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I may have all knowledge and understand all secrets 

I may have the faith needed to move mountain 

but, if I have not love, I am nothing. 



ABSTRACT 

A Constrained Optimisation technique is described for the reconstruction of 

temporal resistivity images. The approach solves the Inverse problem by optimising a 

cost function under constraints, in the form of normalised boundary potentials. 

Mathematical models have been developed for two different data collection 

methods for the chosen criterion. Both of these models express the reconstructed 

image in terms of one dimensional (I-D) Lagrange multiplier functions. The 

reconstruction problem becomes one of estimating these 1-D functions from the 

normalised boundary potentials. These models are based on a cost criterion of the 

minimisation of the variance between the reconstructed resistivity distribution and the 

true resistivity distribution. 

The methods presented In this research extend the algorithms previously 

developed for X-ray systems. Computational efficiency is enhanced by exploiting the 

structure of the associated system matrices. The structure of the system matrices was 

preserved in the Electrical Impedance Tomography (EIT) implementations by applying 

a weighting due to non-linear current distribution during the backprojection of the 

Lagrange multiplier functions. 

In order to obtain the best possible reconstruction it is important to consider 

the effects of noise in the boundary data. This is achieved by using a fast algorithm 

which matches the statistics of the error in the approximate inverse of the associated 

system matrix with the statistics of the noise error in the boundary data. This yields the 

optimum solution with the available boundary data. Novel approaches have been 

developed to produce the Lagrange multiplier functions. 

Two alternative methods are given for the design of VLSI implementations of 

hardware accelerators to improve computational efficiencies. These accelerators are 

designed to implement parallel geometries and are modelled using a verification 

description language to assess their performance capabilities. 
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1 INTRODUCTION 

1.1 Introduction 

Obtaining information concerning the internal structure of an object, without 

affecting its original nature, is of great interest in non-invasive medical diagnosis and 

remote sensing. The information desired is the distribution of some physical property 

like density, absorption coefficient, resistivity or brightness. This information can be 

detennined using strip integrals deduced from appropriate physical measurements. A 

set of such integrals measured over strips within a plane through the object, 

corresponding to one particular angle of view, is known as a I-D projection, as 

illustrated in Figure 1. 1. 

y 

Ray 

x 

ObJeet 
.::.-

/ 

/ 

Figure 1.1 An object f(x,y), and its projection 

To obtain an estimate of the corresponding two-dimensional image, a set of I-D 

projection data corresponding to several strip integral measurements of an object at 

different angles of view is required. This technique is known as image reconstruction 
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from projections, or Tomography (from the Greek, Tomos (tomos) = slice). 

Applications for this range from electron microscopy used to reconstruct the 

two-dimensional (2-D) Impurity Profiling [1. 1] to radio astronomy reconstruction of 

X-ray structures of supernova remnants. One of the largest and most important 

applications is in the area of diagnostic medicine [1.2]. 

1.1.1 Medical Imaging 

Tomography (Medical Imaging) allows the examination of a patient with no 

invasive action. In 1979, Allan N. Cormack and Godfrey N. Hounsfield jointly received 

the Nobel prize in medicine for their pioneering work in this field. In medical imaging a 

number of different camera systems have been developed. No one system is suited for 

all applications, all having advantages and disadvantages pertaining to their radiation 

source. The first tomography camera utilised X-rays, allowing the production of 

images of brain slices from multiple X-ray projections. In this technique, known as X­

ray Transmission Computerised Tomography (TCT) [1.3][1.4], the radiation source is 

external to the object under examination. Attenuated distribution is determined by 

various slices of the human body from X-ray projections taken at several orientations. 

This gives the ability to separate structures and distinguishes between regions with 

very similar transmittance properties. If the radiation source is placed internally, 

information can be obtained concerning in vivo biochemical processes, e.g., the 

accumulation of a radiopharmaceutical substance within the body. This field is known 

as nuclear medicine. 

1.1.2 Nuclear Medicine 

The aim of nuclear medicine is to make quantitative measurements of the 

dynamic chemistry and flow physiology. This involves the detection of radiation 

emitted by a pharmaceutical substance labelled with a specific radionuclide, such as 

Tc-99m, 1-123, C-ll, 0-15, or F-18. The radiopharmaceutical substance is generally 
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injected into the patient and localises within one or more organs depending on its 

biochemical properties. Hence, particular radiophannaceuticals are used to evaluate 

specific organs, physiologic functions, or pathologic processes. This technique is 

known as emission computer tomography (BeT) [1.5]. Two alternative camera 

systems can be used. The first is known as Positron Emission Tomography (PET) 

[1.6], which uses radioisotopes that decay by emitting a positron. This travels a short 

distance (a few millimetres) before colliding with and annihilating an electron to 

produce two photons that travel in opposite directions from the point of annihilation. 

Two detectors, positioned on opposite sides of the patient, determine where the 

annihilation took place. To reduce the noise within larger source distributions, systems 

are under development using the Time-Of-Flight (TOF) methodology [1.7]. 

The second is called Single Photon Emission Tomography (SPECT), and 

differs from PET in the radioisotope used. Only a single photon is emitted. The 

direction of the ray can be determined only by using collimators. ECT systems all 

suffer from the problem of obtaining sufficient samples due to the lead collimators used 

to separate the detectors. The new systems use diatomic motions [1.8] to increase the 

number of samples. The gamma ray emission from the annihilation is attenuated by the 

tissue density, which requires compensation. Both of these instruments are known as 

gamma cameras. 

1.1.3 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI), [1.9][1.10] is one of the later additions to 

the reconstruction methods. The .MRI scanner surrounds the body with powerful 

electromagnets, supercooled by liquid helium, which create a magnetic field 60,000 

times as strong as that of the earth, (in the range of 0.3 to about 2.0T). At every point 

in the object this field causes a preference for the intrinsic spin angular momenta of the 

protons to be aligned parallel to the magnetic field, rather than the antiparallel 

direction. The energy difference between these two states corresponds to 
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electromagnetic radiation at the so-called "Larmor" frequency. For a magnetic field of 

1.5T the Larmor frequency for protons is 63 MHz, a frequency that changes 

proportionately with the magnetic field strength. This net preference for spins to be 

parallel to the field in tum causes every point in the object to have a net magnetisation 

vector aligned in the same direction. When radio-frequency radiation is applied at the 

Larmor frequency in a direction perpendicular to the principal magnetic field, the 

magnetisation vector at each point tends to rotate away from the parallel direction. The 

actual nutation angle varies linearly with the amplitude and direction of the RF pulse. 

These pulse characteristics can be adjusted by the operator to obtain the desired 

nutation angle. Upon termination of the pulse the magnetisation then recovers back 

toward the parallel direction with a time constant of I. (the longitudinal relaxation 

time). Simultaneously, the component of magnetisation in the transverse plane tends to 

decrease with a time constant of 12 (the transverse relaxation time). Any magnetisation 

tilted from the parallel direction rotates about the parallel axis at the Larmor frequency. 

This forms the basis for the measurement of the signal. The component of 

magnetisation rotating in the transverse plane at the Larmor frequency induces an EMF 

in a receiver coil. It is only the transverse magnetisation that is the measurable quantity 

in magnetic resonance. The magnetisation at each location in the object is determined 

by spatially encoding the received signal in such a way that its spatial dependence can 

be decoded. In MRI the magnetic gradients are used. 

The techniques for obtaining images are classified into reconstructive and non 

reconstructive. The first method obtains images by taking projections of a particular 

slice of the body from the Fourier transforms of the MRI signals recorded in gradients 

directed at different orientations around the body. The two dimensional nuclear spin 

distribution of the slice is obtained by standard reconstruction algorithms. The second 

method is to obtain the images directly from the Fourier transforms of the 

appropriately recorded MRI signals that give the spin density along lines or 

alternatively at the single points of the image. 
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1.1.4 Ultrasonic Imaging 

The next method for obtaining data for reconstruction is the use of ultrasonic 

techniques [1.11]. The generation of images from acoustic structures of the body tissue 

relies on the use of short acoustic pulses generated by a transducer, and on the 

measurement of the returning acoustic waves, echoes from the irradiated tissue. 

Typically the carrier-wave frequencies are in the range 2.5 to 10 MHz. The waves are 

progressive compressional waves that are transmitted by particle displacements with 

their associated variations in local pressure and density. [1.12]. Commercial systems 

for adults have wavelengths of about 0.7 mm, and transducer dimensions of about 

12mm. The sound velocity varies according to the density and elasticity of the medium, 

varying from 1540 mls in human soft tissue to over 4100 mls in bone. Substantial noise 

can be encountered which is related to the scanning system. A conventional real-time 

two-dimensional echo cardiogram (2DE) uses data from a single section (slice) through 

the heart, and displays grey scale images at the rate of 30 frames/so Some systems use a 

single transducer or a dynamically focused annular array that is mechanically swept 

through a sector. Other systems adopt a phased linear array which electronically 

dynamically focuses within a sector from a fixed transducer position. Each system 

produces an image representing ultrasonic backscatter within a plane [1. 13]. Three 

types of signal processing are used. Reflected signals produce backscatter images, 

transmitted signals produce attenuation and time-of-flight images [1. 14] [1. 15]. 

1.1.5 Silicon Imaging 

The tomography field is not confined to medical imaging. In the processing of 

integrated circuits (IC) the need for information regarding the diffusion phenomena in 

two dimensions has often been stated [1.16]. The fabrication process has seen a drive 

towards smaller geometries in the submicron region which has made it necessary to 

extend accurate modelling of both fabrication processes and devices to two and three 

dimensions. 
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This requires reliable device simulators. The common approach in simulation is 

to extract the results from the 1-D process simulation and extend these to two 

dimensions. This approach is not satisfactory because the 2-D shapes of the impurity 

profiles of the source and drain of a MOSFET strongly influence various effects like 

punchthrough, hot electron effects and the effective channel length of the device. A 

new technique has been developed [1. 16] which reconstruct the 2-D diffusion profile in 

silicon from a series of 1-D measurements, using algorithms developed in estimation 

theory and previously applied to EeT. The problem of measuring the 2-D distribution 

of dopants in silicon is very similar to the problem of image reconstruction in medical 

diagnostics, as both problems involve the estimation of the distribution of some 

quantity within a certain area. 

1.1.6 Radioastronomy 

Reconstruction methodologies have also been applied by Bracewell [1.17] in 

radioastronomy. 2-D brightness distribution of a radio emitting body is useful to 

ascertain the nature of extra-territorial matter. Radio telescopes with narrow viewing 

aperture are used to receive radiation from a narrow strip of the sky. This corresponds 

to a strip integral of the two dimensional brightness distribution. As the earth rotates a 

set of strip scans in the same direction is obtained, corresponding to one projection. 

The scans are arranged at successive progressively advancing orientations. Projections 

at different views are accumulated from which the two dimensional bright image is 

reconstructed. 

1.1.7 Electrical Impedance Tomography 

The last method considered in this section is known as electrical imaging. It is a 

recent addition to the data collection methods used in tomography. Brown and Seagar 

[1.18] developed a system that uses the electrical impedance of various tissues within 

the human body to produce tomographic image maps of the resistivity distribution. 
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Applied Potential Tomography (APT) is the common name for this technique but other 

phrases are also used including electrical impedance imaging, conductivity imaging, 

impedance computed tomography and Electrical Impedance Tomography (EIT). The 

methods for obtaining tissue resistivity using two or four-electrode systems [1.19] are 

based on assumptions concerning the distribution of potential within a conductor 

volume when a constant current is applied to the electrodes. They require solutions of 

Laplace's and Poisson's equations, and are often referred to as the forward problem as 

opposed to the inverse problem of determining the spatial distribution of resistivity 

from measurements of surface potentials. The reconstruction problem is one of 

obtaining a solution to the inverse problem. This method will be considered in greater 

detail in later Chapters, as it is the objective of this research to develop reconstruction 

algorithms for the EIT system. 

1.2 Mathematical Background 

The earliest known mathematical work in image reconstruction from 1-D 

projection data was established by Radon [1.20]. He determined that the cross 

sectional function of an object can be reconstructed exactly by an inversion formula 

using the measurement of line integrals of the cross section function. The function 

defined by the line integrals is known as the Radon transform of the cross section 

function. Thus, the transform which produces the projection from the image is called 

the Radon transform. A solution to this problem, developed in the early 1920's, is the 

summation method shown in the Chapter two. This method is simple but inaccurate 

and is implemented by simply backprojecting the projection data. Since then the 70's 

and 80's have seen a great deal of progress, but the most popular of these methods is 

still based on this early method. Although Radon is commonly acknowledged as the 

first to develop the mathematical foundation of tomography techniques, the 

measurement of distribution of resistivity developed by Frank Wenner [1.21] has 

origins dating to 1915. The early history of tomography can be found in Klotz [1. 22] 
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and Littleton [l.23] who give examples that employ coded apertures for simple 

focusing techniques for singling out a specific layer. This technique was used before 

the advent of computer tomography (CT) and is sometimes called reconstructive 

tomography to distinguish it from other kinds of tomography. 

Historically the reconstruction problem has been divided into two distinct and 

mathematical dissimilar classes of algorithms. Recently a third class has appeared, 

which is defined as optimisation. Its development can be closely linked with that of the 

Algebraic Reconstruction Technique (ART) algorithms [1.24]. 

The first approach is defined as the Transform method [1.25]. These 

reconstructions are based on analytic inversion formulae. The most common of all the 

Transform methods is the convolution back-projection algorithm. The map of the 

linear attenuation coefficients is reconstructed by backprojecting transmission 

projection data convolved with a spatial frequency filter [1.26]. The same 

reconstruction can be obtained by a 2-D Fourier transform of the function that is made 

up of the 1-D Fourier transforms of the projections, arranged along appropriate 

diagonals in the frequency space [1.27]. 

The second approach begins with an arbitrarily chosen sectional distribution 

that is then adjusted iteratively until the projections of the adjusted picture match the 

measured projections, subject to a specific criterion defining the acceptability of the 

reconstructed image [1.28]. The selection of the picture matching criterion is of key 

concern, as there is an infinite number of pictures having the same finite projection 

data, and the theorem defined by Herman [l.28] states that when the projection data 

set is noisy, there is no picture whose projections exactly match the measured 

projections. The iterative solutions require theoretical approximations for convergence 

to take place. These iterative techniques also require solutions to systems which yield 

large matrices, as a result the Convolution method [2.9] is favoured in many systems 

used today. 

The third approach is based on the formulation of the reconstruction problem, 
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using constrained optimisation with the available projections used as constraints. This 

approach was first introduced as a Lagrange multiplier method by Goutis and Durrani 

[1.29], and has the advantage of combining the accuracy of ART with the speed of the 

convolution algorithm. A similar approach was also taken by Wood and Morf [1.30]. 

Their development of a fast implementation of a Minimum Variance Estimator yields a 

similar solution to that of Goutis and Durrani [1.29]. The main research presented in 

this thesis is an extension of the constrained optimisation approach for EIT. 

1.3 Geometries and Governing Equations for Measurement Acquisition 

In image reconstruction, the term geometry is generally used to define the 

properties of the radiation distribution through the medium under examination. To 

define a measurement geometry, and hence obtain a set of data for the reconstruction 

of an image, a solution to the Forward problem is required. The term Forward problem 

is used to described the general problem of finding the boundary values of an object, 

given the internal parameters. The solution to the Forward problem will depend on the 

radiation source used to illuminate the object under investigation, and is defined by 

governing equations. This radiation source need not be X-rays, as in the case of EIT. 

The solution to the Forward problem in X-ray systems is well known, but this is not 

the case in EIT, and various methods are used to obtain it. These are detailed in later 

Chapters. In this section, the measurement geometries applicable to the algorithms 

examined in this thesis are considered. 

1.3.1 Parallel and Fan Beam 

In TCT, two geometries for data collection have been adopted. These are 

known as parallel and fan beam as indicated in Figures 1.2 and 1.3 respectively. The 

data collection for fan beam is faster than parallel, as it involves less mechanical 

moving parts. 
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For the parallel beam co-ordinates the attenuation of an X-ray along a line is 

given by the general formula: 

1 = 10 exp( -J f(x,y)dy) 
I(It) 

(1.1) 

Where f (x, y) is the cross section attenuation function, 10 is the intensity of the 

transmitted X-ray, l(xk) is the integration length, and Xk'Yk are the rotated Cartesian 

co-ordinates defined as: 

[
Xk] [ cos S sin Sk ][x] 
Yk = -sin S: cos Sk y 

(1.2) 

Rearranging the equation (1.1) we can define the line integral of f(x,y) as: 

(1.3) 

The estimation of f (x, y) from the projection measurements Pk (xk ) constitutes the 

reconstruction problem. The above definition is suitable for most reconstruction 

problems and forms the basis for most of the past reconstruction techniques. The work 

presented in this thesis is concerned with the application of specific algorithms to 

measurement systems that require models different from the one presented above. 

Their geometries do however have similarities to the X-ray parallel and fan beam 

geometries. 
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Figure 1.4 PET Geometry 

The PET geometry illustrated in Figure 1.4 differs from the X-ray systems. The 

source of emission is derived from the internals of the object by means of positron 

radioisotopes. A major goal of both PET and SPECT, is to extract from the image data 

accurate measurements of source concentrations within regions as small as possible. 

The problems associated with absolute quantification are difficult to solve completely. 

However, within limits, a reasonable quantification is possible. The radiation emitted 

from within the object is attenuated giving a measurement model [2.35]: 

(1.4) 

1.3.3 EIT 

The geometries defined in the previous section are related to the original 

research associated with Constrained Optimisation. These systems have well defined 

governing equations and the behaviour of the radiation as it passes through the 
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medium is well understood. In this research the objective is to apply the Constrained 

Optimisation approach which is detailed in Chapter four, to EIT. In EIT (illustrated in 

Figure 1.5) the image is a map of the resistivity, or conductance distribution., within a 

2-D circular region, surrounded by a medium of effectively infinite resistivity. 

y 

Meuan:meot Electroda 

I 

Figure 1.5 EIT system with idealised measurement configuration 

If the medium is assumed to have an isotropic resistivity and is of known overall shape 

D, then the requirement is to obtain a theoretical model for resistance distribution 

within a 2-D circular region surrounded by a medium of effectively infinite resistivity . 

Figure 1.5 shows the idealised measurement configuration with equally spaced 

electrodes. If a current is passed between an electrode pair it causes a current to flow 

within the region, in the low-frequency limit. The current field J and the electric field E 

are constrained by Kirchhoff's laws: 

V.J = 0 and V.E= 0 (1.5) 
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and by Ohm's law: 

J=crE (1.6) 

in which 0" is the conductivity and: 

(1.7) 

which is known as the Poisson operator. If it is assumed that the body is locally 

isotropic, then 0" is a positive real number. Since V.E = 0 has the form: 

E=-VV (1.8) 

where V is the voltage, equations (1.5) to (1.8) can be defined as a single elliptic 

equation for the distribution of the electric field within the region. This is known as 

Poisson's equation : 

V.(crVV) = 0 (1.9) 

When 0" is known, V, E, and J are completely determined by either the boundary 

voltage Vlan ' or the boundary current: 

(1.10) 

where n is the outward unit normal to an. For the analysis presented above, the 

complexity of equation (1.9) was reduced by the assumption that there are no current 

sources within the body, hence it can be set to zero. This is reasonable as the injected 

currents are applied at a frequency of 50kHz, and there are no intrinsic current sources 

that have been observed at this frequency. For a homogeneous medium, (J IS a 

constant and the governing equation can be further reduced to Laplace's equation: 
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AV=O (1.11) 

where 

(1.12) 

is the Laplace operator. 

If the current is passed between a particular pair of electrodes, a potential is 

developed along the boundary. The voltage will depend on the resistance within the 

region. For a unique reconstruction of the resistance distribution, all the boundary 

profiles are required. Other boundary profiles are obtained by passing current between 

other pairs of electrodes. Unlike the geometries of the X-ray systems, in EIT the 

solution to the Forward problem or geometry has to be found before the 

reconstruction of the resistivity of the region can be attempted. Another problem with 

EIT is that the assumption that the resistivity of the medium is homogenous does not 

hold true. A more detail analysis of the EIT system is given in Chapter three. 

1.4 Computer System and Dedicated Hardware for Reconstruction 

The systems for data acquisition for tomographic reconstruction algorithms 

typically take from several seconds to several minutes for each slice volume. The 

reconstruction times also vary greatly, typically in the range of seconds to minutes. 

Some advanced systems allow data to be acquired rapidly, in some cases at video 

frame rates. This allows the visualisation of moving structures such as the beating 

heart. Images are reconstructed after data acquisition, and displayed sequentially in a 

continuous loop to provide a dynamic display of time varying events. This has been 

termed "cine" tomography because, similar to a movie, dynamic events are recorded 

and visualised retrospectively. To view dynamic events as they occur and create 

"videographic" tomography reconstruction, reconstruction must be performed in real 

time. One of the main advantages of viewing the tomographic image in real time is the 

ability to use the systems interactively. There are two main parts of the reconstruction 
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system that must be considered for the goal of real time reconstruction. First, the 

acquisition of the data by the collection system, and second, the reconstruction 

procedure adopted. The CT projection data can take 30-50ms to obtain, which would 

allow continuous data acquisition of 30 frames per second. The reconstruction 

procedure requires a large amount of computation. Reconstruction of 30 frames per 

second is extremely demanding and beyond the capability of present day serial 

computer systems, and requires parallel computer systems to achieve the desired 

performance. 

The reconstruction requirements are limited by the current state of computer 

systems and technology development. The majority of computer systems and VLSI 

devices populating medical imaging systems [1.3 1], perform general computational 

tasks. These systems allow vector operations of real and complex dot product, real or 

complex addition, and other complex arithmetic operations to be invoked by a single 

instruction. There is a need for special purpose hardware to allow real-time operation 

of the reconstruction algorithms. The convolution back-projection technique for image 

reconstruction that is described in Chapter two is an ideal candidate for hardware 

implementation. Authur et al. [1.32] describe a system that uses digital signal 

processing chips to implement a digital convolver as a basic building block. The chip 

implements a Finite Impulse Response (FIR) filter with 8 taps and 4 bit precision in 

both the data and kernel. Each chip has 8( 4-bit x 4-bit) multipliers and 8(13-bit) 

accumulators with delay elements between the accumulators. The chips can be 

cascaded to implement longer kernels. The results obtained by Authur et al. [1.32] 

demonstrate that video-rate image reconstruction using filtered back-projection 

algorithm is feasible. The back-projection operation is computationally the most costly 

part of the operation. In the solution described above, back-projection is implemented 

using an analogue optical system consisting of a display, an anamorphic optical system, 

and a video camera. The disadvantage with the system is that the contrast and 

resolution is limited. 
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1.5 Scope of Thesis 

This Chapter has summarised the diversity of methods for obtaining data to 

reconstruct images from their projections. No one system can offer a complete 

solution. Some techniques are better suited to dynamic visualisation of processes, and 

others provide highly accurate images of static data. In recent years the new technique 

ofEIT has offered the possibility of obtaining information about dynamic physiological 

processes without the use of destructive radiation. The technique is still in its infancy, 

as the way of relating the changes in resistivity to the physiological process is not fully 

understood. To assist in the development of this technique, sophisticated 

reconstruction algorithms are required. 

EIT algorithms have been developed independently of other techniques due to 

the nature of the reconstruction problem associated with EIT. Where appropriate, 

developments in traditional tomography have been used in EIT. Not all approaches 

developed for traditional tomography have been applied to EIT. One such method is 

the Constrained Optimisation Reconstruction Technique (CORT). 

1.5.1 Aims and Objectives of the Research 

The aim of the research reported in this thesis is to apply the constrained 

optimisation technique to the EIT system, with the objective of improving the 

reconstruction quality of the measured resistive distribution. The selection of the 

reconstruction approach also requires consideration of performance in terms of 

computation efficiency. As EIT systems are designed to be low cost, most are 

implemented on PC's. To improve the performance of a system developed for this 

application, research was carried out on developing hardware for accurate 

reconstruction procedures. 

Two problems exist in EIT: First the solution to the Forward problem and 

second, the inverse problem or reconstruction problem. In this research, the Forward 

problem is solved analytically using existing methods. The inverse problem is then 
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solved usmg the Lagrange multiplier method. As the finite number of boundary 

potential data points available do not fully specify the image, it is necessary to form a 

model to select the reconstruction. The advantage of the Lagrange multiplier method is 

that it is derived from constrained optimisation approac~ which uses the projections as 

constraints. The reconstruction models can be chosen such that they optimise some 

property of the solution, rather than arising from assumptions made for computational 

simplicity. It will be shown that a number of assumptions can be made in EIT regarding 

the nature of the geometry to obtain images at real-time rates, and that these 

assumptions, which could reduce the quality of the reconstructed image, have a 

minimal effect. 

1.5.2 Structure of Thesis 

This thesis is presented in the following order. An initial overview is presented 

in the first Chapter, including defining the aims and objectives of the research. The next 

Chapter then reviews existing methods for reconstructions, defining a taxonomy of 

methods. Due to the large diversity of approaches, only the important methods are 

considered. The EIT methods are considered separately in Chapter three and 

comparisons between them and other methods are given where appropriate. The EIT 

problem differs in some respects from those tackled by traditional approaches, so the 

taxonomy defined in the second Chapter is not used to classify the different approach 

taken in the EIT case. 

In Chapter four, a description of the constrained optimisation approach for the 

solution of the reconstruction problem is given, concentrating on the parallel X-ray 

system. Parallel geometry is used to clarify the concept behind the methodologies. 

Both primal and dual methods are considered. The approach to image reconstruction, 

in which the reconstruction problem is embedded into a constrained optimisation 

problem, is explored in detail. 

The fifth Chapter develops the optimisation approach and exanunes the 
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algorithms previously developed for both parallel and fan beam systems in X -ray 

tomography. This allows identification of useful properties in the associated system 

matrices that can be exploited for the EIT system. 

In Chapter six an exposition of EIT geometries is given. Two data collection 

methods are examined and new reconstruction procedures are defined. 

The results are analysed in Chapter seven for both modelled data and data 

obtained from a hardware phantom. This Chapter demonstrates the effectiveness of the 

new EIT algorithms with ideal, noisy and under sampled data. Consideration is also 

given to the problems of current distribution within the medium under examination. 

In Chapter eight the hardware aspects for the solution of the reconstruction 

problem are examined. Only the parallel geometry is considered, and it is demonstrated 

that there are feasible hardware possibilities for accelerating the computation of the 

reconstruction problem for EIT systems. 

Finally, the overall objectives and the new contributions of this research are 

summarised in Chapter nine. This includes the outcomes, together with the conclusions 

drawn from the research and proposals for future developments. 
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2 RECONSTRUCTION METHODS 

2.1 Introduction 

Reconstruction techniques are generally classified into two main categories, 

dependent on the approach and starting constraints. These are transform methods and 

series expansion methods. A third category has recently been introduced called 

Constrained Optimisation. The selection of a category for a particular technique is not 

always clear, but the use of a classification scheme is useful and popular, as it allows a 

measure between methods in terms of quality and speed. This Chapter reviews the 

mathematical methods used to reconstruct the images and classifies them into the 

categories defined above. The EIT methods do not fit easily into either of these 

categories and are considered separately in Chapter three. 

Before proceeding with a survey of reconstruction methods, it is convenient to 

define some of the terminology used in this section. The object to be reconstructed is 

represented by f. A path of integration (specified by [(t,e» is referred to as a ray. 

The scanning geometry will be confined to a parallel system as shown in the previous 

chapter unless otherwise stated. The problem of reconstruction can then be defined as: 

given p(t,e), find f(x,y) or f(m,e) (polar co-ordinates). 

2.2 Taxonomy 

The following is a list of known methods of reconstruction which fall within the 

first two categories, defined above: 

i) 

ii) 

iii) 

MEmOD 

Radon 

Backprojection (Summation) 

Fourier 
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iv) Convolution backprojection Transform 

v) ART Series Expansion 

vi) SIRT Series Expansion 

vii) ILST Series Expansion 

viii) CORT Optimisation 

2.2.1 Radon 

In 1917, J. Radon [ 1. 17] established the mathematical foundations of the 

reconstruction problem from projections, and hence the transform which produces the 

projection from the image is called the Radon transform. Radon determined that the 

cross-section of an object can be reconstructed exactly by an inversion formula, in 

terms of measurements that are the line integrals of the cross section function. The 

function defined by a complete set of line integral measurements is known as the 

Radon transform. To define this mathematically let I (x, y) denote the function that 

represents the spatial distribution of some physical quantity in two dimensions. 

Although I is unknown, a priori, in most cases it is known that the distribution is 

spatially bounded, so that it vanishes outside a finite region of the 2-D plane, which is 

denoted by D. Figure 2.1 shows the basic geometry of the reconstruction system used 

in the analysis. 

It is sometimes more convenient to express I in terms of polar co-ordinates 

(t, e), rather than Cartesian co-ordinates (x, y) Let p( t, e) denote the integral of 

I along the line I (t, e). Hence: 

p(t,e) = rids 
JI(t,6) 

(2.1) 

where I ( t, e) is the line whose normal through the origin makes an angle e with the 
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positive x -axis, and has length t , where - 00 < t < 00. Hence I ( t, S) is the line 

xcosS + ysinS = t (2.2) 

p(t, 8) 

y 

Line of Integration 

/ 

/(x,y) /(t,8) 

Domain of image D 

Figure 2.1 Projection Geometry 

Using a delta function equation (2.1) can be rewritten as: 

CD CD 

p(t,S) = J J f(x,y)o(xcOSS + ysinS - t)dxdy (2.3) 
-ClO-CD 
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The function p ( t, 8 ) is known as the Radon transform of the function / ( t, ct> ) . 

Knowing the latter, the image / (t, ct» can be evaluated from the inversion formula: 

f(t,ct»=~jjap(t,8) 1 dtd8 
21t 0 -<I) at r cos(8 - ct» - t 

(2.4) 

It would appear that Radon [1.17] had solved the reconstruction problem in 1917. 

However, there are practical problems in evaluating this integral. Radon's formula 

determines a picture from all its line integrals. In CT there is only a finite set of 

measurements. The measurement in CT can be used only to estimate the line integrals. 

Radon gave a mathematical formula, an efficient algorithm is required to evaluate it. 

One of the first solutions to this problem appeared in the early 1920's is called 

the summation or backprojection method. 

2.2.2 Backprojection (Summation) method 

This simple method is implemented by summation of the intersection of the 

lines defined by the projections across a 2-D surface. However, this method is 

inaccurate causing a blurred image. Despite the poor quality of the reconstructed 

image, the backprojection method is important, and most of the techniques used at 

present are based on improvements to this basic approach. 

A brief analysis of this method is given in this section, as it forms the basis for the 

majority of the reconstruction algorithms in present use. 

If N projections p( t, 8) are available, then it is possible to obtain a 

reconstruction by the summation method [2.1] given by the formula: 

N 

l(x,y) = LP(t,8 k ) (2.5) 
k=l 

where 1 is the estimated image. This is represented diagrammatically in Figure 2.2 

For each projection p(t,8), a 2-D function is created by backprojecting (shifting the 

1-D function along the y k axis). The summation of all the generated 2-D functions 
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gives the estimated image. 

The backprojection methods in various analogue and digital implementations 

have been proposed by a number of authors. A history of these methods can be found 

in Gordon and Herman [2.2]. The numerical evaluation of the integrals, and III 

particular the Riemann sums, are discussed in detail by Davis and Rabinowitz [2.3]. 

p(~e) 

Figure 2.2 

2.2.3 Fourier 

/ 

y 

A 2-D function f(x,y) produced by backprojecting the I-D 

function p( t, e) along y k 

In 1956, Bracewell [2.4] discovered the projection (or central) Slice Theorem 

for bounded objects, which gives an exact solution using Fourier transforms. It was 

used to reconstruct the image of the sun in microwave radiation, from strip 

measurement by microwave antennas. Independently, DeRosier and Klug [2.5] 
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developed the same theorem for reconstruction of helical VIruses from 

electromicrographs. 

The Fourier method is based on the Projection Slice Theorem which is derived 

from the fundamental observation that the Fourier transform of a projection is a slice 

of the Fourier transform of its image. This is illustrated in Figure 2.3. and is derived 

mathematically as follows. 

Consider the (t, s) co-ordinate system illustrated in Figure 2.1 to be a rotated 

version of the original (x, y) system expressed by: 

[:] -[ -:~::::::][;] (2.6) 

In the (t, s) co-ordinate system a projection along lines of constant t is written 
00 

p(t,8) = f /(x,y)ds (2.7) 
-00 

Its Fourier transform is given by: 

00 

P(ro ,8) = f p(t,8)e-J1ltrotdt (2.8) 
-00 

Substituting the definition of a projection into the above equation 2.8 gives: 

00 00 

P(ro,8)= flf /(t,s)ds]e-J1xrotdt (2.9) 
-00 -00 

This result can be transformed into the (x, y) co-ordinate system by using the 

relationship given in equation (2.6). Hence: 

00 00 

P«(O ,8) = f f /(x,y)e-J1ltQ)(xcos6+YIl1n6)dxdy (2.10) 

-00-00 

The right side of the equation (2.10) represents the 2-D Fourier transform of a spatial 

frequency of (u = (0 cos8, v = (0 sin8). Hence: 

P( (0,8) <=> F( (0,8) <=> F( (0 cos8,(O sin 8) (2.11) 
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which is known as the Fourier Slice Theorem. The above result indicates that by taking 

the projections of an object function at angles 91'91 , •• ,9 k and Fourier transfonning 

each of these, it is possible to determine the values of F( u, v) on radial lines as shown 

in Figure 2.3. 
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Figure 2.3 lliustration of the Fourier Slice Theorem 

If an infinite number of projections is take~ then F( u, v) would be known for all 

points in the u,v-plane. The object function F( u, v) can be recovered by using the 
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Inverse Fourier transform: 

ao ao 

f(x,y) = f fF (u,v)eJ2X(unV}')dudv (2.12) 
-00-00 

If the function is bounded by - D < x < D and - D < Y < D then the above can be 
2 2 2 2' 

defined as: 
N N 
- -

1 22m n 
f(x,y) = - ~ ~ F(m ~)ej2X«D)I+(D)Y) 

D2 L."N L."N D 'D (2.13) 
m=--n=--

2 2 

for 
D D D D 

--<x<- and --<y<-
2 2 2 2 

(2.14) 

All the Fourier-based methods are related to the above theorem. The reconstruction 

problem can be defined as approximating the 2-D image Fourier transform, from the 

available discrete set of points on the polar raster, then performing an inverse 2-D 

Fourier transform to find the unknown f (x, y) . The Discrete Fourier Transform 

(DFT), is used to obtain the inverse transformation samples of the image Fourier 

transform on a Cartesian raster. These are obtained by interpolating the known polar 

raster samples. 

The limitation of samples available, due to factors of scanning geometry and 

computation time, can cause aliasing artefacts to be present in the reconstructed image. 

It is possible to determine the N2 coefficients required in equation (2.13), provided as 

many values of the function F(u, v) are known on some radial lines [2.6]. The 

calculation involves solving a large set of simultaneous equations. This often leads to 

unstable solutions, due to small errors introduced when solving these large systems. 

As there are a finite number of projections obtained from the scanning 

geometry, the function F( u, v) is known only along a finite number of radial lines as 

shown in Figure 2.4. To implement equation (2.13) the radial points must be 

interpolated to points on a square grid. Since the density of the radial points becomes 
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sparser further away from the centre, the interpolation error also becomes larger. This 

implies that there is greater error in the calculation of the high frequency components 

in an image, than in the low frequency ones, which results in some degradation of the 

tmage. 

v v 

u D 

<8> (b) 

Figure 2.4(a) The polar raster of points in the Fourier space produced by 

computing the DFT of 8 projections with 11 samples per projection, (b) Nearest 

neighbour interpolation used to estimate Cartesian raster samples from the polar 

raster sam pies. 

Another cause of artefacts in the reconstructions IS known as Gibb's 

phenomenon, which is due to truncation of the Fourier domain. If the truncation is too 

abrupt, high-contrast features in the original object will be reconstructed with 

considerable overshoot and ripple. This implies aliasing in the spatial domain and 

presents itself within the image as noise. It is not possible to remove this effect 

completely, due to the limitation of the number of samples available, but improved 

reconstructions can be obtained by multiplying the projections by a window function . 

Window functions will be discussed in the Section 2.2.4. 
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An extension to the above methods is the 'rho filtered layergram' approach 

introduced by Smith [2.8]. It is an important method in the context of this research, as 

the main EIT reconstruction approach currently used is based on a variation of it. The 

rho-filtered layergram method attempts to deblur the picture that is obtained by 

backprojection alone. The method of debluring is based on the relationship between 

the 2-D Fourier transform of a picture and the 2-D Fourier transform of the 

backprojected Radon transform of the picture. The relationship is given by: 

F( eo, 9) = leo I[FT[B[Ilf]]]( (0,9) (2.15) 

F or any point (eo, 9) with eo :;t: 0, where B denotes backprojection and R the Radon 

Transform, equation (2.15) gives rise to a four stage process for estimating / from the 

projection data p. This process is detailed as follws: 

a) Backproject p, to obtain Bp. 

b) Calculate the 2-D Fourier transform FT[Bp]. 

c) Obtain a new function F of two polar variables by: 

F( eo ,9) = leo I[FT[Bp]]( eo ,9) (2.16) 

d) Estimate / by taking the inverse Fourier transform of F 

/= IFT[F] (2.17) 

The result of the process of backprojection is sometimes known as a layergram. The 

concept of the rho-filtered layergram was introduced where the first polar variable of 

the 2-D Fourier transform was denoted by the Greek letter p, and hence the operations 

described above are given this name. One of the main reconstruction algorithms 

developed for EIT is an adaptation of the rho-filtered layergram. 

The relationship between the Image Radon and Fourier space is illustrated in 

Figure 2.5. 
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Line integral in bnage space = Point in RAdon Space 

e 
t 

y 

Radon Space 

Image Space 

~ 1-D IT :f p ... \jection 

Stice 

! 
Inverse I-D Ff of slice 

Q 

Fourier Space 

Figure 2.5 Image, Radon and Fourier space 

2.2.4 Convolution 

The convolution methods first developed by Ramachandran and 

Lakshminaryanan [1.24], and popularised bY'Shepp and Logan [2.9], are similar to the 

Fourier methods. The convolution method multiplies the I-D Fourier transform of each 

projection by the lro I filter, and backprojects its inverse Fourier transform to produce 
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the reconstruction. This method is derived from the projection Slice theorem and can 

be viewed in the spatial domain as follows: 

To reconstruct f(x, y) at a point Q(t,9) each p(t,9) is multiplied, or 

weighted, by 21t1<D liN. Therefore, lco I represents the Jacobian for a change in variable 

between polar co-ordinates and the rectangular co-ordinates used in the Fourier 

transform. 

A back projection algorithm can be derived from the projection slice theorem 

given in the previous section as follows: 

If p(t,9) is known for all the lines l(t,9), then the inverse Fourier transform 

of the object function f(x,y) can be expressed as: 

a:> a:> 

f(x,y) = J J F(u, v)eJ2X(UI+VY)dudv (2.18) 
-GD-a:> 

Change the rectangular co-ordinate system for the polar co-ordinate system by using: 

u = co cos9 

v = co sin9 

The differentials are replaced by: 

dudv = lco Id<Dd9 

Equation (2.17) is rewritten as: 

2xa:> 

f(x,y) = J J F(co ,9)eJ2XID(ICOs6+Ylln6)<Ddcod9 
o 0 

Splitting the integral into two by considering 9 from 0 to 1t and 1t to 21t, 

(2.19) 

(2.20) 

(2.21) 

X a:> } -J f {F( 9) J21UD(J:C'OI6+Ylln6) + F(co 9 + 1t)eJ211ID(J:C'OI(6+1I)+YIln(6U» codcod9 f(x, y) - co, e , 
o 0 

(2.22) 
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Using the property: 

F(ID,8 + x) = F( -0),8) 

and: 

t = xcos8 +ysin8 

equation (2.21) can be written as: 

(2.23) 

(2.24) 

(2.25) 

Substituting the Fourier transform of the projection at angle 8, for the 2-D Fourier 

transform F( ro ,8), gives: 

1t <I) 

f(x,y) = f fp(0),S)ej21taxlro~mdS (2.26) 
o -<I) 

Let the inner integral be denoted by Q( t, S), hence: 

<I) 

Q( t, S) = f P( 0) ,8 )Im ~j21ttdro (2.27) 
-<I) 

and equation (2.26) can be rewritten as: 

<I) 

f(x,y)= f Q(xcosS+ysin8,S)d8 (2.28) 
-<I) 

Equation (2.27) is the Hilbert transform of the derivative of p(t,S), and is due to 

multiplying by 10) I = jro (-j sgn 0) in frequency. This corresponds to taking a 

derivative (jro ) along with a Hilbert transform (- j sgn 0) ). [2.9]. 

Equation (2.25) also represents a filtering operation when the frequency 

response of the filter is given by lID I. Q( x cos 8 + y sin 8, S ) is called the filtered 

projection. The resulting projections for different angles S are added to form the 

estimate of f(x,y). The operation, defined by equation (2.28), is known as 
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backprojection. Hence each filtered projection is smeared back, or backprojected over 

the image plane. 

The function 10) I has the dimensions of spatial frequency. The integration 

should in principle be carried out over all spatial frequencies. This is not possible in 

practice, so the function is bandlimited. If W is defined as the highest frequency 

component in each projection, then from the sampling theorem the projections can be 

sampled at intervals of 

(2.29) 

Then a projection can be represented as: 

p(mT,9) (2.30) 

where 
-N N 

m = -, •• ,0, .. ,--1 
2 2 

(2.31) 

assuming 1 tl is bounded by D. 

An algorithm can be defined usmg an FFT to approximate the Fourier 

transform P( 0) ,9) of the projection by: 

N 
-1 k 

W 1 2 k -j211(~) 
P(0),9)~P(m2-)=- L p(-,9)e N 

N 2W N 2W 
k=--

2 

(2.32) 

The modified projection Q( t, 9) requires evaluation by discrete approximation. 

If the Fourier transform P( 0) ,9) is bandlimited, it is approximated by: 

w 
Q( t,9) = f P( 0) ,9)10) ~j211mtdO) (2.33) 

-w 

provided that N is large. 

The projections Q(t,9) for t, at which the projections p(t,9) are sampled, 
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gIVes: 

N 

k W ~ W W Jlll(mk) 
Q(-,8)~2- LJ P(m2-,8)m2-e N 

2W N N N N 
(2.34) 

m=--
1 

where 
N N 

k = --, .. ,-1,0,1, .. ,-
2 2 

The function Q( t, 8), at the sampling points of the projection function, is 

" 1" b h" f W W apprmQmate y gIVen y t e mverse DFT 0 the product ofP(m2-,8) and m2-. 
N N 

Due to the truncation of the Fourier domain the filtered projection must be 

multiplied by a window function. This de-emphasises the high frequencies that may 

cause unwanted artefacts in the reconstructed image. A typical example of such a 

window is the Hamming window [2.7]. Hence equation (2.34) is given as: 

(2.35) 

where 

(2.36) 

represents the window function. From the convolution theorem equation (2.35) can be 

written as: 

k 8) 2W (k 8)* <I>(~) 
Q(2N' ~NP 2W' 2W 

(2.37) 

where * denotes circular periodic convolution, and <1>( ~) is the DFT of the discrete 
2W 

function 

(2.38) 

The function Q(t,8) can be obtained in the Fourier domain from equation (2.34), or in 
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the space domain by using equation (2.37). As interpolation in the space domain is 

simpler than in the frequency domain, the convolution method is preferred. 

A number of observations can be made at this point about the analysis 

described above. Equation (2.27) can be expressed in the space domain as: 

IX) 

Q( t,8) = f P( 't,8)<1>( t - 't )d't (2.39) 
-IX) 

and may also be written as: 

IX) • 

Q(t,8) = f j21tcoP(co,8)[--.Lsgn(co )]eJ2xmtdco 
-IX) 2x 

(2.40) 

where 

sgn(co) = [ 1 for co > 0] 
-lfor co < 0 

(2.41) 

The convolution theorem for the discrete transform states that the convolution of two 

functions in the space domain is equivalent to multiplication in the Fourier domain. 

This can be written as: 

Q(t,8) = [FT-1 ofj2xcoP(co ,8)]* [FT-1 of - _J sgn(co)] (2.42) 
2x 

where * denotes circular (periodic) convolution. This result may also be rewritten as: 

1 dp(t,8). .F dp(t,8) 
Q( t, 8) = --* = HIlbert Transform OJ 

2x2 t dt dt 
(2.43) 

The reconstruction f (x, y) is obtained by the discrete approximation: 

(2.44) 

The convolution algorithm is demonstrated diagrammatically in Figure 2.6. 
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Figure 2.6 Block diagram of Convolution algorithm 

A problem occurs with this formula due to the translation of polar to Cartesian 

co-ordinates, as positions in the polar space may not correspond exactly to positions in 

the Cartesian space. However it can be approximated with a suitable interpolation. 

Linear interpolation in often adequate. The effects of interpolation, when 

backprojecting using the convolution algorithms, were examined by Kwoh [2.10], 

Herman [2.11] and Peters [2.12]. 

The projection data are considered more reliable at low frequencies than high 

frequencies. The ICD I filter function (which has the highest value at the high 

frequencies), has the property of amplifying the noise at these frequencies. Rowland 

[2.13] made a detailed study of the effect on the reconstructed image of a number of 

alternative filter functions. Examples of these windows, including Hamming, are shown 

in Figure 2.7. 
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Frequenq Domain Spatial Domain 

Value 

Band Limiting 0.3 

Amplitude 
0.2 

0.6 r---~--------------, 

0.1 
0.4 

0.0 
0.2 

-0.1 
0.0 

0.2 0." -0.2 
0 2 3 4 5 6 

Normalised Frequency Distance 

Value 
0.3 

Low Pass Sinc 
Amplitude 0.2 
0.6 ,---__________ ~-_ _, 

0.1 

0.4 

0.0 

0.2 

-0.1 

0.0 

-0..... -0.2 0.0 0.2 0.· 0." -0.2 
0 2 :3 • 

Normalised Frequency Distance 

Value 

Generalised Hamming 
0.3 

AmpHtude 0.2 

o.e .---~-__ -_--~--_-___, 0.1 

0 ..... 
0.0 ~ 

0.2 

-0.1 

0.0 

-0.2 
0 2 3 4 6 

Normalised Frequency Distance 

Figure 2.7 The frequency and spatial domain representations of the convolving 

functions. In the spatial domain, the smooth lines are the Fourier transforms of 

the bandlimiting, sinc, and Hamming (a. = 0.54) windows, the straight-line 

segments are the linear interpolation of the convolving discrete function. 
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The graphs show the standard convolving functions: 

i) Bracewell [2. 14] and Ramachandran [1.23] proposed the bandlimiting 

window, defined by: 

<I>(ID) = 
1 lID I ~ 

o lID I > 
(2.45) 

ii) Shepp and Logan [2.9] proposed the low-pass, bandlimiting window Figure 

2.7. defined by: 

ID sin c( 1tIDAxk ) 1m I ~ 1 

<1>( ID ) = (2.46) 

1m I> 
2Axk 

o 

This filter avoids the high frequency oscillations caused by the abrupt frequency cut-off 

of the filter in equation (2.45), and results in a smooth reconstruction. 

iii) Hamming low-pass window proposed by Chesler and Riederer [2.15]. 

Defined as: 

<I>(ID) = 
[a.+(1-a.)cos(21tIDAxk)] lcol ~ 

2Axk 
1 

1 

(2.47) 
o 

is the most appropriate, if the reconstructed image in dominated by aliasing and noise. 

However, a reduction in aliasing and noise effects results in a loss of resolution in the 

reconstructed image, due to the attenuation of high frequency components. 

Other window functions have been developed, but have not been included in 

this review. The selection of windows given in this review was based on those most 

commonly given in the literature. The filtered backprojection algorithms are the most 

commonly adopted techniques in image reconstruction, due to the low number of 

operations required for computation. 
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2.2.5 Algebraic Reconstruction Technique (ART) 

The ART technique was developed by Gordon [2.16], and was extended by 

Hounsfield [2.17] in the first commercial X-ray CT scanner. It is based on the "method 

of projections" first proposed by Kaczmarz [2.18]. The Algebraic Reconstruction 

Technique (ART) formulates the reconstruction problem in a different manner from the 

cases described in the pervious sections. To describe the reconstruction problem for 

ART, a number of assumptions are made for simplicity and precision. ART assumes 

that the reconstructed image is enclosed in a square region. It is also assumed that the 

image is composed of n by n non-overlapping subregions, and in each of the 

subregions there is a uniform greyness. A ray is defined as a region of a picture that lies 

between two parallel lines shown in Figure 2.8. With this assumption, the system is 

defined in terms of a discrete set of data, unlike the previous case, which assumed the 

image is continuous. 

The ART method operates iterativetly in the space (solution space) domain, 

and defines a great variety of algorithms. In the early 1970's, the integral equations that 

define the projections were formulated as a system of linear equations that could be 

solved by iterative methods. The fundamental concept behind ART is backprojection. 

The difference between a measured projection and the calculated projection from the 

current reconstruction is backprojected to produce the reconstruction of the next 

iteration. 
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Figure 2.8 ART. A square grid is superimposed over the unknown image. 

Image values are assumed to be constant in each pixel region. 

Later in this section it will be demonstrated that ART can be considered as a 

constrained optimisation method. Any prior knowledge (such as the image being 

reconstructed is non-negative), can be built into the algorithms. ART can be 

subdivided as follows : 
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2.2.5.1 Additive ART 

The discrete model of the image reconstruction problem can be described by a 

system of linear equations as: 
J 

Pk ~ La~~ (2.48) 
j=1 

or 

p=A/+e (2.49) 

A is defined as the ART projection matrix, e is an error vector due to measurement 

noise. The assumption of uniform density within each pixel is used to calculate the A 

matrix elements. 

The additive ART is an iterative method that aims at producing a solution to 

the system of equations defined in equation (2.48). Let 

(2.50) 

be the estimated value of ~ after n iterations, and defining 

J 

p~ = La~~q (2.51) 
j=1 

as the kith projection element calculated from the q th picture estimate. This operation 

is sometime known as reprojection. 

If: 
J 

Ski = L(a~)2 (2.52) 
J=1 
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then additive ART is defined by the algorithm: 

-q 

~q+l = ~q + (a~ )1 q Pki s- Pid 
Id 

(2.53) 

where 

ki = (q mod om) + 1 (2.54) 

The sequence of kils is 1,2, •. ,NS,1,2, •• ,NS,1,2, •• etc, and 0 < 1 q < 2. This is set to a 

very small value [2.19][2.20]. Hence the ART algorithm is defined as the error 

between a projection measurement PId and the calculated P~, scaled by the quantity 

Sid. Then the intensity of each image pixel ~ contributing to that projection 

measurement is increased by the product of the error and a~ . 

An initial approximation [0 with similar characteristics to that of [ is 

desirable to minimise the number of iterations required. As this is often unavailable, 

approximations such as the output of the summation method are employed. 

There are three versions of additive ART that differ in the way ~q is obtained 

from ~q: 

i) Unconstrained ART (proposed by Kaczmarz [2.18] for the solution of 

systems of linear equations): 

ii) Partially constrained ART: 

iii) Fully constrained ART: 

I'q - j'"q 
JJ - JJ 
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2.2.5.2 ART2 

0, if ~q < 0 

~q = It if 0 ~ ~q ~ 1 

1, if ~q > 1 

(2.57) 

In 1973 Herman, Lent and Rowland [2.21] developed a variation on additive 

ART known as ART2. The only difference between ART and ART2 is that ~q is used 

instead of ~q in the formula for ~q+l. Hence ART2 is formulated as: 

-q 

~q+l = ~q + (a~ )1 q Pid s- Pid 
Id 

(2.58) 

~o =0 (2.59) 

2.2.5.3 ART3 

ART3 [2.22] aims at a solution within a pre-set error tolerance & which may 

vary from one projection to another. Specifically, a solution is acceptable if: 

J 

PI-&I ~La~~ ~PI +&1 
j=1 

(2.60) 

AR T3 can be shown to converge to a solution in a finite number of iterations, provided 

a solution exists. 

2.2.5.4 Multiplicative ART (MART) 

Multiplicative ART [2.16] is specified by 

where 

1;0>0 

(2.61) 

(2.62) 

The choice between Additive ART and Multiplicative ART depends on the physics of 
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the radiation used to obtain the projections. MART has an advantage over additive 

ART in that once ~q = 0, then it remains so for all subsequent iterations. 

All the ART methods use different approaches to improve the convergence 

properties. If the convergence to a solution can be improved, then the required number 

of iterations in finding the solution can be reduced. One of the problems associated 

with convergence is the constraints placed upon it. It is possible for a set of projections 

to have an infinite number of solutions or images that can be reconstructed from the 

same projection data. Gaarder and Herman [2.23] considered some of the statistical 

aspects of the convergence problem. They developed a principle of minimum variance 

(greatest uniformity) which can be explained as follows: 

If it is assumed that there is available a solution such that p = AI, then the 

unconstrained ART converges to a solution that minimise the image variances as: 

where 

is the mean density. 

J 

0
2 = L(~ -1)2 

j=1 

- ~~ 1= L..J­
j=1 J 

(2.63) 

(2.64) 

It is also useful to note that minimisation of the image variance is the same as 

minimisation of the image norm or energy. Hence if: 

J 

11/112 = L~2 (2.65) 
j=1 

then 
J 

0
2 = L(f/ - 2jf + 12) (2.66) 

j=1 

If the mean density 1 is assumed to be zero, equation (2.66) becomes the same as 

equation (2.63). This can be defined as selecting the smoothest of all pictures 
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consistent with the projection data. Such a smoothness criterion may not be the most 

appropriate in some applications. This criterion will be used later in the constrained 

optimisation methods. 

The ART methods could also be classified as constrained optimisation 

methods, as ART iterativetly updates estimates of the image by backprojecting the 

errors between the measured projections and those corresponding to the current image 

estimate. This procedure converges to the image of minimum error energy that 

matches the measured projections exactly. This method is classified as a primal 

optimisation technique, since the iterations are perfonned directly in the solution space. 

ART reconstructions usually suffer from "salt and pepper" noise, which is 

caused by the inconsistencies introduced in the set of equations by the approximations 

commonly introduced used for a1k's. The result is that the computed ray-sums in 

equation (2.50), are usually poor approximations to the corresponding measured ray­

sums. The effect of these inconsistencies is exacerbated by the fact that as each 

equation corresponding to the ray in a projection is taken up, it changes some of the 

pixels just altered by the preceding equation in the same projection. It is possible to 

reduce the effects of this noise in ART by adjusting the relaxation factor. The 

relaxation parameter "( is made a function of the iteration number. It becomes 

progressively smaller with increase in the number of iterations. The resulting 

improvements in the quality of reconstruction are usually at the expense of 

convergence. 

2.2.6 Simultaneous Iterative Reconstruction Technique (SIRT) 

The SIR T proposed by Gilbert [2.24] is an algebraic method modified from its 

forerunner, the Algebraic Reconstruction Technique. It usually leads to better images 

than those produced by ART at the expense of a slower convergence. SIRT is an 

iterative process and assigns a new density value to each pixel at each step of the 

iteration. If J;q is the estimated value of the density of the i th pixel after q iterations, 
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and L J the length of intersection of the centre line of the jth ray and the reconstruction 

regio~ then the SIR T algorithm can be defined as follows. 

The SIRT algorithm starts with a uniform picture: 

where i=l, .. ,N (2.67) 

f. is an estimate of the average pixel density, which is based on the experimental 

projection data given by: 

where 

1 M 

f. = ~R 
• - NN hI L..J j e J=1 

N e is the number of angles at which projection data is available, 

h is the length of a side of a pixel, 

R
J 

is the jth measurement. 

(2.68) 

An auxiliary estimate of the pixel density lq+l is made using the following formula: 

N 

Lfko 

f. q+1 = N k=1 f.q
+

1 (max) (2.69) 

Llkq
+

1 (max) 
k=1 

where i = 1, .. , N. Similar to the ART methods, four classes of the additive SIR T 

algorithm can be defined, depending on the way the estimate of f.q
+

1 
from J;q+l is 

defined: 

{l) Unnormalized, unconstrained SIR T: 

f. q+1 = J;q+l (2.70) 

where i = 1, .. ,N. 

(2) Unnormalized, constrained SIRT: 

f. q
+

1 = maxCftQ
+

1
, 0) (2.71 ) 

where i = 1, .. ,N. 
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(3) Normalised unconstrained SIRT: 
N 

Lfko 

rq+l = k=l iq+l 
JI N Jk 

Llk
q
+

1 
(2.72) 

k=l 

where i = 1, .. ,N. 

(4) Normalised, constrained SIRT: 

(2.73) 

and 

N 

LfkO 

!tq
+

1 = N k=l J;q+l (max) (2.74) 
L lkq+1(max) 

k=l 

where i = 1, .. , N. Algorithms are called constrained if they always produce non­

negative reconstruction, and normalised if they always produce reconstructions with an 

average density equal to f.. 

The SIRT algorithm also suffers from the inconsistencies in the forward 

process as ART, but by eliminating the continual and competing pixel update as each 

new equation is taken up, it results in smoother reconstructions. 

2.2.7 Iterative Least Squares Technique (ILST) 

This method is not detailed in full as it is similar to the methods described 

above. In the ILST [2.26], reprojections for all angles are calculated first. Each 

reconstruction point is considered in tum, and contributes to a point in each 

reprojection and projection for each angle. A correction that minimises the sum of the 

squares of the discrepancies between those values can be simply calculated and 

applied. When all reconstruction points have been corrected, the whole process has to 

be repeated because the modification of one point will invalidate the least squares 

estimate at all others. 
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2.3 Constrained Optimisation 

This technique defines the reconstruction by embedding it into a constrained­

optimisation problem, with the aim of obtaining the 'best' reconstruction by optimising 

a performance criterion. This category of reconstruction has been shown by Goutis, 

Leahy and Drossos [2.27] to give the highest quality image consistent with the 

available data. 

There are two categories of constrained optimisation techniques. The first 

defines the problem in the solution space and is known as the primal method, the 

second is the dual approach which solves the problem in dual space. This will be 

defined in Chapter four. The dual approach has advantages over the primal method in 

two areas. 

i) The dual optimisation exploits the natural geometry of the problem. 

ii) If the available data are limited, the dual approach is still capable of 

producing a reasonable reconstruction. 

In the previous section the ART algorithms were classified in the space domain. 

It is equally valid to define these algorithms as examples of constrained optimisation. 

ART iterativetly updates estimates of the image by backprojecting the errors between 

the measured projections and those corresponding to the current image estimate. This 

procedure converges to the image of minimum error energy that matches the measured 

projections exactly. The method can be classified as a primal optimisation technique 

since the iterations are performed directly in the solution space. A detailed analysis of 

this method will be given in Chapter four. 

2.4 Summary of Reconstruction Methods 

Each method requires following the listed sequential operations. 

Fourier Transform Technique - FTT 

Transform each I-D projection into the Fourier domain. 
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Interpolate in the Fourier domain. 

Multiply by appropriate window function. 

Inverse Fourier Transform to obtain image estimate. 

Rho-Filtered Layergram Technique - pFLT 

Backproject the projections. 

Calculate the 2-D Fourier transform of the backprojected projections. 

Obtain a new function by multiplication by a filter function. 

Estimate image by inverse Fourier transform of above function. 

Convolution Dackprojection Technique - CDT 

For each projection angle: 

Multiply the I-D Fourier transform of each projection by the 1m 1- filter. 

Backproject its inverse Fourier transform. 

Algebraic Reconstruction Technique - ART 

For each projection angle: 

Take the reprojection. 

Difference with the corresponding projection. 

Backproject and add in the correction to the trial image. 

Multiplicative Algebraic Reconstruction Technique - MART 

For each projection angle: 

Take the reprojection. 

Divide the corresponding projection by the reprojection. 

Backproject and multiply in the correction to the trial image. 
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Iterative Least Squares Technique - ILST 

Calculate all reprojections. 

For each point in the trial image: 

Get the contributing projection and reprojection ray sums. 

Compare them. 

Calculate a new point value that minimises the disagreement. 

Simultaneous Iterative Reconstruction Technique - SIRT 

For each point in the trail image: 

Calculate the reprojection ray sums. 

Compare with the corresponding projection ray sums. 

Calculate a new point value that minimises the disagreement. 

Constrained Optimisation Reconstruction Technique - CORT 

For the defined system geometry (assuming minimum variance model) calculate 

the pseudo inverse of the system matrix. 

Multiply by the projection data to obtain the Lagrange multipliers 

Backproject. 

2.5 Discussion 

The objective of this Chapter was to review the reconstruction procedures that 

have been previously developed, and to classify them into three categories. These 

were: transform, series expansion and constrained optimisation methods, (which are 

discussed in more detail in Chapter four). The classification scheme is based on the 

procedure used to obtain the solution to the reconstruction problem. A summary of 

these procedures is given below: 
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2.5.1 Transform Methods 

1) Formulate a mathematical model of the problem, in which the known and 

unknown quantities are functions whose arguments come from a continuum of real 

numbers. 

2) Solve for the unknown function by an inversion formula. 

3) Adapt the inversion formula for application to discrete and noisy data. 

In the last step, the algorithms that result do not perform identically on real data, since 

different approximations have been introduced. 

2.5.2 Series Expansion Methods 

1) Formulate a mathematical model of the problem which relates a finite set of 

known numbers, (i.e., the projection) data to a finite set of unknown numbers 

representing the image. 

2) Solve numerically the system of equations obtained from step 1 . 

2.5.3 Constrained Optimisation Methods 

1) Select an error criterion (cost function) based on the difference between the 

true and the reconstructed image. 

2) Formulate a model based on the optimisation of the above cost function. 

2.5.4 Errors 

All the algorithms detailed in this review have a number of potential sources of 

error. These can be summarised as: 

a) undersampling of the projections, (all methods), 

b) error in evaluation of p, (all methods), 

c) error due to truncation of the Fourier domain, 

t) interpolation error in the Fourier domain, 

g) undersampling of the Fourier domain, 

h) error in evaluation of f ( all methods). 
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2.5.5 Observations 

The convolution backprojection method has dominated all other methods due 

to the straightforward implementation in software or hardware. It produces sharp, 

accurate images from good quality data. Fourier methods are not straightforward to 

implement due to the inelegant 2-D interpolation required. There are two advantages 

to the filtered backprojection algorithm over a frequency domain interpolation scheme. 

The most important is the reconstruction procedure, which can be started as soon as 

the first projection has been measured. This reduces the required data storage at any 

one time. It is also usually more accurate to carry out interpolation in the space 

domain. A simple linear interpolation is often adequate for the backprojection 

algorithm, while more complicated approaches are needed for direct Fourier domain 

interpolation. 

The backprojection operation is the most expensive part of the convolution 

algorithm, and hence a number of different schemes have appeared in the literature to 

improve the speed of backprojection. A zero order interpolation proposed by K woh et 

al. [2.28], increases the speed by a factor of two. Their results show reconstructions of 

similar quality to those obtained with linear interpolation if there are sufficient numbers 

of projections and a high signal-to-noise ratio. A two stage operation proposed by 

Peters [2.12], consisted of pre-interpolating the filtered projections to produce 

additional samples, and then using a zero order interpolation during backprojection. It 

is estimated that a reduction of one third in computation time is saved compared with 

linear interpolation. Herman [2. 11] also investigated interpolation using linear and 

modified cubic spline methods, and concluded that both gave similar results, but the 

linear method was preferred due to its lower computational cost. 

Some researchers have attempted to reduce the reconstruction computation 

time in the convolution algorithm by using hardware solutions. Kelieff and Durrani 

[2.29] use a Fast Hartley Transform (FHT) to improve performance. Their system was 

based around 16 transputers each with 256 Kbytes of external memory, which gives 
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reported times of 50 secs. for 195 projections, and image resolutions of 256 by 256 

pixels. An alternative hardware solution is given in Chapter eight. 

ART and Constrained Optimisation have two important advantages over the 

Fourier domain based methods: 

i) explicit assumptions need not be made about the unknown projections. 

ii) the statistics of the noise can be considered. 

The choice between additive ART and Multiplicative ART depends on the physics of 

the radiation used. Although the ART methods produce superior images to those of 

the transform methods, they are computationally inconvenient, requiring manipulation 

of large data sets. 

To keep this reVIew of reconstruction methods brief, only the parallel 

geometries have been considered. Examples on fan beam can be found in 

Lakshminarayanan [2.30] and Herman [2.31]. A complete review of the transform 

methods is given by Lewitt [2.32]. Other reviews of reconstruction methods included 

Natterer [2.33], which gives a highly mathematical approach to the reconstruction 

problem, or Kak and Slaney [2.34] who provided a tutorial survey. Hennan [2.19] also 

provided a good survey of the fundamentals of computerised tomography. For a 

medical and applications approach, Webb [2.35] provides a useful insight to the 

fundamentals. 
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3 REVIEW OF EIT 
RECONSTRUCTION METHODS 

3.1 Introduction 

In Electrical Impedance Tomography (EIT), there is a requirement to find a 

solution for both the Forward and Inverse problems, unlike the methods described in 

Chapter two, which have well defined Forward solutions. As the EIT methods do not 

fall easily into the categories defined in the Taxonomy presented in the previous 

Chapter, they are reviewed separately in this Chapter, making comparisons where 

appropriate and useful. This Chapter also identifies the problems associated with EIT 

that are not encountered with the systems described in pervious Chapters. These 

problems need to be addressed when the algorithms that are specifically developed for 

X-ray and PET system are adapted for EIT. 

There are a number of key methods that have been developed for EIT. Most 

have only been validated with modelled data, with the exception of the filter 

backprojection algorithm used by Barber and Brown [1.18], which has been used in 

clinical evaluation. The solution of the Forward problem derived by Barber and Brown 

[1.18] is also exploited in the Constrained Optimisation Reconstruction Techniques 

(CORT), developed in Chapter five. Two main approaches for obtaining the 

reconstructions of the resistivity distribution have previously been developed. 

The first uses a Finite Element Model (FEM), to obtain an estimate of the 

Forward problem. The FEM boundary potential is then compared with the measured 

data from the collection system. The difference information is then used to update the 

FEM model to obtain an improved estimate of the resistivity distribution. To improve 

the convergence of the solution, a method based on Newton-Raphson [3.1] is adopted. 

This approach is described in some detail later in this Chapter. 

The second approach requires finding a solution for the Forward problem 
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analytically, to find the equipotential paths, then to use a filter backprojection method 

to reconstruct the resistivity distribution. A great deal of investigation has been 

undertaken by many researchers on the FEM algorithms and Newton-Raphson [3.5] 

methods, as they produce more accurate reconstructions than the filtered 

backprojection method, but at present have not been evaluated in the clinical 

environment. Another important point to note is that the filtered backprojection 

technique is used for dynamic imaging, whereas the FEM technique in mainly used for 

static images. 

3.2 Forward, Inverse and Boundary Problems 

In EIT the image reconstruction problem is defined in a number of ways. 

i) The Forward problem is defined as: 

Given p with boundary conditions Vo and 10 , Find the internal voltages 

and current densities. 

ii) The Inverse problem is defined as: 

Given V and I on the boundary or internally. Find p(x,y) inside 

domain of interest. 

iii) The Boundary value problem is defined as: 

Given boundary conditions Vo and 10 , Find the internal p, I and V. 

Where p, V and 1 are the resistivity, voltage and impressed current source 

distribution within the region being examined, Vo and 10 are the voltage and current 

density at the boundary. 

3.3 Potential Distribution within an Isotropic Resistive Medium 

Chapter one briefly described the governing equations in terms of conductivity. 

In EIT, the theoretical problem to be dealt with is the reconstruction of resistivity 

distribution within a 2-D circular region surrounded by a medium of infinite resistivity. 
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If the distribution of voltage within the region is given by a solution to the equation: 

AV + Va. VV = 0 (3.1) 

consistent with the known current or voltage boundary conditions, where a = a(x,y) 

is the distribution of the conductivity within the region [1.18]. If a is replaced by 

In(p) where In(p) = -In( (J) for convenience, then equation (3.1) can be rewritten as: 

AV = Vln(p). VV (3.2) 

This suggested that the image of natural log of resistivity, rather than resistivity, should 

be reconstructed. 

A general analytic solution to this complicated differential equation has not yet 

been reported in the literature. Numerical methods such as FEM are usually employed 

to derive the solution. 

3.4 Data Collection Methods 

There are a number of ways to obtain data in EIT. The two-electrode approach 

uses the same electrodes for the voltage or current application and for the measuring 

electrodes. Alternately the four-electrode system separates the measurement electrodes 

from the injection electrodes. The systems presented here are based on the 

four-electrode data collection method. The CORT algorithm developed in this research 

uses the four-electrode method with two data collection configurations known as the 

opposite [3.2], and neighbouring methods [3.3][3.4]. In the first method the current is 

applied through two neighbouring electrodes. Measurements are made from all other 

successive pairs of adjacent electrodes as illustrated in Figure 3.I(a). The neighbouring 

method of data collection has a very nonuniform current distribution. Most of the 

current travels near the peripheral electrodes for each boundary measurement, giving 

the highest current density at the boundary. This does not yield good sensitivity at the 

centre because the current density is low in this region, and hence good sensitivity is 

obtained only at the periphery. 
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Figure 3.1(a) Neighbouring Method of Data Collection. Equipotential lines are 

formed in a homogenous medium by current injected through neighbouring 

electrodes, the voltage is measured between adjacent electrodes. 
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Figure 3.1(b) Opposite Method of Data Collection. Current is injected through 

diametrically opposed electrodes. 

57 



The opposite electrode data collection method used by Hue [3.2], is illustrated 

in Figure 3.1 (b). The current is injected through diametrically opposed electrodes. The 

voltage reference electrode is adjacent to the current-injecting electrode. For a 

particular pair of current-injecting electrodes, the voltages are measured with respect 

to the reference at all electrodes, except the current-injecting electrodes. To obtain the 

next set of data, the current is switched to the next pair of opposite electrodes. The 

voltage reference is also changed accordingly, and the voltages are similarly measured 

with respect to the new reference. A complete set of data is obtained by switching the 

opposite placed electrodes through 180 degrees. As this method has a more uniform 

current density, it also has good sensitivity. 

3.5 Finite Element Approximation 

To solve the Forward problem a method has been derived known as the Finite 

Element Method (FEM). In FEM, the governing equation (3.2) is changed into the 

algebraic problem: 

Yv=c (3.3) 

Where Y is known as a master matrix, v is the node voltage vector, and c is the node 

current vector. This is a linear system of equations that can be solved using various 

numerical techniques. Unlike the CORT method, introduced in Chapter four, the Y 

matrix in FEM is not well structured. The FEM method requires a number of stages. 

The physical domain is divided into a finite number of elements (mesh). These are 

usually triangular or quadrilateral elements. In EIT it is assumed that the resistivity in 

each element is homogeneous and isotropic. This process converts the continuous 

problem into a problem with a finite number of unknowns, by expressing the unknown 

field variables (voltages), in terms of certain interpolation functions within each 

element. These interpolation functions are defined in terms of values of the field 

variables at nodes of each element. Therefore, the nodal values of the field variables 
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become new unknowns, and the field variables inside the elements are determined from 

the nodal values by the interpolation functions. An example of this process is given in 

Webster [3.5]. 

3.5.1 Dirichlet Boundary Condition (Known Surface Voltages) 

In most applications leading to Laplace's equation, it is required to solve a 

boundary value problem, that is, to determine the solution of Laplace's equation 

satisfying given boundary conditions, on the boundary B of the region D in which the 

equation is considered. This is known as the first boundary values proble~ or Dirichlet 

problem. Hence, if some of the voltage values at the boundary are known, it is possible 

to find a solution for the corresponding node voltage to have those known boundary 

values. 

3.5.2 Neumann Boundary Condition (Known Surface Currents) 

If some of the current values at the surface i.e., the injected currents, are 

known, the corresponding elements of the current vector can be set to those known 

values. This gives a uniquely solvable linear system equation with all boundary data in 

it as: 

(3.4) 

where Y· is the modified master matrix, v is the node voltage vector, and c· is the 

modified current vector satisfying all constraints. The master matrix , Y, is an N by N 

matrix, where N is the number of nodes in the finite element mesh. Y also has the 

property of being symmetric. Hence to construct the Y matrix only the lower triangular 

portion, including the diagonal, is required. 
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3.5.3 Solution of System Equations 

Usually the associated system matrix is symmetric, positive definite, and very 

sparse. There are a number of methods to obtain a solution to the system of equations. 

The first approach is a direct method that uses Gaussian elimination, or some variation 

of it. If the system matrix is positive definite, then Cholesky factorisation with forward 

and back substitution is a possible method, since it is numerically stable [3.6]. A 

second approach is an iterative method such as Gauss-Seidel, or Successive Over-

relaxation (SOR) [3.7]. 

3.6 Backprojection Between Equipotential Lines 

This method was developed by Barber and Brown [3.8], and is based upon 

backprojection between the equipotential lines. They use an approximation known as 

the dipole approach (appendix E), to find the equipotential lines (Forward problem) 

which assumes initially that the medium is circular and homogeneous. This same 

approximation is used for developing the COR T for EIT as detailed in Chapter six. 

The approximation results in significant error close to the electrodes, when the gap 

between the drive electrodes is not sufficiently small, due to the deviation of the true 

equipotential paths from the approximation. 
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Figure 3.2 Backprojection of boundary voltages measurements 
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This approximation does however produce an improved spatial resolution, as 

compared with other solutions, such as the Bipolar system used in the opposite 

electrode data collection method (appendix F). 

The Inverse problem is derived as follows. 

Consider the single equipotential line shown in Figure 3.2(a). Let Vr be the 

potential measured at a point Q( <I> ) on the boundary B, in a medium S of 

homogeneous resistivity Pro Let Vp be the potential at the same point after the 

resistivity of the medium has changed from Pr to Pr +Pp . A linear approximation can 

then be obtained for the system in Figure 3.2(a), ifit is assumed that the solution of: 

(3.5) 

is V
r

, and the solution of the equation (3.6): 

(3.6) 

is V = Vr + Vp' then: 

AVp + AVr = V In(Pr). VVp + V In(Pr). VVr + V In(pp). VVp + V In(pp). VVr 

(3.7) 

If the terms in VV are eliminated as being small compared with the terms in VVr , 
- p 

then equation (3.7) can be rewritten as: 

If Vln(pp) is small, then it can be assumed that VVp «VVr, and using equation 

(3.5), equation (3.8) can be rewritten as: 

AVp = V In(pp ). VVr (3.9) 
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This represents a linear relationship between In(p) and Vp , assuming Vr is a fixed 

reference. It is assumed that the shapes of the equipotential lines are not changed 

significantly from the uniform case, illustrated in Figure 3 .2(b). This is reasonable if the 

resistivity changes are small. 

To obtain a reconstruction, the boundary voltage is measured before and after a 

change in resistivity. Then the natural logarithm of the normalised boundary voltage 

change is backprojected onto the image value of the pixel P, lying on the equipotential 

line at the point Q( cI> ). Hence if: 

(3.10) 

then 

(3.11) 

For small changes in resistivity, equation (3.11) can be approximated to: 

(3.12) 

or 

(3.12) 

Define g(D) as a vector of the normalised boundary voltage change for drive pair D, 

and p as the image value of the pixel P. Then: 

p = w(PD)g(D) (3.13) 

where w(PD) = [O,O, .• ,wj,O, .• ,O] is the backprojection vector for the pixel P, the 

drive pair D, and the jtb voltage measuring electrode pair. wj is a weighting factor for 
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angular uniformity. Since the above equation holds for all pixels, then: 

p(D) = W(D)g(D) (3.14) 

where p(D) is a vector of image values of all pixels, and W (D) is a matrix whose 

rows are w(PD). The final reconstructed image is obtained from: 

n 

P=LP(D)=Wg (3.15) 
1>=1 

where n is the number of drive electrode pairs used. 

A number of filtering operations are required for complete reconstruction. First 

is a weighting factor required for angular uniformity. Assuming the electrodes are 

equally spaced, the equipotential lines are not circularly symmetric for all pixels except 

at the centre. This is due to the current distribution within the medium being 

nonuniform. The weighting factor is different for all pixels. Based on a conformal 

transform [3.9], between a central point and an offset point, the weight wj is 

computed from: 

(3.16) 

where I and r are shown in Figure 3.3. 

p 

r 

, 
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D 

Figure 3.3 Computation of weighting 
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The second operation IS filtering, to reduce the blurring inherent in 

backprojection. Seager [3.9] has shown that the spatial resolution depends on the 

location of the object in the circular medium. 

One of the problems associated with the above method, is that only the 

diagonal elements of the matrix are used. Breckon and Pidcock [3.10] suggested that 

the backprojection method could be improved by utilising other sensitivity coefficients. 

These coefficients relate the magnitude of the change in voltage, measured between 

electrodes at the boundary of the object, to the change in resistivity that gives rise to it. 

The value of the sensitivity coefficient for a particular element (pixel) is affected by 

both the position of the pixel within the current density field and the position of the 

pixel with respect to the voltage sensing electrodes. Its value for an element at x,y can 

be calculated as the inner product of the field produced by a unit current flowing in the 

current drive electrodes, (the m th pair of electrodes), and the field produced by a unit 

current flowing in the voltage sensing electrodes, (the nth pair). On the basis of this 

idea, Kotre [3. 11] developed a backprojection algorithm that used all the sensitivity 

coefficients as weights. Figure 3.4(a) illustrates a bounded volume of uniform 

resistivity p, which is carrying a constant current I, supplied by the m th pair of 

adjacent electrodes. A voltage, V (m, n), is developed between the nth pair of surface 

electrodes. Figure 3.4(b) shows the same situation as Figure 3.4(a), except for the 

introduction, at a point denoted by (x, y), of a small volume element with the 

resistivity p( x, y) + op( x, y). The voltage sensed by the electrodes at the object 

boundary is now V(m,n) +oV(m,n). Assuming that op(x,y) is small, it is 

reasonable to assume that the current density field is the same as for the case of 

unifonn resistivity, and that: 

oV(m,n) ocop(x,y) (3.17) 

If the constant of proportionality is defined by a sensitivity coefficent Sm,n,x,y, then: 
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s = OV(m,n) 
m,n,x,y Op( X, y) (3.18) 

If ~ m and ~ n are the potential fields, the sensitivity coefficient for an element centred 

at (x,y), can be defined as: 

S - oV(m,n) - J 
m,n,x,y - s: ( ) - V~m V~nds 

up x,y e 
(3.19) 

where e denotes the area of integration over the element, as presented in Figure 3.4. 

The sensitivity matrix is computed in the same way as the Jacobian matrix in the 

modified Newton-Raphson method, using FEM. It can also be computed from the 

analytic solution of Laplace's equation for a homogeneous resistivity distribution. If the 

sets of boundary voltages V(m,n) and V'(m,n) are measured before, and after, a 

change in resistivity (due to a change in the body's physiological processes), an image 

of the temporal change in natural log resistivity can be produced from: 

P(x ) - ~ ~ S In[V'(m,n)] 
,y -!:.~ m,n,x,y V(m,n) (3.20) 

where P( x, y) denotes the pixel value. 

This approach yields reasonable results, and Kotre [3. 11] claims it improves the 

basic backprojection method. However, no quantitative analysis appears to have been 

published to compare this method with others. Also, Kotre [3.11] makes no attempt to 

pre-calculate a pseudo-inverse of the sensitivity matrix to improve computational 

efficiency. The reconstruction algorithm is known as a single pass reconstruction 

algorithm. 
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Figure 3.4 (a) A bounded volume of uniform resistivity, (b) A bounded volume 

where one element has changed resistivity. 

3.7 Newton-Raphson Method 

The Newton-Raphson (N-R) or Gauss-Newton method [3.1][3.7] is an 

iterative reconstruction algorithm developed for non-linear problems. In this method, 

an error function called the objective function is minimised. The error is a measure of 

the voltage responses of the assumed resistivity distribution, matched to those of the 

real distribution. As in the CORT case, the objective function is not unique. Yorkey 

[3. 1] defines it as the equally weighted mean square difference between the measured 

and estimated voltage responses: 

(3.21) 

where Vo is the measured voltage on the boundary, and V(p) the estimated voltage 

for a resistivity distribution p. 

The problem is defined as finding a value of p that minimises <1>. The derivative 

is set to zero: 

4»'(p) = (V'(p»T (V(p)- Yo) = 0 (3.22) 
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h (V'( »T aVI Thi kn '" were p = -. s own as a JacobIan matnx. Taking the Taylor series 
BpI 

expansion of cI»' (p), and keeping only the linear terms: 

(3.23) 

where 

(3.24) 

The term cI»" is a Hessian matrix [3.16], which can be expressed as: 

(3.25) 

where ® is the Kronecker matrix product, and I is an identity matrix As the second 

term V" in equation (3.25) is relatively small, it can be omitted. Therefore: 

(3.26) 

Substituting equation (3.26) and (3.22) into equation (3.23), to find a new estimate of 

the resistivity: 

The flow chart given below demonstrates the full procedure. The calculation of V and 

V' requires the use of the FEM. 
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Figure 3.5 Flow chart of Newton-Raphson Algorithm 

As illustrated in the flow chart (Figure 3.5), an initial guess of the distribution is 

made. The theoretical voltage response for the given current distributions is calculated 

using a finite element method. The calculated voltages are subtracted from the 

measured voltages to obtain the objective function. If it is less than the error criterion, 

the guessed distribution is considered to be the desired distribution. If it is not, the 

distribution is updated using equation (3.25). This procedure is repeated until the error 

criterion is met. The step size of the updating depends on the application, and is usually 

less than the initial distribution pk to achieve a guaranteed convergence. If the step size 

is too big, even though it may converge fast during the first few iterations, it causes 

oscillation in the neighbourhood of the solution. The Newton-Raphson's performance 

is well known to be a quadratic function of p. In EIT, the voltages are nonlinear 

68 



functions of the resistivity distribution, instead of quadratic functions. Therefore the 

search may result in a local minimum, depending upon the initial guess. In applications 

to biomedicine, there is sufficient prior knowledge to provide a good initial guess. A 

more detailed analysis of this method can be found in Y orkey [3.1], who produced a 

modified version of the algorithm with improved convergence properties. 

3.8 Perturbation Method 

In this method developed by Kim [3.12], a circular computer model of a 2-D 

transverse plane is simulated. A perturbation matrix is then calculated by changing the 

resistivity of one element, and then calculating the changes in currents at current 

measuring electrodes, using FEM. From the resulting perturbation matrix and Laplace's 

equation, the differences between the true and computed current densities are 

backprojected, according to each element's sensitivity. Yorkey et al. [3.13] developed 

an improved perturbation technique, with better reconstructions, using fewer 

restrictions on the prior knowledge of the resistivity distribution. They used a 

reconstruction similar to Gilberts [2.24] SIRT, described in Chapter two. Kim et al. 

[3.14] also improved the technique by calculating the perturbation matrix once only. 

This method is not favoured, as it is generally agreed that the current injection method 

of data collection is better than voltage application in obtaining accurate resistivity 

distributions. This is due to difficulties in measuring the current accurately. 

3.9 Double Constraint Method 

The double constraint method developed by Wexler [3.15] solves Poisson's 

equation by the FEM, using Neumann and Dirichlet boundary conditions successively 

in each iteration. Initially a homogenous resistivity distribution is assumed. The 

resistivity distribution is updated at each iteration, by using the difference between the 

two boundary conditions for a given resistivity distribution. 
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3.10 Summary of EIT Methods: 

Finite Element Method (Newton-Raphson) 

Make initial guess of resistivity distribution and create FEM model. 

Calculate error between the measured boundary voltages and FEM 

model. 

Update until error criterion is met. 

Backprojection between Equipotentiailines 

Approximate the forward solution analytically. 

Backproject between the equipotential lines. 

Filter to compensate for current distribution and blurring, using a ramp 

function. 

Sensitivity Coefficient Method 

Approximate the Forward problem analytically. 

Backproject between equipotential lines. 

Weight using sensitivity coefficients. 

Perturbation Method 

For a constant input voltage, change the resistivity of each pixel. 

Measure the resulting current change in all electrodes. 

Create a perturbation matrix from the above. 

From the perturbation matrix and Laplace's equation, backproject 

the difference between the true and computed current densities. 
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Double Constraint Method 

Calculate the voltage and current density with Neumann boundary 

conditions. 

Calculate the voltages inside, with both Neumann and Dirichlet 

boundary conditions. 

Calculate the new resistivity distribution, from the minimisation of the 

squared error, between the electric current densities of the above 

operation. 

3.11 Discussion 

The objective of this review is to identify the difference between the EIT and 

X-ray reconstruction procedures. The main difference is indicated by the difficulty in 

categorising the EIT methods in the same way as those described in Chapter two, as 

EIT requires solutions to the Forward problem as well as the Inverse. There are some 

similarities between the two methods. The backprojection method in EIT could be 

considered as a Transform method, and the FEM algorithms as series expansions. 

EIT methods tend to be defined in terms of the types of image they produce. 

These are defined as dynamic or static images. The backprojection methods produce 

difference (dynamic) images, showing the change in resistivity from one set of data to 

the next. The FEM creates static images and requires considerably more time to 

compute the reconstruction, but the accuracy is increased. 

In the FEM approach a model of the resistive distribution is created using 

FEM. The boundary data obtained from this model are then compared with the 

measured boundary data. The objective of this method is to minimise the error between 

the calculated and measured boundary. The most common method for solving this 

problem is the modified Newton-Raphson algorithm, developed by Yorkey et al. 

[3.17], which gives good images for computer-simulated data. However, there are no 

reported results which give satisfactory images from measured data, when a physical 
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phantom is used. This is due to three main reasons: 

1) Y orkey et al. [3.17] used a FEM model which did not include the electrode­

electrolyte contact impedance. Thus it has a large modelling error in V (p ) . 

2) The neighbouring method is used to inject current patterns. The resulting 

voltages Vo have a poor signal-to-noise (SNR). The FEM modelling error for the 

injection method is also large due to the non-smooth Neumann conditions, which leads 

to a poor convergence of the FEM. 

3) The information matrix V'(pk )TV'(pk) is ill-conditioned. This results in an 

inaccurate inverse matrix and makes the resistivity update very sensitive to the 

modelling and measurement errors. 

Various improvements have being made to the N-R algorithm. Hue et al. 

[3.18] developed a reconstruction method which minimises the effects of the ill­

conditioning. They also incorporate a complete FEM model for both the internal and 

boundary domains, to minimise the modelling error in V(p), and used an optimum 

current-injection and voltage measurement method to obtain the measured data Vo 

with maximal SNR. Further improvements were modelled by Woo et al. [3.19]. to 

produce more accurate images, by reducing the undesirable effects of the 

ill-conditioned Hessian matrix. The results obtained by Woo et al. [3.19] do not show 

any significant improvement in quality. 

It can be seen from this review that although there are many approaches to 

reconstructing images in EIT, no one method produces the definitive solution. The 

main aim of the research defined in Chapter one is to adapt to EIT the COR T 

originally developed for X-ray and PET systems, with the objective of obtaining the 

speed and quality advantages of COR T. It will be seen in later Chapters that the 

adaptation of COR T lends itself best to dynamic imaging, using the solution of the 

Forward problem obtained in the backprojection methods described in this Chapter. 
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4 CONSTRAINED OPTIMISATION 

4.1 Introduction 

In this Chapter, the third category of reconstruction techniques, known as 

constrained optimisation, is analysed. The objective of the analysis presented in this 

Chapter is to embed the reconstruction problem into the framework of a constrained 

optimisation problem, by the application of variational principles. The methods 

examined in this section were introduced by Goutis and Durrani [1.29], and extended 

to define a unified theory by Leahy and Goutis [4.1]. Wood and Morf [1.30], also 

developed a similar approach based on a general minimum variance estimator. Their 

algorithms yield reasonable results in the case of low measurement noise and regular 

measurement geometry. The methods developed by Goutis and Durrani [1.29], were 

further enhanced by Leahy and Goutis [4.1], to introduce a new technique for image 

reconstruction from a set of data corrupted by additive noise. The new approach 

detailed in this Chapter uses a vector space setting and the concept of duality, to 

optimise a convex or concave cost function, subject to a set of constraints. 

The constrained optimisation approach to image reconstruction will form the 

bases of the algorithms developed for EIT in Chapter six, and the architectures in 

Chapter eight. 

4.2 The Primal Method 

The first approach to be considered in developing the constrained optimisation 

problem is termed the Primal method. This defines the reconstruction problem in the 

solution space by the application of the Euler-Lagrange method. For a given finite set 

of projection data with a finite set of samples, the reconstruction problem has an 

infinite number of solutions. This was indicated in Chapter two by the different choice 

of convergence criterion, which produced different images. This problem can be 
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overcome by using constrained optimisation techniques to define a desirable class of 

images, from which the reconstruction can be selected, or even a unique image by 

optimising a cost criterion or error function using the projection data as constraints. 

The objective of the constrained optimisation approach is to find a suitable cost 

function that reflects a desirable property of the solution This approach is based on a 

branch of mathematics called the calculus of variations. The advantage with this 

approach is that the model used to find the reconstruction of the image is dimensionally 

reduced, compared with those used in the ART methods described in Chapter two. 

Estimates of the 1-D Lagrange multipliers are required rather than the image itself, as 

in the ART models. The reconstruction problem is formulated as follows. 

A general functional C(.) for a 2-D image can be expressed in terms of 

i) The image f(x,y), 

ii) its partial derivatives, 

iii) the locations of the continuous image points x and y. 

The reconstruction problem is then stated as follows. 

There is a requirement to obtain a function f (x, y) that mmnnlses the 

functional C(.) defined as: 

C(.) = C(x,y,/,h,/Y) (4.1) 

subject to a set of constraints, where the subscripts are employed to indicate partial 

differentiation to avoid cumbersome notation. Hence: 

etc. 

The proofs developed by Durrani and Goutis [1.29] use the nth partial derivatives. 

This was omitted in this analysis to simplify the notation, and will affect the proof only 

ifhigher order interpolation is required. 
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4.2.1 Constraints 

In this analysis, the constraints are first assumed to come from a collection 

system that has a parallel geometry. Other geometries will be considered later. 

Consider Figure 4.1, in which the parallel geometry is redefined to have a finite width 

At. Then a single strip of integration for the kith projection at angle e k (assuming that 

any noise is ignored at present), can be defined as: 

where t l+1 - tl = At, or: 

where 

and 

i = 1,2, .. , M M is the number of samples per projection, 

k = 1,2, .. , N N is the number of projections, 

where the Jacobian of the above transformation is unity. 
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I(~y) 
A(x .. ) 
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~t 

Domain of image D 

Figure 4.1 Parallel Geometry 

To simplify the equation (4.3), let the path defined by the limits A and B be defined as 

S, and also let the limits of the ray width defined by 13 1 and 132 be defined as s' . The 

ray width is assumed to be a single line for the primal method. Hence equation (4.3), 

using Cartesian co-ordinates on both sides, can be rewritten as: 

(4.5) 

• 
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Using the constraints, the reconstruction problem can be defined as finding a function 

/ (x, y) such that the integral: 

1= I I C(.)dxdy (4.6) 
D 

is a minimum, subject to the constraints: 

N N 

LPk (xk) = L f f(x,y)dYk 
k=l k=l I 

(4.7) 

where N is the number of projections, and D represents the domain of the 

image. This can be written as: 

N 

L(Pk(Xk)-f f(x,y)dYk) = 0 (4.8) 
k=l I 

Using the Euler-Lagrange method [4.2][4.3], a continuous Lagrange multiplier is 

introduced for every projection, and the Euler-Lagrange equation can be defined as: 

N 

1= II C(.)dxdy+ LfA. lC (Xk)[Pk(Xk)-f f(x,y)dxk]dYk (4.9) 
D k=l I' I 

Introducing a delta function, and performing co-ordinate transformation whose 

lacobians are unity, the above equation can be rewritten as: 

N 

1= II[C(.)+ LA.(xcos8 k +ysin8 k -t)[p(xcos8k 

D k=l 

+ysin8k - t)o( -xsin8k + ycos8k - t) - f(x,y)]]dxdy 

(4.10) 

The first tenn in equation (4.10) represents the criterion to be optimised (or the 

functional whose cost is to be minimised) by maximising or minimising the area under 

C(. ). The second term does not contribute to the cost criterion as long as the 
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projections of the reconstructed image, f, equal the available data. 

Applying a first order variation to f (appendix A), and using Green's theorem 

[1.29], a solution for a general optimum is obtained. The condition for which an 

optimum of I occurs is satisfied when the following (modified Euler) differential 

equation holds: 

(4.11) 

:: represents the variation of the functional fonn with values of the reconstructed 

image f. 

For a specific cost criterion, a relationship between the desired image f(x,y) 

and the associated Lagrange multiplier Ak (xk ) can be obtained from the above 

equation. This relationship is referred to as the model of the image, corresponding to 

the specific cost function. 

4.2.2 Models 

The choice of the cost function is very important as it defines the quality of the 

final reconstructed image and the computational requirements of the system used to 

evaluate the model. A table of suitable functions and models is given in Table 4.1, 

which was obtained from Leahy and Goutis [4.1]. This is an updated version of the 

table Durrani and Goutis [1.29] produced, and includes the dual methods. The cost 

function restricts the infinite number of functions to a limited subset that satisfy the 

constraints. A selection of cost criteria are examined in this section. 
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Table 4.1 Table of Models 

Cost Criterion Minimum Energy Maximum Entropy Minimum Cross 

Entropy 

Primal Functionals 

Constraint Sets 
f f(r)l dr f In[f(r)]dr J /(r)ln[ /(r) Jdr 
D 2 D D /'(r) 

Solution Models 

Unconstrained - T 1 - f'(r) T 
ft (r) = A W(n J'}.(r) = A'W(r) I](r) = -e-eXPIA W(r)] 

Bounded J(r) = mnlmin[~ (r), fJ], <1] J(r) = mnlminlJ1 (r), fJ], <1] J(r) = maxlmlnlJ3 (r), fJ], <1] 

Intensity 
J(r) = 11 (r) + 11 

1 - f'(r) _ 
fer) = 1

1
(r)+11 I(r) = -e- exp!!1 (r) -11] 

Constraints 

Noise Constraints Dual Functionals 

Exact data T 0 J( )1 T 0 
+ J InIJ(r)]dr 

T 0 
+ J j(r)dr '1 (A) = A p - J ~r 'l(A)=AP '3 (A) = A P 

D 1 D D 

matching 

Variance matching '(A) = '1 (A) - J6A
T

CA '(A) = '1 (A) - J6A
T

CA ,(" = +3 (A) - J6'A.
T

C').. 

Covariance N 
+('A.) = +1 (A) - ~ ~SIATpkA N~ 

+(A) = +1 (A) - L. ~S.A T PkA +(A) = h (A.) - L. S.A. PkA. 
1=1 I 1=1 1=1 I 

matching 

Summary of Models and Dual Functionals for Various Cost Criteria and 

Constraints. Note that the Models are affected only by Constraints on the 

Solution, and the Dual Functionals by Constraints on the error statistics. 
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f(r) is the desired image defined in section 4.3, cj>(A.) is the dual Lagrangian, J..lis the 

intensity constraint (section 4.5), a is the upper bound (section 4.5), P is the lower 

bound (section 4.5), C denotes the noise covariances [2.16], Pk denotes the periodram 

matrixes [4.8], 0 and 0 i are the confidence limits chosen from tables. 

4.2.2.1 Least Squares or Backprojection Model 

The Least Squares, or backprojection model, is obtained by using the same 

criterion for convergence as the unconstrained additive ART defined in the previous 

Chapter. This defines a model which converges to a solution that minimises the energy 

of the image. This is the same as minimising the image variance. Therefore, if the 

variance is substituted into the cost criterion and the mean density is set to zero: 

[f1/2 = C] , equation (4.11) can be rewritten as: 

N 

f(x,y)- LA.IC (Xk ) = 0 (4.12) 
k=l 

This can be rearranged as: 

N 

f(x,y) = LA.k(Xk ) (4.13) 
k=l 

which defines the image f in terms of the undefined Lagrange multipliers. To 

determine the undetermined Lagrange multipliers, the model equation (4.13) is 

substituted back into equation (4.5) for the projections. Hence the projections are 

defined as: 
N 

Pk (x k ) = L J A.k (Xk )dYk (4.14) 
k=l • 

or in matrix form: 

p= GA. (4.15) 

where p and A. are now column vectors, and G is a system matrix defining the 
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proportions of A. that contribute to each projection point. Inverting equation 

(4.15) gives: 

(4.16) 

where G+ is the pseudo inverse of G. The construction of the system matrix is 

considered in the next Chapter. Its properties are important in the formulation of 

computer algorithms. The system matrix and its inverse will be examined in more detail 

in Chapter five. 

4.2.2.2 Entropy Based Cost Criteria 

The significance of entropy, or uncertainty in image reconstruction, is not 

clearly defined in the literature. Entropy is considered as a measure of the degree of 

randomness of a set of random variables. F or the image reconstruction problem, 

entropy is defined as the minimisation of spurious structures in the reconstructed 

image. The available literature suggests two different definitions of entropy. 

The first is borrowed from information theory [4.5], which assumes that each 

image point emits random discrete particles (photons) with a probability proportional 

to intensity (brightness). The probability that a photon is emitted from the object 

situated at (x, y) is: 

( ) 
I(x,y) 

P x,y = IT (4.17) 

where p is the intensity of emission from the (x, y) point and IT is the total image 

intensity. If IT is assumed to be unity, the entropy of the probability distribution is: 

PI = - II l(x,y)ln I(x,y)dxdy (4.20) 
D 

The second definition is taken from work on spectral analysis [4.6]. The 

problem in the spectrum analysis case is to estimate the power spectrum, which is the 

81 



Fourier transform of the auto-correlation function of a stationary random process. 

/ (x, y) is considered as a 2-D spectru~ hence the second entropy measured is 

defined as: 

Pl = JJlo/(x,y)dxdy (4.21) 
D 

If the first definition of entropy, equation (4.17), is substituted into equation (4.9), the 

result is: 

(4.22) 

This can be written as: 

N 

/(x,y) = e-1 exp(L l(xk» x,y ED (4.23) 
k=l 

Employing the Entropy definition 1 model (Table 4.1), the projections can be 

expressed as: 

N 

p(xk) = J.exp[{L l(xm» -1]dYk 
m=l 

(4.24) 

where 

(4.25) 

and 

(4.26) 

Multiplying equation (4.24) by A(X k ) and integrating over s', we obtain: 

N L J p( xk) A( xk )dXk = J J /10 fdxdy + constant (4.27) 
k=l I' I I' 

which is the cost function. Durrani and Goutis [1.29] define a relationship that allows 
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an iterative procedure for evaluating the Lagrange function A,(xk). Using equations 

(4.24) and (4.27), the cost functional reduces to: 

N 

1= LJ A.(Xk)P(xk)dxk - J p(xq)dxq 
k=l.' .' 

(4.28) 

where 

N 

p(xq)= J exp[(LA,(xq»-I]dYq (4.29) 
• q=l 

and p(xk ) is defined by equation (4.5). 

The Lagrange multiplier may be computed by means of the hill-climbing 

relationship: 

(4.30) 

The initial estimate of 1..0 (x k ) = p(x
k

) or the normalised value ( p(xk ) ) where: 
length s 

vI 
VA.(x

k
) m = p(xk ) - p(xk ) 

and y is the step length, m represents the iteration number. The Lagrange functions 

obtained from equation (4.30) are backprojected, then each pixel is multiplied as 

indicated in equation (4.31), to give the reconstructed image: 

f = exp( -1 + .r.) (4.31) 

where .r. is the reconstructed image obtained from the Lagrange functions. 

The main disadvantage of the entropy models is the fact of the non-linear 

estimation of the Lagrange multipliers being computationally intensive. 
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4.2.2.3 Minimum Gradient Norm 

Durrani and Goutis [1.29] also proposed a nurumum gradient norm cost 

function, which takes into account the effect of local intensity variations and includes a 

smoothness measure of the image. The cost function consists of a set of gradient 

terms: 

(4.32) 

The solution of this equation for the parallel case is: 

N 

-V2/(x,y) = LA.(x,J (4.33) 
k=l 

where 

(4.34) 

is known as the Laplacian operator. 

The above equation is one form of a Poisson differential equation. This is 

difficult to solve analytically, though Durrani and Goutis [1.29] derived a solution by 

considering a frequency domain interpretation. A brief account of the approach is 

given here for comparison purposes. Let F( u, v) equal the 2-D Fourier transform of 

/(x, y), then: 

(4.35) 

where u and v are the spatial frequencies, and Lk ( .) is the 1-D Fourier transform of 

the Lagrange function, B (.) is a Dirac delta function, and ** is used to denote 2-D 

convolution. w(x,y) is the Fourier transform of the spatial window, defined as: 
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w(x,y) = [
1 x,y ED] 
o otherwise (4.36) 

The spatial frequencies, representing a rotation by angle e k' are defined by: 

(4.37) 

Using the cost function as the criterion for reconstruction would reqUITe 

computing the Lagrange functions by an iterative procedure, evaluating the Fourier 

transform, and convolving it with W ( u, v) , scaling the 2-D Fourier transform to 

obtain F( u, v), then performing a 2-D inverse Fourier transform to obtain the 

reconstructed image. 

A cost criterion based on an improvement to the minimising of the mean square 

deviation of the intensity, which incorporates the minimisation of a weighted sum of 

the image deviation and local discontinuity to achieve smoother reconstruction, is 

given by Durrani and Goutis [l.29] as: 

(4.38) 

where a is a weighting factor 0 ~ a ~ 1, which controls the cut-off and roll-off of a 

symmetric 2-D filter. A model was obtained for this criterion as: 

D 

(1- a)f(x,y) - aVIf(x,y) = L Ak(Xk) 
k=l 

Applying a 2-D Fourier transformation yields: 
1 

F(u, v) = () [f Lk (Uk )B(Vk)icicW(U, V)] 
1- _a_ (u l + VI) k=l 

1-a 
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It is suggested by Durrani and Goutis [1.29] that this technique can handle 

noisy data and can be extended to include higher-order spatial filters. Drossos and 

Goutis [5.7] also developed other techniques based on the minimum variance model 

for handling noisy data, which is detailed in Chapter five. 

This method was considered as computationally expensive and therefore not 

explored beyond this analysis for the EIT system, or used in the development of the 

machine architecture presented in Chapter eight. 

4.3 Dual Method 

The dual optimisation method is based on the Primal-Dual method given by 

Luenberger [4.4], (appendix B), whose approach to the optimisation problem uses 

vector space methods. Due to the choice of interpolation scheme in the Primal method, 

the solution yielded is the same for the minimum energy model. It is presented here as 

an example of an alternative approach to developing reconstruction models. This 

technique was first applied in signal processing by McClellan and Lang [4.7] for 

solving the multidimensional maximum entropy spectral estimation problem. Unlike the 

primal method described in the previous section, this approach treats the projection 

data as discrete from the start. A solution for the reconstruction problem is obtained by 

the application of the Lagrange multiplier theorem for linear vector spaces. This 

theorem states that the solution of the constrained primal problem is identical to that of 

an unconstrained dual problem in which the dual functional is expressed in terms of the 

Lagrange multiplier vector. 

The theoretical formulation of the dual optimisation method was developed by 

Leahy et al. [4.8] for both tomography and spectral estimation. This was extended by 

Leahy and Goutis [4. I] to produce a general procedure for solving constrained 

reconstruction and restoration problems. The spectral estimate problem is not 

addressed in this research. 

To demonstrate the dual method, a vector space setting is adopted and hence 
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vector space notation will be used. The problem can be generalised to include all 

geometries, but this analysis will be confined to the parallel system illustrated in Figure 

4.2. Let the desired image I(r) be an element of the normed linear space (or solution 

space) C[D] of continuous bounded functions, defined on the compact set D with 

norm: 

IIIII = maxll (r)1 lor all rED (4.41) 

where r is a multidimensional co-ordinate vector. 

The image is assumed to have non-negative quantities, which is generally the 

case in practice for X-ray and PET images. This allows the solution to be confined to a 

convex set. (A set is said to be convex if, given f. 1\ fz E C, all points of the form 

at. + (1 - a) 11 with 0 < a < 1 are in C. [4.4]). Hence: 

!l= {I EqDI,/(r»OVr ED} (4.42) 

This is an open set, hence all images for which I ( r) = 0, V rED are excluded. 

Although this is a severe restriction, the image I ( r) can take on any value, provided 

there is an E > 0 such that f ( r ) > E, Vr ED and the value of E can be arbitrarily small. 

Physically this means that the image f ( r) is never zero or less within the domain, but 

can be arbitrarily small. 
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Figure 4.2 The geometry of a parallel beam tomography system illustrating the 

integral kernel W k (r), corresponding to the k th projection sample. 

Consider first the integral equation for the parallel geometry, shown in Figure 

4.2, defined as: 

Pk = I j(r)Wk (r)dr + "h (4.43) 
D 

where k = 1,2, .. , N, .. , SN . W k (r) defines the region through which the k th beam 

passes with an appropriate weighting, and 11k is an additive noise process. The above 

equation can also be written for a discrete linear system in matrix notation as: 

P = Wf +lh (4.44) 

where 

P T = (PI' P2"" PN ) (4.45) 

and 
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W denotes an N by S system matrix, 

N denotes the number of projections, and 

S denotes the number of samples. 

4.3.1 Noiseless Solution 

(4.46) 

F or most problems, the prior information available may be separated into two 

groups of constraints: First, those governing particular properties of the solution such 

as upper and lower bounds, and second, those based on the statistical properties of the 

noise. The simplest technique for solving the above equation is to ignore the presence 

of noise, and find a pseudoinverse of W denoted by W+. Hence the reconstructed 

image could be obtained from: 

(4.47) 

The results from this equation are generally very poor, since noise effects are often 

amplified in the matrix pseudo inversion, due to the presence of small eigenvalues in 

W [4.1]. 

4.3.2 Optimal Solution 

To examine this method consider again the constraints in vector form. The 

vector space notation presented below will be used to denote the subvector of p, 

corresponding to the projection angle such that: 

(4.48) 

The notations W k (r) and Ak are similarly defined. As the parallel strip is a constant 

width throughout its length, its width will be defined as having a value of unity for the 
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strip, and zero outside the boundary of the particular strip. An assumption is made 

before proceeding with this explanation that each projection subvector is statistically 

independent, and the noise on each projection is drawn from a multivariate Gaussian 

process with S by S covariance matrix C. Each component of the subvector PI is a 

scalar defined on the normed linear space denoted by R with norm: 

1 
N i 

Ilpll= LP~ 
k=l 

(4.49) 

and R is defined as EN. R is assumed to be a convex set containing all functions 

consistent with the prior knowledge of the system. It is useful to note that the 

constraints can be considered as priors, as they are normally obtained from the system 

geometry before the reconstruction problem is solved. Using the above notation, the 

constraint integral equation (4.43) becomes the linear transformation G(f) = p from 

o onto R 

The aim here is to select a single fEn that matches the constraints. Hence the 

dual functional must have the property of being convex to yield a single optimum in n. 
The desire is to find f EO, which minimises h(f), such that G(f) = pO, where 

G( f) = p O denotes the constraints of the solution that match the given data pO
• This 

representation combines all the projection samples for each projection into a single 

vector. 

A functional representing a desired feature of the solution can be defined as: 

h(f) = f H(f(r»dr (4.50) 
D 

where H( f (r» denotes the cost function. This functional is assumed to be 

convex. 

The constrained primal problem can be stated using the above vector space 

notation as: A function f EO is required which will minimise h(f), such that 
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The solution to the primal problem is identical to that of an unconstrained dual 

problem, which is obtained by application of a Lagrange multiplier theorem for linear 

equality constraints. The Lagrange multiplier A. required for optimising the dual 

problem belongs to the dual space of the constrained space Z. The dual of EN is itself 

EN, and hence A. EZ· where Z· denotes the dual space. 

From the theorems developed by Leahy et al. [4.8], the minimum of the primal 

problem is defined as: 

Jlo = inf{ h(f)+ < pO - G(f),r; >} 
fEn 

where <po -G(f),r; > represents the functional r; ER· on pO -G(f). 

Two conditions are placed on the above result: 

1) Jlo is finite, this insured by the openness of n. 

2) There is an fEn with pO - G(f) = R 

(4.51) 

This follows from the openness of n. Equation (4.51) states that there is a r; ERo 

which on substitution in equation (4.51) reduces the problem to an unconstrained one. 

The r; is unknown, and hence can be found by applying a second theorem to obtain 

the dual problem as: 

Jlo = max{inf[h(f)+ < pO - G(f),r
a >]} 

r" ERa" fEn 
(4.52) 

The tenn in the outer brackets is defined as the dual Lagrangian 4»( r a ). The dual of R 

is itself EN, therefore the Lagrange multiplier r a may be written as the vector: 

(4.53) 
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where Ai is a scalar. If J.10 denotes the minimum of h(f) at the solution of the primal 

problem, the identical solution of the unconstrained dual problem is given as: 

N 

cI>(A) = inf[h'(f)] = inf[h(f)+ LAk(P: -Pk)] 
k=l (4.54) 

fEn fEn 

The infimum (greatest lower bound) in equation (4.54), is obtained at a 

stationary point in n, at which the Fre' chet derivative [4.4, p.172] of the tenn 

in the outer brackets in equation (4.54) is equal to zero. The Fre'chet derivative 

of the open set n is: 

where 

Bh(f;k)= lim 
1 
-[h(f +a.k)-h(f)] 
a. (4.56) 

a.~O 

Setting the derivative to zero gives: 

dH(f(r» = f A.k W
k 
(r) 

df(r) k=l 
(4.57) 

If a specific cost function is substituted into equation (4.57), a model for f is obtained 

in tenns of the Lagrange Multiplier vector and the W k ( r) functions. This optimisation 

procedure follows the primal-dual method of Luenberger (appendix C), and yields the 

unconstrained dual functional. 

The above procedure can be summarised as follows: 

1) Choose the cost functional and define the model using equation (4.57). 

2) Substitute this model in h'(f), equation (4.54), and find the optimum 

Lagrange multiplier vector A. 

92 



3) Substitute A. back into the model to obtain the final image. 

This procedure will yield a single optimum in 0 for any convex cost functional , 

provided there is at least one lEO such that G(/) = pO, due to the convex nature of 

the problem. 

4.4.3 Image Reconstruction in the Presence of Noise 

The models developed in the analysis for the dual optimisation presented in the 

above sections do not account for measurement noise because they match the 

projections constraints exactly. These models were extended by Leahy et al. [4.8] to 

express functions lEO such that the statistics of the error E = G(/) - pO comply 

with those of the measurement noise. It was shown that statistical constraints such as 

variance, covariance and probability density function (pdt) can be incorporated into a 

single penalty function P( E). The penalty function should be chosen so that the 

optimal solution of the constrained problem, subject to one or more constraints, is 

close to the optimal solution of the unconstrained problem. The cost function h(/) 

was used to select a single lEO complying with the constraints which was shown to 

be approximately equal to the unconstrained minimisation: 

min h(/) + JlP( E) 

lEO 
(4.58) 

where Jl is a positive constant. As Jl approaches infinity, the solution of this 

unconstrained minimisation approaches the constrained minimisation of h(f)· 

Techniques for solving equation (4.58) and details of the penalty function P are given 

in [4.1]. Note that the 'penalty' for violating a constraint is a high value of equation 

(4.58), the modified objective function. 
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4.3.4 Minimum Variance and Maximum Entropy Models 

The comments made for the primal method described in section 4.22 are also 

valid for the dual. Hence the same cost criterion can be used to choose the cost 

functional with this optimisation approach. Therefore, substitution of the convex 

energy functional in equation (4.56) yields the model: 

N 

f(r) = LAkWk(r) (4.59) 
k=l 

Each element Ak of the Lagrange multiplier vector is backprojected over the region 

defined by W k ( r ), with appropriate weighting to generate the reconstructed image. 

Replacing the model for f(r) in the dual functional equation (4.54) gives: 

(4.60) 

and maximising by setting V <I» (A) = (p - pO
) produces the linear system: 

p=GA (4.61) 

where 
G(k,l)= fWk(r)W.(r)dr (4.62) 

D 

The maximum entropy method, as shown in the primal case, can be derived 

from two definitions: 
hle = f In(f(r))dr (4.63) 

D 

or 
hZe = - f f(r)ln(f(r))dr (4.64) 

D 

The latter is used by Minerbo [4.9] to produce a multiplicative model for 

Tomography, and the former yields the model [4.8]: 
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f(r)= N 1 

L Ak Wk (r) 
(4.65) 

k=l 

with the dual functional: 

cI>(A) = f In(f(r»dr + pOTA (4.66) 
D 

4.4 Geometries 

The theory in the preceding sections dealt with reconstruction of images 

from their parallel projections. In generating these parallel data, a source and detector 

combination has to scan linearly over the length of a projection, then rotate through a 

certain angular interval, and scan linearly over the length of the next projection, etc. A 

complete set of projection data can require a few minutes to collect. A much faster 

way to generate the line integrals is to use the fan beam geometry described in Chapter 

one. A complete projection can be obtained in the same time period as a single line 

integral measurement of the parallel geometry. There are two types of fan projection 

geometry, depending upon whether the projections are sampled at equiangular or 

equispaced intervals. Only the equiangular systems are reviewed in this research, as no 

investigation at present has taken place using CORT for equispaced intervals. This 

Chapter only reviewed the parallel geometry. In the next Chapter the Divergent ray 

geometry is reviewed in association with the system matrix produced by the data 

collection structure. New geometries associated with the EIT data collection system 

are then introduced in Chapter six. 

4.5 Priors 

In many systems, the properties of the solution may be known in the form of 

the upper and lower bounds on the image, the overall intensity, or regions of zero 

intensity. For most problems, the prior information, assuming it is available, can be 
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separated into two groups of constraints: first those governing particular properties of 

the solution such as upper and lower bounds, and second, priors based on the 

statistical properties of the noise. 

The properties can be utilised in the formation of a solution as follows. 

Let R. denote constraints sets based on the solution properties, and S. denote 

constraints based on noise statistics. Hence the Upper and Lower bounds can be 

defined by two constants a. and J3, then / (r) must belong to the following set: 

(4.67) 

F or intensity constraints, if an overall upper intensity bound 10 is known, the constraint 

set may be defined as: 

R, = {t En:! f(r)dr,;; I, } (4.68) 

In most reconstruction problems, certain properties of the noise process are known or 

may be measured. Background noise, for example, may be measured without a signal 

and its statistics obtained empirically. Alternatively, the noise process may be 

characterised by using known physical models. 

If the use of priors such as the noise statistics is to be exploited in EIT, further 

investigations into the nature and properties of the noise are required. In the ElI 

system the noise statistics are not easily obtained. For example, the capacitance of the 

electrode leads collecting the measurement data will vary as their position changes. As 

yet, there has been no reported studies on characterisation of the background noise. 

Normally the noise constraints can be introduced as constraint sets defined in 

the solution space. Leahy and Goutis [4.1] introduced the notation rj to define the 

image of the set S. c n in R N, under the linear transformation G, as: 
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(4.69) 

The usual method for defining constraint sets is to construct confidence regions about 

the expected values of the statistics such that the estimate has a 95 per cent likelihood 

of lying within this region if it is drawn from the correct distribution. Although such a 

choice is intuitively appealing and has been widely used [4.10], there are problems 

associated with it. Since the set boundary forms an upper bound on the statistic (lower 

bounds are not used in general, since they result in non-convex sets), the nature of the 

constrained optimisation method is such that the solution will usually lie on the 

boundary of the set, and hence the choice of the confidence region will affect the final 

solution. 

A suggestion for applying the above to EIT is given in Chapter nine. More 

details of the different constraints, such as variance matching constraints and 

covariance matching constraints, can be found in Leahy and Goutis [4.1] 

4.6 Discussion 

Leahy and Goutis [4.1] demonstrated that dual methods are better suited to CT 

problems, where constraints are imposed only on the error statistics. The advantage 

arises from the differing structure of the primal and dual models. In the primal model, 

the algorithm requires the calculation or storage of the intersection of the beam paths 

with the square pixels. This is computationally expensive and there is little common 

geometric structure between different projection angles. In the dual case, the model is 

a function of the beam paths, and the algorithm requires only the calculation of the 

intersections of overlapping beam paths. This gives regions of more regular structure 

than the path/pixel intersections and is exploited to reduce significantly computational 

requirements. When the solution itself is constrained, however, the relative merits of 

the two methods are not so clear. 

It should be noted that the interpolation scheme used to generate the 1-0 
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Lagrange multipliers primal model from their discrete values, is the same as the one 

adopted for the backprojection functions W k (r) dual model. This gives minimum 

energy models which are identical. The interpolation scheme is required as only a finite 

number of data points per projection are available to estimate the continuous Lagrange 

multipliers. 
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5 COMPUTER ALGORITHMS 

5.1 Introduction 

The structure of the system matrix, which depends upon the collection 

geometry, is critical in the formulation of various algorithms for reconstruction. Over 

the next two Chapters, four system matrices are presented, relating to specific 

collection geometries. The parallel and fan beam geometries associated with X-ray and 

PET systems are analysed in this Chapter as necessary precursors to the more complex 

curvilinear geometries. Also given is the selection of specific algorithms used to 

compute the Lagrange multipliers. 

The reconstruction algorithms examined in this Chapter were developed by 

Durrani and Goutis [l.28], and extended by Goutis and Drossos [5.7]. Two main 

algorithms, including their variations, are presented. These are known as the Recursive 

and Direct algorithms. Although other algorithms exist, these were selected for their 

suitability for adaptation to new EIT geometries introduced in Chapter six. 

In the previous Chapter, the minimum variance model was formulated for 

parallel geometry by choosing as the cost function the variance between the 

reconstructed image and the original. This yields a backprojection model in terms of 

the Lagrange multipliers. The choice of a suitable cost function reflects the desirable 

properties of the solution, these properties being determined by the nature of the image 

produced by the reconstruction. The minimum variance model was selected for the 

EIT implementation presented in the next Chapter because it produces smooth 

reconstruction which is ideal for resistivity images. This model is linear, which has 

proved to be very popular, due to its relative simplicity for computation. All the 

algorithms presented in this Chapter are based on the minimum variance model. 

5.2 Parallel System Matrix Structure 

Both Goutis [1.29] and Drossos [5.7] utilise the structure of the system matrix 
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to accelerate the reconstruction algorithm. This minimises the number of operations 

required to compute the Lagrange multipliers. The reconstruction of the associated 

system matrix and the iterative algorithm are given below: 

Consider the minimum variance parallel model, derived in the previous Chapter 

( eqn. 4. 13), which expressed the image f (x, y) in terms of the 1-D continuous 

Lagrange multiplier functions Ak (xk ) as: 

N 

f(x,y) = LAo(xo) (5.1) 
0=1 

The Lagrange multiplier functions can be estimated from the measured projections 

usmg: 

where 

X k = x cos9 k + ysin 9 k 

Yk = -xsin9 k + ycos9 k 

(5.2) 

(5.3) 

and r denotes the radius of the domain D, as illustrated in the previous Chapter in 

Figure 4. 1. The strip width is assumed to be constant. 

Determining the Lagrange multipliers from equation (5.2) will allow the 

evaluation of the Lagrange multipliers as defined in equation (5.1). For discrete data, 

the projections are assumed to have S samples per projection. The matrix version of 

equation (5.2) leads to: 

N 

Pk = L GkzA1 ,k = 1,2, ••• ,N (5.4) 

1=1 

where 
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and 

r 
x =-r+(2q-l)- q=12 S q S" , ••• , 

T denotes the transposition, 

G b is an S by S matrix. 

If the projections are taken at equi-spaced angles, then each matrix Gia depends only 

on the angle: 

ISn -Ski = ~(n - k) 
N 

The blocks G kk are diagonal for all k. Equation (5.4) may be rewritten as: 

p=GA 

(5.5) 

(5.6) 

G in equation (5.6) is a system matrix which defines the proportions of A'S that 

contribute to each projection point. The system matrix, in effect, can be seen as 

representing the weighting on G due to the intersections of the parallel rays. 

In practice, a finite number of data points per projection are available. An 

interpolation scheme is employed to estimate the continuous Lagrange multipliers from 

their values at a finite number of points. If the Lagrange multipliers are considered to 

be constant, then the elements of the G matrix will be dependent only on the limits of 

integration defined in equation (5.2). Hence, whatever the formulation of a solution to 

equation (5.3), to find the unknown Lagrange multipliers A, the construction of the G 

matrix can be considered as independent of the projection data, and defined only by the 

physical geometry of the reconstruction data collection system. This allows the inverse 
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of the matrix to be computed in non-real time. 

The G matrix is well structured and is known as a block circulant matrix. It 

consists of N1 submatrices, each S by S in size. The elements of the matrix G will 

depend only on the interpolation scheme used to estimate their values. If the radiation 

source used to obtain the projection data has a definable width, then the line integral 

that defines the element value within the projection subvector can also be assumed to 

have width. This leads to the assumption that the projections are formed from strips, 

and the values within the strips are taken to be constant (i.e., zero order interpolation). 

If A. n is taken to be a constant, the elements in the sub matrix depend only on the area 

of the intersection of the strips. If the path formed by a strip of width d at angle a n is 

defined as IAI and the path formed by a strip of the same width at angle ak is defined 

as IBI, then the value of the element will be the area of a parallelogram formed by the 

intersection of the strips, as shown in Figure 5. I. If 1t -Ia n - a k I is equal to a, then the 

area of the parallelogram is given by: 

IA x BI = IAllBlsina = ~~sina = ~ sma sma slOe 
(5.7) 

where 0 ~ e ,8 < 1t and d is the width of the strip. This produces constant values in 
n k 

the submatrix. 

The intersection of strips outside the domain of D is not considered, and the 

matrix element values associated with them are set to zero. This limitation on the 

circular domain D gives a block circulant structure to the system matrix which can also 

be seen in the other geometries considered later in this section. The edge elements are 

estimated separately and produce variable values in an elliptic boundary of the 

submatrices. 

It can be observed from Figure 5.1 that each submatrix Gkz is symmetric with 

respect to the first and second diagonals. This is termed 'radial symmetric', as indicated 

by the shaped areas in Figure 5.I(a). 
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Figure 5.1 Intersecting strips in parallel geometry 
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The structure of the G matrix is fully contained within the first half block row 

shown in equation (5.8): 

Go G1 G1 G
N

_
1 GN- 1 .. G1 -

1 1 

G1 Go G1 GN- 3 .. G1 -
1 

G1 G1 Go (5.8) 

.. •• . . 
G1 G1 GN- 1 GN- 1 .. Go 

- -
1 2 

where 

Gkz = G1k- zl = EG1k_zl (5.9) 

and 

E=[~ 
.. 

~l 1 (5.10) 

.. 

E is called an exchange matrix, and the G matrix is known as a permuted block 

circulant matrix. The tilde (,..,) denotes the permutation effect. Each non-diagonal 

sub matrix consists of three regions (Figure 5.3): zero, variable values in the transition 

band, and constants. A plot of the matrix for S = 5 and N = 5 is presented in Figure 

5.2 which demonstrates the structure of the G matrix with pseudo colour. 

The structure of the submatrices can be utilised to reduce the storage 

requirements and to assist in formulation of the algorithm to compute the unknown 

Lagrange multipliers. 
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Figure 5.2 Plot of he system matrix (eqn. 5.8) for parallel system S = 5 N = 5 
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5.3 Recursive Algorithms 

There are a number of ways to formulate a solution to find the Lagrange 

multipliers. To reduce the computation time, a number of assumptions are made which 

assist in the construction of the system matrix and processing of the inverse. These 

assumptions are based on the physical constraints of the collection system. 

A block successive relation method was used by Goutis and Drossos [5. 1] for 

the solution of the system given in equation (5.4) and this is presented below. The 

properties of the G matrix are utilised to reduce the computational requirements. The 

solution to the system in equation (5.4) is given by: 

AD+1 = AD + 'Y & 
kI kI G (0 0) kI o 1,1 

(5.11) 

where 

(5.12) 

n is the number of iterations, and 'Y is the relaxation parameter. 

This is similar to the recursive algorithm given for ART methods, except the 

structure of the system matrix used is well defined, and can be used to reduce the 

number of operations. & kI is the error between the estimated and measured projections 

and is used to define the number of iterations. n is defined to match the statistics of 

the noise in the true projections to the error & kI. The initial estimate of the Lagrange 

multiplier is obtained using: 

AO = Pki 'if ki 
kI Go (i, i) 

(5.13) 

The structure of the associated system matrix IS used to obtain fast 

implementation by making use of areas of equal elements in the submatrices. Every 

sub matrix is symmetric with respect to the first and second diagonal. 

The algorithm is based on the observation that the product of the i tb subrow 

and a subvector is equal to the product of the previous ( i-I) th sub row and the 

subvector plus the product of the difference subrow and the subvector. The i tb 
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difference subrow is generated by subtracting each element of the (i - 1) tb subrow 

from the corresponding element of the i th subrow. The number of nonzero elements in 

the difference sub row is very small as the submatrix differs in a few elements only. This 

is illustrated in Figure 5.3. 

(1,1) (1,N) 
,-------------------------~ 

constant 

zero 

variable 

(N,I) (N,N) 

Figure 5.3 Submatrix structure 

The average variable number of non-zero elements in the difference submatrix is 

defined by J3 = 3. Hence the product of the i th subrow and subvector require P instead 

of S arithmetic operations. This reduces the storage requirements. A summary of the 

basic algorithm is given below: 
N 

Step 1: Calculate G k for k = 0,1,2, .. ,-
2 

N 
Step 2: Derive the difference submatrices AGk for k = 0,1,2""2' 

i.e. in each G
k 

replace the jtb subrow by the difference of the (i _1)th 

sub row, for i = 2,3, .. ,S. 

Step 3: Store every nonzero element of AGk , also store the necessary indices 

to identify the elements. 

Step 4: Compute the initial estimate of the Lagrange multipliers using: 

107 



Step 5: Estimate P~ , i = 1, 2, .. , S, from A. D and the difference matrix. 

Note that the product of a subvector and the i tb subrow is equal to the 

sum of its products, with the (i - 1) tb sub row and the i tb difference 

subrow respectively. 

Step 6: Update A. tb . Hence: 

where i = 1,2, .. ,S and"( is the relaxation factor. 

Steps 5 and 6 are repeated for all projections, until the statistics of the error 

&Id = PId - PId 

between the estimated and measured projections become approximately 

equal to the statistics of the noise in the true projection data. 

Step 7: Backproject the A. 's to produce the reconstruction. 

It should be noted that steps 1 to 3 are performed once only for the specific 

geometry of the collection system in order to pre-compute AGk , which is stored for 

use in all future reconstructions. 

If "( = 1, the successive relaxation procedure is the same as a Gauss-Seidel 

iteration method [5.4]. For Gaussian noise, the value of the relaxation parameter r 

should be kept small to allow enough iterations to take place and hence make the error 

as Gaussian as possible. 

As there has been no approximation in the solution of the system given in 

equation (5.3), the algorithm converges. In contrast, the ART methods oscillate due to 
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the effect of the approximation on critical eigenvalues. Examples of the results 

obtained for the parallel case are shown by Durrani and Goutis [1.28]. For the parallel 

beam case with a limited number of projections (41) and (80) points per projection, the 

reconstruction is of reasonable quality. The fan beam image gives a poorer 

reconstruction, particularly on the periphery. The results do not demonstrate the effect 

of noise added to the projection data. The quality of the fan beam was improved by 

Drossos [5.4]. 

5.4 Direct Algorithms 

The iterative method detailed in section 5.2.2 used the structure of the matrix 

to reduce the computation required. To obtain the Lagrange multipliers, a number of 

iterations n are required. n is dependent on the match of the statistics of the 

measurement noise to the statistics of the projection error: 

(5.14) 

There are a number of ways by which the system matrix can be directly 

inverted. Two methods have been developed and are presented in the following 

sections. The first method was developed originally by Durrani and Goutis [1.28] and 

is known as the DFT inverse or nonrecursive algorithm. This technique is presented to 

demonstrate the evolution of the algorithm chosen for the new geometries. The second 

method was developed by Drossos [5.4] and is based on the Jacobi iteration method. 

5.4.1 DFT Inverse Algorithm (Nonrecursive Algorithm) 

As the associated system matrices are circulant, they can be diagonalised using 

block DFT techniques and the inverted block eigenvalues can be stored for future use. 

This block diagonalised fonn of the inverse matrix can be utilised to produce fast direct 

algorithms. The diagonalisation of a circulant matrix is given by Hunt [5.2] and was 
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extended for block and permuted block circulant matrices by Durrani and Goutis 

[1.28] to produce a fast algorithm. First a brief account of the diagonalisation process 

IS gIven. 

5.4.2 Diagonalisation of Block and Permuted Block Circulant Matrices 

The submatrices of G are known as circulant matrices, consisting of S by S 

different elements. The rows of the G submatrices are related by a circular shift to the 

right That is, the last element in one row is equal to the first element in the row 

immediately below. This is illustrated in the following equation: 

go gl gl .• gN-l 

G gN-l go gl .• gN-l 
Circulant = (5.15) 

A block circulant matrix has a similar structure to the circulant matrix, except 

that the element of the matrix are themselves circulant matrices. The block circulant 

matrix has the form: 

Go G 1 G 1 .. G N-1 

G N-1 Go G 1 .. G N-1 

G Block circulant = (5.16) 

G 1 G1 G J .. Go 

The permuted block circulant matrices were described briefly in section S.2.l. 

This type of matrix was introduced by Goutis [S.3]. Each block row is generated from 

the preceding one by post-, or pre-, multiplication of the last submatrix by an exchange 

matrix, illustrated in equation (S.10). 

The diagonalisation ofa circulant matrix is given by Hunt [S.2] as: 

G =WDW-1 

Circulant 
(5.17) 
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where D is an N by N diagonal matrix, whose elements are the eigenvalues of 

G Circulant' and W is an N by N matrix with columns of N linearly independent 

eigenvectors of GClrculllnt· Hunt [5.2] demonstrated that the kth eigenvalue of G 
Circulant' 

denoted by y(k), is equal to the kth harmonic of the DFT of the first row of G . 
Circulant . 

y(k) = ~ g(i)exp(j 21tkj) 
1=0 N 

where k = 0,1,2, .. , N -1 and the eigenvectors are given as: 

w(k)= 

I 

exp(j 21t k) 
N 

exp(j 21t 2k) 
N .. 

exp(j 21t (N -I)k) 
N 

(5.18) 

(5.19) 

for k = 0, 1, 2, .. , N - I. The collection of the column vectors w (k) into a matrix is 

denoted by W: 

W = [w(O), w(I), w(2), .. , w(N -1)] 

The kith element of W is: 

and the inverse has the form: 

W(k,i) = exp(j 21t ki) 
N 

1 .) I (. 21t ki) W- (k,l = -exp -J-
N N 

(5.20) 

(5.21) 

(5.22) 

Hence W-1 is the DFT matrix, and the element circulant matrix GClrculllnt can be 

diagonalised using the DFT. This can be extended to include block circulant and 

permuted block circulant matrices, to produce block and permuted block diagonal 

matrices. The diagonalisation of the latter was examined in detail by Durrani and 
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Goutis [1.28]. 

The transform matrix for diagonalising block circulants IS constructed as 

follows. Let: 

and 

(.) (. 21t . 
Ws I,m = exp J-Im) 

S 

wN(k,n) = exp(j 21t ko) 
N 

(5.23) 

(5.24) 

Based on this notation, a matrix W is defined as having elements SN by SN, and 

containing Sl partitions of size N by N. The im th partition ofW is: 

(5.25) 

for i, m = 0,1,2, .. ,S-I. Then WN is an N by N matrix with elements: 

(5.26) 

for k,n = 0,1,2, •. ,N-l 

The inverse matrix W -1 is also of size SN by SN, with S 1 partitions of size N 

by N. The im th partition of W-t, symbolised as W-1(i,m), is: 

-I • 1 -1(. )W-I 
W (I,m) = -WN I,m N 

S 
(5.27) 

where w;l(i,m) is: 
1 .21t. ) W; (i,m) = exp(-J-Slm (5.28) 

for i,m = 0,1,2, .. ,8-1. The matrix W;1 has elements: 

(5.29) 

where 
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w~l(k,n) = exp(-j ~ kn) (5.30) 

for k,n =O,1,2, •. ,N-1. It can be verified, by direct substitution of the elements ofW and 

W-1
, that: 

ww-1 = W-1W = I (5.31) 

where I is the SN by SN identity matrix. 

From the results for the circulant matrix, and if G is a block circulant matrix, it 

can be shown that: 

G=WDW-1 (5.32) 

or 

(5.33) 

5.4.3 Nonrecursive Reconstruction Algorithm 

The ability to diagonalise the permuted block circulant matrix can be utilised in 

establishing an algorithm. A brief account of the procedure is presented. G BIockdrcuJaut 

may be expressed as: 

Y(O) 

Y(l) 

G~=[W®I] [W-1 ® I] (5.34) 

Y(~ -1) 

where W is the DFT matrix, ® denotes the Kronecker product, and the block S by S 

element eigenvalues Y(k) are given by extending equation (5.18) as: 

:"0-1 27t 
Y(k) = L G(k)exp(j-ki) 

1=0 N 
(5.35) 
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Similarly the block diagonal form of the permuted block circulant matrix G is given 

by: 
Y(O) 

Y(I) 

G=R[W®I] [W-1 ®I]R (5.36) 

Y(N -I) 

where R, which is also equal to R-1
, is illustrated in equation (5.37) as an NS by NS 

block diagonal matrix with N(S x S) diagonal blocks R(i). For i even, R(i) = I and 

for i odd, R(i) = E, which is the exchange matrix: 

I E I E I 

E I E I E 

R= I E I E I 

E I E I E 

I E I E I 

The S by S block eigenvalues of G are given by: 

N-l 2x 
Y(k) = L G(i)R(i)exp(-j-ik) 

1=0 N 

Recalling from the previous section that: 

p=GA. 

or 

p = R[W ® I]A[W-1 ® I]RA. 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

where A is a NS x NS block diagonal matrix A(k,k) = Y(k -I). The block diagonal 

matrix A has singular submatrices. Taking the pseudo inverse of A, the solution to the 

system given in equation (5.40) is: 

A. = R[W ® I]A+ [W -1 ® I]Rp (5.41) 
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where + denotes the pseudo inverse. The A+ is obtained by substituting every radially 

symmetric block eigenvector by its pseudo inverse. 

Utilising the above equation, a nonrecursive algorithm can be formulated to 

compute A from the projections p. FFT's can also be used to compute the DFT art P s. 

The steps of the nonrecursive algorithm are detailed below: 

Step 1: Compute the vector Rp. This is obtained by reordering p such that 

Pld (new) = Pk(N+I-l) (old) 

for 

i = 1,2, .• ,S 1\ k odd only 

Step 2: Perform S number ofFFT's, each of length N on the N -length series 

Plq,PZq,··,PNq 

where q = 1, 2, •• , S and assign the k th DFT coefficient corresponding 

to any qth element of the vector W:p. 

Step 3: Compute A. The procedure is essentially the same as Steps 1 and 2 

with the difference that the operations are performed on known 

submatrices, rather than vectors. 

Step 4: Invert A to obtain A + . For a specified geometry with N and S fixed, 

steps 3 and 4 need to be performed only once, and A + is stored for 

future use. 

Step 5: Compute Wk' Perform FFT's and finally reorder the DFT coefficients 

to obtain the A subvectors. 

Step 6: Backproject the A to produce the final reconstruction. 

A diagram of the algorithm steps is presented in Figure 5.4. Although this 

algorithm looks promising for adoption for the EIT system, the pseudo inverse does 

not match the noise statistics and hence produces inferior quality reconstructions as 

compared with other methods presented in later sections. 
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Figure 5.4 Block Diagram of the Nonrecursive Algorithm 

5.4.4 Jacobi Method 

This direct algorithm was introduced by Drossos [5.4] and is based on the 

Jacobi method for the solution of linear systems. The method has a distinct advantage 

over the recursive algorithm as the inverse can be precalculated and stored for future 

use. The diagonalisation presented by Durrani and Goutis [l.28], and given in the 

previous section, is used to reduce the required storage. The iterative method (which is 

also known as the successive corrections or relaxation method) replaces 

approximations by corresponding new ones as soon as the latter have been computed. 

An alternative method is known as Jacobi iteration. It is similar to the Gauss-Seidel 

iteration, but differs in not using improved values until a step has been completed, and 

then replacing AD by 'AD+l entirely for the next cycle. The Jacobi iteration can be 

adapted to form a direct algorithm as follows. 

Ifwe rewrite equation (5.4), it can be expressed as the matrix multiplication: 

(5.42) 
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MD denotes the specific approximation of the pseudo m' verse of G . ed . 
assoclat WIth the 

nth iteration. Writing equation (5.42) using equation (5.43): 

(5.43) 
where 

M o(O 0) _ 1 
1,1 ----

Go(i,i) (5.44) 

and 

(5.45) 

is identical to the Jacobi closed form solution: 

MD = L[I-sG)'s (5.46) 
1=0 

where 

s = yMO and 0 < y < 2 (5.47) 

If G is permuted block circulant, then MD will also be permuted block circulant. MD 

can be pre-calculated, hence AD is obtained by simply multiplying MD by the projection 

data. AD is then backprojected to obtain the desired reconstructed image f (x, y). The 

iteration number n and y are predetermined from external measurements of the 

collection geometry. They are chosen so that the noise statistics of the measurement 

system match the noise statistics of the calculated projection data. 

The number of operations can be further reduced by block diagonalising the 

MD matrix to obtain the block eigenvalues. In addition, the symmetry of the matrix can 

be used to reduce the storage requirement. The algorithm for computing the 

reconstruction consisted of two parts, first the stages to find the inverse of M
D

, which 
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is computed in non-real time, and second, the real time segments. The second part 

computes the Lagrange multipliers for backprojection. A summary of the complete 

process is given below. 

Step 1: Evaluate MO to obtain a good initial estimate of MD. Hence: 

M o 1 Ii . = .. or 1= 1,2, .. ,(SN) 
G(I,I) 

and 

This choice for initial estimate corresponds to 

io = MOp 

which is the projection vector p with each of its elements scaled by 

their associated strip area. 

Step 2: Input the noise energy a~ and the relaxation factor 'Y . A low value is 

preferable. 

Step 3: Evaluate 

Mn = M n- 1 + 'Y [I _ GMn
-

1
] 

G(i,i) 

Only the first half block row of MD needs to be calculated 

Step 4: If 

> 1 a 0 on) - an [p-p ., 

then increment n by one and repeat step 3, else step 5 

Step 5: Store 

where 

Mn 
k 

N 
k = 1,2, .. ,(-+ 1) 

2 

or alternatively diagonalise and store the block eigenvalues: 

yn 
k 

N 
where k = 1,2, .. ,(-+ 1) 

2 
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The MD is diagonalised as: 

MD = R[W ® I]DD [W-1 ® I]R 

where DD is an NS by NS block diagonal matrix, with each block 

eigenValue of M D
, hence: 

DD (k,k) = (Y(k -l)t 

and R is an NS by NS block diagonal matrix with N(S x S) diagonal 

blocks. 

At this point the algorithm has two options, depending on whether matrix 

diagonalisation is used or not. 

Option A: Using M: 
Step 1: Estimate the Lagrange multipliers using: 

).,D = MDp 

Step 2: Backproject the Lagrange multipliers to produce the reconstructed 

Image. 

Option B: Using DD 

Step 1: Compute the block diagonal matrix DD using equation 5.43 and: 

MD = R[U ® I]DD [U ® I]R 

where n corresponds to the specific SNR adopted. Store the blocks for 

future uses with fixed N,S and approximately equal SNR. 

Step 2: Take the block DFT of p to obtain G and compute the product 

DDG. Then use the inverse block DFT to find the Lagrange 

multiplier vector ).,D. 

Step 3: Backproject ).," to obtain the reconstructed image. 

The matrix MD or DD need be calculated only once, as its values depend on the 

structure of the data collection system. 
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5.5 Divergent Ray Geometry 

Consider the divergent ray geometry presented in Figure 5.5 

x-ray SOUl'Ce I, y 

Domain of f(x,y) 

Attenuation 

Array of detecton 

Figure 5.5 Divergent ray geometry 

The jth measurement of the kth fan beam projection ofa 2-D image f(x,y), defined in 

the region D, at angle \jI k is: 

Q.+Ae B(e,,) 

PId = J J I(x, y)drk d9k (5.48) 
Q. A(e,,) 

where 
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and 

Sk = tan-1 -XCOS.'Vk -ysin'Vk +R 
-Ism 'V k + YCOS 'V k 

(5.49) 

(5.50) 

R is the distance of the source S from the origin 0, and the angular strip is defined by 

AS = Sk(l-l) - Sid' Note, for convenience, polar co-ordinates have been adopted. The 

angular strips AS are assumed to be constant in this analysis. 

The above is based on the analysis by Durrani and Goutis [5.6]. Kak and 

Slaney [2.34] present a similar analysis, but for consistency the notation ofDurrani and 

Goutis [5.6] is adopted. 

For continuous projections, the kith strip can be considered as a line and 

equation (5.48) can be simplified to: 

(5.51) 
• 

where A(Sk)::::) B(Sk) == s, and k = 1, 2, •. ,N. 

Following the procedure defined in the preVIous section for the parallel 

geometry, a general cost criterion is considered initially. Then the minimum variance 

cost criterion is introduced to form a model, hence restating the reconstruction 

problem for the fan beam geometry. A function f (I, y) is required such that the 

integral: 

1= f f C(.)dxdy (5.52) 
D 

is a minimum subject to the constraints: 

N N 

L Pk (Sk) = L f f(x,y)dYk (5.53) 
k=l k=1 s 

Rewritten as: 
N 

L[Pk(Sk)- f f(x,y)dyk1 = 0 (5.54) 
k=l • 
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using the Euler-Lagrange method as before, a continuous Lagrange multiplier IS 

introduced for every projection, and the Euler-Lagrange equation can be defined as: 

N 

1= f f C(.)dxdy+ Lf"'k(8k)[Pk(8 k)-f f(x,y)dr
k

]d8k 
D k=l., • 

(5.55) 

where s' = 0:::::) 7t and "'k (8k ) are the I-D Lagrange multiplier functions. 

If the integral over rk in the above equation is taken outside, and using the 

change of elements from Cartesian to polar variables: 

(5.56) 

then equation (5.55) can be rewritten as: 

(5.57) 

where 0(.) is a delta function. This is the form given in Durrani and Goutis [5.6]. 

The first variation of I is obtained as in the previous Chapter. Hence, from 

appendix ~ the first variation is given as: 

(5.58) 

Minimising the image variance by substituting ~ /2 for C(.) gives: 

N '" (8 ) /(x,y)= L k k 

k=l rk 

(5.59) 

This is the nurumum vanance model or backprojection model for the fan beam 

geometry. 
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Assuming the projections are at equiangles then: 

27t 
'Vk +1 - 'V k = -Vk 

N (5.60) 

where 'V k denotes the projection angle. Adopting the minimum variance model gives 

the jth measurement of the kth projection as: 

where 

and 

j = 1, 2, .. ,S 

k = 1,2, .. ,S 

Q\=(i-l)AS 

AS = 7t 
S 

AS is the angular width between projection and is assumed to be constant. 

5.5.1 Matrix Structure 

Discretising each Ak (Sk) into S values, gives A as a row vector: 

(5.61) 

(5.62) 

where Aid corresponds to the kith strip with the origin at Ok' and the index i is 

specified in Figure 5.4. Angle Sk is measured in a clockwise direction. If the projection 

measurements are indexed in the same way, equation (5.61) is rewritten as a matrix 

equation in the form of a linear system: 

p' = B'A' (5.63) 

where 
,\,T [,\,T ,\,T '\ ,T] 
"" - ""I '''''1 ,··,""N (5.64) 
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,T _ [,T,T ,T] 
P - PI 'P1 "·,PN (5.65) 

B' is used in this case to define the associated system matrix for a fan beam system 

The primes are used to denote the indexing used in Figure 5.4. Goutis and Drossos 

[5.7] used this index to utilise the special properties of the system matrix. The elements 

of matrix B' are rearranged to obtain B. This is achieved by introducing a new 

numbering scheme, as defined by Goutis and Drossos [5.7], for the divergent-ray strips 

which in effect rearranges the elements of A' and p'. 

B is block circulant, unlike the parallel case where G was permuted block 

circulant. The rearrangement scheme [5.7] allows the linear system of equation (5.53) 

to be rewritten as: 

p=BA 

or 

Bo Bl BN BN BT .. BT BT · . ~-I 1 1 
--I -

PI 1 1 1 
BT BT BN BN BN .. BT BT .. J 1 

P1 1 0 --1 --1 -
1 1 1 

· . 
PN BT Bo BN · . ~-1 --

1 1 1 .. . . 
PN Bl B1 · . BT 

~-1 
.. BT 

1 Bo 
1 

where P and A are column vectors: 

T [T T T] P = PI ,P1 ,··,PN 

AT = [A~ ,A~, .. ,A~] 

and B satisfies the symmetry condition: 

An example of the sub matrix structure is shown in Figure 5.6. 
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Al 

AN 
-
1 

AN 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 



The elements of the system matrix are obtained bal' . 
y ev uatmg equatIon (5.63). 

If assumption is again made that the value of A (8 ) . . . 
k k IS constant Wlthin each strip, then 

the contribution of AnJ into PId is specified by: 

(5.71) 

where s in this case denotes the intersection area of the ki d . t' I' " an OJ s np, ymg Wlthin 

the region (appendix D). To maintain the block circulant nature of the system matrix, 

the elements of A and P require rearranging. 

constant 

zero 

variable 
(N,l) (N,N) 

Figure 5.6 Diagram of submatrix structure for fan beam geometry 

5.5.2 Recursive Algorithm 

The block successive relaxation method can be employed for the solution of the 

system, and due to the element rearrangement, the properties of the system matrix B 

can be utilised to reduce the computational requirements. The algorithm for the fan 

beam system is similar to that of the parallel system. It is observed that the product of 

the i th subrow and a subvector, is equal to the product of the previous (i-l)th subrow 

and the subvector, plus the product of the difference subrow and the subvector. The i th 

difference subrow is generated by subtracting each element of the (i - 1) th subrow 
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from the corresponding element of the i th 
subrow. The number of nonzero elements in 

the difference sub row is very small, as the sub row differs in only a few elements. The 

average number is defined by f3 = 3, hence the product of the i th subrow and subvector 

require f3 instead of S arithmetic operations. This reduces the storage requirements. A 

summary of the basic algorithm is given below. 

Step 1: Calculate Dk for k = 0,1,2, .. , N. The (mj) element is given by 
2 

equation (5.60), where the integral is taken and the intersection area of 

(I,m) and (k + l,j) strips lies within the domain D. 

Step 2: Derive the difference submatrices ABk for k = 0,1,2, .. , N, 
2 

i.e. in each Bk replace the i th subrow by the difference of the (i _l)th 

subrow, for i = 2,3, .. ,S. 

Step 3: Store every non-zero element of ABk , and also store the necessary 

indices to identify the elements. 

Step 4: Compute the initial estimate of the Lagrange multipliers using: 

'A0 = Pid Vki 
Id Do (i, i) 

Step 5: Estimate p~ where i = 1,2, .. ,S from 'AD and the difference matrix. 

Note that the product of a subvector and the i th sub row is equal to the 

sum of its products with the (i - 1) th subrow and the i th difference 

sub row, respectively. 

Step 6: Update 'A k . Hence: 

'\ 0+1 '\ D 'Y (p _ P~ D ) 

Aki = Aid + B ( .. ) Id kI 
o 1,1 

where i = 0,1,2, .. ,S and'Y is the relaxation factor. 

Steps (5) and (6) are repeated for all projections, until the statistics of the 

error between the estimated and measured projections 
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becomes approximately equal to the statistl'CS ofth . . h e nOIse In t e true 

projection data. 

Step 7: Rearrange A. to obtain A.'. using Table 1 given by Goutis and Drossos 

[5.7], and backproject to produce the reconstruction. 

It should be noted that steps (1) to (3) are performed once only for the specific 

geometry of the collection system, in order to pre-compute ABk which is stored for 

use in all future reconstructions. Also if y = 1, the successive relation procedure is the 

same as the Gauss-Seidel iteration method. 

5.5.3 Direct Algorithms 

The Jacobi algorithm detailed for the parallel case is the only noise matching 

direct algorithm developed so far. It is similar to the parallel geometry and hence the 

diagonalising procedure described in section 5.4.1 is also similar. The only difference is 

that B is a block circulant matrix. The details are not given here, but can be found in 

[5.7] and section 5.4. 

5.6 Discussion 

The review in this Chapter, of available algorithms to compute the unknown 

Lagrange multiplier functions has enabled the appropriate selection of a compute­

efficient method for use with the EIT system. The aim of all the approaches is to use 

the structure of the associated system matrix to reduce the number of operations 

required. In the fan beam case, further rearrangement of the elements was required to 

obtain areas of equal elements in the system matrix. Also in the fan case, the 

rearrangement of elements produces a block circulant matrix, unlike the parallel case 

which has a pennuted block circulant structure. 

It should be noted that an exact pseudo Inverse of the system matrix, as 

indicated in Chapter four, is not desired. These inverses are known as pseudo inverse 
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because the associated matrices are singular. Shim [5.8] verified that the exact pseudo 

inverse produces severely distorted images. 

Goutis [5.1] developed the iterative algorithm, based on the backprojection 

model, which estimated the discrete I-D Lagrange multipliers by making use of the 

special structure of the associated system matrix, relating the Lagrange multipliers to 

the projections using areas of equal elements within the system matrix. The iterative 

algorithm terminates when the error between the measured projection and the 

projection corresponding to the solution is small enough, the size of the error being 

obtained by observation of the quality of the reconstructed image. 

A non-iterative algorithm was also suggested by Durrani and Goutis [1.28] for 

both parallel and fan beam geometries using the FFT algorithm to compute the 

diagonalised matrix. This is known as the nonrecursive method. Although it produced 

good results for ideal projection data, the solutions for noisy projection data were of 

poor quality. 

The drawback with both of these algorithms is that the noise in the projection 

data was not considered. The final algorithm (Jacobi) presented in this Chapter uses 

the constraints of matching the statistics of the measurement noise to the statistics of 

the error between the measured projections and the reconstruction projections. It was 

developed primarily for the fan beam system by Drossos [5.7] and was considered as 

the most suitable for adaption for the EIT system. 

The requirement for diagonalisation will depend on the number of samples 

obtained from the data collection system. With X-ray systems these data sets are large, 

and reduction in storage requirement is highly desirable. The EIT systems given in the 

next Chapter use considerably smaller collection geometries and the algorithm based 

on the Jacobi method was used to obtain results without use of diagonalisation. As 

collection systems improve by the use of more electrodes, diagonalisation of the 

associated system matrices may be required. 

A comparison of the algorithms including convolution is presented in table 5.1. 

128 



The values given for storage can be considered only as approximations, as data 

compression techniques have not been exploited. The convolution measure is based 

upon Shepp's [2.9] and Herman's [2.31] values. N is the number of projections, S is 

the number of samples per projection, n defines the number of iterations and J3 gives 

the average number of non-zero elements per row in the difference submatrix. 

Table 5.1 Comparison of Algorithms 

Algorithms Total number of real Typical number of Storage 

Multiplications real (word size) 

Multiplications for 

N=16, S=16, J3 = 3 

and n=50 

2SNlog1 N + 5NS1 21900 (N + I)Sl 
Nonrecursive Parallel 

8 

Jacobi Direct Parallel 2SN logl N + 6NS1 25996 2NS1 +2NS 

nJ3N1S +4NS1 630784 J3NS + 2NS 
Iterative Parallel 4 

Convolution Parallel NS1 +4NS1 20480 S+2NS 

Backprojection Parallel 4NS1 16384 S+2NS 

Jacobi Direct fan 2NS IOgl N + 8NS1 34188 2NS1 + 2NS 

Iterative fan nJ3N 1S + 6NS1 638976 J3NS + 2NS 
2 

Convolution fan NS1 +6NS1 26112 S+2NS 

Backprojection fan 6NS1 24576 S+2NS 

129 



It can be seen from table 5.1 that a large proportion of the computation is spent on 

backprojection. This justifies the need for hardware development to improve the speed 

of this part of the operation. 

It is worth restating the objectives of this Chapter. To exploit the CaRT in 

EIT, a detailed analysis of the algorithms developed for X-ray systems has been 

undertaken. This analysis had the objective of identifying which algorithms were the 

most suitable for EIT implementation. The geometries of X-ray systems give structures 

to the submatrices in the associated system matrices. These can be exploited to obtain 

the maximum computational efficiency. As the EIT geometries differ from the X-ray 

systems, it will be seen in Chapter six that these properties cannot be used. Most of the 

methods yield a permuted block circulant structure in their associated system matrices, 

allowing block DFT techniques to be used to reduce the storage requirements of the 

implemented algorithms. Another key feature is the use of the closed form Jacobi 

solution, in which the inverse maintains the block circulant structure, again allowing 

the use of block DFT techniques to reduce storage requirements. The EIT system 

developed in Chapter six uses significantly less data than X-ray systems due to the 

technical problems associated with the data collection. This means that the 

requirements for minimisation of the storage and improvement in computational 

efficiency are not as important as they are in the case of the larger data collection 

capacities of X-ray systems. A key feature of the algorithms given in this Chapter is 

that they can be optimised to match the error in the statistics of the inverses to that of 

the statistics of the additive noise in the collection system. This has great advantage in 

EIT which uses noisier data than do X-ray systems. , 
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6 EIT 
GEOMETRIES AND MODELS 

6.1 Introduction 

The objective of this Chapter is to develop the new models, and hence the 

algorithms, for the EIT system. These are based on two data collection methods which 

give rise to new geometries, termed the parallel orthogonal curvilinear and divergent 

orthogonal curvilinear. 

The following analysis adapts the general formulation for the solution of 2-D 

and 3-D scanning systems, as defined by Goutis and Durrani [5.6], for the EIT 

geometries. New models are derived to obtain reconstructions of resistivity 

distribution. The geometries in EIT are given by an analytical solution to the Forward 

problem that defines the paths of the equipotential lines. This includes analysis of the 

structure of the associated system matrix and the development of algorithms to 

produce reconstructions. A number of reconstructions from simulated data of 

resistivity are given to demonstrate that the new algorithms produce reasonable results. 

6.2 Geometries 

The geometry of the systems previously described refers to the paths followed 

by the radiation. In EIT, the definition refers to the equipotential paths defined by the 

solution to the Forward problem for a homogenous medium. As detailed in Chapter 

three, there are two approaches to obtaining data in EIT for the production of 

difference images. Models are derived for both the opposite electrode method and the 

dipole method. The opposite method is considered first. 

The analysis is approached by considering the potential distribution within an 

isotropic resistive medium. A brief analysis was given in Chapter one and is expanded 

in this Chapter to incorporate COR T. Passing a current between a pair of electrodes 
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(known as a drive pair) will cause a current to flow within the region, as shown in 

Figure 6.1, and discussed in Chapter one. The distribution of potential within the 

region is given by the solution of the equation: 

(6.1) 

If the resistivity were unifonn within the region, then equation (6.1) would reduce to 

Laplace's equation. For current passing between a particular pair of electrodes, the 

potential at a point within the region depends on the distribution of the resistance 

within the region. Measurement of a single boundary potential profile for a current pair 

of current electrodes, does not provide sufficient information to reconstruct uniquely 

the required distribution of resistance. However, if other boundary profiles can be 

obtained, the resulting set of measurements may permit an approximate reconstruction 

of the required distribution. Equation 6.1 represents a non-linear relationship between 

V and p due to VV. 

6.3 Parallel Orthogonal Curvilinear System 

A new geometry is introduced, termed parallel orthogonal curvilinear, which 

takes its name from the path of the equipotential lines, defined by the conformal 

transfonn described in this section. 

In this system, the data are obtained by injecting current into opposmg 

electrodes around a circular medium. Other electrodes are equally spaced around the 

medium, in pairs, to measure potential difference as illustrated in Figure 6.1. These 

potential differences are translated into a measure of resistivity between the 

equipotential lines in the medium as described above. The nature of the data collection 

system limits the number of samples S to n( n - 4) / 2 values in the range of 0 to 1t, 

where n is the number of electrodes. (The effects of this limitation are examined in the 

next Chapter.) 
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G6 
(x,y) 

(8) (b) 

Figure 6.1 Schematic diagram illustrating the four electrode method for 

collecting impedance tomography data in (a) a bounded volume of uniform 

resistivity, and (b) a bounded volume where one volume element has changed 

resistivity . 

If it is assumed that a bounded volume of uniform resistivity, p, is carrying a 

constant current I, supplied by the k th pair of electrodes as illustrated in Figure 6. 1, a 

voltage VId is developed between the i th pair of boundary electrodes. If there is a 

change in the resistivity of the small volume element located at point (x, y), the change 

can be represented as: 

p+op(x,y) (6.2) 

The resistance value of the volume element is given by: 

P(x,y) = lo(p+op(x,y»-Io(p) (6.3) 

and 
P(x,y) = 10[1+ Op(x,y)] ~ op(x,y) 

p p 
(6.4) 
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where op( x, y) < < p. The voltage sensed by the electrodes at the boundary is now: 

V' = v. + s:v. Id Id Uk! (6.5) 

where V Id represents a potential boundary profile measurement, and BV Id is a solution 

to Laplace's equation. Substituting equation (6.5) into (6.1) gives: 

(6.6) 

Since AOVId = 0 and if yP is small, it can be assumed that Vv. «VBV. therefore 
- Id _ Id' 

equation (6.4) can be rewritten as: 

(6.7) 

which is a linear relationship between p and V Id' If op( x, y) is small, it is reasonable to 

assume that the current density field is the same as for uniform resistivity, and hence: 

OVid oc op(x,y) (6.8) 

When the boundary voltages V ~ and V Id are measured before and after a change in 

resistivity has occurred, an image of the temporal change in (natural) log resistivity can 

be produced. The reconstruction of p requires the inversion of equation (6.7) for a set 

of boundary measurements. In this research it is achieved as follows. 

The solution to the Forward problem can be found analytically by using a 

conformal transformation. The equipotential lines follow approximately the path 

defined by the conformal transformations, known as the bipolar co-ordinate system 

(appendix E). To analyse this transformation, let w denote a complex variable that is 

the complex potential of the bipolar system defined by: 
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where 

hence 

where 

· r eJ9a 

W = U + JV = k In( 1 J9 ) = k In( z + a) 
r2e 1 z-a 

z=x+ jy 

U + jv = kln(~)+ jk(O -0 ) r 1 2 
2 

r1 =~(x+a)2+y2 

r 2 = ~(x-a)2 +y2 

(6.9) 

(6.10) 

(6.11) 

and e l' O2 are defined in appendix E. The real part of equation (6. 11) gives the 

equipotential paths in the medium: 

and the imaginary part, the current paths: 

k = 1 in both cases. Also xk and y k can be defined by: 

and 

asinh Uk 

sin v k 
Yk =-

cosh Uk - cos v k 

Xk = xcosO k + ysinO k 

Yk = -xsinO k + ycosO k 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

The transformations in equations (6.12) and (6.13) map the current and equipotential 
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lines in the x,y plane to the u, v plane, and equations (6.14) and (6.15) map the values 

in the u, v plane to the x, y plane. This is demonstrated in Figure 6.2. 

XY PLANE UV PLANE 

I v 

21t 

<J!== =:> 
1t 

/ 
a 

0 ,\ y 
a 

-00 u 
00 

equipotential line 

Figure 6.2 Bipolar Co-ordinate System 

It was found that these transfonnations are not invariant to rotation. This 

limited the possibility of deriving a solution in the u, v space directly. The origin of 

these transfonns and the data collection system will be explained in more detail in 

Chapter seven. To utilise the transfonnation of the bipolar system, the following 

approach is adopted. 

Consider the curvilinear system shown in the Figure 6.3: 
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Figure 6.3 Parallel Orthogonal Curvilinear System 

Let (Ilk ,Sk) fonn a curvilinear co-ordinate system in the 2-D plane, in which 

Ilk = Xk and Sk = Uk are used to denote the curved paths. The k th general projection 

of a 2-D space limited object, represented by the function op( x, y), can be defined as: 

(6.17) 

where All = 111+1 - III and W~ represents the current distribution along the strip 

defined by the path Sk' Using the principle of superposition, the nonnalised boundary 

potentials can be defined as: 

(6.18) 
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d W~ . d : If V Id and p are constants, an - IS assume to be constant for this part of the 
Wk 

analysis, where W k is the current density for the reference boundary potential. Then: 

OVid iJ.1I+' fB(Sk)OP(X,y) W~ 
--= ds dJ.! 

VId J.11 A( ... ) P W
k 

k k 
(6.19) 

A (Sk) and B( Sk) are the limits of the integration along the curved path and AJ.! is the 

width of the strip of integration. For this analysis, the width is assumed to be a 

constant. This assumption is an approximation which can be maintained only if the 

sample (number of electrodes) is large compared to the size of the domain of the image 

D. Equation (6.19) defines the projection data in terms of the natural log of the 

resistivity as a function of difference potential. From equation (6.12) the projection 

path can be defined by: 

(6.20) 

To simplify the notation, let the limits of the integration path A=> B be 

denoted by CD, and the width J.!I => J.!1+l be denoted by 0)' , similar to those used in the 

previous Chapter for parallel and fan beam geometries. The path width of the 

projection is defined as a single line, indicated by the dotted line in Figure 6.3. The 

integrals along these paths form the projections at angle e k . 

The projection can be defined as: 

(6.21) 

where OV is the measured voltage at the boundary, and p represents the resistivity 

distribution of the medium. Sk in the path of the equipotential line. The associated 

nonnalised projection is given by: 
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( BVk (J.lk »' = BVk (J.lk ) / Vk (J.lk ) 

Vk (J.lk) f J k (J.lkSk )dsk 

where the scaling Jacobian is: 

a~k 

Jk(J.lk,Sk)= &k 

()y 

(6.22) 

(6.23) 

which for the equipotential1ines is obtained from equation (6.23), as follows: 

Therefore: 

ask _.!. 2( x + a) 
ax - 2 (x+a)2 +y2 

ask _ 1 2y 
()y 2 (x+a)2 +y2 

1 2(x - a) 

2(x-a)2+y2 

dy = _( r;(x + a) - r12(x - a» 
dx r;y - r12y 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

The procedure for applying the optimisation for this geometry follows the same 

approach as the methods described earlier. For the primal method, the projections are 

considered as continuous and the conductance strips are approximated to single lines. 

Denoting C(. ) as a general cost function and using these constraints, the 

reconstruction problem can be defined as follows. 
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Find a function p(x,y) such that the integral: 

1= J J C(.)dxdy (6.29) 
D 

is a minimum subject to the constraints: 

(6.30) 

where 

(6.31) 

or rewritten as: 

(6.32) 

The reconstruction is optimised for the general criterion: 

(6.33) 

A(J.1 k) denotes the Lagrange multipliers, and (J.1k,Sk) is defined in Figure 6.3. D is the 

domain of definition of the resistivity object, and A and B are the limits of integration 

deduced from the boundaries of the object. 

The functional I may be written as: 

(6.34) 

Following the procedure as defined for the parallel case in the preceding section, the 

solution to the optimisation is given by: 
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where 

and 

I Op(x, y) 
P = -'--.:.....-...;;;-..:;... 

op' 
p~= ax 

p 

(6.35) 

(6.36) 

etc. 

Then substituting the energy .!.pll(X,y) for C(.) in the above equation to obtain a 
2 

specific model. Hence: 
N 

p' = LA.k(Jlk)S~Jk(Jlk,Sk) (6.37) 
k=l 

This represents the minimum energy model (the variance between the estimated and 

reconstructed resistivity) with an attenuation correction due to the current distribution 

in the region. This weighting coefficient is discussed in more detail in Chapter seven. 

To determine the Lagrange multipliers, the model equation (6.37) is substituted back 

into equation (6.21) for the projections. Hence the projections are defined as: 

Redefining the projections as conductance strips: 
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6.3.1 Matrix Structure 

The evaluation of the Lagrange multipliers uses some of the assumptions 

defined for the previous geometries. The value of A.k (J,lk) is assumed to be constant 

within each conductance strip. It is also assumed that the equipotential lines are normal 

to the boundary of the domain D. The error in this approximation will be reduced if 

the number of samples is increased. These small perturbations are considered later in 

Chapter seven. 

The discrete version of equation (6.39) may be rewritten in matrix form as: 

N 

Pk = L Y~S~J Ia 

z=1 

where k = 1,2, .. ,N and l>Vk = Pk which, with A. z is a column vector: 
Vk 

where 

P; = [Pk(X1 ),Pk(X1 ),··,Pk(Xk),··,Pk(X.)] 

A~ = [Az(X.),Az(Xl), •. ,Az(Xq), •. ,Az(X.)] 

T denotes transposition, 

y~ is the unsealed associated system matrix, 

S~ is the normalised current distribution weighting, 

J Ia is the scaling Jacobian. 

(6.40) 

(6.41) 

(6.42) 

The scaling Jacobian would normally be combined with Y~, and then equation (6.40) 

may be rewritten as: 

BV = YS'A 
V 

(6.43) 

This is the discrete version of equation (6.40), where Y is a system matrix defining the 

proportions of A that contribute to each projection point. If the weighting coefficient 

S' is taken to be unity, then the Y matrix is permuted block circulant. For this 
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geometry the current distribution is assumed to be approximately uniform. This 

assumption requires verification with an opposite data collection system (section 6.3), 

which was not available for this research. This is not the case for the second geometry 

described later. The weighing coefficient S' is incorporated into the backprojection 

operation to preserve the structure of the associated system matrix. This is not 

necessary for parallel orthogonal curvilinear geometry but is required for the system 

geometry detailed in the next section. An interpolation scheme to estimate the 

continuous Lagrange multipliers from their values at a finite number of points is 

developed as follows. 

Assuming that the Lagrange multipliers are constant, then the elements of the 

Y matrix will be dependent only on the limits of integration defined in equation (6.40) 

and on the scaling Jacobian. Evaluation of the elements of the Y matrix can be 

achieved by approximation. From equation (6.40), the observation can be made that 

the element values are related to the areas of intersection of the strips whose 

boundaries are defined by the limits of the integrand. By assuming that the width of the 

curvilinear conductance strips is constant, the area is defined by the intersection of two 

curvilinear strips as demonstrated in Figure 6.4. 

A further assumption is made to assist in the evaluation of the area ie., that the 

curvilinear strip areas can be approximated by an intersecting parallelogram, similar to 

the parallel case presented in Chapter four. 
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Figure 6.4 Intersection of curvilinear strips 

Consider Figure 6.4 with a single intersection defined by the shaded region, 

also shown as an approximate parallelogram. The centres of the two strips are denoted 

by the dash lines curve 1 and curve 2. The unrotated slope of curve 1 is defined by: 

tan4>l = dy 
dx curvel 

(6.44) 

and the unrotated slope of curve 2 is similarly defined by: 

tan4>z = dy 
dx curveZ 

(6.45) 

If the rotations of curves 1 and 2 from the horizontal (8 = 0) are denoted by 8 k and 

8 i respectively, the angle of rotation from the horizontal for the first curve is given by: 
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and the angle of rotation from the horizontal for the second curve : 

Hence the angle between the curves is: 

Also the area of the parallelogram may be defined as: 

d1 

IAxBI=-­
- - sin( '" dlrr ) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

The edge elements are approximated to half the value of elements inside the domain. 

Hence the area of the edge elements is defined as: 

!IA xBI = d
1 

2 - - 2sin(", dlrr) 
(6.50) 

As with the parallel system, intersections outside the domain D are not considered, and 

the matrix elements associated with them are set to zero. 

To demonstrate the construction of the sub matrix structure, consider a simple 

system with S = 5 and N = 5, shown in Figure 6.5 
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Figure 6.5 Example of submatrix structure and evaluation 
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The structure of the Y matrix is again fully contained within the first half block 

row as shown in equation (6.51), but the regions of equal elements within submatrices 

are not present, as was the case with the parallel and fan beam systems. The algorithms 

presented in Chapter five exploited this property to reduce storage requirements, 

unlike the algorithms given in this Chapter. This is not a significant problem in the EIT 

system, as the data set is greatly reduced compared to the X-ray system. 

Yo Y1 Y1 
YN- 1 YN - 1 Y1 2 2 

Y1 Yo Y1 
YN- 3 Y1 

Y= 2 (6.51) Y1 Y1 Yo 

Y1 Y1 
YN- 1 YN- 1 Yo 

2 2 

A plot of the matrix for S = 5 and N = 5 is presented in Figure 6.6, which 

demonstrates the structure of the Y matrix by use of pseudo colour. 

6.3.2 Recursive Algorithm 

Again the block successive relaxation method can be employed for the solution 

of the system. The formulation of a solution uses the same approach as detailed in 

Chapter four. Hence the solution to the system in equation (6.51) is given by: 

",n+l = ",n + rEid 
Id Id Y ( .. ) o 1,1 

(6.52) 

where 

E~ =(~;: )-(~;: )" (6.53) 

and is the difference between the measured normalised boundary potential (BV Id IV Id ), 

and the calculated normalised boundary potential (BV Id / V Id ) n . 
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Figure 6.6 Plot of the matrix for S = 5 and N = 5 (eq ll. 6.51) 
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To compute the initial estimate of the Lagrange multipliers: 

(6.54) 

Due to the different structure of the submatrix in the curvilinear system compared with 

that of the parallel case shown in Chapter four, the difference submatrices are not 

produced. Hence Step 2, as defined in Chapter four of section 4.22, is omitted. 

Otherwise the process for evaluating the Lagrange multipliers is the same. A relaxation 

factor of 'Y = 0.001 with n = 50 was found to yield the optimum results with 

simulated data (see Chapter seven). The effect on the relaxation parameter of the 

deviation of equipotential lines from their paths was considered by the addition of 

Gaussian noise to the associated system matrix. The deviation cannot be modelled 

simply as the addition of Gaussian noise to data. A fuller analysis would require 

lengthy investigation using hardware phantoms (section 7.2) and was not undertaken in 

this research. 

6.3.3 Direct Algorithm 

This approach is essentially the same as that used for the parallel and fan beam 

systems. Increased storage is required due to the structure of the associated system 

matrix. One half of a block row is required to reconstruct the complete matrix. As the 

permuted block circulant structure is maintained in the inverse, the same storage is 

required. The limitation of not producing a difference matrix for both recursive and 

direct algorithms in order to reduce the storage requirements is not a major problem as 

the number of data samples within the EIT data collection system is limited. 

Improvement in the EIT system may require further investigation into 

enhancing the algorithm if video rate tomography is required. In this research, a 

hardware solution is proposed in Chapter eight as a means of improving reconstruction 
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speeds. At present the need for reconstructions at real time rate is being debated by 

researchers. Many applications require that data be collected in real time, with the 

reconstruction being produced at a later time for analysis. 

The results shown in this Chapter were generated using the direct algorithm. 

The values of the relaxation parameter and the number of iterations were obtained 

empirically, as explained in Chapter seven. 

6.4 Results 

A simple phantom was developed to demonstrate the technique. The same test 

phantom was used for parallel and divergent curvilinear systems (Figure 6.7(a». 

A resolution of 65 by 65 was adopted to present the results. Both 2 and 3-D 

noiseless plots (Figure 6.7(b» are presented to demonstrate the reconstructions. 
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Figure 6.7(b) 2-D and 3-D plots of the reconstruction 

(y = 0.001 and n = 50) 
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6.5 Divergent Orthogonal Curvilinear System 

A second approach to data collection in EIT is known as the dipole method 

and is illustrated in Figure 6.8 

k 

p p 

Vk1 

<a) 

I 
k 

p'+op (x,y) 
I 

18 
(x,y) 

(b) 

Figure 6.8 Schematic diagram illustrating the four electrode method for 

collecting impedance tomography data in (a) a bounded volume of uniform 

resistivity, and (b) a bounded volume where one volume element has changed 

resistivity . 

The current is injected by two adjacent electrodes, while pairs of electrodes 

placed around the object measure the potential differences for each pair. In this 

collection system the data collection is over a 27t range and the number of samples is 

given by n(n - 3) 12, where n is the number of electrodes. As in the parallel 

orthogonal system, the data can be translated into a measure of difference resistivity 

for the strip lying within the equipotential lines in a homogeneous medium. The dipole 

method produces equipotential lines which follow the path defined by the conformal 
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transformation (appendix F): 

hence 

and 

1 
w = u+ jv = . 

x+ JY 

V 
Yk = 2 2 

U +v 

X k = X cos 9 k + Y sin 9 k 

Yk = -xsin9 k + ycos9 k 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

F or constant values of u in the u, v space, the path of the equipotential lines 

can be mapped in the X,y space, and for constant v in the u, v space the current paths 

will map in the x,y space, as demonstrated in Figure 6.10. The transformation 

produces only an approximation to the actual equipotential paths. The errors resulting 

from this approximation will be considered in the next Chapter. 

A collection geometry based on these transformations is presented in Figure 

6.9. The variance model can be derived for the above transformations as follows. 
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Figure 6.9 Divergent Orthogonal Curvilinear System 

For the divergent system let (Uk,V k ) denote the co-ordinate system in the 2-D plane. 

The k th general projection of a 2-D space limited object, represented by the function 

op( x, y), can be defined as: 

1-11+1 B(vt.) 

OVid = f f op(x,y)W~dVkduk (6.59) 
1-11 A(vt.) 

where AJ.1 = J.1 1+1 - J.11' and W~ represents the current distribution along the strip 

defined by the path v k. Using the principle of superposition, the normalised boundary 

potentials can be defined as: 
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(6.60) 

W' 
If V kI and p are constants, and _k is assumed to be constant for this part of the 

Wk 

analysis, where W k is the current density for the reference boundary potential. Then: 

OVid = Ufll B(f
Vt

) op(x,y) W~ dv du 
~ W k k 

Id 1'1 A(Vt) p k 

(6.61) 

A ( V k) and B( v k) are the limits of the integration along the curved path and .1J.l is the 

width of the strip of integration that is not constant in the x, y plane for this system. 

The associated normalised projection is given by: 

(OVk(Uk»' = OVk(uk)/Vk(Uk ) 

Vk(Uk) f Jk(uk,vk)dvk 
(6.62) 

w 

where the scaling Jacobian is given by: 

(6.63) 

where 
au yl_xl 

-ax (Xl _ yl)l 

Hence: 

(6.64) 

The procedure for applying the optimisation approach for this geometry 
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follows the same form as before. If the projection is considered in the u, v space, then 

following the procedure defined for a general cost criterion, a function p(x,y) IS 

required such that the integral: 

1= II C(.)dxdy (6.65) 
D 

is a minimum subject to the constraints: 

(6.66) 

where 

(6.67) 

which can be rewritten as: 

f {OVk (vk) - I OP(x'Y)S~dUk} = 0 
k=l Vk w P 

(6.68) 

Using the Euler - Lagrange method: 

1= II 
D 

(6.69) 

where w' = 0 => 2x, and Ak(Vk) are the I-D Lagrange multipliers functions. 

Transforming from (u,v) to (x,y) space, the equation (6.69) can be written as: 

(6.70) 

where 0 (.) is a delta function. 
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Minimising the variance by substituting: 

(6.71) 

for C(.) gives: 

5p(x,y) = ~ A ( )J S 
P 

~ k V k k k 
k=l 

(6.72) 

This is the variance model for the divergent curvilinear geometry. The i th measurement 

of the k th projection is given by: 

(6.73) 

Therefore rewriting equation (6.74) to include the scaling Jacobian gives: 

5p(x,y)=~ Ak(Vk) S'd d 
~ 1 11k Uk V k 

P k=l (Xk + Y k ) 

(6.74) 

Hence the projections can be defined by: 

(6.75) 

6.5.1 Matrix Structure 

Two approaches can be taken to evaluate the elements of the associated system 

matrix. In both cases the values of Ak (v k ) are assumed to be constant. It is also 

assumed that the equipotential lines are normal to the boundary of the domain D. The 

implications of this assumption are considered later. 
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The discrete version of equation (6.75) may be written as: 

N 

Pk = L A:aS:J IIZ 
k=1 

where k = 1,2, .. ,N and BVk = Pk also: 
Vk 

p~ = [Pk(X1 ),Pk(X1 ),··,Pk(Xk),··,Pk(X,)] 

A~ = P";t(X1 ),A;t(X1 ), •• ,A;t(Xq ), •• ,A;t(X,)] 

T denotes transposition, 

A:a is the un scaled associated system mat~ 

S~ is the nonnalised current distribution weighting, 

J liz is the scaling Jacobian. 

(6.76) 

(6.77) 

(6.78) 

The scaling Jacobian would nonnally be combined with A:a, and equation (6.76) may 

then be rewritten as: 

BV = AS'A 
V 

(6.79) 

As with the previous cases, this is the discrete version of equation (6.75), where A is a 

system matrix that defines the proportions of A which contribute to each projection 

point. The weighting function S', which represents the current distribution, is 

introduced during backprojection to preserve the structure of the associated system 

matrix. From equation (6.75) the observation can be made that the element values are 

related to the areas of intersection of the divergent orthogonal curvilinear wedges. The 

boundaries of these wedges are the equipotential lines as demonstrated in Figure 

6.10(b). 

There are two approaches to evaluating the areas of the intersections. The first 

is an exact method that maps the curvilinear wedges into the u, v plane. Consider 

Figure 6.1 O(b). A curvilinear wedge shown by the shaded region is bounded by two 

adjacent values of at, e.g. a 1,a1 . 
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Their value in the u, v plane is: 
1 1 

u 1 =-- and U 1 =--
2a1 2a1 

(6.80) 

The boundary of the medium D is defined by a v value limit in the u, v plane. This is 

specified by: 

(6.81) 

where: (6.82) 

For the abc wedge, the v boundary values are specified by: 

(6.83) 

The a'b'c' wedge can also be specified in a similar way as: 

1 1 
u' = -- and u' =--

1 2' 1 2' a l a 1 

(6.84) 

and 
1 

v'=O~v'=--
2ro 

(6.85) 

If a new set of co-ordinates is introduced, sitting on the centre of the medium: 

y = y- 13 0 

x=x 

and 

(6.86) 

(6.87) 

(6.88) 

using i to denote the initial and / the final values as indicated in Figure 6.1 O(b). Then 

after rotation by 9 k where: 

9 = k 21t 
k N where k= 1 ,2, .. ,N 

The final rotation can be defined as: 

xrr = ro cos(9 +9 k ) 

yrr = ro sin(9 +9 k ) 
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Initially: 

This can be rewritten as: 

or 

cosS 
U1=-----

2ro(l + cosS) 

1- tan(~) 
U = 2 

I S 
2ro (1 + tan( ~» 

2 

(6.92) 

(6.93) 

(6.94) 

(6.95) 

Hence, as the circle wedge rotates (or co-ordinates rotate), the U I is equal to a 

constant line moved to different positions in the U,v plane. To evaluate the 

intersection area of the curvilinear wedges in the x, y plane requires mapping the co-

ordinates to the u, v plane, calculating the portion of overlay in the u, v plane (Figure 

6.10(c)), and multiplying by the scaling Jacobian. 

A second approach to evaluating the A matrix elements is to approximate the 

curvilinear wedges by triangles. The area of a curvilinear wedge can be approximated 

by: 
21tRo 

NRI 
(6.96) 

where Ro is the maximum length of the wedges, and R. is the length at intersection. If 

the width of the wedge is known at the point of intersection then the area estimate is 

approximated by the parallel case of intersecting parallelograms whose widths are 

defined by the width of the wedges. Hence intersection or element area is given by: 

wedge 1 X wedge 2 
element area -

sinS 
(6.97) 

where S is the angle of intersection. This is a reasonably good approximation if the 
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number of electrodes N is large. 
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Figure 6. 10(a) u,v plane, (b) overlap in the x,y plane (Intersection of Curvilinear 

wedges), (c) overlap in the U,v plane. 
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The structure of the system matrix is shown in Figure 6.11. The structure is 

similar to the system matrix for the parallel orthogonal curvilinear geometry in that it is 

permuted block circulant and has the general form given in equation (6.98): 

Ao At Al AN- 1 AN - t At --
2 2 

At Ao At 
AN - 3 Al .. 

A= 2 (6.98) 
Al At Ao 

.. 
At Al 

AN- t AN- t Ao 
2 2 
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Figure 6.11 Plot of the matrix for S = 5 and N = 5 (eqn. 6.98) 
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6.5.2 Recursive Algorithms 

The block successive relation method can also be employed to find a solution 

to the system of equations. The formulation of the solution uses the approach detailed 

in Chapter four. The solution to the system in equation (6.98) is given by: 

AO+1 = An + yeld 
Id Id A (0 0) o 1,1 

(6.99) 

where 

(6.100) 

and is the difference between the measured normalised boundary potentials ( OVid Iv Id ) 

and the calculated normalised boundary potentials (OVid IVId)n. Step 2, as defined in 

Chapter five, is again omitted from the algorithm for evaluation of the Lagrange 

multipliers. This is due to the submatrices not having a structure that can be exploited 

to reduce storage. 

6.5.3 Direct Algorithms 

The approach is the same as the parallel curvilinear system, the details of which 

can be found in section 6.2. As the current distribution weighting is applied in the 

backprojection procedure, the structure of the associated system matrix is maintained 

and the matrix is permuted block circulant. 

6.6 Results 

The test phantom generated for the parallel curvilinear case was used for the 

divergent system. A resolution of 65 by 65 was adopted to present the results. The 

results presented in this section demonstrate that reconstructed images can be 

produced by the procedures described in this Chapter. A fuller analysis of the results is 

presented in Chapter seven, where data obtained from a hardware collection system 

are demonstrated. 
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6.7 Discussion 

The objectives of this Chapter were to define new models specifically for the 

opposite and dipole method of data collection in EIT, and to obtain images of the 

changes in resistivity from different sets of boundary profiles. An initial set of results is 

given in Figures 6.7 and 6.12 . These show that a resistivity image can be produced 

using the proposed models. A key objective in the development of these models was to 

maintain the structure of the associated system matrix. This allows the use of the 

procedures discussed in Chapter five. The structures of the associated matrices were 

maintained by applying the weighting for the current distribution during the 

backprojection operation and not during the evaluation of their Lagrange multipliers. 

The analysis presented in this Chapter clearly demonstrates that it is possible to 

adapt the constrained optimisation technique to the new geometries associated with the 

EIT system. A number of assumptions have been made in the analysis to assist in the 

development of the reconstruction procedure. The implication of these will be 

considered in Chapter seven. In the parallel and fan beam systems, the evaluation of 

the associated system matrix elements was made by precise estimates of the areas of 

intersections. These were reasonably straightforward for these cases due to the nature 

of the sources used to obtain the data. In the systems presented in this Chapter there is 

no guarantee that the equipotential lines follow the paths predicted by the 

transformations. The approximations used in the simulated results do not appear to 

degrade the reconstructed image. These estimates and their possible effects are 

considered in the next Chapter. 

The use of variational principles in EIT to derive models for the reconstruction 

of resistive images is not unique to this research. Kohn and Vogelius [6.1] proposed a 

variational method which is demonstrated with software phantoms by Kohn and 

McKenney [6.2]. However, the method presented in this research differs in a number 

of important aspects. The models derived produce images of the natural log of the 

difference resistivity, unlike the images produced by Kohn and McKenny [6.2] which 
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are static images which rely on the use of FEM's. to model the resistivity distribution. 

The CORT methods maintain the structure of the associated system matrix, thus 

allowing the use of the efficient algorithm detailed in Chapter five. In addition, noise 

match techniques can be exploited as demonstrated in Chapter seven. As yet, no results 

have appeared which demonstrate that their algorithms produce reasonable results with 

boundary data obtained from hardware phantoms or clinical measurements. The 

following Chapter will present such results, based on the COR T methods. 
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7 PERFORMANCE EVALUATION 
OF RECONSTRUCTION 

ALGORITHMS 

7.1 Introduction 

The purpose of this Chapter is to evaluate the performance of the results 

obtained from the new algorithms. The algorithms are evaluated with boundary data 

modelled from both mathematical (software) and hardware phantoms. The data 

obtained from the hardware phantom were obtained using the Sheffield Mark I [7.15] 

data collection system, to illustrate the viability of the technique in a clinical 

environment. 

To assist in the evaluation of the results, performance measurement parameters 

are defined as: a) spatial resolution, b) conductivity resolution and c) conductivity 

contrast [3.9]. These parameters are used by EIT researchers to determine 

measurement errors, movement artefacts and electrode location errors. Although the 

above parameters define the limits of the EIT data collection system, they do not 

included errors introduced by the reconstruction algorithms. Further parameters 

discussed below will be used to evaluate these properties. 

7.2 Phantoms 

To test the algorithms for EIT applications a controlled source was required 

which models the boundary data. This model is known as a phantom. Two types of 

phantom have been developed for evaluating reconstruction results. The first is a 

software phantom that attempts to model the boundary potentials of the medium under 

test using mathematical approximations, and the second, known as a hardware 

phantom, uses physical materials to model the boundary potential. The hardware 

phantom is a box or cylindrical shape filled with a material of homogenous resistivity 
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or with a collection of separate materials of different resistivity. 

The development of physical hardware phantoms is a complex subject as the 

real objects in a system under clinical examination are non linear and usually do not 

have discontinuities. An example of the range of organ impedance at low frequencies is 

given in table 7.1. (Barber and Brown 1984) [3.5]. 

Tissue Resistivity 

Cerebrospinal fluid 65!lcm 

Plasma 66!lcm 

Blood 150!lcm 

Liver 350 to 550!lcm 

Neural tissue 5800cm 

-grey matter 2840cm 

-white matter 6820cm 

Lung 727 to 2363!lcm 

Fat 2060 to 27200cm 

Bone 16600!lcm 

Table 7.1 The resistivity of organ tissue at low frequencies (20 to 100 kHz) 

Several researchers have addressed the issue of hardware phantoms by 

constructing resistor networks [7.1] or using tanks filled with a saline solution [7.2]. 

As yet, no accurate solution has been devised. To indicate the problem of constructing 

a hardware phantom, several issues need to be addressed regarding the materials used. 

i) What are the electrical properties at EIT frequencies and how freely can 

they be altered? 

ii) What is the temperature stability of the material used to model the 
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medium under examination? 

iii) How fast, if at all, do ionic species leach out of the material, 

especially if two samples are in contact? 

Due to these drawbacks, both types of phantom were used to evaluate the algorithms. 

The mathematical phantom gives a controlled source where the effect of additive noise 

could be studied, and the hardware phantom illustrated the problem of resolution due 

to current sensitivity. 

The hardware phantom constructed to model the boundary potentials is 

illustrated in Figure 7.1. It uses a clear perspex cylinder of 89mm internal diameter 

filled with a saline solution of 0.2% concentration. Glass and polyacrylamide rods were 

placed into the solution to model changes of resistivity at selected locations. 

One example of clinical data is also given to illustrate the contrast between 

hardware modelled data and real clinical data. This is not intended to be a full 

evaluation with modelled clinical data, as a detailed study would require more 

research. To fully assess the algorithms used in a clinical environment is outside the 

scope of this research. It is suggested that this would be a good area for future 

investigation. Further details of work on hardware phantoms can be found in the E.C. 

workshop on Phantoms for EIT [7.1]. 

The normalised boundary data created from the mathematical phantom was 

modelled from an image consisting of 127 by 127 pixels. This produced a set of 

boundary data with 15 samples per boundary profile for both geometries. The parallel 

curvilinear geometry has 15 boundary profiles over a range of 0 to 1t, and the 

divergent curvilinear geometry uses 15 boundary profiles over the range of 0 to 21t. 

The use of sub-sampling to model the boundary profiles is intended to improve 

accuracy. The phantom used in this research, is more complex than the Brown and 

Seager's version [3.4] using two objects to demonstrate the interaction between 

objects. 
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Figure 7.1 Hardware phantom 
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7.3 Reconstruction Performance Parameters 

To evaluate the quality of reconstructions obtained from an impedance imaging 

system, two sets of parameters are required~ those which measure the ability of an 

impedance imaging system to distinguish between different conductivity distributions, 

and a set which identifies the performance of the reconstruction algorithms. There are 

many different ways of measuring the performance of the impedance imaging system. 

In EIT, the change in pixel density represents a change in the natural log (In) of 

the resistivity corresponding to a physiological change [3.4]. In the system used in this 

research, the number of samples available for each boundary potential measurement, 

and hence the total number of boundary measurements, was limited. This limitation 

restricts the spatial resolution of the EIT system. It is suggested by Holder [7.3] that 

the spatial resolution (defined as the distance apart that two objects need to be 

separated to give an impedance value of lie of the peak changes), for a point 

impedance disturbance in a tank of saline might be expected to be roughly 20% of the 

tank diameter at the centre or 10 to 16% near the edge. This limit may change with 

improvement in data collection technology. 

The following parameters are used in EIT to define performance limits. In the 

evaluation of reconstruction algorithms, it is important to separate the data collection 

limits from the limitations of the algorithms. Seager [3.9] defines three parameters for 

system performance. 

a) The spatial resolution is the smallest region of a medium in which the conductivity 

can be independently determined. This is best illustrated with Figure 7.2. A small 

region of radius r. and conductivity (J. is shown within a larger circular region of 

radius rb and conductivity (J b. It is useful to think of the region (J. as a particular 

picture element (pixel) within the overall image. The spatial resolution is used to define 

the smallest region (pixel) in which the conductivity can be independently determined. 
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./ 

(0) (b) 

Figure 7.2 Circular objects with (a) centre anomaly and (b) an offset anomaly, 

Seager [3.9] defines this as: 

r 
Spatial resolution = -1t 

rb 
(7.1) 

b) The conductivity resolution is the smallest range in which the conductivity of a 

region (pixel) can be isolated. It is described as the fractional change in conductivity 

contrast and is defined as: 

~du" t' ~a ,--,on CfiVlty reso ufion = -
a 

(7.2) 

c) a is the conductivity contrast, and is the ratio of the conductivity of an anomaly to 

that of its surrounding region. Therefore: 

Conductivity contrast = cr. 
cr b 
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To understand how these parameters relate to the performance of the data 

collection system, consider the situation depicted in Figure 7.3 [3.9] for the dipole data 

collection system. 

d(Y 

Figure 7.3 Resolution illustration 

If a circular region of unit radius has S equispaced electrodes attached to its boundary, 

the angle between each electrode is 2x/S. The best resolution it is reasonable to 

expect at the boundary is equal to the electrode spacing. Suppose this resolution is 

represented by a square pixel of side 2x/S, centred x/S below the boundary, as shown 

in Figure 7.3. 

The effective resolution at the centre of the region may be found from the 

relationship (appendix G): 

lim (~)= I 
r. => 0 r. (I - c2

) 

(7.4) 

where r is the effective resolution, and both r. and c are defined in Figure 7.2. 

Substituting r. = x/S and c = I-x/S into equation 7.4 gives: 

7tS 
r=----

(27tS - 7t 2
) 

(7.5) 
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A plot of the resolution against the number of electrodes is presented below in Figure 

7.4, and the pixel size against the number of electrodes is given in Figure 7.5 

Resolution 

1. 0 r--r----,----.----r----r--~-__, 

• Resolution at centre 
0.8 

0.6 

~------~.~----------~. 
0.4 

0.2 

0.0 "--'-----I_---1._---L_---'-_--'-_--1 

o 20 40 60 80 100 120 140 

Number of Electrodes 

Figure 7.4 Effective resolution as a function of number of electrodes 

The graph in Figure 7.4 appears to indicate that at the centre of the region the 

resolution does not increase with the increase of the number of electrodes. This can be 

explained as follows. The current density is very high near the edge and very low near 

the centre. The contribution to the voltage at the boundary from any point is 

proportional to the product of Green's function (log distance in 2-D), the gradient of 

the log of conductivity and the gradient of the potential. Also, beyond some value of S, 

no more useful information about the central region can be obtained. As the 

information is limited, so is the resolution that can be achieved there. 

From the reciprocity theorem [7.4], if there are S electrodes, then at most 

S(S -1)/2 independent measurements can be obtained. If the independent 

measurements are used to create an image composed of equal size square pixels or 

round pixels, having length and diameter 1 and d respectively, then the smallest pixel 
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that can be resolved is shown in Figure 7.5. 

Relative size 

1.0 ,-----,---,-----.--_.-------,--------,_--, 
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Figure 7.5 Pixel size against number of electrodes 

The circular diameter d is defined by: 

d - 2[ 2 ]~ 
(S(S-I» 

and the length of the sides of the square is defined by: 

1 

/_ [ 21t ]2 
- (S(S-I» 

(7.6) 

(7.7) 

These parameters define perfonnance limits for the EIT system. The reconstruction 

algorithm resolution is also limited by the distribution of the current density in the 

medium under examination. 
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The variation of resolution in different position In the medium was also 

investigated by Eyuboglu et al. [7.12], using experimental data obtained from the 

Sheffield Mark I system. Their definition of spatial resolution is based on the full­

width-at-half-maximum (FWHM) of a point response function (pRF), where the PRF 

is modelled using a narrow conductor and an insulator placed in a tank filled with 

saline. For off-centre points, the PRF was found not to have the same FWHM in the 

radial direction and the tangential direction, i. e. perpendicular to the radial direction. 

The FWHM in both directions increases towards the centre. This increase in the 

tangential FWHM is less than the increase in the radial FWHM. The maximum FWHM 

at the centre was found to be 24% of the array diameter for both a conductor and an 

insulator using the Sheffield system. 

Eyuboglu et al. [7.12] give the minimum FWHM: for the conductor object as 

12.7% of the array diameter in the radial direction, but the tangential FWHM at the 

same point is given as 21 % of the array diameter. The minimum FWHM for the 

insulator object is given as 14.5% of the array diameter in the radial direction, but the 

tangential FWHM at the same point is 22% of the array diameter. The FWHM: 

resolution is better for the conductor than the insulator, as expected, because of the 

different perturbation of current flow lines. 

A number of other performance parameters have been suggested in the 

literature, but are not detailed here. These include distinguishability, [7.13] which is 

defined as the norm of the voltage differences divided by the norm of the current 

density and is a measure of the ability of a pattern of currents to distinguish between 

two conductivities. A detailed discussion of distinguishability is given by Cheney and 

Isaacson [7.14]. Visibility and sensitivity performance parameters are detailed in 

appendix G. 

7.3.1 Current Density 

The above analysis show that the spatial resolution for the dipole data 

collection method is not uniform due to the non-uniform distribution of current density 
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introducing a weighting factor. Barber and Brown [7.5] originally suggested that the 

weighting factor was required to compensate for the equipotential lines not being 

circularly symmetric for all pixels. This was redefined by Seager et al. [3.9] using a 

conformal transformation. Seager et al. [3.9] derive the weighting factor to 

compensate for the non-uniform current density (appendix G). The weighting is a 

compromise between resolution and accuracy of the reconstructed image. This is the 

same weighting factor for current density which Barber and Brown [7.5] developed for 

their algorithm and was chosen for the results produced by the CaRT algorithm in 

order to be compatible with the Sheffield data collection system. Hence the current 

density weighting: 

(7.8) 

where I and r are defined in Chapter three. This is combined into the backprojection 

operation. 

7.3.2 Reconstruction Evaluation Criteria 

To evaluate the reconstruction algorithm developed in Chapter six, a different 

set of parameters is required as the above parameters do not indicate the accuracy of 

the reconstruction algorithms. Most are qualitative, but a few methods have been used 

to indicate if convergence to a solution has been achieved. The simplest of these 

approaches is visual inspection, but this can be only a subjective measure of quality. An 

alternative approach is to plot profiles that are rows or columns of the digitised image 

matrix. A selected row or column, passing through the region of interest in an original 

phantom, is plotted using a common axis with corresponding rows or columns taken 

from the reconstructed images, as illustrated in Figures 7.19 and 7.20. Many 

researchers have adopted this technique [2.19][5.7]. 

The technique developed in this research aims to minimise the error between 
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the resistivity of the object under examination and the reconstructed resistivity. It is 

often useful for comparison purposes to have a single unit of measure for the closeness 

of reconstruction fit to the original (sometimes known as "goodness"). Several of these 

measures are available. These are [2.25]: 

1) The residual of each iteration: 

2) The average reconstructed density: 

-n 1 ~nn 
p =- V· 

M i=t I 

(7.9) 

(7.10) 

where p~ is the average resistivity of the image in the ith pixel for the nth iteration, and 

M is total number of pixels in the reconstructed image. 

3) The variance: 

2 1 ~ n -n 2 
o =- 111)Pi -P ) 

M i=t 

4) The distance or Q-value [2.21]: 
K J 

E( P; "r)2 
Q _ ~j _=t ___ _ 

",1 

E(p; _p)2 
j=t 

(7.11 ) 

(7.12) 

where K 2 is the number of pixels in the reconstruction, pO and p n are the original and 

reconstructed image vectors respectively, and p is the mean value of the original 

image. This measures the deviation of the reconstruction from the test picture. Hence 

the lower the value of Q (Quality), the higher the image quality. 

The use of Q for image evaluation cannot be considered as very reliable since 

large differences in only a few regions can give a large value of Q. In the EIT case, the 

accuracy of the modelled projection data is dependent on the number of sub-pixels 
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used to create it. If the number of pixels is reduced to match the reconstructed value , 

there is a greater possibility of error in the simulated projection. An illustration of Q is 

given in Figure 7.6. The optimum value for 'Y obtained from this method does not 

agree with the results presented in section 7.7. The latter uses the residue approach 

and is in good agreement with the reconstructions obtained from the model data. As Q 

was not considered as a reliable measure, the residual value eqn. (7.9) was also 

adopted to select desired parameters of image quality for this research. The residual 

value was adopted over the average and variance measures because it relies on the 

match between the measured boundary potentials and the calculated boundary 

potentials. If there is error in the modelling of the boundary potentials, this is not 

included in the measure, unlike the average and variance parameters. 

Q-value 
0.8 ...----,----,-----;------, 

0.7 

0.6 

0.5 

0.4 , y 
0.000 0.005 0~010 0.015 0.020 

Optimum predicted value 

Figure 7.6 Graph of Q-value venus 'Y Divergent System. 

It is normal practice to compare new reconstruction methods with those of 

convolution backprojection algorithms. In EIT system the main algorithm developed 

by Barber and Brown [1.17] is not easily reproduced, as part of the filter function is an 
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empirical function not given in the papers. Many authors describe this as a ramp 

function. [3.5]. Visual inspection of the Sheffield system's display, compared with the 

new approach, indicated that the new algorithm gave improved quality reconstructions. 

7.4 Errors Produced by Noise 

Noise limits the detection of the measured signal. Within the conductive region 

the smallest significant change that can be detected is that which yields a variation in 

the signal just exceeding the noise. This variation in signal is quantified here as the 

fractional change in potential compared with the actual potential value. 

It is possible theoretically to relate the statistics of the noise in the collection 

system to the errors in the pseudo inverse of the associated system matrix [5.4]. This 

allows the noise artefact to be minimised in the final reconstructed image. If the value 

of the iteration parameter D is large for the pseudo inverse of the system matrix MD 

(eqn. 5.32), then the pseudo inverse tends toward the true pseudo inverse i.e.: 

(7.13) 
D~OO 

MD is used to denote the pseudo inverse of both parallel and divergent curvilinear 

systems in this case. The 3-D presentation of the matrices for the parallel curvilinear 

pseudo inverse is shown in Figure 7.7. The figures show the change from the element 

dominance of M D
, for small D, to the block diagonal dominance of the pseudo inverse 

A+. 
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a) 

b) n = 5 

c) n = 20 

d) n = 50 

e) n = 100 

Figure 7.7 
3-D plots ofN = 5, S = 5, a) original system matrix, b) 

inverse at n = 5, c) n = 20, d) n = 50, e) n =100. Two views of each plot are given, 

one of which is rotated through 90° 
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,.. 

If AD and AD denote the Lagrange multipliers estimated at the nth iteration from 

the noisy and noiseless projection data respectively, then the variance of the error: 

(7.14) 

is obtained from equation (5.42) as: 

(7.15) 

where 11 denotes the additive noise process and EO denotes the mathematical 

expectation operator. Using the matrix theorem [7.6]: 

x TFx = tr[F xx T] (7.16) 

where F and x are N by N, and N by 1 matrices respectively, and tr. denotes the trace, 

for white noise, equation 7.16 becomes: 

(7.17) 

smce: 

(7.18) 

and 

(7.19) 

where a 2 is the noise variance. The trace of the matrix is equal to the sum of its 
'1 

eigenvalues, hence: 
1 T) 2"",( 0)2_ 2 -E(e e = (J'1 L..J ql - (JE 

N I 

(7.20) 

where q~ are the non zero eigenvalues of MD . 
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As the iteration number increases, the estimate of in approaches the true 

solution of the noiseless problem, and therefore the a; approaches the true mean 

square Lagrange multiplier error. 

Goutis and Drossos [5.7] found that for large n the eigenvalues of [Mn r 1 are 

small, and correspondingly the eigenvalues of M n become large and a! increases. 

Therefore if the iteration is too high the noise is amplified, but if a very low choice of n 

is used, then a! is a poor measure of the Lagrange multiplier error. Values of 

Ilin 
- AT II where AT denotes the true solution of the noiseless problem are plotted 

against n and y. These are presented in Figure 7.8 and 7.9 for the curvilinear and 

divergent curvilinear systems. The noiseless case converges to the exact solution for a 

low value of y. The true noiseless solution assumes that the sample space used is 

relatively small. In the EIT system this is not true as the number of electrodes is 

limited. This leads to aliasing error that is always present in this low resolution system. 
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Figure 7.8 Ilin - AT II against n for parallel curvilinear system 
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Figure 7.9 Ilin - AT II against n for divergent curvilinear system 
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It was observed that for a low value of y , the minimum of Ilin - AT II occur at 

approximately the same iteration number at which the noise and error energies are 

matched. This was also proved by Goutis and Drossos [5.7] for fan beam geometries. 

To demonstrate this, the simulated boundary data were corrupted in separate tests with 

additive Gaussian noise. The signal-to-noise ratio (SNR) was calculated as: 

SNR = 10.log1o (7.21) 

The addition of Gaussian nOise was used to demonstrate the robustness of the 

technique. The nature of the true noise is unknown and would require further research 

to consider effects such as temperature variations that cause deviation in the resistivity 

and the effect of the equipotential paths not following the defined transformation. The 

above could only be evaluated by clinical application of the algorithms. 

7.5 Interpolation and Averaging 

The images reconstructed in EIT are smooth reconstructions in the sense that 

the resistivity of the medium under investigation does not have large changes of 

resistivity from one region to the next. The range of values for the medium under 

investigation is given in table 7. 1. With the collection data limited by the number of 

samples, the noise can be reduced by linear interpolation between adjacent Lagrange 

multiplier sub vectors. This produces smoother reconstructions as demonstrated by 

Drossos [5.7] on fan beam data. 

Smooth reconstructions can also be produced by averaging a given set of noisy 

Lagrange multiplier vector estimates. If x denotes a noisy vector written as: 

x=i+ll (7.22) 
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where i is a noiseless vector, and 11 is a vector of zero mean white noise and if i , A 

denotes an average vector formed by averaging K different noisy vectors, defined by: 

(7.23) 

then since i A is a weighted sum of independent Gaussian random variables, the 

probability density PiA (i A) is also Gaussian [7.7]. Since PiA (i A) is also Gaussian, it 

is therefore completely characterised by the bias and the variance of the estimator. The 

expected value of x A is equal to the expected value of Xn and consequently the bias is 

equal to zero. To obtain the variance of the sample mean, [7.8] compute: 

1 N-l N-l 

(7.24) E[i!] = -2 LLE[x1x j ] 

K 1=0 j=O 

hence: 
1 N-l N-l N-l 

(7.25) E[i!] = -2 [LE[x~]+ LLE[xl]E[xj ]] 
K 1=0 1=0 j=O j;l:l 

and 
"2 1 2 2 K-l 

E[xA] = -E[Xn]+xA 
K K 

(7.26) 

Thus: 

var[xA] = E[i!]-{E[xA]}2 = ~(E[X!]-X!) (7.27) 

and 
2 1 2 

(J X A (j) = K a fI(j) (7.28) 

where E[.] denotes the expected value. a!A(j) and a~(j) are the variances of X A and T1 

at the jth sample. Equation (7.28) indicates that as K increases, the variability of the 

jth sample decreases, and xA approaches the noiseless vector x. 

This procedure has been successfully applied by Gonzalez [7.9], when 
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averaging a set of noisy images. Herman [1.26], has also reported that an average of 

successive noisy reconstruction estimates is a better approximation to the original 

image than the individual estimates. 

Drossos [5.4] showed for fan beam geometry that if the nth noisy Lagrange 

multiplier vector estimate 'AD is written as: 

(7.29) 

where in is the nth estimate of the noiseless Lagrange multipliers vector, then the 

covariance matrices R e8 ' R'I of the error vector & D, and noise vector 11, are related by: 

(7.30) 

For white noise R'I = (J~I, where (J~ is the noise variance and the covariance matrix 

Rea is diagonally dominant. Hence, the error vector samples are nearly uncorrelated. 

Based on the above, the following averaging procedure can be defined for K 

successive Lagrange multipliers vector estimates before and after the nth iteration, 

where the variance of the projection error &p = (p - p) equals approximately the 

variance of the additive noise. Hence the above averaging can be written as: 

'A~K = 1 ('AD-K + •• + 'AD-1 + 'AD + 'AD+1 + •• +'AD+K) (7.31) 
2K+l 

'A~K = 1 (MD-K+ •• +MD-1 +MD +MD+1+ •• +MD+K)p (7.32) 
2K+l 

Drossos [5.4] found that this procedure produced smoother reconstruction. 

7.6 Estimating the Optimum Number of Iterations and Choice of Relaxation 

Factor 

To compute the Lagrange multipliers, it is desirable to have a good estimate of 

the number of iterations required, since for noisy data, once the optimum number of 

iterations is passed, the quality of the image degrades for more iteration and hence 

greater computation time. All authors suggest that the choice should be in the range 

o < '1 < 2 for the algorithms for other geometries to converge, although no proof of 
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the optimum has been given for the type of matrix used in this system. The ideal choice 

of the optimum number of iterations and the relaxation factor was obtained from the 

curves presented in Figures 7.10 and 7.11, in which lip 0 
- p n II the boundary error 

energy is plotted against n the number of iterations. 

The data are presented in an inverted 3-D form to demonstrate the optimum 

choice for relaxation parameter that occurs at the peak of the graph. The selected 

relaxation parameter value 'Y is then plotted in 2-D to illustrate the convergence rate. 

To obtain a Gaussian distribution of the error in the pseudo inverse, a low value of 'Y 

with a large number of iterations is required. This empirical method was chosen 

because there is no documented analytical approach available in the literature. 

Two algorithms have been developed for reconstructing resistivity images in 

this research; the direct method based on the Jacobi iterative technique and the 

recursive or successive relaxation method. Both approaches use similar values of y 

and D. 

The choice of n will depend upon the noise in the collection data. It was shown 

in section 7.4, that the statistics of the noise in the collection system could be related to 

the errors in the pseudo inverse of the associated system matrix. This assumes that the 

noise statistics are available from the collection system. For the modelled boundary 

data it was possible to control the noise source so that the statistics were known. This 

is not the case for data obtained using the Sheffield system. Noise due to the effect of 

lead capacitance is eliminated by using the difference data, but noise statistics due to 

other sources have yet to be fully investigated. This is beyond the scope of the research 

presented in this thesis. To select the required number of iterations for the data 

obtained from the Sheffield system, the true Lagrange multipliers AT were obtained by 

modelling a simple object (glass rod placed in the centre of a tank of saline solution). 

The error between AT and the Lagrange multipliers obtained from the Sheffield system 

was minimised to select a suitable value of D. 
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Figure 7.10(a) 3-D Plot of Error Energy, versus n the number of iterations, 

and y , for Direct algorithm, Parallel orthogonal case. 
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Figure 7.10(b) 2-D Plot of Error Energy, versus n the number of iterations 

for Direct algorithm, Parallel orthogonal case with optimum 

value of y = 0.001, chosen from Figure 7.10(a). 
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Figure 7.11(a) 3-D Plot of Error Energy, versus n the number of iterations, 

and y , for Direct algorithm, Divergent orthogonal case. 
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Figure 7.11(b) 2-D Plot of Error Energy, versus n the number of iterations for 

Direct algorithm, Divergent orthogonal case with optimum value 

of y = 0.002, chosen from Figure 7.11(a). 
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From the plots obtained using modelled dat~ it is suggested that a relaxation 

parameter y = 0.001, with n = 50 (Figure 7.10) is appropriate for the parallel 

curvilinear system. This is illustrated in Figure 6. 7(b) using modelled data of two 

elliptic objects shown in Figure 6.7(a). The divergent collection system was found to 

give the best results when 'Y = 0.002, with n = 50 (Figure 7.11). This is illustrated in 

Figure 6. 12 for the same test phantom as used for the parallel curvilinear system. This 

assumes that no noise is introduced into the collection data. 

Figure 7.12 is example of a reconstruction for which variance of the error 

between the boundary data and the estimated boundary corresponding to the Lagrange 

multipliers used to obtain the reconstruction are approximately equal to the mean and 

variance of the added Gaussian noise. The error is matched for 20db (eqn. 7.21) of 

additive noise for parallel curvilinear geometry. The result demonstrates the best 

obtainable image in the presence of noise, even with limited collection data. This was 

repeated for the divergent geometry in Figure 7.14, and vector plots of a region of 

interest are also presented in Figures 7. 15 and 7. 16, to illustrate the effects of adding 

noise to the projection data. 

It is possible to reduce the computation time in both the Jacobi and recursive 

algorithms by using a sub-optimal feasible solution SOFS [4.1]. The inverse of the 

associated system matrix converges to a reasonable solution after about five iterations, 

although this will not have the statistics of the system noise matched to those of the 

errors in the pseudo inverse. The distribution of the error will not be Gaussian, and this 

may reduce the distinguishability of some feature within the reconstructed resistivity as 

illustrated in Figure 7. 13 
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Figure 7.15 Plots of regions of interest vectors for parallel curvilinear images. 
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Figure 7.16 Plots of regions of interest vectors for divergent curvilinear images. 
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7.7 Speed and Storage 

In the table presented at the end of Chapter five it was demonstrated that for 

X-ray tomography the speed of the direct algorithm approaches that of the 

convolution. As there is no equivalent convolution algorithm in EIT, and the filtered 

backprojection algorithm developed by Barber and Brown [7.5] is not fully detailed in 

the literature, an equivalent comparison is not possible. The computation time for all 

the algorithms is dominated by the backprojection operation, as this forms the main 

kernel of most algorithms. The main disadvantage with the CORT EIT algorithms is 

the storage requirement, although various procedures can be applied as detailed in 

Chapter five to reduce this requirement. The areas of equal elements in the submatrices 

cannot be exploited as for the parallel and fan beam cases to minimise the storage 

requirements in the same way. The submatrices generated by the EIT's equipotential 

paths do not have identifiable structures which can be exploited. 

7.8 Sheffield System 

The results presented m the next figures were reconstructed usmg data 

obtained from the Sheffield Mark I system [3.4]. This uses 16 electrodes to collect and 

inject the currents. Voltage measurements are not made either side of the current 

injection electrodes. This gives a total of 104 independent measurements. Using 

reciprocity [7.4], this was converted into 208 measurements to give a complete set of 

16 projections with 13 samples per projection. To improve this, an endpoint 

interpolation scheme was used to extend the number of samples to 15 per projection. 

This gave a slight improvement in the reconstructed image for objects close to the 

electrodes. The limitation of only 13 samples is due to the problems of measuring the 

potential both sides of the current injection electrodes. 

The EIT systems make use of the reciprocity theorem [7.4] to improve speed. 

This states that "the voltage measured by a pair of electrodes when current is injected 

through another pair, should be the same as the measured voltages when interchanging 
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the voltage measunng and current-injecting electrode pairs". This assumes the 

resistivity is homogeneous. In practice, these voltages do not coincide, and the mean 

reciprocity error is given as the square root of the sum of the squares of the differences 

between reciprocal values, divided by the number of value pairs. 

The data obtained from the Sheffield system uses IEEE 754 standard floating 

point number format. This format was used to allow easy transport of the data files 

between different computers (pC's). Each potential reading is converted to the above 

format using a 12-bit ADC. As EIT images are formed from a change in the impedance 

distribution within a conducting region, two data frames are required; one before 

change in resistivity has occurred and one afterwards. The data frame collected before 

the change occurs is called the reference frame. The reconstructed image shows the 

spatial distribution of impedance change from this reference frame. Often one 

particular frame is chosen as the reference frame for the whole measurement. In 

general, the reference frame is not different from any other data frame and if a series of 

data frames is collected over a period of time, anyone of the data frames could be 

chosen as the image reference. 

The boundary values are produced from 104 independent boundary voltage 

measurements. For each boundary voltage Vn, which has a value Vrer in the reference 

frame, the normalised resistivity changes are obtained from the normalised boundary 

changes, given by: 

(7.33) 

A tank of saline solution was used with a glass rod and a polyacrylamide gel, 

formed into a rod to demonstrate the new algorithm, with data obtained from the 

Sheffield collection system. The gel is sometimes known as 'solid water' and consists of 

95% water, the conduction properties of which can be changed by addition of saline. 

The Sheffield system can be configured to collect data only in the dipole mode, 
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therefore only the divergent curvilinear algorithm can be tested. One reconstruction of 

an image obtained using clinical data is presented in Figure 7.21. This illustrates the 

type of image that can be obtained using this method. All the images have been 

rescaled to use a linear scale range for convenience. 
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Figure 7.18 Reconstruction of Real Data From Sheffield System with glass rod of 

diameter 6.3mm at 16 mm from the centre of an 89mm diameter tank. 
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Figure 7. 19 Reconstruction of Real Data From Sheffield System with 

polyacrylamide rod of 6.3mm at the centre of an 89mm diameter tank. 
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Figure 7.20 Reconstruction of Real Data From Sheffield System with 

polyacrylamide rod at side with diameter of 6.3mm and tank diameter of 89mm. 

204 



10 

.P 
C 

20 30 

Ie 

40 50 

.2C 

60 

15.0 
1 1.0 
7 .0 ~:"'''='''''':= 

3.0 

Figure 7.21 Example of reconstruction of clinical data obtained from the 

Sheffield system 
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7.9 Discussion 

The main objectives of this Chapter are the evaluation of the new algorithms~ 

with data produced using a mathematical phantom, and data obtained from the 

Sheffield Mark I system. Before the evaluation was presented, sets of parameters used 

to measure the performance of the algorithm were introduced, and a number of issues 

not considered in Chapter six were also addressed. These issues include the 

distribution of the current within the object to be reconstructed, which affects the 

attainable resolution and the accuracy of the final reconstructed image, and the choice 

of the number of iterations n and relaxation "( parameter used in the algorithm to 

maximise the quality of the reconstructed image. 

It was found that the exact pseudo inverse results in a poor solution due to the 

effects of noise amplification [4.1 ]. However, Drossos [5.4] showed that if the 

iterations are allowed to continue, the error energy will increase due to system noise. 

The algorithms developed in this research can be adjusted such that the statistics of the 

noise are made to match the statistics of the error in the pseudo inverses of the 

associated system matrices. This is achieved in the iterative case by terminating when 

the error attains a sufficiently small energy. The criterion for termination in the iterative 

case takes the form of a noise matching constraint. Other approaches such as AR T3 

[7.10] for selection of the number of iterations where the equations are relaxed to 

improve convergence, were considered. In the AR T3 case, the hyperplanes in the 

solution space which correspond to the images matching each projection are 

broadened to form hyperslabs [7.10], and the final solution must lie within the 

intersection of these hyperslabs. These modifications were found to give some 

improvement in image quality. However the resulting solutions are no longer optimal 

and the structure of the associated matrix is not maintained. 

It was shown in section 7.4 that improved quality reconstructions could be 

obtained when the statistics of the noise are matched to the statistics of the error in the 

pseudo inverse of the associated system matrix. This was also demonstrated using the 
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modelled data for both types of EIT geometry. In the EIT environment the statistics of 

the noise still need to be determined. The difficulty in obtaining a model of the 

statistics was born out of the discussion on phantoms. These statistics can vary 

depending on the region of the body under examination, and can be obtained only from 

clinical data. The statistics of the stochastic model can also be influenced by a number 

of other sources: data collection noise, quantisation noise, aliasing error and the 

variations in the modelled geometry due to the equipotential lines not following the 

defined paths. The latter can be considered as additive noise in the associated system 

matrix. Errors, such as aliasing due to under-sampling, will be reduced as data 

collection methods improve. The errors due to the equipotential lines not following the 

defined transformation will also be minimised as the number of samples is increased. 

This is due to the dipole transform used to approximate the equipotential paths being 

closer to the true equipotential lines. 

The number of samples used in this research is based on the number of 

electrodes used by the Sheffield data collection system. New systems have appeared 

with larger numbers of electrodes [7.11] which should improve the spatial resolution of 

the EIT system. The sampling problem is also related to the data collection method. 

The dipole method is favoured as the opposite electrode collection system gives only 

half the number of boundary measurements, limiting the spatial resolution. 

As the EIT system has no suitable stochastic model, an estimate was made to 

select the value of the number of iterations n for the reconstruction of data obtained 

from the Sheffield data collection system. A set of boundary data was modelled from a 

mathematical phantom of a simple object, similar to a glass rod placed in the centre of 

a tank of saline solution. The modelled boundary data were used to create a set of true 

Lagrange multipliers from which the error between the Lagrange multipliers obtained 

from the saline tank and the true Lagrange multipliers was minimised to select n. This 

gave a reasonably good quality reconstruction. To find the exact value will require 

using the technique on clinical results so that statistical information can be used to set a 
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boundary. For example, a 95 per cent confidence region is usually chosen, whereas a 

90 or 98 percent level may be more appropriate in some cases [4.1]. 

It may be appropriate in EIT to use an approach introduced in [4.1], in which 

fuzzy sets are used to quantify the uncertainty in the elements of the set, so that an 

element with a high membership function is considered more desirable than one that is 

low. Higher order statistics and multiple constraints appropriate for EIT can be 

incorporated into the model, but these could cause problems with excessive 

computation requirements. 

If the CORT methodology is compared with other existing reconstruction 

algorithms, there are some similarities. The ART can be considered as an example of a 

constrained optimisation algorithm, in that it iteratively updates its estimates of the 

image by back projecting the errors between the measured projections and those 

corresponding to the current image estimate. This procedure converges to the image of 

minimum energy that matches the measured projections. The Newton-Raphson method 

described in Chapter three may also be considered as a constrained optimisation 

algorithm. Both approaches have a major drawback in that the associated system 

matrix structure is large, and does not contain useful structure to minimise the storage 

and computational requirements. 

The CORT algorithms developed for X-ray and PET systems make use of areas 

of equal elements to produce reasonable reconstruction speeds. Typical X-ray systems 

have 300 projection measurements with 500 samples per measurement, giving 

associated system matrices of a greater order of magnitude than EIT. In EIT systems 

the samples are limited by the number of electrodes, and therefore the size of the 

associated matrices is much smaller. Also, the structures of the submatrices do not 

have areas of equal elements, a feature which was used in the X-ray and PET systems 

to minimise the memory requirements. This does not cause a problem in EIT with 

regard to speed of the reconstruction as the number of computational operations are 

reduced. 
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A summary of the advantages and disadvantages of the new approach to EIT 

reconstruction is given below. When relevant, they are compared with the Sheffield 

system. 

Advantages: 

a) Computational speed is comparable with the Sheffield system algorithm. 

b) A valid image model is used in terms of the N, 1-D Lagrange multipliers that 

are computed from all the available potential measurements. 

c) It matches the statistics of the Gaussian noise (variance and probability 

density function), to those of the potential measurement error. 

d) Prior information about the structure of the image to be reconstructed or the 

noise statistic can be built into the algorithm. 

e) Averaging and interpolation can be used to improve the reconstructions 

without any additional real-time computations. 

t) Higher quality reconstructions than Barbar's and Brown's algorithm [7.5] are 

obtained from data with and without noise. This is particularly true in situations 

where the data set is limited. 

Disadvantages: 

a) A larger amount of computer memory is required than for to the Sheffield 

algorithm. 

b) All the boundary profiles must be collected before reconstruction can begin. 
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8 SYSTEM DESIGN 
AND MODELLING 

8.1 Introduction 

In the preceding Chapters, the analysis has concentrated on the adaptation of 

the constrained optimisation technique for the EIT system. Computing efficiency was 

increased by improvement of the algorithm to minimise the number of operations 

required. Some parts of the procedure could not be improved by analytical means. One 

solution for obtaining a high performance from the reconstruction procedure is to 

employ a hardware implementation for the mathematical solutions. This Chapter 

concentrates on the development of hardware accelerators to perform specific 

functions within the reconstruction algorithm with the objective of obtaining real time 

reconstruction speeds. It is not the intention of this research to implement the solution 

in hardware, but to derive possible designs which could be used in feasibility studies 

for future development. Several approaches are investigated. 

A key issue in any system design is to identify the bottlenecks in processing the 

data. Although a general purpose computing engine can be used to perform many of 

the computation functions required by image reconstruction, the parameters of the 

computational problem for reconstruction are fixed, that is, the resolution of the 

reconstructed image and the number of samples used for the projection data are both 

fixed before computation begins. To enhance performance, specific machines are 

required to perform parallel operations. 

The processing engine to be described was evaluated by modelling it using a 

Verification Hardware Description Language (VHDL) system known as Verilog [8.1]. 
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8.2 Design Methodology 

There are several systematic methodologies suggested in [8.2][8.3][8.4][8.5], 

to find a definitive solution for parallel processing development. The most well known 

is Kung's [8.6] approach to the design of parallel systems. It was adopted in this 

research as it has yielded many examples of successful solutions. Kung's approach was 

formulated primarily for a systolic system, and although the solutions obtained in this 

research are not systolic, there are elements of similarity. 

A systolic system [8.7] is a network of processors that rhythmically computes 

and passes data through the system. An important concept in systolic design is a high 

degree of regularity, with simple structures, suitable for implementation in Very Large 

Scale Integration (VLSI). A guide-line in this design is therefore to connect a large 

number of identical processing elements with a simple architecture which still maintains 

a certain degree of versatility. This versatility was required to obtain different versions 

of the proposed system for evaluation. 

Two forms of mesh connection seemed particularly suitable for the design and 

are investigated in different versions~ the linear in version one, and the orthogonally 

connected processor array in version two. 

(a) Linear Connection (b) Orthogonal Connection 

Figure 8.1 Two Mesh Connections for Data Transport 

The Backprojection Engine (BPE) also makes use of the model of systolic 
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communication [8.8] in that each processor element (PE) of the array can operate on 

incoming data and move it, if necessary, to the output register without the need of 

storing the data in its local memory first. The arrays in the proposed systolic system 

developed in this research show that there is no need to send partial results from one 

PE to another. 

8.2.1 Partitioning and Limitations 

The simplest approach to mapping any numerical algorithm on to hardware is 

to assume that there is unlimited resource of hardware. This approach has been 

adopted in the analysis presented in this Chapter. Difficulties arise when problems of 

different sizes need to be mapped on to fixed dimensional arrays. It is assumed that in 

this system no partition scheme is required, as the final hardware solution would be 

implemented with a VLSI structure. Each PE is designed to be as simple as possible to 

minimise the gate count required for implementation. 

Proposals do exist for similar solutions where Ipsen, Suad and Schultz [8.9] 

used systolic arrays for matrix inversion. They partitioned an any-size problem into 

sub-problems that operate with triangular sub-matrices. This reduces the dimensional 

requirements to the size of the available hardware. Any partitioning scheme brings an 

overhead of increased computational time. 

A partitioning scheme proposed in the original development of the system 

[8.10] was to subdivide the image into sections. The data would be tagged with x and 

y bytes, identifying its final location in the final reconstructed image. A similar 

approach was taken by Lattard, Faure and Mazare (1990) [8.11] in which their 

massively parallel architecture for neural net emulation and image reconstruction uses a 

routing tag dx and dy to identify the pixel location. The approach that could be taken 

in this research is to partition the image into columns. If the resource is available, all 

the columns can be reconstructed simultaneously. 
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S.2.2 Top-down Mapping 

Any array algorithm is a set of rules for solving a problem in a finite number of 

steps by several interconnected processors. It is design dependent on the machine 

characteristics and also on the interconnection strategies. Kung [8.6] states that the 

main aim for a given algorithm in algorithm-oriented array processor design is to 

systematically derive any array processor. To this end a simple notation has been 

adopted and is described in the next sections. The design method is formulated in three 

stages: 

i) Generating the dependence graph. This defines the dependence of 

each node on its preceding input. 

ii) Mapping the dependence graph on to a signal flow graph. 

iii) Deriving an array structure from the signal flow graph. 

From discussion in Chapter four, clearly the optimising algorithm offers the 

advantages of image quality and computational efficiency. Although the algorithm is 

efficient when implemented on a serial machine, the main bottleneck in performance is 

the technique of backprojection of Lagrange multipliers. The machine presented in this 

Chapter concentrates on the construction of the backprojection operator. Only the 

parallel data collection system is considered. 

Two main assumptions are made for this implementation. First, the collection 

geometry is fixed, thus predetermining the size of S and N. Second, the size of the final 

reconstructed image is also fixed. These assumptions are not unreasonable as in most 

reconstruction system these parameters remain fixed. From Herman [2.19], the 

backprojection function can be defined for the Lagrange multipliers as: 

B). (r, 4» ) = f: l( r cos(S - 4»),9 )d9 (S.l) 
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This integral is evaluated in two parts. The integral is first approximated using a 

Riemann sum as: 

N-l 

A L A.(r cos(mA - <I> ),mA) (8.2) 
m=O 

This is followed by interpolation. In most CT systems, nearest neighbour or linear 

interpolation is used. Nearest neighbour is the most common because of its lower 

computation costs. 

The equation for the Riemann sum, given above, is an approximation in terms 

of polar co-ordinates. Figure 8.2, illustrates the summation of values at a single point. 

Each A. sum intersects a single location on the polar map. The position of the single 

point is defined by r and e . 

y 

I P Single raysum point 

r 

l = cos(8-<p) 

Figure 8.2 Polar Map 
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Figure 8.3 Polar Map superimposed on rectangular pixel grid. 

The distance 1 defines the position of the Lagrange value that is added to this point in 

the co-ordinate space defined by the polar map. P in the polar space defines not only 

the A. sum intersection location, but also the location of each pixel in the rectangle 

space. If the Cartesian co-ordinate space is superimposed on to the polar space (Figure 

8.3), the location of each pixel in the rectangular space, r, e and therefore I, can be 

predetermined. 

This assumes that the A. sub-vector is continuous. As the sub-vector is sampled 

at discrete points, there is need for interpolation schemes to decide what percentage of 

the closest A. value will be assigned to the location in the rectangle space. The simplest 

approach is to use a nearest neighbour interpolation, where the nearest A. is assigned to 

the point in the rectangle space. Although this may not give the best reconstructions 

when data are limited, it does reduce the computation overheads required. Using this 
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interpolation scheme, the position of the Lagrange sub-vectors summed at point P can 

be defined by I. The latter is pre-computed before reconstruction, and is dependent 

only on the fixed geometry of the reconstruction data collection system and the final 

reconstructed image resolution. The 1 values can be stored as a set of address offsets in 

a host computer system. As the pixel resolution and the data collection system 

resolution remain constant, the address offsets do not change their values. Thus for a 

single pixel location, the following dependence graph can be constructed as illustrated 

in Figure 8.4. 

8.2.3 Stage I: Dependence Graph Design 

The dependence graph is a time independent graph which defines the 

dependence of an operation on the preceding operation. This is sometimes known as 

the index space. The dependence graph is relatively simple for this system as recursion 

can be eliminated. Using nearest neighbour interpolation requires only the defining of 

an address offset so that the values are added at the correct locations. The values 11 to 

IN - 1 are predefined. 

Ai.--------------------­

Ai
1
-----------------­

Ai3----------------~ 

A I N.l---------------------' 

P = reJe 

I N• 1= r cos(e - <1» 

e = 1t/N 

Figure 8.4 Dependence Graph for a single element 
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8.2.4 Stage II: The Signal Flow Graph Array Design 

The Signal Flow Graph (SFG) consists of two basic elements. A node is 

denoted by a circle representing an arithmetic or logic function performed with zero 

delay, e.g., Multiply, ADD, OR, etc., and an edge denotes either a dependence relation 

or a delay [8.12]. To map the dependence graph on to the signal flow graph, a simple 

projection procedure is adopted which assigns to a PE the operations of all nodes 

along a line. Figure 8.5 shows the SFG for a single quadrant and the data ordering 

required for a 3 by 3 array with projections. Interpolation is left out at this point for 

clarity. Interpolation depends on the resolution of the reconstructed image and the data 

collection samples used. In this SFG the circle is used to denote an ADD operation 

only. The type of structure that emerges from the parallel algorithm shows the need to 

select data locations to assign to specific PElS. This is performed by ordering the data 

into N blocks structured in serial streams. The ordering offsets are calculated once, 

then stored in a look-up table for future use. The offset is assigned to the Lagrange 

value by the host. 

8.2.5 Stage ill: Hardware Mapping 

Mapping the SFG on to an array is performed by a one-to-one operation of 

transforming nodes into processors. Mapping is algorithm dependent and this limits the 

choice of approaches. 

A simple approach was adopted by assigning one PE to each pixel in the final 

reconstructed image. However, difficulties arise when different sized systems need to 

be mapped on to fixed dimensional arrays. A partition scheme is required to adapt the 

array size. The argument for a single PE per pixel is based on the assumption that each 

PE is a simple VLSI structure would be implemented using Wafer Scale Integration 

(WSI) methods. 
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8.3 System Description 

Several alternative approaches can be adopted in the construction of the 

computing engine that will subsequently be called the Back Projection Engine (BPE). 

Prototype systems based on bit-serial communication between PEls are presented. The 

system architectures for the two systems are presented in Figure 8. 12 and Figure 8. 18 

It is proposed that both systems comprise S by S PEls, configured in a 2-D orthogonal 

array. Each column of the array will depend on the size of the partitioning. The column 

can be subdivided to reduce the number of PEls required. There are several common 

features between the different versions of the BPE. All the PEls are evolved from a 

general Von Neumann processor architecture. The choice of a PE based on a simple 

Von Neumann machine allowed adaptation of the system in its development. A mixture 

of behavioural and gate level description is used in its evaluation. The main component 

parts for each PE are shown in the diagrams presented in Figures 8. 11 and 8.17. 

8.3.1 Mapper 

The BPE performs its backprojection computation on a fixed set of data, the 

Lagrange multipliers. The assignment of a multiplier to a PE depends on the relation of 

the collection geometry to the size (in pixels) of the display. Since the system 

presented in this research uses one pixel to represent one PE, the same relationship 

holds true for the collection geometry and PEls. Therefore, additional processing is 

necessary for the correct mapping of the Lagrange multipliers on the orthogonal PE 

array. 

The main task of the mapper is ordering of data prior to input into the 

processor array. This must be performed as quickly as possible to take best advantage 

of the rest of the BPE. The assumption is made that the Lagrange multipliers have been 

computed and the data is stored so that the Mapper can obtain access to it in its 

original sampling order. It was shown in section 8.2.4 that a fixed set of data can be 

obtained from an investigation of the projection and display geometry. This gives all 
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the necessary infonnation about how the Lagrange multipliers have to be mapped on to 

the PE array. 

The data input for the BPE can be regarded as a wavefront of data bytes which 

is transported through the PE array synchronously, from column to column to the 

destination column of processors. A destination processor is invariably the first PE 

reached that is in accumulation mode. Since the data bytes carry no infonnation about 

the destination, the assignment of the byte to the correct PE can be detennined only by 

the order in which it is fed into the array. The sorting of the data is based on an 

algorithm known a Binsort [8.13]. The Mapper can be regarded as a hardware 

implementation of this algorithm. The amount of hardware resource needed for its 

implementation is quite large, but this is justified by the simulation results presented in 

section 8.6. The algorithm was chosen not only for its high efficiency, but also for its 

structural resemblance to the data transfer organisation between the Mapper and BPE. 

The basic idea of the Binsort is that data are sorted by certain criteria. For each 

criterion a "bin" is available into which are put the data that fulfil the criterion. This 

criterion defines the destination of the Lagrange multipliers. In consequence, the "bins" 

must in some way represent the processor locations. This is done by assigning a (small) 

memory (the so called queue memory) to each processor. The control over the 

memories lies in the infonnation stored in the location memory. It contains the vital 

infonnation about the spread number and location address. A location memory word is 

used to distribute the data byte by controlling gates to the queue memories that 

correspond to the destination PEls of the multipliers. These gates are connected to the 

memory write signals of the queue memories. 

The phase in which this data sorting is carried out is called the collection phase. 

When the complete set of data is stored in the queue memories, a transition is made to 

the distribution phase. The data are then read out of the memories in a known order so 

that the multipliers will reach their destination PE. 

An n bit distribution control signal IS responsible for coupling the 
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corresponding memories of each 0 memory blocks on buses 1 to 0, to load the output 

registers synchronously. The contents of the memories 11,21, .. ,01 are read first before 

coupling 12,22, ••• ,02 until finally the contents of all memories have been read. 

8.3.2 The Cootrol Memories 

The location memory stores the two-part information of spread values and 

location addresses in the following form. The word size corresponds to the size of the 

array (0 by 0), therefore the address of a PE is represented by the place of its assigned 

bit in this vector. PEu is assigned to the LSB, PEnn to the MSB. The bit index k in the 

memory word for a PEIJ is given by: 

k=o(i-l)+j-l (8.3) 

with the index of the LSB k = 0, and the index of the MSB k = (0 x n) - 1. For each 

Lagrange multiplier there is one memory word. The memory length is then equal to N 

x S, and the total memory size is given by N x S x 0 x n bits. The spread number is 

simply the number of set bits in one memory word. The control function of the 

memory is achieved by connecting it to a hold register which is enabled when a new 

byte has been received. 

The organisation of the queue memory must obey the following requirements. 

The stored multipliers are 8-bit words. Each queue memory must be capable of storing 

the value assigned to one of N PE's. The memory size is thus determined to be 8 x N 

bits. Both memories are addressed by the queue memory address counter, and the local 

memory address counter. The queue memory address counter will be counted up 

during the collection phase, and down during the distribution phase under control of 

col_dis signal. 
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8.3.3 Data Transmission 

,.. memory 11 ~ 

---... data_out 1 f---. 

A. •• 
lJ ~ data in ~ sorter memory 1n ~ 

~ memory n1 ~ 

.. data out n ~ 

L--. memory nn ~ 

Figure 8. 6 Block Diagram of Mapper for Version One 

While the queue memories are totally independent during the collection phase, 

there is an established order of reading their contents and forwarding it to the BPE 

during the distribution phase. This is derived from the fact that the data bytes are input 

in a column order. The Mapper must therefore have n outputs, each of which is 

connected to a row of processors in the BPE to input data synchronously for each row. 

It follows that the output of all n memories assigned to the PE's of one row share one 

bus connection to the output register, as indicated in the block diagram of Figure 8.6 

Due to the row synchronised mechanism, the controller has to send only n 

different read signals to the queue memories. The output registers were chosen to be 

lO-bit shift registers for serial data communication, to hold 8-bit data values, and the 

two protocol bits to signal the start of transmission. Figure 8.7 illustrates the 

communication links to the Host and the BPE. 
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Figure 8.7 Communication Links of the Mapper Version One 

The data bytes are simply loaded into the row output registers, beginning with the 

memory that is assigned to the first PE in the row, until the last word is read out of the 

nth memory. 

8.3.4 Mapper Version Two 

Mapper two uses a completely different approach to its design. The data 

location is sent with the data byte itself, so there is no requirement for data sorting. 

This approach leads to reduction in the hardware resources necessary for its 

realisation. 

Although there is no sort operation in this version of the Mapper, it relies on 

the same type of spread and location information. Since only one data byte can be 

input into the PE array at any time, the strategy of assigning one Lagrange multiplier 

to all its destination PEls simultaneously must be abandoned. In this version it was 

decided to use the information separately in two memories. The spread memory 

contains only the spread value that is used to control the number of assignment 

operations that will be carried out for each Lagrange value. This operation is the 

attaching of the PE address to the data byte. The location memory contains the row 

and column address of the PE. The block diagram of Figure 8.8 illustrates the 

principle. 
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A. •• r--. data in ~ router ~ 

data out ~ IJ - .. 
-

~~ 

location 

memory 

Figure 8.8 Block Diagram of Mapper Version Two 

Incoming data bytes received from the Host are kept in an input register. This 

operation triggers the loading of a spread counter with the spread number in the spread 

memory. The counter is decremented by the controller after each assignment, 

indicating the completion of the current data byte distribution when reaching zero. The 

spread memory as well as the location memory are addressed by counters in the same 

manner as was described for version one. 

In one distribution cycle, the data byte is loaded into the output register with 

the location address that is read from the location memory. Then the contents of the 

data_out register are shifted to the BPE. After this, the controller decides if another 

assignment is to be performed on the same data byte. In any case, the location memory 

counter will be incremented to read the next location address. After the completion of 

a distribution cycle, a new data byte is requested from the Host and the process starts 

again. This process is illustrated in Figure 8.9. 
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SOla_cnt := 0 
Ima_cDt := 0 

receive 
s_cnt := (spread_memJ 

transmit 

Jma_cDt := Jma_cDt + 1 
spr_cDt : .. spr_cDt - 1 

l 

n 

Figure 8.9 Flow Diagram of Mapper Function Version Two 

8.3.4.1 Spread Memory 

Since a single spread number always corresponds to a single Lagrange 

multiplier, the length of the memory is determined by the number of computed 

multipliers. The spread number itself has a value that can vary between 0 and n x n, (in 

the theoretical case of only one projection consisting of one sample). For the 

simulation a four-bit memory was used that allows a maximum spread of one multiplier 

to 15 PEls, which should be sufficient for all relevant practical geometries. This 

assumption yields a memory size of 4 x N x S bits. 
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8.3.4.2 Location Memory 

The Location memory stores the address information for N values per PE, and 

for every PE in the array (n x n). The memory length must therefore be N x n x n. The 

word size is the address width of the PE location. 

8.3.4.3 Data Transmission 

The Mapper in this version is connected to only one of the BPE processors. It 

therefore has one outgoing data line. The transmission of data follows the same rules 

as for version one. The output register is a 26 bit shift register to store the data byte, 

the PE address, and the start sequence. The communication links are depicted in 

Figure 8.10. 

r_rdy data out 
8/ .. .... / ... 

Mapper 
8/ .. data in / .... -.. 

t data .... 

Figure 8.10 Communication Links of the Mapper Version Two 

Both versions of the BPE are fed by a Mapper, or router, that sorts the incoming data 

according to a predetermined set of parameters. 

8.4 System One 

In system one, illustrated in Figure 8.12, an orthogonal grid of processors is 

connected in one plane only. The array can be stacked to form a 1-D column of 

processors, but this increases the I/O requirements from the mapper. The PE in Figure 

8.11 uses bit-serial communication for data. There is no need in this system to transmit 

address information, as the PEls are in a fixed array configuration. 

A design goal of this version of the BPE was to reduce the communication links 

between the processors. There are no handshake lines in this approach. Instead, two 
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bits are attached to the data byte to signal the start of a transmission. 

The I/O manager is able to detect a falling edge at the data input, and starts the 

transfer of the data byte into the input register. Since the total number of transferred 

bits is known, there is no need for a stop bit. The data transmission is controlled by 

two signals, input ready and output ready, that are interchanged between the I/O 

manager and the decoder. The I/O manager has control over the input and output 

register. Since the clear and set signals are necessary only when using the parallel 

register, these signals are issued only to the output register. 

When the I/O manager detects the falling edge of the startbit sequence, it 

initiates a transfer of the incoming data byte to the input register. When the 

transmission is complete, the input ready signal is given to the decoder. The decoder is 

responsible for deciding if the bus is free to transfer the data from the input register. A 

routine called 'through' then handles the transfer, by enabling the buffer that couples 

the input register to the data bus. The I/O manager is informed via the output ready 

signal that the data byte is ready for output. The I/O manager takes control of the 

output register, loads it with the data byte from the bus and shifts it (with the start 

sequence) to the next processor. 
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Figure 8.11 Processor Element (PE) for System One 
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The control routines introduce a timing constraint which effects the time that 

must elapse between the transmission of two data bytes. It is possible for the time 

between the input ready and the output ready signals to vary, depending on when in 

the fetch/execute cycle the input ready signal goes HIGH. The minimum time is given 

by ~o_ = Ihct(high clock time) when the bus is free, and the maximum of 

~o..,. = 5hct when a fetch or execute cycle has to be completed first. The 110 manager 

needs a fixed time of 12.5het, defining the minimum time between two output ready 

signals as Too = 13hct. This gives the constraint on the interval between two input 

ready signals (as shown in Figure 8.13), as ~I = 17het. Since the transfer of the byte 

itself needs 10het, the transmission interval has to be a minimum of 7 bet. 

_n n 

o rdy n lL-
I 

5het 13hct ---.. ... .. ... ..... ... ..... ~ 

T. 
lOmax Too 

17hct .. ..... ... ... . ..... . 
~ 

Figure 8.13 Data Transfer Timing 

To obtain speed improvements in the processor design, the data processing is 

separated from the data transmission. The stored programme is executed only if actual 

data are there to be processed. The PE has two programmes loaded into it. The first 

, 't' all alled by the decoder when a data is an accumulatIon programme that IS automa IC y c 

byte is taken into the input register. The responsibility for correct data transfer is taken 

by the I/O manager programme. This controls the peripheral registers of the PE and 
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gives the necessary signals to the decoder. To reduce the connectivity in the array as 

much as possible, no connection is made from a PE back to the sending PE. Therefore 

there is no means of deciding if the receiving PE is ready for a new data byte. To 

overcome this problem, a stack is implemented (located in memory to save silicon 

area), where an incoming data byte is transferred. This is performed by the decoder 

immediately after it has received the input ready signal. This allows the process of data 

transmission to be detached from the data processing. The accumulation mode and 

the bypass mode can overlap. If the accumulation counter is not fully decremented 

and the stack is not empty, then the decoder will start the programme to sum the next 

data byte. When the accumulation counter reaches 'zero', all incoming data are routed 

directly to the output register while the processor goes on with processing the data 

stack. To avoid a collision on the data bus, if two bytes are transmitted respectively but 

processed at the same time, the instruction cycle of the PE is interrupted at a suitable 

moment (at the end of a fetch or execute cycle), and the bus is freed for the data byte 

to be routed to the output register. 

8.4.1 Instruction Set 

A simple instruction set has been devised for the PE that allows suitable 

adaptability. This is presented in table 8.1. 
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Table 8.1 Instruction Set for PE's 

Name Operator Operation 

Programme Control Operations 

HALT -

SKIP -

BREK rna 

JUMP rna 

Memory Operations 

LAC 

STAC 

LDDO 

rna 

rna 

rna 

Arithmetic Operations 

SHIL -

SHIR -

ADDS sa 

ADDN rna 

SUBN rna 

MULN rna 

DIV rna 

rna = memory address 

sa stack address 

stop processor operation 

no operation 

stop fetch/execute cycle and set programme counter 

to rna 

Unconditional jump to rna 

load accu with operand in memory at rna 

store accu in memory at rna 

Load olp register with operand in memory at rna 

shift left accu contents by one bit 

shift right accu contents by one bit 

add operand at sa to accu 

add operand at rna to accu 

subtract operand at rna from accu 

mult. accu by operand at rna 

Divide accu by operand at rna 

232 



8.4.2 Memory Organisation 

The memory is organised as shown in Figure 8.14. 

00 h ... l fh Instructions 

20 h .. 2 F h Stack 

3 0 h ... ffh Data 

Figure 8.14 Memory Map Version One 

Part of the memory is reserved for a stack to minimise the space required. To avoid 

unnecessarily complicated control mechanisms, the stack is organised as a LIFO (since 

it is of no concern in which order the data bytes are processed), with its own address 

space that accommodates a maximum of 16 words. It is possible to vary this space if 

the specification is changed. 

8.5 System Two 

In this version of the BPE, the addressing concept is changed to an approach 

similar to the method used in large transputer networks, termed worm-hole routing 

[16]. This was done to obtain some similarity with the transputer for comparison 

purposes. The data processing organisation is the same as version one. 

The data distribution throughout the PE array in version one is arranged in 

columns. It is the responsibility of the mapping processor to route the data to the PEts 

in the correct order, which demands sorting of the data prior to routing. One way of 

avoiding this sorting is to attach an address label to each data byte that will be 

compared with the PE address at the input. This will lead either to processing the data 

or to routing it to the next PE. This means a data byte can be transmitted from the 

Mapper to the BPE when it reaches the Mapper. The disadvantage is the additional 
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length of the data stream to be transmitted. The size of the BPE array would define 

the required additional address word size. If a maximum array size of 256 by 256 were 

assumed, the size of the additional address word is 16-bits (8-bit row and 8-bit 

column). 

A new module called 'router' was added in version two to deal with the 

necessary address operations . Instead of the decoder being informed of the advent of 

new data, the Router gets the input ready signal. The algorithm used to decide if the 

destination processor is reached is depicted in the flow diagram of Figure 8.15 

n 

y 

col adr = 0 

y 

row adr = 0 

y 

Figure 8.15 Flow Diagram of Data Routing for Version Two 

To avoid having to label each processor with a different address, the method of 

Interval Labelling [8.17] is used. The address is compared with zero, and if that is not 

true it will be decremented and routed to the next PEe This is done for the column , 
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first, so the data will be routed horizontally to the right, until the destination column is 

found, then vertically down to the destination row. 

8.5.1 Data Transmission 

The routing through the array without prior sorting makes it necessary to 

interconnect the processors not only horizontally but also vertically. The data flow is 

thus oriented in two directions: to the right and down as shown in Figure 8.18. Data is 

input only to the array at PE 11 in the upper left comer of the array to avoid further 

interconnections. The possibility of changing this approach is discussed in the last 

section of this chapter. 

The same restrictions of data transmission interval time as for version one have 

to be taken into account. In this case the simulation showed that the time needed for 

processing a data byte (in accumulation mode) is small compared to the transmission 

time. Therefore the processor has already finished the instruction cycle before a new 

data byte comes in. This means the processor is always ready to transfer the byte 

without delay. The time T.o is therefore ensured to be Ihct. The necessary interval 

between two data byte transmission, not including the data byte itself, can be reduced 

by 4hct. This is illustrated in Figure 8.16 

o_rdY--r--; 

Ihct 
13hct 

~~------------~~----------.. 

Too 

13hct 

Figure 8.16 Data Transfer Timing Version Two 
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The PE and full system for version two are illustrated below in Figures 8. 17 and 8. 18 

respectively. 

adrl adr2 n adr 

l in in ]n odir , 

p rdy I 

router 
t rdy 

i_rdyl iJdyl decoder , 

I 

i start2 o rdyl 
-~ 

i sta jrtl i/o-manager oJdyl -:......... 

di t di~C2 dO~c1 dJ_Cl ~ ~ ~ 
acc_c alu_c mem_c 

/ /4 /8 

J opc 

'I~ alu / v8 

stack data instructions 

/ 

,.. 
8 

memory acc c I acc r 
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mem_c 
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di c1 do c1 

I adrl n_adr / J 
r 

d_o I in1 J ~ 7 n J data outl r data_in I / 'I /8 datal 1 do_cl 
~dCcl adrl n_adr L ....r I d 0 

in2 J data_inl ~ / 
/n J data_oull r "I /8 datal 
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Figure 8.17 Processor Element Version Two 
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8.6 Results 

The simulation results were obtained using a simulation tool called Verilog, 

which is part of the CADENCE [8.1] design framework for full custom VLSI design. 

Verilog is classed as a VHDL. It differs from the VHDL 1076 standards [8.17], but 

parsers are available to transform the code form the Verilog environment, to the 

VHDL 1076 environment. 

The two versions of the BPE were compared by plotting the total cycle time 

required to compute the backprojection against the number of PEls used. The results 

are tabulated below in tables 8.2, 8.3, 8.4 and plotted in Figures 8.19 and 8.20. These 

results indicate that as the number of PEls is increased, version one has a clear 

advantage over version two in terms of the required number of cycles. As the BPE is 

technology independent, it is difficult to estimate comparisons between this approach 

and a standard stand-alone general-purpose processing engine. If a 30MHz clock is 

assumed, the projected reconstruction time is approximately 40J,lS. This compares to 

the same operation performed on a V AX111780, which took over five minutes of CPU 

time for a 65 by 65 image. 

Table 8.2 BPE Computation Cycles 

Computation Cycles 

Number of Version 1 Version 2 

PEls in array 

1 178 164 

4 275 614 

9 372 1364 

16 469 2414 
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Table 8.3 Mapper assignment Cycles 

Assignment Cycles 

Number of Version 1 Version 2 

PEls in array 

1 479 160 

4 479 640 

9 479 1440 

16 479 2560 

Table 8.4 BPS Computation Cycles 

Computation Cycles 

Number of Version 1 Version 2 

PEls in array 

1 657 164 

4 754 663 

9 851 1472 

16 948 2619 
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Cycles 

3000 

2500 v Version Two 

2000 • Version One 

1500 

1000 /~ 
500 

v 

0 
0 5 10 15 20 PE's 

Figure 8.19 Plot of cycles against number of processors without Mapper 

Cycles 

3000 ~----~----~----~-----

2500 v Version Two 

2000 • Version One 

1500 

1000 

500 

o L-____ ~ ____ ~----~----~ 

o 5 10 15 20 PE's 

Figure 8.20 Plot of cycles against number of processors with Mapper 
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8.7 Discussion 

The architectures proposed in this Chapter demonstrate the use of a novel 

hardware design to accelerate the reconstruction procedure. It can produce results at a 

faster throughput than those obtained by general purpose computing engines. The 

actual improvement will greatly depend on the partition scheme that is dictated by the 

available hardware, (the number of PEls used in the array) A column partitioning 

scheme is suggested as the best candidate. This offers a balance between input 

connectivity and data through-put. The columns of PEls that equate to column vectors 

of the reconstructed image could be divided into subvectors, and the image could be 

reconstructed in block rows. 

The BPE was developed because general purpose machines based on SIMD 

architectures are not very suitable to this reconstruction problem. Two versions of the 

BPE were explored. The first models a novel approach to the architecture which is 

ideal for VLSI implementation, i.e., a regular repeatable structure is created which is 

ideal for mapping to silicon. The second uses an approach based on the data 

management structure of transputers. This model was produced to provide a 

comparison with the first version, and because the majority of systems that have been 

developed previously use transputers. The end goal of developing a special purpose 

device is to improve the performance in term of computation speed. This is particularly 

important for EIT application in which the main hardware platform use is a PC. 

The comparison of the performance of this machine with other machines can 

only be estimated, because such information is hard to obtain. The limited imfonnation 

gives single figures of merit, with no indication to show if the performance change is 

linear when the size of the array or the resolution of the reconstructed image is 

changed. 

At the University of Averio (UA), a machine with 4 units based on 6800's, 

reconstructs 128 by 128 images in about 30s [8.14]. The University of Bristol (VB) 

developed an architecture based on a transputer network [8.15]. The processing time 
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required by one transputer T 414 is about 10 OflS to h dl . • , an e a maxImum of 5 by 5 

pixels. If a 512 by 512 image is reconstructed a pro . . f . . , cessmg time 0 0.4s IS requIred. 

Also, for the 512 by 512 image, a 100 transputers w ld b· . ou e reqUIred. The MasSIvely 

Parallel Architecture (MP A) developed by Lattard Faure and Mazar [8 11] , e . , uses a 32 

by 32 cell array to obtain the same performance as the transputer based machine. A 

summary of the machines above is given in table 8.5. 

Table 8.5 Summary of Machines 

Machine Total number of Image size Processing time 

processors in 

array 

UA 4 128 x 128 30.0s 

UB 1 5x5 10.0J.1S 

UB 100 512 x 512 O.4s 

MPA 1024 512 x 512 O.4s 

The BPE is primarily designed for VLSI implementation and its speed will 

depend on the technology used to implement it. Direct comparison with the above 

machines is difficult, as the machines mainly use FBP algorithms that lend themselves 

to parallel implementation. The main advantage with the BPE is that the design 

approach allows for efficient VLSI implementation, and similar speeds can be obtained 

as with the Massively Parallel Architecture but with algorithms that are superior. 

A machine developed by Goutis [8.16] suggested a MIMD architecture for a 

special purpose processor based on the successive relaxation algorithm The excessive 

computation is drastically reduced by exploiting the structure of the submatrices of the 

G matrix. The backprojection operations still dominate the total computation time in 
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this machine. This machine would have been useful for comparison with BPE b t 
, U no 

information has been produced that gives its performance. 

The results for the two versions of the BPE show that version one is the 

preferred option. These results satisfy the basic objective of this part of the research. 

This was to develop a model of the system on which a feasibility study could be 

conducted to evaluate the possible advantages and disadvantages of these approaches 

towards the backprojection operation. 

The two versions were modelled using a hardware description language known 

as Verilog [8.1]. The reasoning was that the waste of resources (in terms of material 

and finance) could be avoided and the flexibility of computer simulation allows for 

experimentation and enables the "development" of different versions. Since Verilog 

allows most ideas to be realised in a behavioural description, the work done here was 

not concerned with actual physical restrictions such as timing or space constraints, 

although the delay times encountered in electronic devices have been taken into 

account in a general way. The design assumes ideal elements but allows for parameter 

adjustment for realisation. Despite these restrictions, the design was concerned mainly 

with optimisation of computation speed and the reduction of array interconnectivity. 

The results obtained from the modelling of the two systems lead to the 

following conclusions: 

i) Advantages: 

Version one uses a minimal number of operations to perform the 

backprojection operation. This will lead to a speed improvement regardless of 

the technology used. 

Both versions are relatively easy to implement as VLSI devices and hence 

realise the advantages of speed and cost. 

Version two has a similar structure to a transputer based system, which allows 

it to adapt to changes in configuration. 
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ii) Disadvantages: 

Neither version is flexible to changes in hardware such as the resolution of the 

reconstructed image or the number of samples used. 

Further research is required to adapt either system for the EIT geometries and 

to bring the system closer to an actual hardware implementation. This is beyond the 

scope of the work undertaken in this research. 
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9 CONCLUSIONS 
AND SUGGESTIONS FOR FURTHER 

WORK 

9.1 Summary of the Research 

The use of electrical impedance measurements to provide a 2-D map of the 

distribution of resistivity within the human body has a great potential in medical 

diagnosis. There are several areas in clinical medicine and physiology where it has been 

suggested that the use of such a technique, known as electrical impedance tomography 

(EIT), could offer significant advantages over existing methods. In the majority of 

cases these have been supported by preliminary studies, but the application of the 

algorithms in clinical use have been demonstrated only in a small number of cases. 

There are two major areas that need to be addressed if EIT is to be fully exploited. 

First, there is a requirement to identify the link between physiological changes and 

resistivity and second, ways must be found to improve the quality of the reconstructed 

resistivity images. The first objective is outside the scope of this research, but a full 

review of the biomedical applications of EIT is given by Holder and Brown [9.1]. The 

second was the subject of this thesis and is summarised in this final Chapter. 

Following the introduction of the research topic in Chapter one, the objectives 

of the research were defined with an indication of the scope of the investigation. A 

survey of methods for reconstructing images was presented next, in Chapters two and 

three. Chapter two concentrated on the methods applicable to X-ray systems, where a 

taxonomy of the approaches was developed. As EIT reconstruction problems tend to 

be considered separately from other methods, due to the nature of the data collection 

method, Chapter three reviews the EIT approaches and summarises both Forward and 

Inverse problems. 

The conclusions drawn from these reviews suggest that the Constrained 

Optimisation Reconstruction Technique (CORT), which was successfully applied to 
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X-ray systems, could also offer solutions in EIT. The CORT method requires the 

selection of a cost criterion to produce a model. This cost criterion is not unique and a 

number of them were presented in Chapter four. It was found that optimisation of the 

image energy cost criterion resulted in a simple modeL known as the backprojection 

model. This expresses the image in terms of the I-D Lagrange multipliers. This model 

is linear and its main kernel, which is backprojection, is also used by the convolution 

and ART methods. Chapter four introduces both the primal and dual approach to 

CORT, and derives the models that relate the Lagrange multiplier to the solution of the 

reconstructed image. Only the parallel X-ray geometry was investigated in this 

Chapter, so that the methodology could be fully explained. It was concluded that the 

backprojection model offers the most suitable approach for exploitation in EIT. 

The algorithms for computer implementation of the backprojection model were 

presented in Chapter five. Variations of the model were also given for the divergent 

geometry, to demonstrate how different geometries affect the structure of the 

algorithm. An important criterion is that the algorithm must be able to produce 

reasonable reconstruction in the presence of noise and limited data. Not all the 

algorithms presented in Chapter five are suitable for EIT implementation with these 

requirements. The Jacobi method does satisfy the above requirements and hence was 

adopted for this research. This allowed the statistics of the noise to be matched with 

the statistics of the errors in the pseudo inverse of the associated system matrix. 

A mathematical model for the EIT geometry was described in Chapter six. Two 

different geometries were presented; the opposite electrodes method which is termed 

the parallel curvilinear geometry and the dipole method defined as the divergent 

curvilinear geometry. The opposite method offered a more uniform current 

distribution, but has a limited number of samples per boundary measurement, whereas 

the dipole approach gives a non-linear current distribution with twice as many samples, 

thus allowing a higher spatial resolution. The Forward problem in both cases was 

solved by standard analytical methods and then applied to the COR T to produce 

specific models for each geometry. The requirement in both cases was to maintain the 
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structure of the associated system matrices in order to exploit the advantages of similar 

structures previously derived from the parallel and fan beam ge t' . X orne nes m -ray 

systems. 

Novel approaches for evaluation of the associated system matrices have been 

described which allow theses matrices to be evaluated relatively simply. 

In Chapter seven, the results of the application of the new algorithms were 

demonstrated with model boundary data. In the divergent curvilinear case, both 

modelled data and data obtained from the Sheffield Mark I system were used. The data 

obtained from the Sheffield system were obtained in two forms: the boundary profiles 

obtained from a phantom, consisting of a saline tank with glass and polyacrylimide 

rods, and second, clinical data. 

The other issues considered in this Chapter were noise corruption of the data, 

the current distribution in the medium under examination, selection of the relation 

parameter and the optimal number of iterations. 

A major advantage with the CORT's algorithms is that they can be adjusted so 

that statistics of the error in the pseudo inverse of the associated system matrix match 

the statistics of the noise within the data. This minimises the effects of noise 

amplification in the reconstructed image. If the noise is assumed to be Gaussian (which 

may not be the case in a real EIT system), the iteration can be terminated when the 

error between the true Lagrange multipliers and the Lagrange multipliers obtained at 

each iteration is a minimum. The number of iterations is chosen to be large to ensure 

that the distribution of the projection error is approximately Gaussian. This is achieved 

by ensuring the relaxation factor 'Y is as low as possible. The algorithm converges for 

o < 'Y < 2, where 'Y is the relaxation factor. 

The COR T algorithms were found to be optimised with the modelled boundary 

data when the relaxation factor was chosen as 0.001 with 50 iterations for the opposite 

electrode method, and 0.002 with 50 iterations for the divergent system. The data 

obtained from the Sheffield Mark I system were found to give the best results when the 

relaxation factor was 0.002 with 10 iterations. 
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Chapter eight departed from the main theme of the EIT res h 'd earc to COnsl er 

the possibilities of improving the performance of the reconstruction algorithm by 

means of hardware. The main bottleneck in the reconstruction procedure was identified 

as the backprojection operation. Using a hardware description language, a system was 

developed which could improve the performance of this main kernel. Only the parallel 

geometry was considered in this part of the research. A new system was proposed 

which can improve the processing of images using a simple interpolation scheme. 

9.2 Review of the Research Objectives 

It is of interest to reflect upon the original research objectives presented at the 

end of Chapter one, and assess how well the objectives have been met. The primary 

objective was to apply CORT to EIT. This objective has been achieved for two 

different data collection methods, and the primary results of both algorithms are 

presented in Chapter six. The issue of improving the quality of the reconstructed image 

without incurring excessive computation cost has also been addressed by maintaining 

the permuted block circulant structure of the associated system matrices. 

The main objective has been achieved in a number of stages. First, the opposite 

electrode method, which is the simpler of the two geometries, was defined 

mathematically. A co-ordinate system known as Bipolar was used to solve the Forward 

problem. It was decided to deal only with the temporal image reconstruction problem 

in this research, as static image reconstruction has not been proved to be useful in 

clinical applications. A mathematical model was derived which relates the 1-D 

Lagrange multipliers to the reconstructed image. The model is linear and has a very 

important physical interpretation, which is that the resistivity image can be produced by 

backprojecting the 1-D Lagrange multiplier functions between the equipotential paths 

at different angles. 

The next objective was to obtain a computationally efficient implementation of 

the new algorithms. It was found that the approximate inverses for the new geometries 

were permuted block circulant. This allows the matrices to be diagonalised using the 
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block FT matrix. A procedure was also given that allowed the pseudo inverse to be 

precomputed. Since the structure of the inverse was maintained, the stored 

requirements need be only one half of a block row. The only major computation 

requirement for estimating the Lagrange multipliers for backprojection is the 

multiplication by the block diagonal eigenvalues matrix. 

A third objective was to maximise the quality of the reconstructed image which 

could be produced from this new approach. Chapter six presents the results of noise 

matching. Additive noise was applied to the normalised boundary profiles 

(projections), and the number of iterations n and the relaxation parameter y were 

selected to give the optimum quality of the reconstructed image. This was repeated for 

the dipole method. In both cases, the new algorithms produced reasonably accurate 

reconstruction in the presence of noise, with less computation requirements than other 

methods such as Newton-Raphson and its variations. 

It was found that the approximate inverse matrices corresponding to the Jacobi 

iterations are diagonally dominant, and become block diagonally dominant as the 

iterations parameter n increases. A relationship between the variance of the error 

between the noisy and noiseless Lagrange multipliers corresponding to the nth 

iteration, and the variance of the measurement noise in terms of the eignvalues of the 

approximate inverse, holds true for the new geometries. This relationship indicated 

that, for large n, the eigenvalues of the approximate inverse become very large, and 

this results in an amplification of the noise. 

The need to obtain an optimum reconstruction in the presence of noise is 

particularly important in EIT because the difficulty with the EIT system is the 

collection geometry. Although it is assumed to be a circle, it may be deformed to 

accommodate the object under examination. This modification of the geometry can be 

considered as another source of noise in the collection system and can be 

accommodated more readily by COR T than by transform based methods. 

249 



It is suggested that there are two mam reasons for the greatly improved 

reconstruction accuracy when using the CORT, compared with the transform based 

methods adopted by Barber and Brown [1.17]. 

i) Each I-D function to be backprojected depends on all the boundary profiles 

and not on an independently derived function for a point spread function (pst). 

ii) The constraints (boundary profiles) are satisfied within a limit determined 

solely by the statistics of the noise used. 

Another objective of the research was to reconstruct images from data obtained 

from the Sheffield Mark I system. A test phantom was used, constructed of clear 

perspex and filled with a saline solution, having glass and polyacrylimide rods in the 

solution at fixed positions. The Sheffield system can measure only boundary data using 

the dipole method, therefore comparisons are not possible with the opposite collection 

method. The dipole collection method also introduces the problem of non-uniform 

current distribution which can cause problems in maintaining the structure of the 

associated system matrix. This is important to obtain the computation efficiency that 

the permuted block circulant matrix offers. The weighting for the current density was 

easily incorporated into the backprojection operation. There are a number of options 

for this weighting, depending on the desired results of the reconstruction. These can be 

good sensitivity, high accuracy, or a compromise between the two, when indicating 

small changes in resistivity. 

The final objective was to investigate the development of hardware required to 

improve the computation speed of reconstruction. This was achieved for parallel X-ray 

data by proposing a parallel processing engine to handle the backprojection operation 

which is the main bottleneck in most reconstruction algorithms. The suggested 

processing engine was demonstrated using Verilog which is a hardware description 

language. 
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9.3 Summary of Advantages of new Approach 

The main advantages of the new approach can be summarised as ~oll ows. 

a) The structure of the associated matrix can be used to improve the 

performance of the algorithm, by reducing the computation time. 

b) The evaluation of the associated system matrices is relatively simple, using 

the novel methods described in Chapter six. 

c) The effects of the current sensitivity are incorporated during backprojection, 

allowing it to be optimised for sensitivity or accuracy, and for modification to 

match experimental data (Chapter six). 

e) The effect of current density distribution is separated from the associated 

system matrix and this enables the structure of the matrix to be maintained 

(Chapter six). 

t) The statistics of the noise within the data colIection system can be matched 

to the statistics of the error in the pseudo inverse, which appears to improve 

the quality of the reconstruction (Section 7.4). 

g) Prior information regarding regions of different sensitivity can be 

incorporated into the algorithm to give more accuracy in reconstruction. This is 

highly beneficial in brain imaging where the brain is surrounded by the skulI, 

resulting in more accurate reconstruction of the brain functions (Chapter four). 

h) The positions of features within the image are not distorted in contrast with 

other approaches. This is important in clinical use of the EIT system (Chapter 

seven). 

i) The CORT method is less susceptible to electrode positioning. 

9.4 Suggestions for Further Research 

There is a need for a detailed companson study of other algorithms usmg 

clinical data. This has a number of problems, as the data collection method varies 

between the FEM algorithm, and those associated with the Sheffield system Also, the 

full details of other methods are not always given in the literature For example, the 
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algorithm used by the Sheffield system is partly based on an em . . al h fi pmc approac or 

deriving the filter function. Yorkey and Webster [9.2] give a limited comparison of the 

reconstruction algorithms, claiming that the N -R method has an improved performance 

compared with six other methods. Their results were validated only on modelled data, 

and not on clinical data. Also, their comparison has become dated and does not include 

new approaches. 

Another useful area of investigation, which may lead to improving the 

computation speed of the algorithms, is the structure of the pseudo inverse. This 

contains a number of elements that are very small. To reduce the storage requirements, 

it would be worth investigating the effect of setting these elements to zero and 

observing if removing their contributions causes notable degradation to the 

reconstructed image. 

The algorithms developed in this thesis mainly operate in the space domain. 

Durrani and Goutis [9.3] showed that, by implementing constrained optimisation 

techniques in the Fourier domain, it was possible to include more elaborate cost 

functions that lead to better reconstructions. Moreover, this allowed for the utilisation 

of the speed of the FFT. It is suggested that it would be useful to investigate these 

elaborate cost functions in EIT. 

There are also non-medical areas for application of these techniques, ego 

silicon tomography. There is a requirement during the processing stages of Ie 
manufacture, to measure accurately parameters such as the semiconductor doping 

density or sheet resistivity. Boundary profiles could be obtained by measuring 

potentials on the periphery of the silicon wafer, which could be used to reconstruct a 

map of the resistivity of the sheet resistance. 

Methods based on the backprojection between equipotentials are derived from 

an analysis of the 2-D problem, such as the approach taken in this research. It is 

suggested by Guardo et al. [9.4], that improvements could be obtained by considering 

the 3-D conductivity distribution. It would be useful to adapt the CORT method for 3-
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D to enhance its accuracy. This would require the development of a 3-D scanning 

system to collect the boundary data. 

The result presented in Figure 7.21 shows a reconstruction of the resistivity 

change in a brain. The algorithms developed so far have assumed that the complete 

domain to be reconstructed has similar resistivity, with small changes between regions. 

The brain is surrounded by the skull which has a higher order of resistivity than the soft 

tissue inside. Presently available systems cannot image through the skull. It is 

suggested by Holder [9.5] that the localisation of epileptic foci in ambulatory patients 

could be achieved using a ring of subdural electrodes. To eliminate the need for the 

subdural electrodes, the COR T algorithm could be adapted to include prior 

information in the associated system matrix, of different sensitivities in different 

regions. This would allow the small resistivity changes within the brain to be more 

accurately identified for the monitoring of cerebral ischaemia and for imaging of slow 

or rapid impedance changes during functional activity. 

The research presented in this thesis provides a new development in the 

reconstruction of images for EIT. At present, these algorithms are being evaluated on 

brain images and require the combination of clinical evaluation with improvement to 

the algorithms based on the clinical results. This research would represent a major 

future advance in neuroscience technology. 
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Appendix A 

Euler-Lagrange Method with higher order derivatives 

[4.2 page 101, 4.3 page 94] 

Suppose the functional C(.) be defined as: 

I = II C(x,y,f,Ix,/y)dxdy 
D 

(A.I) 

where subscripts are employed to indicate partial differentiation, to avoid cumbersome 

notation. Hence: 

etc. 

Let f (x, y) be a 2-D contiguously differential image that minimises I. To effect the 

extremisation of A.l, a one-parameter family of comparison functions 1 (x, y) is 

introduced: 

f(x,y) = f(x,y) + Ell(x, y) (A.2) 

where 11( x, y), is an arbitrary differentiable function for which: 

l1(X,y) = 0 on s (A.3) 

where s is the boundary curve of D and E is a small parameter of the family. 

This can be expressed in words as: 

Tentative solution = Exact solution + Variation of f(x,y) 

f(x,y) f(x,y) Ell(X,y) 

Replacing f(x,y) by l(x,y) in A.I and expanding I by Taylor's theorem, then taking 

the first variation, an extremum for E = 0 is obtained, hence: 

1'(0) = 0 (A.4) 
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where: 
N 

I( &) = II e[x, y, 1 ,Ix,lr - L Ak (Xk )]dxdy 
D k=l 

(A.5) 

Using A.2 to compute 

af 
0& = 11, 

and differentiating A.5 with respect to E gives: 

fJ ac ac ac N 

I' (&) = D [oJ 11 + oJ:. 111 + oJy 11y - ~ Ak (Xk ) 11]dxdy (A.6) 

Since, according to A.2, setting E = 0 is equivalent to replacing 1 by /, then: 

due to A.4. Applying Green's theorem (analogous to integration by parts), to the 

middle two terms of A. 7: 

ac a (OC) a (ac) I OCdy OCdx 0= II 11[--- -- -- -- ]dxdy+ 11[ - ]dz(A.8) 
D Of ax Of1 ay Ofy • a/xdz Ofydz 

ac a (ac) a (oc) 0= 1111[--- - -- - ]dxdy 
D Of ax aJ:. ay air 

(A.9) 

due to :~:~ ~:n;j~[ac _ ~(acJ _ ~(ac) _ f Ak (Xk )]dxdy 

D Of ax 0/1 ay O/y k=l 

(A.IO) 

and the extremising function f = f (x, y) must satisfy: 

(A.II) 
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Appendix B 

The Primal-Dual Method 

The duality theorems presented below can often be J. t·fi d nl us 1 e 0 y for convex 

problems. Hence: 

Consider the dual method for the convex problem: 

minimize f (x) 

subject to G(x)::;; 8,x En 

Assuming that the constraint is regular, this problem is equivalent to: 

max inf{f(r)+ < G(r),£ >} 
z"~8rEn 

Or, defining the dual functional: 

4>(Z·) = inf{f(r)+ < G(r),z· >} 
TEn 

the problem is equivalent to the dual problem: 

maximize 4>( z· ) 

subject to z· ~ 8 

(B.I) 

(B.2) 

(B.3) 

(B.4) 

The dual problem B.4 has only the constraints z· ~ 8. Hence, assuming that the 

gradient of 4> is available, the dual problem can be solved in a routine fashion. (Note 

the primal problem B.1 has only equality constraints of the fonn Ar = b. The dual 
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problem B.4 will have no constraints). Once the dual problem is solved yielding an 

optimal x~, the primal problem can be solved by minimising the corresponding 

Lagrangian [4.5 p. 299]. 
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Appendix C 

Lagrange Multiplier Theorems of Constrained Optimisation 

Theorem 1:[4.5, page 217] 

Let X be a linear vector space, Z a normed space, il a convex subset of X 

and P the positive cone in Z. Assume that P contains an interior point. 

Let h be a real-valued convex functional on il, and G a convex mapping from 

il into Z. Assume the existence of a point Xl E il for which G(x1 ) < e, (i.e., G(x
1

) 

is an interior point of N = - P, and N = - P is called the negative cone in X). 

Let: 

flo = inf h(x) subject to X Eil,G(x) ~ e (C.l) 

assuming flo is finite. Then there is an element ZO ;;:: e EZ· such that: 

flo = inf{ h(x)+ < G(x),z~ >} 
xEil 

(C.2) 

Furthermore, if the infimum is achieved in C.l by an Xo E il, G( Xo ) ~ e, it is achieved 

by Xo in C.2 and 

(C.3) 

Proof: [4.5 page 218] 

Theorem 2:[4.5 page 224] 

• • Co Th 1 The Dual functional can be Assume the same condItIons as lor eorem. 

expressed as: 

258 



4>(z·) = inf[b(f)+ < G(f),z· >] 

XEO 
(C.4) 

where 4>( z·) is known as the dual Lagrangian. The solution to the primal problem, 

equation A.I is: 

llo = inf b(f) = max{ 4>(z·)} 

G(f)~e z" ~e 
XEO 

This equation is known as the dual solution. 

Proof: [ 4.5 page 224] 
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Appendix D 

Fan beam matrix elements 

This proof, given by Drossos [5.7], shows that the hld,nJ matrix elements depend on the 

angle \II' between the dichotomies of the nj and ki strips only, as the angular width 

AS is taken to be constant. Consider the equation: 

(D.1) 

where r
k

, Sk' r o ' 11' 11 and ~ are shown in Figure D.l, and AS = 1t IS. 

r =0 A n 0 

o. 

Figure D.l. 

F h 
. gl 0 MA l'n Figure D 1 the following relationship is deduced: 

or t e tnan eo' , 

s r R 

sinS = sin~ = sin(~+S) 

where s = AM, r = 0 nA, and R = 0 oM. 
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Using equation (D.2), equation (D. 1) can be expressed as: 

(D.3) 

Integrating with respect to S gives: 

tan( <I> + AS) 
f

'V'+~e/2 2 4 
h = In <I> 

Id,oj 'V'-M/2 (<I> AS) tan ---
2 4 

(D.4) 

which depends on'll' only, as AS is taken to be constant. 
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Appendix E 

Bipolar Co-ordinate system 

Let a denote the point at which the current injection electrodes are placed on 

the boundary of the medium under investigation. The complex potential due to a 

source of strength k at z = -a is: 

kln(z+a) (E.1) 

The complex potential due to a sink of strength k at z = a is: 

-kln(z- a) (E.2) 

Then by superposition: 

The complex potential due to source at z = -a, and sink at z = a, both of 

strength k is: 

(
z+a) w( z) = kin (z + a) - kin (z - a) = kin --
z-a 

(E.3) 

Let: 

z+ a = r1e
J91 z- a = r2e

J91 (E.4) 

Then: 

( r el9
, ) (r). w(z)=u+jv=kln r:eJ91 =kln r: +Jk(8 1 -82) (E.5) 

Hence: 

U = klO( ::) v = k(8 1 -82) (E.6) 

Using: 

r
1 

= ~(x+a)2 +y2, r2 = ~(x-a)2 +y2 (E.7) 

and 
-,( y ) 9, = tao-1(-Y-} (E.8) 8 =tao --

2 x-a x+a 
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the equipotential lines illustrated in figure E. 1 are given by: 

~(x+a)l +y2 ~ 
-=r======~ - e k 

~(x-a)l+yl -

This can be written in the form: 

a. 111 a. 
[x-acoth(-)] +y = a eseh1 (-) 

k k 

(E.9) 

(E.I0) 

which for different values of a are circles having centres at a eoth( ~ ), and radii equal 

a 
to a esc h(-) . 

k 

The current lines (streamlines) illustrated in figure E.1 are given by: 

tao-t(-y )-tao-t(-Y )=~ 
x+a x-a k 

(E.ll) 

or, taking the tangent of both sides and simplifying: 

(E.12) 

which for different values of J3 are circles having centres at -a cot( ~), and radii 
k 

a csc(~) . These circles pass through (-a,O) and (a,O). 
k 

If k = 1 and from E.3: 

hence: 

therefore: 

z+a 
u+ jv = 10--

z-a 

z 
-+1 

eU+Jv = z+a = _a_ 
z-a ~-1 

a 

u+JV u+Jv) 
(-) -(-

z eu+Jv + 1 e 1 + e 2 

- = u+Jv -1 = (u+Jv) _(u+jv) 
a e 2 e 2 e -
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and 
z u + jv 
-=coth-~ 
a 2 

by expansion and simplification: 

therefore: 

hence: 

~ = sinh u - j sin v 

a cosh u - cos v 

. [sinh u - j sin v 
x +.y = a ] 

cosh n - cos v 

a sinh u 
x = ----­

cosh u - cos v 

smv 
y=------

cosh u - COSy 

XY PLANE UV PLANE 

v 
x 

~ 

I 
a 

--

equipotential line 

Figure E.1 Conformal Transformation 

[E.1, page 248][E.2, page 140] 
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Appendix F 

Dipole System 

Assuming the distance between two adjacent electrodes is very small and is 

denoted by 2't, and the current is injected at these electrodes, then from the conformal 

mapping transformation the complex potential is given by: 

1 
w(z)=u+jv= . (F.I) 

x+ JY 

Therefore: 

(F.2) 

hence: 

(F.3) 

and 
v (F.4) 

Under this transformation, for: 

1 
u =const=-, 2a. , 

(F.5) 

Xl + yl _ 2a.,x = 0 (F.6) 

where a, denotes the radii of the circles in the x, y plane illustrated in Figure F. 1 . 

Therefore: 
(F.7) 

For: 
I 

v =const=-
j 2P j 

(F.8) 

hence: 
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(F.9) 
where 13 J denotes the radii of the circles in the 1 ill . 

x, y p ane ustrated In figure F. 2. 

Therefore: 

x
2 

+(Y+I3J )2 = 13: 
(F.tO) 

x 

v 

u 1 u
2 

y 

..... u 

Figure F.! Conformal transformation of equipotential lines 

x 

v 

----+--_u 

Figure F.2 Conformal transformation of current line 

Note that this transformation, known as the dipole approach, approximates the current 

and equipotential paths. It can result in significant error close to the electrodes, when 

the gap between the drive electrodes 2't is not sufficiently small [3.5, page I 10]. 
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Appendix G 

Effective Resolution limits in EIT 

Relationship between voltage and current density: [3.9j[G.lj 

Consider a circular region R having radius r. and d t" . 
. fi GI b b con uc IVlty 0b illustrated 
In gure . ' 

~ (Ra) va 

Figure G.l. 

At the centre of Rb is a smaller circular region R., of radius r. and conductivity 0 •. 

The voltage V within Rb can be expressed in terms of polar co-ordinates r,9. Suppose 

a current density distribution J(9) is impressed upon the boundary at r = rb . A voltage 

V(9) then appears on the boundary due to current flow through the region. This 

situation is simple enough for the voltage and current density distributions to be 

explicitly related. One approach to this is to express Laplace's Equation in polar co-
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ordinates. The resulting partial differential equation may then be separated into two 

ordinary differential equations using separation of variables. The result is an expression 

relating the voltage V(S) and current density distribution J(S) to one another, and to 

the parameters that describe the conductive region. As a result of the use of polar co­

ordinates, the eigenfunctions involved in the solution incorporate tenns in cos e and 

sinS. 

Let J n (S) be the optimal current density distribution impressed on the 

boundary, then the Fourier series of In(S) is given by: 

In(S) = An cosnS+Bn sinnS (G.I) 

where n=1 is the best injection current because it produces the maximal 

distinguishability. The distinguishability decreases as n increases. By solving Laplace's 

equation in polar co-ordinates using equation (G.1) as the Neumann boundary 

condition, the boundary voltage can be expressed as: 

Vn(S) = Cn cosnS+Dn sinnS (G.2) 

where n=I,2, .. etc. 

Assuming that Bn = 0 and expressing the relationship between In(S) and Vn(S) as: 

z - Vn _ Cn __ rb (l+a)+(I-(l)~: (G.3) 
nn - J - A - ncr (l+a)-(I-a)~ 

n n b 

where a and ~ are defined in Figure G. 1, and Znn is the driving point impedance, when 

a = 1 (i.e. a homogenous object), the driving point impedance becomes: 

rb 
Z =---

nnh ncr 
b 

(GA) 

and 
(G.5) 
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Two parameters can now be defined: 

Visibility is defined as: 

v = Vn - Vnh _ Zon +Znnh 

n Vn+Vh-Z +Z 
n on nnh 

(G.6) 

Substituting equation G.3 and equation G.4 into G.6 gives: 

v = (l-a)J3n 
n l+a (G.7) 

Sensitivity is defined as a fractional change in voltage for a fractional change in 

conductivity contrast. For cosine injected currents: 

(G.8) 

Differentiating the above equation with respect to a, and multiplying by a/V
n 
(9) 

gIves: 

(G.9) 

where sn is the sensitivity, oV / V is the fractional change in voltage or the maximal 

admissible noise, and oa / a is the conductivity resolution. 

The relationships developed so far are derived for a centrally placed circular 

region. These relationships may be modified so that they can be applied to off-centre 

circular regions. This is achieved by conformally mapping any off-centred region on to 

an equivalent central region, and then using the earlier relationships. This approach is 

valid because the solution to Laplace's equation remains invariant under conformal 

transformation. 

Consider the conformal transformation illustrated in Figure G.2 
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y .v 
1 

1 

~ 

x 

\ 
\ 

\ 

'~ 

(a) (b) 

Figure G.2 

Let z = x + jy and w = u + jy then: 

z = (d- w) I(wd-l) w =(d+z)/(d-z) 

and 
I 

r = [1-c1 +rol -[(l-e +ro1 )1-4ro1f2]/2ro 
I 

d = [1 + c1 
- ro 1 - [( 1 + c1 

- ro 1) 
1 - 4 ro 112 ] I 2c 

r(l- d1
) 

ro = ----'---'--
(1- r1d1

) 

d(l- rl) 
c = ----'---=-

(l-r1d1
) 

"', 

ro ! 

~ \ 
C 

~": ' 

i 
I 

/ 

(G.IO) 

(G.II) 

(G.12) 

(G.13) 

(G.14) 

u 

This describes the manner in which the resolution varies throughout the conductive 

region, provided the accuracy, contrast and noise remain fixed. The improvement in 

resolution, as compared with that at the centre, may be expressed by the ratio r/ro as a 

function of position c. r/ro depends only on c for most values of roo The relationship is 

given by: 

lim 
1 

(r/ro)= 1 
(1- c ) (G.15) 

ro~O 

which can be arrived at after expressing the square root in the expression for r in 

equation (G. 1 1) as a binomial expansion. 
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