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Abstract. Modelling, reasoning and verifying complex situations involving a system of

agents is crucial in all phases of the development of a number of safety-critical systems. In

particular, it is of fundamental importance to have tools and techniques to reason about the

doxastic and epistemic states of agents, to make sure that the agents behave as intended.

In this paper we introduce a computationally grounded logic called COGWED and we

present two types of semantics that support a range of practical situations. We provide

model checking algorithms, complexity characterisations and a prototype implementation.

We validate our proposal against a case study from the avionic domain: we assess and verify

the situational awareness of pilots flying an aircraft with several automated components

in off-nominal conditions.
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1. Introduction

Multi-agent systems are increasingly being employed in modelling and rea-
soning about complex scenarios, from self-driving cars to autonomous rovers.
Tasks related to such systems usually encompass design, specification, vali-
dation and verification, including certification activities when agents operate
in safety-critical situations [26]. Reasoning about beliefs is a fundamental
aspect of these activities, as agents typically comply with a protocol that is,
essentially, prescribing a course of actions according their beliefs [28]. But
reasoning about beliefs plays a crucial role also in all the verification activ-
ities that occur from design to run-time execution. Consequently, it is of
utmost importance that appropriate tools and techniques are developed to
support epistemic and doxastic characterisations of agents.

In this paper we propose a logic to reason about quantified beliefs. A
standard approach to belief quantification involves the use of probabilities;
however, a number of other approaches exist. We refer to [14] for a de-
tailed overview. In this paper we make use of the term degrees of belief to
abstract away from the actual mechanism employed to give a quantitative
figure to beliefs. The literature employs the terms subjective and objective
to discriminate between assignments that clearly differentiate between prob-
abilities and beliefs in the former case, and assignments that refer to actual
features in the real word (that may or may not correspond to probabilities)
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in the latter case. In this paper we first start with an approach that re-
lies on counting : the resulting notion of degrees of belief is subjective, but
computationally grounded. We then take an objective approach by intro-
ducing the notion of degrees of belief as a bespoke measure of reachability in
probabilistic interpreted systems, an extension of interpreted systems [10] in
which the temporal relation is represented as a discrete-time Markov Chain
(DTMC). In this case the weights of temporal relations (probabilities) need
to be provided externally, but the degrees of belief are derived from these
and do not need to be provided.

More in details, our contributions are as follows:

• We provide a language called COGWED (COmputationally Grounded
WEighted Doxastic logic) that extends CTLK [10] with weighted doxas-
tic operators. These operators allow to reason about the doxastic states
of one or more agents.

• We provide two types of semantics for this language. The first is based on
standard interpreted systems and evaluates degrees of belief as ratios de-
fined on equivalence classes of the epistemic accessibility relations. The
second employs a generalised temporal relation and computes degrees of
belief as a ratio between the probabilities of reaching epistemic equiv-
alence classes, making use of a discounting factor for systems without
perfect recall (see Section 4).

• We introduce model checking algorithms for both semantics and we char-
acterise their complexity. We provide a prototype implementation and
we assess the scalability of our approach on standard benchmark tests.

• We validate our approach against a concrete case study: we assess the
situational awareness of a pilot flying in off-nominal conditions using a
model provided by researchers at NASA Ames [1].

The rest of the paper is organised as follows: in Section 2 we discuss
related work, in Section 3 we present the syntax of COGWED, in Section 4
we introduce various options for its semantics. We introduce model checking
algorithms and a prototype implementation in Section 5. We perform an
experimental evaluation and present a case study in Sections 6 and 7, and
we conclude in Section 8.

2. Related Work

Formalisms to model degrees of belief have been investigated in the past by
a number of authors. Dempster-Shafer belief functions [24] are among the
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most common approaches to assign a mass to beliefs and to combine belief
functions. This formalism is a classical example of subjective assignment
in which plausibility can be modelled differently from probability. We refer
to [14] for other approaches to modelling degrees of belief subjectively. In
all these formalisms, however, the function associating a weight to a belief
needs to be externally provided, for instance by employing historical data or
other means; this is a key difference with our approach, where degrees are
computed as the ratio between two sets of possible worlds.

The idea of evaluating degrees of belief as the ratio between possible
worlds is not new: in the formalism of random worlds [3] degrees of belief
are computed using proportion expressions of the form ||φpxq|ψpxq||. These
expressions denote the proportion of domain elements satisfying φ w.r.t.
those satisfying ψ in the domain of a knowledge base. Conditional expres-
sions are used in [3] to evaluate the weight of belief in knowledge bases and
are shown to satisfy a set of desiderata for default reasoning. While comput-
ing degrees of belief is a generally undecidable problem in the formalism of
random worlds, here we work in the assumption of a finite number of states
and provide a computational strategy to derive degrees of beliefs by reason-
ing on epistemic relations. Moreover, there does not seem to be a tractable
solution to add temporal reasoning to this formalism as we do here (as ex-
emplified in the case of the dining cryptographers). Additionally, another
key difference with our approach is that we provide a formal language to
express degrees of belief for a system of agents and we are not limited to the
single agent case. Along similar lines, the work in [12] introduces plausibility
measures that are used to justify a set of axioms for default reasoning. More
recently, the work in [15] addresses decision making in terms of weighted sets
of probabilities by introducing an axiomatisation and by providing dynamic
decision making procedures.

Our second semantics treat reachability using Discrete Time Markov
Chains. A language that combines first-order logic and probability in finite
domains is introduced in [23] using Markov Logic Networks (MLN): simi-
larly to [3], knowledge bases are employed as the underlying semantics, and
weights are associated to formulae in the KB. In the case of finite domains,
weights can be learned using a set of algorithms and the authors show that
MLN can tackle real scenarios. The work in [8] presents the logic PFKD45,
whose syntax is very similar to COGWED. The semantics of this logic relies
on externally-provided probability measures over finite bases; the authors
present an axiomatisation and a decision procedure for this logic but no
model checking algorithm. The key differences with our work are the dif-
ferent semantics based on interpreted systems and the inclusion of multiple
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agents and temporal modalities, in addition to a dedicated model checking
tool.

In the multi-agent system community there have been a number of works
addressing the verification of doxastic modalities, such as the AIL+AJPF
framework [9]. This work addresses BDI architectures and is capable of veri-
fying “standard” (i.e., non-weighted) doxastic operators. The tool MCK [13]
has recently been extended to include probabilistic reasoning. In this tool
probabilities are assigned to temporal relations; the tool is able to verify
only the probability of Boolean expressions, possibly nested in an X (next-
state) temporal operator. Probabilities over temporal relations are also
analysed using the logic PCTL (Probabilistic CTL) in the well known tool
PRISM [18], which has recently been extended to verify rPATL (restricted
Probabilistic ATL) [5, 6]. A logic to reason about probabilistic knowledge
and strategies is also described in [16]: in this work probabilities are associ-
ated to temporal relations and to observations as well. Our key difference
is again in the definition of degrees of belief in terms of possible worlds.

The tools PRISM and MCK and the approach in [16] employ probabilities
over temporal or epistemic transitions. As mentioned in the introduction,
we refer instead to degrees of belief and we allow for a choice in how degrees
should be computed. In the first case, we do not use these probabilities but
we rely only on ratios between equivalence classes. The relationship between
the approach in which degrees of belief are computed as ratios and the ap-
proach in which degrees of belief arise from temporal characterisations has
been investigated in [3] for a scenario very similar to ours. Similarly to this
work, in our first setting all the possible worlds are equally likely and we do
not model probabilities of transitions. Essentially, our first semantics adopts
the principle of indifference by Bernoulli and Laplace. As described in [3], a
uniform distribution for possible worlds is the one that maximizes entropy.
In turn, this corresponds to the least amount of information about the prob-
ability distribution of epistemically equivalent worlds. In other words, our
first semantics start from an unknown objective assignment of probabilities
to transitions and we build a subjective assignment of degrees of belief to
agents according to this unknown objective assignment; agents’ degrees of
belief can then be interpreted using a computationally grounded evaluation.

In our second semantics for COGWED, instead, degrees of belief are
computed using reachability properties of equivalence classes. In contrast
to [16], we do not require probabilities for epistemic relations to be provided
externally. Instead, we compute degrees of belief as a reachability measure
of equivalence classes. To the best of our knowledge, this is a novel approach
that helps in making the proposed solution computationally grounded.
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3. COGWED Syntax

In this section we introduce the syntax of COGWED. The language of COG-
WED includes a branching time language for temporal reasoning (CTL, [7]),
epistemic operators to reason about single agent and group epistemic modal-
ities [10], and weighted doxastic operators for one or more agents. More in
detail, let Ag be a nonempty set of agents, H ‰ Γ Ď Ag, and „ be one of the
following comparison operators: tă,ď,“,ě,ąu. The syntax of COGWED
is as follows:

φ ::“ p |  φ | φ^ ψ | EXφ | EGφ | ErφUψs |

Kiφ | EΓφ | DΓφ | CΓφ |

BΓ
„xφ

Where:

• p is an atomic proposition from a set AP ;

• EXφ,EGφ,ErφUψs are standard CTL temporal operators, read respec-
tively as “there exists a point in the next state such that”, “there exists
a path such that globally”, and “there exists a path such that φ is true
until ψ becomes eventually true”;

• i is an index for agents, ranging from 1 to n;

• Ki is the standard epistemic operator, read as “agent i knows φ”;

• EΓ, DΓ, CΓ are epistemic group modalities expressing the notion of “ev-
erybody knows”, “distributed knowledge” and “common knowledge”.
We refer to [10] for further details about these operators;

• x is a real number, 0 ď x ď 1; and

• BΓ
„xφ is the doxastic operator and is read as “agents in group Γ be-

lieve φ with degree of belief „ x. With slight abuse of notation we will
write i for the singleton Γ “ tiu. In this paper we assume that agents
in a group cooperate: this means that they share their epistemic ac-
cessibility relations and that the resulting accessibility for a relation is
captured by the distributed knowledge of the group. We leave the issues
of non-cooperating agents and of different characterisations of the group
accessibility relation for future work.

An example of a COGWED formula is B1
ď0.2pp _ qq, which is read as

“Agent 1 believes pp_ qq with a degree of belief less or equal than 0.2, while
B2
“0.5pB

1
ď0.1ppqq is read as “Agent 2 believes with degree exactly equal to 0.5
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that Agent 1 believes with degree at most 0.1 that p”. As we will see below,
Bi
“1φ is equivalent to Kiφ.

As a practical example, consider a scenario composed of two agents and
a deck of N different cards, numbered from 1 to N . Suppose that the first
agent draws a card from the deck, without showing it to the second agent,
and that the second agent does the same. Let agent1 has c1 be an atomic
proposition in AP denoting the fact that the first agent has card one. Then,
the following is a formula encoding the fact that, if agent 1 has card 1, then
agent 1 knows that agent 2 believes with degree less than 1

pN´1q that the
first agent has indeed card 1:

agent1 has c1Ñ pK1pB2
ă 1
pN´1q

agent1 has c1qq.

We will use this example in Section 6 to assess the scalability of our
model checking algorithm.

4. COGWED Semantics

In this section we introduce two types of semantics for COGWED. They
are both based on the formalism of Interpreted Systems from [10], which
we introduce in the next subsection. The main difference between the two
semantics is that in one transition probabilities are not known: this implies
that agents consider all states of an epistemic equivalence class equally likely.
In contrast, in the second semantics the temporal relation is labelled with
probabilities known to agents: this implies that agents can assess the prob-
ability of reaching specific states in the same equivalence class. However,
as we consider memoryless semantics, we modify the standard reachabil-
ity approach by introducing a discounting factor for future states. This is
discussed in detail below.

4.1. Interpreted Systems

Given a set of n agents, an Interpreted System is a tuple IS “ pG,Rt, V q
where

• G “
Ś

1¨¨¨n
Li is a finite set of global states, obtained as the cartesian

product of n sets of local states (one set for each agent);

• Rt Ď GˆG is a temporal relation (it is assumed that each state has at
least a successor);

• V : AP Ñ 2G is an evaluation function for atomic propositions.
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Given n agents, we define a set of n equivalence relations (one for each
agent): let g “ pl1, . . . , lnq and g1 “ pl11, . . . , l

1
nq be two global states from

G; we define gRig
1 iff li “ l1i, i.e., two global states g, g1 are equivalent for

agent i iff the local state of agent i is the same in g and in g1 (notice that
these are the standard epistemic relations used in [10] to interpret epistemic
modalities). The relation Ri is obviously an equivalence relation; we define
tguRi to be the equivalence class of the global state g with respect to Ri.

Given an interpreted system IS and a global state g, logic formulae
involving CTL and epistemic operators can be interpreted as follows (we
refer to [10] and references therein for additional details):

IS, g |ù p iff g P V ppq;
IS, g |ù  φ iff IS, g * φ;
IS, g |ù φ^ ψ iff IS, g |ù φ

and IS, g |ù ψ;
IS, g |ù EXφ iff there exists g1 P G s.t. gRtg

1

and IS, g1 |ù φ;
IS, g |ù EGφ iff there exists a path π “ pg, g1, . . . q

such that, for all i, IS, gi |ù φ;
IS, g |ù ErφUψs iff there exists a path π “ pg, g1, . . . q

and an index j such that IS, gj |ù ψ
and IS, gi |ù φ for all i ă j;

IS, g |ù Kiφ iff gRig
1 implies IS, g1 |ù φ;

IS, g |ù EΓφ iff gRΓ
Eg
1 implies IS, g1 |ù φ, where

RΓ
E “

Ť

iPΓ

Ri;

IS, g |ù DΓφ iff gRΓ
Dg

1 implies IS, g1 |ù φ, where RΓ
D “

Ş

iPΓ

Ri;

IS, g |ù CΓφ iff gRΓ
Cg
1 implies IS, g1 |ù φ, where RΓ

C is the
transitive closure of RΓ

E .

With slight abuse of notation we denote with V pφq the set of states of an
interpreted system IS in which φ holds. This logic is usually named CTLK
and can include group epistemic modalities to reason about distributed and
common knowledge. In the next section we will extend this logic with dox-
astic operators˚.

˚The formalism of interpreted systems presented in [10] and employed in other model
checkers such as [19, 13] also includes the notions of agents’ actions and agents’ protocols:
to keep our presentation simple, we do not consider these here, as they play no role in the
semantics for the logic presented below.
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4.2. Counting worlds

In this section we present how COGWED formulae can be evaluated in
Interpreted Systems by extending the definitions provided in the previous
section with the following:

IS, g |ù BΓ
„xφ iff

|V pφq X tguRΓ
D
|

|tguRΓ
D
|

„ x

Note that, to evaluate the doxastic operator for a group of agents, we
adopt the relation characterising distributed knowledge. This corresponds
to the situation in which agents share their epistemic accessibility relation,
thus reducing the overall number of alternatives. The intuition behind this
characterisation is that the degree of belief that a group of agents associates
to a formula φ in a global state g is the ratio between the number of states
of tguRΓ

D
(the equivalence class of g with respect to the epistemic group

relation RΓ
D) in which φ is true and the total number of states in tguRΓ

D
.

Note that when Γ is a singleton for agent i, RΓ is the epistemic relation for
the individual agent Ri.

This definition of degrees of belief is computationally grounded in the
sense of Wooldridge [27]: modalities are interpreted directly on the set of
possible computations of a multi-agent system (equivalently: modalities are
interpreted on a Kripke model that corresponds to the possible computations
of a multi-agent systems), and there is no need to provide weights as part
of the model. We refer to Section 2 for a comparison with other existing
approaches to evaluate degrees of belief.

The following formulae are valid in all COGWED models implementing
the semantics described above, as a result of simple arithmetic considera-
tions:

1. BΓ
ďxφÑ BΓ

ďyφ for all y ě x;

2. BΓ
ěxφÑ BΓ

ěyφ for all y ď x;

3. BΓ
ěxφ Ø BΓ

ďp1´xq φ: this means that, if a group of agents believes φ
with degree greater than x, then the group believes the negation of φ
with degree less than 1´ x. The converse is also true.

Finally, it is easy to see, as we assume a finite state space, that Bi
“1φ

is equivalent to Kiφ and that BΓ
“1φ is equivalent to DΓφ , i.e., a degree of

belief equal to 1 corresponds to the standard epistemic operator for a single
operator, or to distributed knowledge for a group of agents. Dually, as a
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working broken
0.1

0.9
1

Figure 1. Example of probabilistic interpreted systems

result of the third formula above, it is also true that Bi
“0φ Ø Kip φq and

that BΓ
“0φØ KΓp φq.

4.3. DTMC-based semantics

To motivate the semantics based on Discrete-Time Markov Chains, consider
the following

Example 1. Consider the scenario depicted in Figure 1. The system has two
(global) states g1 (left) and g2 (right), in which, respectively, the propositions
working and broken are true (formally: V pg1q “ tworkingu and V pg2q “

tbrokenu). In state g1 two transitions are enabled: the first one is a loop
around g1 with probability 0.9 and the second is a transition to state g2 with
probability 0.1. Once in state g2, the system loops there. For simplicity,
we assume that there is only one agent, and the two states g1 and g2 are
indistinguishable.

We model the scenario above with an extension of interpreted systems
with probabilities over temporal transitions, following the standard approach
of Markov chains. We call this extension probabilistic interpreted systems.
Technically, a probabilistic interpreted system is a tuple PIS “ pG,P, V, αq
where

• G and V are as before;

• P : GˆGÑ r0, 1s is the (temporal) probabilistic transition relation, such
that

ř

g1PGPpg, g1q “ 1 for any g P G, encoded by means of the matrix
P.

• α : GÑ r0, 1sn is an initial probability distribution (the “initial state”),
such that

ř

gPG αpgq “ 1.

From the probabilistic transition matrix P we can derive the temporal
relation Rt such that, for any two global states g, g1, Rtpg, g

1q iff Ppg, g1q ą
0. We also introduce the standard epistemic relations Ri for each agent
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i, as before. As a result, all the temporal and epistemic operators can
be interpreted as described in the previous section independently from the
initial distribution α and the transition probabilities in P.

One could define the semantics for the doxastic operator in probabilistic
interpreted systems simply by computing the probability of staying in a
certain set of states from α, i.e., the stationary distribution or the steady-
state distribution (if exists). However, we argue that this approach could
lead to counter-intuitive results. As an example, consider again the scenario
depicted in Figure 1. The steady-state distribution is obtained as the limit
of the evolution of α for an infinite number of steps [21] (i.e., limnÑ8 αP

n).
In the case of the example, the probability of staying at state g2 in which
broken holds is 1: should a rational agent know that the system is in a
broken state?

The key issue here is that agents are memoryless, and as a result it
should not be assumed that the system has executed an infinite number of
rounds when evaluating their epistemic and doxastic states. In essence, the
number of rounds should be treated as an unobservable value. To this end,
we consider transient distributions defined as:

πn “ α ¨Pn.

This distribution πn is a vector of values; each value represents the probabil-
ity of reaching a certain global state in n steps from the initial distribution
α. The distribution πn is obtained by applying the transition relation n
times to the initial distribution. Using transient distributions we define a
memoryless probabilistic distribution for the states in G as:

π̂β “ p1´ βq
8
ÿ

n“0

βnπn .

where β P r0, 1q is a discounting factor for future events. Intuitively, β
captures the ignorance of agents for the amount of time elapsed and encodes
the “weight” that agents place on future events. The vector π̂β is a vector
of probability values for states of G and represents an estimation of the
likelihood of being in each state when the time is not known. For a given set
of states X Ď G we write π̂βpXq “

ř

gPX π̂βpgq to represent the probability
of being in X according to distribution π̂β. With this notation we can finally
define the semantics of BΓ

„xφ in probabilistic interpreted systems as follows:

IS, g |ù BΓ
„xφ iff

π̂β

´

V pφq X tguRΓ
D

¯

π̂β

´

tguRΓ
D

¯ „ x
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Similar to the counting worlds semantics, the degree of belief is defined as
a ratio. In this case, however, we take the ratio between the “reachability”
of the set of states in which φ is true in the equivalence class tguRΓ

D
and

the “reachability” of the whole equivalence class, taking into account the
discounting factor β described above.

As a concrete example, consider again the example at the beginning of
this section (cf. Figure 1). The transition matrix for this example is

P “

„

0.9 0.1
0 1



and assume the system starts from state g1 so that the initial distribution
is α “ p1, 0q. Assuming a discounting factor β we have

π̂β “ p1, 0qp1´ βq

ˆ

I ´ β

„

0.9 0.1
0 1

˙´1

“ p1, 0q
1´ β

p1´ 0.9βqp1´ βq

„

1´ β 0.1β
0 1´ 0.9β



“ p
1´ β

1´ 0.9β
,

0.1β

1´ 0.9β
q

(Note that the calculation exploits Propositionr̃efprop:pi in Section 5. As
mentioned above, in this example the agent cannot distinguish between g1

and g2, and as a result π̂βptg1, g2uq “ 1. Proposition broken is true in g2, and
thus V pbrokenq “ tg2u, and consequently the degree of belief in broken is

0.1β
1´0.9β . The situation in which β “ 0 represents the case in which the system
has not evolved and no weight is given to transient distributions. In this case
the degree of belief in “broken” is zero. At the other extreme of the range,
β “ 1 (note that in our framework, it must be the case that β ă 1; however,
β can be arbitrarily close to 1) encodes the certainty that the system has
run an infinite number of times. In this case the degree of belief in “broken”
is one. All the other values represent intermediate situations. In the general
case, the value of β needs to be chosen according to the specific scenario
to be modelled and should take into account the capabilities of the agents
involved and the overall structure of the system.

5. Model Checking COGWED

In this section we present model checking algorithms for the two types of
semantics of COGWED. The first algorithm extends the standard labelling
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1 // We are g iven a s e t o f e qu i va l ence
2 // c l a s s e s f o r group Γ :
3 Set <Set<Gstate>>> rGamma;
4
5 // This method computes the s e t o f
6 // s t a t e s in which BΓ

„xφ i s t rue
7 public Set<Gstate> satB ( Formula f ,
8 S t r ing op , f loat x ) {
9 Set<Gstate> prev ious = SAT( f ) ;

10 Set<Gstate> r e s u l t = new Set ( ) ;
11 for ( Set<Gstate> eqClass : rGamma) {
12 i f ( |eqClassXprevious|

|eqClass|
„ x) {

13 r e s u l t . add ( eqClass ) ;
14 }
15 }
16 return r e s u l t ;
17 }

Figure 2. Java-style algorithm sketch

algorithm for CTL with epistemic operators [7, 19]. The second algorithm
computes the memoryless probabilistic distribution for states of a proba-
bilistic interpreted system, from which degrees of belief can be computed.

5.1. Counting worlds

The model checking algorithm for COGWED under the counting semantics
extends the standard CTLK algorithm [19] with an additional procedure
to compute the set of states in which a formula of the form BΓ

„xφ holds.
This procedure is described using a Java-like algorithm in Figure 2. The
procedure employs the set of equivalence classes for group Γ which can be
pre-computed by partitioning the set of global states.

The procedure satB returns the set of global states satisfying the formula
BΓ
„xφ. It starts by (recursively) calling a method SAT(φ) that computes the

set of states in which the formula φ is true (line 9). Then, it iterates over the
equivalence classes of group Γ (line 11). In line 12 the method computes the
ratio of the set in which the formula is true in a given equivalence class over
the size of the actual equivalence class. If this ratio satisfies the appropriate
relation „, then the method adds the whole equivalence class to the set of
states in which the formula is true (line 13). The intersection of sets of
states can be performed with standard library functions provided by Java;
we refer to the source code available online [20] for additional details about
the actual implementation. The final result is returned at line 16.

As mentioned above, notice that the algorithm does not operate on indi-
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vidual states. Instead, once the equivalence classes are built, the algorithm
works with sets of states.

5.1.1. Complexity considerations

Model checking CTLK formulae in an interpreted system takes time poly-
nomial in the size of the formula and in the size of the model [10]. The
algorithm in Figure 2 is an extension of the standard labelling algorithm
for model checking CTLK, which has a polynomial complexity [19]. All
the additional operations in this algorithm require at most polynomial time:
computing the set of equivalence classes, iterating over them, and computing
intersection of states. Therefore, the method described above remains in the
same polynomial complexity class of the standard CTLK model checking
algorithm.

As a note for future work, we note that in practical applications, the
actual state space is likely to explode as a result of the number of variables
employed to model a given scenario. A number of techniques are available
to manage large state spaces. In particular, Ordered Binary Decision Di-
agrams (OBDDs) are employed in model checkers for multi-agent systems
such as MCMAS [19] and MCK [13]. Being an extension of the standard
labelling algorithm for CTLK, the algorithm satB of Figure 2 operates on
sets of states and only performs intersections of sets: these additional oper-
ations can be performed on the OBDDs for the sets of states, and therefore
this part of the algorithm can be executed symbolically. The computation
of equivalence classes needed at line 3, however, may require in the worst
case the explicit enumeration of all reachable states, if all global states are
epistemically different for a given agent. This is rarely the case and, in
fact, the number of equivalence classes is normally significantly smaller than
the number of global states, unless an agent has “perfect observability” of
the other agents and of the envirionment. This reduced number of states
is indeed what is observed in the examples that we present in Sections 6
and 7. The implementation of a symbolic algorithm for the counting worlds
semantics is beyond the scope of this paper and we leave it for future work.

5.2. DTMC-based semantics

In this section, we show how to carry out model checking COGWED under
the DTMC semantics. As discussed above, the semantics for temporal and
epistemic operators does not change and as a result the standard approach
of [7, 19] can be employed. To evaluate the doxastic operator, we need a
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procedure to compute π̂β as defined in Section 4. The following proposition
gives an analytical solution to compute π̂β “

ř8
n“0 β

nπn

Proposition 1.

π̂β “ p1´ βq ¨ αpI ´ βPq
´1

Proof. First, observe that

8
ÿ

n“0

βnπn “ π0 `

8
ÿ

n“1

βnπn “ π0 ` β ¨
8
ÿ

n“1

βn´1πn

“ π0 ` β ¨
8
ÿ

n“0

βnπn`1 “ π0 ` β ¨
8
ÿ

n“0

βnαPn`1

“ π0 ` β ¨P ¨
8
ÿ

n“0

βnαPn “ π0 ` β ¨P ¨
8
ÿ

n“0

βnπn

The matrix I ´ βP is invertible since β P r0, 1q. It follows that

8
ÿ

n“0

βnπn “ π0pI ´ βPq
´1 “ αpI ´ βPq´1

To conclude, π̂β “ p1´ βq
ř8
n“0 β

nπn “ p1´ βq ¨ αpI ´ βPq
´1.

Now, for computing the set of (global) states satisfying the formulaBΓ
„xφ,

we first compute the set of states “previous” in which the formula φ holds
(as on the line 9 of the algorithm in Figure 2). Then for each equivalence
class, we compute the set of states eqClass :“ tguRi (as in line 11 of the

algorithm in Figure 2) and simply check whether
π̂βppreviousXeqClassq

π̂βpeqClassq „ x.

5.2.1. Complexity considerations for DTMC semantics

As in the case of counting worlds, the complexity of model checking COG-
WED formulas in probabilistic interpreted systems remains polynomial with
respect to the size of the model and the formula. To see this, note that by
Proposition 1 the distribution π̂β can be computed in time polynomial in the
size of the model, as it only requires to compute the inverse matrix which
can be done in cubic time by, e.g,. Gauss elimination. In practice, one can
also use an iteration method [25] which is usually more efficient.
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6. Experimental Results

In this section we assess the feasibility of using COGWED by performing
an initial performance evaluation of the two semantics. We employ the
standard example of the Dining Cryptographers [4] for the counting worlds
semantics, as this allows us to compare our results with other epistemic-only,
non probabilistic model checkers. We employ a custom-built example for the
DTMC-based semantics that can be scaled up in the number of states.

We remark that this section is only intended to provide a support for the
claim that model checking degrees of belief is computationally feasible. In
particular, we employ a simple Java implementation for the counting worlds
semantics and we rely on existing libraries in Matlab for the DTMC-based
semantics.

6.1. Performance evaluation for counting worlds semantics

The protocol of the dining cryptographer is a standard example from cryp-
tography in which epistemic and doxastic logics can be used to characterise
the key properties of the protocol. The protocol is normally illustrated by
means of the following scenarios (wording from [4]):

Three cryptographers are sitting down to dinner at their favorite
three-star restaurant. Their waiter informs them that arrangements
have been made with the maitre d’hotel for the bill to be paid anony-
mously. One of the cryptographers might be paying for dinner, or it
might have been NSA (U.S. National Security Agency). The three
cryptographers respect each others right to make an anonymous pay-
ment, but they wonder if NSA is paying. They resolve their uncer-
tainty fairly by carrying out the following protocol: Each cryptogra-
pher flips an unbiased coin behind his menu, between him and the
cryptographer on his right, so that only the two of them can see the
outcome. Each cryptographer then states aloud whether the two coins
he can see -the one he flipped and the one his left-hand neighbour
flipped- fell on the same side or on different sides. If one of the cryp-
tographers is the payer, he states the opposite of what he sees. An
odd number of differences uttered at the table indicates that a cryp-
tographer is paying; an even number indicates that NSA is paying
(assuming that dinner was paid for only once). Yet if a cryptog-
rapher is paying, neither of the other two learns anything from the
utterances about which cryptographer it is”



16 T. Chen, G. Primiero, F. Raimondi, N. Rungta

The key property of this protocol is normally encoded as:

AG

¨

˝podd^ paid1q Ñ pK1p
ł

iPt2,3u

paidiq ^ p
ľ

iPt2,3u

 K1ppaidiqq

˛

‚

which is read as: if the first cryptographer did not pay for the dinner and
there is an odd number of “different” utterances, then the first cryptographer
knows that either the second or the third cryptographer paid for the dinner,
but he does not know who is the actual payer.

Using COGWED we can strengthen this claim and state that not only
the first cryptographer does not know who the payer is, but he also considers
equally likely the fact that cryptographer 2 or 3 paid. This is captured by
the following formula that generalises the example to n cryptographers:

AG

˜

podd^ paid1q Ñ

˜

n
ľ

i“2

B1
p“ 1

n´1q
ppaidiq

¸¸

We have implemented the model checking algorithm described above in
a tool called Mc-COGWED, available from [20] (this is an extension of the
tool previously published in [22]). The tool parses a text input file describing
the model and takes a COGWED formula as a parameter. In this prototype
implementation we employ an explicit state representation for states but
we operate on equivalence classes. The code available at [20] includes a
generator for instances of the dining cryptographers with a varying number
of cryptographers. Experimental results are reported in Table 1. The first
column represents the number of cryptographers; the second column the
number of possible global states (not all of them are reachable); the size
of the state space is obtained similarly to [19] but considering all possible
combinations of local states of the agents, while the reachable states are
those that are reachable from one of the possible initial states (all the possible
combinations of payers and coins distributions). The third column represents
the size of the temporal relation (this is the number of pairs of reachable
states that are connected by Rt). The last column reports the time (in
seconds) for the verification of the COGWED formula reported above. All
the experimental results are obtained on a 2.3 GHz Intel Core i7, 8 GB of
RAM Mac machine.6, using a maximum heap size of 6 Gb.

We consider these results extremely encouraging, as they have been ob-
tained using a prototype, non-symbolic model checker. Nevertheless, the size
of the state space that can be explored by working on equivalence classes
is comparable with results obtained with more mature model checkers for
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N |S| |Rt| verif. time (s)

3 5 ¨ 105 96 0.11
4 4 ¨ 106 240 0.15
5 3 ¨ 108 576 0.23
6 2 ¨ 1010 1344 0.30
7 2 ¨ 1012 3072 0.41
8 1.15 ¨ 1015 6912 0.57
9 1.50 ¨ 1017 15360 0.84
10 1.22 ¨ 1019 33792 2.42
11 9.85 ¨ 1020 73728 3.90
12 7.98 ¨ 1022 159744 7.42
13 6.46 ¨ 1024 344064 17.33
14 5.23 ¨ 1026 737280 47.28

Table 1. Dining cryptographers: results

broken¨ ¨ ¨
0.1

0.80.8
1

0.8

0.2

0.1

0.1 0.1

0.1 0.1

Figure 3. Example

multi-agent systems [19, 13], even in presence of the additional doxastic
operator.

6.2. Performance evaluation for DTMC-based semantics

To assess the feasibility of verifying COGWED formulae under the DTMC-
based semantics in probabilistic interpreted system we have defined a simple
example that can be scaled up in the number of states. This is an extension
of the example presented in Figure 1 and is illustrated in Figure 3. We
assume that there is only one agent, that all the states are indistinguishable
and that proposition “broken” is true in the final (absorbing) state. The
formula we want to verify is B1

„xpbrokenq, and in particular we want to
compute the value x such that B1

“xpbrokenq

We have implemented the model checking algorithm described in Sec-
tion 5.2 in Matlab. Experimental results are reported in Table 2 for a fixed
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|S| |Rt| verif. time (s)

100 296 0.130
200 596 0.461
300 896 0.996
400 1196 1.711
500 1496 2.737
600 1796 3.865
700 2096 5.211
800 2396 6.690
900 2696 8.554
1000 2996 10.456
2000 5996 44.615
3000 8996 103.504
4000 11996 201.702
5000 14996 290.841
10000 29996 1539.474

Table 2. Experimental results for DTMC-based semantics

value of β “ 0.99. The first column represents the number of states |S|,
which is equal to the scaling factor N ; the second column represents the size
of the temporal relation (according to the model, this is 3|S| ´ 4). The last
column reports the time (in seconds) for the computation of the value x to
be used inside the COGWED formula described above. All the experimental
results are obtained on a 2.3 GHz Intel Core i7, 8 GB of RAM Mac machine.

These results show that, even with a generic tool for matrix algebra, our
algorithm can evaluate a substantially large example.

Figure 4 shows the variation in the degree of belief as a function of N
(number of states) and β for the formula B1

“xpbrokenq. As expected, the
degree of belief in “broken” decreases with larger values of N and increases
for larger values of β.

7. Case Study: Situational Awareness

In this section we show how COGWED properties can be used to charac-
terise and evaluate a key property in a system comprising a human and
several automated components modelled as agents. In particular, we study
how situational awareness can be assessed using COGWED. Informally, sit-
uational awareness is the ability of an agent (typically human) to deter-
mine the correct internal state of some component (or some other agent)
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Figure 4. Degree of belief as a function of N and β

based on his/her current beliefs. Situational awareness is a key factor for
decision makers in safety-critical situations, such as airplane pilots, med-
ical doctors, firemen, etc, and it has been investigated extensively in the
past in a number or research areas, including psychology [11]. Here we fo-
cus on the aeronautic domain with a model of the Air France flight 447
from Rio de Janeiro to Paris. This is a thoroughly investigated accident
involving the failure of a sensor (a set of Pitot tubes), resulting in incor-
rect speed readings and, through a sequence of events, to a high-altitude
stall situation that failed to be correctly assessed by the pilot(s). The BEA
report on the accident (http://www.bea.aero/en/enquetes/flight.af.
447/flight.af.447.php) attributes the main cause of the accident to the
inexperience of the pilot, who was not able to assess the actual speed of the
airplane and, more crucially, the stall situation.

We employ a Java simulation model of the scenario taken from [1] and we
modify it to generate a set of reachable states using the approach presented
in [17]. The original model in [1] does not include probabilities of failures
for the various components. Therefore, we employ the counting worlds se-
mantics to evaluate the degrees of belief of pilots and we employ the tool
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Mc-COGWED to process the results of the simulator. In particular, the
set of reachable states obtained is then encoded as a Mc-COGWED input
without probabilities. This models the situation in which the pilots are un-
aware of the failure rates of the various components and as a result we adopt
the counting semantics. We remark that our model does not aim at being
an accurate representation of the accident; instead, our aim is to show the
capabilities of COGWED in analysing situation awareness. In our model, a
plane and its environment are characterised by:

• an actual external temperature (low, medium, high);

• an actual speed (very low, low, medium, high, very high);

• an actual vertical speed (Climbing, null, Descending);

• an actual altitude (encoded using flight levels, such as FL200, FL380 and
FL450);

• an actual attitude (going up, flat, down);

• an actual thrust level (auto, 20%, 50%, TOGA, full. “TOGA” is an
auto-thrust level corresponding to the thrust required for Take-Off or a
Go-Around landing)

In the actual situation the pilot has access to a number of systems but
he has to rely on the output of those systems to diagnose the state of the
plane. We characterise the local states of the pilot by means of:

• observed temperature;

• observed speed;

• observed vertical speed;

• observed altitude;

• observed attitude.

All these values are observed by means of sensors, some of which may
fail. When a sensor is broken, the observed value of a parameter may differ
from the actual value. Additionally, a plane includes:

• an auto pilot to which the pilot has direct access, i.e., the pilot can
observe whether the auto pilot is engaged or not, and we assume that
the auto pilot does not fail (but the pilot may not know what caused the
auto-pilot to disengage).



A Computationally Grounded, Weighted Doxastic Logic 21

• a set of Pitot tubes that may be frozen when the temperature is low (but
not necessarily). If the Pitot tubes are frozen, then the speed sensor is
broken (but the speed sensor could be broken even when the Pitot tubes
are not frozen).

• a stall warning (in the form of audio message or stick shaking, depending
on the causes of the stall). Notice that the stall warning disengages when
the speed is very low (below 60 kt), even if the plane could be actually
stalling. We assume that the stall warning signal does not fail, i.e. a
warning always corresponds to stalling conditions.

We model the behaviour of the pilot based on the procedures required
in the various cases. For instance, if the observed speed is very high (a
potentially very dangerous situation) the pilot reduces thrusts, and if the
stall warning is on, the pilot modifies attitude and thrust appropriately.
The Java simulation modifies the actual values of the airplane characteristics
according to pilot’s actions and standard physics laws, generating new states
every time a value changes.

To generate the set of possible states for this scenario, we start from a
situation in which the plane is flying at flight level 380 (corresponding to
38,000 feet), the thrust is 60%, the auto pilot is engaged, the stall warning
is off, attitude is flat, temperature is medium and all sensors are working
correctly. We then inject failures in the sensors and we generate a COGWED
model covering all possible combinations reachable from the initial state.
The generation is achieved by running the Java code developed in [1] and
by discretising the continuous variables where required (in this case: speed,
vertical speed, attitude, altitude, temperature). The number of possible
discretised states is 2 ¨ 108, of which approximately 1.6 ¨ 105 are reachable
from the initial state described above.

We can now use Mc-COGWED to evaluate the fact that the pilot is
aware of a stall. In particular, we want to assess the degree of belief of a
stall situation. To this end, we employ the following formula:

EF pactualStall^BPilot
ă0.05pactualStallqq

This formula employs the standard EF CTL-operator and encodes the fact
that there exists a state reachable from the initial state, such that the plane
is actually stalling, but in that specific state the pilot believes that the stall
is actually occurring with a degree of less than 5%: this formula is true in
25 states in the model. In fact, we can check that there are 5 stalling states
in which the pilot believes in a stall with a degree of less than 1.5%. These
are very interesting configurations that capture what may have happened on
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board of AF447: in these 5 states, the speed sensor is faulty (as a result of
the Pitot tubes being frozen) and may report wrong measures, the attitude is
UP, the speed is very low, and as a result of this low speed the stall warning
remains silent. Notice that, in these specific cases, modifying the attitude to
descend results in an increase in speed of the airplane, therefore re-starting
the stall warning in the cabin: this is even more confusing for the pilot, as
a manoeuvre that reduces the likelihood of stalling in fact generates a stall
warning!

The generation of all the discretised states and its encoding as a Mc-
COGWED input file require less than a minute, and Mc-COGWED can
verify the formula encoding situational awareness for the stall situation in
less than 8 seconds.

We argue that the doxastic pattern above can be used to characterise
(the lack of) situational awareness in the general case: the formula

φ^Bi
ăδφ

is true in states in which φ holds, but agent i has a degree of belief less
than δ that this is indeed the case. The parameter δ could be configured
depending on the specific domain, and can be interpreted as a measure of
situational awareness.

In the AF447 scenario, it is interesting to see how the situational aware-
ness of a stall could be increased. The disengagement of the stall warning
at low speed is justified by the necessity of performing low-speed operations
close to the ground and to avoid spurious warnings, for instance when tak-
ing off or while landing; this, however, results in the pilot not being able to
diagnose a stall at very low speed in other conditions. To address this issue,
an additional visual indicator of stall warning with low speed readings could
be added to the cockpit: this would be similar to ABS warnings on cer-
tain car models that remain active under 10 MPH. The additional indicator
would reduce the number of possible worlds that the pilot considers possible,
thereby increasing the minimum value of δ for which the formula above is
true. This is exactly in line with the recommendations of the BAE to modify
the stall management procedures on Airbuses, by re-designing the Primary
Flight Display output and by adding additional training requirements in
high-altitude stalling conditions.

8. Conclusion

In this paper we have presented COGWED, a logic to reason about the
degrees of belief in a system of agents that is computationally grounded. We
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have provided two types of semantics: in one semantics degrees of belief are
computed by evaluating the relative size of equivalence classes with respect to
epistemic transition relations modelled in interpreted systems. In the second
semantics degrees of belief are computed by evaluating the probability of
reaching a set of states under the assumption that agents are memoryless and
by making use of a discounting parameter in the computation of memoryless
distributions. We have shown that the model checking algorithm for these
two semantics remains polynomial in the size of the model and of the input
formula. We have validated these complexity results by means of standard
examples for both semantics. Finally, we have shown how a COGWED
pattern can be used to characterise the situational awareness of a pilot flying
in off-nominal conditions.

Various directions are possible for future work. We have not investigated
how the belief of a group of agents could play a role in the description
or verification of social interactions among agents; we plan to address this
issue by exploring extensions of works such as [2]. Additionally, instead of
considering distributed knowledge in the construction of the semantics of the
BΓ operator one could consider other options, such as common knowledge,
thus giving rise to different forms of social interactions.

The verification of the DTMC-based semantics is currently supported
only through the use of an external solver. We plan to integrate model
checking algorithms currently available in PRISM [18] in the Mc-COGWED
tool in the near future, thus providing a single tool for both semantics.

A proof system complete for both COGWED semantics would be a nat-
ural extension of the present work.

Acknowledgements. This paper is an extended version of material pre-
viously published in [22], with substantial new contributions: DTMC-based
semantics with experimental results and implementation; new experimental
evaluation to larger state spaces; new group semantics for the belief opera-
tor and corresponding new model checking algorithm; new tool release, now
publicly available at http://www.rmnd.net.
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