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Abstract

Cell assemblies are co-operating groups of neurons believed to exist in the brain. Their
existence was proposed by the neuropsychologist D.O. Hebb who also formulated a
mechanism by which they could form, now known as Hebbian learning. Evidence for
the existence of Hebbian learning and cell assemblies in the brain is accumulating as
investigation tools improve. Researchers have also simulated cell assemblies as neural
networks in computers.

This thesis describes simulations of networks of cell assemblies. The feasibility
of simulated cell assemblies that possess all the predicted properties of biological
cell assemblies is established. Cell assemblies can be coupled together with weighted
connections to form hierarchies in which a group of basic assemblies, termed prim-
itives are connected in such a way that they form a compound cell assembly. The
component assemblies of these hierarchies can be ignited independently, i.e. they are
activated due to signals being passed entirely within the network, but if a sufficent
number of them are activated, they co-operate to ignite the remaining primitives in
the compound assembly.

Various experiments are described in which networks of simulated cell assemblies
are subject to external activation involving cells in those assemblies being stimulated
artificially to a high level. These cells then fire, i.e. produce a spike of activity
analogous to the spiking of biological neurons, and in this way pass their activity to
other cells. Connections are established, by learning in some experiments and set
artificially in others, between cells within primitives and in different ones, and these
connections allow activity to pass from one primitive to another. In this way, acti-
vating one or more primitives may cause others to ignite. Experiments are described
in which spontaneous activation of cells aids recruitment of uncommitted cells to a
neighbouring assembly. The strong relationship between cell assemblies and Hopfield
nets is described.

A network of simnlated cells can support different numbers of assemblies depend-

ing on the complexity of those asscmblies. Assemblics are classified in terms of how




many primitives are present in each compound assembly and the minimum number
needed to complete it. A 2-3 assembly contains 3 primitives, any 2 of which will
complete it. A network of N cells can hold on the order of N 2-3 assemblies, and
an architecture is proposed that contains O(N?) 3-4 assemblies. Experiments are
described that show the number of connections emanating from each cell must be
scaled up linearly as the number of primitives in any network increases in order to
maintain the same mean number of connections between each primitive. Restricting
each cell to a maximum number of connections leads to severe loss of performance as
ihe size of the network increases. It is shown that the architecture can be duplicated
with Hopfield nets, but that there are severe restrictions on the carrying capacity of
either a hierarchy of cell assemblies or a Hopfield net storing 3-4 patterns, and that
the promise of N? patterns is largely illusory. When the number of connections from
each cell is fixed as the number of primitives is increased, only O(N) cell assemblies
can be stored.
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Chapter 1

Introduction

The mammalian brain consists of a vast number of nerve cells, or neurons, with es-
timates varying from about 10° {155] to about 10" [36, 187]. Cell assemblies are
networks of cells that are believed to exist within the mammalian brain each incor-
porating mwany cells to form closed circuits of cells with certain specific properties.
The supposed presence of cell assemblies allows many more pieces of information to
be stored than there are individual cells in the brain [153] and permits more complex
structures such as hierarchies of concepts to develop. The fact that cell assemblies
provide an elegant mechanism by which these structures can form is one of several
indirect arguments for their existence, although empirical evidence for their existence
is starting to appear.

Connectionist researchers are investigating the properties of simulated cell as-
semblies in computer programs, and several such simulations are the main areas of
interest in this thesis. However, unlike standard connectionist architectures such as
Multi-Layer Perceptrons (MLPs) and Kohonen nets, there are few generally accepted
principles. Each researcher uses a slightly different set of equations and constructs his
or her architecture in a slightly different way. This may be because of the difficulty
of specifying brain function in mathematical form. Certainly different mathematical
models of neurons exist [31, 96], all of which are only approximations to the exact
behaviour of neurons. The more complex such a model is, the more processing it
requires and the less it lends itself to simulation. Often in order to simulate networks
of hundreds or thousands of cells in reasonable time the cell model must be stripped




to its bare essentials. It is only really necessary to use a complex model of a neuron
when modelling brain function. After all, neural networks are used either for infor-
mation processing or to model the brain, and standard neural network architectures
have shown that complicated models of neurons are unnecessary to provide useful
results in information processing applications. This is certainly the case with MLPs
or Kohonen nets - they were inspired by the brain, but designed to produce useful
results in Al (Artificial Intelligence) that were difficult to obtain any other way - and
should be the case with simulated cell assemblies also. Unfortunately, while the list
of practical applications of standard neural architectures is large (e.g. NETTALK
[157] that reads English text out loud, or WISARD [183] that scans CCTV images
for intruders), 1 can recall only two established practical application for simulated cell
assemblies: Knoblauch et al. [103] have applied simulated cell assemblies to decod-
ing sequences of spoken commands to a simulated robot, and Huyck and Orengo [94]
have used cell assemblies to perform eategorisation of US senators into- Demoerat and
Republican based on voting records, and information retrieval to match documents
in a database.

Cell assemblies illustrate two dynamics, one short-term, the other long-term, and
thus offer possible explanations of both short-term memory and long-term memory.
The short-term dynamic is ignition, when the number of neurons that fire in the cell
asscibly becomes sufficient to allow persistent firing of the cell asscmbly even when
those neurons have fatigued, i.e. the level of firing persists even when individual
neurons cease to fire. The long-term dynamic is learning, in which weighted con-
nections between neurons strengthen or weaken so that cell assemblies more readily
respond to stimulation in future in a meaningful way. Learning allows more complex
phenomena to evolve, such as one cell assembly igniting another, and larger neural
structures such as hierarchies of cell assemblies [83]. In this thesis, simple, indivisi-
ble cell assemblies are referred to as primitives and the hierarchies of primitives are
referred to as eompound cell assemblies. Individual cells may belong to no more than
one primitive; although they can belong to more than one compound assembly by
virtue of the fact that compound assemblies can overlap.

Researchers have posited that cell assemblies in the brain are responsible for a




range of cognitive processes, including simple- association and sequential processing
[57, 29]. Thus, cell assemblics offer an intermediate step between the simplest level
of cognition, which is neural activity, and the higher level of symbol processing.
Certainly experiments show that simulated cell assemblies can display a variety of
useful actions, from categorising a broad range of patterns [90] to variable binding
(168, 46].

This thesis gives a basic introduction to cell assemblies and shows that they can
evolve naturally from a simple system of simulated cells to which a few rules are
applied. It also demonstrates that Che storage capacity of a network of cell asseni-
blies, in terms of the number of compound cell assemblies that can be constructed
from N primitives increases in proportion to N?, and that, in principle, networks can
be constructed with even higher capacities. The closest “relative” that cell assem-
blies have in the family of standard neural network architectures is the Hopfield net.
There are essential differences between the two architectures, but they have more
things in common than separate them. For this reason, a comparison between cell
assemblies and Hopfield nets is described. Experiments indicate that, in spite of var-
ious researchers who state that the storage capacity of Hopfield nets, in terms of the
number of patterns that can be stored and reliably retrieved, is linearly proportional
to the number of cells (n) within them, Hopficld nets can be constructed that can
exist in stable states of the order of n?, n® or even higher powers. However, there
is a distinction between the number of stable states in a network and the number of

patterns that can usefully be stored, and this distinction is made clear.

1.1 Hebbian Learning and the Concept of Cell As-
semblies

The concept of cell assemblies owes its origins to Hebb in his book- Organization of
Behavior [74], although the suggestion that information may be stored in the brain in
the strength of connections between neurons had already been made by Tanzi [182]
and Ramon y Cajal [147]. Wernicke had &lso proposed various ideds that might be

considered the forerunners to the theory of cell assemblies [57]. However, the credit




for the fully developed idea really belongs to Hebb. The principle that Hebb proposed,
now known as Hebbian learning, is, to date, the only learning mechanism that has
been experimentally verified to occur in the nervous systemn [72]. It states that
connections between neurons in the brain strengthen as a result of coincidental firing.
Hebb further implied that neurons would organise themselves into cell assemblies as
a natural result of this.

In the 1940s the techniques available to neuroscientists were limited [197]. They
could study the effects that brain damage had on behaviour, whether caused by
physical iiijuries (o the braiii, by strokes or by other causes such as Alzheimer’s
disease. However, such an analysis was only possible if the brain of the victim became
available after death. This was because non-invasive techniques, such as Positron
Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) had not yet
been developed.

Bearing in mind the absence of investigative techniques, it is perhaps surprising
that the neuropsychologist Donald Hebb should produce a theory which attempted
to explain some aspects of human behaviour in terms of neurons and the connections
between them. It is also surprising that this theory should have survived to the
present day, when evidence for or against the theory can be obtained much more

easily.

1.1.1 Hebbian learning

In Organization of Behavior, Hebb proposed the idea of Hebbian learning. This
predicted that the connection between two neurons would change in strength, de-
pending on the activity of the neurons themselves. Such a connection is called a
synapse and it is responsible for the transmission of sodium and potassium ions from
the axon of one neuron to the dendrites of another. In brief, it stated that if both the
neuron providing the signal transmitted across the synapse (the pre-synaptic neu-
ron) and the neuron accepting the signal (the post-synaptic neuron) happened to
firc simultancously, or at lcast within a very short spacc of time, then the synaptic
connection strength would increase. This would increase the future likelihood of the

post-synaptic neuron firing whenever the pre-synaptic neuron fired. An analogy for




this is the strengthening of a muscle through repeated use. Since Hebb formulated
this idea, its biological correlate in the brain, Long Term Potentiation (LTP), has
been established [14, 100]. Larson and Lynch [112] have shown that Hebbian learning
occurs for any synapse in which the post-synaptic neuron fires within 50 ms of the
pre-synaptic neuron, and Dayan and Abbott [41] have shown that Hebbian learning
takes place in the hippocampus, cerebellum and visual system. The name LTP has
been attached to the strengthening of connections in cell assembly simulations, and
the adaptation of simulated synaptic connections seen on a longer time scale is also
referred (o as Hebbian learning.

Let us assume then that the persistence or repetition of a reverberatory activity
(or “trace”) tends to induce lasting cellular changes that add to its stability. The
assumption can be precisely stated as follows: When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased [74]. Hebb used the principle of hearing a clock
strike twelve to illustrate this. The fact that we hear the clock strike twelve, rather
than strike one twelve times, implies that some change must have been wrought in
the connections in the brain between one strike of the clock and the next. Of course,
it does not necessarily follow that the change in the brain must be Hebbian in nature.

Hebb’s theory has subsequently been adapted to include the weakening of synaptic
connections. There is biological evidence that indicates that the synaptic strengths
may decrease whenever only one of the neurons is inactive [178, 194]. Such an effect
is referred to as Long Term Depression (LTD). Although the exact nature of LTD
in the brain is not known, when applied to simulated cell assemblies, there are two
possible types: post-not-pre LTD and pre-not-post LTD. Post-not-pre LTD, used by
Hetherington and Shapiro [78] for example, occurs when the post-synaptic neuron
is active but the pre-synaptic neuron is not. Hebb’s term, heterosynaptic LTD, is
generally taken to refer to pre-not-post LTD, in which the pre-synaptic neuron is
active but the post-synaptic neuron is not. The effect of these two different types of
LTD is summarised in figure 1.1 on page 7.




Post-not-pre LTD.

Pre-synaptic cell active | Pre-synaptic cell inactive

Post-synaptic cell active connection strengthens connection weakens

Post-synaptic cell inactive | no change in strength no change in strength

Pre-not-post LTD.

Pre-synaptic cell active | Pre-synaptic cell inactive

Post-synaptic cell active connection strengthens | no change in strength

Post-synaptic ccll inactive | conncction wcakens no changc in strength

Figure 1.1: Both types of LTD involve weakening of connection strengths, although

under slightly different circumstances.

1.1.2 Cells assemblies result from Hebbian learning

Hebb extended his theory as follows. He proposed that groups of neurons would
form reverberating circuits that would be stimulated by external inputs, and would
then continue to reverberate, even after the stimulus had been removed. As neurons
forming part of this circuit ceased to be active, they would be reactivated by other
neurons in the circuit. The analogy that Hebb used was that such a circuit would act
like a ringing bell, which continues to sound even after the hammer that caused it
to ring had been removed. These reverberating circuits Hebb termed cell assemblies.
Some researchers believe that cell assemblies follow as the inevitable consequence of
Hebbian learning [15]. Singer [166] suggests that the Hebbian learning is responsible
for cell assemblies forming between different cortical columns in the visual cortex that
encode frequently occurring groups of features for ease of detection.

Figure 1.2 has been duplicated from Hebb’s 1949 book. Each of the arrows rep-
resents a group of neurons. The numbers indicate the order in which they become
active, with some groups of neurons firing more than once in the complete cycle.

The most important simulation of cell assemblies in a computer in the few years
after Hebb formulated his theory was the work of Rochester et al. [150] in which a
network of simulated cells was used in an attempt to set up a cell assembly. Unfor-
tunately, this simulation had mixed results. Although simulated neurons did show
synchronous firing, i.e. the assemblies that formed showed the effect of dynamic
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Figure 1.2: Hebb’s concept of a Cell Assembly (reproduced from [74])

completion as described below, their activity did not persist beyond the removal of
the external stimulus. MacGregor and McMullen [119] replaced the simple cell model
with one modelling spiking motor neurons more realistically. Like Rochester et al.,
they achieved concurrent spiking but not the sustained activity lasting approximately
500ms that Hebb had hypothesized [74], p. 74. Lansner and Fransen in turn replaced
the motor neuron model with one for pyramidal cells [111] which allowed activity to
be sustained after external stimulation was removed.

Other notable simulations of cell assemblies include Hetherington and Shapiro
(78] and Iglesias et al. [95], both of which show that cell assemblies can form sponta-
neously as a result of stimulating a network of randomly connected cells which obey
simple rules of Hebbian learning. Hetherington and Shapiro report simple pattern
recognition, in which four non-overlapping patterns of bits were successfully recog-
nised by the creation of four cell assemblies in the same network. These assemblies
could be activated independently, even by the application of noisy test patterns.
They claim that for the assemblies to form, it is necessary to use post-not-pre LTD
and dendritic partitioning of inputs. Their neural networks used a series of twenty
inputs connected to certain cells within the 360 cell network. The presence of LTD
could easily lead to the weakening of these connections, as the cell assemblies could
be active in the absence of external input, and learning was always present in the
network. For this reason, the learning rule could not be used to adapt connection
strength from the inputs to the network, and this led to the input connections being
treated separately (the dendritic partitioning referred to) [177].



Onc of the rescarchers that influcnced Hebb was Lashley [113]. His idea - to
be fair, based on rather little evidence - was that memory was based on waves of
activation that spread across the brain. However, even such an idea does not rule out
the possibility of cell assemblies. Beurle [12] showed mathematically that a network
of idealised brain cells could sustain waves of activity providing that they possessed
the crucial property of fatigue, and gave some conditions under which such waves
would propagate, die out, or reverse direction. His analogy was based upon cells
firing, passing activity to their neighbours, as a result of which they fatigue and are
unable to fire again immediately. The neighbouriug cells pass activity to all their
neighbours, but the fatigued cells do not fire, so the wave of cell firing only passes in
one direction. This is illustrated in figure 1.3. By specifying areas of the network in
which cells are fatigued prior to the wave passing, or areas in which cells have been
primed so that they are alimost ready to fire, Beurle showed that the network could
demonstrate a variety of wave-like behaviour, such as reflection or refraction. Beurle’s
work stands out as the major paper to attempt to reconcile Lashley’s wave activity
with what was known at the time about cell assemblies. Lashley’s ideas influenced
the development of Pribram’s Holonomic Brain theory, in which cognitive function
is believed to derive from a matrix of wave interference patterns, in much the same
way that a holographic image arises from the interference of light waves [143].

Hebb’s theories have also been the influence for many more recent theories of
cognition, including Abeles [1], Amit [6], Braitenberg [23], Damasio [37], Edelman
[48], Marr [122], McGregor [129], Mesulam [130], Miller [132], Milner [134], Palm
(138], Pulvermiiller [145], Shaw et al. [164] and Wickelgren [186]. Cell assemblies
have also appeared in simulations of language processing [102].

Variations on Hebbian learning include Signal Hebbian Learning and Differen-
tial Hebbian Learning [107]. Hebb’s ideas have had a wide-ranging effect on neural
networks. The equation for Hebbian learning exists in several similar forms (one of
which is Equation 3.3 on page 59) and has formed the basis for updating weighted
connections in various architectures, for instance, back-propagation for Multi-Layer
Perceptrons, and Kohonen Self-Organising Topographical Maps [105].

It is difficult to obtain direct evidence of the existence of cell assemblies in the




Figure 1.3: Beurle’s wave analogy of cell activity. Cells fatigue when they fire (dark-
ened circles) allowing activity to pass only one way. A wave of activity shown by the
curve at the top passes in the direction of the arrow. Cells gradually recover ready

for another wave of activity.

brain, although with recent techniques [43, 137, 148] the biological case for them is
becoming stronger [169]. Instead, if cell assemblies are present in the brain, their
existence must be inferred from indirect evidence. This is unfortunate, as it means
that with our current techniques, their existence cannot be conclusively proven, and
that other researchers can always argue that some other mechanism is responsible for
the behavioural phenomena attributed to them. However, this does not stop some
researchers (such as [142]) writing as though their existence were beyond doubt.
More common is indirect evidence from behavioural experiments, such as [146,
176]). The larger cell assemblies in the brain may well consist of many hundreds or
thousands of neurons [146]. Each of these neurons has upwards of 2000 synapses and
dendrites, each of which take the form of tiny filaments, many times thinner than a
human hair. It would be a task requiring unimaginable precision and dexterity to
untangle them. This Herculean task pales into insignificance compared to tracking
down all the connections of neurons in the brain that may or may not form a cell
assembly. It is generally accepted that forward connections from one area of the brain
to another are generally matched by recurrent connections back to the area of origin

[36], which raises the possibility that cell assemblies may be universal in the brain.
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The evidence that does exist for cell assemblies takes the form of experiments
which are carried out, for which cell assemblies are proposed as the best explanation
for the results. Alternative explanations, such as recurrent networks which achieve
attractor states, are generally not presented. A common approach is to look for
syn-firing, the phenomenon of cells invariably firing in close synchronisation [123].
This does seem to imply that the cells have some connection, although it is not proof
that they form part of a cell assembly. The technique used has improved to the point
where the activity from several neurons can be monitored simultaneously in conscious
animals [60, 144].

Sakurai [154] lists five properties that cell assemblies must possess in order to
function in the way that Hebb describes:

1. Dynamic Completion. Activating a sufficient number of the cells in a cell as-
sembly is sufficient to activate the majority of the cells.

2. Dynamic Persistence. Cells in each cell assembly remained active for a sub-
stantial number of time steps after external stimulation is removed, although
it is not necessary for each cell to remain active for many time steps. Cells
that fire become tired and stop firing, only to be re-ignited at later time steps
by other cells in the same cell assembly. This allows cell assembly activity to
persist beyond the point at which single cclls fatiguc.

3. Sparse Coding. Each cell assembly contains a minority of the cells in the entire
network, although all the cells in the network may be committed to one or more

cell assemblies.

4. Dynamic Construction. This is the property by which a network of cells is
capable of learning cell assembly patterns by adapting the connection strengths

between cells.

5. Overlapping set coding. The property that cells contribute to more than one
cell assembly. Sakurai reasoned that the number of concepts that could be

stored in the brain vastly outnumbers the number of brain cells present, so the
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storing of concepts in the form of cell assemblies necessitates the sharing of cells

between them.

He concludes that neurons must co-operate in order to represent knowledge and

memories. He gives several reasons why this must be the case:

1. There is a virtually unlimited number of information items that need to be
stored in the human memory. Not only are there single items, such as “dog”
or “cat”, but these can be joined to form an unlimited number of combinations
(e.g. “Maxis a large, hairy dog”). Even if every neuron in the human brain were
dedicated to stormg knowledge, there would not be enough neurons to encode
all the possible information that humans have to deal with. Yet, humans do

manage to store all these information items.

2. Tt is inefficient to store the similarities between items using totally separate
neuronal codings. For example, Dylan the golden retriever and Merlin the
golden retriever share many items in common, which must be represented in
the brain of their owner in the form of neuronal codings. It would be highly
inefficient to represent all the information known about the two dogs using
totally scparate codings, which implics that the two codings share a lot of the
neurons in common (indeed in common with all the other dogs that the owner
knows).

Instead, Sakurai suggests that information must be stored in groups of neurons
using population ensemble coding [153], the sharing of neurons among several cell
assemblies. He outlines three experiments performed on laboratory rats, which indi-
cate that individual neurons must be present in more than one population ensemble.
However, these experiments stop short of demonstrating that these groups of neurons
must form reverberating circuits.

Palm [138] defines cell assemblies similarly, although he concentrates mainly on
activation dynamics rather than structure. A group of neurons, Y, forms a cell
assembly if activating a subgroup, X, causes the majority of cells in Y to become

active. Palm coined the term ignition, i.e. X ignites Y. A group is said to be
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persistent if the group maintains an activity level above a specified threshold after
external stimulation has been removed. If a group of cells ignites without additional
cells outside that group firing, it is said to be invariant. Group Z supports group Y, if
Y is not persistent on its own but does persist when Z ignites. This does not preclude
Y igniting in the presence of another group (e.g. W and Z may both support Y if Y’
can ignite in the presence of either W or Z). A group of cells can be invariant while
containing subgroups that support or ignite it, in which case it is a Palm-assembly. 1
adopt Palm’s use of the word ignition, although the other terminology is less relevant
in the context of this thesis. For this reason, Sakurai’s definition is taken to be the
point of reference in the following chapters rather than Palm’s.

Scientists generally estimate the storage capacity of the human brain in terms
of the number of bits of information, since the number of neurons it contains and
the number of connections per neuron can only be estimated. If we assume that
the brain contains somewhere between 10° and 10! neurons, and that each cell has
about 20,000 synaptic connections (equivalent to 10,000 synapses for each neuron),
then the brain contains somewhere between 10'® and 10'° synapses. Taking each
synapse to represent a single binary value gives the same range of numbers for the
number of bits that can be stored in the brain. However, each synapse has a variable
firiug threshold, which dhanges as the ncuron is repeatedly activated. Assuming that
each threshold can take 100 distinguishable values gives the storage capacity of the
brain as between 10'® and 107 bits. This figure does not represent the total munber
of items that can be remembered in the brain, since, unlike a digital computer, the
brain does not remember items in terms of single binary digits. Regardless of the
exact form in which memories are stored, each must consist of many bits of data.
In 1666, Robert Hooke estimated his own memory storage by multiplying the speed
at which he thought by his estimated lifespan, and producing a figure of 2 x 10°
storage bits. A more realistic estimate was derived by Landauer [109] from a range
of psychological experiments. He estimated the storage capacity to be approximately
one billion distinct memories. He later revised this esimate to 4 x 10%.

Graham and Willshaw [64] compare the CA3 region of the rat hippocampus,

widely believed to be associated with learning and short-term memory, to their
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winner-takes-all associative net model of heteroassociative memory, and conclude
that CA3 can store on the order of thousands of patterns with high information cffi-
ciency. Efficiency is defined as the amount of information that can be retrieved from
the memory to the amount of storage available.

Wolff [191] suggests that the information storage capacity of the brain lies ap-
proximately between 3000Mb and 30,000Mb, and that it may be possible to store
all the information that a human needs to know without having to resort to hier-
archies of cell assemblies. However, he makes many assumptions, for example, that
every neuron in the brain is involved in memory storage. Clearly, this is not the
case: neurons are needed for control of basic biological functions, such as breathing
and homeostasis. Sakurai’s argument is more compelling in that it concludes that,
even if every neuron in the brain were involved in information storage, there still
would not be enough neurons if they did not form hierarchies. This, incidentally, is
also the argument against the presence of “grandmother cells” in the brain [6], i.e.
concepts such as a person’s grandmother being represented in single dedicated cells:
There simply are not enough neurons in the brain to accommodate all the concepts.
Similarly, it is impossible to have a “gnostic unit”, a group of cells dedicated to rep-
resenting a single concept, [106] for all possible concepts, although such groups may
exist for commonly accessed concepts.

Most unconvincing of all is Wolff’s statement that some sort of information coding
(equivalent to replacing repeated patterns in a bit string) is necessary in order to fit all
the information in the brain. He proposes that this coding takes the form of “markers”
in the cell assemblies that link them. Surely, such coding is equivalent to some sort
of hierarchical mechanism, and yet Wolff argues that no hierarchy is necessary. Wolff
proposes a framework for cognition and perception called information compression
by multiple alignment, unification. and search (ICMAUS), in which the concept of the
cell assembly is adapted so that no neuron is present in more than one assembly, and
yet cell assemblies may contain ‘references’ or ‘codes’, in the form of neurons linking
to other assemblies, that link cell assemblies together [192].

Common sense indicates that the large rate of cell death in the brain also suggests
the necessity for coding information in complex overlapping hierarchies of cells. If
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concepts were stored in dedicated grandmother cells, then the death of that cell would
result in the concept being forgotten completely. While humans are often unable to
recall things, such a process cannot be as simple as suggested by the grandmother cell
hypothesis. Things apparently forgotten are often remembered later. If all concepts
were stored in terms of single cells, then the death of the appropriate neuron might
result in a person instantaneously losing the power of speech, or forgetting common
words such as “the” or “a”. Since a large number of brain cells do die over the course
of a human lifetime, and yet such fundamental concepts in the brain do generally
remain intact (degenerative conditions such as Alzheimer’s disease notwithstanding),
concepts must be encoded in groups of neurons, each of which contains many cells.
Pulvermiiller [146] demonstrates how MRI scans showing activity in widely dis-
tributed areas of the brain (such as Wernicke’s and Broca’s area, associated with
speech, and the visual cortex at the back of the brain) can be explained in terms
of cell assemblies that link these areas. However, MRI cannot show the activity in
individual neurons. The finest resolution that MRI can achieve is groups of approx-
imately 100,000 neurons. Pulvermiiller [145] proposes that each word stored in the
brain, or more generally each item stored in memory, is represented by a single cell
asscmbly. He postulates that simultancous activity in these different brain arcas, for
instance, when seeing a hammer and saying the word “hammer”, would encourage
connections to grow between them. This concept of distributed representation by
means of transcortical cell assemblies does presuppose that axons of neurons are po-
sitioned so that connections can develop between two widely spaced areas, but this
is not unfeasible, since axons can be surprisingly long (several centimetres) given the
overall size of the brain cell [7]. Evidence of such connections forming in monkey
brains has been found by Rizzolatti and Arbib [149]. If his theory turns out to be the
case, this wide distribution of cell assemblies would make them very hard to find -
one would have to trace the axons of neurons throughout the brain. Some distributed
activity has been found by Gray et al. [65] who detected synchronous neural firing
via electrodes spaced Tmm apart in Brodmann’s Area 17. Indirect evidence comes
from various behavioural experiments in which adult subjects asked to reach for a
known object often look at different objects with similar sounding names [176].
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Braitenberg [24] proposes a mechanism whereby the visual cortex of the human
brain may usc cell assciublies to detect lines in the ficld of view of specific orientations.
He does not describe any experiments which demonstrate this, but claims that his
theory does explain the results found by others [16, 87]. Haykin [73] even goes as
far as to suggest a neurochemical mechanism by which the synaptic connections may
strengthen when the cells on each end of the synapse are both active.

Bliss and Lomo [17] first demonstrated that LTP and LTD occurred in the hip-
pocampus. They were the researchers who first coined the term “long-term po-
tentiation”, and who demonstrated that the connections belween neurons could
be strengthened artifically by applying stimulation to them. They found that the
strength of test pulses applied to the major pathway entering the hippocampus was
increased after applying brief, high frequency trains of pulses to the same pathway.
Furthermore, they discovered that this effect was very long lasting. Sommer et al.
[174] show that a bidirectional associative memory does indeed form a good model
of the long-range connections within the human cortex, which are known to have
many feedback connections, and that bidirectional retrieval aids recall and gives a
high degree of fault tolerance.

Just as obtaining direct proof in favour of cell assemblies is next to impossible,
so0 is obtaining evidence to the contrary. Those that try to prove that cell assemblies
do not exist in the brain are faced with the difficult task of demonstrating a totally
negative case. However much evidence accumulates that certain areas of the brain
do not contain cell assemblies, their proponents can always point to other areas of
the brain where they may be present.

Various statistical methods for detecting the presence of cell assemblies have been
proposed. Martignon et al. [123] propose three methods that may indicate their
presence, based on higher order temporal patterns, all based on the correlations of
firing patterns of the neurons involved. A similar method was used by Hetherington
and Shapiro (78] who used Pearson’s Correlation Coefficient as a simple measure to

detect the presence of persistent patterns of activity in simulated cell assemblies.
Such a method worked well in their experiments as cell activity tended to persist for

a long time, i.e. cell activity in a persistent cell assembly tended to dwindle over
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time rather than dying out and being reactivated, according to the traditional Hebb
model. For models in which such reactivation occurs, Fourier analysis may prove to
be a valuable tool in detecting repeating patterns of cell activity. As things currently
stand, correlated temporal firing patterns, i.e. syn-firing for considerable numbers of
neurons, is generally accepted as the best evidence for cell assemblies [55].

Objections to the cell assembly concept are easily tackled. Some, like Milner [134]
claim that cell assemblies would not be capable of forming hierarchies and complex
structures because the connections between assemblies would essentially be the same
as those within them, i.e. thatl interassembly associations would lead to assemblies
merging with each other. This assumes that connections between assemblies are
identical in strength to those within assemblies. One possible refutation of this has
been proposed by Levy et al. [115], who point out that cortico-cortical dendrites
of pyramidal neurons in the cortex generally fall into two categories. Most complex
processing takes place in the cortex, which is divided into six distinct layers each
approximately lmm thick. The apical dendrites generally connect the neurons in
lower layers to cortical layers closer to the outer edge of the brain. The basal dendrites
generally connect neurons to those within the same layer. This is illustrated in figure
1.4. Levy et al. propose that the basal dendrites connect neurons to those within
the same cell assembly, whereas apical dendrites represent connections between cell
assemblies. This does suggest that cell assemblies may be well connected within
layers of the cortex but less so between layers.

Such an explanation is generally not necessary, however, as Hebbian learning also
includes the concept of weakening connections. Hebb’s theory would therefore sug-
gest that connections within an assembly representing a single concept are therefore
strong, whereas those between assemblies are relatively weak, since cells within the
same assembly co-fire more often than cells in different assemblies.

Milner also wonders why parts of concepts, such as ‘doors’ and ‘windows’, are
not subsumed into the assembly representing the whole concept, such as ‘house’.
These are essentially two sides of the same question. It is one of the aims of this
thesis to refute these objections by demonstrating that hierarchies of assemblies can

easily exist within a network, and that a compound assembly does not automatically
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Figure 1.4: Cortico-cortical dendrites on pyramidal neurons in the cortex tend to be
apical, connecting the cell to outer cortical layers, or basal, connecting the neuron to
those in the same layer. Reproduced from [177].

absorb its components. Milner seems to have modified his view subsequently, and
now believes that the brain may contain some variation on Hebb’s model of the cell
assembly [135].

One objection to the concept of cell assemblies applies to their existence in the
visual cortex, and is known as the superposition problem, illustrated by figure 1.5 [55].
Layers of cells in brain areas V1 and V2 form retinotopic maps in which neighbouring
cells in the cortex represent neighbouring areas in the visual field. Cell assemblies are
proposed as distributed structures, and any object in the visual field ignites several
cell assemblies (representing colour, texture etc.) It is likely that active assemblies
will superimpose in the cortex, especially for objects that are close or overlapping in
the visual field, and yet the brain has no problem in correctly linking the features to
the objects. This is essentially a variation on the variable binding problem [133]. The
superposition problem ceases to be an objection to the presence of cell assemblies in
the brain if a possible solution for it can be proposed, and such a solution does exist,
in the form of femporal binding, in which ncurons in ccll assemblies fire at certain
frequenéi&s to indicate their presence in any particular group of features.

The majority of Hebb’s detractors, such as Amit [4], dismiss his theory by simply
claiming that it is not necessary to explain neurological behaviour. The mechanism
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Figure 1.5: The superposition problem, reproduced from [55]. The image consists
of two overlapping objects, a mouse and an apple, with the result that all the cell
assemblies corresponding to the different features at the point of overlap are ignited.
These produce intersecting patterns of activity in nearby cells. The theory of tem-
poral binding proposes that assemblies representing features to be grouped share a
common firing pattern.




that Amit then goes on to propose for short-term memory is a network similar to a
Hopficld net [84], which woves from one stable state (an attractor) to another stable
state. Such stable states are defined by the weights from each node in the network
to the others, equivalent to the synaptic strengths between neurons. However, Amit
does not specify exactly how these connections could be set up in the brain, and hence
does not dismiss the possibility that they may be established by some sort of Hebbian
learning. Some researchers, such as Hanson [71] accept that Hebbian learning may
be applicable to single cells, but dispute that Hebb’s conclusions can be expanded
to cover entire networks. Il is not the concept of cell assemblies in particular that
Hanson is objecting to, but the extension of simple rules such as Hebbian learning to
cover entire networks. However, the concept of cell assemblies results directly from
an extension of Hebbian learning, so Hanson’s criticism may be taken as a criticism
of the cell assembly theory.

One valid criticism levelled at the cell assembly theory is that the sparse connec-
tivity of the brain does not lend itself to the formation of cell assemblies. Since the
brain contains approximately 10'® cells, and each neuron has only a few thousand
connections at most, each brain cell can only have connections to a tiny fraction of
the cells within the brain. Braitenberg and Shuz [25] have carried out a study of
the mouse cortex, in which they found that the probability of any pyramidal neuron
being connected to a nearby pyramidal neuron was approximately 1 in 50. This does
seem rather low to permit cell assembly formation. Palm [139] suggests that neurons
in the cortex may be partitioned into modules. Within these modules the neurons
have a high connectivity (perhaps a 50% chance of being connected to any nearby
neuron), but connections are sparse between modules. There is an alternative inter-
pretation to Braitenberg and Shuz’s study, namely that the pyramidal cells do form
cell assemblies, but that these assemblies are not composed of spatially contiguous
neurons, i.e. the assemblies are massively interleaved [63]. Braitenberg and Shuz
estimated that each pyramidal cell had approximately 4000 connections, almost all
to different neurons. The Braitenberg and Shuz study therefore only undermines the
cell assembly theory if one assumes that assemblies must be composed of adjacent

neurons.
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Although Hebb’s theory is more than fifty ycars old, it has survived the test of
time so far. However, it is only within the last twenty years or so that we have had
the technology to investigate it thoroughly. This has resulted in a fair amount of
circumstantial evidence in favour of the theory and some theories which contradict
it. It is my opinion that the weight of the evidence, such as it is, is in favour of
both Hebbian learning and the presence of cell assemblies. However, until and unless
direct evidence is discovered which proves that such self-excitatory loops exist within
the brain, the idea of Hebbian learning and cell assemblies will remain just a theory,
open to both support and dispute.

Whether cell assemblies exist in the brain or not, their simulation in computer
programs opens an interesting avenue of research. They have already shown that
they can exhibit complex behaviour, including the properties predicted by Hebb for
biological cell assemblies. Most researchers who investigate simulated cell assemblies
do so simply to determine what information processing properties they have, but
inevitably, when such simulations succeed, they implicitly lend support to Hebb’s
theory. As networks of simulated cell assemblies become more complex, they will
take on higher functioning capabilities, and it will be reasonable to refer to them
as modelling brain processes. For this reason, I believe that a brief discussion of

modeclling braiu function is justified.

1.2 Why do we model the brain?

‘One of the most powerful reasons for studying simulations of Cell Assemblies is that
they are the only widely recognised neural network architecture that are based closely
upon neural structures that we believe are present in the brain. The whole foundation
for cell assemblies is the 1949 book by Hebb [74], one of the leading neurologists of
his day. Although Hebb did not specify equations for his proposed learning, the
equations generally used are based loosely on more modern neurological research,
such as that of Hubel and Wiesel [86, 88]. Already models of brain function, such
as the motor control system [40] and the cortex basal ganglia system [79], are being
implemented based entirely upon cell assemblies. It therefore makes sense to discuss
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briefly the reasons for simulating brain function in computer programs.

The most obvious answer to this is that models of the brain give some insight as
to how it works. The simplistic approach to this problem is to view the brain as a
single immense and densely interconnected network of neurons. However, the vast
numbers of neurons in the brain, each of which forms many thousands of connections,
makes an exhaustive model of the brain impractical.

Models of the brain or mind allow us to concentrate our attention on those char-
acteristics of the brain that are salient for any line of research, and to ignore others.
They are embedded in assumptions about our thinking [180]. A brain model would
be a source against which theories could be tested [158].

A model of (small areas of) the brain provides a useful test-bed for neurological
experiments that would otherwise be impractical. It is estimated, for example, that
IBM’s proposed model of a complete cortical column [47] will be able to complete
experiments in seconds that would take days if carried out using a real human brain.
The development of the brain from before birth to old age could be surveyed in a
tiny fraction of a human lifespan, and diseases and disorders simulated by artificially
lesioning connections in the model. Furthermore, simulations of brains and minds
can be analysed thoroughly and “dissected” in a way that would never be acceptable
with human subjects. At the other end of the scale from IBM’s model are simulations
that contain only a few cells and yet have produced useful results and have cast light
on pathological neural conditions, such as [124] in which a model of lexical retrieval
simulated the errors produced by a brain-damaged patient.

It should be pointed out that the validity of the experiments described in this
thesis do not rely on the presence of cell assemblies in the brain. I clearly demonstrate
that they have a useful function regardless of Hebb’s theory. However, the fact that
they are modelled directly on our best understanding of the brain, the most powerful

neural architecture known, provides a good reason for researching into them.
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1.3 Connectionism vs. Symbolic Al

Cell assemblies form part of a vast area of research called neural networks or sub-
symbolic Al 1n the very early days of Al, the subject divided into two fundamental
strands, symbolic Al and sub-symbolic Al, also known as connectionism. Connec-
tionist systems were loosely inspired by the workings of the human brain, which
consists of many types of neurons that pass electrochemical signals to each other.
Symbolic Al, the older of the two approaches, comprises the storing of information
in computers in the form of discrete and easily identifiable items, such as simple vari-
ables. Processing of these pieces of information is carried out by means of rules, each
of which has a specific purpose. An example of such a rule, drawn from an expert
system designed to identify animals from a given set of features, is shown below:

IF animal_can_fly AND animal_is_mammal
THEN animal_is_bat

The purpose of this rule is obvious simply by reading it, as are the pieces of
information that it needs to operate. Of course, expert systems are best suited to
problems which encode easily in the form of rules, such as diagnosis of diseases or
problems in mechanical equipment. Many problems in the real world, such as speech
or facial recognition, are less suited to this rule-based strategy. In such problems,
the expert knowledge required is harder to state explicitly, and the more numerical
approach offered by connectionismn is preferable.

Connectionism adopts a completely different approach to processing information.
Information is distributed throughout neural networks in the form of weighted connec-
tions between homogenous components. It is difficult to pinpoint particular concepts
within the network. Furthermore, activity is propagated throughout the network
through the global application of the same rule, and hence information process-
ing must also be encoded in the weighted connections. Consistent global behaviour
emerges from local operations. There is no reason to suppose that simply because
connectionist models are inspired by the brain that all models of brain processing
must be connectionist in nature. There are many cognitive science models that are

entire symbolic in nature (see [172]), or even a mixture of the two, such as Wolfe’s
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Guided Search 2.0 model of attention [190]. Indeed, between the late 1960s and the
mid-1980s, almost all rescarch iu the ficld of cognitive science was conducted using
symbolic Al [81].

Connectionism has its roots in the 1950s and 60s with systems such as Selfridge’s
Pandemonium [159]. The early connectionists did make over-ambitious claims for
their architectures. Rosenblatt [151], for instance, claimed that his perceptrons were
capable in principle of having original ideas, and McCulloch and Pitts [128], credited
with developing the first model of the neuron, stated that “specification of the net
would contribute all that could be achieved in [psychology|”. Inevitably, there was
a backlash from the Symbolic Al community. Connectionism was dealt a blow by
Minsky and Papert [136] who showed that the basic element of neural networks at
the time, the single-layer perceptron, could not discriminate between patterns that
were not linearly separable. Within the last twenty years or so, the development of
more powerful architectures such as the Multi-Layer Perceptron and the Mixture-of-
Experts [163, 97] has given rise to a resurgence in interest in connectionist architec-
tures, to the extent that it is generally accepted that connectionism has permanent
place in the armoury of Al tools.

Each approach has its advantages and disadvantages. Neural networks have a
certain degree of redundancy insofar as it is possible to lesion a proportion of the
connections between cells and still the network will perform its designated function
with only a slight decrease in performance. This property of graceful degradation
is not shared by symbolic Al programs, in which missing out any particular rule
or variable can lead to complete failure. Neural hardware, such as the brain itself,
demonstrates graceful degradation - this must be the case since human brain function
continues in spite of the fact that we each lose countless brain cells every day - but
to a certain extent this advantage is lost when a connectionist net is simulated on
a serial computer. The main advantage of symbolic Al is that the functioning of a
program can be easily analysed. It is a fairly straightforward matter to determine
which part of a program performs which function. This is not the case with neu-
ral networks, whose functions are distributed amongst all the neurons and leads to
connectionism often being referred to as distributed processing. It can be difficult, if
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not impossible, to determine the function of any particular cell in a neural network.
This is another facet of the redundancy aspect: Redundancy provides resistance to
catastrophic breakdown, but it does make analysis difficult.

Certainly connectionist nets cannot (as yet) provide all the functions present in
symbolic Al Fodor and Pylyshyn [52] suggest that neural nets cannot be used to form
general rules that draw inferences. For example, in symbolic logic, one can deduce
from the rulc “A is truc and B is truc” that “A is truc”. Such a rulc translates casily
into “C is true and D is true” from which we can deduce that “C is true”. However,
many researchers do not accept their arguments [171] and some even claim to have
developed connectionist nets that support systematic operations [30].

One area in which connectionism does appear to have a distinct advantage over
symbolic logic is in the representation of uncertainty. In symbolic AI, uncertainty
arises when one is not sure to what extent any proposition is true. For instance, in
an expert system designed to diagnose disease, the degree to which a patient displays
a particular symptom may be uncertain. Many formalisms have been developed to
accommodate uncertainty, the most common of which are Bayesian Reasoning [44],
the Dempster-Shafer Formula [160, 196], the MYCIN calculus [26, 56] and Fuzzy
Logic [195], all of which are summarised in [21]. Much controversy exists as to which
formulism is best, mainly between the proponents of Bayesian Reasoning, who point
out its mathematical rigour, and the non-Bayesians who point out the ease of use of
their own approaches [116, 32].

Connectlionism avoids this problem automatically. Uncerlainty is buill into iis
processing, as inputs to connectionist nets are continuous-valued, and this continuity
is maintained throughout the nets. A good example is the network known as “Jets
and Sharks” [126, 11]. This deals with the characteristics, such as education level,
marital status etc., of a group of people who are members of the two eponymous gangs.
The network is capable of an associative database, to which various characteristics
are applied. The signal strength of the nodes of each gang member then indicates
the degree to which that member matches each of the applied characteristics. Figure
1.6 shows the result of applying an external signal to the network node representing
“Shark”, i.e. a query to find all the members of the Shark gang. The activity
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Figure 1.6: A typical query applied to the “Jets and Sharks” network.

level of cells representing various members gradually increases, together with those
representing other characteristics commonly shared by several members of the Shark
gang.

Clearly the network has decided that both I’hil and Don meet the criterion
“Shark” well, but less so Dave. The inherent uncertainty in the output is obvious
from the figure without the necessity to impose an artificial uncertainty formulism.

While both the symbolic and connectionist approaches to Al have their advan-
tages, each has its drawbacks also. While connectionism allows us to solve problems
which do not lend themselves easily to solving by a series of rules, it is not easy to de-
termine how the knowledge has been stored in the network. Connectionist networks
are essentially parallel in nature, a fact that should lead to high processing speeds,
but this advantage disappears when the connectionist architectures are simulated in
scrial computers, as the vast majority of them arc. In spite of attcmpts to discredit
connectionism, it has fought its way back to earn a place as a useful tool in any Al
programmer’s toolbox, and researchers are by no means close to discovering its limits.

Some researchers claim that cell assemblies can be classified both as connectionist
and as symbolic architectures [62]. They consider the question of how cell assemblies
store knowledge. Certainly, they are connectionist, in the sense that they are based
on cell-like structures. However, like conventional symbolic Al systems, they are

modular in naturc, with smaller modules contributing to hicrarchics of larger oncs.
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1.4 Objectives

The main objectives of this PhD project are summarized by the sub-headings in this
section. By “cell assembly” 1 mean cell assemblies simulated in a network of cells on

a computer.

1.4.1 Establishment of a cell assembly in a network of cells

The first task is to establish that cell assemblies do indeed form in a network of
uncommitted cells. A primitive of cells should be created with a given number of
connections between them of random strengths and destinations. A simple learning
rule can be implemented that allows connection strengths between cells to alter. By
stimulating parts of this network appropriately, it is hoped that cell assemblies form
spontaneously and that these cell assemblies demonstrate all the properties believed
to apply to cell assemblies in the brain [154]. It is important that adaptation of con-
nections be carried out based purely on a local metric. Cells in the brain can have no
global “knowledge” of the problem to be solved or strengths of distant connections.
The experiments must show that global order can be imposed on an initially random
system through the application of a few simple rules. To a certain extent, these exper-
iments will help to dispel criticisms of the cell assembly argument by researchers such
as Milner [134], who cannot appreciate how component cell assemblies can contribute
to compound assemblies without being subsumed by them. This is not a main aim,
since these criticisms carry little weight, and the existence of cell assemblies in the
brain is now widely accepted. However, it will validate such concepts in simulated

cell assemblies.

1.4.2 Investigation of properties of cell assemblies

If cell assemblies exist in the brain, then they are capable of a variety of behaviours
that promote the storage and adaptation of information. The brain forgets informa-
tion, so it is quite possible that cell assemblies may disband. Similarly, information
may be stored in very generalised terms to begin with and become more specialised

later, such as learning the concept of “animal”, followed by specific animals such
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as dogs, then breeds of dog. One possible mechanism by which this may occur is
fractioning (splitting) of cell assemblies into subassemblies, which then recruit un-
committed cells on their boundaries. Experiments are carried out that investigate
whether forgetting, fractioning and recruitment at the boundaries of assemblies can
be made to take place.

The cells from which cell assemblies simulated on a computer are created can only
cver be approximations of biological ncurons. As such, they arc modclled by a number
of equations. These equations are in turn based on a number of parameters. The
thesis investigates the relationships between these parameters that hold for networks

that display acceptable behaviour.

1.4.3 Establishment of correlates between simulated cell as-

semblies and those in the brain

Although a single cell assembly lacks the sophistication of other simulations in cog-
nitive psychology, 1 feel that is fair to describe the experiments described in this
thesis in terms of cognitive psychology. Some neuronal functions have indeed been
described as the result of cell assembly formation. A notable example is the setting up
of cortical hypercolumns [24]. Of the 305 connection pathways between segregated
areas in the brain, more than 80% of them have fibres running in both directions
[49]. This high degree of feedback has prompted some researchers to claim that cell
assemblies form the basis of all brain activity.

While my research cannot make any conclusive statement about how cell as-
semblies may or may not operate in the brain, it is hoped that the simulations of
assemblies may throw some light on the theories of brain activity and suggest possible

avenucs of rescarch.

1.4.4 Determination of the storage capacity of cell assembly

networks

It is generally accepted that the number of neurons in the cortex would be insufficient

to store the number of memories required of it if each memory were assigned to a
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unique neuron. The storing of that many memories requires that individual neurons
be involved in the storage of more than one memory. This implies some sort of
hierarchical structure in which groups of neurons co-operate. A similar approach can
be taken to simulated cell assemblies, i.e. the number of assemblies that can be stored
in a network is not necessarily proportional to the number of cells in the network. Of
course, the number of connections between cells in the assemblies, whether synapses
connccting biological ncurons or simulated conncections in a computer program, must
be sufficient to allow the hierarchies to be set up.

Chapter 2 on page 31 gives brief details of some of the approaches that different
researchers have taken to determine the storage capacities of Hopfield nets, all of
which make slightly different assumptions, and which produce strikingly different
capacity formulae as a result. There is, however, yet no body of research that performs
the same function for cell assemblies. A large part of the thesis investigates what
structures can be set up in a network in order to increase the storage capacity of that

network.

1.5 Summary

Cell Assemblies promise to be a powerful tool both for modelling the brain and for
developing more powerful architectures for simulation on a computer. If Hebb is
right, and cell assemblies are indeed present in the brain, then they may well be
capable of sophisticated information processing. The work described in this thesis
does not attempt such sophisticated computation, but it may be possible to proceed
from simple information storage to, for instance, sequential information processing
and even decision making. The experiments described show increasing complexity
from the implementation of single cell assemblies, via small networks of assemblies,
to large networks containing even larger numbers of assemblies.

Chapter 2 describes the important literature in the field of cell assemblies. It also
gives a brief overview of some of the ancillary topics that have affected the experiments
described in later chapters, such as genetic algorithms. These are not investigated

in great detail since they are not central to the experiments. Chapter 3 describes in
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mathematical terms the components of all the simulations described in the thesis. It
gives the equations that govern the behaviour of the cells in the networks, those that
implement the Hebbian learning used, and the details of the genetic algorithm used
to determine acceptable values for the parameters that control the model’s behaviour.
This model is then used to establish the validity of small networks of cell assemblies in
chapter 4, in which the complexity is increased gradually from one isolated assembly
to a hicrarchy of six asscmblics. Chapter 5 then extends this work to large networks,
containing an indefinite number of primitives. The main interest in chapter 5 is the
storage capacity of the network, 7.e. the number of patterns that can be stored and
reliably recalled, as the size of the network increases. At this point, comparisons
with large Hopfield nets (section 2.3.1) are made. The final chapter, chapter 6, draws
together all the threads from the previous ones into the relevant conclusions, and

makes suggestions for future research.

1.6 Terminology

In the following chapters, the word neuron refers to a brain cell, and the word cell
is used to refer to its simulation in a computer. One exception to this is the term
“lucky neuron” , which applies to certain critical cells in experiments. The connections
between cells in simulations are often referred to as synapses after their biological
equivalent.

All experiments are labelled with the section number in which they are described.

30




Chapter 2

Literature Review

The concept of the cell assembly is just over half a century old and has become
established as a partial explanation of how thought and memory are encoded in the
neural structure of the brain. This chapter puts simulations of cell assemblies into
the context of other neural architectures. It also gives a brief introduction to various
topics that have some bearing on the experiments described later in the {hesis. Some
of these, such as the discussion on the capacity of associative memories, are dealt

with in some detail.

2.1 Modelling brain cells

The basic structure of neurons has already been discovered. Although there are many

types of brain cell, they can be approximated by the diagram shown in figure 2.1.
The cell consists of a cell body, or soma. Electrical signals are fed into the cell

body via thin tree-like structures called dendrites. The cell is usually inactive, but

Ax Synapses
Cell body -

Dendntes

Figure 2.1: An approximation to the structure of a brain cell.
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when a sufficient quantity of signal has been received from the dendrites, the cell
becomes active, it fires, and a further signal is seut via a long structure called the
axon to synapses. These are connections between the axon of one brain cell and the
dendrites of others. The signal is transmitted from the axon to the dendrites via
chemicals called nenrotransmitters. When the cell has fired, it nsually returns to the
inactive state. This return is referred to as the spike latency.

Synaptic inputs opcrate by increasing or decrcasing the conductance of the post-
synaptic membrane. This implements the strength of the synaptic connection. When
most neurons fire they stimulate the cells to which they connect to build up the
electrical charge in their cell bodies. These cells, based on NMDA, are excitatory
[166]. NXMDA is N-methyl-D-aspartic acid, an amino acid derivative acting as specific
agonist at the appropriate receptor on synapses. A small proportion of neurons, based
on GABA, seem to have the opposite effect. When they fire, they decrease the activity
in the cells with which they come in contact. Such cells are said to be inhibitory.
GABA is Gamma-aminobutyric acid, a neurotransmitter that acts on any of three
receptors on synapses, termed GABA 4, GABAp and GABA¢.

In the brain, neurons fire the instant. that their internal conditions permit it, with-
out reference to other cells. Furthermore, synaptic connections operate at different
speeds, typical reaction times varying from 1 ms to 100 ms [156). These cffects taken
together are termed asynchronous firing. Clearly, when cells are modelled in a serial
computer, it is difficult to model asynchronous firing perfectly, as the simulation pro-
gram can only handle one cell ai a Lime. Simulations generally involve processing all
cells in the network serially.

All connectionist systems involve modelling neurons to a greater or lesser degree,
as they are inspired by the brain. Architectures such as the Multi-Layer Perceptron
(MLP) contain cells that implement very simple behaviour, i.e. the weighted con-
nections together with a simple transfer function from input to output. Simplicity
improves program speed, and such simple cells suffice for the tasks to which MLPs
are applied. As models become more complex, they take into account the internal
workings of neurons, for example, simulating the currents of sodium and potassium

ions [111]. Such models often become unwieldy, such as the family of neuronal models
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Figure 2.2: The more biologically plausible a neuronal model is, the more floating
point opcrations (FLOPS) it requires to implement. (Reproduced from [96])

generally referred to as Hodgkin-Huxley models. These involve only four equations
[80], but are based on dozens of parameters, each of which needs to be tuned indi-
vidually for any given simulation. Izhikevich [96] lists no fewer than twenty different
models of varying complexity, recommending the Hodgkin-Huxley model for detailed
and accuratc modclling of the ncuron when only a few cells are to be modelled and
the quadratic Integrate and Fire (1&F) model for large numbers of simulated neu-
rons. Inevitably there is always a trade-off between the number of mathematical
operations involved in the simulation of neurons and the biological plausibility, as
shown in figure 2.2.

Experiments described in this thesis oflen involve huge numbers of cells and many
thousands of iterations. The I&F model is the simplest model that is generally
recognised as simulating neuronal function to any degree above the basic level found
in architectures such as MLPs [96]. For this reason, the model used is based on
the 1&F model, but incorporates the additional functions of leaky integration and
fatigue as described in chapter 3 on page 53. Essentially cells in the model accumulate
activity through input conncctions, a fraction of which lcaks away as time progresses.
Cells also have the property of fatigue that prevents them [iring indelinitely in the
presence of continual external activation. Although it sacrifices biological plausibility
for cfficicncy, it has proved satisfactory in various ccll assembly experiments such as

[91] and [93].
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2.2 Cell assemblies as neural networks

This section briefly discusses the position that cell assemblies occupy in the hierarchy
of artificial neural networks such as multi-layer perceptrons [117] and Kohonen nets
[104]. Although it is still a matter of debate whether cell assemblies exist in the brain,
they may well prove to be a useful tool in artificial simulations of neural networks.

Cell assemblies form their own representation of the input data. In this respect
they are self-organising or unsupervised, like Kohonen's self-organising topographical
maps (SOTMs) [105]. Whether this is an advantage or not is debatable: on the
plus side, there is no need to label training data, which allows the cell assemblies to
extract the important features from the data for themselves. In many experiments
networks are created containing cells with randomly assigned connections, both in
strength and destination. In these experiments, cell assemblies form spontaneously
as a result of external stimulation. In these experiments, the programmer has little
control on how the cell assemblies form? - it is a hit and miss process. Cell assemblies
are initialised with the minimnm number of the parameters specified by the user - the
weights between connections are set randomly and the destination of the connections
set randomly as well. The connection strengths between nodes in a SOTM are set
randomly but the nodes are only connected to neighbouring nodes in the grid. This
implies that SOTM will produce more predictable grouping of data inputs, whereas
the cell assemblies are much less predictable as regards their outcomes.

The fact that SOTMs undergo unsupervised training means that they do not
necessarily classify data in the way that a human would find intuitive. In general,
they tend to be used as vector quantizers, i.e. they cluster data items and then pass
the result on to other components in a modular neural network (see [9] and [193]
for examples). The same could apply to cell assemblies, of course. The experiments
described in this thesis describe situations in which the topologics of networks were
carefully controlled. In more complex situations, the final topology of the network
may well be less tightly restricted, in which case some external system will be required

1Experiments described in this thesis use networks in which the positions of cell assemblies are
predetermined by predetermining connection strengths and/or restricting external stimulation to

specific areas of the nelwork. Cell assemblies in such experiments are a lol more predictable.
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Figure 2.3: A taxonomy of neural net classifiers, showing the position of cell assem-

blies.

to “interpret” the result.

Cell assemblies undergo adaptive training. This means that the network weights
are adapted during training, unlike Hopfield nets [84] and Hamming nets which tend
to use [ixed weights. In this respect they are similar to multi-layer perceptrons.
Figure 2.3 shows a generally accepted taxonomy of neural network architectures [117]
to which cell assemblies have been added. The essential differences between cell
assemblies and Hopfield nets are explained in section 2.3.1 on page 39. In spite
of the fact that cell assemblies are more closely related to Hopfield nets than they
are to SOTMs, they appear distant from them in figure 2.3 due to the fact that
Hopfield nets always deal with binary inputs and outputs. Although simulated cell
assemblies are implemented in such a way that their stimulus is continuously valued,
the definition of cell assemblies has not yet been cast in stone, so that there is no
reason why they could not be given binary inputs. For this reason, I maintain that
Hopfield nets are the closest relative that cell assemblies have in the set of standard
neural architectures, and I concentrate on comparing cell assemblies to Hopfield nets

rather than to SOTMs.
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Figure 2.4: The TRACE model of cell assembly activity. The vertical axis shows the

relative activity of the assembly in arbitrary units.

Kaplan et al. [98] created a mathematical simulation of a cell assembly that
fits one possible model of their behaviour. TRACE simulates not the behaviour of
individual cells in a network but the total activity level in the entire cell assembly.
This is roughly analogous to the number of cells that fire at any point in time.
According to the TRACE model, activation in cell assemblies follows the pattern
shown in figure 2.4, in which the number of cclls firing increases rapidly. Firing
reaches a peak as cells begin to fatigue in large numbers, and then reaches a plateau
in which the rate at which cells recover from fatigue is approximately equal to the
rate at which fatigue prevents cells from firing. There may well be oscillations in the
number of cells firing, until the number of cells incapable of firing reaches a critical
level and the activity in the cell assembly rapidly drops to zero.

Of course, the TRACE model of cell assembly does not represent the only possible
activity pattern. There is no reason, for example, not to assume that the activity
of any cell assembly in the brain would persist indefinitely if it were not for the
presence of competing cell assemblies that inhibit it. TRACE has been used to
model lexical contact during speech perception [53], and has been extended to model
activity in multiple cell assemblies (the multiTRACE system, [35, 175]). It is possible
to simulate a cell assembly based on discrete cells that matches approximately the
activity pattern of TRACE, as shown in figure 2.5. Details of this simulation are
given in section 3.4 on page 65.

How many cclls should be present in a ccll assembly? There is no definitive answer

to this question. Fransen et al. [54] have demonstrated that a simulated cell assembly
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Figure 2.5: The activity level of a network of simulated cells tuned to match the
TRACE activity level as closely as possible. The vertical axis shows the activity as
a proportion of thec maximum possible activity of the network. One time unit on the

horizontal axis is approximately equal to a millisecond.

can contain as few as 8 cells. as shown in figure 2.6. Their simulated cell assemblies
showed the basic properties of cell assemblies, i.e. persistance after removal of the
cxternal stimulus (which they term after-activity) and completion of the asscmbly
(which they term pattern completion). They even demonstrate that one such small
assembly can compete with and shut down another (figure 2.6(b)). Few researchers,
however, choose to work on such a small scale. Hetherington and Shapiro [78] created
assemblies on grids of cells with 18 rows and 20 columns, the CANT system [89] uses
grids of cells with 20 rows and 20 columns. It is one of the aims of this thesis Lo
demonstrate that networks containing large numbers of cells have more scope for cell
assembly formation than do small networks.

Cell assemblies are gradually being accepted among the useful neural network
architectures in common usage. This thesis aims to discover to some extent their

capabilities and limitations.
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Figure 2.6: Fransen et al. [54] demonstrate basic properties of cell assemblies in
small networks of 8 cells each. The activity in (a) persists after the external stimulus
shown by the horizontal bar is removed. In (b), cells in the assembly marked by the
closed circles compele with and shut down those in the assembly marked by the open

circles.
2.3 The relationship between Cell Assemblies and
Hopfield Nets

Cell assemblies are a connectionist architecture that bear some similarity to Hopfield
nets [84, 85] in the way that they operate. Hopfield nets are a standard architecture
for associative nets, and are generally used for pattern completion. They consist of a
series of cells or nodes with recursive connections to which a test pattern is applied.
Thesc connections allow the state of the net, represented by the outputs of the cclls at
any given point in time, to move from one state to another until stability is reached.
They are loosely inspired by the workings of neurons in the brain. Indeed, some
rescarchers have used Hopficld nets to draw conclusions about the brain. Crick and
Mitchison noticed that Hopficld ucts often become over-loaded with stored memorics.
From this they made the immense leap to concluding that the human brain avoids
this problem by dreaming (the Crick-Mitchison Hypothesis: “We dream in order to
forget”, later toned down to “We dream in order to reduce fantasy and obsession”)

63).
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Figure 2.7: A Hopfield net. There are n inputs (termed z; to z,) and outputs (y; to

Yn), and each cell has a recurrent connection to every cell other than itself.

2.3.1 Hopfield Nets

Figure 2.7 shows the basic structure of a Hopfield net. It consists of a single layer of
N cells, each of which has recurrent connections to all the cells other than itself. The
cells take a binary input of N bits and then iterate until they reach a stable state,
at which the binary states of the cells is deemed to be the N bit output. The binary
states of the net are usually 1 and -1, although versions of the Hopfield net do exist
in which the binary states are 1 and 0 [117]. Two advantages that Hopfield nets have
over multi-layer perceptrons is that they require only a single training pass to set any
particular pattern, and that further patterns can be set at any time without risk of
forgetting previously set patterns (as long as the maximum storage capacity of the
nctwork is not cxcceded).

The algorithm for training and using the Hoplicld net is shown in table 2.1 on
page 40.

The output of the Hopfield net is read from the N nodes after convergence has
been achieved. This output is then matched against the library of patterns on which
the net was trained. It has been shown that the preconditions for the net to converge
are that weights are symmetric (t;; = t;;), which they must be if the standard training
algorithm is followed, and nodes arc updated asynchronously [84].
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1. Assign connection weights between nodes 7 and j for 1 <1i,57 < N.

tij= §Lel&8& fori#j (2.1)

0 for i=§

The algorithm assumes that the net is being trained with M patterns and
contains N nodes. #;; is the weight from node i to node 7, and & is binary bit i
of training pattern s. Many researchers, such as [39], refer to this as “one-shot
Hebbian learning”. Often references, such as [117], omit the 4 scaling term,
but including it often improves the ability of the Hopfield net to converge on

training patterns rather than on spurious patterns.

2. Apply input.

wi(0)=z;for1<i< N (2.2)

i(t) is the output of node i at time £. z;, which can be +1 or -1, is clement £

of the input pattern.

3. Iterate until convergence.

Construct a weighted sum of each output value:

N
h,; = Zl tij[l.j(t) (23)
j=

Pass this weighted sum through a hard-limiting (“sgn”) function, f; that con-
verts any positive input to +1, with any other input converted to -1:

1t +1) = fi(hi) (2.4)

Table 2.1: Hopfield Net Algorithm
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Figure 2.8: A Hopfield pattern trained on two patterns in (a) can show activity that

either converges (b) or oscillates (c).

Cell assemblies have important similarities to and differences from Hopfield nets.
Like Hopfield nets, they are recurrent and move from one state (as specified by the
activation of the cells at any moment) to another. Both cell assemblies and Hopfield
nets perform pattern completion, although the exact pattern of cells activated in the
cell assembly is less strict than for the Hopfield net. Hopfield nets are designed to
converge on stable states, but in many cases they converge to an oscillating pattern
[85]. Figure 2.8 shows patterns of activity in a simple Hopfield net trained on two
patterns, shown in fignre 2.8(a). Figure 2.8(b) shows a test pattern (left most) and
the three resulting patterns that follow on subsequent time steps. In this case the
activity pattern converges to one of the training patterns in one time step. Figure
2.8(c) shows another test pattern on the left and the three subsequent time steps. In
this case, the pattern of activity oscillated indefinitely. Activity in my model does not
converge in the same way as in the Hopfield net. In a cell assembly, patterns of activity
in the network do not persist unchanged indefinitely from one time step to the next,
nor does a cell assembly demonstrate oscillating patterns that manifest themselves
perfectly at regular intervals. Convergence is taken to mean that a sufficient number
of cells in an assembly fire so that the assembly itself may be considered to be active,
even though the exact patterns of activity don’t necessarily repeat.

However, there are notable differences between the two types of architectures,
that arise from the fact that cells in a cell assembly are based to a greater or lesser
extent on neurons in the brain, and include fatigue and decay. Of course, simulated
cell assemblies are ill-defined, as each researcher decides on his or her particular
variation, whereas Hopfield nets are rigorously defined. The following list gives some

of the differences between Hopfield nets, trained using the standard algorithm in table
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2.1 on page 40, and cell assemblies as they are believed to exist in the brain.

1

Cells in Hopfield nets are essentially binary in operation, being either active
or inactive. Cells in cell assemblies do exhibit binary behaviour insofaras they
may or wmay not fire, but the firing is based on an underlying activity level that

is continuous.

. As stated above, cells in cell assemblies include the features of fatigue and decay,

so their activity gradually dwindles in the absence of external stimulation. Cells
in Hopficld nets retain their activity indefinitely, unless specifically deactivated
by negative connections. Hence, it is more correct to refer to the states into
which a cell assembly passes as pseudo-stable, rather than stable. This is an
important difference since it is this property that allows cell assemblies to move
from one state to another, thereby introducing the possibility of sequential

processing.

A Hopfield net always expresses patterns with the same number of bits as there
are cells in the net. This is not necessarily true of cell assemblies. Connections
can be sct in which patterns of activity can develop independently in different

parts of the network and have no influence on each other.

Hopfield nets are usunally well connected, i.e. each cell has a connection to all

the other cells. Cell assemblies are sparsely connected.

Cells in Hopfield nets can have an excitatory effect on some cells and an in-
hibitory effect on others. Dale’s principle states that neurons can be either
excitatory or inhibitory, although recently doubt has been cast upon this (see
section 3.1 on page 54).

. Connections in Hopfield nets are always bi-directional and symmetric, i.e. if

there is a connection from cell A in a Hopfield net to cell B, then there is
automatically a connection of the same strength from node B to node A. There

is no such restriction in cell assemblies.

The weights of a Hopfield net are adapted only when specific patterns are to he

added, either when the network is set up or at some future stage. Weights in a
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cell assembly are adapted continually throughout the lifetime of the assembly.
This is not to say that simulated cell asscrblics cannot be set up with fixed
weights. Indeed, experiments in later chapters of this thesis implement just
such assemblies, but that synaptic connections within cell assemblies in the

brain are always adaptable.

2.3.2 Capacity

The capacity of a neural architecture is a measure of the maximum number of patterns
that can be stored and retrieved reliably. It is usually expressed as a critical load
(c = & where pc is the maximum number of patterns and N is the number of cells in
the architecture) [131]. For any architecture with capacity O(N), the critical load for
such an architecture converges to a particular value proportional to N. Krauth and
Opper [108], for example, have shown that the critical load for an autoassociative
network has an assymptotic value of ¢ = 0.833.

The theoretical maximum for the storage capacity would be 2V if no patterns were
to be stored or retricved, since cach cell can be cither on or off. However, the purpose
of a Hopficld net is to move from a state representing a partial or corrupted pattern
to one representing a pure stored pattern, so the net can only function properly if
the great majority of the states are unstable, and do not represent trained patterns.
Peng and Zhou [141] report early experiments that do indeed suggest that 2V N-bit
binary patterns can be stored in an associative network with on the order of N cells,
while retaining a high level of insensitivity to noise, i.e. a network of N cells can
store % patterns. In general, when considering the storage capacity of a network
such as a Hopfield net. one considers how many random patterns (i.e. each bit has
an equal probability of being a 1 or a —1) can be stored and retrieved. Kitano and
Aoyagi [101] have pointed out that it is more reasonable to consider storing patterns
in which relatively few of the bits are 1. This bears a closer resemblance to real
neural systems, which are generally sparsely active, and has a bearing on the large
networks of cells described in chapter 5 on page 121 in which only a small proportion
of the cells are active at any one point. It is generally considered that the maximum

number of patterns that can be stored in a Hopfield net increases in proportion to
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—71 Ina, where a is the proportion of bits allowed to be set to 1 in the patterns [59].

However, in each of the equations given here, it is assumed that the patterns to be
stored are completely random.

Hertz et al. [77) have shown that the storage capacity of a Hopfield net, in terms
of the number of N-bit patterns that can be stored, has a theoretical maximum value
of 0.138N patterns if we are willing to accept a 1% error that any given bit in any
training pattcrn is unstable (i.e. that any bit of a training pattcrn prescnted as
input will not remain the same on iteration), i.e.. This gives a critical load value
of 0.138. Amit [5] also gives a proof that the storage capacity is proportional to N.
The exact value depends on the complexity and similarity of the patterns. In general
when critical load is calculated for Hopfield nets, the assumption is made that the
patterns to be stored are completely random and that a small error in recalling bits
is permissible. Increasing the number of stored patterns beyond this limit increases
the probability that any particular input pattern will cause the net to iterate to a
stable pattern that does not correspond to one of the trained patterns.

The storage capacity of the Hopfield net is generally given in terms of the max-
imum number of patterns that can be stored, it should be remembered that each
of these pattens is N bits long. It is therefore correct to say that the Hopficld can
store a maximum of 0.138N? bits of information. The critical load for Hopficld nets
is quoted as being 0.138 so often that some researchers, such as [20], refer to it as the
Hopfield value.

However, a few researchers disagree, or claim that they can imnprove on the figure of
0.138N by adapting the architecture a little. Davey et al. [38] outline two algorithms
that promise high-capacity variations on the Hopfield net. Both involve sacrificing
the symmetry of the weight matrix (¢;; is not always the same as t;;), and it is no
longer certain that input patterns result in convergence with asynchronous updating.

They define a local field for each node i, h;, as follows:

h.,- = ng,-Sj (25)
J#i
where S is the state of the ¢’th node, equivalent to y;(¢) in table 2.1 on page

40. For any stored pattern £ (& ...&n), the aligned local field is given by h;&;. If the
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aligned local ficld for cach node is non-negative, the pattern is stable.

The first algorithmm given by Davey et al. is perceptron-style learning, proposed
by Gardner [59]. Gardner claims that applying perceptron-like learning to associative
networks of Hopfield-like cells gives a maximum storage capacity of 2N patterns if
the patterns are uncorrelated, and that this maximum increases if the patterns are
correlated. This type of learning is designed to raise the aligned local field for each
training pattcrn above a specified threshold, T'. The only criterion for the patterns
to be learned is that T > 0 for all patterns. The second algorithm is lierative Local
Learning, proposed by Diederich and Opper [42], in which an iterative algorithm,
similar to the perceptron learning rule, is used to ensure that the local fields for each
node are either greater than +7 or less than -7 as appropriate.

They assess the performance of their networks not in terms of the probability of
error in any particular retrieved bit, but in terms of the mean radius of the attractor
basins for each of the training patterns, R, normalised as a proportion of the network
size N. They quote experiments that show that both training algorithms give R
values greater than 0.5, leading to the researchers claiming that all training patterns
can be retrieved with high fidelity, although this high performance is achieved at the
cost of greatly increased training time, since the training algorithms are now iterative.

MacKay [120] explains that the number of patterns that can in principle be dis-
tinguished by a single perceptron is 2n, where n is the number of input connections
to that perceptron. He does not discuss the storage capacity of Hopfield nets as such,
but it may be possible to extend his conclusions to cover Hopfield nets. Each cell in a
Hopfield net has N — 1 connections (i.e. a connection to every cell other than itself),
in which case, its storage capacity is 2(N — 1). This only differs from the capacity
proposed by Davey et al. by 2 patterns.

One variation on the simple Hopfield net is the Exponential Correlation Associa-
tive Memory (ECAM). Chiueh and Goodman (33] point out that the Hopfield net is
simply a specific instance of a Recursive Correlation Associative Memory (RCAM),
t.e. a network of cells with recursive connections designed to relax to a stable state
which it has learned. The general rule for updating pu;, the state of the ith cell, at
time ¢ 4 1 is given by equation 2.6
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M N
pa(t +1) = sgn{d_&F Q1 (1)€5)} (2.6)

s=1 /]

where f is a weighting function that is continuous and monotone non-decreasing
in the interval {-N, N}, and & is the state (1,-1) of node i. This corresponds to
the updating rule (steps 3 and 4 of Table 2.1 on page 40). Replacing f with the
sign function gives the behaviour of the Hopfield net. In the case of the ECAM, f is
replaced by the exponential function:

M N .
palt +1) = sgn{_ £re2 1055} @2.7)
s=1

The architecture was proposed by Chiueh and Goodman [33], who claim that it
had an storage capacity that is exponential in the length of the bit patterns (i.e.
the storage capacity for patterns of length 2n is the square of that for patterns of
n bits) under certain conditions, specifically when the applied test pattern which is
to be classified is close to one of the library patterns in terms of Hamming distance.
Hancock and Pelillo [69] claim that the storage capacity of such a network has an
upper limit of 2V-1/N?, but this claim has been criticised by Wilson and Hancock

[189], who claim that the maximum number of storable patterns is in fact:

M=1+ J?ﬂ'[l + ‘i{l’(l "‘p)] - [21j_(§§(—1-i)p)] (28)

where p is the acceptable upper limit on the probability of any particular bit in
the retrieved pattern being incorrect.

Bogacz et al. [19] claim that the capacity of a Hopfield net can be extended to
0.023N? patterns, provided that one sacrifices the ability to retrieve stored patterns,
requiring the net simply to recognise whether a presented pattern is novel or not.
To achicve this, they use the cnergy function of the Hopficld net, a function that
gives a measure of how far away from a stable state the net is. The energy function
is analogous to the height of a ball rolling around on a smooth landscape: As the
Hopfield net relaxes from an unstable initial pattern to a stable one (with luck, one of
the stored patterns), the ball rolls around the landscape until it reaches a minimum
point, at which it stops. The energy function F(z) for an N-bit input pattern z
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(z1...zN) is defined as

E(z)= -2 Zm, Z Tj.Wij (2.9)

The energy function is defined to be lower for stored patterns and higher for other
(random) patterns. For any given training pattern, £ = &7 ... £5, the energy function

rearranges to give

E¢) = -——ZZ(&F &) - EZZ&S g.8.8 (2.10)

N o= N i
where £ is bit i of the sth training pattern (s = 1...P). Since £ is either 1 or
-1, (§7.67)? = 1 and the first term reduces to —¥. The second term is a noise term
that can, according to Bogacz et al., be approximated by a normal distribution with
mean 0 and standard deviation %\/ﬁ Similarly, it can be shown that the energy
function for a random pattern of bits can be approximated by a normal distribution,
also with mean 0 and standard deviation %\/ﬁ (identical to the energy function for
a stored pattern except without the first term). The average energy value for a stored
pattern is —% and for a random pattern is 0. Bogacz et al. take any applied input
pattern with an energy value of less than —— to be a familiar (stored) pattern and a
novel pattern otherwise.
An error occurs if the noise (the Hamming distance between the input pattern
and the nearest stored pattern) is higher than the threshold, %. Taking an acceptable
crror rate of 1%, then if Ppe. is the maximum number of patterns that can be stored,

then:

Pr(6(0, -21-\/213,,‘0,) < %{) > 0.99 (2.11)

where 6(0, %\/ 2P,..z) is the normal distribution with mean 0 and standard de-
viation %\/2P. This equation can be solved using the standard normal distribution

curve:

Praz = 0. ;85 N? ~ 0.023N? (2.12)

47




Graham and Willshaw [64] have produced a mcasure termed “information cffi-
cicucy”, defined as the ratio of the amount of inforination that can be retrieved from
the memory to the amount of storage available. They quote infornation efficiencies
of up to 69% for their heteroassociative memories for sparse patterns. The network
that they describe is sufficiently different to both cell assemblies and Hopfield nets to
make any direct comparison pointless. However, the concept of information efficiency
itsclf is onc that can in principle be applicd to both these types of network.

This section has shown that various researchers have produced different formulae
for storage capacity. Although the researchers all describe their formulae as referring
to associative memories, this is a general catch-all term, and, in practice, all the
architectures differ to a greater or lesser degree. Furthermore, different assumptions
are made, such as the probability of an acceptable incorrect bit in a retrieved pattern
and the exact nature of the patterns recalled (such as the novelty detection architec-
ture proposed by Bogacz et al.). Each equation assumes that the patterns stored are
completely random, which, in a practical system, is never the case. There is reason
to believe that the capacity of an associative net increases as the proportion of 1 bits
in the patterns stored decreases.

The one thing that can be concluded from all this is there appears to be no
definitive formuula for the capacity of attractor nets. Specifically, I am not aware of
any previous research that has been done on the storage capacity of networks of cell

assemblies, and that was the motivation for the research described here.

2.4 Genetic Algorithms

Experiments in subsequent chapters rely upon a genetic algorithm [82] to determine
parameter values, so a brief introduction to genetic algorithms is included. A ge-
netic algorithm is a method of searching a vast search space in situations where an
exhaustive search is impractical or would take too long. As the name implies, it is
inspired by genetics and evolution and embodies the principal of survival of the fittest
Lo determine a suitable, although not necessarily optimal, solution to a problem.

Potential solutions take the form of chromosomes, which are patterns of num-
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Figure 2.9: Mulation and cross-over are the basic mechanisms ol evolution in genetic
algorithms. In (a) the sixth bit is mutated from 1 to 0. In (b) a cross-over occurs in
a pair of chromosomes with a split occuring between the fifth and sixth bits and the

latter halves of each chromosome swapped.

bers thal encode the behaviour of some model. A chromosome representing some
game-playing strategy, for example, might encode that strategy in the form of a few
simple rules. Genetic algorithms usually implement chromosomes as binary patterns,
although this need not be the case. Each chromosome is translated into a phenotype,
that demonstrates the behaviour encoded in the chromosome.

A population of random chromosomes is created and each corresponding pheno-
type cvaluated according to a suitability metric. Only the chromosomes that score
the highest are retained to the next generation. The next generation consists of mu-
tations of the surviving chromosomes or crosses-over, as shown in figure 2.9. In some
cases, unchanged copies of the surviving chromosomes are also retained. Mutations
consist of copies of chromosomes in which one element has been changed randomly,
either within a small range of its original value or within the entire possible range
of that element. In the case of binary elements, a mutation involves inverting one
bit randomly. A cross-over is akin to sexual reproduction in nature, in which two
chromosomes are split at the same random point along their length and the two end
sections swapped. Further swapping of sections can take place at more than one
point along chromosomes. Typically cross-over results in faster evolution as it allows
advantageous sections of chromosomes to be combined.

As evolution progresses, the average [fitness of each generation of chromosomes
is greater than that of the previous one, until a maximum value is achieved. It is
possible that this maximum is a local one in the entire search space, and to avoid

this, many genetic algorithms allow a small number of purely random chromosomes
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to be added to each generation. These allow a population an escape from a local
maximum although many generations may be needed before the escape happens.

The above description outlines only the basic format of a genetic algorithm. Other
optimizations are possible, but for the purposes of the experiments described in this
thesis, it was found that the simple strategy presented here was sufficient to produce
acceptable results.

For genctic algorithms to be cffective, the following criteria must be fulfilled:

1. The search space must be so large as to make an exhaustive search impractical.
Although a genetic algorithm is guaranteed to find the optimal solution if left
to run for an infinite length of time, in practice there is no way of knowing
whether the final solution is the best possible. For a small search space, it

makes more sense to carry out an exhaustive search.

2. It must be possible to assign a score to each chromosome that indicates its
degree of fitness. Categorising a chromosome simply in terms of success or

failure would not be enough.

3. The fitness scores of adjacent points in the search space should usually be
similar, so that a gradual improvement in fitness can be achieved by tracing a

path through that space.

The description above outlines the general principles behind genetic algorithms.
Variations are possible, of course. For instance, the fitness function may be changed
after a certain number of generations in order to fine-tune the evolution. In general,
genetic algorithms represent a powerful method of finding a satisfactory solution
within a reasonable time in situations where more systematic searching is impractical.

Experiments described in later chapters use a genetic algorithm to assess the
performance of networks of cell assemblics under different circumstances. The con-
figurations of the networks are determined by a small set of paramcters, the values
of which form the chromosomes. Each chromosome is translated 10,000 times to pro-
duce 10,000 networks with random connection destinations but the same underlying

topology. Each network is then run for 300 time steps under the appropriate external
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activation conditions. For each time step a count is maintained of the number of cells
that firc in asscmblics that are supposed to have ignited and the number that fire in
cells that are not. The total score for each chromosome is the total sum of the de-
sired firings less the total sum of the undesired ones. In this way, parameter sets are
determined that represent the best compromise between two competing tendencies,

namely, desired and undesired ignition of cell assemblies.

2.5 Summary

This chapter has described briefly some of the areas of research that have contributed
to the work in this thesis. Some of the topics that are covered do not appear at first
sight to be linked in any way, but they all form strands that will be woven together in
later sections. The chapter has inevitably concentrated on the development of what
little theory exists about Cell Assemblies and the principle of Hebbian learning which
lics behind it. Although ccll assemblics were originally conceived as a description of
neural structures in the brain, they have been adopted by connectionists as a neural
network architecture. Hebb himself, presumably, never conceived of cell assemblies
in terms of computer simulation!

Although several researchers have implemented cell assemblies in computer pro-
grams there is little theory describing their behaviour. For this reason, their close
cousins in the connectionist family tree, Hopfield nets, whose properties are well
known, are also described in the chapter. Experiments in subsequent chapters do
show that cecll asscmblics and Hopficld nets do behave similarly in some ways, but
there are also important differences. Hopficld nucts always store patterns with the
same number of bits as there are cells in the net. The patterns stored by cell assem-
blies do not store patterns on a bit-by-bit basis. Instead groups of cells are activated
together in each cell assembly. Whereas Hopfield nets generally reach stable states in
which no cell output changes from one time step to the next (although some patterns
do result in oscillation), cell assemblies depend on cell activity dying out and then
being rekindled [rom other cells in the cell assembly. In this way, cell assemblies
achieve pseudo-stable states rather than the rigid stable states of Hopfield nets. This




docs give them one advantage over Hopficld nets, insofar as they can move from onc
pseudo-stable state to another. This may be the basis of thought progression and
sequential reasoning in the brain, as Hebb proposed (74, 76].

The chapter included a brief description of genetic algorithms, since a genetic algo-
rithm was used to estimate the parameters in experiments described in later chapters.
Genetic algorithms borrow the principles of evolution and survival of the fittest to
producc a satisfactory solution to any problem in which an cxhaustive scarch of all
possible solutions is impractical. Simulated cell assemblies depend on the settings of a
small number of parameters from an infinite parameter space. The possible solutions
are encoded in the form of numerical patterns known as chromosomes. For genetic
algorithms to be effective, it must be possible to translate the chromosomes into
scores, which can then be rated, and it will be seen in subsequent chapters that the
parameters controlling the behaviour of the cell assemblies in the experiments fit this
description perfectly. Although genetic algorithms cannot in practice be guaranteed
to achieve the best possible results, they are a powerful tool for adequate parameter
values in situations where other means may not be practical.

Chapter 3 on page 53 puts the general concepts outlined in this chapter into a
more rigid mathematical context. It also defines in detail the model that will be used
for all the experiments described in this thesis.
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Chapter 3

Description of the Network Model

This chapter describes work carried out to implement a simple hierarchy of cell assem-
blies in a network of cells as a computer simulation. It is shown that cell assemblies
can be constructed by setting the strengths of the connections between cells to spe-
cific values, and that cell assemblies can develop naturally as a result of weights
being learned in response to repeatedly presented input patterns. The complexity of
these cell assemblies is gradually increased in subsequent experiments, and different
combinations of cell assemblies are investigated as to their feasibility. Experiments
are described that demonstrate that the principle of learning weights can be used to
create a hierarchy of cell assemblies.

The chapter starts with a description of the simulation on which all experiments
were carried out. This implements a network of generic cells exhibiting the basic
concepts of activation, fatigue, recovery and retention. Although previous simulations
have attempted to model specific types of neuron with great accuracy [96]. it was felt
that this was not necessary to produce useful results, so only these basic functions
found in neurons, were implemented (see Chapter 2 on page 31).

The behaviour of the model depends on the values of nine global parameters,
each of which can theoretically take an infinite number of values. Since it is clearly
impossible to test the parameter space exhaustively, a strategy was needed to find
an acceptable set of parameter values. A simple genetic algorithm (see section 2.4 on
page 48) proved sufficient in this regard.

The experiments were carried out as a series of programs on a standard personal
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computer using a mixture of Java and C++. Each simulation was based on a series of
discrete time steps, and each cell in the simulation was considered to produce at most
one output per time step. This is equivalent to an activity spike produced by a real
neuron. During a time step a cell can either fire or refrain from firing. It is therefore
an easy matter to translate the firing pattern from a simulated cell to the sort of trace
shown in figure 2.6, with each time step being equivalent to approximately 10ms.
Cell asscmblics in the simulation arc tcrmed cither primitive or compound. The
programs simulate a number of cells, each of which is associated with a certain primi-
tive cell assembly. A primitive cell assembly is one that is self-contained and invariant.
It contains no cells that form part of any other primitive cell assemblies. A compound
cell assembly consists of a grouping of primitive cell assemblies. Primitive cell assem-
blies are typically referred to by letters: A, B, C etc. and compound cell assemblies
by strings of letters, e.g. ABC refers to a compound cell assembly consisting of prim-
itive cell assemblies A, B and C. Each cell assembly in the simulation, primitive or
compound, was developed according to principles outlined below to obey Sakurai’s
[154] five defining points (see section 1.1 on page 4). The concept of representing
individual primitive cell assemblies by letters of the alphabet and cell assemblies cor-
responding to combinations of concepts by strings of letters has been proposed by

researchers such as [20].

3.1 Mathematical Description of Cells

The structure and function of each cell in the simulation was chosen to implement
some simple functions of brain cells, rather than any specific type of neuron. The
cells implemented are described as fatiguing spiking leaky integrators [91, 140]. Each
cell was defined by the following features:

Activity. The cell possesses a level of activity, defined as a floating point number
limited to the range 0 to 1. This represents the amount of “energy” that the cell has
acquired through its connections and/or external activation and is analogous to the
membrane potential of real neurons.

Fatigue. Each cell possesses a fatigue level, defined as a floating point number




that indicates how tired the ccll has become. Whenever the cell fires, its fatiguc
level increases by a certain fixed amount, termed the fatigue rate. Whenever the cell
does not fire, its fatigue level decreases by a certain fixed amount, the recovery rate,
that is not necessarily the same as the fatigue rate. The fatigue level of the cell is
constrained to the range 0 to 1. Fatigue imitates the property of biological neurons
that prevents them firing indefinitely in rapid succession. This effect causes our skin
to losc scnsitivity to our clothes, with the result that we arc not distracted by them
all the time, and to ignore the odour of cigarette smoke in a room after a short period.

A firing threshold. This is a floating point number in the range 0 to 1 common to
all cells which determines whether they fire or not. Firing is the process of transmit-
ting a signal to other cells in the network, and is determined by the activity of the cell
and its fatigue. If the activity of the cell minus its fatigue is greater than the firing
threshold, then the cell fires, and produces a signal, equal in strength to each synaptic
weight strength, that is propagated to other cells to which it is connected. Biological
neurons produce spikes that are the same amplitude, so the simulated neurons may
be thought of as producing an output signal of 1 unit, subsequently modified by the
synaptic weight strengths. When a cell fires, its activity level drops to zero.

Inhibitory or ezcitatory activation. Ceclls arc classificd as cither excitatory or
inhibitory. This is in accordance with Dale’s Principle [45, 181] which states that a
neuron produces and releases only one type of neurotransmitter, effecively limiting it
to either excitatory or inhibitory behaviour. This is sometimes erroneously referred to
as Dale’s Law. There is now evidence thal neurons can conlain and release more Lhan
one kind of neurotransmitter [10], but I have nevertheless adhered to Dale’s Principle.
When excitatory cells fire, the activation that they provide increases the activity
level of destination cells. Inhibitory cells reduce the activation of destination cells
when they fire. This behaviour is roughly analogous to the behaviour of excitatory
pyramidal cells and inhibitory chandelier cells in the brain. The general consensus
of opinion is that excitatory cells are roughly four times as common in the brain as
inhibitory ones, so 80% of the cells in the simulation were excitatory [27, 45, 61, 99].
This ratio has been used successfully in other simulations (78, 95].

Inter-cell connections. Cells pass activity to each other through a series of weighted
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connections, with each cell possessing the same number of connections to others. Each
connection has a strength, or weight, limited to the range 0 to 1 (for excitatory cells)
or -1 to 0 (for inhibitory cells), indicating the proportion of the signal strength that
is passed along the connection.

Retention. Incoming activity to a cell is added to the cell’s current activity level
(or subtracted if it originated from an inhibitory cell). However, cells take the form of
lcaky accumulators, in so far as only a pereentage of the activity is retained, according
to a fixed retention rate. This effect is often referred to in the literature as decay
(examples include [70] and [34]). In biological neurons this decay is caused by the
leakage of currents through the cell membrane (see [3]).

The activity of the cell at time ¢ is therefore determined by equation 3.1.

a = Z:w,--l—r.at..l (3.1)

where 7 is the retention rate, a; is the activity at time ¢ and w; are the strengths
of all the connections to that cell summed over all cells that fire. This is a version
of the membrane potential equation for the Integrate-and-Fire Neuron [96] shown in

equation 3.2.

v"= I -a+bt ifv' < threshold (3.2)
c if v* > threshold

where v* represents the membrane potential at time ¢, I the input current and
a, b, ¢ and threshold are the parameters. When the membrane potential reaches the
threshold value, the neuron is said to fire a spike and v is reset to ¢. In the current
model, ! — a is the summed weighted input, b is the retention rate, and ¢ is 0, the
activity level of a cell after it has fired.

Propagation of activity between cells took place simultaneously once per time
step. Clearly it is necessary to give some external activity to the network of cells,
otherwise activity could not be propagated between cells'. During the first 7' time

1Some experiments were carried out in which a small proportion of cells activated spontaneously,

but the majority of cxperiments rclicd only on cxternal activation to ignite ccll assemblics.
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steps, cells in primitives that were activated externally had a 40% chance of their
activity being boosted to the maximum value of 1. 7" was held constant throughout
any experiment at 10. This extended activation takes place simply in order to allow
primitive cell assemblies to build up sufficient energy to maintain activity when the
external stimulation is removed. Different primitive cell assemblies are activated in
different experiments.

The paramcter valucs shown in table 4.1 on page 77 were choscen as a compromise.
Experiments showed that if the proportion of cells being activated was substantially
lower than 40% or was applied for fewer than about 10 time steps, then activity in
the cell assembly died out quickly after external activation was removed. If, how-
ever, the proportion was much higher than 40% or for much longer than 10 steps, a
large proportion of the cells fatigued at approximately the same time step, thereby
rendering them unable to fire and reducing the activity in the cell assembly to the
point where it could not be sustained.

For each cell 4, the cell fires if the activity of the cell, a;, minus the fatigue of the
cell, f;, is greater than the firing threshold, 8. If the cell fires, then for all cells j to
which there is a connection from cell 7, the temporary activity temp; is increased by

the weight strength of the connection between the cells, w;;:
temp; = ) _ wij
|

The summation is performed over all cells j which provide excitatory or inhibitory
activity to cell 7.

If the cell fires:
1. the activity a; is reduced to zero.

2. the fatigue level, f;, of the cell is increased by a certain fixed constant, termed
the fatigue rate, F. The fatigue is limited to a maximum of 1.

If the cell does not fire the fatigue level of the cell is reduced by a certain fixed
constant, the recovery rate. The fatigue is limited to a minimum of 0. Inhibitory
neurons function in the same manner except all the weights from them are negative.

The temporary activity values of the cells are not limited to the range 0 to 1.

57




2 1 fa—f28
17t
= S X+ oy x=
k=l 0 f a—f,<8

ff,+1=

fre1 =1f: .

f X=1, abecomes0

Figure 3.1: A summary of the behaviour of a cell. Circles on the left indicate cells
that firc (X = 1) or not (X = 0) and contributc activity via weighted connections.
a, is the activity level for the current time step, f; the fatigue level, and F and R,

the fatigue rate and recovery rates.

The new activity for each cell is determined from its temporary activity. The
activity of each cell i is given by a proportion of the activity of the cell, given by the
retention rate, at the previous time step (or 0 if the cell has just fired) added to the
total temporary activity that the cell has received on this time step. Effectively this
implements equation 3.1 on page 56. The activity of the cell is then limited to the
range 0 to 1. The upper limit is not really necessary, since the only action that a
cell can take is to fire, in which case the activity sent to destination cells is equal to
the connection strengths of the synapses. However, it did help to prevent numerical
overflow in the computer programs. The lower limit of 0 prevents the unexpected
effects that would occur from a cell having “negative energy”.

The relationship between the parameters is summarised in figure 3.1. X is a

binary flag (1 or 0) introduced for convenience to indicate whether a cell fires or not.

3.2 Hebbian learning rule

The majority of experiments described in later chapters investigate the properties of
networks of cells in which connection strengths are predetermined. This was done in

order to prevent one possible source of variation, individual connection strength, from
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affecting the results. In several eases, it was impractical to implement learning, due to
either hardware limitations or pressure of time. However, adaptation of connections
is one of the essential tenets of Hebb’s theory [74], and so several experiments were
included in which learning took place. It is therefore necessary to describe the exact
format of the learning rule used.

The connections between cells increase when both the source cell and destination
ccll firc at the samc time step. This applics to both cxcitatory and inhibitory cclls
alike, although a slightly different learning rule is applied to each type in order to
avoid weights going towards zero when they should be becoming more pronounced.

Whenever the source cell is excitatory, the increase is proportional to the difference

between the current value of the weight and the maximum value of 1:

new w;; = old Wi5 + T](l — old w,-j) (33)

where new w;; and old w;; are the new and current weight values of the connection
between cell ¢ and cell 7 respectively and 7 is a learning rate. It was found that a
learning rate of 1 = 0.025 ensured that weight changes are fast enough to ensure that
the weights approach their desired values within a reasonable time, yet slow enough
to avoid wild oscillations around those values. The second term in this equation
ensures that learning is stable, and that weights cannot exceed 1.

Whenever the source cell is inhibitory, both cells firing concurrently should cause
the weight to rise towards zero. This ensures that the source cell will be less likely
to shut down the destination cell if it fires in future. In this case, a suitable formula

is as follows:

new w;i; = old wi; — 1 old w;; (3.4)

Since w;; is negative, this subtraction causes the weight to rise towards zero.

Hetherington and Shapiro [78] have suggested that cell assemblies can be learned
if post-not-pre LTD is used, but not if pre-not-post LTD is used (see section 1.1 on
page 4), although other researchers (such as [91]) have achieved good results with
pre-not-post LTD. Preliminary experiments suggested that post-not-pre LTD gave
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better performance in the case of this particular simulation. A simple post-not-pre
LTD rule was therefore implemented as follows.

Whenever the source cell is excitatory, the decrease is proportional to the current
value of the weight. This took the form of the same equation as for the LTP of

inhibitory cells, except that the weight is decreased as it is a positive figure:

new w;; = old wy; — 1 old wy; (3.5)

Whenever the source cell is inhibitory, LTD should encourage the inhibitory cell
to shut down the destination cell whenever it fires, i.e. it should decrease the negative

weight away from zero. This may be achieved by the following formula:

new w;; = old w;; — n(1+ old wyj) (3.6)

These rules were chosen to ensure that weight changes were reduced as the weights
approached extreme values. For example, as an excitatory weight increased, further
increases became smaller. Clearly, the final value of weights between any given pair
of cells will depend on the frequency with which they fire together. Using the rules
described above implies the following two results: The more often cells fire together,
the closer to 1 weights from an excitatory cell will be, and the closer to 0 weights from
an inhibitory cell will be. The less often cells fire together, the closer to 0 weights
from an excitatory cell will be, and the closer to -1 weights from an inhibitory cell
will be. In general, the weights adapt to reflect the proportion of the time that the
post-synaptic cell firves given that the pre-synaptic cell has fived.

The size of the learning rate affects the stability of the learning process. Figure 3.2
shows the result of mathematical simulations in which a weight between two cells was
adjusted in isolation and the frequency of co-occurrence of activation was maintained
at 40% of time steps. The initial values of the both excitatory and inhibitgory weights
were set to 0, as equation 3.3 allows a zero weight to increase rapidly, and equation 3.6
allows inhibitory weights to drop away rapidly from 0. These simulations suggest that
after a large number of training steps, excitatory weights will approximately match
the proportion of time steps for which the two cells fired together, and inhibitory
weights will be the negative equivalent of the proportion of time steps for which they
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did not firc together. This tendency can be proven mathematically. For example, if
cells on cither side of a connection fired together 80% of the time, then an excitatory
weight between them would be 0.8 and an inhibitory weight would be -0.2. I term this
the negative equivalent weight. Increasing the learning rate means that the weight
reaches the predicted proportions rapidly, but then fluctuates wildly. Decreasing the
learning rate gives more stable behaviour, but the weight now takes much longer to
rcach its final valuc.

However, this simple analysis does not take into account the possibility of rever-
beration of the cells, not present in the mathematical simulations shown in Figure
3.2, in which during the training phase, cells are stimulated to fire as a result of activ-
ity passed to them by other cells rather than as a result of external activation. This
effect would become more noticeable as training progressed as connection strengths
increased between externally stimulated cells, and would produce the same effect as

a higher co-firing rate between the cells.

3.3 Network topology

This section describes how a network may be constructed from cells described in sec-
tion 3.1 on page 54. In each simulation 150 cells were associated with each primitive
cell assembly.

The figure of 150 was chosen as a compromise. The more cells that are present
in a cell assembly, the easier it is to maintain activity in that cell assembly when it
is activated. Also, a large number of cells facilitates the learning of cell assemblies as
the number of cells concurrently active during training increases. However, a large
number of cells does increase the running time of any simulation, and the program-
ming environments used imposed their own memory limitations. Early experiments
were carried out using networks of 400 cells. These experiments were repeated with
networks of 150 cells with almost identical results.

Cells were implemented as a one-dimensional array. Connections between cells
were assigned at random as shown in figure 3.3, other than cells were preveunted from

having any connection to themselves, as no cell in the brain has a self-connection. The
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Figure 3.2: Simulations of the adjustment of a weight in isolation for several learning

rates (n) as indicated for an cxcitatory conncction (a-d) with an initial weight valuc

of 0, and an inhibitory one (e-h) with a very small initial value, 0.001. Small learning

rates do result in the weight approaching its predicted value reasonably quickly. The

graphs shown in this figure represent a typical run.

62




External nput

| |
3 '3 r
wl,.1 :

v
Output

Figure 3.3: Connections between cells in the network

number of connections emanating from each cell varied according to the particular

experiment being carried out.

The exact behaviour of the network is determined by ten fundamental parameters.

The first six are predetermined constants for any network insofar as they are not

subject lo Hebbian learning even in experiments in which Hebbian learning was

implemented.

(]

. The number of connections per cell - the number of cells to which any given

ccll in the network provides output.

The fatigue rate - the value by which the fatigue level of any cell increases every

litne (hal it fires.

. The recovery rate - the value by which the fatigue level of any cell decreases on

every time step that it. does not fire.

The firing threshold - the activity level above which call activity causes firing,
plus fatigue.

. The retention rate - the proportion of the activity of any non-firing cell that is

retained from one time step to another.
The probability of any particular cell being excitatory.

The weights from excitatory cells to other cells within the same primitive cell

assembly.
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8. The weights from inhibitory cells to other cells within the same primitive cell

assembly.

9. The weights from excitatory cells to other cells that are within a related prim-

itive (¢.e. within a compound assembly).

10. The weights from inhibitory cells to other cells that are within a related prim-

itive.

The last four parameters are weights between individual cells. These may be pre-
determined in cases where cell assemblies are created artificially, or they may evolve
as a result of learning and repeated presentation of input patterns. Predetermined
weights are determined simply by the identities of the primitives in which the pre-
synaptic and post-synaptic cells reside. For instance, if two primitives are strongly
related within a compound cell assembly, excitatory weights between them will be
relatively high and will all have the same strength. This approach has the advantage
that individual weight strengths need not be stored as separate entities, but may be
calculated as and when they are needed. Storage of individual weight values is not a
problem in smaller networks, but the memory requirements become prohibitive when
large networks (typically more than about 1000 primitives) are implemented.

Weights between cells within primitives that do not form part of a compound
assembly are not listed as parameters since they should never fire at the same time.
Excitatory weights between such cells should therefore be 0, and inhibitory weights
set to an extreme negative value in order to discourage co-firing.

The simple learning algorithm explained in section 3.2 on page 58 predicts that
the weights from inhibitory cells should be strongly correlated to those from exci-
tatory ones. In order to simplify and accelerate the evolutionary process, in early
experiments, the inhibitory weights were automatically derived from excitatory ones,
and it was found that networks based on such weights still gave good performance.
The automatic correlation between inhibitory and excitatory weights was lifted for
the large scale experiments described in chapter 5 on page 121 in order to optimise

performance.
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3.4 Parameter estimation using a genetic algorithm

A large part of the work involves determining parameter values that promote optimal
(or near optimal) performance. An exact mathematical analysis of the problem is
beyond the scope of this thesis as any simulation based on this system contains a large
stochastic element. A lack of rigorous mathematical analysis precludes the possibility
of determining optimal values for the parameters. For this reason, it was decided to
use a genetic algorithm to determine acceptable values (see section 2.4 on page 48).
The genetic algorithm was based upon chromosomes of nine values, consisting of all
of the values listed directly above with the exception of the probability of a cell being
excitatory, which was kept at 80%. This value was chosen to mimic the proportion
of excitatory pyramidal cells believed to exist in the cerebral cortex [68]. All the
parameters were floating point numbers restricted to the range 0 ...1, except the
number of connections per cell, an integer limited to the range 1 to 50 (chosen so as
not to exceed memory capacity of the computer), and the weights from inhibitory
cells which were necessarily negative, limited to the range -1 ...0.

A population of 100 chromosomes with random values was created. The size of
the population was limited by computational tractability. Each was translated 10,000
times independently into networks of cells and these networks were assessed according
to certain criteria. In Experiment 4.1.1 on page 75, each network was run for 300
time steps and the total number of cells firing at each time step was recorded. The
score for each chromosome in this case was the average of these totals over each run,
so the genetic algorithm in this case favoured networks containing cell assemblies
that ignited quickly and persisted for a long time. In subsequent experiments, in
which combinations of primitives were used, more complex scoring methods had to
be used. For instance, in experiment 4.2 on page 80, three primitives were to be
linked in such a way that activating any two primitives was sufficient to ignitc the
third, and yet activating one single primitive was insufficient to ignite either of the
other two. It would be an easy matter to find parameter sets to accomplish either
of these tasks without the other: Large numbers of connections together with strong
excitatory weights between cells would easily allow two primitives to ignite the third,

for instance. In this situation, the 10,000 runs were divided evenly into runs in which
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two primitives chosen at random were activated and runs in which one primitive was
activated. The scoring method was to subtract the total number of undesired cells
that fired at any time step on the second type of run from the total number of cells
that fired at any time step on the first type of run. Similar scoring methods were
adopted for more complicated networks (chapter 5 on page 121).

When all the scores for each generation had been determined a simple function
was usced to breed the next. The highest scoring ten population members were re-
tained unaltered. Forty population members were created by mutating one gene
(parameter) from each of the ten retained ones. A mutation comprised the replace-
ment of the parameter by a random value within the legal range for that parameter.
Forty population members were created by crossing two of the ten retained mem-
bers. The crossing entailed choosing each parameter value in turn at random from
the two “parent” chromosomes. The final ten members of the new population were
created from totally random values within the legal range for each parameter. The
random chromosomes were chosen in order to avoid the system getting stuck at a
local maximum in the parameter space.

Repeated use of the simple genetic algorithm from completely random starting
points produced an interesting range of results, with the local minima in the pa-
rameter space being achieved within 30 generations in each case. The success rates
for each of the trials were similar, and due to stochastic variations in the test runs
themselves, it was impossible to choose a definitive “winner”. The defaults for the
six predelermined paramelers shown in Table 3.1 produced good performance, and
as a consequence, they were chosen for experiments 4.1.1 and 4.1.2 (on pages 75 and
79 respectively).

A similar approach was used to create the behaviour of the simulated cell assembly
shown in figure 2.5, which emulates the behaviour of the TRACE model [98]. In this
case, the score was derived by dividing the number of cells that fire at any given time
step by the total number of cells and then calculating the square of the difference
between this value and the equivalent value produced by the TRACE simulation
for the same time step. Chromosomes with lower summed square differences are

preferred.
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Number of connections per cell 20

Fatigue rate 0.19
Recovery rate 0.09
Firing threshold 0.95
Retention rate 0.8
Probability of excitatory cell 0.8

Weight strength between cells in the same primitive 0.44 (-0.56)
Weight strength between cells in different primitives 0.08 (-0.92)

Table 3.1: Default values of parameters. Only the weight strengths were derived from
Hebbian learning. The inhibitory weight strengths (in parentheses) were derived from
the excitatory weight strengths rather than being evolved independently

It was necessary to change the number of connections per cell as the size of the
network increased in order to ensure that the average number of connections between
cells within and between primitives remained roughly constant. This is necessary to
ensure that the primitives can pass enough activation between each other to maintain
activation. The level of activation from one primitive to another depends on the
number of connections and the weight strengths between primitives. lf the weight
strengths are kept the same as the size of the network increases, then the number of
connections must be increased to maintain the same cffect. The default value of 20
for the number of connections was determined for three primitive cell assemblies in a
simple ABC network. Increasing the number of connections per cell can be justified
biologically speaking by the fact that it has been estimated that the average number
of connections from each cell in the rat hippocampus is approximately 2000. Such
a number would clearly be impractical in a simulation due to pressures of time and
memory space given the limited resources at my disposal.

The fact that the genetic algorithm was run several times from independent start-
ing points allows general patterns to be sought. Surprisingly, some parameters that
one would expect to be strongly correlated turn out to have a weak correlation at
best, such as that between the number of connections and the excitatory weight

strength for connections within a primitive (R* = 0.0005). Appendix B on page 190
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cxplains how the significance level may be derived from the cocfficient of determi-
nation. Parameters that do have some correlation (R? > 0.1, approximately 20%
significance level) do not have an immediately obvious relationship, and this only
goes to illustrate the complex interaction between the nine different parameters and
the difficulty in producing a mathematical analysis of the system. Figure 3.4 shows
scattergrams relating to the parameters for experiment 5.5 on page 139. Comparisons
of paramcters that yiclded a cocfficient of determination (R?) of lcss than 0.1 have
not been included. In general, the small number of runs of the genetic algorithm (12)
means that only a handful of the coefficients of determination can be said with any
certainty to be significant at the 20% level or better.

The strongest correlation occurs between the firing threshold and the excitatory
weight strength between cells in different primitives, with a coefficient of determina-
tion of 51% (figure 3.4(a)), significant at the 1% level. One would generally expect 2
positive correlation between these due to the tight constraints on the energy passed
between primitives for correct behaviour. In the 3-4 networks implemented in ex-
periment 5.5 on page 139 a primitive should ignite when receiving energy from three
designated primitives, but not when receiving energy from only two of those three.
This places an upper and lower limit on the incoming activity energy required to ig-
nite the primitive. As the excitatory weight strength for inter-primitive connections
increases, the firing threshold must increase similarly to accominodate the incrcased
energy entering the priwitive. If it does not, then the number of cells firing in the
primilive increases, and Lhis can cause runaway aclivily.

These graphs should not be confused with those shown in figure 4.6 on page 85.
Those show how the variation of two parameters affects success rate while the others
remain constant, whereas the graphs shown in figure 3.4 represent different sets of
parameters. Nevertheless, the graph in figure 4.6(c) does show a similarity to figure
3.4(f).

This explanation also accounts for the correlation between the number of connec-
tions per cell and the excitatory weight strength of inter-primitive connections (figure
3.4(f)). The energy is a function of the inter-primitive weight strengths, both excita-

tory and inhibitory, and the number of connections between cells (a reflection of the
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total number of connections between primitives). Table 5.2 on page 140 shows that
the genetic algorithm settled on inhibitory weights close to zero, so the total energy
is approximately proportional to the product of the excitatory weight strength and
the number of connections. Given the tight constraints on energy, as the number
of connections increases, the weight strength should decrease. One would therefore
expect a negative correlation and this does turn out to be the case. A similar argu-
ment can be made for the fairly strong ncgative corrclation between the number of
connections per cell and the retention rate. The higher the retention rate, the easier
it is for a cell to achieve the activation level necessary to fire and the easier it is for
a primitive to ignite.

Figure 3.4 suggests that one parameter value is more critical than the others.
Although the genetic algorithm was repeated several times, the excitatory weight
strength between cells always evolved to a small range of values, centred around
approximately 0.08. The other parameters evolved a wider range of values. Interest-
ingly, the excitatory weight between cells in different primitives has relatively little
correlation with the number of connections between cells. Equation 4.1 on page 97
shows that the total activation “energy”. loosely defined as the total excitatory signal
strength, transferred between primitives is approximately proportional to the prod-
uct of these two parameter values. One would expect that increasing the number
of connections per cell while keeping the excitatory weight strength between prim-
itives roughly constant would increase this activation energy and lead to runaway
aclivalion. However, a slalistical analysis ol the aclivalion energy arriving al each
cell showed that the primitives were ignited by relatively few cells within them, cells
which through stochastic variation happened to be well connected. I term these cells
“lucky neurons”. The destinations of connections are assigned randomly throughout
the network with the result that some cells have more incoming connections than
others. These cells are therefore activated more readily as they generally receive
more incoming energy than less well connected cells. Activating only a few of these
lucky neurons (typically between 10 and 15) within a primitive is enough to ignite
it. A trial of 10,000 runs shows that they occur in most runs (more than 95%)

and that their presence spoils any relation that one might expect to exist between
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mated for one cell assembly network. The significance levels of the coefficients of

determination are listed in table B.2 on page 192.




number of connections per cell and the excitatory weight strength between cells in
different primitives. The presence of councctious from cells to themsclves would tend

to increase this problem, but care was taken not to implement such connections.

3.5 Summary

This chapter formalises some of the concepts described in chapter 2 on page 31 in
more mathematical terms. Hebb did not formulate his theory as a set of equations,
which gives a degree of flexibility. Section 3.2 on page 58 gives a set of equations both
for updating weight strengths to take account of co-firing of cells and to propagate
activity from one cell to another. These give adequate performance, as will be shown
by later experiments. The equations predict that weight strength will correspond to
the percentage of occasions on which both the presynaptic and postsynaptic cells fire,
and a simulation shows that this does generally occur more or less.

The last scction of the chapter outlines the cssential features nccessary to get
a simple cell assembly working. These can be reduced to nine parameters values
which co-operate to give the required behaviour. Determining the optimum param-
eter values is beyond my capabilities and the parameter space is too large to be
searched exhaustively, and the complex interaction of parameters defeated my mea-
gre mathematical attempts to calculate the optimum values. However, the nature of
the problem readily lends itself to solution by a genetic algorithm, and repeated use
of such an algorithm produces several solutions all essentially as good as each other.
One such evolved parameter set, that for a 2-3 network has been given for illustration
purposes. Networks of primitives in subsequent chapters become more complex and
different parameter values are required, but the same basic genetic algorithm method
can be used with slight adaptations. It is a simple matter to rerun the genetic algo-
rithm several times with the appropriate scoring system and to choose a parameter
set from those produced.

The next chapter takes this small working cell assembly and incorporates it into

nelworks of ever increasing complexity.
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Chapter 4

Experiments on small associative

memories

This chapter describes the initial work based on the model described in chapter 3
on page 53. Firstly, it is established that a cell assembly can be created in a small
network and that it demonstrates the properties listed by Sakurai (section 1.1 on
page 4) as being the essential properties of cell assemblies. Then larger networks are
constructed in which a number of primitives can be set up and connected in such a way
that they form compound assemblies. The properties of these compound assemblies
are then investigated. Section 4.8 on page 106 describes experiments performed to
determine the effect of spontaneous activation of cells on the size and reliability of
cell assemblies. Spontaneous activation encourages dynamic growth and reduction
in cell assemblies, and may prove to be a useful tool in reconfiguring networks of
competing assemblies to improve overall performance.

The simplest way to construct cell assemblies is to specify the strengths of the
weighted connections in advance to suitable predetermined values. These have been
established already by a genetic algorithm, described in section 3.4 on page 65. How-
ever, one of the strengths of Hebb’s original cell assembly theory is that the assemblies
can come into existence as a result of connections adapting themselves in response
to cells co-firing. The ability to learn new cell assemblics is therefore a powerful cle-
ment of cell assembly theory. For this reason, an experiment is described that allows

weight strengths to be learned, and this establishes that a simulated network of cells
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can indeed learn simple cell assemblies. Later experiments did not include learning
simply due to pressure of time and resources. There is no reason, in principle, why
hierarchies of cell assemblies cannot be learned in a similar way to small networks of
cell assemblies.

One of the criticisms that Milner [134] levelled at the cell assembly concept is
that he could not understand how the connections within cell assemblies differed
from thosc linking asscmblics representing linked concepts. He implied that such
assemblies would merge into one large assembly. Hebb [75] provided a possible solu-
tion to this, stating that cell assemblies linked within a concept can also be ignited
independently, indeed they may take part in several other linked concepts. In this
way, connections within assemblies differ in strength from those between assemblies.
The experiments carried out in this chapter demonstrate that this is indeed the case.
The learning process automatically establishes stronger connections within assem-
blies than between them, enabling them to be ignited independently of each other
and any super-grouping of assemblies.

The network model implemented in these experiments was the one determined
in chapter 3 on page 53. Initial experiments prove that isolated cell assemblies, the
so-called primitive cell assemblies, can exist in the network of cells, and that they
demonstrate the essential properties of cell assemblies as listed by Sakurai [154].
Further experiments show that primitive cell assemblies can participate in groups of
primitive cell assemblies, termed 2-3 cell assemblies, as any two participating prim-
itive cell assemblies are enough Lo activale the third. The last sel ol experiments
shows how one 2-3 cell assembly interacts with others and how problems can arise
due to erroneous activation of primitive cell assemblies.

One other important aspect in which the simulated cell assemblies behave is also
investigated, specifically the effect of spontaneous activation of cells on size of cell
assemblies. It is believed that cells in the cortex sometimes fire spontaneously rather
than as a result of incoming signals from other cells [170, 188]. Experiments are
described showing that spontaneous firing of cells on the edge of an existing cell
assembly coupled with learning allows the cell assembly to expand in size. Such an

effect can also be responsible for the dissolution of cell assemblies, roughly analogous
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to forgetting, or cell assemblies splitting into two, which may be thought of as a
concept becowing more specialised (“animwal” iuto different types of amimal such
as “dog”, “dog” into different breeds of dog). Such splitting has some bearing on
the possibility of hierarchies of cell assemblies, the other area of research described
in this thesis, as the resulting splinter cell assemblies originally had strong mutual
connections, and yet can now be ignited independently.

Onc problem cneountered is that of determining whether a particular ccll asscmbly
is activated or not. The activity of a cell assembly may be determined easily by
counting the number of cells within that cell assembly that fire at any particular
time step, but experiments show that cell assemblies tend to follow a continuum of
activation, from complete inactivity in which no cells fire, to highly active in which,
typically 40% of the cells fire at any particular instant. At what point should the
cell assembly be declared active? There is no one correct answer to this question,
but in order for the success or failure of an experiment to be determined, a threshold
must be decided upon. It was found in experiments described in later chapters that
primitives that did not ignite still demonstrated a small amount of activity, with
up to 4 or 5 cells firing at any time step. For this reason, I have chosen to set an
activation level of 10 of the cells within a primitive, i.e. if 10 or more of the cells
comprising any cell asscmbly fire at any time step, that cell assembly is decmed to
be active. This gives a small margin of error over the “noise” level present in inactive

primitives.

4.1 One primitive Cell Assembly

The experiments described in this section demonstrate that the parameters derived
by the genetic algorithm (section 3.4 on page 65) are indeed sufficient to sustain
activity in a network of cells. To achieve this, the network had to sustain activity
in at least 10 of its cells for at least fifty time steps. Early experiments were carried
out using networks of 400 cells, but these were later repeated using 150 cells, with
a view Lo scaling experiments up later. Although a primitive of 400 cells can easily

be simulated in a personal computer, networks with many primitives the same size
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Figure 4.1: Network activity for one primitive cell assembly for different excitatory
weight values (labelled). The dotted line shows the 10 cells level above which the cell

assembly is considered active.

would require a great deal of time and hence be impractical. The results for 400 cells
essentially duplicated those for 150 cells, reported here.

4.1.1 Establishment of a single assembly

An experiment was carried out on a network of 150 cells in which one primitive cell
assembly was developed. The parameter values, determined by genetic algorithm,
are shown in table 4.1 on page 77, with the weights from inhibitory cells having been
determined automatically by those from the excitatory ones (section 3.2 on page 58).
There were, of course, 1o connections between cells in different cell assemblies. Figure
4.1 shows the mean number of cells firing iu the network for cach of 300 tine steps, for
each of several different excitatory weight values. In each case the inhibitory weights
were the negative equivalents of the excitatory weights.

Figure 4.1 shows us that cell assembly activity follows a continuum, with exci-
tatory weights above 0.4 leading to cell assembly activity that persists for lengths
of time that increase with excitatory weight. Extending the experiment beyond 300
time steps shows that for weights below 0.46, all cell assembly activity does eventu-
ally die out, whereas excitatory weights above 0.46 lead to activity that persists even

beyond 300 time steps. It should be emphasised that these results are not general

75




- they apply only to this part of the paramcter space. An entircly different part of
the paramcter space may well give entirely different results. Coincidentally, the most
appropriate excitatory weight is reasonably close to the weight value predicted by
the cell co-firing rate of 40% (section 3.2 on page 58).

It is interesting to compare the excitatory weight value for this experiment with
that in table 3.1 on page 67. 0.44 is considerably lower than 0.5. The value of excita-
tory weight strengths differs depending on the cxact circumstances of the experiment.
In this case, there is no danger that one cell assembly will accidentally ignite another.
The weights given in table 3.1 assume a 2-3 compound assembly. The high excitatory
weight strength for connections within a primitive occur due to the “lucky neuron”
effect (see section 4.6 on page 95) by which a few cells within a primitive fire and
are responsible for igniting the assembly as a whole. 0.44 is the optimal figure to
give assembly activity that dies out after a few tens of time steps. This restriction
had to be dropped for later experiments, particularly those involving large number of
primitives, in which the problem of finding suitable parameter values become much
harder.

While 0.44 is low compared to 0.5, it is quite high when compared to the preferred
value of 0.08 in experiment 4.2 on page 80. In experiment 4.2, a network of three
asscmblics were connected in such a way that activating any two primitives is sufficient
to ignite the third but activating only onc is insufficient. Such a configuration puts
extra constraints on the range of the weights between primitives.

The weight strength is also influenced by the number of connections between
the cells. The genetic algorithm in this case preferred 6 connections between cells,
relatively low compared to numbers of connections in later experiments. Loosely
speaking, one can consider a total signal level passing between cells within a cell
assembly, which is approximately proportional to the product of the number of con-
nections and the mean weight between cells, i.e. proportional to ¢(EW + (1 — E)w).
This signal level can be maintained as the number of connections between cells is re-
duced by increasing excitatory weight strength and/or moving the inhibitory weight
strength towards 0. However, experiments show that, in a single cell assembly that

ignites reliably, the relationship between ¢ and W is not one of simple inverse propor-
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Variable Variable name Default value
It Number of connections from each cell 6

P Probability of any cell being activated

externally on any given time step 0.4
T Total number of time steps

involving external activation 10
N Total number of cells (per primitive) 150
Ny Number of cells that fire on average per

time step during first 7" time steps 60
E Proportion of cells that are excitatory 0.8

W Weight to each destination cell from

each excitatory cell 0.44
w Weight to each destination cell from
each inhibitory cell -0.56

Table 4.1: Definition of variables with default values.

tionality, and illustrate that the relationship between the parameters is a complicated
one.

Figure 4.1 does show two interesting features. Firstly, in the first ten time steps,
the number of cells that fire fluctuates wildly. Investigation shows that this is a side-
cffect of fatigne. The external activation of the cell assembly is intense and causes a
large numnber of cells to fire (although not 40% of the cells as might be expected). The
fatigue of these cells increases by 0.19, which prevents the cclls firing the next time, as
the activity minus the fatigue cannot exceed the 0.95 firing threshold. Cells recover
at roughly half the rate at which they fatigue, so after a further two time steps, a
cell has recovered sufficiently to fire. This suggests that the pattern of firing in the
first two time steps should follow a roughly repeated pattern with frequency three
time steps. Figure 4.2 shows the first ten time steps of figure 4.1 in detail, in which
such a pattern is clear. Experiments show that varying the ratio between fatigue rate
and recovery rate does result in patterns of different frequencies appearing, although

different ratios do not generally permit persistence of activity beyond the period of
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Figure 4.2: First ten time steps in detail. The pattern of activation is almost identical

for a variety of excitatory weight strengths between 0.4 and 0.5.

initial stimulation.

Additional experiments showed that adjusting fatigue rate and recovery rate could
lead to other frequency patterns appearing. For instance, a fatigue rate and recovery
rate of 0.21 and 0.07 respectively led to a peak in the cell activity approximately
every fourth time step. Of course, there are limits to the frequency patterns that can
be set up, not only because there are only 10 time steps in which they can manifest
themselves, but also because too high a fatigue rate or too low a recovery rate prevents
rcliable ccll assembly activation. If too many cclls fatigue on any time step, there are
not enough available to [ire on the next time step and cell assembly activation risks
dying out all together. Extending T showed that the frequency pattern generally
persisted, but T was generally kept at 10 time steps for reasons explained in section
4.2 on page 80.

There is little point in reporting a percentage success rate [or this experiment,
since it is a trivial matter to adjust parameters so that the single assembly ignites
on cvery trial. It is not sufficient, however, simply to raise the excitatory weights
between cells to their maximum value. Such a strategy simply cause large numbers
of cells to fire, and then fatigue simultaneously. The small number of cells capable
of firing on the next time step is usually incapable of sustaining sufficient activity

to persist while the fatigued cells recover. However, on a few occasions, the “lucky
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ncuron” cffect (section 4.6 on page 95) docs permit activity to persist.

4.1.2 Can weights be learned?

The next experiment investigated whether weight values could be learned. In this
experiment, all excitatory weights were initialised to random values between 0 and
0.4, and all inhibitory weights to random values between -0.4 and (0. The external
stimulus was identical to that in Experiment 4.1.1 on page 75. Hebbian learning took
place at the end of each time step for all time steps in each program run. Parameter
values were identical to those in Experiment 4.1.1, with the exception of the weight
values, of course.

Figure 4.3 shows the average weight values, both excitatory and inhibitory, after
each time step, with weights being initialised to zero in all cases. As explained in
section 3.2 on page 58, activating cells with a probability of 0.4 encourages excita-
tory weights to tend towards 0.4 and inhibitory ones to -0.6, the negative equivalent
weight, although this trend ignores the possibility of fatigue, which reduces the proba-
bility of cclls firing together. and reverberation, in which cells activate others thereby
increasing the excitatory weight between them. The results show that weights do in-
deed converge approximately on the predicted values. In fact, increasing the number
of time steps shows that the weights converge on approximately 0.48 for excitatory
weights and -0.55 for inhibitory weights, and the difference between these and the
predicted values may be ascribed to the reverberation effect. Another possible cause
is the lucky neuron effect.

Experiments 4.1.1 on page 75 and 4.1.2 show that a simple primitive cell assembly
can exist within the network of cells specified, and that it fulfils the general prediction
about the weight values. Parameter values in a single cell assembly are less rigidly
controlled than in systems containing more than one assembly, as the only purpose
of the assembly is to ignite. Provided the excitatory weights are sufficiently high,
this is almost guaranteed to happen. Too high a weight does cause activity to persist
indefinitely, but there is no theoretical reason why assembly activity should not do
this. The next stage is to start combining primitive cell assemblies to investigate

whether they can form compound 2-3 cell assemblies, the simplest form of compound
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Figure 4.3: Adaptation of weight strength with time. The graph shows the mean
value of weights from excitatory and inhibitory cells over 100 different training runs

after given numbers of time steps. All weights were initialised to 0.

cell assemblies.

4.2 Three primitive cell assemblies

The experiment described in this section investigated whether a combination of two
primitive cell assemblies could be used to activate a third, with each being unable
to activate the third individually. Such a combination represents the simplest pos-
sible compound cell assembly, as any simpler one could not be considered to be a
combination of primitives. A combination of two primitives in which activating one
was sufficient to ignite the other would in effect be one single primitive cell assemnbly.
Hebb |75 (p. 105) specifically stated that cell assemblies should behave in this way,
with one single assembly being incapable of igniting another except in the presence
of a third.

This problem is substantially harder than the one in experiments 4.1.1 and 4.1.2
(on pages 75 and 79 respectively). If excitatory weights between cells in different
primitive cell assemblies are too low, a combination of primitive cell assemblies will
not provide enough activation energy to activate the third. However, if weights are

too high, activating a single primitive ccll assembly will lead to runaway activity
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Weights from excitatory cells within a primitive cell assembly | 0.5

Weights from inhibitory cells within a primitive cell assembly | -0.5

Weights from excitatory cells between primitive cell assemblies | 0.08

Weights from inhibitory cells between primitive cell assemblies | -0.92

Table 4.2: Weight settings for the ABC 2/3 network.

throughout the network. Such uncontrolled activity may be thought of as analogous
to epilepsy in the human brain.

A network of 450 cells was used, with 150 assigned randomly to each primitive cell
assembly. Global parameter settings were the same as those for experiment 4.1.1 with
the exception of the number of connections per cell and the weight strengths. Since
the number of primitives had increased from one to three, the number of connections
had to increase as well to maintain the general level of connectivity. A simplistic
approach would involve maintaining all parameters at the same level as in experiment
4.1.1 and just scaling up the number of connections. Another approach is to use a
genetic algorithm to determine the optimal values of the weights (see section 2.4 on
page 48), with the scoring function described in section 3.4 on page 65. The genetic
algorithm revealed that setting the weights from excitatory cells to others within the
same primitive cell assembly to 0.5 (and the corresponding weights from inhibitory
cells to -0.5), it was found that the number of connections could be kept at 20 per
cell. This produced more reliable results than increasing the number of connections
per cell.

The best weight settings that were obtained are shown in Table 4.2.

Figure 4.4 shows the results of one trial run of Experiment 4.2, which involved the
activation of just one primitive cell assembly. It shows that the activated cell assembly
maintains a roughly constant level of activity, while not producing any substantial
activity in the other primitive cell assemblies. Extending the number of time steps
beyond 300 shows that the number of cells firing gradually decreases, reaching zero
after approximately 2000 time steps. Figure 4.4 shows that the activity levels of
the activated primitive fluctuate rapidly as the cells fatigue and recover, although
analysis using MATLAB was imable to find an underlying frequency pattern to these
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Figure 4.4: Result of activating a single primitive cell assembly (A in this case) out of
3. Although there is trace activity in the other primitive cell assemblies (B,C), they

remain essentially inactive. Activating B only or C only produces a similar graph.
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Figure 4.5: Result of activating 2 primitive cell assemblies (A and B in this case) out
of 3. C activates within a few time steps and maintains roughly the same activation

level as A and B. Activating A and C, or B and C produces a similar graph.

fluctuations. Experiment 4.2 was repeated 10,000 times and it was determined that
the average number of cells that fire per time step was approximately 40 for the first
100 time steps. Figure 4.5 shows a run in which two primitives provided enough
activity to ignite the third. Repetition of the experiment shows that this is a general
result. With the weights set as in table 4.2, activating any two primitives is sufficient
to ignite the third, but activating onc primitive is not. The different possible outcomes
for each run are shown in table 4.3.

Figure 4.6 shows the compromise chosen as regards the two most important pa-

rameters governing the behaviour of the network, i.e. the number of connections
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One primitive active:

Primitive remains active | 96.7%

Primitive dies out quickly | 1.4%

Other primitive(s) ignite | 1.9%

Two primitives active:
All three primitives active 99.3%

Third primitive fails to ignite | 0.5%

All activity dies out 0.2%

Table 4.3: Outcomes of experiment 4.2

per cell and the excitatory weight strength between cells. Large numbers of connec-
tions and/or strong weights encourage two activated primitives to ignite the third,
whereas low numbers of connections and/or weak connection strengths discourage
a single activated primitive from igniting either of the others. Figures 4.6(a) shows
the probabilities of one single active primitive remaining active while not activating
another for given values of each of the two parameters near the optimum chosen by
the genetic algorithm. Figure 4.6(b) shows the probability of two primitives igniting
the third for the same part of the parameter space.

Experiments showed that the most critical two parameter setting were the weights
from excitatory cells to those in other cell assemblies and the number of connections
per cell. Figure 4.6 shows the result of varying these parameters around the default
values shown in Table 4.2. These figures illustrate that the relationship between these
two factors is a complicated onc. The probability that activating onc primitive ccll
assembly will cause activity to persist only in that cell assembly has a maximum
when the number of connections is about 19 provided that the excitatory weights are
not greater than about 0.06. With a greater excitatory weight or a greater number
of connections, activating the primitive cell assembly causes saturation in the entire
network. With fewer connections per cell, the primitive cell assembly is incapable
of sustaining activity. However, the picture is simpler when considering activating
two primitive cell assemblies. In this case, saturation is the desired condition, and

the probability of it happening increases with increasing number of connections and




increasing excitatory weight. The parameter values used in the other experiments
represented a compromise condition - slightly sub-optimal in both cases. A rough
estimate of the optimal parameter settings can be found simply by multiplying the
two probabilities, as shown in figure 4.6(c). The graphs show a fairly rapid drop
in the success rate in each of the two firing situations if one moves away from the
optimal parameter settings in almost all directions, indicating that the system is not
robust as rcgards these paramcter scttings. A slight ridge in the paramcter space
is evident, favouring low numbers of connections with high excitatory weights and
vice-versa. The optimal setting is close to the centre of figure 4.6(c), although it does
not offer much of an improvement above the regions immediately contiguous to it.
It was found that the reliability of assembly ignition depended on the value of 7',
the number of time steps for which external activation was provided. For T' > 10
activating two primitives externally caused the activity in the third to peak and
then die out rapidly in a significant number of cases. This effect was attributed to
certain crucial cells in the destination primitive (so-called “lucky neurons”, section
4.6 on page 95) being repeatedly stimulated to the point where they could not recover
rapidly enough from fatigue to maintain assembly activity. This effect was stochastic,
but the number of lucky ncurons was sufficiently large in any destination assecmbly
to make it a considerable problem. This was one reason for choosing T' = 10 time

steps.

4.3 Five primitive cell assemblies

The next stage of complexity is to construct a network containiug five primitive cell
assemblies, termed A, B, C, D and E. There is little point in constructing a network
with four primitives since such a network could only support one 2-3 compound
assembly. Parameters remain the same as for previous experiments - there is no
reason to change them - except that the number of connections per cell is raised from
20 to 34, an increase in the approximate ratio 5 : 3. This allows the same average
number ol connections [rom one primitive Lo another as the number of primilives has

been increased. It was found that such an increase allowed one single primitive cell
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Figure 4.6: Varying weight strength from excitatory cells to those in other primitive
cell assemblies. (a) shows the probability that activating any single primitive cell
assembly results in activity in that cell assembly persisting and no other primitive cell
assemblies are activated. (b) shows the probabilily that activaling two primitive cell
assemblies results in the third becoming activated. Both of these outcomes constitute
success in terms of the experiment. (c) shows the product map of the two grids giving
an indication of suitable combinations that are most likely to lead to success in both

cases. The probability ranges are shown by the key.
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(a)

Figure 4.7: Possible coufigurations for (a) five prituitives and (b) six primilives.

assembly to activate two others erroneously, unless the excitatory weight between
cells was reduced to 0.06, with the inhibitory weight strength being the negative
equivalent.

It is a trivial matter to set weights between cells in order to implement two 2-3
cell assemblies, e.g. ABC and CDE, which must share one primitive cell assembly in
common, as shown in figure 4.7(a). Each 2-3 cell assembly obeys the same principles
as derived in section 4.2 on page 80, i.e. activating only one cell assembly fails to
activate the entire 2-3 cell assembly, but activating any two of the three is sufficient.
Other researchers have shown that multiple cell assemblies can exist in which cells
participate in more than one assembly [91].

Howecver, additional issucs arisc concerning the interaction of the 2-3 ccll assem-
blies. Cell assemblies A and B should inhibit the activation of D and E and vice-versa
in order to avoid saturation throughout the entire network, so the inhibitory connec-
tions between them should be set to the minimum value (-1) and the excitatory ones
to 0. The question then arises as to which cell assemblies would activate if some
unexpected combination, such as A and D, were stimulated. One possibility is that
one of these would de-activate the other, another is that they would activate C, the
common ccll asscmbly, and that would lcad to the activation of cither ABC or CDE.

Experiment 4.3 was carried out in order to confirm the feasibility of two overlap-
ping compound cell assemblies. A network of cells was constructed, 150 cells to each
primitive cell assembly. Each cell was given 35 connections in order to ensure that
the average number of connections between the cells in each primitive and those in

any other primilive was approximaltely (he same as in previous experiments. Excila-
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Figure 4.8: Activating primitives A and B in a network containing primitives A to
E causes C to activate reliably and negligible activation in D and E. Similar results

occur when D and E are activated.

tory weights were 0.5 between cells in the same primitive cell assembly, 0.06 between
cells within the same compound cecll assecmbly (c.g. between cells in primitive A
and those in primitive B), and 0 between cells in unrelated primitive cell assemblies
(e.g. between cells in primitive B and those in primitive E). Inhibitory weights were
set accordingly: —0.5 between cells in the same primitive, —0.94 between cells in the
in same compound cell assembly, and —1 between cells in unrelated primitive cell
assemblies. The results of experiment 4.3 are shown iu figure 4.8.

However, an interesting result occurs when two conflicting primitives are acti-
vated. Figure 4.9 shows a typical result when primitives A and D are activated.
Since these primitive cell assemblies are not present within a 2-3 cell assembly, they
have strong inhibitory mutual connections. It is expected that one of these primi-
tives should tend to shut the other one down. In this particular case, D reduces the
activity in A, although repeated experiments indicate that each outcome is equally
likely. However, figure 4.9 shows that the primitive cell assembly connected to both
activated ones, namely C, is rapidly ignited. This often leads to the completion of
one 2-3 cell assembly, which in turn shuts down the rogue primitive cell assembly
more quickly. In this experiment, A and D both provide half the activation that C
requires to ignite. In principle, this could either ignite ABC, or CDE. However, by
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Figure 4.9: Activating two conflicting primitive cell assemblies, here A and D, causes
one to be suppressed, but not before activating the primitive cell assembly to which
they are both connected, C. This leads to the completion of 2-3 cell assembly CDE.
B remained completely inactive throughout this experiment, and has not been plotted

in order to save space.

this stage, D is more active than A, so CDE often ignites. The presence of D and
E together shut A down completely within a few time steps of C igniting.

Figure 4.10 shows the result of activating the mutually connected primitive cell
assembly and any one other, eg. C and E. In this case, D is activated almost
immediately, and A and B not at all. Although A and B receive half the necessary
activation, the presence of both D and E are enough to suppress them completely.
In many ways, this experiment echoes the one in which A and B were activated. The
results are the same, with one 2-3 cell assembly active and no activity in the other

primitive cell assemblies.

4.4 Six primitive cell assemblies

Experiment 4.3 on page 84 showed that a network of five primitive cell asscrnblies
could bc constructed, and could contain two compound ccll asscmblics. In this scc-
tion, I demonstrate that increasing the number of primitives adds problems in the
form of erroneous ignition of compound cell assemblies.

In experiment 4.4, an extra primitive, termed F', was added to the network and the
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Figure 4.10: Activating C and E causes the activation of D but no activation of A
and B. A similar effect occurs when C is activated with any other primitive cell

assembly.

number of connections per cell was scaled up to 40. 2-3 cell assemblies ABC, CDE
and ADF were constructed, as shown in figure 4.7(b) (page 86). This combination
of compound assemblies was chosen as no combination of two primitives appears
in more than one compound assembly. Parameters were kept as in the previous
experiment. The experiment was carried out to test the different possible outcomnes
of the network containing six primitives. The situations tested were as follows, with
persistence being defined as activity above the 10 cell threshold for a chosen time
of at lcast 30 timec steps beyond the point where external stimulation is removed.
Each numbered situation involved 10,000 trials, with suitable externally activated
primitives being chosen at random (e.g. for situation 1, in which a single primitive

is activated externally, each primitive had an equal probability of being chosen.)

1. One primitive is activated externally. Success occurs if the activity in the

primitive persists without igniting any other.

2. Two primitives present in a 2-3 assembly are activated externally. Success

occurs if they ignite the third without any erroneous ignition.

3. Two primitives not present in the same 2-3 assembly are activated externally.

Success occurs if either one shuts the other down, or if activity in both dies out.
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Situation tested | Success rate
1 97.14%
2 51.10%
3 99.13%
4 23.07%

Table 4.4: Success rates for networks of six primitives for weights determined by

genetic algorithm.

4. Two 2-3 compound assemblies sharing a single primitive are activated externally
(e.g. ABC and CDE sharing primitive C). Success occurs if one of the cell
assemblies persists but the other does not, and if the sixth primitive (¥ in this

case) does not ignite.

It was confirmed that any single primitive cell assembly maintained its own ac-
tivity when activated, but was in the vast majority of cases incapable of activating
any others, and that, in general, two primitive cell assemblies of a 2-3 cell assembly
did activate a third to form a stable 2-3 assembly, although the assembly ignited was
not always the expected one. The exact success rates are shown in table 4.4,

The large drop in the success of the system for situation 2 can be explained as
follows. Primitive cell assemblies in a 2-3 cell assembly activate when they receive
hall the necessary energy [rom each of the other two participants. Although il might
seem that this energy is delivered by a range of connections from the contributing
primitives, in practice, it involves the firing of only a few neurons, which I term “lucky
neurons” (section 4.6 on page 95). When A and D are activated, F receives enough
energy to activate, as intended in ADF. However, C receives half the activation
energy from A (in ABC) and the other half from D (in CDE). There are strong
inhibitory links between C and F, since they are not within a pre-programmed 2-3
cell assembly, so we would expect either one of them to shut the other one down.
In practice, the one that ignites first simply prevents the other igniting in the first
place. This means that activating A and D leads to a 2-3 cell assembly, either ADF
(with no activity in C) or ACD (with no activity in F), with each outcome being

approximately equally likely (see Table 4.5). Figure 4.12 shows two typical program
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Figure 4.11: The excitatory and inhibitory connections for an ABC, CDE, ADF
arrangement. Excitatory connections are shown by solid lines, inhibitory ones by
dashed ones.

runs, in which both these oceur. However, the graphs shown in figures 4.12(a)-
(d) are an example of a “clean” run, in sense that no further ignition occurs. In
approximately 15% of cases in which C is erroneously ignited, further ignition does
oceur.

The combination ACD does not represent a designated cell assembly, and this
can lead to [urther change. The tendency for A and C to ignite B can lead to a tem-
porary state in which A, B, C and D are all active. The strong mutually inhibitory
connections between B and D invariably lead to activity in one of them dying out.
The final result of activating A and D is therefore one of three possible 2-3 compound
assemblies: ABC, ADF or ACD, the last of which is not even designated by the
connections. Although a complicated sequence of primitive activation occurs when
C ignitcs in this casc, the activation pattern when F' ignites is morce straightforward.
In this case, there is no erroneous ignition.

The relationships between the primitives is best summarised in figure 4.11, in
which solid lines represent excitatory connections and dashed lines inhibitory ones.
The 2-3 assewnblies are represented by the triaugles of solid lines. The figure shows
that the unintentional assembly ACD has been stored. Activating A and D can
therefore ignite C or F', but is unlikely to ignite B or E directly. The inhibitory
connections mean that ABC or CDE are unlikely to be ignited, although this may
happen as a result of further interactions between primitives.

A similar problem occurred when A and C were activated. In this case, either
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Qutcome Percentage occurrence
ABC 12.22%
ADF 48.71%
ACD 38.91%
Neither C nor F' activated reliably 0.16%

Table 4.5: Percentage likelihood of possible outcomes when ABC, CDE and ADF
are present in a network and A and D are activated. This can lead to one of three
compound asscmblics being activated, onc of which is not cven designated by the
connections. The figures are based on 10,000 trials.

B or D activated, due to the connections in CDE and ADF. Although activating
two related primitives did invariably lead to a stable 2-3 compound assembly being
ignited, the uncertain identity of the third primitive led to approximately half of the
situation 2 trials being classificd as failures. This continual ignition and suppressing of
primitives does, however, open up the possibility of sequential information processing,
in which primitives “battle it out” to reach an optimal solution to a problem, in a
similar manner to the Sharks and Jets network described in chapter 1 on page 2.

A related problem occurred when A and F were activated. In this case, D acti-
vated, because of the connections in the cell assembly ADF, which led to primitive
C receiving some activation. However, in the great majority of cases, activity in C
did not build up to appreciable levels, as F' was active and fully established by that
point.

Situation 4 has a surprisingly low success rate. It was found that activating five
out of the six primitives almost always led to runaway activity in the entire network
followed by primitives dying out in an unpredictable way. It is reasonable to infer
that the excitatory contributions from five of the primitives to the sixth outweigh the
inhibitory contributions from fewer than five primitives. This usually leads to the

ignition of the sixth primitive within a few time steps.
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Outcome Percentage occurrence

One active primitive persists alone 20.09%

Erroneous ignition in other primitives 79.91%

Table 4.6: Increasing internal excitatory weight strengths from 0.5 to 0.52 causes

single primitives to persist, but also allows erroneous ignition of other primitives.
4.5 Assembly persistence

One of the essential criteria of a simulated cell assembly is that activity should persist
beyond the point where the external simulation is removed. This is easy to achieve in
networks containing one single assembly as internal excitatory weight strengths can
be set high enough to allow activity to persist indefinitely. Indeed, connections can
be set to give a wide range of persistence times, although it is not a simple matter
to predict the persistence time from the parameter settings.

The problem of persistence only becomes an issue when more {han one primitive
assembly interacts. It is still possible to set connections for an assembly to persist for
a long time, but extended persistence increases the likelihood of erroneous ignition
of other primitives. It is perfectly possible that the main reason that primitives are
not ignited by the wrong combination of active primitives is that their activity dies
before erroneous ignition is possible. The parameter set used gives assemblies and
combination of assemblies that persist for between 50 and 250 time steps after the
external stimulus has been removed, with the mean value being about 150 time steps.
Given the same scale as in Figure 2.6, 150 time steps corresponds to about 1500ms.
Figure 4.1 on page 75 shows that increasing the excitatory weight values within a
primitive can be used to increase the persistence of a cell assembly, so in order to test
the long-term effects of assembly activity, the weight was increased from 0.5 to 0.52.
It was found that in a substantial number of trials, one active primitive was sufficient
to cause ignition of others after approximately 200 time steps. Results are shown
in table 4.6. When two primitives received external activation, erroneous ignition
occurred in every single case.

The parameter set favoured by the genetic algorithm results in a network balanced

on a knife-edge, between the death of activity in a primitive and uncontrolled ignition.
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An analysis of the activity levels of cells indicates that there is a gradual build-up of
activity in cells even in primitives that do not ignite. With excitatory weights of 0.5,
the decay of each cell is suffident to remove the build-up of activity before it tips the
cell over into firing. With weights of 0.52, the cell is more likely to fire than not.

4.6 The lucky neuron effect

In the experiments described in previous sections, the excitatory weights between
related primitives in a compound cell assembly are small. Generally the best results
were obtained with weights less than 0.1. The inhibitory weights were set to the
negative equivalent of this, i.e between -1 and -0.9. The magnitude of each inhibitory
weight is therefore at least nine times as great as that of the excitatory ones. This
means that although excitatory connections outnumber inhibitory ones by four to
one, the average connection strength between primitives is negative. Experiments
show that the total energy delivered by each externally stimulated primitive to each
of the other primitives during the ten time steps of external activation has a mean
value of -352 (o = 408).

So why do the primitives activate at all? An experiment showed that the des-
tinations of the connections from the inhibitory cells did not cover the cells in any
primitive completely and evenly, and that a mean of 17.11% (0 = 2.26%) of the cells
activated received enough positive activation to fire when any one primitive was ac-
tivated by two others, but that only 11.50% (o = 0.44%) received sufficient energy
with only one contributing primitive. The high excitatory connections (0.5) of cells
within a primitive were sufficient to sustain activity in the former ase, but not in
the latter case. 11.50% corresponds to approximately 17 cells, enough to declare a
primitive ignited, but the fatigue rate to recovery rate ratio of 2:1 has the effect of
cutting the average firing rate of these cells by a factor of 2. Curiously, the percentage
of cells activating does not double when the number of contributing primitives rises
from one to two, and this can be attributed to the fact that the larger number of
connections more closely reflects the overall statistical average energy transfer, which

is negative.
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Figure 4.13: The probability that primitives A and B will activate [ increases as
the strength of excitatory connections between cells in different primitives increases,
as shown in (a). However, this probability decreases if a third primitive, C, also

contributes, as shown in (b).

It therefore follows that three contributing primitives will exacerbate this effect,
and this does turn out to be the case. When attempts are made to initialise a 3-4 cell
assembly (i.e. primitives A, B and C are sufficient to activate D, but any two of A,
B and C are insufficient) and small excitatory weight values (approximately 0.1 or
less) are used for connections between primitives, then such an attempt fails. Figure
4.13 shows that, as the weight values increase, two contributing primitives (e.g. A
and B) have a greater probability of activating any other than three contributing
primitives (e.g. A, B and C).

Although this effect does allow 2-3 cell assemblies to be created, it does not bode
well for 3-4 or higher order cell assemblies. Another set of parameters must be found
in a different part of the parameter space. If we assume that the excitatory weights
between primitives within compound cell assemblies is z, and that inhibitory weights
reflect excitatory weights, then the inhibitory weights between primitives within the
compound cell assembly is —(1 — z).

The total activity delivered to any primitive by any two contributing primitives
is given by equation 4.1 where the first term represeuts the excitutory emergy, the
second term the inhibitory energy, and K is an appropriate constant. K depends on
number of cells and average activation. The coefficients take into account the fact
that excitatory cells are 4 times more common than inhibitory ones. This rearranges
to give K(z — 0.2). Clearly, this becomes positive when z is greater than 0.2.
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total activity = 0.8Kz — 0.2K(1 — z) (4.1)

This does raise some questions about the parameter values derived from the ge-
netic algorithm in section 3.4 on page 65. The genetic algorithm limits the excitatory
weight strength between primitives to a narrow range of values centred around 0.08,
which, according to equation 4.1 should lead to a total activation being passed be-
tween primitives that was negative. A statistical analysis of the activity between
primitives showed that this was indeed the case. At first sight, it may appear that
no primitive or combination of primitives can ever ignite any other given such a low
excitatory weight strength, but this ignores the stochastic differences in the activa-
tion of cells in each primitive. The primitives are activated as a result of relatively
few cells (typically between 10 and 20) firing.  Although all excitatory coumections
between cells in different primitives had the same strength in the genetic algorithm
experiment, destinations were distributed randomly, and it is perfectly possible for
some cells within a primitive to be better connected than others. I term these “lucky
neurons”. An experiment in which energy transfer between primitives was limited
to the 15 most highly connected cells in each primitive showed that a small amount
of activation energy rapidly led to runaway ignition of all the cells in the network,
indicating the powerful effect that these cells have. Figure 4.14 shows a typical run
in which externally activating a single primitive (A) leads to a burst of uncontrolled
activity in all primitives. This quickly leads to widespread fatigue, and the activity
dies. This experiment suggests that the overall inhibitory effect of the connections be-
tween primitives is necessary in order to put a brake on the stimulation of primitives
by the lucky cells within them. A further experiment was carried out in which all
connections between primitives were left intact ezcept those to the 10% most heavily
connected cells which were lesioned. It was found that no primitive or combination
of primitives could ever ignite any other one, thereby establishing without doubt that
the lucky neuron cffect is responsible for assembly ignition.

In experiment 4.4 on page 88 I referred to primitives being ignited by receiving half
the necessary activation energy from each contributing primitive. This conclusion is

not nullified by the discovery of the hucky neuron effect. Although the mnnber of
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Figure 4.14: Restricting connections between primitives only to the 10% of cells with

the most connections leads to uncontrolled activity followed by a crash as fatigue sets
in. The number of cells firing in each primitive (A —F’) is shown.
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lucky ncurons firing docs not double when two primitives contribute rather than
ouc, the fuct remains that one coutributing primitive does not provide sufficicnt
energy to ignite the primitive, whereas two contributing primitives do. The concept
of contributing energy simply needs to be focussed onto the lucky neuromns. 1t is
insufficient, however, simply to say that doubling the energy contribution that the
lucky neurons in a primitive receive simply doubles the number of lucky neurons that
ignite. That clearly is not the case. Furthermore, fatigue also plays a part in reducing
the number of lucky neurons that fire. However, it seems to be possible to arrange a
network in such a way that primitives have a certain “global energy threshold”, and
that k contributing primitives will provide enough energy to exceed this threshold
whereas k — 1 primitives will not. Experiments in this and the next chapter show that
this is certainly the case for low values of k, although the problem becomes harder
as k increases.

An experiment. was carried out to detect whether removing the lucky neuron effect
changed the success rate appreciably. Experiment 4.4 was repeated with one change.
Discrepancies between the number of connections arriving at each cell were removed,
i.e. although destinations of connections were still random, each cell was assigned
the same number of connections from cells within the same primitive and the same
number of connections from cells in other primitives. Each cell had a total of 40 con-
nections (twice the number shown in table 3.1 on page 67 as this network contained
six primitives rather than three). If the destinations had been assigned randomly, on
average one sixth of these connections would occur between cells in the same prim-
itive, so in this experiment exactly 7 connections to each cell had to be connections
from cells within the same primitive. The results of this experiment are shown in
table 4.7. Clearly, success rates have plummeted, showing how important the lucky
neuron effect is. Situation 1, on the other hand, in which one single primitive fails
to ignite any others has actually improved. Removing the lucky neuron effect allows
the generally inhibitory effect of the inter-primitive connections to predominate. The
fact that correct ignition occurs in any of the situations may be attributed to the
fact that cells in the externally stimulated primitives are not activated evenly. Once
sufficient activity has been passed into a primitive, it is sustained by the relatively
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Situation tested | Success rate
1 98.31%
2 12.12%
3 36.60%
4 9.09%

Table 4.7: Success rates for networks of six primitives with uniformly distributed

connections.
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Figure 4.15: Development of lucky neurons in a cell assembly simulation by Igelsias
et al. on a network of 10,000 cells (100 rows of 100 columns). Each black square
represents a strongly connected cell. The number of such cells increases with higher

external stimulation. Reproduced from [95].

high excitatory connections within that primitive. The success rate for situation 2
is somewhat misleading in the context of assessing the lucky neuron effect, since any
situation in which the wrong combination of primitives ignites is counted as a failure.
Removing this restriction (i.e. counting any combination of three active primitives
as a success) virtually doubles the success rate to 22.81%. .

The lucky neuron effect has been noticed in experiments by other researchers,
although not named as such. Iglesias et al. [95] found that in a network of 10,000
cells in which a cell assembly was encouraged to form, approximately 8% of the
excitatory cells formed strong connections with each other. This ratio is similar to
the proportion of lucky neurons found in the experiments described here, although the
number of strongly connected cells does increase with increasing external stimulus,

measured by Iglesias et al. in terms of millivolts, as shown in figure 4.15.
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Section 4.7 below describes an experiment in which weights were learned rather
than determuined by a genetic algorithim. The solution to the lucky neuron cffect is not
one that could have been derived from the learning procedure, since the weights were
guided towards their final values by fixing the rate of co-firing between primitives.
This is not to say that the lucky neuron effect does not take place in the networks
with learned weights. Since the connection destinations are assigned randomly in both
systems, it must do. It would appear that this effect is responsible for the relatively
high level of erroneous activation of primitives and the corresponding low success rate
when compared with the parameter set produced by the genetic algorithm. Apart
from the weights between cells, the parameter set is the same for each system. The
two parameter sets are therefore very close in the multi-dimensional parameter space.
Had the learned weight values represented a better solution to the problem, the
genetic algorithm would almost certainly have found it. Of course, it is perfectly
possible for the genetic algorithm parameter set (or something very close to it) to be
learned by adjusting the ratio in which the various training patterns were presented.

4.7 Learning weights in a hierarchy

This section describes an experiment in which weight strengths were learned in a
hierarchy of cell assemblies in order to demonstrate that such learning is possible.
A network of six primitives was created, each of 150 cells with the same parameter
values as for previous experiments. However, weights were set to small random values,
between 0 and 0.1 for excitatory weights, between 0 and —0.1 for inhibitory ones.
The network was subjected to a training regime in which relationships between
primitives were established by co-activation. The following 2-3 cell assemblies were to
be trained: ABC, CDE, ADF. Each primitive shares no more than one relationship
with either of the others, so it should be possible to create three compound cell
assemblies that can be ignited independently of the others simply by activating two
of the constituent primitives. However, as shown in section 4.4 on page 88, conflicts
can still occur. Primitive A can still be ignited when CDE' was trained as it receives

half its required activation energy from C and half from D. It was found that this
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problem could be avoided during training by ensuring that primitive E was active for
at least ten time steps before the external signal is applied to C and D. As connections
gradually approach their final values, the developing inhibitory connections from E
to A discourage A from igniting. Tt was found that this was sufficient to prevent
erroneous ignition of A in the great majority of cases.

Clearly it was necessary that stronger connections be established within primitives
than between them, and this is easily arranged by frequency of co-firing. Each epoch
of the training regime therefore consisted of one run of each of the training patterns
shown in table 4.8 in a random order. Each run consisted of running the net for 300
time steps, with the appropriate primitives being externally activated for the first 10
steps. Learning was enabled throughout the entire training regime.

The number of times each training pattern was presented in order to ensure the
correct co-activation frequency is also given. It was necessary to present some of
the training patterns more often than others in order to maintain the correct ratio
of co-firing of the neurons within and between primitives. This is necessary as it
prevents primitives that are activated externally less often from being incorporated
into more commonly activated primitives. Appropriate frequencies can be derived
using the following argument:

1. It is necessary for excitatory connections within a primitive to be stronger than
those between cells. Experiment 4.3 shows that the ratio should be about ten
to one (0.5 as compared to 0.05). This is achieved by activating the individual
primitives at least twice as often as the compound assemblies. [t may appear
that this would give a two to one ratio, but the reverberation effect, in which
cells actually cause others to fire with the result that any connection between
them strengthens, causes this ratio to rise. The strengths of the excitatory con-
nections between cells in the same primitive do not rise indefinitely, however, as
the external activation causes them to stabilise at or around 40%, as explained

in section 1.1 (page 4).

2. A cursory glance at figure 4.8 shows that primitives A, C and D appear twice

as often in the presentation of compound assemblies as do B, F and F. It is
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times A B C D E F
4 X X X X X
4 X X X X X 4f
4 X X X X X
2 v x x x x x
2 X X 4 x x x
2 X X X +f ¥ %
1 v X X X
1 x x X
1 v x x  x

Table 4.8: Training patterns with the number of times per epoch that each was
presented. A tick indicates that a pattern is activated.

therefore necessary to present B, E and F twice as often as individual primitives
as A, C and D.

Combining these two precepts gives a desired ratio of two to one for patterns B,
E and F compared to A, C and D and a ratio of (at least) two to one for patterns
A, C and D compared to ABC, CDE and ADF, i.e. the ratios shown in table 4.8.

Since the LTD used is post-not-pre (section 1.1 on page 4), the disparity of the
number of runs in which single primitives were activated has a smaller effect on the
connections between primitives than LTD using pre-not-post. For instance, imagine
that the first training pattern were presented, in which cells in B were activated.
In the early stages of training, when weights are close to zero, connections from
B to other primitives are unlikely to be activated, so the cells in other primitives
will not generally ignite. Post-not-pre LTD does not therefore reduce the connection
strength, whereas pre-not-post LTD would do so, impeding the development of correct
connections between primitives. Experiments were carried out in which pre-not-post
LTD was used, and it was found that correct compound cell assemblies almost never
formed.

The results of the learning experiment are shown in table 4.9. This table shows

the mean weight value for each type of connection. Unlike networks whose parame-
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A B & D E F
A| 047 | 050 | 022 | 016 | 007 | 052
(-0.02) | (-0.07) | (-0.50) | (-0.61) | (-0.87) | (-0.10)
B| 038 | 051 | 044 | 016 | 011 | 0.09
(-0.13) | (-0.07) | (-0.11) | (-0.70) | (-0.67) | (-0.83)
C| 019 | 047 | 055 | 007 | 059 | 005
(-0.70) | (-0.09) | (-0.01) | (-0.55) | (-0.14) | (-0.93)
D| 012 | 013 | 009 | 048 | 077 | 081
(-0.66) | (-0.68) | (-0.44) | (-0.03) | (-0.12) | (-0.11)
E| 005 | 015 | 062 | 072 | 060 | 0.03
(-0.71) | (-0.82) | (-0.10) | (-0.11) | (-0.09) | (-0.07)
F| 074 | 003 | 013 | 059 | 002 | 048
(-0.19) | (-0.89) | (-0.88) | (-0.23) | (-0.57) | (-0.02)

Table 4.9: Average weight strengths between cells in different primitives learned as
a result of training. Inhibitory weights are shown in parentheses. The primitives
down the left side represents the pre-synaptic primitives, the ones along the top the
post-synaptic primitives.
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Situation tested | Success rate
1 82.80%
2 50.09%
3 90.77%
4 11.19%

Table 4.10: Success rates for networks of six primitives for learned weights.

ters are determined entirely by genetic algorithms, each individual weight developed
independently of the others. The stochastic nature of the initial weight strengths,
their destinations and the input to the primitives results in a fairly widespread of
final weight strengths but nevertheless a pattern does appear. Connections within
primitives are strong. They have high excitatory weight strengths and inhibitory
weights close to 0. Since there is a 40% probability that any post-synaptic cell has
been externally activated given that the pre-synaptic cell is active, one might expect
excitatory weights to converge on 0.4 and the inhibitory ones on 0.6. However, this
ignores the fact that as connections strengthen, the pre-synaptic cell is more likely
to excite the post-synaptic one and hence increase the likelihood of both cells being
activated at the same time. The excitatory weight values learned did agree more
closely with the weight value of 0.5 produced by the genetic algorithm. The prox-
imity of these values is not coincidental, as the learned weight is constrained by the
other parameters determined via the genetic algorithm.

Connections between cells in primitives with no relationship, such as B and E,
have low excitatory weights and inhibitory weights close to negative 1. Such cells
should never fire at the same time. However, the connection strengths between cells
in primitives that are occasionally co-active, such as F' and D, are also generally low
with a wider variation in the inhibitory weights. Such connections undergo a mixture
of LTP and LTD.

Experiment 4.4 on page 88 was repeated for the learned weights, the results being
displayed in table 4.10. The most notable feature of table 4.10 is that success rates
for the learned weights are substantially lower (except for situation 2) than for the

parameter set determined by genetic algorithm, as shown in table 4.4 (page 90). This
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is reasonable bearing in mind the fact that the genetic algorithm is programmed to
find the parameters that give the best available performance, whereas the learned
parameters simply reflect, to a greater or lesser degree, the co-firing rate of externally
stimulated neurons. There is no reason to believe that such weights should be optimal
in storing and retrieving cell assemblies. Indeed, it is perhaps surprising that the
success rates for the learned parameters were as high as they were!

Success rates followed the same pattern for both learned and genetically deter-
mined weights, from which we may infer that the situations in which the network
found itself played an important part in determining the result. For instance, the
greatest success was found when two primitives not present in the same 2-3 assembly
were activated. In the majority of cases, the activity in one or both of these primi-
tives died out. The inhibitory connections between these primitives suggest that this
should take place. In fact, activity in each primitive rests on a knife edge, teetering
between extinction and uncontrolled activation, as explained in section 4.5 on page
94. Inhibitory connections between primitives has the effect of pushing each primitive
activated towards extinction, and it was found that in the majority of the trials for
situation 3, there was no activity in the network at all by time step 50.

4.8 Spontaneous Activation

There is some evidence that neurouns in the brain occasionally fire without any ex-
ternal activation [2, 13], a phenomenon called spontaneous activation. It has been
suggested that spontancous firing of neurons in the visual cortex may be responsible
for hallucinations [197, 50]. Hebb himself recognised the phenomenon [74, 76]. Neu-
rons generally only fire spontaneously when they have been inactive for a long period
(relative to their normal firing rate), typically 500 milliseconds. When a neuron has
been active, it fatigues, which tends to discourage it from firing until it has recovered
from that fatigue.

Why should neurons do this? It is conceivably possible that spontaneous activa-
tion is simply a biological occurrence, just as the human appendix has little purpose.

However, any biological event usually has some cost incurred in its evolution, even if
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only in terms of energy expended. There is some evidence to show that spontaneous
activity is esponsible for segregating signals from the two eyes into occular dominance
columns in the visual cortex {167, 114].

Hebb’s theory suggests that activity in neurons is essential for cell assemblies to
form, so spontaneous activation should have an effect on cell assembly formation and
activation. Beurle [12] suggests that waves of activity passing through a large number
of cells would use the presence of already activated cells that they encountered to
maintain their activity level. change direction or even reflect on their original course.

Beurle’s work also implies that spontaneous activity may allow more informa-
tion to be stored in each wave. Spontaneous activation in territory which has not
yet encountered the wave may cause cell in that region to fatigue, and become less
responsive to activation by the wave when it arrives. In such a way, spontaneous ac-
tivation prevents cell activity levels in the wave saturating, so that they can represent
a wider variety of information signals.

For a connection to form between two cells in a cell assembly, they must both be
active. While we can assume that some cells in any cell assembly are active at any
one time, the same cannot be said of any uncommitted cells as there is no stimulus
that would activate them. If uncommitted cells activated spontaneously at random
intervals, then it is possible for connections between them and cells already recruited
into cell assemblics to strengthen (as shown in figure 4.16(a)).

Without spontaneous activation it is still conceivably possible for a cell on the edge
of a cell assembly to join that cell assembly provided it received enough activation to
activate from a large number of cells via weak connections (as shown in figure 4.16(b)).
However, activation by these means seems much less likely, as cells recruited in this
manner would need several (weak) connections to cells already in the cell assembly,
the only cells that would be guaranteed to activate at some point.

If spontaneous activation is in fact useful for enlargement of cell assemblies, the
implication is that cell assemblies could expand more rapidly throughout the mass of
cells available. The fact that cells to be recruited only need a few connections (pos-
sibly only one, in the extreme case) to the cell assembly allows it to “put out feelers”

into the mass of uncommitted cells. The alternative, for cells to be recruited as in
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Figure 4.16: The black cells are committed to a cell assembly, the white cells are
uncommitted. Solid lines represent strong connections, dashed lines and arrows weak
ones. In (a), the cell marked X activates spontaneously, allowing it to be recruited into
the cell assembly. In (b) X receives a small amount of activation from neighbouring

cells as shown allowing it to activate.

figure 4.16(b), would restrict cell asscmblies to growth only at their outer surfaces.

Simulations carried out by Huyck and Bowles [93] indicate that coupling spon-
taneous activation to a post-Hebbian learning rule keeps the weights of the neurons
in a “state of readiness” so that they can easily be recruited into neighbouring cell
assemblies. Reason suggests that a post-Hebbian rule in such a situation would be
essential: the simple Hebbian learning rule, coupled with spontaneous activation of
neurons which are far from any cell assembly would inevitably drive the weights of
the uncommitted cells to zero, since the cells would only fire through spontaneous
activation. As the simultaneous firing of two connected neurons would be a rare
event, the primary force affecting the weights would be LTD, which tends to decrease
the weights. Cells with weights close to zero would be unlikely recruits to any cell
assembly that might expand into their “territory.”

Experiment 4.8.1. described below. investigates the effects that differing levels of
spontaneous activation have on the formation of cell assemblies in a grid of cells.
This may, in turn, throw some light on whether spontaneous activity aids formation

of cell assemblies in the human brain.
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200 columns

200 rows
Traning pattern 1
Training pattern 2

Figure 4.17: Training patterns in the spreading activation experiment.

4.8.1 Spread of Cell Assemblies through spontaneous acti-

vation

An experiment was carried out to investigate whether cell assemblies would recruit
unaffiliated cells at their edges. A grid of cells, 200 rows by 200 colummns, was set
up. The grid was presented with two input patterns, random activation of cells in
a rectangular band covering the whole of columns 30 to 70, and random activation
of cells in a rectangular band covering the whole of columns 130 to 170, as shown
in fignre 4.17. In addition to these input patterns, each cell had a given probability
during training only of activating spontaneously when inactive.

After training, it was found that the grid of cells recognised the two training
patterns. Partial activation of a training pattern would lead to almost complete
activation of that pattern. Figure 4.18 shows a cross section of the grid along the
middle row.

In figure 4.18, the solid lines show the extent of the cell assemblies when there
is no spontaneous activation. It can be seen that without spontaneous activation,
the cell assemblies do not spread at all beyond the boundaries of the input patterns
themselves. However, the experiment also shows that cell assemblies do in fact re-
cruit cells that receive no input other than spontaneous activation. The dotted lines
represent the extent of the cell assemblies when each inactive cell had a probability
of 5% of activation, and the dashed lines represent the same with a probability of
10%. Both of these extend beyond the confines of the two input patterms. As the

probability of spontaneous activation increases, so the likelihood of the cell assemblies
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Figure 4.18: Recruitment of cells through spontaneous activation. A cross section
through the grid shows the number of cells that activate.

spreading into adjacent territory increases. Experiments showed that increasing the
probability above about 25% led to each test pattern activating both cell assemblies.
Effectively, both cell assemblies had merged into one large one due to connections

forming across the gap between the two input patterns.

4.8.2 Cell assembly ignition from spontaneous activation

It is perfectly reasonable to suppose that spontaneous activity itself could be respon-
sible for activating a previously trained cell assembly. Often, ideas will simply “pop
into one’s head” for no apparent reason, and spontaneous activation of a cell assembly
may be the cause of this.

A further experiment was carried out to analyse the degree to which spontaneous
activation of cells could activate a cell assembly. A grid of cells, 20 rows by 20
columns, each with a connectivity to 6 others assigned randomly, was created and a
cell assembly was trained in the central 100 cells by randomly stimulating each cell
with a probability of 0.2 over a number of time steps. It was found that no more
than 50 time steps were required for cell assemblies to form reliably in 97% of trial
runs. No spontaneous activation of the cells outside the central square was permitted,

although cells in that region could be activated by their connections. The topology
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Figure 4.19: Topology of a 20-by-20 network subject to spontaneous activation, show-
ing a trained cell assembly. The cell assembly has developed in the central 10-by-10
square of cells, and has snceeeded in passing some activation to cells on its borders,
although none of the cells outside the central square has actually fired (activity level
greater than the firing threshold of 0.9).

of the network, together with a trained cell assembly. is shown in figure 4.19.

After training, the grid was run for several time steps, taking spontaneous acti-
vation of the cells as its only input. The number of time steps required for the cell
assembly to activate was noted, where activation was defined as being when at least
70% of the cells that had been active directly after training were active. The average
nunber of time steps required for the cell assembly to be activated is shown in figure
4.20.

It was found that spontaneous activation was not always enough to activate the
trained cell assembly. Figure 4.21 shows the proportion of the test runs where the
cell assembly was triggered for differing levels of spontaneous activation.

Repeated experiments showed that the length of time required for the cell assem-
bly to ignite, and the probability of that ignition, depended stromgly on the level
of spontaneous activation of the cells. Unsurprisingly, the greater the probability of
activation, the greater the proportion of test runs where ignition tock place, and the
sooner that ignition happened. With activation probability greater than about 0.01,
cell assembly activation was virtually guaranteed.
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Figure 4.20: Number of time steps required for cell assembly activation.
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Figure 4.21: Frequency of spontaneous cell assembly ignition.
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4.8.3 Forgetting of cell assemblies

It is said that one never forgets how to ride a bicycle, even if one has not mounted
one for years. If there is any validity in the theory of cell assemblies as devices in the
human brain which store memories, then we must assume that the skills required to
ride a bicycle are stored in one or (almost certainly) more cell assemblies, and that
these persist in the brain for many years, whether the owner of that brain gets on a
bicycle or not.

The experiments above have shown that spontaneous activation is responsible
for the augmentation and change of cell assemblies. In this respect, spontaneous
activation represents a hazard to rarely-used cell assemblies such as the bike-riding
cell assembly. If the cell assembly is rarely activated, then spontaneous activity of
cells within it would encourage them to be recruited into neighbouring cell assemblies
with different purposes, and we would forget how to ride a bicycle. Since this does
not appear to be the case, not only with bike-riding but with a large number of rarely
used skills and known facts, there must be some mechanism that prevents this from
happening,.

Paradoxically, spontaneous activation may come to our aid here. 1t may be possi-
ble for some cells in a cell assembly to be activated without the whole activating, or
possibly for one cell assembly involved in the skill of bike-riding to activate without
activating them all. Such cell assemblies would be subassemblies to the bike-riding
cell assembly. This would have the effect of strengthening the connections between
the cells, but would not activate the entire arrangement of neurons associated with
bike-riding, thereby preventing the thought of riding a bike from “breaking the sur-
face” of our consciousness. If spontaneous activation of the bike-riding cell assembly,
or series of cell assemblies, always resulted in full activation, then the idea of riding a
bicycle would occur to us regularly (every few minutes or seconds) without fail, and
this is clearly not the case either.

I have already shown that spontaneous activation can cause a cell assembly to
ignite. The following experiment was designed to show whether it can cause the
connections in a cell assembly to weaken to the point where the cell assembly is

effectively disbanded, in other words, whether spontaneous activation can cause a
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Figure 4.22: Forgetting of cell assemblies after 1, 2 and 3 epochs of 50 time steps with
solely spontaneous activation. S.A.P. = spontaneous activation probability. There

was no forgetting when S.A.P. = 0.

cell assembly to forget.

A grid of cells was set up with an identical topology and training regime to the
previous experiment. It was tested in a slightly different manner, however. This time
connections were adjusted throughout testing in the same manner to that throughout
training. Every 50 time steps (termed an “epoch”), the connections were “frozen”
and a test pattern that had previously been found to activate the cell assembly was
tested to see if it still activated the cell assembly. This was repeated for as many
epochs as was required for the test pattern to fail to activate the cell assembly.

Figure 4.22 shows the average number of time steps required to activate the cell
assembly after 1, 2 and 3 epochs for different levels of spontaneous activation. Spon-
taneous activation probability was limited to values less than 0.05 as any probability
above that caused unwanted activation of the cell assembly during the forgetting
period between tests, thereby strengthening the connections. It was found that prob-
abilities between 0.02 and 0.05 caused the cell assembly to be forgotten immediately
(i.e. it was not even activated after one epoch).

This experiment indicates rather predictably that increased levels of spontaneous
activation probability leads to rapid forgetting of cell assemblies. It becomes ever

harder to activate cell assemblies and after approximately 4 or 5 epochs (regardless of
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to activate. It was found that if the probability was increased to the point where
were introduced in the last experiment was that cell assemblies tended to fractionate

example of a cell assembly that fractionated after 3 epochs at spontaneous activation

not included in the results for experiment 4.8.3 on page 113. Figure 4.23 shows an
probability 0.02.

the probability level) the cell assemblies decay to the point where they are impossible
the cell assembly was activated purely by spontaneous activation, the problem of
forgetting disappeared entirely. Even after 20 epochs, the cell assembly was reliably
activated and for some high levels of probability, its size increased with time due to
One common side effect that was noticed as increased levels of spontaneous activation
into smaller cell assemblies, each of which was self-sustaining and could be ignited
independently of the other. Whenever this happened, that particular test run was

Figure 4.23: Spontaneous fractionation of cell assemblies. (a) The cell assembly
directly after training. (b) The cell assembly has split into two sections, each of

which can be reliably ignited without the other igniting.
4.8.4 TFractionation of cell assemblies

recruitment.

Fractionation of cell assemblies has important ramifications for Hebb’s theory of

“dog™) [18]. Ouly later, do they learn to differ-

human memory. The ability of a cell assembly to fractionate allows it to specialise.
For instance, in infancy, children learn to classify all four-legged animals that they

encounter as “horse” (or sometimes
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cutiate between different domestic animals. Similarly, when learning the past tenses
of verbs, children initially learn that the past tense is formed by adding “-ed” to the
verb stem: worked, learned etc. They cannot cope with strong verbs such as “come,”
often turning them into “comed” or “camed.” Later, they learn the correct past tense
of these verbs [152].

Hebb’s theory would suggest that this increasing specialisation of knowledge
comes from cell assemblies splitting into smaller units. Initially, a cell assembly
develops which covers the entire general concept (“horse” or “-ed™). Gradually, the
inputs fall into different categories (for instance, large domestic animals as opposed
to small ones), and the cell assembly fractionates into two smaller sections. The large
domestic animals are classified as “horse,” and the small ones as “dog.” Later still,
these specialist cell assemblies fractionate, as the children learn to differentiate differ-
ent breeds of dog. We may postulate the setting up of a hierarchy of cell assemblies
in which knowledge becomes stored. We all recognise that different breeds of dog
are still members of the primitive “dog” and that dogs are members of the primitive
“four-legged animals.”

Fractionation of cell assemblies to represent ever more specialised concepts is an
example of what Sakurai [154] terms population ensemble coding. He concludes that
neurons must co-operate in order to represent knowledge and memories. He gives

several reasons why this must be the case:

1. There is a virtually unlimited number of information items that need to be
stored in the human memory. Not only are there single items, such as “dog” or
“cat”, but these can be joined with adjectives and the like to form an unlim-
ited number of combinations. Even if every neuron in the human brain were
dedicated to storing knowledge, there would not be enough neurons to encode
all the possible information that humans have to deal with. Yet, humans do

manage to store all these information items.

2. It is inconvenient to store the similarities between items using totally separate
neuronal codings. For example, Dylan the golden retriever and Merlin the

golden retriever share many items in common, which must be represented in
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the brain of their owner in the form of neuronal codings. [t would be highly

inefficient to represent all the infonnation kuown about the two dogs using
totally separate codings, which implies that the two codings share a lot of the
neurons in common (indeed in common with all the other dogs that the owner

knows).

I am not suggesting that spontaneous activity in the brain is the root cause of cell
assembly fractionation. However, since fractionation occurs in approximately 20% of
the cell assemblies formed in the last experiment, spontaneous activity does seem to
be a factor that is likely to cause fractionation, and this phenomenon is worth further

investigation.

4.8.5 Discussion

These experiments have been designed to show that spontaneous activation of cells
during training of cell assemblies is both desirable and useful. It leads to more robust
cell assemblies being created, and to increased likelihood of cell assemblies being
activated, which in turn leads to the concepts represented by the cell assemblies
being “rehearsed,” which may be an essential part of keeping memories that are
rarely consciously called upon. It offers an interesting line of research into how cell
assemblies fractionate to become more specialised.

Human memory is a strange phenomenon. Actions which are repeated often
are understandably generally remembered. Indeed, this is the rationale behind such
activities as practising a musical instrument or learning to touch type. However,
memories can be retained indefinitely on the basis of events that happen only once,
such as traumatic experiences like bereavement, or violence. Memories from childhood
are often retained over much more recent ones. Indeed, memories of events that
have not even taken place can be retained for years. There is anecdotal evidence
of people being able to remember particularly vivid dreams or nightmares, people
having apparent memories implanted during hypnosis. The author Marcel Proust,
in his book A la Recherche du Temps Perdu vividly describes an incident that he
remembered from his infancy of being kidnapped from his pram, which later turned
out to be nothing more than a fantasy invented by his nurse.
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Since what is remembered and what is not seems subject to some certain lot-
tery, it is reasonable to assume that a complex interplay of cell assemblies should be
involved in the formation, retention and adaptation of memories, and that sponta-
neous activation should play some part in that. The stochastic nature of spontaneous
activation may go some way toward explaining the unpredictable nature of human
memory, and why it cannot be relied upon to give us a true account of what we have

experienced and what we have not.

4.9 Summary

In this chapter 1 have shown how increasingly complicated networks of cell assemblies
can be created in a network of identical cells simply by predetermining the connec-
tions between them. These cell assemblies form a simple hierarchy, with primitive
cell assemblies, self-contained primitives of cells that are capable of sustaining acti-
vation, in turn activating primitives of cell assemblies. The exact behaviour of the
cell assemblies depends on a series of parameters that must take tightly constrained
values. These parameters co-operate in a complicated fashion that makes predicting
the exact behaviour of the cells en masse very difficult, a problem that is compounded
by the fact that destinations of connections between cells are assigned randomly. Al-
though the networks do not always behave in the way one would first expect, it is
usually possible to come up with an explanation afterwards that accounts for the
behaviour. Dissection of the networks and further experiments can then be used to
justify or nullify the explanation. This is indeed true of most of the experiments
described in this thesis.

Although the parameters control the behaviour of the network in a way that is
difficult to predict, it is still possible to draw some general conclusions about them.
Three of the parameters appear to be mainly responsible for the transmission of
activation energy between one primitive cell assembly and another: the excitatory and
inhibitory connection strength between cells of different primitive cell assemblies, and
the number of connections per cell. The other parameters appear mainly to control

activity within primitive cell assemblies. Ignition of primitives is a combination of
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external activity and retained activity. A low retention rate, for instance, undermines
a primitive’s ability to resist fatigue in the absence of external stimulation. Even a
relatively high external activation may not allow the primitive to ignite if many of
the cells have already fatigued. The interplay of the different parameters is the main
reason why there are few detailed mathematical conclusions in this chapter.

I show how a simple Hebbian training rule allows connection strengths to develop
between cells according to the frequency of activation. This procedure works both in
individual cell assemblies and in simple hierarchies of cell assemblies, although the
resulting weight values do not match the theoretical values due to the complex inter-
actions between cells. However, I have demonstrated that such learning is sufficient to
learn simple relationships between primitives. I have also shown that cell assemblies
can manifest other behaviours such as recruitment and fractionation through the ef-
fect of spontaneous activation of cells. Clearly networks of primitives can both form
hierarchies, and subdivide in order to store knowledge at different levels of refinement,
thereby showing a great deal of potential for adaptation during use. I have shown
through experiments that this potential arises from the relatively simple mechanisms
of Hebbian learning and spontaneous activation. This is a possible model for how
cell assemblies develop and evolve in the brain, although it is by no means certain.

A comparison between the performances of the parameter set involving learned
weights with that involving evolved weights produced an interesting and unexpected
conclusion. The genetic algorithm resulted in counter-intuitive weight settings, through
which the total amount of activation passed from one primitive to another was in fact
negative. While this may appear to eliminate the possibility of any primitive igniting
another, it does in fact act as a control on what would otherwise be uncontrolled
ignition. A small proportion of the cells, that happen to be well connected, provide
a large proportion of the activity, easily enough to ignite a primitive, and that the
negative connections are necessary to rein back this activity so that the primitive
only ignites when provided with energy from two primitives. I term this effect the
“lucky neuron” effect. Indeed, the solution produced by the genetic algorithm gave
a higher success rate than the learned weights, showing that the overall inhibitory
effect of the weights can restrain the lucky neuron effect and regulate the ignition of
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primitives.

As the number of primitive cell assemblies increases, the possible complexity of
the hierarchies also increases. More arrangements of primitive cell assemblies become
possible. This can lead to situations in which activating two primitives sets off a
convoluted chain of ignition and suppression, so care has to be taken when assigning
compound assemblies to be included in the network.

In general, parameters controlling behaviour need not change as the number of
primitive cell assemblies increases, the one exception being the number of connections
between cells. Since increasing the number of primitive cell assemblies means greatly
increasing the number of cells in the network, the number of connections per cell must
be scaled up accordingly in order for the connection density of the cells to remain
approximately constant.

I have succeeded in showing that a network containing as few as six primitives is
capable of a variety of behaviours, some very unexpected. In chapter 5 on page 121,
I extend the size of the networks indefinitely and show how the mumber of possible
cell assemblies increases with network size. The scope for unexpected results also
increases a great deal, so the topologies of the networks are strictly limited to those
which minimise the possibility of unexpected patterns of ignition. Chapter 5 also sees
experimcnts on large scale Hopfield nets, using similar topologics to the cell assembly

networks.
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Chapter 5

The capacity of an associative

memory

The experiments described in chapter 4 on page 72 showed that primitive cell as-
semblies can be combined to produce a compound cell assembly which ignites if a
sufficient number of its component primitives are ignited. The chapter also showed
that adding more primitives to an existing network of cells allows further compound
cell assemblies to be created, but that compound cell assemblies can be ignited erro-
neously.

Three network topologies are considered in this chapter. The first topology, de-
fined in section 5.1 on page 122, is investigated in an experiment to show that a
network of cells can only hold O(n) primitives if each cell has a fixed number of con-
nections regardless of the number of cells in the network, where n is the number of
cells in the network. In order for O(n) primitives to be stored, the destinations of the
connections must be partially directed rather than assigned completely at random.
The second is a network that consists entirely of 2-3 cell assemblies. It is shown that
a network of N such primitives gives a storage capacity on the order of N. The third
topology is that described in [94] which states that a network consisting of N 3-4 cell
assemblies can, in principle, store on the order of N? cell assemblies. [ show that this
model contains several presumptions that may not be valid in a biological system.

Experiment 4.4 on page 88 has shown that the combining of primitives to form

compound cell assemblies is a complicated matter. Although primitive cell assemblies
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can he combined recklessly to give any number of different compound cell assemblics,
care has to be taken to ensure that erroneous combinations are not included. For
instance, given primitive cell assemblies termed A to F, combinations ABC, CDE,
ADF and BEF can theoretically be included. However, as has been seen in the
previous chapter, unintended combinations ACD and BEC are also created. This
occurs because each primitive in a 2-3 cell assembly requires half its activation energy
to come from each of the other two members in order to be activated. Activating A
and D in order to activate F (in the combination ADF') also provides the required
energy to C, half from A in ABC and half from D in CDE. In practice, C and F

compete for activation, the winner shutting the other one down.

5.1 Networks of cells with fixed numbers of con-
nections can store O(n) primitives

Experiment 4.1.1 on page 75 shows that it is possible to establish a single cell assem-
bly in a grid of cells. To create a large-scale network of cells containing a number
of primitives that is proportional to the number of cells is a trivial matter: Just
duplicate the architecture in experiment 4.1.1 as many times as needed, with no
overlapping connections from one primitive to the next. In such an architecture, the
number of connections from each cell is limited to 6, the number preferred by the
genetic algorithmn to maintain activity in the single cell assembly. Assuming that the
connections within each primitive are assigned randomly, the distributions of cells
near the edge of each primitive do not follow the same pattern as those of cells closer
to the centre of the primitive, as shown in figure 5.1.

Experiment 5.1 was carried out on a network of cells with partially targeted
connections, in which connections from cells were assigned randomly within their own
primitives. However, a certain degree of overlap was allowed between primitives, as
shown in figure 5.2, so that the cells at the boundaries of the primitives were members
of both. Admittedly, this violates the stated principle that primitives should contain
no cells that were members of other primitives, but the intention was not that these

cells should in themselves be able to ignite either primitive, rather that the degree
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Figure 5.1: Inserting “watertight” barriers (between primitives causes distributions
of connections from cells towards the edge of each primitive to be skewed towards
the centre, whereas distributions of connections from cells nearer the centre are more
symmetrical. (The arrows show possible destinations from each of the two cells
marked.)

Figure 5.2: Allowing a certain degree of overlapping between primitives allows for

more compact storage of primitives in a network of a given size.

of overlap should be small enough so that it should be possible to activate each
primitive independently of the other. Including such an overlap allows for more
compact storage of primitives, i.e. n < Ng where g is the number of primitives.
The experiment investigated how the ability to activate each primitive individually
changed as the degree of the overlap increased. The parameter values used were
the same as for experiment 4.1.1, with the number of primitives being set at 20.
Connection strengths were predetermined rather than learned. Primitives at the
extreme ends of the network were allowed to overlap in a “round the world” fashion.

For each degree of overlap, each primitive was activated in turn 100 times by
activating each cell with a probability of 0.4 as in experiment 4.1.1. Each trial had
a different set of connections, assigned randomly but adhering to the restrictions
given. Table 5.1 shows the percentage of all the activations that did not lead to any
neighbouring primitive igniting (10 or more cells of the primitive firing at any given
time step).

Clearly, with no overlap between primitives there is no possibility of erroneous
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Degree of overlap (cells) | Percentage success
0 100 %
1 100 %
2 99.2 %
3 90.6 %
4 81.4 %

Table 5.1: Increasing overlap of primitives results in increasing degrees of erroneous

ignition.

ignition of primitives. This proves that a network of n cells can support O(n) in-
dependent primitives. However, as the degree of overlap increases, the probability
of neighbouring primitives being ignited increases greatly. Can a network of n cells,
each with a fixed number of connections. hold O(n?) cell assemblies, primitive or
compound? A later experiment, 5.2.2(c), shows that fixing the mmber of connec-
tions reduces the probability that compound assemblies can be ignited reliably as the

size of the network increases.

5.2 2-3 Cell Assemblies have a storage capacity of
O(n)

This section describes work carried out on large networks of primitives which are
connected to form 2-3 cell assemblies, i.e. forming compound assemblies containing
three primitives. Activating any two of these is sufficient to ignite the third, but
activating a single primitive is insufficient to ignite cither of the other two. Experi-
ments described in chapter 4 on page 72 have shown that it is possible to create such
a compound assembly in a network containing only three primitives. It would be a
trivial matter to create any number of such compound assemblies in a large network
providing that connections between primitives did not cross from one compound as-
sembly to another. The experiments described in this section demonstrate that it is

possible for compound assemblies to share primitives.
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ABC EFG DK MNO QRS UVW YZa ...
CDE GHI KIM OPQ STU WXY abc ...

Figure 5.3: Triplets of primitives
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Figure 5.4: Solid lines indicate further compound cell assemblies.

5.2.1 Theoretical considerations

In the following description, all primitive cell assemblies are referred to using upper
and lower case letters, with A referring to a different primitive to a ete. 1t is convenient
to split the compound cell assemblies constructed from these primitives into various
levels, each of which may be considered separately.

Firstly, primitives may be grouped iuto triplets, as shown in figure 5.3. Two
primitives in each triplet take part in more than one compound assembly. Given N
primitives, this gives approximately —’2! compound cell assemblies.

Further compound cell assemblies can be formed via strong connections between
primitives in different triplets. Clearly, no such connection should be made if it
leads to conflict. For instance, no connection should be formed between A and E
as they both already share a connection to C. However, A can be connected to F
without any such conflict. Adding a layer of connections as shown in figure 5.4 gives
approximately ¥ further compound cell assemblies.

Further layers can be added by connecting primitives in a similar way to that
of figure 5.5. The next layer of connections involves primitives being connected
to another in the next triplet but two (i.e. connections “skip over” triplets), as
shown in figure 5.5. This gives approximately %’ further compounds cell assemblies.
At each layer of the hierarchy, care must bhe taken to avoid conflicts with already

existing compounds. For instance, in the layer above the one shown in figure 5.5,
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Figure 5.5: Solid lines indicate further compound cell assemblies.

primitives within ABC are connected to those in ede rather than the more obvious
choice of QRS, as connections exist between primitives in ABC and those in QRS
via primitives in MNQO. The component primitives of each compound assembly are
determined simply by connecting the first primitive (A) to the next two such that
there would be no conflict with any previously assigned compound assembly. Once
such a triplet of assemblies has been found, the process is then repeated starting with
the next primitive after the last one in the triplet. A computer program was then
used to confirm that no conflicts were present given any assignment of connections.

Each of these layers provides the order of N compound cell assemblies, so the total
number of compound cell assemblies must also be of the order of N. The number
of layers that can be added depends on the value of N. For instance, layer 3 can
only be added once the number of primitives has reached 27. At first sight, it might
appear that the actnal capacity is therefore of the order of N2. However, the “span”
of each compound cell assembly across the list of triplets increases as further layers
are added. In addition, compound cell assemblies within layers cannot be allowed to
overlap to any great extent, or conflicts would occur. For this reason, I maintain that
the storage capacity cannot be said to be of the order N2.

Assigning each primitive a number (A = 1, B = 2, a = 27 etc.) allows the rela-
tionships to be determined mathematically. For the triplets at level 1, cell assemblies
are determined by the pattern z, z + 1, z+ 2forallz =2n+ 1, n = 0,1,2, ... At
level 2, the patternisz +y, z+y+ 5, z+y+9foralz=12n+1, and ¥y =0,1,2
or 3. At level 3, this becomes z+y, z+y+ 13,z +y+ 25 for all z = 28n + 1, and
at level 4, the pattern is z +y, z + y + 57, x + y + 103, for all z = 106n + 1. For
an infinite number of primitives there is no limit to the number of levels, although 1

have not, as yet, been able to produce a single equation that covers all levels.
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Figure 5.6: Creating 2-3 cell assemblies within a network arranged into three groups

of primitives.

1t is still necessary to have strong inhibitory connections between primitives that
are not present in any compound assembly. For instance, if A, B, G and H were
all active simultaneously, C and I would ignite. This would lead to the erroneous
ignition of D. Strong inhibitory connections between A and G, and between B and
H would help to prevent this.

Any rigorous attempt to store N? 2-3 cell assemblies in a network of primitives
leads to failure. Consider the situation in which primitives are arranged into three
groups (A;... Ag, By ...Byg,C,...C;), as shown in figure 5.6. Weights may be set so
that 2-3 cell assemblies consist of one primitive from each group. For example, figure
5.6 shows the cell assembly A;B>Cy. To store N2 cell assemblies, each cell in at least
two of the letters must be involved in O(N) cell assemblies. Figure 5.7 shows one
way to achieve this, which, superficially at least, appears to be satisfactory.

However, even a cursory analysis of such a network reveals that it is impossible
to set up on the order of N? compound cell assemblies in it. For this to be the case,
each of the A primitives (for example) would have to be connected to each of the B
primitives (for example), with the C primitives arranged so as to avoid conflicts. A
passible arrangement is shown in tignre 5.7.

Consider the situation in which A{B;C is ignited by activating A, and By. C
receives half the activation energy it needs to ignite from each of A; and B; and
duly ignites. However, C5 also receives half the activation energy it needs to ignite
from A, thanks to A;BsC5, and the other half from B; thanks to A5B,Cs. Once C;
has ignited, further 2-3 cell assemblies ignite (such as A, B,Cs) and activity spreads

rapidly throughout the network, as shown in figure 5.8. Other arrangements give
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A B,C, A2BCy A3BiCs ... ApoBiCyga A 1BiCry ArBiCy
A1ByCy AyByC3 A3ByCy ... Ap9BsCiq Ar1B2Cy

A B 2oCr s AsBp 2Cpy A3Bp o2Cy
A1B 1Cpoy AgBp Cp
A1B.Cy

Figure 5.7: One possible arrangement of primitives to form 2-3 cell assemblies.

slightly better performance in which the network eventually achieves a stable state
with approximately 20% of the compound cell assemblies having ignited.

More generally, consider cell assemblies A,B,C,, A,B,C, and A,B,C., as shown
in figure 5.9. Igniting A,B,C, by activating A, and B, will always ignite C, erro-
neously as well as C, due to C; being present in each of the two other compound
cell assemblics. Although figure 5.7 shows a fairly simple arrangement of B and C
indices, however complex the patterns of the indices used, it is impossible to produce
an arrangement in which this problem does not occur and which still stores O(N?)
patterns. Conflict can be avoided by reducing the number of A primitives involved
in compound cell assemblies (e.g. reducing the table in figure 5.7 to two or three
columns), but this would reduce the number of patterns stored to O(N).

5.2.2 Experimental results

Experiment 5.2.2(a) investigated how many 2-3 cell assemblies could be stored and
retrieved reliably in a network of a given number of primitive cell assemblies. A
network of 150 cells per primitive was set up for a variable number of primitives. The
parameter values for the cells were the same as those listed in table 3.1 on page 67,
except that the number of connections from each cell were to be scaled up according
to network size.

The purpose of the experiment was to determine the optimum number of connec-
tions per cell and the optimum connection strength between primitives. As demon-

strated in chapter 4 on page 72, the activation energy passed between primitives
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1. Consider a network arranged as in figure 5.7 with k = 5. When A, and B, are
activated, Cy activates immediately (active primitives are shown in upper case,
inactive ones in lower case).

Ai1B\Cy @Bie; a3Bics ayBicy a5Bics
Arbaes  asbacs  azbacy  agbacs

Aibses  agbsey  agbscs

Abses  agbacs

Arbses

2. Primitives A,, C,, A, Ca, Ag, Cy, As and Cs receive half the necessary acti-
vation from By. B, Cy, Bs, C3, By, Cy, Bs and Cj receive half the necessary
activation from A,. As a result, all C inactive primitives ignite.

A1BiCy a3B,Cy a3BiC3 a4B\Cy asBiCs
A1boCa 026,03 a30,Cs  agboCs
A1bsCs  ab3Cy  a3bsCs
AbsCy  axbsCs
A1b5Cs
3. All compound cell assemblies in the first row and first column now ignite.
A1BiCy A3BiCy; A3BiCs A4BiCy AsBiCs
A1ByCy  AsbyC3  AshoCy  AghoCis
A1B3C3  AsbsCy  AshsCs
A1 ByCy  AxbyCs
A1 B5C5
4. Now all compound cell assemblies are either complete or have two primitives
active. Inevitably, all cell assemblies in the network now ignite.
A1B\Cy A3B(Cy A3B\C3 A4BCy AsBCs
A1B;Cy  A3ByCs A3B,Cy  AyByCs
A1B3C3  ApB3Cy  A3B;Cs
A1B4Cy  A3ByCs
A1 B5C;

Figure 5.8: Runaway ignition among primitives
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AB,C, ... A.B,C.

A,B,C.

Figure 5.9: Erroneous activation of C,

does not bear a simple relationship to the probability of igniting destination cell as-
semblies. Instead, ignition appears to depend on a sufficient number of cells in the
destination cell assembly being connected in such a way that they receive more acti-
vation from excitatory connections than they lose via inhibitory ones. A low weight
strength for excitatory nodes (much less than 0.2) makes this statistically unlikely.
A large number of connections between cells also reduces the likelihood of cells in the
destination primitive receiving a net positive energy as the average energy passed to
any cell becomes more representative of the excitatory weight value. By the same
reasoning, increasing the excitatory weight strength should therefore increase the
chance of correct activation of destination cell assemblies.

A range of connection strengths from 0.01 to 0.4 were tried for networks of 20
primitives (in which nine 2-3 cell assemblies can be constructed). As in most experi-
ments described in this thesis, each primitive contained 150 cells. It was found that
parameter values used in previous experiments, shown in table 3.1 on page 67, (with
the exception of the excitatory weight strength between cells in related primitives)
gave satisfactory performance provided that the number of connections was scaled
up in line with the number of primitives. Excitatory weight strengths between cells
in unrelated primitives were set to 0, and inhibitory weight strengths to -1. Although
better performance could probably have achieved by rerunning the genetic algorithm,
re-using parameters saves time and demonstrates that compound cell assemblies can
exist in a network even with sub-optimal parameter values. One would expect that
suitable parameter values would be similar to those for previous experiments as they
also involved 2-3 compound cell assemblies. In all cases, connections between cells
were assigned randomly, and not “targeted” at cells in particular primitives.

Each 2-3 cell assembly was tested in 10,000 runs, in which two of the three com-

ponent primitives were activated at random. Each run had three possible outcomes:
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Esxcitatory weigh! between primitives n a CA

Figure 5.10: The behaviour of a network of 20 primitives over a variety of excitatory
connection strengths. Each cell has 133 connections, equivalent to 20 connections per
cell for each 3 primitives. At low connection strengths, the two activated primitives
almost always fail to ignite the third. At high connection strengths, primitives other
than those in the 2-3 cell assembly almost always ignite. The greatest chance of
success, admittedly low, lies with medinum connection strengths (about 0.05).

success (in which the two activated primitives ignite only the third), ignition failure
(in which the two activated primitives failed to activate the third, or their own activ-
ity level died away) or extraneous activity (in which primitives other than those in
the 2-3 cell assembly were activated). As in all experiments, a primitive was said to
be active if ten (a nominal figure) of its cells fired. Figure 5.10 shows the result when
each cell had 20 connections per 3 primitives in the network. This gave a scaling
factor of 6.67 connections per cell for each primitive in the network.

Increasing the number of connections per cell produces a similar pattern to that
shown in Figure 5.10. Figure 5.11 shows that the prediction concerning the relation-
ship between excitatory weight strength, number of connections and probability of
success was largely borne out. As the number of connections increases, the peak in
the success curve occurs at higher weight values. Another point of interest in the
graph occurs when 40 connections per cell per primitive are used and the excitatory
weight passes the value of 0.2. At this point, the average energy passed to each cell
becomes positive, as explained in section 4.4 on page 88, and this alters the dynam-
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Figure 5.11: Increasing the number of connections between cells causes the chance of

successful ignition to occur at higher weight values.

ics of the activation of the network. The percentage success rate suddenly rises as
successful ignition no longer relies on lucky chance but on the correct energy transfer
between the primitives, a more reliable mechanism.

The behaviour of the system when each cell has an average of 30 connections to
each primitive is interesting. Weight connections of about 0.2 produce noticeable
fluctuations in the success rate. Investigation shows that this marks a point in the
parameter space where the system moves between activity generally fading out and
activity generally being sustained. At this point, the system is particularly sensitive
to fatigue. Increasing the weight slightly can cause relatively large numbers of cells
in a target primitive to fire at the same time step. and hence to fatigue at the next
time step. Large swings in the number of cclls that fire at any time step increase the
chance that a target primitive cannot maintain a sufficient number of cells firing to
remain active.

It is possible to achieve even higher success rates by making the inhibitory con-
nections between cells in unrelated primitives more extreme. Replacing ~1 with -2 or
even —4 virtually guarantees that no primitive ignites spuriously. In this case, it was
found that setting inhibitory connections between cells in unrelated primitives to -2
was sufficient to squash any unwanted activity in unrelated primitives. The results
are shown in Figure 5.12.

The success rate does still fall considerably as the excitatory weight rises beyond
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Figure 5.12: Higher success rates occur when there is mutual inhibition of primitives

in unrelated cell assemblies.

the peak in the graph, but investigation shows that this is now due to the fact that
at higher weight values it is more likely that one primitive will provide sufficient
energy to activate a 2-3 cell assembly. Strong inhibitory weights effectively removes
one possible source of error, and yet comparing figures 5.11 and 5.12 shows that they
are very similar. This indicates that erroneous ignition of a 2-3 assembly by one
primitive is the major cause of failure in this experiment.

The results in figures 5.11 and 5.12 appear to contradict those in chapter 4 on
page 72 in which best success rates were achieved with excitatory weight strengths
centred closely around approximately 0.08. It would appear that in larger networks,
increasing connection strength and number of connections per cell does result in more
reliable ignition. I can offer no satisfactory explanation for this apparent inconsistency
at the moment.

Experiment 5.2.2(b) investigated the number of 2-3 cell assemblies that could be
stored and activated reliably in a grid containing a given N primitives, each of 150
cells. Parameter values were chosen to maximise the likelihood of success, i.e. each
cell was given 40N connections to other cells, excitatory weights between cells in
primitives within 2-3 cell assemblies were set to 0.35 and inhibitory weights between
unrelated 2-3 cell assemblies were set to —2. With this arrangement, the chance of
the network behaving correctly for a given pattern of activation was 95% or greater.

N started at 10 and was incremented in steps of 10. For each value of N, 10,000

trials were carried out in which either a single primitive or two primitives were ac-
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Figure 5.13: The numbers of 2-3 cell assemblies that can be stored given N primitives
according to the topology illustrated in figures 5.3 to 5.5, and the actual muuber that

can be activated on 95% or more occasions.

tivated. In the case of two primitives, 70% of the time they were present in the
same 2-3 cell assembly, and the rest of the time they were unrelated. The number
of trials in which the network behaved correctly was noted, i.e. one single primi-
tive or two unrelated ones produced no further activation, but two related primitives
produced sustained activation in a third. Figure 5.13 shows the number of 2-3 cell
assemblies that can be stored for any value of N, given the topology described in fig-
ures 5.3 to 5.5, and the actual number that could be activated correctly and without
any erroneous activation on 95% or more occasions. Both lines are approximately
straight, showing that the number of primitives reliably activated is O(N), but there
are slight variations caused as a result of extra layers of compound assemblies being
added (section 5.2.1 on page 125).

For low values of N all 2-3 cell assemblies present can be activated reliably. As
N increases, there are a greater percentage of failures. Investigation shows that this
is mainly due to increased probability of erroneous activation of a primitive which
shared a compound assembly with one of the two externally activated primitives.
Primitives that did not share a compound assembly with either of them were never

ignited, thanks to their strong inter-primitive inhibitory connections.
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Figure 5.14: For constant numbers of connections per cell, the number of 2-3 cell
assemblies that can be activated successfully and reliably diminishes rapidly with
increasing numbers of primitives in the network. The dotted line shows the corre-
sponding number of cell assemblies when the number of connections is allowed to

increase in line with the number of primitives, as shown in figure 5.13.

Experiment 5.2.2(c) repeated experiment 5.2.2(b) except that each cell was given
a maximum number of connections, regardless of how many primitives were stored
in the network. The number of connections from a cell increased as in experiment
5.2.2(b) until this maximum was reached, whereupon it remained constant. The
average number of connections from each cell to any given primitive therefore reduces
as the number of primitives increases beyond this maximum point. Clearly, this
reduces the number of 2-3 cell assemblies that can be successfully activated, as shown
i figure 5.14. The purpose of the experiment was to determine whether a 3-4 network
with reduced numbers of connections could still be used successfully to store and
retrieve patterns. Clearly, such a reduced network would require less memory storage
and processing power. Furthermore, although neurons in the brain can each have
several thousand synapses, they can only be connected to a tiny proportion of the
approximately 10'° cells in the brain. The brain is therefore sparsely connected, and
has more in common with the network in experiment 5.2.2(c) than it does with that
in experiment 5.2.2(b).
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Each constant number of connections proves sufficient to maintain perfect suceess
up to a certain nnuber of primitives. This is justified by the fact that cach coustant
number matches the number of connections for the same number of primitives in
experiment 5.2.2(b) up to a given number of primitives. After this limit, the con-
nections from each cell are spread more and more thinly, and it becomes ever harder
for two primitives to activate a third. There is no single number of primitives that
causes sudden failure, more of a gradual decline in the success rate.

It might be argued that increasing the excitatory connection strength between
cells in different primitives would be sufficient to improve the performance of the
network. However, pressures of time prevented me from carrying out the experi-
ment. The problem of the limited number of connections would just manifest itself
at higher numbers of primitives. The fact remains that to maintain the same degree
of connectivity between primitives as the number of primitives increases imdefinitely,
the number of connections must increase indefinitely also. 1 suspect that, given the
balance between the different parameters demonstrated in previous experiments, sim-
ply increasing the connection strength between cells would lead to a lowering of the
success rate. Nevertheless, this approach is one that is worthy of further investigation.

5.3 3-4 cell assemblies can hold O(n?) stable states

The following argument may be proposed to show that a network of cell assemblies
can be in any one of O(n?) stable states, in terms of the number of distinct patterns
of activation that can be programmed into the network and correctly retrieved, where
n is the number of cells in the network. This implies that with increasing numbers
of cells, the number of stored assemblies will pass the number of cells. This idea is
not new, and has been alluded to by Wickelgren [186).

Again, the network is divided into a series of primitives, each of n cells, in which
primitive cell assemblies are entirely self-contained. They are capable of sustaining
activity independently of any other primitive cell assembly and no cell takes part
in more than one primitive. Furthermore, these primitives are classified into four

non-overlapping primitives, termed A, B, C and D, each containing k primitive cell
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Figure 5.15: Arrangement of primitive cell assemblies in a general pattern represent-
ing A;B,C.D,. Solid lines represent strong excitatory connections. Although the
figure shows y larger than z, this does not have to be the case.

assemblies, a subscript differentiating the members of each primitive (A;, As, etc).
This arrangement is shown in figure 5.15.

3-4 cell assemblies are developed with the general relationship A.B,C.D,, e.g.
A2 BrC5 Dy, where ¥ can be equal to z. Connection strengths are such that activating
any three of the primitives is sufficient to ignite the fourth, but activating fewer
than three is insufficient to ignite any of the others. Since both z and y range
from 1 to k, the network gives a total of k> compound cell assemblies. However,
in order to avoid conflicts between compound cell assemblies it is necessary to have
strong inhibitory connections between all primitives designated by the same letter
(e.g- between all As). Furthermore, all A primitives must have strong inhibitory
connections to all C' primitives with a different index number, and similarly for the
Bs and Ds. This means that each primitive must have connections to each other
primitive, and the number of connections increases greatly as further primitives are
added to the network. The space requirement is therefore roughly proportional to the
total number of connections in the network, in turn proportional to the square of the
number of cells in the network. If a combination of primitives that did not correspond
to a stored 3-4 cell assembly was activated externally, the inhibitory connections
would ensure that some or all of the primitives were deactivated, and that there
would be no extraneous firing of compound cell assemblies. An implication of this

is that no more than one compound cell assembly can be active at any one time.
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Activating sufficient primitives to ignite a compound cell asscmbly automatically

inhibits all the others.

5.4 Proof of O(n?) stable states

In this section, I show that a network of K primitives can hold on the order of K>
stable states. In principle K primitives can be arranged to hold K3, K* or even
higher powers of stable states, but these do not all represent states in which useful
information can be stored. Indeed, it is shown in section 5.7 on page 151 that there are
severe restrictions on the number of patterns that can be used to store information. If
there are k primitives of each type (K = 4k), there are k? ways of formulating 3-4 cell
assemblies corresponding to the pattern A,B,C,D,. There are three requirements
for this to be possible:

1. Activating any three primitives in a 3-4 cell assembly should ignite the fourth.

2. Activating one or two primitives in a 3-4 cell assembly should be insufficient to
ignite either of the other two, although they should maintain activity.

3. Activating any three primitives that do not form part of a 3-4 cell assembly
should not ignite any other primitives.

The first two requirements are fulfilled primarily by setting connection strengths
within and between primitives correctly. Mutual connections between primitives of
the same type (e.g. A, and A,) should be strongly inhibitory so that activity in
triplets of primitives such as A;A,B; tends to die out. A similar effect can be
achieved in combinations such as A;B,C,. Since A, and C, will never be present
in the same 3-4 cell assembly providing that z # z, strong mutually inhibitory links
between them prevent erroneous ignition. Strong mutually inhibitory links between
B; and D, (z # z) prevent erroneous ignition when B,C,D, is activated. These
inhibitory connections gives rise to the pattern shown in figure 5.15.

Since K = 4k and K o n, storage capacity O(k?) effectively means capacity
O(n?), i.e. it rises in line with the square of the number of cells in the network. It
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should be pointed out that this configuration of primitives is not necessarily the only

one that leads to O(n?) capacity, but it does allow that capacity to be demonstrated.

5.5 Implementing a network of 3-4 cell assemblies

This section deals with the problems encountered in creating a large network of cells
to implement the structure described in section 5.4 on page 138. The problem of
estimating parameter values in order to maximise the success rate as regards the
correct completion of 3-4 cell assemblies and the non-ignition of primitives that do
not form part of activated cell assemblies.

Parameters were initially determined for a network of four primitives, each fully
interconnected with the others. This is equivalent to a network A,B,C,D, with
n = 1. Some parameter adjustment is inevitable as the size of the network increases.
Clearly, the number of connections emanating from each cell must be scaled up in
order to maintain the same overall connection strength between individual primitives.
Ideally, the number of connections per cell would be determined individually for any
given number of primitives in a network. However, due to time constraints, it is
impractical to determine the parameters from scratch on a large network of primitives.
For this reason, the parameters for the four-primitive network were used, and the
number of connections scaled up linearly according to the number of primitives.

A genetic algorithm was used to determine the nine parameters listed in table
5.2 on page 140, with precision limited to three decimal places. Throughout the
evolution process, emphasis was on suppressing any unwanted activity in primitives.
The genetic fituess of cach of the 100 population members was based on two types of
behaviour. Firstly, 10,000 trials were carried out in which two of the primitives were
activated externally. Any combination of parameters that produced activity in more
than 10 cells simultaneously in either of the two primitives that should not ignite was
rejected immediately. Any population member that survived this trial underwent a
second one. 10,000 trials were carried out in which three randomly chosen primitives
were activated within the same compound CA. The fitness measure was the sum

of the activity in all the nodes throughout this second set of trials. In this way,
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Parameter Value

Number of comnections per cell per primitive 24

Fatigue rate 0.902
Recovery rate 0.924
Firing threshold 0.188
Retention rate 0.798

Weights from excitatory cells within a primitive cell assembly | 0.171
Weights from inhibitory cells within a primitive cell assembly | -0.01
Weights from excitatory cells between primitive cell assemblies | 0.077

Weights from inhibitory cells between primitive cell assemblies | —0.01

Table 5.2: Parameter values for the 3-4 network containing four primitives.

the evolution process favoured ignition of the fourth primitive and persistence in all
primitives after external activation was removed, while guaranteeing no erroneous
ignition if fewer than three primitives were activated.

The genetic algorithin was repeated twenty times from different random positions
and the parameter set that gave the best performance was chosen. It was not possible
to ensure that this was truly the best parameter set available since each trial of the
program contained a high stochastic element. However, taking the mean success rate
for 10,000 runs each of 300 time steps showed that implementing these parameters in a
network caused three primitives to ignite the fourth in 99.6% cases, and no completion
of the 3-4 cell assembly when two primitives are activated. These parameters were
then applied to larger networks, the only change necessary being to increase the
total number of connections emanating from each node to maintain the correct ratio
of connections to primitives. Correlations between these parameters were discussed
briefly in section 3.4 on page 65.

An experiment was carried out for networks with increasing number of primitives
in the arrangement specified in Figure 5.15. Possible 3-4 cell assemblies were chosen
and in half the trials three of the constituent primitives were activated externally.
In the other half, only two of the primitives were activated. In the former cases,
success was achieved if the fourth primitive ignited. In the latter cases, success was
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Figure 5.16: Combined success rate for large networks of primitives. The mean
success rates for 10,000 trials for each number of primitives are given with error bars

showing one standard deviation from the mean rate in each case.

achieved if neither of the other two primitives ignited. While it was possible for
smaller numbers of primitives to try every single compound cell assembly, it became
impractical to do so with larger number of primitives (£ >~ 70), so 50% of the cell
assemblies were chosen at random and tested. Figure 5.16 shows the success rate for
each number of primitives.

Figure 5.16 shows a high success rate for relatively low numbers of primitives, but
a steep and steady decline as the number increases. Analysis showed that the majority
of the failures occurred due to the fourth primitive of a cell assembly not igniting
when presented with the other three. Relatively few of the errors occurred as a result
of erroneous ignition of primitives unrelated to a 3-4 cell assembly being ignited

as the strong inhibitory weights between unrelated primitives were high and such
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errors disappeared completely when the weights were made even more extreme. For
instance, activating primitives A,, B and C, is unlikely to cause erroneous ignition
of the unrelated primitive A;y. Although there are excitatory connections from B,
to Ajp. their effect is clearly swamped by the inhibitory connections from A, and C;.
However, these extreme inhibitory connections have no effect on the intended fourth
primitive, Dy, as none of the three activated primitives has inhibitory connections to
D,. The inhibitory connections between unrelated primitives can therefore be made
extreme with no lowering of the success rate.

Since the success rate was higher for networks containing only four primitives, it
is clear that the distribution of connections amongst the larger number of primitives
must be responsible for the loss in success. The average number connections from any
primitive to any other primitive stays the same as the size of the network increases.
However, since connections are assigned randomly, even distributions become less
likely with increasing network size.

Visual inspection of the distributions of numbers of connections to each cell show
that they follow an approximately normal distribution. Figure 5.17 shows the stan-
dard deviation of the number of connections between any two primitives for a given
network size. Larger standard deviations increase the probability of failure: too
many connections between primitives results in ignition when two or fewer contribut-
ing primitives are activated; too few results in a failure to ignite even for three correct
contributing primitives. I believe that the increasing standard deviation with increas-
ing network size is responsible for the falling success rate.

There is no reason why cell assembly simulations should not be extended to higher
order patterns. For example, primitives can be arranged to store 5-6 patterns, i.e.
compound cell assemblies consist of 6 primitives, any 5 of which are necessary and
suflicient to complete the cell assembly. The connections for such a network would
match those shown for the Hopfield net in figure 5.23. However, the amount of effort
and resources required to estimate the parameters and to conduct exhaustive tests

renders an experiment to test such a network impractical in the limited time available.
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Figure 5.17: The standard deviation of the number of connections between two prim-

itives increases as the network size increases.
5.6 Implementing an equivalent network using Hop-
field nets

For completeness, a network similar to the one described in section 5.5 on page 139
was implemented using Hopfield nets in place of cell assemblies. I refer to the networks
created as cell assemblies since Hopfield nets are sufficiently similar to the small cell
assembly networks described in chapter 4 on page 72 and the term cell assembly is
sufficiently flexible.

Weight estimation is a straightforward process and does not require the standard
algorithm shown in table 2.1 on page 40 providing that the binary states of the cells
are 0 and 1, and a threshold is introduced for each cell such that the output of the
cell is 0 unless the total weighted input to the cell exceeds the threshold. Indeed,
experiments show that the standard Hopfield net (binary states {1,-1}, threshold of 0
and trained using the standard algorithm) appears to be incapable of completing the
3-4 cell assembly task. as shown in figure 5.18. Figure 5.18(a) shows the equivalent of
two active primitives, a situation that is supposed to persist while not allowing com-
pletion. Figure 5.18(b) shows three active primitives, a situation that has the same
Hamming distance between that in 5.18(a) and four active primitives (the complete

cell assembly). The standard Hopfield net must be trained not to accept three active
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Figure 5.18: Activating two primitives should lead to a stable but incomplete pattern
(a). However, activating three primitives (b) provides the network with no incentive

to iterate to completion rather than towards the pattern in (a).

primitives as a stable patterns, and yet there is no reason to activate the fourth, since
the two-complete state is equally near. In practice, the pattern in 5.18(b) is treated
as a spurious training pattern and does not alter from one iteration to the next.
Sections 5.6.1 onwards show how a Hopfield network can be set up that does not
use the standard weight setting procedure shown in table 2.1, which can still store
an arbitrary number of stable patterns. Furthermore, it is not necessary with this
network to account for all incomplete patterns that may legitimately occur, such as
those shown in figure 5.18(a). Such patterns presented to the network simply persist,
as for the cell assembly network. The network follows the topology of the 3-4 cell
assembly network, with groups of cells corresponding to the primitives arranged in a
number of rows. For convenience, I have retained the same terminology. Indeed, the
concept of a cell assembly sinulated in computer software is so vaguely defined that

there is no reason not fo refer to these Hopfield nets as networks of cell assemblies.

5.6.1 Storing O(n?) patterns in a Hopfield net

In order to keep the running time of the program to a minimum, each primitive of
cells in the Hopfield net contained three cells, as opposed to 150 in the cell assembly
equivalent. This is made possible by the fact that Hopfield nets contain no stochastic
element, so their behaviour even at small scales is entirely predictable. Three cells is
the minimum number of cells for a Hopfield net to perform completion in the same
way that a cell assembly does. Although it is possible to construct the architecture
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with only two cells per primitive, activating either one of them does not cause the
second one to become active.

As in figure 5.15, primitives were arranged in rows of four corresponding to A,
B, C and D. Weights between cells within the same primitive can be set sufficiently
high so that activating a sufficient number of cells within the primitive is sufficient
to activate the others. This is achieved by implementing a threshold, similar to the
firing threshold used by cell assemblies. If the total incoming activity to any cell is
greater than this threshold, its state is set to 1. Otherwise, the state remains at 0,

as shown by equation 5.1.

Qs = 1 if Zwija.-,i_l >0
i
0 otherwise

(5.1)

where a;; is the activity of cell ¢ at time £, w;; is the weight from cell i to cell
7. There is, of course, no weight from any cell to itself (w;; = 0) to prevent any
cell from remaining active unless its activity is reinforced by other members of the
same primitive. Setting a threshold of 0.5 and each weight within the primitive to
0.6 allows the primitive to ignite if any of its cells are active. Setting weights between
cells within any 3-4 pattern to 0.07 allows three primitives to activate cells in the
fourth but not two primitives. Each active primitive always completes itself, so it
provides a total of 0.21 units of activity. Three contributing primitives therefore
provide 0.63 units, which exceeds the threshold, whereas two contributing primitives
only provide 0.42 units.

An exhaustive trial shows that a Hopfield net constructed in such a manuer gives
flawless recall of stored 3-4 cell assemblies even when large numbers of primitives are
used. In most determinations of the capacity of a Hopfield net, (chapter 2 on page
31), some degree of error in pattern recall is assumed, usually 1% of the bits of the
recalled pattern. This experiment made no such assumption. Figure 5.19 shows the
recall of one such pattern.

The behaviour of this system appears to negate Amit’s [6] proposition that Hop-
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Figure 5.19: Presenting three constituent primitives in a 3-4 pattern (a) leads to
pattern completion (b).

field nets can only store on the order of N patterns for N cells. However, Amit
specifies that the patterns stored must be stable, i.e. they must represent the bot-
toms of attractor basins. One flaw with this system of weights is that the network is
prone to runaway iguition if primitives A,, By and C; (z # y # z) are activated con-
currently. On the first iteration, one 3-4 pattern (either A,B,C.D, or A.B,C.D,)
is erroneously activated, and on the next iteration, activity spreads to the entire
network. However, this problem is corrected by setting weights between cells corre-
sponding to the same letter but in different columns to strong mutually suppressive
values (-10 works well). In this case, activating A,, B, and C. causes one and only
one erroneous D primitive to activate without any loss in ability to recall stored pat-
terns. Similarly such weights prevent more than one 3-4 pattern from being active
at any time (figure 5.21).

Further improvements can be made. In each of the stored patterns A.B,C.D,,
the index of the A primitive matches that of the C primitive, and similarly for B
and D. Any retrieved pattern in which this is not the case represents an error,
which can be prevented by setting strong inhibitory connections between all A cells
and C cells in different columns, and similarly for B and D cells. This does indeed

remove spurious 3-4 patterns, although activating A,B,C, does still lead to a stable
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Figure 5.21: Mutually inhibitory connections between cells representing the same
letter in differont columns prevents more than onc 3-4 pattern from being active
simultaneously. Activating two such patterns (a) leads to one shutting down on the
next time step (b).
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between B and D cells in different columns prevents erroneous activation of 3-4

patterns. (a) represents the test pattern, and (b) the stable state that it produces.

attractor basin not representing any stored pattern, as shown in figure 5.22. In figure
5.22(a), representing an initial activity state of the network, two of the primitives are
only partially activated. Figure 5.22(b) represents the stable state reached by the
network and shows that these primitives have completed. The inhibitory connections
between the A and C cells have prevented them both being active at the same time,
but, interestingly, it was the incomplete C primitive that shut down the complete A
one. This is a side-effect of the fact that the cells in the network are updated in a
fixed order, so that activity to the right of the grid tends to shut down activity to
the left, and activity lower down the grid tends to shut down activity higher up.

5.6.2 Storing O(n®) patterns in a Hopfield net

The network can be extended to give a performance that appears at first sight to
store on the order of n® patterns. Primitives are arranged in six primitives (A to F).
Compound “cell assemblies” are set up according to the pattern A.B,C.D.E,F, as
shown in figure 5.23. Sctting weights between cells in a compound cell assembly to
0.034 is sufficient to allow five primitives to activate the sixth, but not four (figure
5.25). The fact that there are k values of x, y and z suggests that a network of K
primitives can store of the order of K® compound patterns, and hence O(n*), where

n is the number of cells in the network. Exhaustive experiments do show that this
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Figure 5.23: A Hopfield net configuration for 5-6 patterns.
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Figure 5.24: Hopfield nets can be configured to have a capacity of O(N3).

is the case, as illustrated by figure 5.24. The number of patterns that can be stored
is (%()3 as the primitives must be arranged in groups of 6 for each compound cell
assembly.

These results are significant because they appear to contradict researchers such
as [6] who state that the storage capacity of a Hopfield is linearly proportional to the
number of cells. However, the patterns shown so far represent stable states rather
than states in which useful information can be stored. There is no reason why the
architecture cannot be extended to provide the equivalent of 7-8 cell assemblies, with
storage of the order of n? patterns etc. In each case, the weights between cells within
the same pattern are 6/(v.q) + m where 0 is the cell threshold, v is the number of
cells in each primitive, q the number of active cells required to complete the pattern
(i.e. 7 in the case of 7-8 patterns) and m is some arbitrarily small value (e.g. 0.001)
sufficient to push the total weighted mput to each cell just above the threshold. As
the order of the network (g) increases, each of the weights decreases, and so does the
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margin of error between the summed input from ¢ — 1 cells and q cells. For a Hopficld
net with preset weights and one connection only from any cell to any other, this does
not provide a problem. For a cell assembly, with a heavy stochastic element, the
margin of error is quickly swamped by fluctuations in the weighted input. For this
reason, while higher-order Hopfield nets are quite feasible, the same cannot be said
with certainty for higher-order networks of cell assemblies. This is illustrated by the
fact that for the Hopfield net, when k = 12, the number of stored 3-4 patterns in the
Hopfield net equals the total number of cells in the net (144), and at this point, the
net has a perfect recall of all the patterns. With 150 cells in each primitive, the 3-4
cell assembly network does not reach the same point until £ = 600 (corresponding to
2400 primitives all together), and in this case, the recall rate is only 71.6%, as shown
in graph 5.16.

5.7 5-6 Hopfield nets do not break the rules of
Information Theory

At first sight, it may appear that Hopfield nets, arranged to store 5-6 patterns offer
an unlimited amount of storage. Information Theory [161, 162| states that a purely
random sequence of n bits cannot be represented by fewer than n bits of information,
and yet a 5-6 Hopfield net, with n cells and n(n — 1) connections (no cell has a
connection to itself) can store n® patterns. However, in this section, I show that this
property disappears as soon as any attempt is made to store only certain patterns in
the net and not others. This does not render the 5-6 nets useless, but it does help to
keep their abilities within perspective.

The stable states of the 5-6 Hopfield net are represented by the 5-6 patterns
themselves. Activating fewer than five primitives in a 5-6 pattern does not cause
completion and therefore provides no information, and yet activating more than six
primitives causes at least some of them to be shut down due to the strong inhibitory
connections between patterns. The 5-6 Hopfield net can therefore only be used to
hold information by storing some patterns and omitting others.

Consider a situation in which pattern A,B,C,D.E,F, is to be omitted, perhaps
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to represent a ‘0’ bit in a bit sequence. The connections that make up this particular
pattern (A, — By, A, — C, etc.) also form part of many other patterns e.g. A, — B,
is present in A,B,C,,D.E,F,. If any of these patterns is to be stored (perhaps rep-
resenting ‘1’ in the bit sequence), then the connection is set. Since the connections
between cells A, B and C are duplicated in cells D, E and F, it only takes three pat-
terns to be stored for the pattern A.B,C.D.EF, to be stored erroneously, as shown
in figure 5.26, which shows how storing patterns A; BoCyD1EyFy, AyBsC3DyEaFy
and A, B4C3D,E4F; leads to the erroneous storing of pattern A; B,C3DEsF3. Ev-
ery excitatory connection shown in figure 5.26(d) is duplicated somewhere in figures
5.26(a) to (c).

It is still possible to construct a set of network connections that will store infor-
mation. For instance, the connections shown in table 5.3 store the binary pattern
110001110 in a 3-4 Hopfield net. However, this message was contrived so that no
erroneous information was stored. Each ‘1’ bit corresponds to a compound cell as-
sembly, the identity of which depends on the order in which the patterns are “read”
from the network. The C and D indices for each cell assembly duplicate the A and
B and can be ignored here. If the patterns are read in the order A;B,, A3B;, A3B,,
A1B;, A3Bs, A3Bs, A1 B3, AyB3, A3Bj, then the bit string 110001110 is encoded by
the cell assemblies A, B,CDy, AsBC2D,, A;B3C, D3, A3B2C3Ds, and A3B3CyDs,
as shown in figure 5.27, corresponding to the commections shown in table 5.3. Ouly
connections strengths between cells in different primitives are shown, and each con-
nection is symmetrical. Each tick represents a weight strength of 0.057, each cross
an inhibitory weight of —10, and each 0 a zero connection. In this case, the indices
of the B primitives are analogous to the low digit of an “address” specifying a bit
position along the message, and the A indices are analogous to the high digit.

Table 5.3 does not represent the minimum number of bits that must be transmit-
ted as it contains a great deal of redundancy. Inhibitory connections are predeter-
mined, as are connections between cells in A primitives and those in C primitives,
and those between cells in B primitives and D primitives. Weights from primitive A
to primitive B are matched by those from primitive A to D, from primitive B to C
and from primitive C to D. In fact, the only 9 weight values need to be transmitted,
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Figure 5.26: The three patterns stored in (a) to (c) lead to the erroneous storing

of the pattern in (d). Inhibitory connections have been omitted from the figure for
clarity.
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Table 5.3: Connections for storing 110001110
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Figure 5.27: Pattern of cell assemblies to store 110001110, Not all connections are

shown.
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By | By | Bs

V{0 |V I|4
V{0 | V|4
0|V 1|0|A4;

Table 5.4: Minimum connections needed to store 110001110

as shown in table 5.4, which can be encoded in only 9 bits. In fact, the encoding is a
straight-forward matter, as reading down the columns of the table and interpreting

a tick as 1, reconstructs the original bit string.

5.8 Summary

In this chapter I have proposed that in theory a network of n cells can be constructed
consisting of a series of cell assemblies termed primitives, and that this network can
hold on the order of n? patterns of activity. An implementation of this indicated
that small networks could be activated with almost perfect reliability, but that the
reliability fell gradually as the network size increased. I also propose that in principle
higher order networks of compound cell assemblies can be constructed, containing
compound cell assemblies consisting of K primitives in which (A — 1) primitives
are needed to ignite the last one. However, time restrictions coupled with the large
amount of computing power required make this impractical for the scope of this
thesis.

Comparisons were made between the cell assembly network and an equivalent
Hopfield net, and it was shown that a Hopfield net could be constructed which
behaved in a similar manner to cell assembly network, and therefore also had the
capacity to store on the order of n? bits of information. This largely agrees with the
known literature, which states that Hopfield nets store on the order of n patterns
(the maximum number being 0.138n), each of which is n bits long. The capacity
of Hopfield nets is therefore generally considered to be on the order of n? bits also,
although some researchers (chapter 2 on page 31) claim that this can be extended.

Furthermore, the general success of the experiments to store O(n?) patterns in cell
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asscmblics and Hopficld nets suggests that higher order networks can be built, that
can store on the order of n?, n? or more, and a Hopficld net that can store on the
order of n3 was constructed and successfully tested. In the last section I show that
this architecture has severe limitations as an information encoder and does not live up
to the promise of almost infinite information storage. Such a restriction is mevitable
given the restrictions imposed by both Information Theory and, indeed, common
sense. The claim that Hopfield nets can be arranged to have a capacity of O(n?)
and higher, while strictly speaking true, appears to be largely an empty promise.
Although the Hopfield net can indeed be arranged to have n” stable states, for any
arbitrary positive integer z, these do not correspond to n* states in which useful in-
formation can be stored. However, I show that such a net can still be used to encode
information, and investigations of the practical carrying capacity of a 5-6 Hopfield
net are continuing.

The restrictions applying to Hopfield nets apply equally well to networks of cell
assemblies. Although experiment 5.5 on page 139 shows that a network of 5-6 com-
pound assemblies can in principle hold O(n?) stable patterns, these cannot all be used
to store information. A practical network would require that some 5-6 patterns be
present and some be absent, and would suffer from the same problem that a Hopficld
net would. The problem is also exacerbated by the fact that given the implemen-
tation used, the ability to ignite the 5-6 assemblies reliably decreases approximately
linearly with increasing numbers of primitives. This effect is almost certainly due to
the distribution of the numbers of connections between individual primitives, which
gradually increases as more primitives are added.

The question may be asked “If cell assemblies and Hopfield nets are so similar,
why should we carry out research into cell assemblies?” This is a valid question.
After all, the behaviour of Hopfield nets is well understood, and the experiments
described in this chapter show that they can clearly reproduce much of the behaviour
of cell assemblies. Omne valid argument returns to the point raised in chapter 1 on
page 2: Cell assemblies are no less than an attempt to model structures believed
to be present in the brain, whereas Hopfield nets are only loosely inspired by the

brain. Of course, this point is irrelevant to any researcher merely interested in the
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information processing abilities of connectionist nets, but the brain is capable of
extrancly complicated processing, so there may be great benefit in cumlating the
brain. A more relevant argument is the flexibility of cell assemblies: Activity in
cell assemblies builds up, is sustained for some time, and then dies out. The cell
assembly may ignite other cell assemblies, and be re-ignited itself at some other time.
Experiment 4.4 on page 88, for example, shows a complex, if unintended, chain of
ignition and suppression occuring in a network of only six primitives. The Hopfield
net iterates until it reaches a stable state, and then remains in that state permanently.
The pseudo-stable states through which a network of cell assemblies passes allow for

more complex processing than the stable states of the Hopfield net.
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Chapter 6

Conclusions and Further Research

This thesis describes work carried out to test the capabilities of cell assemblies sim-
ulated in computer memory. The cells simulated maintain some properties found in
biological neurons, although the equations on which they are based have been severely
simplified in order to reduce simulation running time. Even with a simple neuron
model, cell assemblies demonstrate some interesting and useful properties. Later
work showed that large networks of cell assemblies could be constructed, whose ca-
pacities could be predicted and verified. The netwarks of cell assemblies worked well
for relatively small numbers of primitives, but the rate at which compound assemblies
could be successfully recalled decreased in an almost linear manner as the number of
primitives increased.

Cell assemblies can be formed in small networks of cells with initially random
connections between the cells. The behaviour of the networks was determined by
a handful of parameters, all of which interact in complicated ways. The problem
of parameter selection readily lends itself to a genetic algorithm, and a variety of
satisfactory parameter values was found through the application of a simple genetic
algorithm. This approach proved so powerful, that it was possible to get a variety of
behaviours from the cell assembly, including mimicking the behaviour of the TRACE
cell assembly model [98]. Experiments were also carried out in which some parame-
ters, namely weight strengths, were derived from a process of Hebbian learning.

Throughout the thesis cell assemblies are compared to their nearest relative in the

taxonomy of neural net architectures, namely Hopfield nets. Indeed, the definition
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of simulated ccll assemblies is so vague that Hopficld nets may be considered to be
valid implementations of cell assemblies. They certainly do demonstrate a range of
properties postulated for biological assemblies, such as completion, in which some
activated cells in the Hopfield net cause others to activate, and persistence, in which
a pattern, once activated, persists for a long time. However, these properties are not
dynamic, i.e. once the Hopfield net has moved to a stable state, it remains in that
state indefinitely and is incapable of moving away from it until external conditions
change.

This is the area in which cell assemblies are potentially superior to Hopfield nets.
They are more flexible, in that their patterns are dynamic: Although the activity in
individual cells may wax and wane, the overall pattern in the network (in terms of
whether the cell assembly is activated as a whole) remains constant. The dynamic
nature of cell assemblies allows them to ignite, and to deactivate, suddenly or over
time. They can ignite other assemblies before fading out themselves, resulting in
sequential processing of “ideas” in a network. Simulated cell assemblies have been
used to implement concepts associated with intelligent behaviour such as counting
and variable binding. In short, cell assemblies promise to be capable of a greater
range of behaviour than Hopficld nets, and this is what makes them suitable for

further research.

6.1 Conclusions

Small hierarchies of cell assemblies can be formed by a similar process of learning,
such that individual primitive cell assemblies can be activated, and that compound
2-3 cell assemblies can be ignited. Each primitive consisted of 150 cells, with 10
cells being chosen as the activity level necessary for a primitive to be considered
active. The parameters controlling the global behaviour of the network interact in a
manner that was too complex for me to predict. It is a fairly easy matter to set up
a single assembly in a network, as excitatory weights between cells can be set fairly
high. The effect of fatigue does put a limit on weights, as unrestricted firing of cells
leads to a much lower number firing on the next time step. However, determining
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parameters for compound cell assemblies is substantially harder: Not only is there an
extra parameter to calculate, the excitatory weight strength between oells iu different
primitives (or two extra parameters if the inhibitory weight strength need not be its
negative equivalent), but the parameters are now subject to tight controls. They
must be set so that k active primitives are insufficient to ignite any others, but
that k£ + 1 primitives are sufficient to do so. As k becomes ever larger, the problem
becomes harder, and that has curtailed my research. For instance, for 2-3 compound
assemblies (k = 1), parameter sets were determined both by genetic algorithm and
by learning. These two turned out to be different, from which conclusions could be
drawn. For 3-4 compound assemblies (k = 2), parameter sets were determined by
genetic algorithm alone. There is no logical reason why parameters for a 3-4 network
should not be learned, apart from the fact that the desired values need to be known
already since they control the ratio in which patterns are presented. For the 5-6
assemblies (k = 4), experiments were only carried out using a Hopfield net.

Several of the findings have been counter-intuitive, the most notable of which
is that the most effective performance occurs with a parameter set in which over-
all activity passed between primitives is negative, and yet activation still happens.
This led to the discovery of the “lucky neuron” cffect, in which a minority of the
most strongly connected cells are responsible for igniting the primitive and the low
activation energy passed mainly acts as a brake to reduce runaway activation. An
experiment was carried out in which this brake was removed, and there was indeed
uncontrolled activity in all the primitives, which led to widespread fatigue and then
a crash in activity. A good performance can be obtained by arranging the frequency
of training patterns so that the weights between and within primitives more closely
match a more intuitive ratio, but this does not give the highest success rate.

Section 4.8 on page 106 investigates the effects of allowing cells within a network
to activate spontaneously, i.e. in the absence of any external stimulus. It is shown
that even a small spontaneous activation probability leads to the network developing
some interesting properties. These occur due to the continual presence of Hebbian
learning in the network even after cell assemblies have formed. It was found that

cell assemblies could enlarge as a result of recruitment at their outer edges, and that
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assemblies that were rarely ignited tended to be forgotten. Fractionation does occur
within large assemblies, although the cause of this and circumstances in which it
happens were not investigated.

When primitives have to be combined within a compound cell assembly, there
are two conflicting imperatives, one tending to increase the weights, the other tend-
ing to reduce them. For the simplest compound assembly, the 2-3 assembly, any
one primitive must not provide enough activation energy to the other two to allow
ignition, but any two primitives must provide sufficient energy to ignite the third.
Larger weight values tend to fulfil the latter requirement while rendering the former
less likely. Restrictions are even tighter for 3-4, in which no fewer than three primi-
tives are necessary to ignite the fourth. The problem is made worse by the fact that
the lucky neuron effect still applies since the destinations of the connections were
assigned in the same random way in all experiments.

A set of weights that gave acceptable performance for a 3-4 network was deter-
mined using a genetic algorithm. [t was impractical to test whether these weights
could be learned due to the prohibitive amount of memory that would be required
to store learned weight values. If the 3-4 network were to follow the same pattern as
the 2-3 network, then the learned weights would not give the same high performance
as the evolved weight values.

Having validated the performance of the simplest possible 3-4 network, the next
obvious step is to combine these networks into larger ones that can contain more
than one 3-4 pattern. It was shown that a network containing a large number of
primitives arranged in a 3-4 pattern had on the order of n? stable states consisting
of 4 primitives such that activating no fewer than three primitives would cause the
fourth to ignite. n represented the number of cells in the network. Such a network
was implemented both as a set of cell assemblies and as a Hopfield net, and it was
confirmed that the number of stable states did indeed increase quadratically with the
number of primitives, and hence the number of cells, in the network.

One justifiable criticism of these conclusions is that they apply to one particular
implementation of a cell assembly, i.e. only one set of equations, applied in one

particular order. Perhaps, if pre-not-post LTD had been applied in conjunction with
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a slightly different. way of calculating fatigne, then success rates may have been higher.
My ouly justification can be that a large number of variations of the architecture were
initially tried before settling on the one described. The architecture that appeared

to give the best results was the one that was finally chosen.

6.2 Have the objectives been fulfilled?

In general, yes. Some of the conclusions have been rather disappointing, particularly
those involving the capacity of networks with a large number of primitives, but the

thesis has achieved everything that [ set out to achieve.

6.2.1 Establishment of a cell assembly in a network of cells

This objective was fulfilled in chapters 4 on page 72 and 5 on page 121, but it was
the main aim of section 4.1 on page 74. Experiments 4.1.1 and 4.1.2 (pages 75 and
79) show that a network, obeying a few simple equations, can develop connections
between those cells forming a cell assembly. The cell assembly displays all the prop-
erties specified by Sakurai [154]. Furthermore, it has been shown that a network
can develop more than one cell assembly, and that these assemblies can interact in a

meaningful way.

6.2.2 Investigation of properties of cell assemblies

Various properties of the simulated cell assemblies have been investigated in chapter
4 on page 72. Several of these were the aims of specific experiments, such as the
effect of spontaneous activation on the enlargement or fractionation of cell assemblies.
Other effects were discovered in passing, such as the way in which the distribution
of connections among the cells gave rise to the lucky neuron effect, and influenced
the choice of parameters by the genetic algorithm. The interactions between these
properties, particularly the way in which the pernicious lucky neuron effect alters
behaviour such as recruitment or forgetting, has not been studied, mainly due to

pressures of time.
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6.2.3 Establishment of correlates between simulated cell as-

semblies and those in the brain

Although it was not my intention to support or undermine any particular theory of
cell assemblies, one side effect of the research has been to provide some support for
Palm’s theory [139] in which he proposes that neurons in the brain are partitioned
into modules. Within these modules neurons are heavily connected, but there are
relatively few connections between modules. The connections between primitives
mimics these modules, in which a few connections between primitives are responsible
for the majority of the inter-primitive activity.

Experiments that establish networks of communicating primitives also help to
answer a criticism by Milner [134], that the natural consequences of Hebbian learning
would be for connections between cell assemblies to become indistinguishable from
those within cell assemblies, and that consequently the assemblies would not be able
to maintain their independent existence. While the genetic algorithm can throw no
light on this matter. since it assumes that inter-primitive connections differ from
intra-primitive ones, the experiments involving learned weights show that Milner’s
criticism is not well founded. The secret to differential connections is the difference

in co-firing rates, itself a result of difference in frequencies of pattern presentation.

6.2.4 Determination of the storage capacity of cell assembly

networks

This is the area of research that has produced the most disappointing results. Ex-
periment 5.1 on page 122 did show that a network of cells could be arranged to hold
O(n) primitives that could be activated independently, even when these primitives
overlapped to a small extent. Increasing the overlap resulted in erroneous ignition of
neighbouring primitives.

Although in theory the proposed architecture of the cell assemblies in the 3-4
pattern produced a network with storage capacity of order n? bits, where n is the
number of cells in the network, experiments showed that my system did not match

this in practice. I say “my” system, since there is no reason to believe that this failure
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represents a mistake in the theory. It could well have been due to stochastic variation
in the councctious (a quite probable cause given the problewns that that effect has
caused in previous experiments) or simply due to a poor choice in the mathematical
determination of the model’s behaviour. Perhaps, for example, if the fatigue and/or
recovery from fatigue had not been governed by constant parameters but some more
complex function, then results may have been better. For the theory of O(n?) to have
been fully vindicated, the line shown in graph 5.16 on page 141 should have had an
average gradient of zero, i.e. some slight variation permissible due to the effects of
noise, but generally the same success rate independent of the number of primitives
in the network. Even a cursory glance shows that this clearly is not the case. This
thesis must therefore end with the problem of whether a network of assembles can
have O(n?) capacity not completely addressed.

When it comes to determining the capacity of Hopfield nets, the approach ex-
plained in chapter 5 on page 121 is just one of several, each of which comes to give a
slightly different conclusion. Section 2.3.2 on page 43 outlines these approaches, and
shows that they all make slightly different assumptions. Chapter 5 needs to make no
assumptions about probability of error, or the shape of error distributions. It is also
the only approach to be applied to cell assemblies as well as Hopficld nets.

6.3 Further Research

This thesis has shown that cell assemblies do have potential to be a useful tool in any
connectionist toolbox. However, a great deal of work is necessary before they can
become as useful as more established architectures such as multi-layer perceptrons or
Hopfield nets. There is very little hard-and-fast theory concerning cell assemublies, and
the work described in this thesis does not improve the position much. It does, how-
ever, demonstrate that the behaviour of the network is a complex interplay of various
parameter values. Nevertheless, I feel that it is open to some sort of mathematical
analysis, from which, perhaps, optimal parameter values may be calculated for any
configuration of primitives without the need for time-consuming genetic algorithms.

While experiments have been carried out investigating whether connections could
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be learned in small networks, time restrictions have prevented implementing learning
in large networks. On a personal computer, programs involving large networks of
cells (up to 2400 primitives have been tested) often require more than a week of
continual computer running time. This would be increased many times over if learning
were to be implemented. Experimental findings show that recall rates fall away
approximately linearly as the number of primitives in a large network increases, and
a similar disappointing performance is to be expected from large networks in which

weights are learned.

6.3.1 Theoretical research

Chapter 5 demonstrates that 3-4 networks, both in the form of cell assemnblies and
Hopfield nets, can be used to store binary information. This has not been investi-
gated further as it is not a central aspect of the research. It would be interesting, if
not particularly useful, to explore the limits of such an architecture. It is, however,
unreasonable to expect that it will provide any great benefits over current informa-
tion storage methods as my experiments suggest that the pattern of weights for the
Hopficld net require as wany bits to store or trausmit as the original binary message.
The storage capacity of a Hopfield net does indeed appear to be of the order of n
binary patterns, each of which is n bits in length (n being the number of cells in the
network), i.e. of the order of n? bits, but it is a well connected architecture (each cell
is connected to all other cells, even if those connections have a weight of zero), so it
requires n? connections. Hence there is no advantage as regards storage capacity to
using a Hopfield net.

It might be argued that a network of 3-4 cell assemblies has no more use than
the equivalent Hopfield net, and takes a great deal more memory to implement. I do
not yet have a satisfactory answer to this point. I can only suggest that the dynamic
properties of cell assemblies may lead to such networks having some practical use.
In this respect, the temporal nature of cell assemblies, the fact that their activation
fades with time, may prove useful. While extra patterns can be stored in a Hopfield
net at any point during its use, z.e. not only during the initial “training” session,

it is not generally used in that manner. It is also a lot harder to remove patterns
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from a Hopficld net once it has been stored. Cell assemblics form as a result of
Hebbian leariing and there is no reason why this should be turned off once asscinblics
have formed. As a result, cell assemblies can be enlarged, forgotten or split into
subassemblies that can be ignited independently. For this reason, 1 do not dismiss
3-4 networks of cell assemblies as being useless. This is one area that requires further

investigation.

6.3.2 Practical applications

Simulated cell assemblies have been established as connectionist architecture with
some potential for information processing, but without any practical uses they can
only ever be a side-line in the connectionist approach to Al. There are several research
areas that, although they have yielded good results with connectionist nets such as
MLPs and Kohonen SOTMs, have still not been fully solved. A good example is
speech recognition [21]. Although standard connectionist architectures have been
applied to speech recognition problems [118], they have only achieved high success
rates in strictly controlled circumstances (such as isolated word speech and severely
restricted vocabularies). This occurs because MLPs generally require the format
of inputs to be highly restricted. For example, since a trained MLP has a fixed
number of input connections, input patterns representing words must be compressed
or expanded to match that number of inputs. Cell assemblies are more flexible in
this respect, with assembly ignition occuring simply when the number of firing cells
is sufficiently high.

This flexibility may allow cell assemblies to be applied fruitfully to many areas in
which standard neural network architectures have failed to fulfil their initial promise.
I have already shown that cell assemblies can operate as associative memories, so they
can be applied in any area where an associative memory is required, such as image
storage and retrieval. Already cell assemblies have been proposed as a practical means
of datamining and for use in Internet search engines [92], and as their capabilities are

researched further, we can expect other applications for them to be found.
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Appendix A

Derivation of Some of the

Properties of the Hopfield Net

This appendix summarises the proof of the storage capacity given in [77]. Define the

following terms:
N The number of cells in the Hopfield net

P The number of patterns stored in the net
wij  The strength of the weight from cell i to cell j |
pi(t) The output of cell 7 at time ¢
1:(0)  Bit 4 of the test pattern, presented to cell i at time ¢ = 0
h; The sum of the inputs p; weighted by connection strengths
hi = SN wijp;(t)
& Bit ¢ of pattern s on which the Hopfield net is to be trained
& Bit 7 in cases in which a single training pattern is used
Ir Hard-limiting (“sgn”) function such that

Ji(z) is +1 for > 0, -1 for z < 0
The weights of the Hopfield net should be set up in such a way that the training
patterns themselves are stable, 7.e. that any given bit does not change on iteration
when presented to the net. This implies that Ji(hi) = p;(0) for all 4, provided that
#i(0) = &, i.e. that passing the sum of the weighted inputs for any bit 7 of the test
pattern produces a value with the same sign.

In cases in which there is only a single training pattern to be stored, & (for i = 1
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... N), the required condition is that

N
sgn(Y_ wi;&i(t)) = & (A1)
J
Take w;; to be proportional to the product of & and & (k is the constant of
proportionality):
wij = k& & (A2)
N N N
Dwiski =Y k& &&=k &bk (A.3)
J 3 J
for z; = +1 .4 = 1, giving
N N
Dwi &=k &=kN& (A.4)
J J

The sign of kN¢; must be the same as that of &, so the condition in equation A.1
is guaranteed. k is taken to be ﬁ for convenience. If the single pattern is replaced

by M patterns, then any particular pattern S is stable for all bits 7 if

N
hi = Y &y
j=1
sgn(h;) = & (A.5)
(A.6)

i.e. there is no change in any bit when pattern % is applied to the input. If the

weights are defined using equation A.7,

1 M
Wy =5 ;G’ &5 (A.7)
then
N 1 M
b= Y6288
=1 s=1
1 N M 2
= N ZZ&G{,
j=ls=1
(A.8)
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This expression can be split into two terms, the first corresponding to s = S, and
the second corresponding to s £ S. The second term is often called the crosstalk

term as it corresponds to learned bits in patterns other than S which may differ from
those in S.

1 N
hi = N ZQS'{;S{]S N 4 Z Z fl 6_1 5_7 (A,Q)
=l J=1s#£8

Since zj = £1, £7.£7 =1, so the expression reduces to

i N

<Y j=1s#£8
5 is a loop invariant in the first term, so EN 1 & reduces to N.&

hi = ——(Nfs)

N M
ZZ fsfs
J s#£S

é” &6

4‘&Mi' 21

s, 1¢

= & +ﬁz
J

(A.11)

Clearly, if the crosstalk term were zero, then equation A.5 would be automatically
fulfilled. However, since the equation for updating the bit values only uses the sign
of h;, then equation A5 is fulfilled if the magnitude of the crosstalk term is less than
1, in which case it is incapable of changing the sign of h;. This does in fact turn out
to be the case if the number of patterns stored is much smaller than the number of
cells. In this case, any of the training patterns presented to the inputs of the Hopfield
net will remain unchanged. Furthermore, if a small number of bits in the patterns
are wrong on presentation, the updating equation will correct them automatically, so
the training patterns themselves form the lowest points of attractor basins.

Define CF to be ¢F times the crosstalk term:

SNJW

=SS5 ages (A12)

J—l s#8
If C¥ is greater than -1 for every bit of every pattern, then all the patterns are

stable. In that case, either the cross-talk term has the same sign as & or, although
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Figure A.1: C? follows an approximately normal distribution.

opposite in sign, unable to alter the sign of h;. For any given bit, we can calculate
the probability p., that the bit is not stable

Perr = P(C{ < -1) (A.13)

Since all patterns consist only of equally likely +1 bits, ff.f;.{f must be +1. If we
assume that both p is much larger than 1 then the double summation in equation A.12
means that C; is approximately equal to 4 times the sum of Np random numbers,
each of which is +1. The ¢ term in the numerator of equation A.12 makes no
difference to this conclusion, since it can only alter the sign of C7 not its magnitude.
According to the theory of random coin tosses [51, 165], C7 must follow a binomial
distribution. Providing that N is also large compared to 1, this can be modelled
using a normal distribution with mean value 0 and standard deviation /%, as shown
in figure A.1.

The area under the graph is 1 unit, so the shaded area in figure A.1 represents the
probability that C¥ < —1. The equation of the normal curve is difficult to process,
but the areas under it may be calculated from the standard normal curve tables given
at the back of any statistics text book. In this case, we may choose a specific figure
for the probability and work backward to find a value for 4. The value of p.,. is
usually taken to be 0.01, giving ¥ = 0.185, a critical load of 0.185, and shows that
the capacity of the network is proportional to the number of cells in the net. This
is the probability that any particular bit will change on the first iteration, but it
does not preclude the possibility that this will lead the net into a state which is then
unstable. In fact, it can be shown that the critical load is 0.138.
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Appendix B

Significance of the Correlation

Coefficient

The correlation coefficient, R*, more properly the Pearson product-moment correla-
tion coefficient, is a measure of the relationship between two variables in the form of
paired data items (i.e. z—y co-ordinates on a graph). It is a real number in the range
—1...+4 1. It is more usual to quote the coefficient of determination, R?, necessarily
ranging from 0 to 1, which indicates the proportion of the variation between the two
variables that is explained by an underlying relationship. The rest of the variation is
simply random noise.

However, it is possible, especially with small samples, that any apparent correla-
tion arises simply through chance and that the real correlation between the variables
is zero. For this reason, the significance level of the correlation is calculated. A cor-
relation that is significant at the 10% level (termed p < 0.1) has a probability of less
than 10% of arising purely through random chance.

The significance of the correlation is calculated using the {-statistic, which can
also be used to calculate the significance of the Spearman’s rank correlation coeffi-
cient (R;). The probability given by the t-statistic indicates how likely the observed
corrclation coefficient would be if the true correlation were zero. The t-statistic de-
pends on the number of degrees of freedom of the data, n — 2, where n is the numbers

of paired data items. Two is subtracted to take account of the fact that more than

ISometimes Ry to distinguish it from the Spearman Rank Correlation Coefficient
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One tailed Two tailed
Hy|r=0 r=0
Hi|r<O(orr>0)|r#0

Table B.1: Oue or two tailed significance test

two points are needed on a graph for any correlation to be derived: A straight line
can always be drawn through two non-identical points on any graph. The t-statistic

is calculated as follows:

n—2
1-—r2

where r is either of the two correlation coefficients. The further away from zero

(B.1)

i=p

the correlation coeflicient, the higher the value of £ and the more likely any observed
correlation is to be a true effect. Since r can be +1, it is possible for ¢ to be infinite.
The significance test declares two hypotheses, Hy and H;, and can be either one-tailed
or two-tailed, as shown by table B.1. The one tailed test is used if the direction of
the relationship is known, i.e. if one of the variables is believed to be larger than (or
smaller than) the other, rather than just being different from it. If nothing can be
presumed about the nature of the relationship, then the two-tailed test is used.

This is converted into a probability value using a standard table of values pub-
lished in statistics text books. These tables give the value that the t-statistic must
exceed for any given number of degrees of freedom for the correlation to be genuine at
a given significance level. The tables given are usually for two-tailed tests. If the test
is a one-tailed test, then the same table can be used, but the column referred to in
the table is for twice the significance level, e.g. if a one-tailed test is being carried out
at the 5% significance level, the value required is read from the 10% (0.10) column.

The test of significance is carried out on the correlation coefficients derived from
twelve trials of a genetic algorithm, giving ten degrees of freedom. Table B.2 shows
the required values that the coefficient of determination must exceed in order to be
significant at various levels.
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Significance level | Required t-statistic | Equivalent coefficient of determination
20% 1.372 0.159
10% 1.812 0.247
5% 2.228 0.331
2.5% 2.634 0.410
1% 3.169 0.501
0.1% 4.587 0.677

Table B.2: Translation of coefficients of determination into significance levels for the

genetic algorithm experiment.

192




