
24

Safety and Conservativity of Definitions in HOL and
Isabelle/HOL

ONDŘEJ KUNČAR, Technische Universität München, Germany

ANDREI POPESCU, Middlesex University London, United Kingdom and Institute of Mathematics Simion

Stoilow of the Romanian Academy, Romania

Definitions are traditionally considered to be a safe mechanism for introducing concepts on top of a logic

known to be consistent. In contrast to arbitrary axioms, definitions should in principle be treatable as a form

of abbreviation, and thus compiled away from the theory without losing provability. In particular, definitions

should form a conservative extension of the pure logic. These properties are crucial for modern interactive

theorem provers, since they ensure the consistency of the logic, as well as a valid environment for total/certified

functional programming.

We prove these properties, namely, safety and conservativity, for Higher-Order Logic (HOL), a logic

implemented in several mainstream theorem provers and relied upon by thousands of users. Some unique

features of HOL, such as the requirement to give non-emptiness proofs when defining new types and the

impossibility to unfold type definitions, make the proof of these properties, and also the very formulation of

safety, nontrivial.

Our study also factors in the essential variation of HOL definitions featured by Isabelle/HOL, a popular

member of the HOL-based provers family. The current work improves on recent results which showed a

weaker property, consistency of Isabelle/HOL’s definitions.

CCS Concepts: • Theory of computation→ Logic and verification; Higher order logic; Type struc-
tures; Interactive proof systems;

Additional Key Words and Phrases: higher-order logic (HOL), proof theory, interactive theorem proving, type

definitions, conservative extensions, Isabelle/HOL

ACM Reference Format:
Ondřej Kunčar and Andrei Popescu. 2018. Safety and Conservativity of Definitions in HOL and Isabelle/HOL.

Proc. ACM Program. Lang. 2, POPL, Article 24 (January 2018), 26 pages. https://doi.org/10.1145/3158112

1 INTRODUCTION
Higher-Order Logic (HOL) [Pitts 1993] (recalled in Section 3 of this paper) is an important logic

in the theorem proving community. It forms the basis of several interactive theorem provers

(also known as proof assistants), including HOL4 [Gordon and Melham 1993; Slind and Norrish

2008], HOL Light [Harrison 1996], Isabelle/HOL [Nipkow and Klein 2014; Nipkow et al. 2002],

ProofPower-HOL [Arthan 2004] and HOL Zero [Adams 2010].

In addition to supporting the development of formalized mathematics, most modern interactive

theorems provers also include a functional programming language, supporting the paradigm of

Authors’ addresses: Ondřej Kunčar, Fakultät für Informatik, Technische Universität München, Munich, Germany, kuncar@

in.tum.de; Andrei Popescu, Department of Computer Science, Middlesex University London, London, United Kingdom ,

Institute of Mathematics Simion Stoilow of the Romanian Academy, Romania, uuomul@yahoo.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2475-1421/2018/1-ART24

https://doi.org/10.1145/3158112

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

https://doi.org/10.1145/3158112
https://doi.org/10.1145/3158112

24:2 Ondřej Kunčar and Andrei Popescu

total programming [Turner 2004]. For example, in provers based on type theory such as Agda [Bove

et al. 2009], Coq [Bertot and Casteran 2004] and Matita [Asperti et al. 2011], totality is ensured by a

global strong normalization property. There is a tight relationship between this property, allowing

functions/programs to be reduced to a normal form by recursively unfolding all definitions and

reducing all redexes, and the logical consistency of these systems.

In HOL-based provers, programming is supported by a different mechanism: All recursive

datatype specifications and all recursive specifications of functions on these datatypes are translated

into nonrecursiveHOL primitives, i.e., constant and type definitions; then the recursive specifications

are proved automatically as theorems in the logic. This scheme involves a massive background

compilation and proof process (supported by tools consisting of tens of thousands of lines of code,

e.g., [Blanchette et al. 2014; Krauss 2009; Melham 1989]). It ensures a high degree of trustworthiness—

given that all constructions must pass through the “firewall” of HOL’s minimalistic kernel. In

particular, a potential bug in the compilation tools could cause correct user specifications to fail,

but will not introduce logical inconsistencies unless the kernel has a bug.

In this paper, we turn our attention to the HOL kernel itself, which is the guarantor of logical

consistency and certified programming in the above scheme. In spite of extensive foundational

studies and the relative simplicity of the logic, the normalization process underlying the HOL kernel,

i.e., the process of unfolding the HOL definitions, remains less understood than the corresponding

“normalization” process in type theory, and occasionally leads to controversial design decisions and

heated debates—as we are about to show, after recalling some background information.

While its ideas go back a long way (to the work of Alonzo Church [Church 1940] and beyond),

HOL contains a unique blend of features proposed by Mike Gordon at the end of the eighties,

inspired by practical verification needs: Its type system is the rank-one polymorphic extension

of simple types, generated using the function-space constructor from two base types, bool and
ind; its terms have built-in equality (from which all the usual connectives and quantifiers are

derived); deduction, operating on terms of type bool called formulas, is regulated by the built-in

axioms of Equality, (Hilbert) Choice and Infinity (for the type ind). In addition to this purely logical

layer, which we shall refer to as initial HOL, users can perform constant and type declarations and

definitions. Type definitions proceed by indicating a predicate on an existing type and carving out

the new type from the subset satisfying the predicate. For accepting a type definition, the system

requires a proof that the subset is nonempty (the predicate has a witness). This is because HOL types
are required to be nonempty—a major design decision, with practical and theoretical ramifications

[Gordon and Melham 1993; Paulson 1990]. No new axioms are accepted (more precisely, they

are strongly discouraged), besides the aforementioned definitions. This minimalistic, definitional
approach offers good protection against the accidental introduction of inconsistency (the possibility

to prove False).

Isabelle/HOL is a notable member of the HOL family, and a maverick to some extent. It imple-

ments an essential variation of HOL, where constant definitions can be overloaded in an ad hoc

manner, for different instances of their types. This flexibility forms the basis of Haskell-style type

classes [Nipkow and Snelting 1991],
1
a feature that allows for lighter, suppler formalizations and

should probably be credited, together with the high-level structured proof language [Wenzel 1999],

the powerful automation [Paulson 2010] and the convenient user interface [Wenzel 2014], for

Isabelle/HOL’s wide popularity and prolificness: thousands of users in both academia and industry,

a large library of formalized results [Isabelle 2016; Klein et al. 2016], major verification success

stories [Esparza et al. 2013; Klein et al. 2010; Lochbihler 2010].

1
Type classes do not require any additional extension of the logic, but are completely reduced (including at the level of

proofs) to HOL with type definitions and ad hoc overloaded constants [Wenzel 1997, Section 5].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:3

The founders of HOL have paid special attention to consistency and related properties. Andrew

Pitts designed a custom notion of standard model [Pitts 1993], aimed at smoothly accommodating

both polymorphism and type definitions. He proved that constant and type definitions are model-
theoretically conservative w.r.t. standard models: Any standard model of a theory can be expanded

to a standard model of the theory plus the definitions. This of course implies consistency of HOL

with definitions. Surprisingly, the HOL founders have not looked into the more customary notion

of proof-theoretic conservativity, which we shall simply call conservativity. It states that, by adding

new constants and types and their definitions, nothing new can be proved in the old language. This

does not follow from the model-theoretic version (because of the restriction to standard models,

for which deduction is not complete). In fact, as we discuss below, it does not even hold in general.

In Isabelle/HOL, the foundational problem is more challenging. Here, even the consistency of

definitions has not been fully understood until very recently (Section 2.2). The culprit is precisely

the feature that contributes to Isabelle/HOL’s popularity—ad hoc overloading—which has a delicate

interaction with type definitions [Kunčar and Popescu 2015, Section 1].

Motivated by the desire to settle the Isabelle foundations, in early work Wenzel formulates

criteria for safety of definitions in HOL-like logics [Wenzel 1997]. For a theory extension Θ1 ⊆ Θ2,

he considers (proof-theoretic) conservativity, a property much stronger than preservation of

consistency, to be a minimum requirement for deeming a theory extension truly definitional

[Wenzel 1997, p.7]. In fact, he argues for an even stronger notion, meta-safety. Let Σ1 and Σ2 be

the languages (signatures) of Θ1 and Θ2, respectively. (Thus, Σ1 ⊆ Σ2.) Meta-safety requires that,

whenever a Σ2-formula φ is deducible from Θ2, there exists a Σ1-formula φ[. . . , t/c, . . .], obtained
by replacing all the items c ∈ Σ2 ∖ Σ1 with some suitable Σ1-terms t , which is deducible from Θ1.

This way, the items c can be considered to be “defined” because they can always be compiled away

without losing provability. He also shows that, under appropriate well-formedness restrictions, a

set of constant definitions forms a meta-safe extension.

However, as formulated, meta-safety does not apply to type definitions, because in HOL it

is impossible to replace a defined type with its defining expression. In fact, Wenzel makes the

following observation: In general, type definitions in HOL are not even consistency-preserving, let
alone conservative (let alone meta-safe in any reasonable way), as witnessed by the following example.

Consider the HOL theory consisting of a single formula φ stating that no type has precisely three

elements (i.e, for all types α , if α has at most three elements x , y, z then two of them must be equal):

∀x , y, z : α . (∀v : α . v = x ∨ v = y ∨ v = z) −→ x = y ∨ x = z ∨ y = z

The theory {φ} is consistent since there exists a model that satisfies it—the full-frame model of

initial HOL, where all finite types are function-space combinations over bool, hence their cardinality
is a power of two, in particular, no type has cardinality three. On the other hand, the extension

of {φ} with the definition of a type having three elements, τ = {0, Suc 0, Suc(Suc 0)}, is clearly
inconsistent—which exhibits a type definition that does not preserve consistency. This analysis

has led Wenzel, who is Isabelle’s long-standing lead developer and release manager, to deem type

definitions axiomatic (i.e., having zero consistency or conservativity guarantees attached) rather

than definitional. This departure from a well-established HOL tradition has generated confusion

and misunderstanding amongst Isabelle/HOL’s users and developers [Wolff 2015].

But the above counterexample involves a non-definitional theory—φ is not a definition, but

merely an axiom that happens to be consistent. Thus, the counterexample only shows that, unlike

constant definitions, type definitions do not preserve consistency, a fortiori, are not conservative,

over an arbitrary (axiomatic) theory. Nonetheless, it is still legitimate to ask:

Are arbitrary combinations of constant and type definitions conservative over initial HOL?
And are they even meta-safe (again, over initial HOL) in a suitable sense?

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:4 Ondřej Kunčar and Andrei Popescu

Over

Initial HOL

Over Arbitrary

HOL Theories

Over

Initial HOL

Over Arbitrary

HOL Theories

Constant Definitions Yes (from right) Yes [Wenzel 1997] Yes (from right) Yes (from below)

Constant Definitions

Mixed with Type Definitions

Yes (this paper) No [Wenzel 1997] Yes (from right) Yes [Pitts 1993]

Isabelle-HOL

Constant Definitions

Yes [Wenzel 1997]

[Obua 2006]

No (easy)

Yes (from

second left)

No (easy)

Isabelle-HOL

Constant Definitions

Mixed with Type Definitions

Yes (this paper) No (from above) No (from above)

(Proof-Theoretic) Conservativity

Model-Theoretic Conserva-

tivity w.r.t. Standard Models

Fig. 1. Conservativity of Definitions in HOL and Isabelle/HOL

We believe these are important questions for deepening our understanding of the nature of HOL

and Isabelle/HOL definitions. Conservativity also provides the most compelling way of witnessing

consistency: Any proof of False using definitions can be traced down to a proof of False in initial

HOL (the latter being manifestly consistent thanks to its standard set-theoretic semantics). This

is especially relevant for the brittle foundational terrain of Isabelle/HOL, where it should help

rehabilitating type definitions as genuine, safe definitions.

In this paper, we provide a positive answer to both questions. Figure 1 shows in bold our new

conservativity results in the context of similar known facts. For Isabelle/HOL constant definitions,

ad hoc overloading immediately causes both (proof-theoretic) conservativity and model-theoretic

conservativity over arbitrary base theories to fail. On the other hand, Wenzel [Wenzel 1997] argues

by a proof sketch that any set of Isabelle/HOL constant definitions is conservative over any base

theory provided the latter’s signature does not contain these constants—in particular, this covers

the case of initial HOL, which later Obua settles by a rigorous proof [Obua 2006]. Moreover, for

(HOL and Isabelle/HOL) constant definitions over initial HOL, it is known that we can infer model-

theoretic conservativity from conservativity by replacing the defined constants with existentially

quantified variables. However, this trick no longer works when we consider combinations of

constant and type definitions—hence the empty slot in the figure’s table, meaning we don’t know

whether model-theoretic conservativity holds in this case. (This is an open problem only for the

case of Isabelle/HOL, since for standard HOL the fact even holds for arbitrary base theories, as

shown by Pitts’s well-known model-theoretic argument.) At the end of Section 5, we briefly come

back to these aspects concerning model-theoretic conservativity, and suggest a possible positive

answer to fill the figure’s empty slot in the light of our techniques. Until then, we will focus entirely

on conservativity in the proof-theoretic sense.

Here is an overview of the rest of this paper. First, we focus on traditional HOL, where we formu-

late meta-safety by defining translation operators for types and terms that unfold the definitions

(Section 4). Unfolding a type definition has to be done in an indirect fashion, since HOL does not

support comprehension/refinement types (of the form {x : σ | t x}). Namely, a formula operating

on defined types will be relativized to a formula on the original, built-in types that hosted the type

definitions; so the “unfolding” of a defined type will be a predicate on its host type. Since type

definitions are paired with nonemptiness proofs (in the current contexts, having available all the

previously introduced definitions), we are forced to proceed gradually, one definition at a time.

Consequently, the proof of meta-safety (also leading to conservativity) is itself gradual, in a feedback

loop between preservation of deduction, commutation with substitution, and nonemptiness of the

relativization predicates.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:5

We organized the proof development for traditional HOL modularly, separating lemmas about

termination of the definitional dependency relation. This allows a smooth upgrade to the more

complex case of Isabelle/HOL (Section 5), where termination is no longer ensured by the historic

order of definitions, but via a more global approach. Due to ad hoc overloading, here the translations

no longer commute with type substitution. We recover from this “anomaly” by mining the proofs

and weakening the commutation lemma—leading to an Isabelle/HOL version of the results.

Our constructions have a logical-relation flavor [Reynolds 1983], but with some non-standard (and

non-parametric) aspects due to the need to ensure non-emptiness of the representation predicates

and, for Isabelle/HOL, to cope with ad hoc polymorphism.

The extended technical report [Kunčar and Popescu 2017b] has an appendix where we give more

details on the HOL logic concepts and show some omitted proofs. We implemented for Isabelle/HOL

the unfolding and relativization functions presented in this paper, and used them to check the

paper’s examples. The documented implementation is available from [Kunčar and Popescu 2017c].

2 MORE RELATEDWORK
There is a vast literature on the logical foundations of theorem provers, which we will not attempt

to survey here. We focus on work that is directly relevant to our present contribution, from the

point of view of either the object logic or the techniques used.

2.1 HOL Foundations
Wiedijk [2009] defines stateless HOL, a version of HOL where terms and types carry in their syntax
information about the defined constants and type constructors. Kumar et al. [2014] define a set-

theoretic (Pitts-style) model for stateless HOL and a translation from standard (stateful) HOL with

definitions to stateless HOL, thus proving the consistency of both. Their stateful to stateless HOL

translation is similar to our translation, in that they both internalize the definitions (which are part

of “the state”) into “stateless” formulas; however, for conservativity, we need to appeal to pure HOL

entities, not to syntactically enriched ones. In a subsequent paper [Kumar et al. 2016], the same

authors renounce the stateless HOL detour and prove model-theoretic conservativity directly on

initial HOL.

Kumar et al.’s work, which has been mechanized in HOL4, is based on pioneering self-verification

work by Harrison [Harrison 2006], who uses HOL Light to give semantic proofs of soundness of

the HOL logic without definitional mechanisms, in two flavors: either after removing the infinity

axiom from the object HOL logic, or after adding a “universe” axiom to the meta-logic.

2.2 Isabelle/HOL Foundations
Wenzel’s work cited in the introduction [Wenzel 1997] sketched proofs of meta-safety and con-

servativity of constant definitions but left type definitions aside. In spite of Wenzel’s theoretical

observation that orthogonality and termination are required to ensure meta-safety, overloading

of constants remained unchecked in Isabelle/HOL for many years—until Obua looked into the

problem and proposed a way to implement Wenzel’s observation with an external termination

checker [Obua 2006]. Obua also aimed to extend the scope of consistency by factoring in type

definitions. But his syntactic proof missed out possible inconsistencies through delayed overloading

intertwined with type definitions. Soon after, Wenzel designed and implemented a more structural

solution based on work of Haftmann, Obua and Urban (parts of which are reported in [Haftmann

and Wenzel 2006]).

The foundational work on Isabelle/HOL was resumed by us in 2014, after the aforementioned

inconsistencies caused by delayed overloading and type definitions were discovered. To address the

problem, we defined a new dependency relation [Kunčar and Popescu 2015], operating on constants

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:6 Ondřej Kunčar and Andrei Popescu

and types (which became part of the system starting from Isabelle2016). Employing a nonstandard

semantics, we proved that, after these modifications, any definitional theory is consistent. In more

recent work, we gave an alternative syntactic proof, based on translating HOL to a richer logic,

HOLC, having comprehension types as first-class citizens [Kunčar and Popescu 2017a]. The current

paper improves on these results, by proving properties much stronger than consistency.

2.3 Other Work
The general-purpose interactive theorem proving community is largely dominated by two successful

camps: provers based on type theory (Agda, Coq, Matita, etc.) and provers based on HOL.
2
For the

former, the notion of normalizing terms is fairly well studied and well understood [Abel et al. 2007;

Altenkirch 1993; Barras 2010; Coquand et al. 1990; Coquand and Spiwack 2006; Geuvers 1993]. Our

notion of meta-safety can be seen as the HOL counterpart of type-theoretic normalization, hence

as a foundation for HOL-based programming. Of course, the technical challenges we face in HOL

are quite different—here, it is not the expressiveness of the logic or of its underlying type system

(e.g., fancy dependent types or polymorphism) that complicates the argument, but to a large extent

its lack of expressiveness: The logic disallows unfolding type definitions, which forces us into a

labyrinth of relativization techniques. Another difference is that HOL is an inherently classical

logic: Type definitions require possibly non-constructive proofs of nonemptiness, and the Hilbert

Choice is paramount. This makes our proof translations less clean than in type theory.

Other foundational work for theorem provers includes Myreen and Davis’s mechanized proof of

consistency for Milawa [Myreen and Davis 2014], a prover based on first-order logic in the style of

ACL2, and Owre and Shankar’s set-theoretic semantics of PVS [Owre and Shankar 1999]—featuring

a logic similar to HOL, but with dependent types.

Outside the world of theorem proving, conservative extensions are widely employed in mathe-

matical logic, e.g., in the very popular Henkin technique for proving completeness [Henkin 1949].

They are also employed in algebraic specifications to achieve desirable modularity properties

[Sannella and Tarlecki 2012]. However, in these fields, definitional extensions are often trivially

conservative, thanks to their simple equational structure and freshness conditions.

3 HOL PRELIMINARIES
By HOL, we mean classical higher-order logic with Infinity, Choice and rank-one polymorphism,

and mechanisms for constant and type definitions and declarations. This section explains all these

concepts and features in detail.

3.1 Syntax
All throughout this paper, we fix the following:

• an infinite set TVar, of type variables, ranged by α , β
• an infinite set VarN, of (term) variable names, ranged by x , y, z

A type structure is a pair (K, arOf) where:
• K is a set of symbols, ranged by k , called type constructors, containing three special sym-

bols: “bool”, “ind” and “⇒” (aimed at representing the type of booleans, an infinite type of

individuals and the function type constructor, respectively)

• arOf : K⇒ N is a function associating arities to the type constructors, such that arOf(bool) =
arOf(ind) = 0 and arOf(⇒) = 2.

2
There are of course successful provers outside these two camps, but they are usually focused on more specialized tasks,

and on automation more than on interaction. They include ACL2 [Kaufmann et al. 2000], Dafny [Leino 2010] and Key

[Ahrendt et al. 2016].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:7

The types associated to (K, arOf), ranged by σ , τ , are defined as follows:

σ ::= α | (σ1, . . . , σarOf(k)) k

Thus, a type is either a type variable or an n-ary type constructor k postfix-applied to a number of

types corresponding to its arity. We write Type(K,arOf) for the set of types associated to (K, arOf).
A signature is a tuple Σ = (K, arOf, Const, tpOf), where:

• (K, arOf) is a type structure
• Const, ranged over by c , is a set of symbols called constants, containing four special symbols:

“=”, “ε”, “zero” and “suc” (aimed at representing equality, Hilbert choice of some element from

a type, zero and successor, respectively)

• tpOf : Const⇒ Type is a function associating a type to every constant, such that:

tpOf(=) = α ⇒ α ⇒ bool tpOf(ε) = (α ⇒ bool) ⇒ α
tpOf(zero) = ind tpOf(suc) = ind⇒ ind

For the rest of this section, we fix a signature Σ = (K, arOf, Const, tpOf). We usually write TypeΣ,
or simply Type, instead of Type(K,arOf).
TV(σ) is the set of type variables of a type σ . A type substitution is a function ρ : TVar⇒ Type.

We let TSubst denote the set of type substitutions. The application of ρ to a type σ , written σ [ρ], is
defined recursively by α[ρ] = ρ(α) and ((σ1, . . . , σm) k)[ρ] = (σ1[ρ], . . . , σm[ρ]) k . If α1, . . . , αm
are all different, we write τ1/α , . . . , τn/αm for the type substitution that sends αi to τi and each

β < {α1, . . . , αm} to β . Thus, σ [τ1/α , . . . , τn/αm] is obtained from σ by substituting, for each i , τi
for all occurrences of αi .

We say that σ is an instance of τ via ρ, written σ ≤ρ τ , if τ [ρ] = σ . We say that σ is an instance
of τ , written σ ≤ τ , if there exists ρ ∈ TSubst such that σ ≤ρ τ . Two types σ1 and σ2 are called
orthogonal, written σ1 # σ2, if they have no common instance; i.e., for all τ , τ ̸≤ σ1 or τ ̸≤ σ2.

Given ρ1, ρ2 ∈ TSubst, we write ρ1 · ρ2 for their composition, defined as (ρ1 · ρ2)(α) = (ρ1(α))[ρ2].
It is easy to see that, for all types σ , it holds that σ [ρ1 · ρ2] = σ [ρ1][ρ2].
A (typed) variable is a pair of a variable name x and a type σ , written xσ . We let Var denote

the set of variables. A constant instance is a pair of a constant and a type, written cσ , such that

σ ≤ tpOf(c). We let CInst denote the set of constant instances. We extend the notions of being an

instance (≤) and being orthogonal (#) from types to constant instances:

cτ ≤ dσ iff c = d and τ ≤ σ cτ # dσ iff c , d or τ # σ

The signature’s terms, ranged over by s, t , are defined by the grammar:

t ::= xσ | cσ | t1 t2 | λxσ . t

Thus, a term is either a variable, or a constant instance, or an application, or an abstraction. As

usual, we identify terms modulo alpha-equivalence. We let TermΣ, or simply Term, ranged by s and
t , denote the set of terms. Typing is defined as a binary relation between terms and types, written

t : σ , inductively as follows:

xσ ∈ Var
xσ : σ

cσ ∈ CInst
cσ : σ

t1 : σ ⇒ τ t2 : σ

t1 t2 : τ

t : τ

λxσ . t : σ ⇒ τ

We can apply a type substitution ρ to a term t , written t[ρ], by applying it to the types of all

variables and constant instances occurring in t with the usual renaming of bound variables if they

get captured. FV(t) is the set of t ’s free variables. The term t is called closed if it has no free variables:
FV(t) = ∅. We write t[s/xσ] for the term obtained from t by capture-free substituting the term s
for all free occurrences of xσ .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:8 Ondřej Kunčar and Andrei Popescu

A formula is a term of type bool. We let FmlaΣ, or simply Fmla, ranged by φ and χ , denote the
set of formulas. The formula connectives (e.g., ∧ and −→) and quantifiers (∀ and ∃) are defined in

the usual way, starting from the equality primitive. For example, for any type σ , we write ∀xσ . t for
allσ (λxσ . t), where allσ is the term λpσ⇒bool. p = (λxσ . true). The appendix of our technical report
[Kunčar and Popescu 2017b] gives details. Given terms b : bool, t1 : σ and t2 : σ , their if-then-else
expression, written if_t_e b t1 t2, is the term ε (λxσ . (b −→ xσ = t1) ∧ (¬ b −→ xσ = t2)). Its
behavior is the expected one: It equals t1 if b is true and equals t2 if b is false.

To avoid confusion with the object-logic definitions discussed later, we treat the logical connec-

tives and quantifiers and the if-then-else operator as mere abbreviations (i.e., meta-level definitions

of certain HOL terms). When writing terms, we sometimes omit the types of variables if they can be

inferred—e.g, we write λxσ . x instead of λxσ . xσ . A theory (over Σ) is a set of closed (Σ-)formulas.

3.2 Axioms and Deduction
The HOL axioms, forming the set Ax, are the usual Equality axioms, the Infinity axioms (stating that

suc is different from 0 and is injective, which makes the type ind infinite), the classical Excluded

Middle and the Choice axiom, which states that the Hilbert choice operator returns an element

satisfying its argument predicate (if nonempty): pα⇒bool x −→ p (ε p).
A context Γ is a finite set of formulas. We write α < Γ to indicate that the type variable α does

not appear in any formula in Γ; similarly, xσ < Γ will indicate that xσ does not appear free in
any formula in Γ. We define deduction as a ternary relation ⊢ between theories D, contexts Γ and

formulas φ, written D; Γ ⊢ φ.

D; Γ ⊢ φ

(Fact)

[φ ∈ Ax ∪ D] D; Γ ⊢ φ

(Assum)

[φ ∈ Γ]

D; Γ ⊢ φ

D; Γ ⊢ φ[σ/α]

(T-Inst)

[α < Γ]

D; Γ ⊢ φ

D; Γ ⊢ φ[t/xσ]

(Inst)

[xσ < Γ] D; Γ ⊢ (λxσ . t) s = t[s/xσ]
(Beta)

D; Γ ⊢ f xσ = д xσ
D; Γ ⊢ f = д

(Ext)

[xσ < Γ]

D; Γ ∪ {φ} ⊢ χ

D; Γ ⊢ φ −→ χ
(ImpI)

D; Γ ⊢ φ −→ χ D; Γ ⊢ φ

D; Γ ⊢ χ
(MP)

The axioms and the deduction rules we gave here are (a variant of) the standard ones for HOL

(as in, e.g., [Gordon and Melham 1993; Harrison 2009]). Different provers implementing standard

HOL, such as HOL4, HOL Light, HOL-ProofPower and HOL Zero, may use slightly different sets of

logical primitives and slightly different rules and axioms; moreover, they of course differ in their

implementation details. However, they all implement the same logic, up to logical equivalence.

We write D ⊢ φ instead of D; ∅ ⊢ φ and ⊢ φ instead of ∅; ∅ ⊢ φ (that is, we omit empty contexts

and theories). Note that the HOL axioms are not part of the parameter theory D, but are wired
together with D in the (Fact) axiom. So ⊢ φ indicates that φ is provable from the HOL axioms only.

3.3 HOL Definitions and Declarations
Besides deduction, another main component of the HOL logic is a mechanism for introducing new

constants and types by spelling out their definitions.

The built-in type constructors are bool, ind and⇒. The built-in constants are =, ε, zero and suc.
Since the built-in items have an already specified behavior (by the HOL axioms), only non-built-in

items can be defined.

Definition 1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:9

Constant Definitions: Given a non-built-in constant c such that tpOf(c) = σ and a closed term

t : σ , we let cσ ≡ t denote the formula cσ = t . We call cσ ≡ t a constant definition provided

TV(t) ⊆ TV(cσ) (i.e., TV(t) ⊆ TV(σ)).
Type Definitions: Given types τ and σ and a closed term t : σ ⇒ bool, we let τ ≡ t denote the

formula ∃repτ⇒σ . One_Onerep ∧ (∀yσ . t y ←→ (∃xτ . y = rep x))

whereOne_Onerep is the formula stating that rep is one-to-one (injective), namely, ∀xτ , yτ . rep x =
rep y −→ x = y. We call τ ≡ t a type definition, provided τ has the form (α1, . . . , αm) k such that k
is a non-built-in type constructor, the αi ’s are all distinct type variables and TV(t) ⊆ {α1, . . . , αm}.
(Hence, we have TV(t) ⊆ TV(τ), which also implies TV(σ) ⊆ TV(τ).)

A type definition expresses the following: The new type (α1, . . . , αm) k is embedded in its host

type σ via some one-to-one function rep, and the image of this embedding consists of the elements

of σ for which t holds. Since types in HOL are required to be nonempty, the definition is only

accepted if the user provides a proof that ∃xσ . t x holds. Thus, to perform a type definition, one
must give a nonemptiness proof.

Type and Constant Declarations: Declarations in HOL are a logical extension mechanism which is

significantly milder than definitions—they simply add new items to the signature as “uninterpreted,”

without providing any definition.

3.4 Signature Extensions and the Initial Signature
In the remainder of this paper, when necessary for disambiguation, we will indicate the signature

Σ as a subscript when denoting sets and relations associated to it: TypeΣ, TermΣ, CInstΣ, ⊢Σ, etc.
Given a signature Σ = (K, arOf, Const, tpOf) and an item u, we write u ∈ Σ to mean that u ∈ K

or u ∈ Const. Given signatures Σ = (K, arOf, Const, tpOf) and Σ′ = (K′, arOf ′, Const′, tpOf ′), we
say Σ is included in Σ′, or Σ′ extends Σ, written Σ ⊆ Σ′, if K ⊆ K′, Const ⊆ Const′ and the functions
arOf ′ and tpOf ′ are extensions of arOf and tpOf, respectively. We write u ∈ Σ′∖ Σ to mean u ∈ Σ′

and u < Σ. If c < Const and σ ∈ TypeΣ, we write Σ ∪ {(c, σ)} for the extension of Σ with a new

constant c of type σ . Similarly, if k < K, we write Σ ∪ {(k, n)} for the extension of Σ with a new

type constructor k of arity n.
We write Σinit for the initial signature, containing only built-in type constructors and constants.

Note that, by definition, any signature extends the initial signature.

4 CONSERVATIVITY OF HOL DEFINITIONS
A HOL development, i.e., a session of interaction with the HOL logic from a user’s perspective,

consists of intertwining definitions, declarations and (statements and proofs of) theorems. Since

theorems are merely consequences of definitions, we will not model them explicitly, but focus on

definitions and declarations.

Let Σ = (K, arOf, Const, tpOf) be a signature and let D be a finite theory over Σ.

Definition 2. D is said to be awell-formed definitional theory ifD = {def
1
, . . . , defn}, where each

def i is a (type or constant) definition of the form ui ≡ ti , and there exist the signatures Σ1, . . . , Σn

and Σ0, Σ1, . . . , Σn such that Σ0 = Σinit, Σn = Σ and the following hold for all i ∈ {1, . . . , n}:

(1) ti ∈ TermΣi and Σi is the extension of Σi with a fresh item defined by def i , namely:

(1.1) If ui has the form (α1, . . . , αm) k , then k < Σi and Σi = Σi ∪ {(k,m)}
(1.2) If ui has the form cσ , then c < Σ

i
and Σi = Σi ∪ {(c, σ)}

(2) If def i is a type definition, meaning ui is a type and ti : σ ⇒ bool, then {def
1
, . . . , def i−1} ⊢Σi∃xσ . ti x

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:10 Ondřej Kunčar and Andrei Popescu

(3) Σi−1 ⊆ Σi

These conditions express that the theory D consists of intertwined definitions and declarations.

The chain of extensions

Σinit = Σ0 ⊆ Σ1 ⊆ Σ1 ⊆ Σ2 ⊆ Σ2 . . . ⊆ Σn ⊆ Σn = Σ,

starting from the initial signature and ending with Σ, alternates sets of declarations (the items in

Σi \ Σi−1) with definitions (the unique item ui in Σi \ Σ
i
being defined by def i , i.e., as ui ≡ ti). As

shown by condition (2), in the case of type definitions, we also require proofs of non-emptiness of

the defining predicate t (from the definitions available so far).

In short, the above conditions state something very basic: Definitions are introduced one at

a time and the defined symbols are fresh. This is clearly obeyed by correct implementations of

standard HOL, such as HOL4 and HOL Light. (By contrast, the Isabelle/HOL-specific conditions in

Section 5 will involve the more complex notions of orthogonality and termination.)

Definition 3. A theory E over Σ is said to be a (proof-theoretic) conservative extension of initial
HOL if any formula proved from E that belongs to the initial signature Σinit could have been proved

without E or the types and constants from outside of Σ. Formally: For all φ ∈ FmlaΣinit , E ⊢Σ φ
implies ⊢Σinit φ.

4.1 Roadmap
In what follows, we fix a well-formed definitional theory D and use for it the notations introduced

in Def. 2, e.g., Σ, Σi . We first sketch the main ideas of our development, motivating the choice of

the concepts. The more formal definitions and proofs will be given in the following subsections.

Our two main goals are to formulate and prove D’s meta-safety and to prove D’s conservativity.
As with any respectable notion of its kind, meta-safety will easily yield conservativity, so we

concentrate our efforts on the former.
3

4.1.1 Unfolding the Definitions. Recall that, for a Σ-formula φ provable from D, meta-safety

should allow us to replace all the defined items in φ with items in the initial signature without losing

provability, i.e., obtaining a deducible Σinit-formula φ ′. For constants, the procedure is clear: Any
defined constant c appearing in φ is replaced with its defining term t , then any defined constant d
appearing in t is replaced with its defining term, and so on, until (hopefully) the process terminates

and we are left with built-in items only.

But how about for types τ occurring in φ? A HOL type definition τ ≡ t where t : σ ⇒ bool,
is not an equality (there is no type equality in HOL), but a formula asserting the existence of a

bijection between τ and the set of elements of σ for which the predicate t holds. So it cannot be
“unfolded.” First, let us make the simplifying assumption that σ ∈ TypeΣinit and t ∈ TermΣinit . Then

the only reasonable Σinit-substitute for τ is its host type σ ; however, after the replacement of τ by

σ , the formula needs to be adjusted not to refer to the whole σ , but only to the isomorphic copy

of τ—in other words, the formula needs to be relativized to the predicate t . In general, σ or t may

themselves contain defined types or constants, which will need to be processed similarly, and so

on, recursively. In summary:

• for each type τ , we define its host type HOST(τ) ∈ TypeΣinit and its relativization predicate

on that type, REL(τ) : HOST(τ) ⇒ bool (where REL(τ) ∈ TermΣinit)

3
A note on terminology: In this paper’s title, abstract and introduction, we use the term safety to refer to the informal notion

of a definition being “safe,” i.e., being treatable as a form of abbreviation. On the other hand, meta-safety is a technical term

introduced by Wenzel for a mathematical formulation of safety for constant definitions. We will introduce our own notion

of meta-safety, extending Wenzel’s.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:11

• for each term t : τ , we define its unfolding UNF(t) : HOST(τ) (where UNF(t) ∈ TermΣinit)

We will illustrate our design choices for the various cases in defining the above translation functions

with the help of a running example.

Example 4. Let Σ be the extension of the initial signature with:

• the nullary type constructors nat and zfun
• the constants absnat : ind⇒ nat and z : nat

Let D = {def i | i ∈ {1, . . . , 4}}, such that:

• def
1
is nat ≡ t1, where t1 : ind⇒ bool is a predicate taking the intersection of all predicates

that hold for 0 and are closed under Suc. Formally, t1 is λiind. (∀Pind⇒bool. P 0 ∧ (∀jind. P j −→
P (Suc j))) −→ P i; but the precise form of t1 will not be important in our discussion, beyond

the fact that it is a term in the initial signature.

• def
2
is absnat ≡ ε t2, where t2 : (ind⇒ nat) ⇒ bool is a predicate stating about its argument

function that it is a bijection between the elements of ind that satisfy t1 and nat. Formally, t2
is λ find⇒nat. φ1 ∧ φ2, where:

– φ1 states that f is one-to-one on the elements satisfying t1, namely ∀iind jind. t1 i ∧ t1 j ∧
f i = f j −→ i = j

– φ2 states that f maps t1 onto nat, namely ∀nnat. ∃iind. t1 i ∧ f i = n
• def

3
is z ≡ t3, where t3 is absnat 0.

• def
4
is zfun ≡ t4, where t4 : (nat⇒ nat) ⇒ bool is λ fnat⇒nat. f z = z.

Thus, there are no (non-defined but) declared items, and the chain Σinit = Σ0 ⊆ Σ1 ⊆ Σ1 ⊆ . . . ⊆
Σ4 ⊆ Σ4 = Σ consists of the following signatures, where we do not repeat the arities and the types:

Σ1 = Σ0 = Σinit Σ3 = Σ2 = Σ2 ∪ {absnat} Σ = Σ4 = Σ4 ∪ {zfun}
Σ2 = Σ1 = Σ1 ∪ {nat} Σ4 = Σ3 = Σ3 ∪ {z}

Incidentally, this example shows the standard procedure of bootstrapping natural numbers in

HOL: The type nat is defined by carving out, from HOL’s built-in infinite type ind, the smallest set

closed under zero and successor. Using the Choice operator, we define the abstraction function

absnat as a surjection whose restriction to nat’s defining predicate t1 is a bijection to nat. (The
opposite injection can of course also be defined, but is omitted here.) The version of zero for naturals,

z : nat, is defined by applying the abstraction to the built-in zero from ind. Subsequently, another
type is introduced, zfun, of zero-preserving functions between naturals, defined by carving out

from the type nat⇒ nat the set of those functions that map z to z.

The simplest of the three translation functions will be HOST, which will track recursively, for

each defined type, the built-in type that represents its defining ancestor. For example, following

the type definitions def
1
and def

4
, we can compute the host of zfun:

HOST(zfun) = HOST(nat⇒ nat) = HOST(nat) ⇒ HOST(nat) = ind⇒ ind

The UNF function will be more challenging to define. A clearly desirable feature is that UNF
should leave built-in constants unchanged, e.g., UNF(=) should be =. Moreover, for instances cσ
of constants c : τ defined by equations cτ ≡ t , UNF(cσ) will naturally be recursively defined

as UNF(t[ρ]) where ρ is the substitution that makes σ an instance of τ (i.e., σ ≤ρ τ). In other

words, we unfold cσ with the appropriately substituted equation defining c . Since UNF is applied to
arbitrary terms, not only to constants, we must indicate its recursive behavior for all term constructs.

Abstraction and application are handled as expected, in that UNF distributes over them—with

changing the type of the bound variables through the HOST function. For example, starting with t4
which is λ fnat⇒nat. fnat⇒nat z = z, we have the following equalities, where UNF delves recursively

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:12 Ondřej Kunčar and Andrei Popescu

into abstractions and applications, unfolds the definitions def
3
of z and def

2
of absnat, and leaves

the built-in constants =, 0 and ε unchanged:

UNF(t4) = λ fHOST(nat⇒nat). UNF(fnat⇒nat z = z)
= λ find⇒ind. UNF(fnat⇒nat) UNF(z) UNF(=) UNF(z)
= λ find⇒ind. UNF(fnat⇒nat) UNF(absnat 0) = UNF(absnat 0)
= λ find⇒ind. UNF(fnat⇒nat) (UNF(absnat) UNF(0)) = UNF(absnat) UNF(0)
= λ find⇒ind. UNF(fnat⇒nat) (UNF(ε t2) 0) = UNF(ε t2) 0
= λ find⇒ind. UNF(fnat⇒nat) (UNF(ε) UNF(t2) 0) = UNF(ε) UNF(t2) 0
= λ find⇒ind. UNF(fnat⇒nat) (ε UNF(t2) 0) = ε UNF(t2) 0

Unlike applications and abstractions, variables raise a subtle issue, with global implications on our

overall proof strategy. But before discussing them, we must look at how to define the relativization

predicates. Clearly, REL should send a defined type such as nat to the unfolding of its defining

predicate, here, UNF(t1). (Note that in this case t1 happens to contain only built-in items, meaning

UNF(t1) = t1.) Moreover, REL should “distribute” over ⇒ in that REL(σ1 ⇒ σ2) = REL(σ1) ⇒
REL(σ2) where, for p1 : τ1 ⇒ bool and p2 : τ2 ⇒ bool, p1 ⇒ p2 is the predicate on τ1 ⇒ τ2 stating
about its argument function that it maps elements satisfying p1 to elements satisfying p2—i.e.,
p1 ⇒ p2 is the lifting of p1 and p2 to the function space. For example:

REL(nat⇒ nat) = REL(nat) ⇒ REL(nat) = t1 ⇒ t1

But what if a type is defined from a type that itself contains other defined types, as is the case of

zfun defined from nat⇒ nat (according to def
4
)? Then we must accumulate the defining predicates

of all intermediate types, each lifted if necessary along the encountered function-space structure:

REL(zfun) = λ fHOST(zfun). REL(nat⇒ nat) fHOST(zfun) ∧ UNF(t4) fHOST(zfun)
= λ find⇒ind. (t1 ⇒ t1) find⇒ind ∧ UNF(t4) find⇒ind

Thus, REL(zfun) find⇒ind states that f preserves t1 (the defining predicate of nat from ind) and that
UNF(t4) f holds, where t4 is the defining predicate of zfun from nat⇒ nat.

Back to the unfolding of variables, we are now ready to ask what should UNF(xσ) be. An obvious

candidate is xHOST(σ). However, this will not work, since a crucial property that we will need about

our translation is that it observes membership to types, in that it maps terms of a given type to

terms satisfying that type’s representing predicate:

(F1) The relativization predicates hold on translated items, i.e., REL(σ) UNF(t) is de-
ducible (in initial HOL) for each term t : σ .

In particular, any REL(σ) UNF(xσ), e.g., REL(nat ⇒ nat) UNF(fnat⇒nat), should be deducible.

To enforce this, we define UNF(xσ) to be either xHOST(σ) if REL(σ) xHOST(σ) holds, or else any

item for which REL(σ) holds. This is expressible using the if-then-else and Choice operators:

if_t_e (REL(σ) xHOST(σ)) xHOST(σ) (ε REL(σ)). For example:

UNF(fnat⇒nat) = if_t_e (REL(nat⇒ nat) fHOST(nat⇒nat)) fHOST(nat⇒nat) (ε REL(nat⇒ nat))
= if_t_e ((t1 ⇒ t1) find⇒ind) find⇒ind (ε (t1 ⇒ t1))

In other words, UNF(fnat⇒nat) is either find⇒ind if find⇒ind happens to preserve t1, or otherwise
some element that preserves t1.

By the Choice axiom, REL(σ) holds for ε REL(σ) just in case REL(σ) is nonempty. So to achieve

the goal of ensuring REL(σ) holds for xσ , we need:

(F2) The relativization predicates are nonempty, i.e., ∃xHOST(σ). REL(σ) x is deducible.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:13

(For our example, this would mean that there exists an element of ind⇒ ind that preserves t1.)
Another way to regard this property is as a reflection of the HOL types being nonempty—a faithful

relativization should of course follow suit.

With our chosen behavior of UNF on variables, the formula connectives and quantifiers will be

treated as desired, i.e., yielding (modulo HOL deduction) standard relativization with respect to the

REL predicates—for the universal and existential quantifiers, this means bounded quantification.

For example, writing t1 =HOL t2 for ⊢Σinit t1 = t2, i.e., for the fact that the equality t1 = t2 is deducible
in initial HOL, we have:

UNF(∀xσ . φ xσ) = UNF((λxσ . φ xσ) = (λxσ . true))
= (λxHOST(σ). UNF(φ) UNF(xσ)) = (λxHOST(σ). true)
= ∀xHOST(σ). UNF(φ) UNF(xσ)
= ∀xHOST(σ). UNF(φ) (if_t_e (REL(σ) xHOST(σ)) xHOST(σ) (ϵ REL(σ)))
=HOL ∀xHOST(σ). if_t_e (REL(σ) xHOST(σ)) (UNF(φ) xHOST(σ)) (UNF(φ) (ϵ REL(σ)))
=HOL ∀xHOST(σ). REL(σ) xHOST(σ) −→ UNF(φ) xHOST(σ)

The last =HOL step in the above chain follows from the non-emptiness of REL(σ). Similarly, the

unfolding of ∃xσ . φ x will be equal modulo HOL deduction to ∃xHOST(σ). REL(σ) x ∧ UNF(φ) x .
We can take advantage of the above observation to obtain a palatable form for UNF(t2):

UNF(t2) =HOL λ find⇒ind. UNF(φ1) ∧ UNF(φ2)

UNF(φ1) =HOL ∀iind jind. t1 i ∧ t1 j ∧ s i = s j −→ i = j
UNF(φ2) =HOL ∀nind. t1 n −→ ∃iind. t1 i ∧ s i = n

where s is the term if_t_e ((t1 ⇒ t1)f) f (ε (t1 ⇒ t1)). Thus, UNF(t2) states about its argument f
that, if it preserves t1, then it is in fact a bijection on the set of elements of ind that satisfy t1.

The above discussion suggests that the desired Σinit-formula φ ′ corresponding to a Σ-formula φ
should be UNF(φ). Hence, for us meta-safety over initial HOL will mean:

(MS) For all φ ∈ FmlaΣ, D ⊢Σ φ implies ⊢ΣinitUNF(φ).
This property is indeed a type-aware version of what Wenzel calls meta-safety: UNF(φ) replaces

each defined constant with a term as in Wenzel’s concept, and replaces each defined type with a

tandem of a host type and a relativization predicate.

For our running example, we can prove D ⊢Σ φ, where φ is ∀fnat⇒nat. ∃дnat⇒nat. ¬ f = д, which
is a way of saying that nat⇒ nat, if it is not empty (which is true for all HOL types) then it is not

a singleton. By our meta-safety result, we will infer ⊢ΣinitUNF(φ), where

UNF(φ) =HOL ∀fHOST(nat⇒nat). REL(nat⇒nat) f −→ ∃дHOST(nat⇒nat). REL(nat⇒nat) д ∧ ¬ f = д
= ∀find⇒ind. (t1 ⇒ t1) f −→ ∃дind⇒ind. (t1 ⇒ t1) д ∧ ¬ f = д

This is indeed a tautology (provable in initial HOL): It says that for any function that preserves

the natural-number predicate (i.e., t1) there exists a different function with the same property. This

follows from the fact that there are two distinct elements of ind satisfying t1, e.g., 0 and Suc 0.
To help proving (MS), we will also have lemmas about the good behavior of the translation

functions HOST, UNF and REL with respect to the main ingredients of HOL deduction:

(F3) The translation functions preserve variable freshness and commute with substitution.

The order in which we will have to prove these facts has superficially circular dependencies. As

discussed, we need (F2) for proving (F1). Moreover, (F1) is needed to prove (F3), more precisely,

to make sure that UNF commutes with substitution for the delicate case of variables xσ . In turn,

(F3) is used for (MS). But to prove (F2), the nonemptiness of the relativization predicates, we seem

to need (MS). Indeed, for the case of a type τ defined by τ ≡ t with t : σ ⇒ bool, REL(τ) is
the conjunction of REL(σ) and UNF(t). So, in an inductive proof of (F2), we will need to deduce

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:14 Ondřej Kunčar and Andrei Popescu

∃xHOST(σ). REL(σ) x ∧ UNF(t) x . The only fact that can help here is that this formula is (equivalent

to) UNF(φ), where φ is ∃xσ . t x . Since φ is the non-emptiness claim for the new type τ , it is
deducible (according to Def. 2(2)). So we would like to apply (MS) here for obtaining that UNF(φ)
is deducible.

Thus, we have the apparent dependency loop

(MS) =⇒ (F3) =⇒ (F1) =⇒ (F2) =⇒ (MS)

The way out of this loop is a gradual approach: We will not define a single version of the translation

functions, but one version,HOSTi , UNFi and RELi , for each subset {def
1
, . . . , def i } of D with i ≤ n.

This way, we can use (MS) for i to prove (F2) for i + 1.

4.1.2 Dealing With Declarations. Lastly, we must take into account a phenomenon we have

ignored so far: the presence of declarations in addition to definitions.

Example 5. Consider the following extension of Example 4: After def
4
, a declaration of a constant

c : zfun is performed. Thus, we have a new signature Σ5 = Σ4 ∪ {(c, zfun)}.

What should the unfolding UNF(cσ) of the declared constant c : zfun be? A possibility is to

acknowledge c as an irreducible entity, and define UNF(czfun) = cHOST(zfun). However, this way our

desirable property (F1), here, REL(zfun) cHOST(zfun), will not be provable, since nothing prevents

the “uninterpreted” items cHOST(zfun) from being outside of the relativization predicate. Another

alternative is to define UNF(czfun) as an arbitrary element satisfying REL(zfun), via Choice, i.e.,
as ϵ REL(zfun). But this would mean that UNF will artificially identify several distinct constants,

e.g., UNF(cσ) = UNF(dσ) for any two declared constants cσ and dσ—besides being unnatural, this

situation would become difficult to handle later, for Isabelle/HOL, since it would introduce a breach

in monotony: When declaring cσ and dσ , their unfoldings would be equal, but at a later stage one

of them could get defined, breaking this equality.

In summary, we wish to preserve the identity of the declared constants such as czfun, while still
enforcing REL(zfun) UNF(czfun). We achieve this by treating czfun in a guarded fashion, similarly to

the variables—here, taking UNF(czfun) to be if_t_e (REL(zfun) cHOST(zfun)) cHOST(zfun) (ε REL(zfun)),
i.e., if_t_e (REL(zfun) cind⇒ind) cind⇒ind (ε REL(zfun)).

Another subtlety concerning declared constants lies in the question: What should be the signature
of UNF (czfun)? Since c has no definition, it will not be compiled away by unfolding. However, its

type zfun, which is a defined type, must be translated into its host ind ⇒ ind. But none of the
existing signatures contains a constant c : ind⇒ ind. Consequently, we must create a signature ∆
that extends Σinit with all the declared constants but having HOST-translated types, and, similarly,

with all the declared type constructors. As for the declared (but not defined) types, these can be

kept in the signature ∆ without causing any problems. Our translations, as well as the statement of

(MS), will target this extended signature ∆ rather than Σinit.

4.2 Formal Definition of the Translations and Meta-Safety
We will write Di for the current definitional theory at moment i , {def

1
, . . . , def i }. Thus, we have

D = Dn . As discussed in the previous subsection, we will define deduction-preserving translations of

the Σ-types and Σ-terms into ∆-types and ∆-terms, where ∆ will be a suitable signature that collects

all the declared items—namely, for each Σ-type we define its host ∆-type and its relativization

predicate (which is a ∆-term) and for each Σ-term we define its unfolding (which is a ∆-term). We

proceed gradually, considering the Σi ’s one i at a time, eventually reaching Σ = Σn .
For each i ∈ {1, . . . , n}, we define the signature ∆i

(collecting the declared items from Σi with
their types translated to their host types), together with the function HOSTi : TypeΣi ⇒ Type∆i
(producing the host types) as follows:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:15

(H1) HOSTi (α) = α
(H2) HOSTi ((σ1, . . . , σm) k) = (HOSTi (σ1), . . . , HOSTi (σm)) k,

if k ∈ Σ1 ∪
⋃i

i′=2(Σ
i′ ∖ Σi′−1)

(H3) HOSTi ((σ1, . . . , σm) k) = HOSTi (σ [σ1/α1, . . . , σm/αm]),
if (α1, . . . , αm) k ≡ t is in Di and t : σ ⇒ bool

(R1) RELi (σ) = λxσ . true, if σ ∈ TVar ∪ {bool, ind}
(R2) RELi (σ1 ⇒ σ2) = λ fHOSTi (σ1)⇒HOSTi (σ2). ∀xHOSTi (σ1). RELi (σ1) x −→ RELi (σ2) (f x)
(R3) RELi ((σ1, . . . , σm) k) = λx(HOSTi (σ1), . . .,HOSTi (σm)) k .true, if k ∈

⋃i
i′=1(Σ

i′ ∖ Σi′−1)
(R4) RELi ((σ1, . . . , σm)k) = λxHOSTi (σ ′). RELi (σ

′) x ∧ UNFi (t ′) x ,
if (α1, . . . , αm) k ≡ t is in Di and t : σ ⇒ bool,
where σ ′ = σ [σ1/α1, . . . , σm/αm] and t

′ = t[σ1/α1, . . . , σm/αm]

(U1) UNFi (xσ) = if_t_e (RELi (σ) xHOSTi (σ)) x (ε RELi (σ))
(U2) UNFi (cσ) = cHOSTi (σ), if c ∈ Σinit

(U3) UNFi (cσ) = if_t_e (RELi (σ) cHOSTi (σ)) cHOSTi (σ) (ε RELi (σ)), if c ∈
⋃i

i′=1(Σ
i′ ∖ Σi′−1)

(U4) UNFi (cσ) = UNFi (t[ρ]), if cτ ≡ t is in Di and σ ≤ρ τ
(U5) UNFi (t1 t2) = UNFi (t1) UNFi (t2)
(U6) UNFi (λxσ . t) = λxHOSTi (σ). UNFi (t)

Fig. 2. Definition of the translation functions

• ∆1
is Σ1

• ∆i+1
is ∆i

extended with:

– all the type constructors k ∈ Σi+1 ∖ Σi
– for all constants c ∈ Σi+1 ∖ Σi of type σ , a constant c of type HOSTi (σ)
• HOSTi is defined as in Fig. 2, recursively on types

On defined types (i.e., types having a defined type constructor on top), HOSTi behaves as
prescribed in Section 4.1, recursively calling itself for the defining type (clause (H3)). Upon encoun-

tering built-in or declared type constructors, i.e., belonging to some Σi
′

for i ′ ≤ i , but not to the

corresponding Σi′−1, HOSTi delves into the subexpressions (clause (H2)).

Next, mutually recursively on Σi -types and Σi -terms, we define a function returning the rel-

ativization predicate of a type, RELi : TypeΣi → Term∆i , and one returning the unfolded term,

UNFi : TermΣi → Term∆i . Their definition is shown in Fig. 2 (where we again make use of the

convention that we don’t show the type labels of variables when they can be inferred). Again,

they behave as prescribed in Section 4.1. In particular, RELi is naturally lifted to function spaces

(clause (R2)) and accumulates defining predicates, as shown in clause (R4)—here, the substitution

σ1/α1, . . . , σm/αm stems from an instance of the defined type, (α1, . . . , αm) k . Type variables and
declared types are treated as black boxes, so RELi is vacuously true for them, just like for the built-in

types bool and ind (clauses (R1) and (R3)). Note that, while (H2) refers to declared or built-in type

constructors, (R3) only refers to declared ones—it explicitly excludes Σinit.

As discussed in Section 4.1, UNFi treats type variables and declared constants in a guarded

fashion (clauses (U1) and (U3)), and distributes over application and abstraction (clauses (U5) and

(U6)). Moreover, UNFi merely callsHOSTi for built-in constants (clause (U2)). Finally, UNFi unfolds
the definitions of defined constants, as shown in clause (U4). In that clause, cτ and ρ ↾TV(cτ) (the
restriction of ρ to TV(cτ)) are uniquely determined by cσ ; and since TV(t) ⊆ TV(cσ) (by Def. 1), it

follows that t[ρ] is also uniquely determined by cσ .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:16 Ondřej Kunčar and Andrei Popescu

Obviously, these functions can reach their purpose only if they are total functions. i.e., their

recursive evaluation process terminates for all inputs. This is what we prove in the next subsection.

Assuming totality, we have all the prerequisites to formulate meta-safety. We let UNF be UNFn ,
the function that unfolds all definitions in D = Dn , and ∆ be ∆n

, the signature collecting all the

declared items in Σ.

Definition 6. D is said to be ameta-safe extension of HOL-with-declarations if, for all φ ∈ Fmla∆,
it holds that D ⊢Σ φ implies ⊢∆ UNF(φ).

4.3 Totality of the Translations
The goal of this subsection is to prove:

Prop 7. The following hold:

(1) The function HOSTi is total, i.e., its recursive calls terminate.

(2) The functions RELi and UNFi are total, i.e., their mutually recursive calls terminate.

As discussed, these functions combine structural recursion with the unfolding of constant and

type definitions. Roughly speaking, the reason why this recursion terminates is the following: The

structural calls are clearly terminating, and the unfoldings are terminating thanks to the freshness

condition imposed on the HOL definitional theories (Def. 2(1)), which means the new item on the

left of the definition is reduced to existing items. But in order to make this rough intuition precise,

we will also need to show that the structural calls and the unfoldings do not somehow interfere in

a non-terminating manner.

Note that, if freshness is violated, the functions can become non-terminating. For example, a

definition cσ ≡ cσ immediately makes UNFi non-terminating (due to clause (U4)), also leading

to the non-termination of RELi (which depends on UNFi via clause (R4)); and similarly for type

definitions. Of course, freshness is only a sufficient condition for termination. For example, defining

cα list in terms of cα violates freshness, but locally exhibits a form of terminating recursion, since it

descends on the constant’s type. As we discuss in Section 5, Isabelle/HOL takes advantage of this

observation to replace freshness by a weaker condition. We have designed the concepts we use in

the following proof of termination, in particular, the definitional dependency relation, to also be

relevant later, when we attend to Isabelle/HOL.

To prove (1), we must show that the call graph of HOSTi , namely, the relation ▶▶i defined by:

(σ1, . . . , σm) k ▶▶i σj if k ∈ Σi

(σ1, . . . , σm) k ▶▶i σ [σ1/α1, . . . , σm/αm] if (α1, . . . , αm) k ≡ t is in Di and t : σ ⇒ bool

is terminating. This is easily done by defining a lexicographic order based on the order in which

the items were defined, i.e., the indexes of the definitions def i in which they appear. (Details are

given in the appendix of our technical report [Kunčar and Popescu 2017b].)

To prove (2), we will exhibit a terminating relation▶i that captures the mutual call graph of RELi
and UNFi . We take ▶i to be the union ≡

↓

i ∪ ▷, where ≡
↓

i and ▷ are defined below. The relation ▷
consists of the structurally recursive calls of RELi and UNFi , from clauses (R2), (U1), (U5) and (U6):

σ1 ⇒ σ2 ▷ σ1 σ1 ⇒ σ2 ▷ σ2 xσ ▷ σ t1t2 ▷ t1 t1t2 ▷ t2 λxσ . t ▷ t

Moreover, ≡
↓

i captures the recursive calls corresponding to defined items, from (R4) and (U4).

Given u,v ∈ TypeΣi ∪ TermΣi , u ≡
↓

i v states that there exists a definition u ′ ≡ v ′ in Di and a type

substitution ρ such that u = ρ(u ′) and v = ρ(v ′).
Thus, the totality of RELi and UNFi is reduced to the termination of ▶i . In order to prove the

latter, we will introduce a more basic relation: the dependency relation between non-built-in items

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:17

induced by definitions in Di . We let Type•Σi be the set of Σi -types that have a non-built-in type

constructor at the top, and CInst•Σi be the set of instances of non-built-in constants. Given any term

t , we let types•(t) be the set of all types from Type•Σi appearing in t and cinsts•(t) be the set of all
constant instances from CInst•Σi appearing in t . (The appendix of our technical report [Kunčar and
Popescu 2017b] gives the formal definition of these operators.)

Definition 8. The dependency relation⇝i on Type•Σi ∪ CInst
•
Σi

is defined as follows: u ⇝i v iff

there exists in Di a definition of the form u ≡ t such that v ∈ cinsts•(t) ∪ types•(t).

We write⇝↓i for the (type-)substitutive closure of⇝i , defined as follows: u ⇝↓i v iff there exist

u ′,v ′ and a type substitution ρ such that u = u ′[ρ], v = v ′[ρ] and u ′ ⇝i v
′
. Since HOL with

definitions is well-known to be consistent, one would expect that definitions cannot introduce

infinite (including cyclic) chains of dependencies. This can indeed be proved by a lexicographic

argument, again taking advantage of the definitional order:

Lemma 9. The relation⇝↓i is terminating.

The next observation connects ▶i and⇝
↓

i , via ▷
∗
(the transitive closure of ▷):

Lemma 10. If u,v ∈ Type•Σi ∪ CInst•Σi and u ≡
↓

i t ▷
∗ v , then u ⇝↓i v

Now we can reduce the termination of ▶i to that of⇝↓i , hence prove the former:

Lemma 11. The relation ▶i is terminating.

This concludes the proof of Prop. 7.

4.4 Basic Properties of the Translations
As envisioned in Section 4.1, the translations are extensions of each other and preserve type

membership:

Lemma 12. Assume i ≤ n − 1. The following hold:

(1) If σ ∈ TypeΣi , then HOSTi+1(σ) = HOSTi (σ)
(2) If σ ∈ TypeΣi , then RELi+1(σ) = RELi (σ).
(3) If t ∈ TermΣi , then UNFi+1(t) = UNFi (t).

Lemma 13. If σ ∈ TypeΣi , t ∈ TypeΣi and t : σ , then RELi (σ) : HOSTi (σ) ⇒ bool and UNFi (t) :
HOSTi (σ).

For items in the initial signature, the behavior of the translations is either idle (for HOSTi and
UNFi) or trivial (for RELi):

Lemma 14. The following hold:

(1) If σ ∈ TypeΣinit , then HOSTi (σ) = σ
(2) If σ ∈ TypeΣinit , then ⊢Σinit RELi (σ) = λxHOSTi (σ). true
(3) If t ∈ TermΣinit and t is well-typed, then ⊢Σinit UNFi (t) = t

Other easy, but important properties state that the translations do not introduce new variables

or type variables and commute with type substitution:

Lemma 15. The following hold for all σ ∈ TypeΣi and t ∈ TermΣi :

(1) TV(HOSTi (σ)) ⊆ TV(σ)
(2) TV(RELi (σ)) ⊆ TV(σ) and FV(RELi (σ)) = ∅

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:18 Ondřej Kunčar and Andrei Popescu

(3) TV(UNFi (t)) ⊆ TV(t) and FV(UNFi (t)) = {xHOSTi (σ) | xσ ∈ FV(t)}

Lemma 16. The following hold for all σ , τ ∈ TypeΣi and t ∈ TermΣi :

(1) HOSTi (σ [τ/α]) = HOSTi (σ)[HOSTi (τ)/α]
(2) RELi (σ [τ/α]) = RELi (σ)[HOSTi (τ)/α]
(3) UNFi (t[τ/α]) = UNFi (t)[HOSTi (τ)/α]

4.5 Main Results
We are now ready to finalize the plan set out in Section 4.1. The following facts in Lemma 17 are

stated and proved in the delicate order prescribed there. Fact (4) corresponds to part of (F3) (the

remaining parts being covered by Lemmas 15 and 16). Moreover, (2) corresponds to (F2), (3) to (F1),

and (5) to (MS). Finally, (1) states deducibility of the translated nonemptiness statement, identified

in Section 4.1 as an intermediate fact leading from (MS) to (F2).

Lemma 17. Let i ∈ {1, . . . , n}. The following hold for all σ , τ ∈ TypeΣi , t , t
′ ∈ TermΣi and

φ ∈ FmlaΣi :

(1) If τ ≡ t is a type definition in Di with t : σ ⇒ bool, then ⊢∆i ∃xHOSTi (σ). RELi (σ) x ∧
UNFi (t) x

(2) ⊢∆i ∃xHOSTi (σ). RELi (σ) x
(3) If t : σ , then ⊢∆i RELi (σ) UNFi (t)
(4) If t ′ : σ , then ⊢∆i UNFi (t[t ′/xσ]) = UNFi (t)[UNFi (t ′)/xHOSTi (σ)]
(5) If Di ⊢Σi φ, then ⊢∆i UNFi (φ)

Proof. The facts follow by induction on i . More precisely, let (j)i denote fact (j) for a given layer i .
We prove:

• that (1)1 holds;

• that, for any i ∈ {1, . . . , n}:
– (1)i implies (2)i implies (3)i implies (4)i ;

– (2)i and (4)i imply (5)i ;

• that, for any i ∈ {1, . . . , n − 1}, (5)i implies (1)i+1.

(1)1: By the well-formedness of D (Def. 2), we have that t ∈ Term∆i and σ ∈ Term∆i , hence

HOST0(σ) = σ , ⊢∆i REL0(σ) = λxσ . true and ⊢∆i UNF0(t) = t . From this, we obtain that the fact to

be proved is equivalent to ⊢∆i ∃xσ . t x , which is again true by the well-formedness of D.
Next, we fix i ∈ {1, . . . , n}.

(1)i implies (2)i : Assuming (1)i , we prove (2)i by structural induction on σ . The only interesting

case is when the type is defined, i.e., has a defined type constructor on top (dealt with in clause

(R4)). We need to show ⊢∆i ∃xHOSTi (σ ′). RELi (σ ′) x ∧ UNFi (t ′) x , where (α1, . . . , αm) k ≡ t is in
Di and t : σ ⇒ bool, σ ′ = σ [(σj/α j)j], and t

′ = t[(σj/α j)j].
By (1)i , we have ⊢∆i ∃xHOSTi (σ). RELi (σ) x ∧ UNFi (t) x . By the type substitution rule (T-Inst)

applied m times (once for each HOSTi (σj)/α j), we have ⊢∆i ∃xHOSTi (σ)[(HOSTi (σj)/α j)j]. RELi (σ)
[(HOSTi (σj)/α j)j] x ∧ UNFi (t)[(HOSTi (σj)/α j)j] x . Using Lemma 16m times (once for each σj/α j),

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:19

we obtain ⊢∆i ∃xHOSTi (σ [(σj /α j)j]). RELi (σ [(σj/α j)j]) x ∧ UNFi (t[(σj/α j)j]) x , which implies ⊢∆i

∃xHOSTi (σ ′). RELi (σ ′) x ∧ UNFi (t ′) x , as desired.
(2)i implies (3)i : Assume (2)i . Then (3)i follows by rule induction on the definition of typing. For

the variable case, we use (2)i and the Choice axiom, which ensure us that ⊢∆i RELi (σ)(ϵ RELi (σ))
holds, hence ⊢∆i RELi (σ)(UNFi (xσ)) holds.

(3)i implies (4)i : Assume (3)i . Then (4)i follows by well-founded induction on t w.r.t.▶i . The only

interesting case is in the variable case (clause (U1)), when the variable coincides with the to-be substi-

tuted variable xσ . Thus, t = xτ . Here, we need to show ⊢∆i UNFi (t ′) = if_t_e (RELi (σ) UNFi (t ′))
(UNFi (t ′)) (ε RELi (σ)). This follows from the fact that, thanks to (3)i and t ′ : σ , we have ⊢∆i

RELi (σ) UNFi (t ′).
(2)i and (4)i imply (5)i : Assume (2)i and (4)i . By induction on the definition of HOL deduction

(⊢), we prove a slight generalization of (5)i , namely: We assume Γ ∪ {φ} ⊆ FmlaΣi and Di ; Γ ⊢Σi φ,
and prove ∅; UNFi (Γ) ⊢∆i UNFi (φ). We distinguish different cases, according to the last applied

rule in inferring Γ ∪ {φ} ⊆ FmlaΣi :
(Fact): We need to prove ∅; UNFi (Γ) ⊢∆i UNFi (φ), assuming φ ∈ Ax ∪ Di . First, assume φ ∈ D.

Then φ = u ≡ t ∈ Di . We have two subcases:

(A) u is a constant cσ . Then UNFi (φ) is the formula UNFi (cσ) = UNFi (t). And since UNFi (cσ)
and UNFi (t) are (syntactically) equal, the desired fact follows by the HOL reflexivity rule.

(B) u is a type τ of the form (α1, . . . , αm) k and t : σ ⇒ bool. Then, by the definition of UNFi
and of the ∀ and ∃ constructs, UNFi (φ) is equivalent (modulo HOL deduction) to the formula

∃repHOSTi (σ)⇒HOSTi (σ). (∀xHOSTi (σ). RELi (σ) x ∧ UNFi (t) x −→ RELi (σ) (rep x))

∧

∀xHOST(σ), yHOST(σ). RELi (σ) x ∧ UNFi (t) x ∧ RELi (σ) y ∧ UNFi (t) y ∧ rep x = rep y −→ x = y
∧

∀yHOSTi (σ). RELi (σ) y −→ (UNFi (t) y ←→ (∃xHOSTi (σ). RELi (σ) x ∧ UNFi (t) x ∧ y = rep x))

where the first conjunct comes from the relativization of τ ⇒ σ , the second from unfolding

One_Onerep, and the third from unfolding ∀yσ . t y ←→ (∃xτ . y = rep x) (in Def. 1). This states

the following (in a verbose fashion): There exists rep : HOSTi (σ) ⇒ HOSTi (σ)which is one-to-one

on the intersection of RELi (σ) and UNFi (t) and the image of this intersection through rep is the
intersection itself. This is of course deducible in HOL, taking rep as the identity function.

Now, assume φ ∈ Ax. Then φ ∈ FmlaΣinit , hence, by Lemma 14(3), ⊢∆i UNFi (φ) = φ. And since

also ∅; UNFi (Γ) ⊢∆i φ is true by (Fact), the desired fact follows using the HOL equality rules.

(Assum): Follows by applying (Assum).

(T-Inst): Courtesy of UNFi commuting with type substitution (Lemma 16(3)) and preserving

freshness (Lemma 15(3)).

(Inst): Courtesy of UNFi commuting with substitution (point (4)i) and preserving freshness

(Lemma 15(3)).

(Beta), (Ext), (ImpI) and (MP): Courtesy of UNFi commuting with substitution, preserving

freshness, and distributing (by definition) over abstractions, applications and implications.

Next, we fix i ∈ {1, . . . , n − 1}.

(5)i implies (1)i+1: Assume (5)i and letσ , t be as in the formulation of (1)i+1, namely, def i+1 = σ ≡ t .
By the well-formedness of D (Def. 2), we have Di ⊢Σi ∃xσ . t x . Applying (5)i , we obtain ⊢∆i

UNFi (∃xσ . t x). By the definition of the ∃ quantifier and the definition of UNFi , the above is equiv-
alent to ⊢∆i ∃xHOSTi (σ). RELi (σ) xHOSTi (σ) ∧ UNFi (t) t ′, where t ′ is if_t_e (RELi (σ) xHOSTi (σ)) x
(ε RELi (σ)). By the definition of the if-then-else operator, we can replace t ′ by x . So the above

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:20 Ondřej Kunčar and Andrei Popescu

is further equivalent to ⊢∆i ∃xHOSTi (σ). RELi (σ) x ∧ UNFi (t) x . By Lemma 12 and the fact that

∆i ⊆ ∆i+1
, the above implies ⊢∆i+1 ∃xHOSTi+1(σ). RELi+1(σ) x ∧ UNFi+1(t) x , as desired. □

Note that, in our sequence of translations, each translation unfolds not only the i’th definition,

but all definitions up to the i’th. One might wonder if the proof could not go more smoothly if

we unfolded only the i’th definition and worked with a base theory consisting of all previous

definitions, on which we maintained an invariant. That would make a more elegant alternative, but

we cannot find an invariant apart from “base theory is definitional,” which does not seem to help.

As a particular case of Lemma 17(5), we have:

Theorem 18. D is a meta-safe extension of HOL-with-declarations.

Thus, we can compile away all the definitions of D, which leaves us with types and terms over

the signature ∆ containing declarations only. With the definitions out of our way, it remains to

show that declarations are conservative, which is much easier:

Lemma 19. If φ ∈ FmlaΣinit and ⊢∆ φ, then ⊢Σinitφ.

Proof. Assume ⊢∆ φ. In the proof tree for this fact, we replace:

(1) all occurrences of any declared constant instance cσ by a fresh variable xσ
(2) all occurrences of any declared type constructor k of aritym by a built-in type expression of

aritym, e.g., (σ1, . . . , σm)k is replaced by σ1 ⇒ . . .⇒ σm

When performing the indicated replacements, all applications of the HOL rules remain valid; in

particular, the application of (Fact) remains unchanged, since the underlying theory D is empty

and no HOL axiom (in Ax) refers to declared-only constants or types. Hence these replacements

yield a valid proof tree. Since φ, being in FmlaΣinit , is not affected by the replacements, this proof

tree constitutes a proof of ⊢Σinitφ. □

Finally, we can prove overall conservativity:

Theorem 20. D is a conservative extension of initial HOL.

Proof. Assume D ⊢Σ φ, where φ ∈ FmlaΣinit . By Theorem 18, we have ⊢∆ UNF(φ). Moreover, by

Lemma 14(3), we have ⊢Σinit UNF(φ) = φ, hence, a fortiori, ⊢∆ UNF(φ) = φ. From these two, we

obtain ⊢∆ φ. With Lemma 19, we obtain ⊢Σinitφ, as desired. □

4.6 Abstract Constant Definition Mechanisms
As definitional schemes for constants, we have only looked into the traditional equational ones,
implemented in most HOL provers. Two non-equational schemes have also been designed [Arthan

2014], and are available in HOL4, HOL Light and ProofPower-HOL: “new specification” and “gen

new specification.” They allow for more abstract (under)specification of constants.

However, these schemes have been shown not to increase expressiveness: “new specification”

can be over-approximated by traditional definitions and the use of the Choice operator, and “gen

new specification” is an admissible rule in HOL with “new specification” [Arthan 2014; Kumar et al.

2014]. Hence our results cater for them.

5 CONSERVATIVITY OF ISABELLE/HOL DEFINITIONS
As mentioned in the introduction, Isabelle/HOL allows more flexible constant definitions than

HOL, in that it enables ad hoc overloaded definitions. For example, one can declare a polymorphic

constant, such as ≤ : α ⇒ α bool, and at later times (perhaps after some other type and constant

definitions and declarations have been performed) define different, non-overlapping instances of it:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:21

≤nat as the standard order on natural numbers, ≤bool as implication, etc. Even recursive overloading

is allowed, e.g., one can define ≤α list as the component-wise extension of ≤α to α list:

xs ≤α list ys ≡ length xs = length ys ∧ (∀i < length xs. xsi ≤α ysi)

This means that now constant definitions no longer require the constant to be fresh. In fact, we are

no longer speaking of constant definitions, but of constant instance definitions: The above examples

do not define the overall constant ≤, but various instances of it, ≤nat, ≤bool and ≤list.

Definition 21. Given a non-built-in constant c , a type σ ≤ tpOf(c) and a closed term t : σ ,
we let cσ ≡ t denote the formula cσ = t . We call cσ ≡ t a constant-instance definition provided

TV(t) ⊆ TV(cσ).

To compensate for the lack of freshness from constant-instance definitions, the Isabelle/HOL

system performs some global syntactic checks, making sure that defined instances do not overlap

(i.e., definitions are orthogonal) and that the dependency relation ⇝n from Def. 8, terminates

[Kunčar 2015; Kunčar and Popescu 2015, 2017a].
4
(Recall that D = Dn , hence⇝n is the dependency

induced by D, i.e., by all the considered definitions.) Formally:

Definition 22. An Isabelle/HOL-well-formed definitional theory is a set D of type and constant-

instance definitions over Σ such that:

• It satisfies all the conditions of Def. 2, except that it is not required that, in condition (1.2), c
be fresh, i.e., it is not required that c < Σi

• It is orthogonal: For all constants c , if cσ and cτ appear in two definitions in D, then σ # τ
• Its induced dependency relation⇝n is terminating

We wish to prove meta-safety and conservativity results similar to the ones for traditional HOL.

To this end, we fix an Isabelle/HOL-well-formed definitional theory D and look into the results of

Section 4 to see what can be reused—as it turns out, quite a lot.

First, the (type-translated) declaration signatures ∆i
and the translation functions HOSTi , RELi

and UNFi are defined in the same way. The orthogonality assumption in Def. 22 ensures that, in

clause (U4) from the definition of UNFi , the choice of t is unique (whereas before, this was simply

ensured by c appearing on the left in at most one definition). The notion of meta-safety is then

defined in the same way. Thanks to⇝n being terminating, all the dependency relations⇝i , which

are included in⇝n , are also terminating. Then all the results in Section 4.3 hold, leading to the

totality of the translation functions. Furthermore, almost all the lemmas in Section 4.4 go through

undisturbed, because they do not need the freshness assumption c < Σi .
The only losses are parts of Lemmas 12 (extension of the translations from i to i + 1) and 16

(commutation with type substitution), namely, points (2) and (3) of these lemmas—which deal with

RELi and UNFi . We first look at Lemma 16.

WhileHOSTi still commuteswith substitution, this is no longer the case forRELi andUNFi . Essen-
tially,UNFi (σ [τ/α]) = UNFi (σ)[HOSTi (τ)/α] now fails becauseUNFi (σ [τ/α]) gets to unfold more

constant-instance definitions than UNFi (σ). So the difference is that, for the constant instances cσ ′

occurring in σ that happen to have a definition of one of their instances, say, cσ ′′ ≡ t with σ
′′ ≤ σ ′,

activated by the substitution τ/α (meaning we have σ ′[τ/α] ≤ σ ′′, but σ ′ ≰ σ ′′),UNFi (σ [τ/α])will
unfold cσ ′ into the corresponding instance of UNF(t), whereas UNFi (σ)[HOSTi (τ)/α] will replace
cσ ′ with if_t_e (RELi (σ ′) cHOSTi (σ ′)) cHOSTi (σ ′) (ε RELi (σ

′)). (And since RELi depends recursively
on UNFi , the former will also fail to commute with type substitution.)

4
These syntactic checks are part of Isabelle/HOL’s logical kernel, just like the local checks for standard HOL definitions are

part of HOL’s kernel.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:22 Ondřej Kunčar and Andrei Popescu

Example 23. To Example 4’s signature, we add a declared constant c of polymorphic type α and

a definition of its nat-instance, cnat ≡ z. We have UNF(cα [nat/α]) = UNF(cnat) = UNF(z), whereas
UNF(cα) [HOST(nat)/α] = (if_t_e (REL(α) cHOST(α)) cHOST(α) (ε REL(α))) [ind/α] = (if_t_e true
cα (ε (λx . true))) [ind/α] =HOL cα [ind/α] = cind, where we wrote =HOL for HOL-provable equality
(in the current signature). We do not need to evaluate UNF(z) in order to see that it cannot be equal,

not even HOL-provably equal, to cind. Indeed, the constant c was not even present in the signature

when z was defined, so UNF(z) cannot be connected to cind.

Fortunately, we can amend this mismatch “after the fact” by replacing cHOSTi (σ ′′) with UNFi (cσ ′′)
in UNFi (σ)[HOSTi (τ)/α] for all instances cσ ′′ (with σ ′′ ≤ σ ′) of all defined constant instances cσ ′ .
In the above example, this means replacing cind with UNF(cnat), i.e., with UNF(z). To express this

formally, we define a constant-instance substitution to be a function γ : CInst•
∆i
⇒ Term∆i such

that, for all cσ ∈ CInst•∆i , γ (cσ) is a closed term and TV(γ (c)) ⊆ TV(c)—thus assigning a term to

any instance of a non-built-in, i.e., declared constant in ∆i
. Using a notation similar to variable

substitution, we write σ [[γ]] and t[[γ]] for the effect of performing γ everywhere inside the type σ
or the term t .

Lemma 24. There exists a constant-instance substitution γ such that:

(1) ⊢∆i RELi (σ [τ/α]) = RELi (σ)[HOSTi (τ)/α] [[γ]]
(2) ⊢∆i UNFi (t[τ/α]) = UNFi (t)[HOSTi (τ)/α] [[γ]]

Now, the question is whether the partial consolation offered by Lemma 24, a quasi-commutativity

property for RELi and UNFi , can replace full commutativity towards the central goal in Lemma 17,

namely, point (5) (which ensures meta-safety). Answering this will require some proof mining.

The only usage of Lemma 16 was for (1)i implies (2)i (which is part of an implication chain

leading to (4)i ; and both (2)i and (4)i are used for (5)i). There, we used Lemma 16 m times to

infer ⊢∆i ∃xHOSTi (σ ′). RELi (σ ′) x ∧ UNFi (t ′) x from ⊢∆i ∃xHOSTi (σ). RELi (σ) x ∧ UNFi (t) x . So
we actually need a weaker statement:

Lemma 25. If ⊢∆i UNFi (φ), then ⊢∆i UNFi (φ[σ/α]).

For Lemma 12, the situation is quite similar to that of Lemma 16. This time, it is not substitution

that can enable additional unfoldings, but a newly added instance definition cσ ≡ t at layer i + 1 for
a constant c that already existed at layer i . Moreover, when we look at how we employed Lemma

12 in the proof of our main chain of results in Lemma 17, we discover a similar pattern: We only

use that UNFi+1 and RELi+1 extend UNFi and RELi in the proof of (5)i implies (1)i+1, where we

needed that deduction at layer i + 1 is implied by deduction at layer i . By a similar trick as before,

this can be proved using a weaker quasi-commutativity property.

Lemma 26. If φ ∈ FmlaΣi , and ⊢∆i UNFi (φ), then ⊢∆i+1 UNFi+1(φ).

Lemma 25 and 26 reflect a concession made to Isabelle/HOL’s ad hoc overloading: We can

no longer exhibit a precise structural relationship between UNFi (φ) on the one hand and and

UNFi (φ[σ/α]) or UNFi+1(φ) on the other, but we can prove that the latter are “at least as deducible

as the former.” This would not have been possible had we not treated declared constants in a

guarded fashion in the UNFi clause (U3) (see the discussion on page 14).

Thus, we were able to recover Lemma 17’s point (5), leading to meta-safety. And since the

other ingredients in the proof of Theorem 20 are also available (including Lemma 19, which is

independent of the definitional mechanisms), we infer conservativity. We obtained:

Theorem 27. Theorems 18 and 20 still hold if we assume that D is an Isabelle/HOL-well-formed

definitional theory.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:23

A Note on Model-Theoretic Conservativity
Let us revisit some of the aspects of model-theoretic conservativity listed in the introduction’s

Figure 1. The reason why, for Isabelle/HOL constant instance definitions, model-theoretic conser-

vativity over arbitrary base theories fails is the following: Say we add a constant instance definition

cσ ≡ t over a base theory Θ1 with signature Σ1, such that Σ1 contains the constant c : τ (with

σ ≤ τ) but the formulas in Θ1 do not refer to cσ or to any instance of c that is non-orthogonal to
cσ . Thus, Σ2 = Σ1 and Θ2 = Θ1 ∪ {cσ ≡ t}. Then we can easily build a standard model of Θ1 where

cσ ≡ t does not hold, implying that it cannot be extended to a model of Θ2—which contradicts

model-theoretic conservativity. (And (proof-theoretic) conservativity fails for a similar reason:

cσ ≡ t is provable from Θ2 but not from Θ1.)

We also mentioned in the introduction that, for constant definitions over initial HOL, model-

theoretic conservativity follows from conservativity. Here is how the argument goes: Say Θ is a

conservative extension of initial HOL with a finite collection of constant (instance) definitions. Then

Θ proves a formula φ that encodes these definitions as a conjunction of existentially quantified

formulas, where the defined constants (or constant instances) become existentially quantified

variables of corresponding types. By conservativity, initial HOL also proves φ. Then any standard

model M (of initial HOL) satisfies φ, which implies that the desired constants and types can be

defined inM , leading to an extension ofM to a standard model of Θ—which proves model-theoretic

conservativity.

When trying to apply a similar trick for the case of Θ extending initial HOL with constant and
type definitions, we face the problem that in HOL we are not allowed to quantify existentially over

type variables, to account for the defined types in Θ. Instead, we could appeal to the machinery

developed in this paper to perform a more direct proof of model-theoretic conservativity. Namely,

starting with a standard model (of initial HOL)M , we could build an extension to a standard model

of Θ by well-founded recursion on the terminating relations underlying the definitions of HOST,
REL and UNF. The necessary types in M would be introduced taking advantage of the fact that

REL(σ) : HOST(σ) ⇒ bool and REL(σ) is provably nonempty. Thus, for mixed constant-type

definitions over initial HOL, model-theoretic conservativity would follow not from conservativity,

but from the machinery we developed to prove conservativity. We leave a rigorous proof of this as

future work—until then, we will not haste to declare the problem closed.

In very recent work, Gengelbach andWeber [2017] prove a form of model-theoretic conservativity

for Isabelle/HOL over definitional base theories. However, they do not work with standard models,

but employ the ground semantics we had developed for proving Isabelle/HOL’s consistency [Kunčar

and Popescu 2015]. The connection between ground-model conservativity and standard-model

conservativity is yet to be understood.

6 CONCLUDING REMARKS
We have resolved an open problem, relevant for the foundation of HOL-based theorem provers,

including our favorite one, Isabelle/HOL: We showed that the definitional mechanisms in such

provers are meta-safe and conservative over pure HOL, i.e., are truly “definitional.” Our result has

for HOL a foundational status analogous to strong normalization results for type theory.

Our translations compile away the constant and type definitions, the latter being significantly

more problematic due to the lack of HOL infrastructure for unfolding them. In previous work

[Kunčar and Popescu 2017a] we address this infrastructure problem by introducing HOLC, an

extension of HOL with comprehension/refinement types. HOL type definitions can be naturally

unfolded into HOLC types, yielding a HOL to HOLC translation that was sufficient for showing

the consistency of Isabelle/HOL definitions. However, that translation would be too coarse for the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

24:24 Ondřej Kunčar and Andrei Popescu

stronger results we proved here. Indeed, it is not even conservative, due to HOLC being able to

perform type definitions inside proof contexts, unlike HOL. We conjecture that the translation

becomes conservative if we enrich HOL with the “local typedef” rule we proposed recently as a

non-invasive enhancement of HOL [Kunčar and Popescu 2016].

Our relativization predicates perform an encoding of types as terms, which bears a technical

resemblance to the intensional type analysis translations for programming languages introduced

in [Crary and Weirich 1999; Crary et al. 1998]. However, they map all (built-in) types to terms,

essentially by a structurally recursive traversal. On the other hand, we focus on representing HOL’s

defined refinement-like types only. Our recursion has a “vertical,” structural component (reflecting

the structure of the host, built-in types), but also a “horizontal” component, given by unfolding the

type definitions.

Our statement of meta-safety is calibrated to what we believe is the key desirable property: that

definitions can all be compiled away, without loss of provability. An even more general statement

would involve compiling away some definitions E ⊆ D only, and translating any statement involving

all definitions into one involving all definitions but those in E.
However, even the formulation of meta-safety seems problematic here: Say we define the poly-

morphic type α k as the subset if_t_e (cardinal α = 3) {true, false} {true} of bool. Then we define

the type l as the subset {1, 2, 3} of ind. Stating that l ’s definition is meta-safe over k’s definition
would require us, e.g., to find a host type for l k without being allowed to unfold k . The only

sensible choice for the host would be ind k , which is not suitable since l k is larger than ind k :
The former has two elements, whereas the latter has one. This means that we cannot relativize

l k as a predicate on ind k . Abstractly, the problem is that we cannot lift relativization predicates

from the types with which α k may be instantiated (such as l). If each HOL type constructor had

the structure of a relator (endofunctor on the category of sets having relations as morphisms), the

lifting would be possible in a canonical way. And most useful types in HOL, e.g., all combinations

of inductive and coinductive datatypes and function spaces, are in fact relators [Traytel et al. 2012].

However, typedef can introduce (rather strange looking) non-relators: k is an example of a type

constructor that cannot be organized as a relator.

Also, if k were merely declared, we would not have a problem, since then we could treat it as a

black box that renders ind k and l k indistinguishable; so we could take the latter’s relativization

predicate to be vacuously true. In our meta-safety theorems, we employed this trick to cover

declarations intermixed with definitions.

Notwithstanding the difficulty with formulating a more general meta-safety, we believe conser-
vativity holds more generally, but requires a different proof technique.

A worthwhile future endeavor will be to certify our results on the foundations of HOL-based

proof assistants (in this and our previous papers) by formalizing them in a proof assistant. The

main difficulty will involve the notion of recursion for syntax with bindings. The state of the art in

recursion principles modulo alpha (as in Nominal Logic) only offers structural recursion, hence is
not applicable to our functions REL and UNF, which need a more general, well-founded recursion.
So we could either take a low-level approach (such as working with raw, non-quotiented terms and

then prove compatibility with alpha), or use these functions as an inspiration to first design and

formalize more powerful principles ourselves, e.g., extending the Horn-based approach to recursion

for binders and swapping/substitution [Gheri and Popescu 2017; Norrish 2004; Popescu and Gunter

2011]. Another alternative would be to use higher-order abstract syntax (HOAS), as implemented

in Twelf [Pfenning and Schürmann 1999] or Beluga [Pientka and Dunfield 2010]—but this would

still leave behind an informal residuum: a pen-and-paper proof of adequacy. We will also explore

the possibility to deploy “HOAS on top of FOAS” [Popescu et al. 2010], a framework that enables

HOAS while also formalizing adequacy (in the Isabelle/HOL prover).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

Safety and Conservativity of Definitions in HOL and Isabelle/HOL 24:25

ACKNOWLEDGMENTS
We thank Rob Arthan, Jasmin Blanchette, Roger Bishop Jones, Ramana Kumar, Tobias Nipkow,

Larry Paulson, Dmitriy Traytel, Makarius Wenzel and the members of the Isabelle and HOL mailing

lists for inspiring discussions about the logical foundations of theorem proving. We thank Conor

McBride and the anonymous reviewers for very useful comments and suggestions which led to the

improvement of the paper’s presentation. We gratefully acknowledge support from EPSRC through

the grant “Verification of Web-based Systems (VOWS)” (EP/N019547/1) and from DFG through the

grant “Security Type Systems and Deduction” (Ni 491/13-3) in the priority program “RS
3
– Reliably

Secure Software Systems” (SPP 1496).

REFERENCES
Andreas Abel, Thierry Coquand, and Peter Dybjer. 2007. Normalization by Evaluation for Martin-Lof Type Theory with

Typed Equality Judgements. In LICS. 3–12.
Mark Adams. 2010. Introducing HOL Zero (Extended Abstract). In ICMS ’10. Springer.
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich (Eds.). 2016.

Deductive Software Verification - The KeY Book - From Theory to Practice. Springer.
Thorsten Altenkirch. 1993. Proving Strong Normalization of CC by Modifying Realizability Semantics. In TYPES. 3–18.
Rob Arthan. 2014. "HOL Constant Definition Done Right". In ITP. 531–536.
R. D. Arthan. 2004. Some Mathematical Case Studies in ProofPower–HOL. In TPHOLs.
Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. 2011. The Matita Interactive Theorem Prover.

In CADE. 64–69.
Bruno Barras. 2010. Sets in Coq, Coq in Sets. Journal of Formalized Reasoning 3, 1 (2010).

Yves Bertot and Pierre Casteran. 2004. Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of
Inductive Constructions. Springer.

Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei Popescu, and Dmitriy Traytel. 2014.

Truly Modular (Co)datatypes for Isabelle/HOL. In ITP, Vol. 8558. 93–110.
Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda—A Functional Language with Dependent Types. In

TPHOLs.
Alonzo Church. 1940. A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic 5, 2 (1940), 56–68.
Thierry Coquand, Jean Gallier, and Le Chesnay Cedex. 1990. A Proof of Strong Normalization For the Theory of Constructions

Using a Kripke-Like Interpretation. In Workshop on Logical Frameworks.
Thierry Coquand and Arnaud Spiwack. 2006. A Proof of Strong Normalisation using Domain Theory. In LICS. 307–316.
Karl Crary and Stephanie Weirich. 1999. Flexible Type Analysis. In ICFP. 233–248.
Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. 1998. Intensional Polymorphism in Type-Erasure Semantics. In

ICFP. 301–312.
Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and Jan-Georg Smaus. 2013. A Fully

Verified Executable LTL Model Checker. In CAV. 463–478.
Arve Gengelbach and Tjark Weber. 2017. Model-Theoretic Conservative Extension for Definitional Theories. (2017).

Pre-proceedings of LSFA 2017. Available at http://lsfa2017.cic.unb.br/LSFA2017.pdf.

J.H. Geuvers. 1993. Logics and Type systems. Ph.D. Dissertation. University of Nijmegen.

Lorenzo Gheri and Andrei Popescu. 2017. A Formalized General Theory of Syntax with Bindings. In ITP. 241–261.
M. J. C. Gordon and T. F. Melham (Eds.). 1993. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic.

Cambridge University Press.

Florian Haftmann and Makarius Wenzel. 2006. Constructive Type Classes in Isabelle.. In TYPES. 160–174.
John Harrison. 1996. HOL Light: A Tutorial Introduction. In FMCAD. Springer.
John Harrison. 2006. Towards self-verification of HOL Light. In IJCAR. Springer.
John Harrison. 2009. HOL Light: An Overview. In TPHOLs. 60–66.
Leon Henkin. 1949. The Completeness of the First-Order Functional Calculus. J. Symbolic Logic 14, 3 (09 1949), 159–166.
Isabelle. 2016. The Isabelle Library. (2016). https://isabelle.in.tum.de/dist/library/HOL/index.html.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. 2000. Computer-Aided Reasoning: An Approach. Kluwer

Academic Publishers.

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. seL4: formal

verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.

Gerwin Klein, Tobias Nipkow, Larry Paulson, and René Thiemann (eds.). 2016. Isabelle’s Archive of Formal Proofs. (2016).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

http://lsfa2017.cic.unb.br/LSFA2017.pdf
https://isabelle.in.tum.de/dist/library/HOL/index.html

24:26 Ondřej Kunčar and Andrei Popescu

Alexander Krauss. 2009. Automating recursive definitions and termination proofs in higher-order logic. Ph.D. Dissertation.
Technical University Munich.

Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. 2014. HOL with Definitions: Semantics, Soundness, and

a Verified Implementation. In ITP. 308–324.
Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. 2016. Self-Formalisation of Higher-Order Logic -

Semantics, Soundness, and a Verified Implementation. J. Autom. Reasoning 56, 3 (2016), 221–259.

Ondřej Kunčar. 2015. Correctness of Isabelle’s Cyclicity Checker: Implementability of Overloading in Proof Assistants. In

CPP. 85–94.
Ondřej Kunčar and Andrei Popescu. 2015. A Consistent Foundation for Isabelle/HOL. In ITP. 234–252.
Ondřej Kunčar and Andrei Popescu. 2016. From Types To Sets By Local Type Definitions in Higher-Order Logic. In ITP.

200–218.

Ondřej Kunčar and Andrei Popescu. 2017a. Comprehending Isabelle/HOL’s Consistency. In ESOP. 724–749.
Ondřej Kunčar and Andrei Popescu. 2017b. Safety and Conservativity of Definitions in HOL and Isabelle/HOL: Extended

Version. (2017). www.andreipopescu.uk/pdf/popl2018_extended.pdf.

Ondřej Kunčar and Andrei Popescu. 2017c. Safety and Conservativity of Definitions in HOL and Isabelle/HOL: Isabelle/HOL

Implementation. (2017). http://www21.in.tum.de/~kuncar/documents/unf.html.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR (Dakar). 348–370.
Andreas Lochbihler. 2010. Verifying a Compiler for Java Threads. In ESOP. 427–447.
Thomas F. Melham. 1989. Automating Recursive Type Definitions in Higher Order Logic. In Current Trends in Hardware

Verification and Automated Theorem Proving. 341–386.
Magnus O. Myreen and Jared Davis. 2014. The Reflective Milawa Theorem Prover Is Sound - (Down to the Machine Code

That Runs It). In ITP. 421–436.
Tobias Nipkow and Gerwin Klein. 2014. Concrete Semantics - With Isabelle/HOL. Springer.
Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.

LNCS, Vol. 2283. Springer.

Tobias Nipkow and Gregor Snelting. 1991. Type Classes and Overloading Resolution via Order-Sorted Unification. In

Functional Programming Languages and Computer Architecture.
Michael Norrish. 2004. Recursive Function Definition for Types with Binders. In TPHOLs. 241–256.
Steven Obua. 2006. Checking Conservativity of Overloaded Definitions in Higher-Order Logic.. In RTA. 212–226.
Sam Owre and Natarajan Shankar. 1999. The Formal Semantics of PVS. (1999). SRI technical report. http://www.csl.sri.com/

papers/csl-97-2/.

Lawrence C. Paulson. 1990. A formulation of the simple theory of types (for Isabelle). In COLOG-88. 246–274.
Lawrence C. Paulson. 2010. Three Years of Experience with Sledgehammer, a Practical Link between Automatic and

Interactive Theorem Provers. In PAAR. 1–10.
Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf - A Meta-Logical Framework for Deductive

Systems. In CADE. 202–206.
Brigitte Pientka and Joshua Dunfield. 2010. Beluga: A Framework for Programming and Reasoning with Deductive Systems

(System Description). In IJCAR. 15–21.
A. Pitts. 1993. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic, Chapter The HOL Logic, 191–232.

In Gordon and Melham [Gordon and Melham 1993].

Andrei Popescu and Elsa L. Gunter. 2011. Recursion principles for syntax with bindings and substitution. In ICFP. 346–358.
Andrei Popescu, Elsa L. Gunter, and Christopher J. Osborn. 2010. Strong Normalization for System F by HOAS on Top of

FOAS. In LICS. 31–40.
John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress. 513–523.
Donald Sannella and Andrzej Tarlecki. 2012. Foundations of Algebraic Specification and Formal Software Development.

Springer. I–XVI, 1–581 pages.

Konrad Slind and Michael Norrish. 2008. "A Brief Overview of HOL4". In TPHOLs. 28–32.
Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette. 2012. Foundational, Compositional (Co)datatypes for

Higher-Order Logic: Category Theory Applied to Theorem Proving. In LICS. 596–605.
D. A. Turner. 2004. Total Functional Programming. J. UCS 10, 7 (2004), 751–768.
Markus Wenzel. 1997. Type Classes and Overloading in Higher-Order Logic.. In TPHOLs. 307–322.
Markus Wenzel. 1999. Isar - A Generic Interpretative Approach to Readable Formal Proof Documents. In TPHOLs. 167–184.
Makarius Wenzel. 2014. System description: Isabelle/jEdit in 2014. In UITP. 84–94.
Freek Wiedijk. 2009. Stateless HOL. In TYPES. 47–61.
Burkhart Wolff. 2015. Isabelle Foundation & Certification. (2015). Archived at https://lists.cam.ac.uk/pipermail/

cl-isabelle-users/2015-September/thread.html.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.

www.andreipopescu.uk/pdf/popl2018_extended.pdf
http://www21.in.tum.de/~kuncar/documents/unf.html
http://www.csl.sri.com/papers/csl-97-2/
http://www.csl.sri.com/papers/csl-97-2/
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-September/thread.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-September/thread.html

	Abstract
	1 Introduction
	2 More Related Work
	2.1 HOL Foundations
	2.2 Isabelle/HOL Foundations
	2.3 Other Work

	3 HOL Preliminaries
	3.1 Syntax
	3.2 Axioms and Deduction
	3.3 HOL Definitions and Declarations
	3.4 Signature Extensions and the Initial Signature

	4 Conservativity of HOL Definitions
	4.1 Roadmap
	4.2 Formal Definition of the Translations and Meta-Safety
	4.3 Totality of the Translations
	4.4 Basic Properties of the Translations
	4.5 Main Results
	4.6 Abstract Constant Definition Mechanisms

	5 Conservativity of Isabelle/HOL Definitions
	6 Concluding Remarks
	References

