usually is hard to find. Choosing the optimal k is called
"rounding" 3

Figure 5.49 eigenvalue spectrum

3Rounding is an important method and step of spectral clustering , and the method is based on latent tree
models. It can automatically select an appropriate number of eigenvectors to use, determine the number of
clusters, and finally assign data points to clusters.
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Figure 5.50 Spectral Clustering Algorithms (SC) to Criminal Data

5.7.3 Spectral Clustering Algorithms (SC) to Criminal Data

We applied clustering to a projection to the normalized laplacian as it very useful when the
structure of the individual clusters is highly non-convex or more generally when a measure
of the centre and spread of the cluster is not a suitable description of the complete cluster.
This method used to find normalized graph cuts as in fig. 5.50.

5.8 Evaluation and Cross Validation

The process in this task is testing algorithms rapidly and discover whether or not there is
structure in our problem for the algorithms to learn and which algorithms are effective and
we solved by two tasks:

• Performance Measure: will give a score that is meaningful to domain.

• Create test and train datasets from the transformed data found in early tasks: to select
a test set and a training set. An algorithm will be trained on the training dataset and
will be evaluated against the test set.

• Cross validation : the performance measures are averaged across all folds to estimate
the capability of the algorithm on the problem, it will be a 3− f oldcrossvalidation that
involve training and testing a model 3 times as in figure then we will compare it with
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Figure 5.51 Evaluation and Validation

5,7,and10− f oldcrossvalidation so the goal was to have a good balance between the
size and representation of data in our train and test sets:

– 1 : Train on folds 1+2 , test on fold 3

– 2 : Train on folds 1+3 , test on fold 2

– 3 : Train on folds 2+3 , test on fold 1

• Testing algorithms: We applied two type of performance evaluation for clustering
techniques, first one is external evaluation in which we have previous information
about data sets and second one is internal evaluation in which the evaluation is done
with data set itself:

– For external evaluation we used accuracy, and F-measure.

– For internal performance measure we used validity indices silhouette index.

There are two important techniques that we used for machine learning algorithms evaluating
to limit over-fitting: we used a resampling technique to estimate model accuracy. The most
popular resampling technique is k-fold cross validation. After we have selected and tuned
our machine learning algorithms on our dataset to evaluate the learned models to get a final
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idea of how the models performed. Using cross validation was a valuable standard in applied
machine learning for estimating model accuracy.

5.8.1 Clustering optimization

The first step in clustering analysis is to assess the method used for measuring similarities
and the parameters used for partitioning.

Elbow Method

K-fold Cross Validation The purpose of k-fold cross validation as method to estimate the
performance of an algorithms. Cross-validation systematically creates and evaluates multiple
models on multiple subsets of the dataset. This provides result of performance measures. We
calculated the mean of these measures to get an idea of how well the procedure performs
on average. We calculated also the standard deviation of these measures to get an idea of
how much the skill of the procedure is expected to vary in practice. This was also helpful for
providing a more nuanced comparison of one procedure to choose which algorithm and best
data preparation procedures to use. Also, this information is invaluable as you can use the
mean and spread to give a confidence interval on the expected performance on a machine
learning procedure in practice.

We used the elbow methods to optimizing a criterion, such as the within cluster sums of
squares for elbow

µ = 0,σ = 1 = 0,σ = 1 (5.13)

where µ is the mean average and σ is the standard deviation from the mean; standard scores
and called z scores of the samples are calculated as follows:

z =
x−µ

σ
(5.14)

Standardizing the features is not only important if we are comparing measurements that have
different units, but it is also a general requirement for many machine learning algorithms, in
the following fig. 5.52 we can see the Elbow method to select optimal clustering
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Figure 5.52 Elbow method to select optimal K

Figure 5.53 Silhouette Coefficient of all samples

Sillhoutte Method

we have analyse the clusters using Sillhoutte method to compute the mean Silhouette
Coefficient of all samples as in fig. 5.53 , and the best value is 1 and the worst value is −1
as we can seen in . Values near 0 indicate overlapping clusters. Negative values generally
indicate that a sample has been assigned to the wrong cluster, as a different cluster is more
similar.

For n_clusters = 3 The average silhouette_score
For n_clusters = 4 The average silhouette_score
For n_clusters = 5 The average silhouette_score
For n_clusters = 6 The average silhouette_score
For n_clusters = 7 The average silhouette_score
For n_clusters = 8 The average silhouette_score

Table 5.37 Silhouette Coefficient of all samples
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In addition to elbow, silhouette and gap statistic methods, there are more than thirty other
indices and methods that have been published for identifying the optimal number of clusters.

In contrast to the metrics described above, this coefficient does not imply the knowledge
about the true labels of the objects. It lets us estimate the quality of the clustering using only
the initial, unlabeled sample and the clustering result. To start with, for each observation,
the silhouette coefficient is computed. Let a be the mean of the distance between an object
and other objects within one cluster and b be the mean distance from an object to an object
from the nearest cluster (different from the one the object belongs to). Then the silhouette
measure for this object is

s =
b−a

max(a,b)
.

The silhouette of a sample is a mean value of silhouette values from this sample. Therefore,
the silhouette distance shows to which extent the distance between the objects of the same
class differ from the mean distance between the objects from different clusters. This coeffi-
cient takes values in the [−1,1] range. Values close to -1 correspond to bad clustering results
while values closer to 1 correspond to dense, well-defined clusters. Therefore, the higher the
silhouette value is, the better the results from clustering.

With the help of silhouette, we can identify the optimal number of clusters k (if we don’t
know it already from the data) by taking the number of clusters that maximizes the silhouette
coefficient.

VALCRI Feature ranking with recursive feature elimination RFE We set the goal of
recursive feature elimination (RFE) and to select features by recursively considering smaller
and smaller sets of features. In this section we will show how we selected features from
processed dataset via Recursive Feature Elimination (RFE), and the RFE by recursively
removing attributes and building a model on those attributes that remain. It uses the model
accuracy to identify which attributes and combination of attributes that contribute the most
attribute. (RFE) is a feature selection method that fits a model and removes the weakest
feature (or features) until the specified number of features is reached.

Approach : the goal of recursive feature elimination (RFE) is to select features by recur-
sively considering smaller and smaller sets of features. In this step we have created new
representation of the dataset that ready and Dropped the highly correlated features.
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Figure 5.54 correlation matrix

We first create "correlation matrix" 4 as in fig. 5.54 then we Select upper triangle of
correlation matrix as in table 5.38 , then we looked for the index of feature columns with
correlation greater than 0.75% , Then, the least important features are pruned from current
set of features.

4The "correlation matrix" is map to by visualizing the correlation matrix and to show different colours
for each feature’s correlations among the rest of the other feature. However, in fig. 5.54 the red colour with
0.0 means no correlations , and the lighter the colour, the larger the correlation magnitude, and it help to
distinguishing positive from negative faster, as well as 0 from 1 which In addition to colour, we’ve added
number as a parameter, and the number of each square corresponds to the magnitude of the correlation it
represents .
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Crime_Ref Crime_Num .. target

Crime_Ref NaN 0.027066 .. 0.024628
Crime_Num NaN NaN .. 0.016986
Date1st_Committed NaN NaN .. 0.030211
Time1st_Committed NaN NaN .. 0.043536
Day1st_Committed NaN NaN .. 0.200983

Table 5.38 Processed VALCRI upper triangle of correlation matrix

1 # C r e a t e c o r r e l a t i o n m a t r i x
2 c o r r _ m a t r i x = DumNotScaleNum . c o r r ( ) . abs ( )
3

4 # S e l e c t uppe r t r i a n g l e o f c o r r e l a t i o n m a t r i x
5 uppe r = c o r r _ m a t r i x . where ( np . t r i u ( np . ones ( c o r r _ m a t r i x . shape ) , k =1) .

a s t y p e ( np . boo l ) )
6

7 # Find i n d e x of f e a t u r e columns wi th c o r r e l a t i o n g r e a t e r t h a n 0 . 9 5
8 t o _ d r o p = [ column f o r column i n uppe r . columns i f any ( uppe r [ column ] >

0 . 7 0 ) ]

Listing 5.12 Recursive Feature Elimination (RFE) Algorithms

Next paragraph will show the cross-validation method used for the Feature Extraction RFE
that used earlier applied on the VALCRI processed dataset.

Feature ranking with recursive feature elimination and cross-validated selection We
have used estimator for learning estimator method to provides information about feature
importance either through a coe f attribute and feature importances attribute. we set If greater
than or equal to 1, then step corresponds to the (integer) number of features to remove at
each iteration. Then If within (0.0, 1.0), then step corresponds to the percentage (rounded
down) of features to remove at each iteration, and the last iteration removed fewer features in
order to reach min features to select .

1. cross-validation We applied Logistic Regression CV (aka logit, MaxEnt) classifier.
This approach for an estimator that has built-in cross-validation capabilities to automatically
select the best hyper-parameters. The result of the LogisticRegressionmethod = 0.0766. In
this case, the training algorithm uses the one-vs-rest scheme that if the ′multiclass′ option is
set to ′ovr′, and uses the cross−entropy loss if the ′multiclass′ option is set to ′multinomial′.
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The advantage of using a cross-validation estimator over the canonical Estimator class along
with grid search is that they can take advantage of warm-starting by reusing precomputed
results in the previous steps of the cross-validation process. This generally leads to speed
improvements. The liblinear solver supports both L1 and L2 regularization, with a dual
formulation only for the L2 penalty. First, the estimator is trained on the initial set of features
and the importance of each feature is obtained through a coe fattribute. Then, the least
important features are pruned from current set of features. This procedure was recursively
repeated on the set until the desired number of features was eventually reached , showing
feature that ranked with [1] is important and extracted .

RFE Feature Ranking 1: which Important Features Extracted: [1, ’Crime_Ref’], [1,
’Crime_Num’], .̇., [1, ’HOOC_Code’] , [1, ’Northing’], [1, ’target’]

2. best number of features by Feature ranking with RFE. We used the random forest
is a meta estimator that fits a number of decision tree classifiers on various sub-samples of
the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

1 c l a s s R a n d o m F o r e s t C l a s s i f i e r W i t h C o e f ( R a n d o m F o r e s t C l a s s i f i e r ) :
2 d e f f i t ( s e l f , * a rgs , ** kwargs ) :
3 s u p e r ( R a n d o m F o r e s t C l a s s i f i e r W i t h C o e f , s e l f ) . f i t ( * a rgs , ** kwargs )
4 s e l f . c o e f _ = s e l f . f e a t u r e _ i m p o r t a n c e s _
5

6 # i r i s = d a t a s e t s . l o a d _ i r i s ( )
7 #x=pd . DataFrame ( i r i s . da t a , columns =[ ’ va r1 ’ , ’ va r2 ’ , ’ va r3 ’ , ’ va r4 ’ ] )
8 #y =( pd . S e r i e s ( i r i s . t a r g e t , name= ’ t a r g e t ’ ) ==2) . a s t y p e ( i n t )
9

10 x = NoDumNoScaleNum . drop ( [ ’ D i s t r i c t ’ ] , a x i s =1) . f i l l n a ( 0 )
11 y = NoDumNoScaleNum [ ’ Beat_Num ’ ] . f i l l n a ( 0 )
12

13 r f = R a n d o m F o r e s t C l a s s i f i e r W i t h C o e f ( n _ e s t i m a t o r s =20 , m i n _ s a m p l e s _ l e a f =5 ,
n _ j o b s =−1)

14 # r f e c v = RFECV( e s t i m a t o r = r f , s t e p =1 , cv =2 , s c o r i n g = ’ r o c _ a u c ’ , v e r b o s e =2)
15 r f e c v = RFECV( e s t i m a t o r = r f , s t e p =1 , cv =2 , v e r b o s e =2)
16

17 s e l e c t o r = r f e c v . f i t ( x , y )

Listing 5.13 Feature ranking with RFE Algorithms

The result of the selector ranking as in array([8,4,11,15,10,13,5,7,2,12,16,1,6,9,3,14])
showing the features ranking form 1 to 16 where 1 is most important and 16 least .
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Figure 5.55 EVALUATION METRICS

5.8.2 Evaluation Metrics

The raw RI scored “adjusted for chance” into the ARI score as in fig. 5.55 using the following
scheme:

ARI = (RI − Expected_RI)/ (max(RI) - Expected_RI)The adjusted Rand index is thus
ensured to have a value close to 0.0 for random labeling independently of the number of
clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

Constraint and Limitation

Even the fact that SC has advantages such as using the affinity matrix and use local in-
formation to build a similarity matrix between pairs of points, still these methods are not
good at handling corrupted data and sensitive to outliers. The constraint on the eigenvalue
spectrum likewise existed, as Spectral clustering will only work on fairly "uniform datasets "
5. some suggested that we must always using the Generalized Laplacian, Otherwise, there
is no assurance that the full space can have eigen spectrums that line up correctly. Another
Spectral clustering constraint that is used when K-means s works badly not because it is
perfect module for big data , and because the clusters are not linearly separable in their
original space.

5"Description" The Uniform Data System (UDS) is a core system of information appropriate for reviewing
the operation and performance of health centres. UDS is a reporting requirement for Health Resources and
Service Administration (HRSA) grantees, including community health centres, migrant health centers, health
care for the homeless grantees, and public housing primary care grantees. The data are used to improve health
center performance and operation and to identify trends over time. UDS data are compared with national data
to review differences between the U.S population at large and those individuals and families who rely on the
health care safety net for primary care [148]
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5.9 Summary and Discussion

These strategies objective made the outcome of the processed data ready for advanced
machine learning algorithms that improved how algorithms learnt, extraction of knowledge
that implicitly stored or captured in the database.

The tasks of these strategies as fig. 5.1 has assist in creating new representation of the original
data which is benefit form using the KDD Process for extracting useful Knowledge from
volumes of Data identifying right features to link to relation in data, then it has helped for
better view to uncover the implication and the problem of the original dataset. At the end will
examine who has our strategies assist in discovering the pattern, knowledge that can be used
as extended knowledge for future needs. The result of these methods that will be evaluated
and discussed in details later at the end of this chapter to show the result and the contribution.

These strategies was to prepare, partition, process, transform the crime data before fitting
it to the advanced subspace clustering as it made the outcome of the processed data ready
for advanced machine learning algorithms that improved how algorithms learnt, extracted
knowledge, and in overall how was the crime dataset before and after pre-pared . The result
of these methods that evaluated in each section for each technique where the result shows.

The tasks used was advance how we gain more domain knowledge accurately and analyses
the data that found unlabelled and the structure was unknown which mad it hard to discover
relation, cluster or predict before been used. These tasks also has assisted in identifying best
features link to relation in data , then helped in discovering the knowledge that has useful
information that can be used to prevent or predict information, as well as used as extended
knowledge for future needs.

Our work display use the evolution of engineering and many other disciplined that combined
to be a a new strategy to deal with crime dataset or big data that have the Outcome of best
data representations. The process helps to find the best way to set up better practise for big
data problem.

The finding and experiments we have completed with the result of an depth looked at the
related work mentioned earlier that led to discover that the traditional algorithms techniques
are not very efficient enough to handle big dataset such as the criminal dataset, and most of
these types of methods need to build an effective similarity matrix .



Chapter 6

Conclusion And Discussion

This chapter review the contributions that the thesis makes to support sense making through
subspace clustering of high-dimensional data in criminal domain . It also discusses opportu-
nities for future research on Applications To Criminal Data Analysis Based on Low Rank
Sparse Representation Subspace Clustering

6.1 Review Of Contributions

The centre problem addresses in this thesis is how to design applications to criminal data
analysis based on subspace clustering which has led us to implement of many subspace
clustering. Our research has identified the most common problems and obstacles clustering
high dimensional data specifically in criminal data. After discussion of all results from an
evaluation of the algorithm applied that can bring forward the best practise of crime data
analysis. In addition, we are interested on how to make the machine to learn in future to
predict a new pattern using a new method to prevent possible crimes in the future. As in any
applications there were limitations as explained in the previous section that defined where
was the model more trusted and where does not.

6.1.1 PCA Segmented K-Means Clustering

PCA Segmented K-Means Clustering performs well when the data is disturbed by A random
sample is a sequence of independent, identically distributed (IID) Guassian noise. PCA works
well as long as the value of noise is not big enough, and It used by the feature transformation
methods to help to reduce the data space to creates a new set of orthogonal variables that
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keep the same information as the original set, but PCA dose not have as subspace clustering
search methods and an evaluation criteria, and so the PCA used in feature transformation
techniques does not help in this instance, since relative distances are preserved and the effects
of the irrelevant dimension remain.

6.1.2 Crime data analysis

Based on our results using ranges of techniques we develop a new strategy that have the
Outcome of best SC algorithms and data representations for our domain problem. The
methods and the contribution to improve the way of criminal data investigating process and
make data the outcome for machine learning algorithm the intuition was is to find the best way
for best practise for big data problem for an algorithm. we demonstrated the methodology
we used has improved the crime data investigating process for best outcome before applying
any ML algorithms .

6.1.3 Subspace Clustering

Subspace clustering of high dimensional used to an interact with the input of the data based
on the problems considered, and PCA has show a ineffective result, often even opposite to
the possible solution. Subspace clustering advanced the exploited approach to the next level
of subspace clustering that is LRSR for SC. The method been applied as partitioning dataset
graph-based clustering class, and two steps to apply SC algorithms: subspace segmentation
for constructing the affinity/similarity matrix and SC algorithms using the affinity matrix.
However the implementation of SC not only to segmented and have graph-based class but
also by embedding the data into subspace of eigenvectors of an affinity matrix. Then to
computing an affinity matrix A based on S.A , and must be made it of positive values and be
symmetric. The optimization of statistical methods is usage of approaches such as the EM
can leads to a local minimum, as statistical approaches normally use independent samples
drawn from a mixture of probabilistic distributions to model data generation processes.

6.1.4 Low Rank Sparse Representation for Subspace Clustering

Based on the advantages have been found of subspace clustering, we have found an improved
version which has better performance of these methods. Subspace segmentation and specular
clustering is the 2 steps of the graph-based methods in the statistical categorise which has
led us to the low rank subspace sparse representation (LRSR). LRSR was not only recovers
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the low-rank subspaces but also get a relatively sparse segmentation with respect to disjoint
subspaces or even overlapping subspaces. The experiments and the evaluate of these methods
on our domain . The method in overall comes from the second categories of the global
spectral clustering and it is similar to RPCA and segmented subspace , but it needs also to
create and build an effective affinity or similarity matrix for high-dimensional data, then to
use that matrices.

6.2 Future Work

However, our future work includes the investigation in a systematic way, as improved version
of this method is needed, and can be further extended to other state-of-the-art methods, such
as LRSR. After discussion of all results from an evaluation of the algorithm applied that can
bring forward the models for predicting the crime. In addition, we are also interested more
on how to make the machine to learn to predict a new pattern using a new method to prevent
possible crimes in the future.

In coming weeks, after the feedbacks and the discussion i will take everything into considera-
tion from my superiors, colleagues, and other researchers, and I will consider to seek more
feedback to achieve the objectives and goals which this research represent.

6.3 Discussions

The research, related work, and the experiments we have completed through the use of
the traditional clustering methods such as K-means, PCA segmented, and the low rank
representation then we have discovered these are not very efficient enough to handle high
dataset such as the criminal dataset, and most of these types of methods need to build an
effective similarity matrix for high-dimensional data. When the data is high-dimensional,
features are usually sparsely distributed and traditional methods such as computing distances
directly in the original space are not reliable. Therefore the results of this research has lead
us to find more suitable, recent, and advanced approach to be used in high dimensional space
in order to cluster a large and complex data. Our research has identified the most common
problems and obstacles clustering high dimensional data specifically in criminal data

This research, the experiments and analysis will lead us to the validation for the convergence
of a subspace clustering framework called LRSR, which obtains the optimal solution based
on both low rank representation (least number of dimensions) and sparse representation
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(least number of support data). With low rank subspace recovery by detecting corruptions
and limiting the self-expressive coefficient matrix to be sparse for disjoint subspaces, our
proposed algorithm can reveal multiple subspace structures. The LRSR algorithm aims to
recover the low-dimensional subspaces and to seek a low-rank and sparse representation for
clustering.

However, future work includes the investigation of a systematic way is needed as improved
version of this method, and can be further extended to other state-of-the-art methods. As well
for the future work we need to find an alternate implementations. What other implementations
of advanced SC algorithm are available? Perhaps an alternate implementation of the method
can achieve better results on the same data. Each algorithm has a myriad of micro-decisions
that must be made by the algorithm implementor. Some of these decisions may affect skill
on any problem.
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Appendix A

Modified K-Mean Algorithm Algorithm: Modified approach (S, k) , S = x1,x2, · · · ,xn

Input : The number of clusters k1(k1 > k) and a dataset

containing n objects (Xi j+)

Out put : A set of k clusters (Ci j) that minimize the Cluster −error criterion

Algorithm steps

1. Compute the distance between each data point and all other data- points in the set D

2. Find the closest pair of data points from the set D and form a data-point set Am
(1 <= p <= k+1) which contains these two data- points, Delete these two data points
from the set D

3. Find the data point in D that is closest to the data point set Ap, Add it to Ap and delete
it from D

4. Repeat step 4 until the number of data points in Am reaches (n/k)

5. If p < k+1, thenp = p+1, find another pair of data points from D between which the
distance is the shortest, form another data-point set Ap and delete them from D, Go to
step 4

Algorithm A

1. For each data-point set Am (1 <= p <= k) find the arithmetic mean of the vectors of
data points Cp(1 <= p <= k) in Ap.

2. Select nearest object of each Cp(1 <= p <= k) as initial centroid.
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3. Compute the distance of each data-point di (1 <= i <= n) to all the centroids c j(1 <=

j <= k+1) asd(di,c j)

4. For each data-point di, find the closest centroid c jand assign di to cluster j

5. Set Cluster Id [i] = j; j : Id of the closest cluster

6. Set Nearest Dist [i++] = d(di, cj)

7. For each cluster j (1<=j<=k) , recalculate the centroids

8. Repeat

Algorithm 1 pseudocode K-means algorithm
Input
For each data-point di
Compute its distance from the centroid of the present nearest cluster
If this distance is less than or equal to the present nearest distance, the data-point stays in the
cluster
Else ;
For every centroid cj (1<=j<=k) Compute the distance (di, cj); Endfor Assign the data-point
di to the cluster with the nearest centroid Cj
Set Cluster Id [i] =j
Set Nearest Dist [i] = d (di, cj);
Endfor
Output

Pseudo-code Algorithm

EVALUATION METRICS Pseudo-code Algorithm
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Algorithm 2 pseudocode EVALUATION METRICS
Input
nmi_results = [] ars_results = []
y_true_val = list(Y)
for y_pred in results: nmi_results.append(normalized_mutual_info_score(y_true_val,
y_pred)) ars_results.append(adjusted_rand_score(y_true_val, y_pred))
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(16, 5)) x = np.arange(len(Y))
avg = [sum(x) / 2 for x in zip(nmi_results, ars_results)]
xlabels = list(algorithms.keys())
sns.barplot(xlabels, nmi_results, palette=’Blues’, ax=ax1) sns.barplot(xlabels, ars_results,
palette=’Reds’, ax=ax2) sns.barplot(xlabels, avg, palette=’Greens’, ax=ax3)
ax1.setylabel(′NMIScore′)ax2.setylabel(′ARSScore′)ax3.setylabel(′AverageScore′)ax1.setxticklabels(xlabels)ax2.setxticklabels(xlabels)ax3.setxticklabels(xlabels)
for i, v in enumerate(zip(nmi_results, ars_results, avg)): ax1.text(i - 0.1, v[0] + 0.01,
str(round(v[0], 2))) ax2.text(i - 0.1, v[1] + 0.01, str(round(v[1], 2))) ax3.text(i - 0.1, v[2] +
0.01, str(round(v[2], 2)))
plt.show()
Output
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List of Publications

CRIMINAL PATTERN IDENTIFICATION BASED ON MODIFIED K-MEANS
CLUSTERING, ©2016 IEEE, Proceedings of the 2016 International Conference
on Machine Learning and Cybernetics, Jeju, South Korea, 10-13 July, 2016

Data mining methods like clustering enable police to get a clearer picture of crimi-
nal identification and prediction. Clustering algorithms will help to extracts hidden
patterns to identify groups and their similarities. In this paper, a modified k-mean
algorithm is proposed. The data point has been allocated to its suitable class or clus-
ter more remarkably. The Modified k-mean algorithm reduces the complex nature of
the numerical computation, thereby retaining the effectiveness of applying the k-mean
algorithm. Firstly, the data are extracted from the communications and movements
record after tracking the park visitors over three days. Then, the original data will be
visualised in a graphical format to help make a decision about how many numbers to
consider as the K cluster. Secondly, the modified k-means algorithm on the clusters ini-
tial centre sensitivity will be performed. This will link similar segments and determine
the occurrence of each data point in every segment group rather than partitioning the
entire space into various segments and calculating the occurrence of the data point in
every segment. Thirdly, result checking and a comparison with the normal k-mean
will be performed. The investigation will focus on the movement of people around the
park where the crime occurred, and how people move and communicate in the park,
how patterns change, and the movement of groups and individuals. The experiments
show that the modified K-means algorithm leads to a better way of observing the data
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to identify groups and their similarities and dissimilarities in the criminal dataset as a
specific domain.



185

CRIMINAL DATA ANALYSIS BASED ON SUBSPACE CLUSTERING,(Draft)
October, 2018

Clustering high-dimensional with large number of groups or overlapping spaces can make
the basic machine learning task fail in finding effective pattern from dataset for further
analysis. It become more difficult when the dataset have unknown features especially in
crime dataset where the whole features in entire dimensional space need to be consider
for each tasks such as data processing, dimensionally reduction, exploration or building
prediction module. There are set of techniques used before the implementation of any data
mining method called data engineers or preprocessing [149]. it is one of the most meaningful
step for Knowledge Discovery [150], [151], and using the traditional steps for Crime data
it will be imperfect, containing inconsistencies then wont be useful to identify patterns or
capture the right group even with advance clustering algorithms. Moreover, hiding pattern
in different subsets of other dimension and to discover or remove irrelevant noise only be
found by advanced Machine Learning algorithms. This has motivated the use of specific
crime data pre-process techniques accurately to identifies and select the correct features
for both dimensional representation that would maximum variance to fewer dimensions
to summarizes the original data well and then for clustering that will help to identify the
meaningful patterns in our dataset. This paper will prove a better way to knowledge discovery
process in dealing with specific domain such as criminal dataset and to detect the useful
patterns. The approaches have exploited many measure for FE, FS to reduce the high
dimensionality of the dataset that will have an accurate choice of features representation
and dimensionality reduction technique for future clustering building the derived values
for it is features that to be non-redundant and transformed into reduced set of features to
determinate the subset of the initial features. hen we used advanced subspace clustering
such as Subspace Segmentation (SS) to constructing the affinity/similarity matrix, then apply
Spectral Clustering (SC) to characterizes data points as nodes in a weighted graph that obtains
the optimal solution based on both low rank representation (LRR) and sparse representation
(SR). The approaches for getting strong results only when selecting the suitable processes
to analyse the application domain earlier of chosen any machine learning algorithms. The
method have proven other way of handling high-dimensional before clustering and it is
very necessary to use specific and non-tradition data processing techniques, so the data
presented correctly to a subspace clustering, and throughout this paper we will discuss and
comparing the results with previous approaches. Both UCI Machine Learning Repository,
and crime database used to develop the methods and compared the best data reduction
and clustering algorithms that fit for high dimensional crime dataset. We used high-level
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programming language for statistics and Machine Learning such as Python, R, and Matlab in
our experiments and to visualize the high-dimensional data.
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