
A Novel Symbolic Approach to Verifying Epistemic Properties of Programs∗

Nikos Gorogiannis, Franco Raimondi
Department of Computer Science

Middlesex University, London, UK
{n.gkorogiannis,f.raimondi}@mdx.ac.uk

Ioana Boureanu
Department of Computer Science

University of Surrey, Guilford, UK
i.boureanu@surrey.ac.uk

Abstract

We introduce a framework for the symbolic ver-
ification of epistemic properties of programs ex-
pressed in a class of general-purpose programming
languages. To this end, we reduce the verification
problem to that of satisfiability of first-order for-
mulae in appropriate theories. We prove the cor-
rectness of our reduction and we validate our pro-
posal by applying it to two examples: the dining
cryptographers problem and the ThreeBallot vot-
ing protocol. We put forward an implementation
using existing solvers, and report experimental re-
sults showing that the approach can perform better
than state-of-the-art symbolic model checkers for
temporal-epistemic logic.

1 Introduction
Epistemic logics capture rich properties such as unlinkabil-
ity, diagnosability and anonymity [Fagin et al., 1995], and
have been applied to complex systems. Several verifiers
for temporal-epistemic properties have been developed [Lo-
muscio et al., 2015; Gammie and van der Meyden, 2004;
Kacprzak et al., 2008], and used on a number of applica-
tions, ranging from security protocols [Boureanu et al., 2009]
and cache-coherence protocols [Baukus and van der Meyden,
2004] to under-water vehicles [Ezekiel et al., 2011].

Typically, verification of epistemic properties in such sys-
tems is done by translating the specifications into the input
language of a model checker (e.g., [Boureanu et al., 2009]).
Thus it is not possible, in general, to verify epistemic prop-
erties directly on program code. Also, it is hard to capture
richer (e.g., first-order) state specifications, because the base
logic of most temporal-epistemic verifiers is propositional.

This is in contrast to program verification. Therein, the full
power of temporal logic is foregone (properties only constrain
final states, all or some), but programs are expressed in con-
crete languages, and base logics are very expressive (dealing
with integers, reals, arrays, strings etc). In this context, pred-
icate transformers (e.g., strongest postconditions [Dijkstra,

∗Raimondi was supported by EPSRC grant EP/K033921/1;
Boureanu was funded by the Marie Skłodowska-Curie grant 661362.

1976]) are used to reduce verification to first-order queries
fed to SMT solvers (e.g., Z3 [De Moura and Bjørner, 2008]).

Inspired by program verification, we propose a methodol-
ogy for verifying epistemic properties of programs. We focus
on S5-like epistemic properties about program states (e.g., “I
know that variable x is equal to y + 5”). As in interpreted
systems [Fagin et al., 1995], agents can observe certain pro-
gram variables. Also, the program (its transition relation) is
assumed to be known by all agents, similarly to most existing
model checkers. We summarise our contributions below.
A New Methodology. We propose a framework whereby a
program-epistemic logic of agents can be defined, given user-
chosen parameters. These parameters include (i) a base logic
over program variables; (ii) the programming language; and,
(iii) the set of observable program variables for each agent.
Reducing to First-Order. We show that if the strongest
postcondition operator is computable for the chosen base
logic/programming language, then validity of program-
epistemic specifications is reducible to validity in first-order
fragments (such as QBF and Presburger arithmetic).
Over-approximation. When the strongest postcondition can
only be over-approximated (such as in programming lan-
guages with unbounded loops), we show that the validity of
positive epistemic specifications still reduces to that of first-
order fragments, in a sound but incomplete way.
Case Studies. We instantiate this framework on two case
studies: the dining cryptographers problem [Chaum, 1988]
and the ThreeBallot protocol [Rivest and Smith, 2007]. We
then show how the behaviour of the two systems can be
specified using epistemic properties employing propositional
logic, and linear integer arithmetic, respectively.
Evaluation. We use off-the-shelf SMT solvers to verify epis-
temic properties via our reduction to first-order fragments.
We experimentally assess the performance of the obtained
verifiers, and compare with temporal-epistemic model check-
ers. We find that our method yields verifiers which can be
implemented with minimal effort, whilst remaining competi-
tive for properties in our language with state-of-the-art tools.
Paper Structure. Sec. 2 introduces the syntax and seman-
tics of the proposed framework. Sec. 3 presents the reduction
of epistemic to first-order validity. Our case studies and ex-
perimental results are detailed in Sec. 4. Finally, we discuss
related work in Sec. 5 and conclude in Sec. 6.

2 An Epistemic Logic of Programs
We start from a user-specified base language and build on
top of it, up to more expressive logics that specify epistemic
properties of programs. We introduce these languages below.
Notation. We denote vectors (x1, . . . , xn) by x and their
length by |x| = n. We extend quantifiers over vectors of vari-
ables: ∀x. φ means ∀x1.∀x2. . . .∀xn. φ. We treat vectors as
sets: x ⊆ y means that every element of x appears in y. We
write FV (P) for the set of free variables of a formula P .

2.1 Logical Languages: Syntax
Agents & Program Variables. Let A be a finite set of
agents. Formulas are over a countable set of variables V . To
this end, we fix the following finite sets of variables:

• p ⊆ V is a non-empty set of program variables;
• oA ⊆ p are the variables the agent A ∈ A can observe;
• nA = p\oA are variables agentA ∈ A cannot observe.

Syntax. Let the base language, LQF, be a quantifier-free,
first-order language. We leave LQF under-specified to allow
various instantiations; we denote formulas of LQF with π.

We now define three languages on top of LQF.
The first-order language, LFO, is the extension of LQF with

quantifiers. Its definition is standard,

φ ::= π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ∀x. φ | ∃x. φ

where x ∈ V and π ∈ LQF. We use the Greek letters φ, ψ to
denote formulas given in this first-order language.

The epistemic language language, LK, is the extension
of LQF with epistemic modalities KA. The modality KA ex-
presses the knowledge of agent A. Its syntax is as follows:

α ::= π | ¬α | α1 ∧ α2 | α1 ∨ α2 | α1 ⇒ α2 | KAα

where π is a base-language formula and A ∈ A is an agent.
We use the Greek letter α to denote formulas in LK.

We fix a (possibly infinite) set of commands1, C. The
program specification language, L�K, extends LK with ev-
ery formula β = �Cα, meaning “at all final states of C, α
holds”, where α ∈ LK and C ∈ C is a command.

Finally, we fix L+
K as the ¬,⇒-free fragment of LK (note

that ¬ and ⇒ over base-language formulas π are allowed,
while the dual operator of K, ¬K¬ is not allowed).

2.2 Logic Languages: Semantics
Let D be a set, used as the domain for interpreting variables
and quantifiers. A valuation is a total function s : V → D.
We lift valuations to tuples of variables and terms (pointwise).
Such a valuation is a state. Let U be the set of all states.

We use s[x 7→ c] to denote the state s′ which agrees with s
on all variables except for x, and which also has the prop-
erty that s′(x) = c. We extend this notation to vectors of
variables/values, i.e., s[x 7→ c] = s[x1 7→ c1] · · · [xn 7→ cn].
First-order Semantics. Let I be an interpretation of con-
stants, functions and predicates in LQF over the domain D.

1NB: we use the terms command and program interchangeably,
as a program can always be seen as a compound command.

Then, the standard first-order semantics is as follows.
s |= π ⇐⇒ in accordance to interpretation I
s |= φ1 ◦ φ2 ⇐⇒ (s |= φ1) ◦ (s |= φ2)
s |= ¬φ ⇐⇒ s 6|= φ
s |= ∃x.φ ⇐⇒ ∃c ∈ D. s[x 7→ c] |= φ
s |= ∀x.φ ⇐⇒ ∀c ∈ D. s[x 7→ c] |= φ.

where ◦ is ∧, ∨ or⇒.
The interpretation JφK of a first-order formula φ is the set

of states satisfying it, i.e., JφK = {s ∈ U | s |= φ}.
Epistemic and Program Semantics. For each command
C ∈ C, let RC ⊆ U × U be a binary relation over U , rep-
resenting the transition relation of C. We overload RC as
a function from states to sets of states, as well as a function
from sets of states to sets of states, as standard.
RC(s) = {s′ | (s, s′) ∈ RC} RC(W) =

⋃
s∈W RC(s)

Definition 2.1. The strongest postcondition operator is a par-
tial function SP(−,−) : LFO × C ⇀ LFO defined as follows.

SP(φ,C) = ψ iff JψK = RC(JφK)
(here ψ is assumed to be in some canonical form).
Definition 2.2. A function f : LFO × C → LFO is well-
behaved if it is total and computable, and, FV (φ) ⊆ p im-
plies FV (f(φ,C)) ⊆ p for all φ ∈ LFO and C ∈ C.

A function f : LFO × C → LFO over-approximates
the strongest postcondition iff it is well-behaved, and,
Jf(φ,C)K ⊇ RC(JφK) for all φ ∈ LFO and C ∈ C.
Definition 2.3. Let X ⊆ V . The indistinguishability rela-
tion ∼X is a binary relation over U , defined as follows:

s ∼X s′ ⇐⇒ ∀x ∈ X. (s(x) = s′(x))

Clearly ∼X is an equivalence relation over U , for any X .
We now define the interpretation of a program specifica-

tion β, by defining a ternary satisfaction relation W, s β,
where W is a set of states and s is a state in W , as follows:
W, s π ⇐⇒ s |= π
W, s ¬α ⇐⇒ W, s 6 α
W, s α1 ◦ α2 ⇐⇒ (W, s α1) ◦ (W, s α2)
W, s KAα ⇐⇒ ∀s′ ∈W. (s ∼oA

s′ =⇒ W, s′ α)
W, s �Cα ⇐⇒ ∀s′ ∈ RC(s). (RC(W), s′ α)

where ◦ is ∧, ∨, or⇒, and C ∈ C is a command. Intuitively,
in a judgement W, s β, the set W designates the reachable,
or epistemically relevant states, of which smust be a member.
Definition 2.4 (Validity of program specifications.). Let
φ ∈ LFO and β be a program specification. We write φ β
to mean that for all s ∈ JφK, we have that JφK, s β. We will
also, sometimes, write W β, where W is a set of states.

Defn. 2.4 sets out the format of our program-epistemic
specifications. For instance, φ KAπ means that in all states
satisfying φ, agent A knows π. Alternatively, φ �C¬KAπ
means: if command C starts at a state satisfying φ, then in all
states where the execution finishes, agent A does not know π.
Lemma 2.5. For any first-order formula φ and epistemic for-
mula α, φ �Cα iff RC(JφK) α.
Lemma 2.6. Let φ ∈ LFO, s, s′ ∈ U and X,Y ⊆ V . Then,

1. If X ⊆ Y and s ∼Y s′ then s ∼X s′.
2. If s ∼X s′ and s ∼Y s′ then s ∼X∪Y s′.
3. If FV (φ) ⊆ X and s ∼X s′, then s |= φ iff s′ |= φ.

3 Reducing to First-Order Validity
In this section, we show that the validity/satisfaction of a for-
mula in L�K reduces to that of a first-order formula. More
concretely, the main results of this section (Theorems 3.3
and 3.5) can be understood in the following way: the valid-
ity of certain first-order formulas is equivalent to, or implies,
the validity of a program specification in the format given
by Defn. 2.4. Underpinning this reduction is a translation of
epistemic formulas into the first-order language.

Definition 3.1. We define the function τ : LK → LFO by
recursion on the structure of epistemic formulas as follows.

τ(φ, π) = π τ(φ, α1 ◦ α2)= τ(φ, α1) ◦ τ(φ, α2)
τ(φ,¬α)= ¬τ(φ, α) τ(φ,KAα) = ∀nA. (φ⇒ τ(φ, α))

The first parameter of τ is a first-order formula represent-
ing the set of reachable, or epistemically relevant, states. The
translation maps epistemic formulas to (guarded) quantified
first-order formulas, exploiting the definition of the indistin-
guishability relation in terms of state variables.

We first show that satisfaction of α at a state coincides with
first-order satisfaction of τ(−, α) at the same state.

Lemma 3.2. For any φ ∈ LFO, state s ∈ JφK and α ∈ LK

such that FV (φ) ∪ FV (α) ⊆ p, JφK, s α iff s |= τ(φ, α).

Proof. By structural induction on α. The inductive hypothe-
sis is that for all subformulas of α, the result holds.

Cases for π, ¬, ∧, ∨,⇒: Immediate by the definitions of
τ and of the first-order satisfaction relation.

Case for KAα: We need to show JφK, s KAα iff s |=
∀nA. (φ⇒ τ(φ, α)).

Direction ⇒: Suppose s 6|= ∀nA. (φ⇒ τ(φ, α)). Thus,
there exists c ∈ D|nA| such that s[nA 7→ c] |= φ ∧ ¬τ(φ, α).
Expanding s[−], there is a state s′ such that for all x ∈ V\nA,
s(x) = s′(x), and s′ |= φ ∧ ¬τ(φ, α). By Defn. 2.3, we
first obtain that s ∼V\nA

s′, which then implies s ∼oA
s′

by item (1) of Lem. 2.6. Also, s′ |= φ and s′ 6|= τ(φ, α),
which means that JφK, s′ 6 α, by the inductive hypothesis.
Therefore, there exists a state s′ |= φ such that s ∼oA

s′ and
s′ 6|= τ(φ, α). Thus, JφK, s 6 KAα, completing the proof.

Direction ⇐: Assume s |= ∀nA. (φ ⇒ τ(φ, α)) but
JφK, s 6 KAα. The former implies that: for all value tu-
ples c ∈ D|nA|, we have s[nA 7→ c] |= φ ⇒ τ(φ, α). Ex-
panding s[−], we get that if for all x ∈ V \nA, s(x) = s′(x),
then s′ |= φ ⇒ τ(φ, α). Using Defn. 2.3, we conclude that
for all states s′, if s ∼V\nA

s′ then s′ |= φ⇒ τ(φ, α).
The second assumption implies that there exists a state

s0 ∈ JφK such that s ∼oA
s0 and JφK, s0 6 α. By the induc-

tive hypothesis, this means s0 66|= τ(φ, α). So, s ∼oA
s0 and

s0 |= φ ∧ ¬τ(φ, α). Define a new state s1 = s[p 7→ s0(p)].
But, if FV (φ) ∪ FV (α) ⊆ p, then FV (τ(φ, α)) ⊆ p (by
simple induction). Thus, since s1 ∼p s0 by construction,
item (3) of Lem. 2.6 gives us that s1 |= φ ∧ ¬τ(φ, α).

Also, since oA ⊆ p and s1 ∼p s0, it follows from item (1)
of Lem. 2.6 that s1 ∼oA

s0. By the transitivity of ∼oA
and

the fact that s ∼oA
s0 we have that s ∼oA

s1. Also, by con-
struction, s ∼V\p s1, and given that (V \ p) ∪ oA = V \ nA,
we obtain s ∼V\nA

s1 by item (2) of Lem. 2.6. This, along

with the fact that s1 |= φ ∧ ¬τ(φ, α), directly contradicts that
for all states s′, if s ∼V\nA

s′ then s′ |= φ⇒ τ(φ, α).

We can now state the first main result: when SP(−,−)
is well-behaved, validity of program specifications coincides
with that of first-order formulas produced by the τ function.
Theorem 3.3. Let φ ∈ LFO and α ∈ LK be formulas such
that FV (φ) ∪ FV (α) ⊆ p. If SP is well-behaved, then

φ �Cα ⇐⇒ SP(φ,C) |= τ(SP(φ,C), α) .

Proof. Assume the left-hand side. By Lem. 2.5 this is equiv-
alent to RC(JφK) α. By the semantics and Defn. 2.1, this
is equivalent to claiming that for all s, if s |= SP(φ,C), then
SP(φ,C), s α. By Lem. 3.2, for all s, if s |= SP(φ,C),
then s |= τ(SP(φ,C), α), completing the proof.

The strongest postcondition operator is often not well-
behaved, e.g., when the transition relation R is generated by
programs containing unbounded loops over infinite domains.
Our second main result states that when positive epistemic
formulas are involved (L+

K), and it is possible to compute an
over-approximation of SP(−,−), then validity of the trans-
lated formulas implies validity of the program specification.
This mirrors the situation in program analysis, where unde-
cidability often leads to sound but incomplete analyses.

We start with a technical lemma and lift it up to validity.
Lemma 3.4. Let φ ∈ LFO and α ∈ L+

K be formulas such that
FV (φ) ∪ FV (α) ⊆ p. Then, for any set of states W ⊆ JφK
and any state s ∈W , if JφK, s α then W, s α.

Proof. By structural induction on α. The only interesting
case is the epistemic one, that is, if JφK, s KAα then
W, s KAα. Suppose the former. Then, for any state
s′ ∈ JφK such that s ∼oA

s′, it is the case that JφK, s′ α.
But, since W ⊆ JφK, we can restrict attention to states in W ,
i.e., for any state s′ ∈ W such that s ∼oA

s′, it is the case
that JφK, s′ α. Now we can apply the inductive hypothesis
on s′ and obtain that for any state s′ ∈W such that s ∼oA

s′,
W, s′ α holds, which completes the proof.

Theorem 3.5. Suppose f : LFO × C → LFO over-
approximates the strongest postcondition. If φ ∈ LFO and
α ∈ L+

K are formulas such that FV (φ) ∪ FV (α) ⊆ p, then
f(φ,C) |= τ(f(φ,C), α) =⇒ φ �Cα .

Proof. Assume f(φ,C) |= τ(f(φ,C), α). By Lem. 3.2, this
means that f(φ,C) α, or (Defn. 2.4), that for all states
s |= f(φ,C), it is the case that Jf(φ,C)K, s α. By assump-
tion, RC(JφK) ⊆ Jf(φ,C)K. Therefore we can soundly re-
strict the relevant set of states, obtaining that for all states s ∈
RC(JφK), it is the case that Jf(φ,C)K, s α. By Lem. 3.4,
for all s, if s ∈ RC(JφK), then RC(JφK), s α. This is
equivalent to φ �Cα, thus completing the proof.

Remark 3.6. Without fixing the various framework parame-
ters, it is hard to determine the decidability and complexity of
program specifications. Some observations are possible:

First, the length of τ(φ, α) is linear in ‖φ‖ + ‖α‖, where
‖φ‖ is the number of symbols in φ, defined as usual.

Second, the number of quantifier alternations in τ(φ, α)
(in negation-normal form) is bounded by the quantifier alter-
nations in φ plus the number of alternations of ¬ and K in α.

3.1 A Simple Programming Language
We informally present a simple, loop-free imperative pro-
gramming language, and how it can be used to interpret ex-
ecution modalities �C and SP(−,−). In the (infinite) set
of commands C we include assignments, conditionals and se-
quencing. We omit unbounded loops in order to guarantee
that the strongest postcondition is well-behaved. We do not
fix the types of variables, to allow different user choices for
domains. In Sections 4.1 and 4.2 we show how we can use
this language with Booleans and integers. Below we show the
syntax of commands and the rules for computing SP(−,−).

Command C SP(φ,C)

x := ∗ ∃y. φ[y/x]
x := e ∃y. (x = e[y/x] ∧ φ[y/x])
if(π) C1 else C2 SP(π ∧ φ,C1) ∨ SP(¬π ∧ φ,C2)
C1;C2 SP(SP(φ,C1), C2)

Above, x is a program variable and y is a fresh logical vari-
able. The transition relations RC are defined as usual.
Remark 3.7. The SP(−,−) operator for the above program-
ming language is well-behaved (cf. Defn. 2.2) for any choice
of other framework parameters (domain, program variables,
base language etc). In addition, we can make the following
observations that we use in Sections 4.1 and 4.2:
• SP(−,−) may only introduce existential quantifiers.
• If x /∈ FV (φ), then SP(φ, x := e) = (φ∧ x = e). That

is, if x is unrestricted, no quantifiers are introduced.
• For a fixedC, the size of SP(φ,C) is polynomial in ‖φ‖.

4 Evaluation
We now present two case studies, where we instantiate the
framework presented in Sec. 2, mechanise the verification of
relevant epistemic properties by using appropriate tools such
as SMT solvers, and assess verification performance.

All the experiments2 have been performed on a 4-core 2.4
GHz Intel Core i7 MacBook Pro with 16 GB of RAM run-
ning OS X 10.11.6. The version of MCMAS is 1.2.2 and Z3
is 4.5.1; both tools have been compiled from source on the
target machine.

4.1 Dining Cryptographers
Problem description. This is a scenario where n agents
(cryptographers) dine at a round table [Chaum, 1988]. The
dinner may have been paid by their employer (the NSA),
or by one of the agents. They execute a protocol to reveal
whether one of the agents paid, but without revealing which
one. The protocol supplies each pair of adjacent agents with
a random coin, which can be observed only by that pair. Each
agent announces the result of XORing three Booleans: the
two coins observable by her and the status of whether she
paid for the dinner. The XOR of all announcements is proven
to be equal to the disjunction of whether any agent paid.

This protocol has been used as an evaluation case study
for several methods of verifying epistemic properties of

2Our code is released open-source at goo.gl/so8bQc.

10−2

10−1

100

101

102

103

104

105

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Number of cryptographers

α1
α2
α3

α1 (MCMAS)

Figure 1: Dining cryptographers, performance vs MCMAS.

programs [Kacprzak et al., 2006; Kacprzak et al., 2008;
Lomuscio et al., 2015].
Framework Instantiation. The domain is D = {>,⊥}.
The base language LQF is propositional logic. The set of
agents is A = {0, . . . , n − 1}. The program variables are
p = {x} ∪ {pi, ci | 0 ≤ i < n}; x is the XOR of announce-
ments; pi encodes whether agent i has paid; and, ci encodes
the coin shared between agents i− 1 and i. Observable vari-
ables for agent i ∈ A are oi = {x, pi, ci, ci+1 mod n}, and
ni = p \ oi. We model the protocol by an assignment C:

x :=
⊕n−1

i=0 pi ⊕ ci ⊕ c(i+1 mod n) (C)

The language LFO is that of QBFs. As seen in Sec. 3.1,
SP(φ,C) is well-behaved. Validity of program specifications
is in ΣPj or ΠP

j
[Stockmeyer, 1977], where j is the sum of

quantifier alternations in φ and alternations of ¬ and K in α.
The initial states, I , are those where at most one agent paid.

Thus, we can compute the strongest postcondition:

I =
∧n−1
i=0

(
pi ⇒

∧n−1
j=0,j 6=i ¬pj

)
SP(I, C) = I ∧

(
x⇔

⊕n−1
i=0 pi ⊕ ci ⊕ c(i+1 mod n)

)
Experiments. We list the specifications we verify. Formula
α1 = ¬p0 ⇒

((
K0

∧n−1
i=0 ¬pi

)
∨
(∧n−1

i=1 ¬K0pi

))
states

that if agent 0 has not paid then she knows that no agent paid,
or (in case an agent paid) she does not know which one. For-
mula α2 = K0

(
x⇔

∨n−1
i=0 pi

)
states that agent 0 knows that

x is true iff one of the agents paid. Formula α3 = K0p1 states
that agent 0 knows that agent 1 has paid; this is false, but we
include this to assess performance on negative instances too.

To verify I �Cα1, I �Cα2 and I 6 �Cα3 we con-
struct the QBF formula SP(I, C) ∧ ¬τ(SP(I, C), αi), feed
it to Z3, and test for unsatisfiability, as per Theorem 3.3.

Experimental results for the verification of these formu-
lae are reported in Fig. 1. As computing the reachable-states
space is a dominant factor for MCMAS, its performance does
not vary significantly across specifications α1, α2, α3. Thus,

goo.gl/so8bQc

for clarity of exposition, we omit the MCMAS curves on
specifications α2, α3. We observe that (i) MCMAS is faster,
or equally fast, for n ≤ 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of ≥ 100 (e.g., when n = 32) when checking α1 (which
is the computationally most expensive in our case), whilst
when verifying α3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol
Problem description. In the ThreeBallot voting proto-
col [Rivest and Smith, 2007], a voter is given a multi-ballot
formed of three atomic ballots. All atomic ballots are identi-
cal and show all candidates in the same fixed order. To vote
for a candidate, a voter ticks the name of the candidate on
exactly two atomic ballots. To vote against a candidate, a
voter ticks the name of the candidate on exactly one atomic
ballot. The voting system posts all the atomic ballots cast,
randomly ordered, on a public bulletin board. The number
of votes for the j-th candidate is the number of atomic bal-
lots with the j-th position marked minus the total number of
voters. Several voting requirements exist: (universal) veri-
fiability, coercion-resistance, vote-privacy, etc. Vote-privacy
broadly means that no observer in a voting protocol can know
how some voter (other than themselves) voted. Here we only
consider vote-privacy, and only in the absence of active ad-
versaries. As such, the presentation above and our modelling
are restricted to aspects of the ThreeBallot protocol relevant
to this task, leaving aside several sub-parts of the system (e.g.,
scanning machines, identifiers on atomic bulletins, etc). We
also leave out properties that are not yet expressible in our
formalism, such as common-knowledge properties.
Framework Instantiation. We assume m ≥ 2 candidates
and n ≥ 2 voters. The domain is D = N. The base lan-
guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

⋃m
j=1{cj} ∪

⋃n
i=1

⋃m
j=1

⋃3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i ∈ A \ {P}, the observable variables are
oi =

⋃m
j=1{cj} ∪

⋃m
j=1

⋃3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

⋃m
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i ∈ A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro
Si,j ≡

∑3
k=1 bijk, denoting the number of ticks voter i has

entered for candidate j. Then, the program C is:

c1 :=
∑n
i=1 Si,1 ; . . . ; cm :=

∑n
i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any φ ∈
LFO, SP(φ,C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ΣEXP

` or ΠEXP
` (classes of the weak expo-

nential hierarchy [Haase, 2014]), where ` + 1 is the sum of
quantifier alternations in φ and alternations of ¬ and K in α.

10−1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, α1
m = 2, α2
m = 2, α3
m = 3, α1
m = 3, α2
m = 3, α3
m = 5, α1
m = 5, α2
m = 5, α3

(a) Performance on the 3-ballot protocol.

Si,j ≡
∑3
k=1 bijk

B≡
∧n
i=1

∧m
j=1

∧3
k=1(bijk = 0 ∨ bijk = 1)

Vi,j ≡ (Si,j = 2)

V̄i,j ≡ (Si,j = 1)

CV ≥0i ≡
∨m
j=1 Vi,j

CV ≤1i ≡
∧m
j=1

(
Vi,j ⇒

∧m
j′=1,j′ 6=j V̄i,j′

)
CV ≡

∧n
i=1(CV ≥0i ∧ CV ≤1i)

NU ≡
∧m
j=1

∨n
i=1 Vi,j

NUmod i≡
∧m
j=1

∨n
i′=1,i′ 6=i Vi′,j

I ≡ B ∧ CV ∧NU
Imod i≡ B ∧ CV ∧NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,
i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV ≥0i states that voter i voted for at least one candi-
date andCV ≤1i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I∧
(
c = (

∑n
i=1 Si,1, . . . ,

∑n
i=1 Si,m)

)
where c is the tuple (c1, . . . , cm), and similarly for Imod i.

Experiments. The formula α1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula α2 = ¬K1V2,1 states that voter 1 does
not know that voter 2 voted for candidate 1. We verify the
following scenarios: (a) I �Cα1; (b) Imod 1 �Cα2; and,
(c) I 6 �Cα2. We construct the relevant Presburger formulas
obtained by Theorem 3.3, and issue the queries to Z3.

We make the following observations. With a timeout of
roughly 1h, for m = 2 candidates, we can verify all formulas
for up to n = 22 voters. For m = 3, we can check the speci-
fications up to n = 15. For m = 5, we stop at n = 11. Run-
time is evidently exponential in both n and m. Increasing m
rather than n has a more pronounced impact on verification
runtime; this is apparent on the graphs, as different formu-
las for the same m value cluster together. Finally, disproof
(i.e., α3) seems to be more tractable when m = 2.

5 Related Work
Several model checkers exist for model verification against
properties expressed in temporal-epistemic logics [Lomuscio
et al., 2015; Gammie and van der Meyden, 2004; Kacprzak
et al., 2008]. Their underlying techniques include binary de-
cision diagrams, automata, and bounded model checking us-
ing SAT solvers. Abstraction and parametrisation have also
been introduced in some of these tools, to tackle infinite-
state systems [Belardinelli et al., 2016; Kouvaros and Lo-
muscio, 2016]. A fix-point technique for verifying bounds
on resources in multi-agent systems using SMT solvers is
described in [Zbrzezny et al., 2016]. As per Section 4, we
generally outperform significantly MCMAS [Lomuscio et al.,
2015], a state-of-the-art tool in this domain.

Verification of epistemic properties in (possibly) infinite
state systems is also addressed in [Cimatti et al., 2016]. The
authors employ a counter-example guided abstraction refine-
ment loop to translate a class of temporal-epistemic proper-
ties to LTL properties, and to generate a satisfiability prob-
lem for an infinite-state model checker. Beside the core tech-
nique, the key differences between [Cimatti et al., 2016] and
our approach are three-fold. (1) Our input is a program in a
general-purpose language rather than the model of a system.
(2) We can handle nested epistemic operators (but our tem-
poral expressivity is limited to the final states of programs).
(3) Our approach performs better on the epistemic properties
of the dining cryptographers that can be expressed both by
our framework and by [Cimatti et al., 2016]: for the formula
p0 ⇒ K0(¬

∨n−1
i=1 pi), the authors report running times of

287, 598 and 765 seconds for 280, 360 and 400 cryptogra-
phers, respectively; in all cases, this formula is checked in
less than 1 second in our framework.

Verification of programs against properties expressed in
(temporal-)epistemic logics is a less explored area of re-
search compared to model-based verification. Going back
some decades, the verification of epistemic properties for a
LISP-like language called REX was investigated in [Rosen-
schein and Kaelbling, 1986]; the authors employed a variant
of LTL+K and presented a calculus to prove logical conse-
quences of a REX program. On a slightly different path, [Gel-
fond, 1994; Zhang, 2006] addressed the theoretical prob-

lem of extending (declarative) programming languages with
epistemic operators. More recently, the approach described
in [Balliu et al., 2012] verifies whether Java programs respect
non-interference properties (modulo declassification), given
as epistemic formulae. The authors employ a version of the
model checker JPF [Păsăreanu and Rungta, 2010] to generate
the state space of a Java program and then either MCMAS
or Z3 to verify a symbolic representation of the reachable
state-space. The key differences between [Balliu et al., 2012]
and our approach stem from their focus on non-interference
properties and the need of a concolic execution engine. Fi-
nally, dynamic epistemic logic [Plaza, 2007] lends itself to
the expression of epistemic properties of programs; prelim-
inary work on a verification tool in this space is described
in [Wang, 2016].

6 Conclusions
In this paper, we proposed a new approach to verifying epis-
temic properties of programs. We showed how this method
can be applied to arbitrary logics and programming lan-
guages. We use program-epistemic specifications, express-
ing the requirement that the given epistemic properties hold
on all final states of the program. We showed how program-
epistemic specifications can be reduced to appropriate queries
to tools such as SMT solvers. We instantiated our approach
in two case studies, the Dining Cryptographers problem and
the ThreeBallot voting protocol, and experimentally evalu-
ated verification performance.

For any given instantiation of our framework, the trans-
lation of program-epistemic properties into first-order sen-
tences can be automated with great ease. In addition, we ex-
pect that advances in SMT technology will directly translate
into performance gains for tools based on our methodology.

Our approach is not, of course, without limitations. We
traded off temporal expressivity, to deal with arbitrary pro-
gramming languages. Thus we cannot directly encode prop-
erties utilising, e.g., until operators or other complex tempo-
ral properties. This is a research direction we plan to pur-
sue, drawing inspiration from attempts to lift infinite-state
program verification to the verification of true temporal prop-
erties [Cook et al., 2012].

Common-knowledge properties are outside the current
reach of our approach. We plan to investigate an extension of
our framework that can deal with common knowledge, pos-
sibly by viewing it as a fixpoint and using cyclic proof to
discharge its instances [Brotherston et al., 2012].

Another limitation is the restriction to positive epistemic
properties (L+

K) when the strongest postcondition is not well-
behaved (cf. Theorem 3.5). To lift this limitation, we believe
that static analysis methods such as abstract interpretation
[Cousot and Cousot, 1977] can be fruitfully employed here,
especially when over- and under-approximating analyses are
combined. We plan to follow this thread in future work.

Another avenue of future work is a twofold extension of
the work in [Armando et al., 2014] which, one, focused on
SAT solvers and, two, analysed only trace-based properties
of systems. To this end, we will look into embedding differ-
ent security semantics into our methodology and thus move

towards the verification of privacy and anonymity properties
of programs with a security bearing (e.g., reference imple-
mentations of cryptographically rich e-voting protocols).

References
[Armando et al., 2014] A. Armando, R. Carbone, and

L. Compagna. SATMC: A SAT-based model checker for
security-critical systems. In Proc. of TACAS-20, pages 31–
45. Springer, 2014.

[Balliu et al., 2012] M. Balliu, M. Dam, and G. Le Guernic.
ENCoVer: Symbolic exploration for information flow se-
curity. In Proc. of CSF-25, pages 30–44, 2012.

[Baukus and van der Meyden, 2004] K. Baukus and
R. van der Meyden. A knowledge based analysis of
cache coherence. In Proc. of ICFEM-6, pages 99–114.
Springer, 2004.

[Belardinelli et al., 2016] F. Belardinelli, A. Lomuscio, and
J. Michaliszyn. Agent-based refinement for predicate ab-
straction of multi-agent systems. In Proc. of ECAI-22,
pages 286–294. IOS Press, 2016.

[Boureanu et al., 2009] I. Boureanu, M. Cohen, and A. Lo-
muscio. Automatic verification of temporal-epistemic
properties of cryptographic protocols. Journal of Applied
Non-Classical Logics, 19(4):463–487, 2009.

[Brotherston et al., 2012] J. Brotherston, N. Gorogiannis,
and R.L. Petersen. A generic cyclic theorem prover. In
APLAS-10, volume 7705, pages 350–367. Springer, 2012.

[Chaum, 1988] D. Chaum. The dining cryptographers prob-
lem: Unconditional sender and recipient untraceability.
Journal of Cryptology, 1(1):65–75, 1988.

[Cimatti et al., 2016] A. Cimatti, M. Gario, and S. Tonetta.
A lazy approach to temporal epistemic logic model check-
ing. In Proc. of AAMAS-38, pages 1218–1226. IFAAMAS,
2016.

[Cook et al., 2012] B. Cook, E. Koskinen, and M. Vardi.
Temporal property verification as a program analysis task.
Formal Methods in System Design, 41(1):66–82, 2012.

[Cousot and Cousot, 1977] P. Cousot and R. Cousot. Ab-
stract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fix-
points. In Proc. of POPL-4, pages 238–252. ACM, 1977.

[De Moura and Bjørner, 2008] L. De Moura and N. Bjørner.
Z3: An efficient SMT solver. In Proc. of TACAS-14, pages
337–340. Springer-Verlag, 2008.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Program-
ming. Prentice-Hall, 1976.

[Ezekiel et al., 2011] J. Ezekiel, A. Lomuscio, L. Molnar,
S. Veres, and M. Pebody. Verifying fault tolerance and
self-diagnosability of an autonomous underwater vehicle.
In Proc. of IJCAI-22, pages 1659–1664. AAAI Press,
2011.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and
M. Y. Vardi. Reasoning about knowledge. MIT press,
1995.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model checking the logic of
knowledge. In Proc. of CAV-16, pages 479–483. Springer,
2004.

[Gelfond, 1994] M. Gelfond. Logic programming and rea-
soning with incomplete information. Annals of Mathemat-
ics and Artificial Intelligence, 12(1):89–116, 1994.

[Haase, 2014] C. Haase. Subclasses of presburger arithmetic
and the weak EXP hierarchy. In Proc. of LICS-23, pages
47:1–47:10. ACM, 2014.

[Kacprzak et al., 2006] M. Kacprzak, A. Lomuscio,
A. Niewiadomski, W. Penczek, F. Raimondi, and
M. Szreter. Comparing BDD and SAT based techniques
for model checking Chaum’s dining cryptographers
protocol. Fundamenta Informaticae, 72(1-3):215–234,
2006.

[Kacprzak et al., 2008] M. Kacprzak, W. Nabiałek,
A. Niewiadomski, W. Penczek, A. Półrola, M. Szreter,
B. Woźna, and A. Zbrzezny. VerICS 2007 – a model
checker for knowledge and real-time. Fundamenta
Informaticae, 85(1-4):313–328, 2008.

[Kouvaros and Lomuscio, 2016] P. Kouvaros and A. Lomus-
cio. Parameterised verification for multi-agent systems.
Artificial Intelligence, 234:152–189, 2016.

[Lomuscio et al., 2015] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: an open-source model checker for the
verification of multi-agent systems. International Jour-
nal on Software Tools for Technology Transfer, 19(1):9–
30, 2015.

[Plaza, 2007] J. Plaza. Logics of public communications.
Synthese, 158(2):165–179, 2007.

[Păsăreanu and Rungta, 2010] Corina S. Păsăreanu and
Neha Rungta. Symbolic PathFinder: Symbolic execution
of java bytecode. In Proc. of ASE’10, pages 179–180.
ACM, 2010.

[Rivest and Smith, 2007] R. L. Rivest and W. D. Smith.
Three Voting Protocols: ThreeBallot, VAV, and Twin. In
Proc. of EVT’07, pages 16–16. USENIX, 2007.

[Rosenschein and Kaelbling, 1986] S. J. Rosenschein and
L. P. Kaelbling. The synthesis of digital machines with
provable epistemic properties. In Proc. of TARK’86, pages
83–98. Morgan Kaufmann, 1986.

[Stockmeyer, 1977] L. J. Stockmeyer. The polynomial-time
hierarchy. Theoretical Computer Science, 3:1–22, 1977.

[Wang, 2016] S. Wang. Dynamic epistemic model check-
ing with Yices. https://airobert.github.io/
FSA_report.pdf, 2016. Accessed 14/02/2017.

[Zbrzezny et al., 2016] A. M. Zbrzezny, A. Zbrzezny, and
F. Raimondi. Efficient model checking timed and weighted
interpreted systems using SMT and SAT solvers. In Proc.
of KES-AMSTA-10, pages 45–55. Springer, 2016.

[Zhang, 2006] Y. Zhang. Computational properties of epis-
temic logic programs. In Proc. of KR-10, pages 308–317.
AAAI Press, 2006.

https://airobert.github.io/FSA_report.pdf
https://airobert.github.io/FSA_report.pdf

	Introduction
	An Epistemic Logic of Programs
	Logical Languages: Syntax
	Logic Languages: Semantics

	Reducing to First-Order Validity
	A Simple Programming Language

	Evaluation
	Dining Cryptographers
	ThreeBallot Voting Protocol

	Related Work
	Conclusions

