
Formal Re�nement and Proof of a Small JavaProgramTony ClarkDepartment of Computing, University of Bradford, UK, BD7 1DPa.n.clark@scm.brad.ac.ukAbstract. The main components of a formal technique for specifying,re�ning and proving properties of object-oriented programs are pre-sented. The technique is based on a �-notation whose semantics is givenusing standard categorical constructs. An example of the formal devel-opment of a small Java program is presented.1 IntroductionThe aim of this work is to provide a rigorous framework for step-wise object-oriented software development which supports speci�cation, re�nement, proofand implementation. The framework takes the form of a categorical semanticsof object-oriented system behaviour and a design language based on �-notation.This paper gives an overview of the main components of the framework usinga simple system requirements and producing a Java program. It is not possible togive a full analysis of the approach in a paper of this length, the reader is directedto work by the author in the area of OO systems: [Cla96] [Cla94] [Cla97], [Cla98],[Cla99a], [Cla99b] and [Cla99c] and related work: [Ken99], [Ken97], [Eva98],[Eva99], [Bic97], [Lan98] and [Rui95] in formal methods for object-oriented de-velopment. The reader is directed to [Bar90], [Ehr91], [Gog75], [Gog89], [Gog90],[Pie96] and [Ryd88] for related work using category theory in systems develop-ment.2 Development FrameworkAn object state is <�; �; �> where � is the object's type, � is the object's identityand � is a partial function mapping attribute names to values. A message is<�s; �t; �> where �s is the identity of the source object, �t is the identity of thetarget object and � is a data value. Object-oriented system computation occursin terms of state transitions resulting from message passing: : : : �! �1 (I;O)�!�2 �! : : : in which a set of object states �1 receives a set of input messages Iproducing a transition to states �2 and output messages O. Since the behaviourof a system design may be non-deterministic it can be represented as a graphwhose nodes are labelled with sets of object states and whose edges are labelled

with pairs of sets of messages. This leads to a category Obj whose objects aregraphs and whose arrows are graph homomorphisms.System construction is described by standard categorical constructions inObj. Given two behaviours O1 and O2 in Obj the product O1 � O2 exhibitsboth O1 and O2 behaviour subject to structural consistency constraints. The co-product O1+O2 exhibits either O1 or O2 behaviour. Equalizers, pull-backs andpush-outs can be used to express constraints such that two or more behavioursare consistent. Computational category theory provides an algorithm for com-puting the behaviour of a system of inter-related components using limits.Any behaviour O can be viewed as a category in which the objects are be-haviour states and arrows are sequences of message pairs. Category-hood fol-lows from: every object � has an identity arrow []; and for every pair of arrowsf : �1 ! �2 and g : �2 ! �3 there is an arrow g � f : �1 ! �3 which is con-structed as f ++g; and the associativity of � follows from the associativity of ++.A re�nement R is expressed as adjoint functors R : O1 ! O2 and U : O2 ! O1:The diagram 1 states that performing a computa-tion in the source object is the same as translatingthe source state, performing the computation inthe target object and then translating the targetstate. Given any �1 the re�nement is sound if forevery f there exists a g and is complete if for everyg there is an f [Sab97]. �1? U(�2)-fR(�1) �26-g (1)Object-oriented designs are expressed using a �-notation [Lan64] whose seman-tics is given by Obj. A behaviour is denoted by a functions M and is sup-plied with type, identity, attribute and message information: M(�)(�)(v)(I) =[i=1;nf(Pi; Oi)g where Pi are replacement behaviours and Oi are correspondingoutput messages. This approach is essentially the same as that of Actor Theory[Agh86] [Agh91]. The basic model of message handling is asynchronous, how-ever syntactic sugar can be used to express synchronous message passing. Thefollowing example shows how a behaviour function (left) which synchronouslysends a message e1 is translated to a behaviour function (right) which uses areplacement wait:letrec agent(�)(�)(�)(m) =case m ofp1 !let p2 e1in e2end letrec agent(�)(�)(�)(m) =case m ofp1 ! (agent(�)(�)(�) + wait; e1)whererec wait(m) =case m ofp2 ! e2else (wait; ;)endend

3 Development of a Java ProgramThe requirements for a library system are de�ned. An initial object-orienteddesign is constructed. A single re�nement step is performed and veri�ed. A simplesystem property is established. The design is analysed prior to translating it toan implementation in Java (appendix A).Software to control a library is required. The library has readers who mayborrow copies of books. At any given time each reader has a number of books onloan. New readers may join the library at any time. The library has a numberof copies of books. Each book has a unique title. A copy is either on the shelf inthe library or is being borrowed by a reader. Libraries operate a shares reader-ship policy whereby joining one library permits readers to borrow books at allparticipating libraries.A library system consists of a single object with a state (R;B) consisting ofreaders R and books B. Each reader is a pair (n;C) where n is a name and Cis a set of borrowed copies. Each book is a pair (n; i) where n is a name and i isthe number of shelved copies. Initially we treat R and B as lookup tables. LetT be a table with keys dom(T), lookup is T � k, extension is T [k 7! v]. Addingtable values is de�ned as follows (removing is similarly de�ned):T [k � v] � �T [k 7! T � k [fvg] when isSet(T � k)T [k 7! T � k + v] when isInt(T � k)Initial system behaviour can be decomposed into the success and failure modes.The design operator + allows us to de�ne these modes separately and thencombine them. Success mode is de�ned as follows:letrec libOk(�)(�)(R;B)(m) =case m ofaddReader(n)! (libOk(�)(�)(R[n 7! ;]; B); ;) when n 62 dom(R)addBook(n)! (libOk(�)(�)(R;B[n 7! 0]); ;) when n 62 dom(B)addCopy(n)! (libOk(�)(�)(R;B[n� 1]); ;) when n 2 dom(B)borrow(n1; n2)! (libOk(�)(�)(R[n1 � n2]; B[n2 	 1]); ;)when n1 2 dom(R)&n2 2 dom(B)return(n1; n2)! libOk(�)(�)(R[n1 	 n2]; B[n2 � 1]); ;)when n1 2 dom(R)&n2 2 dom(B)else (libOk(�)(�)(R;B); ;)endGiven a state (R;B) in the source behaviour, a re�nement acts as identity onR and transforms B = fn1 7! i1; : : : ; nk 7! ikg into a set of object identi�ersf�1; : : : ; �kg and introduces new objects �1 7! (n1; i1); : : : ; �k 7! (nk; ik) to thesystem state. A book behaviour is as follows:letrec book(�)(�)(n; i)(m) =case m of<� 0; �; getName>! (book(�)(�)(n; i); f<�; � 0; n>g)borrow! (book(�)(�)(n; i� 1); ;) when i > 0addCopy! (book(�)(�)(n; i+ 1); ;)else (book(�)(�)(n; i); ;)end

The successful library behaviour is modi�ed to take account of book objects.The initial design uses set membership to test for the existence of a book. Thismust now be implemented as a private method of the library:<� 0; �; �ndBook(;; n)>! (libOk(�)(�)(R;B); f<�; � 0; noBook>g)<� 0; �; �ndBook(fog [S; n1)>!let n2 <�; o; getName>in if n1 = n2then (libOk(�)(�)(R;B); f<�; � 0; book(o)>g)else (libOk(�)(�)(R;B); f<� 0; �; �ndBook(S; n1)>g)When a library receives an addBook message with a name n which does notalready exist then a new book object is created. We assume that � 00 is a newobject identi�er and that � is the type tag for books:addBook(n)!let noBook <�; �; �ndBook(n)>in (libOk(�)(�)(R;B [f� 00g)� book(�)(� 00)(n; ;); ;)To verify the re�nement step the following source state is used: f� 7! (R;B)gwhere R is a set of readers and B is the set fn1 7! i1; : : : ; nk 7! ikg. Thecorresponding target state is f� 7! (R; T)g [O where T is the set of objectidenti�ers f�1; : : : ; �kg and O is the state f�1 7! (n1; i1); : : : ; �k 7! (nk; ik)g.The re�nement of addBook is sound and complete when the following diagramcommutes (see diagram 1):f� 7! (R;B)g? f� 7! (R;B[n 7! 0])g-addBook(n)
f� 7! (R; T)g [O f� 7! (R; T [� 00)g[O[� 00 7! (n; 0)]6-c�addBook(n) (2)

A proof of 2 is by induction on the size of the set B and the length of thecomputation c. Further re�nement identi�es a class of behaviours for reader andadds a private method �ndReader to the library.The design language is given a formal semantics in terms of standard con-structions in Obj. A design language proof theory provides a framework forestablishing program properties. The proof theory views a behaviour functionas a mapping from input messages and states to output messages and states.Proofs typically are by induction on the length of a messages stream. Since re-�nement is formally de�ned, it is possible to show that properties are preservedby re�nement transformations.Consider the following theorem. For any library (R;B), if b is a book bor-rowed by a reader then b 2 dom(B). The proof is by induction in the length ofthe input message stream. The theorem holds for library (;; ;) and the empty

stream. Assume by induction that the theorem holds for library (R;B) andmessages ms. Now show by case analysis on m that the theorem holds for allmessages ms++[m]. We conclude that the theorem holds.Consider the behaviours book and reader. Bothprovide a state component n which is used to in-dex into collections of behavioural instances usingthe message getName. This indicates that there isa common behaviour named and projection mor-phisms. In an implementation named will occur asa super-class of both book and reader. namedbook���� reader@@@IConsider a behaviour functor F1 which acts on system states by projecting allbook objects to equivalent named objects by forgetting the copy count. F1 actsas identity on all arrows except that �ndBook(O; n) is replaced by �nd(O; n),book(b) is replaced by found(b) and noBook is replaced by notFound.In order for F1 to be valid, it must besound and complete with respect to in-dexing into collections of books. There-fore, for any system state �, the diagramon the right must commute. Similarly, abehaviour functor F2 is de�ned to projectstates and calculations involving indexingreaders. This leads us to replace the be-haviours for �ndBook and �ndReader witha single behaviour �nd.
�? �?-[�ndBook(O; n)] ++c

F1(�) F1(�)-[�nd(O; n)] ++F1(c)The shared readership policy is expressed as apull-back S on a diagram showing two (or more)libraries which project onto a behaviour cell con-taining their readers. The pull-back ensures thatboth libraries have the same readers. There are anumber of implementation choices for the sharedreadership policy whose behaviour is de�ned by S.If the programming language supports shared databetween class instances (such as static in Java)then the R component of a library class may beshared.
S @@@R���	lib1@@@R
1 lib2���	
2cellReferences[Agh86] Agha, G.: Actors: A Model of Concurrent Computation in Distributed Sys-tems. MIT Press, 1986.[Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In proceedingsof REX School/Workshop on Foundations of Object-Oriented Languages, LNCS489, Springer-Verlag, 1991.[Bar90] Barr, M. & Wells, C.: Category Theory for Computing Science. Prentice HallInternational Series in Computer Science, 1990.

[Bic97] Bicarregui, J., Lano, K. & Maibaum, T.: Towards a Compositional Interpreta-tion of Object Diagrams. Technical Report, Department of Computing, ImperialCollege, 1997.[Cla94] Clark, A. N.: A Layered Object-Oriented Programming Language. GEC Jour-nal of Research, 11(3), The General Electric Company p.l.c., pp 173 { 180, 1994.[Cla96] Clark, A. N.: Semantic Primitives for Object-Oriented Programming Lan-guages. PhD Thesis, QMW, University of London, 1996.[Cla97] Clark, A. N. & Evans, A. S.: Semantic Foundations of the Uni�ed ModellingLanguage. In the proceedings of the First Workshop on Rigorous Object-OrientedMethods: ROOM 1, Imperial College, June, 1997.[Cla98] Clark, A. N.: Type Checking OCL Expressions. Technical Report, 1998.[Cla99a] Clark, A. N.: A Semantics for Object-Oriented Systems. Presented at theThird Northern Formal Methods Workshop. September 1998. To appear in BCSFACS Electronic Workshops in Computing, 1999.[Cla99b] Clark, A. N.: A Semantics for Object-Oriented Design Notations. Technicalreport, submitted to the BCS FACS Journal, 1999.[Cla99c] Clark, A. N.: A Semantic Framework for Object-Oriented Development. Tech-nical report, submitted to the L'Objet journal special issue on formal object-oriented development, 1999.[Ehr91] Ehrich, H-D., Goguen, J. A. & Sernadas, A.: A Categorical Model of Objects asObserved Processes. In the proceedings of REX School/Workshop on Foundationsof Object-Oriented Languages, LNCS 489, Springer-Verlag, 1991.[Eva98] Evans, A. S.: Reasoning with UML Class Diagrams. In WIFT '98, IEEE Press,1998.[Eva99] Evans, A. S. & Lano, K. C.: Rigorous Development in UML. To appear in theproceedings of the ETAPS '99, FASE Workshop, 1999.[Gog75] Goguen, J.: Objects. Int. Journal of General Systems, 1(4):237{243, 1975.[Gog89] Goguen, J.: A Categorical Manifesto. Technical Report PRG-72, ProgrammingResearch Group, Oxford University, March 1989.[Gog90] Goguen, J. A.: Sheaf Semantics for Concurrent Interacting Objects. Mathe-matical Structures in Computer Science, 1990.[Ken99] Kent, S. & Gil J.: Visualising Action Contracts in Object-Oriented Modelling.To appear in the IEE Software Journal, 1999.[Ken97] Kent, S.: Constraint Diagrams: Visualising Invariants in Object-OrientedModels. In the proceedings of OOPSLA 97, ACM Press, 1997.[Lan64] Landin P.: The Next 700 Programming Languages. Communication of theACM, 9(3), 1966, pp 157 { 166.[Lan98] Lano, K. & Bicarregui, J.: UML Re�nement and Abstraction Transforma-tions. In the proceedings of the Second Workshop on Rigorous Object-OrientedMethods: ROOM 2, Bradford, May, 1998.[Pie96] Piessens F. & Steegmans E.: Categorical Semantics for Object-Oriented DataSpeci�cations. In Formal Methods and Object Technology, (eds.) Goldsack, S. J.& Kent, S. J., Springer-Verlag, 1996, pp 302 { 316.[Rui95] Ruiz-Delgado, A., Pitt, D. & Smythe, C.: A Review of Object-Oriented Ap-proaches in Formal Speci�cation. The Computer Journal, 38(10), 1995.[Ryd88] Rydeheard, D. E. & Burstall, R. M.: Computational Category Theory. PrenticeHall International Series in Computer Science, 1988.[Sab97] Sabry, A. & Wadler, P.: A Re
ection on Call-by-Value. ACM Transactions onProgramming Languages and Systems, 19(5), pp 111 { 136,1997.

A Library Implementation in JavaEach independent behaviour is de�ned as a Java class. The state componentsof the behaviour are de�ned as �elds and the message handlers are de�ned asmethods. Any common behaviour is de�ned using inheritance. The main fea-tures are: the class Named de�nes the common behaviour for readers and books;attribute readers in Library is declared static so that libraries implement theshared readership policy; class Library de�nes a method find that is used toindex both readers and books.class Named {private String name;public Named(String name) { this.name = name; }public String getName() { return name; }}class Book extends Named {private int copies = 0;public Book(String name) { super(name); }public void borrow(){ if(copies > 0)copies = copies - 1;else throw new Error("no copies left");}public void addCopy() { copies = copies + 1; }}class Reader extends Named {private Vector copies = new Vector();public Reader(String name,Vector copies){ super(name);this.copies = copies;}public void borrow(String name) { copies.addElement(name); }public void ret(String name) { copies.removeElement(name); }}class Library {private static Vector readers = new Vector();private Vector books = new Vector();public void addReader(String name) { readers.addElement(new Reader(name,new Vector())); }public void addBook(String name) { books.addElement(new Book(name)); }public void addCopy(String bookName){ Book book = (Book)find(bookName,books);if(book != null)book.addCopy();else throw new Error("cannot find book");}private Named find(String name,Vector table){ Named named = null;for(int i = 0; (named == null) && (i < table.size()); i++) {Named n = (Named)table.elementAt(i);if(n.getName().equals(name))named = n;}return named;}public void borrow(String readerName,String bookName){ Reader reader = (Reader)find(readerName,readers);Book book = (Book)find(bookName,books);if((reader != null) & (book != null)) {reader.borrow(bookName);book.borrow();} else throw new Error("illegal name in borrow");}public void ret(String readerName,String bookName){ Reader reader = (Reader)find(readerName,readers);Book book = (Book)find(bookName,books);if((reader != null) & (book != null)) {reader.ret(bookName);book.addCopy();} else throw new Error("illegal name in ret");}}

