Formal Refinement and Proof of a Small Java
Program

Tony Clark

Department of Computing, University of Bradford, UK, BD7 1DP

a.n.clark@scm.brad.ac.uk

Abstract. The main components of a formal technique for specifying,
refining and proving properties of object-oriented programs are pre-
sented. The technique is based on a A-notation whose semantics is given
using standard categorical constructs. An example of the formal devel-
opment of a small Java program is presented.

1 Introduction

The aim of this work is to provide a rigorous framework for step-wise object-
oriented software development which supports specification, refinement, proof
and implementation. The framework takes the form of a categorical semantics
of object-oriented system behaviour and a design language based on A-notation.

This paper gives an overview of the main components of the framework using
a simple system requirements and producing a Java program. It is not possible to
give a full analysis of the approach in a paper of this length, the reader is directed
to work by the author in the area of OO systems: [Cla96] [Cla94] [Cla97], [Cla98],
[Cla99a], [Cla99b] and [Cla99c] and related work: [Ken99], [Ken97], [Eva98],
[Eva99], [Bic97], [Lan98] and [Rui95] in formal methods for object-oriented de-

velopment. The reader is directed to [Bar90], [Ehr91], [Gog75], [Gog89], [Gog90],

[Pie96] and [Ryd88] for related work using category theory in systems develop-
ment.

2 Development Framework

An object stateis <a, T, p> where « is the object’s type, T is the object’s identity
and p is a partial function mapping attribute names to values. A message is
<Ts,Tt,v> where 7, is the identity of the source object, 7; is the identity of the

target object and v is a data value. Object-oriented system computation occurs

. " . . (1,0)
in terms of state transitions resulting from message passing: ... — X} —

Yy —> ... in which a set of object states X' receives a set of input messages
producing a transition to states Xy and output messages O. Since the behaviour
of a system design may be non-deterministic it can be represented as a graph
whose nodes are labelled with sets of object states and whose edges are labelled

with pairs of sets of messages. This leads to a category Obj whose objects are
graphs and whose arrows are graph homomorphisms.

System construction is described by standard categorical constructions in
Obj. Given two behaviours O; and O in Obj the product O; x Os exhibits
both O; and O, behaviour subject to structural consistency constraints. The co-
product O; + O exhibits either O; or Oy behaviour. Equalizers, pull-backs and
push-outs can be used to express constraints such that two or more behaviours
are consistent. Computational category theory provides an algorithm for com-
puting the behaviour of a system of inter-related components using limits.

Any behaviour O can be viewed as a category in which the objects are be-
haviour states and arrows are sequences of message pairs. Category-hood fol-
lows from: every object X' has an identity arrow []; and for every pair of arrows
f:X1 — XYy and g: Yy — X3 there is an arrow go f : Xy — X3 which is con-
structed as f +g; and the associativity of o follows from the associativity of 4.
A refinement R is expressed as adjoint functors R : O — Oy and U : Oy — Oq:

The diagram 1 states that performing a computa-
tion in the source object is the same as translating > . U(X5)
the source state, performing the computation in
the target object and then translating the target
state. Given any X the refinement is sound if for

every f there exists a g and is complete if for every
g there is an f [Sab97]. R(Z1) ——= 22

Object-oriented designs are expressed using a A-notation [Lan64] whose seman-
tics is given by Obj. A behaviour is denoted by a functions M and is sup-
plied with type, identity, attribute and message information: M («)(7)(v)(I) =
U {(P;,0;)} where P; are replacement behaviours and O; are corresponding
i=1,n
output messages. This approach is essentially the same as that of Actor Theory
[Agh86] [Agh91]. The basic model of message handling is asynchronous, how-
ever syntactic sugar can be used to express synchronous message passing. The
following example shows how a behaviour function (left) which synchronously
sends a message e; is translated to a behaviour function (right) which uses a
replacement wait:

letrec agent(a)(r)(o)(m) = letrec agent(a)(r)(o)(m) =
case m of case m of
p1— p1 — (agent(a)(7)(o) + wait, e1)
let py «+ e whererec wait(m) =
in e case m of
end P2 — €2
else (wait, §)
end

end

3 Development of a Java Program

The requirements for a library system are defined. An initial object-oriented
design is constructed. A single refinement step is performed and verified. A simple
system property is established. The design is analysed prior to translating it to
an implementation in Java (appendix A).

Software to control a library is required. The library has readers who may
borrow copies of books. At any given time each reader has a number of books on
loan. New readers may join the library at any time. The library has a number
of copies of books. Each book has a unique title. A copy is either on the shelf in
the library or is being borrowed by a reader. Libraries operate a shares reader-
ship policy whereby joining one library permits readers to borrow books at all
participating libraries.

A library system consists of a single object with a state (R, B) consisting of
readers R and books B. Each reader is a pair (n,C) where n is a name and C
is a set of borrowed copies. Each book is a pair (n,i) where n is a name and i is
the number of shelved copies. Initially we treat R and B as lookup tables. Let
T be a table with keys dom(T'), lookup is T e k, extension is T[k + v]. Adding
table values is defined as follows (removing is similarly defined):

{ Tk~ T e kU{v}] when isSet(T o k)

T[k@”] = T[k — TOk+U] when isInt(TOk)

Initial system behaviour can be decomposed into the success and failure modes.
The design operator + allows us to define these modes separately and then
combine them. Success mode is defined as follows:
letrec libOk(a)(7)(R, B)(m) =
case m of
addReader(n) — (libOk(a)(t)(R[n — 0], B),0) when n ¢ dom(R)
addBook(n) — (libOk(a)(7)(R, B[n ~ 0]),0) when n &€ dom(B)
addCopy(n) — (libOk(a)(7)(R, B[n @ 1]),0) when n € dom(B)
borrow(ni,na) = (libOk(a)(T)(R[n1 & n2], Blna S 1)), 0)
when n; € dom(R) & nz € dom(B)
return(ni, n2) = LbOk(a)(T)(R[n1 © n2], B[n: @ 1]), 0)
when ni € dom(R) & n2 € dom(B)
else (libOk(a)(7)(R, B), 0)

end

Given a state (R, B) in the source behaviour, a refinement acts as identity on
R and transforms B = {ny + i1,..., ny — i} into a set of object identifiers

{m1,..., 7} and introduces new objects 7 + (nq,41),...,7x +> (ng,ix) to the

3

system state. A book behaviour is as follows:

letrec book(o;‘)(T)(n,i)(m) =
<r',7, getName> — (book(a)(7)(n,i), {<7,7",n>})
borrow — (book(a)(7)(n,i —1),0) when i > 0
addCopy — (book(a)(T)(n,i + 1),0)
else (book(a)(T)(n,i),0)

end

The successful library behaviour is modified to take account of book objects.
The initial design uses set membership to test for the existence of a book. This
must now be implemented as a private method of the library:

<7, 7, findBook(B,n)> — (libOk(c)(7)(R, B), {<T, 7', noBook>})
<7', 7, findBook({o} U S,n1)> —
let ny < <7,0, getName>
inif ny =noy
then (libOk(a)(7)(R, B),{<7, 7', book(0)>})
else (libOk(a)(7)(R, B), {<7', 7, findBook(S,n1)>})

When a library receives an addBook message with a name n which does not
already exist then a new book object is created. We assume that 7' is a new
object identifier and that (3 is the type tag for books:

addBook(n) —
let noBook < <, T, findBook(n)>
in (LibOk(c)(T)(R, BU {7"}) X book(B)(r")(n,0), D)

To verify the refinement step the following source state is used: {r — (R, B)}

where R is a set of readers and B is the set {ny — i1,...,n, + ix}. The
corresponding target state is {7 — (R,T)} U O where T is the set of object
identifiers {r1,..., 7} and O is the state {1 — (n1,i1),...,7% — (g, i)}

The refinement of addBook is sound and complete when the following diagram
commutes (see diagram 1):

addBook(n)
{r— (R,B)} {r = (B, Bln— 0])}
(2)
(r s (R.T)}UO {r— (R, TUT")}U
coaddBook(n) Olr" = (n,0)]

A proof of 2 is by induction on the size of the set B and the length of the
computation c¢. Further refinement identifies a class of behaviours for reader and
adds a private method findReader to the library.

The design language is given a formal semantics in terms of standard con-
structions in Obj. A design language proof theory provides a framework for
establishing program properties. The proof theory views a behaviour function
as a mapping from input messages and states to output messages and states.
Proofs typically are by induction on the length of a messages stream. Since re-
finement is formally defined, it is possible to show that properties are preserved
by refinement transformations.

Consider the following theorem. For any library (R, B), if b is a book bor-
rowed by a reader then b € dom(B). The proof is by induction in the length of
the input message stream. The theorem holds for library (0, () and the empty

stream. Assume by induction that the theorem holds for library (R, B) and
messages ms. Now show by case analysis on m that the theorem holds for all
messages ms +[m]. We conclude that the theorem holds.

Consider the behaviours book and reader. Both

provide a state component n which is used to in-

dex into collections of behavioural instances using n{amed

the message getName. This indicates that there is ' v \

a common behaviour named and projection mor- v

phisms. In an implementation named will occur as book reader

a super-class of both book and reader.

Consider a behaviour functor F; which acts on system states by projecting all
book objects to equivalent named objects by forgetting the copy count. F; acts
as identity on all arrows except that findBook(O,n) is replaced by find(O,n),
book(b) is replaced by found(b) and noBook is replaced by notFound.

In order for F; to be valid, it must be

sound and complete with respect to in- [findBook(O, n)] ++¢
dexing into collections of books. There- b)) X
fore, for any system state X, the diagram

on the right must commute. Similarly, a

behaviour functor F; is defined to project

states and c‘alculatlons involving indexing (D) Fi(Y)
readers. This leads us to replace the be- [find(O,n)] +Fi(c)
haviours for findBook and findReader with

a single behaviour find.

The shared readership policy is expressed as a

pull-back S on a diagram showing two (or more)

libraries which project onto a behaviour cell con- S
taining their readers. The pull-back ensures that v
both libraries have the same readers. There are a »
number of implementation choices for the shared liby libs
readership policy whose behaviour is defined by S. v

If the programming language supports shared data N v
between class instances (such as static in Java) »
then the R component of a library class may be
shared.

References

[Agh86] Agha, G.: Actors: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, 1986.

[Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In proceedings
of REX School/Workshop on Foundations of Object-Oriented Languages, LNCS
489, Springer-Verlag, 1991.

[Bar90] Barr, M. & Wells, C.: Category Theory for Computing Science. Prentice Hall
International Series in Computer Science, 1990.

[Bic97] Bicarregui, J., Lano, K. & Maibaum, T.: Towards a Compositional Interpreta-
tion of Object Diagrams. Technical Report, Department of Computing, Imperial
College, 1997.

[Cla94] Clark, A. N.: A Layered Object-Oriented Programming Language. GEC Jour-
nal of Research, 11(3), The General Electric Company p.l.c., pp 173 — 180, 1994.

[Cla96] Clark, A. N.: Semantic Primitives for Object-Oriented Programming Lan-
guages. PhD Thesis, QMW, University of London, 1996.

[Cla97] Clark, A. N. & Evans, A. S.: Semantic Foundations of the Unified Modelling
Language. In the proceedings of the First Workshop on Rigorous Object-Oriented
Methods: ROOM 1, Imperial College, June, 1997.

[Cla98] Clark, A. N.: Type Checking OCL Expressions. Technical Report, 1998.

[Cla99a] Clark, A. N.: A Semantics for Object-Oriented Systems. Presented at the
Third Northern Formal Methods Workshop. September 1998. To appear in BCS
FACS Electronic Workshops in Computing, 1999.

[Cla99b] Clark, A. N.: A Semantics for Object-Oriented Design Notations. Technical
report, submitted to the BCS FACS Journal, 1999.

[Cla99¢] Clark, A. N.: A Semantic Framework for Object-Oriented Development. Tech-
nical report, submitted to the L’Objet journal special issue on formal object-
oriented development, 1999.

[Ehr91] Ehrich, H-D., Goguen, J. A. & Sernadas, A.: A Categorical Model of Objects as
Observed Processes. In the proceedings of REX School/Workshop on Foundations
of Object-Oriented Languages, LNCS 489, Springer-Verlag, 1991.

[Eva98] Evans, A. S.: Reasoning with UML Class Diagrams. In WIFT ’98, IEEE Press,
1998.

[Eva99] Evans, A. S. & Lano, K. C.: Rigorous Development in UML. To appear in the
proceedings of the ETAPS ’99, FASE Workshop, 1999.

[Gog75] Goguen, J.: Objects. Int. Journal of General Systems, 1(4):237-243, 1975.

[Gog89] Goguen, J.: A Categorical Manifesto. Technical Report PRG-72, Programming
Research Group, Oxford University, March 1989.

[Gog90] Goguen, J. A.: Sheaf Semantics for Concurrent Interacting Objects. Mathe-
matical Structures in Computer Science, 1990.

[Ken99] Kent, S. & Gil J.: Visualising Action Contracts in Object-Oriented Modelling.
To appear in the IEE Software Journal, 1999.

[Ken97] Kent, S.: Constraint Diagrams: Visualising Invariants in Object-Oriented
Models. In the proceedings of OOPSLA 97, ACM Press, 1997.

[Lan64] Landin P.: The Next 700 Programming Languages. Communication of the
ACM, 9(3), 1966, pp 157 166.

[Lan98] Lano, K. & Bicarregui, J.: UML Refinement and Abstraction Transforma-
tions. In the proceedings of the Second Workshop on Rigorous Object-Oriented
Methods: ROOM 2, Bradford, May, 1998.

[Pie96] Piessens F. & Steegmans E.: Categorical Semantics for Object-Oriented Data
Specifications. In Formal Methods and Object Technology, (eds.) Goldsack, S. J.
& Kent, S. J., Springer-Verlag, 1996, pp 302 — 316.

[Rui95] Ruiz-Delgado, A., Pitt, D. & Smythe, C.: A Review of Object-Oriented Ap-
proaches in Formal Specification. The Computer Journal, 38(10), 1995.

[Ryd88] Rydeheard, D. E. & Burstall, R. M.: Computational Category Theory. Prentice
Hall International Series in Computer Science, 1988.

[Sab97] Sabry, A. & Wadler, P.: A Reflection on Call-by-Value. ACM Transactions on
Programming Languages and Systems, 19(5), pp 111 136,1997.

A Library Implementation in Java

Each independent behaviour is defined as a Java class. The state components
of the behaviour are defined as fields and the message handlers are defined as
methods. Any common behaviour is defined using inheritance. The main fea-
tures are: the class Named defines the common behaviour for readers and books;
attribute readers in Library is declared static so that libraries implement the
shared readership policy; class Library defines a method find that is used to
index both readers and books.

class Named {
private String name;
public Named(String name) { this.name = name; }
public String getName() { return name; }

class Book extends Named {
private int copies = 0;
public Book(String name) { super(name); }
public void borrow()

if (copies > 0)
copies = copies - 1;
else throw new Error("no copies left");
}
public void addCopy() { copies = copies + 1; }
}

class Reader extends Named {
private Vector copies = new Vector();
public Reader(String name,Vector copies)
{
super (name) ;
this.copies = copies;
}
public void borrow(String name) { copies.addElement(name); }
public void ret(String name) { copies.removeElement(name); }

class Library {

private static Vector readers = new Vector();
private Vector books = new Vector();
public void addReader(String name) { readers.addElement(new Reader(name,new Vector())); }
public void addBook(String name) { books.addElement(new Book(name)); }
public void addCopy(String bookName
{

Book book = (Baok)find(bookName,books) ;

if (book != null)

book.addCopy () ;
else throw new Error("cannot find book");

private Named find(String name,Vector table

{
Named named = null;
for(int i = 0; (named == null) && (i < table.size()); i++) {
Named n = (Named)table.elementAt(i);
if (n.getName () . equals (name))
named = n;
}
return named;
}
public void borrow(String readerName,String bookName
{

Reader reader = (Reader)find(readerName,readers);
Book book = (Book)find(bookName,books) ;
if ((reader != null) & (book != null)) {
reader . borrow (bookName) ;
book.borrow() ;
} else throw new Error("illegal name in borrow");

}
public void ret(String readerName,String bookName
{

Reader reader = (Reader)find(readerName,readers);

Book book = (Book)find(bookName,books) ;

if ((reader != null) & (book != null)) {
reader.ret (bookName) ;
book.addCopy () ;

} else throw new Error("illegal name in ret");

