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Abstract Starting from Alternating-time Temporal Logic,
many logics for reasoning about strategies in a system of
agents have been proposed. Some of them consider the strate-
gies that agents can play when they have partial information
about the state of the system. AT LKirF is such a logic to
reason about uniform strategies under unconditional fair-
ness constraints. While this kind of logics has been exten-
sively studied, practical approaches for solving their model-
checking problem appeared only recently.

This paper considers three approaches for model check-
ing strategies under partial observability of the agents, ap-
plied to AT LKirF . These three approaches have been imple-
mented in PyNuSMV, a Python library based on the state-of-
the-art model checker NuSMV. Thanks to the experimental
results obtained with this library and thanks to the compari-
son of the relative performance of the approaches, this paper
provides indications and guidelines for the use of these ver-
ification techniques, showing that different approaches are
needed in different situations.
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ICTEAM Institute, Université catholique de Louvain, Belgium
E-mail: simon.busard@uclouvain.be

Charles Pecheur
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1 Introduction

Alternating-time Temporal Logic (AT L) is a logic for reason-
ing about the strategies of agents in multi-agent systems [1].
It assumes that all agents have full information about the
current state of the system through its execution. Some ex-
tensions of this logic remove this assumption and reason
about the strategies of agents that have only a partial view of
the system (see for instance [24,21,16], and a comparison
of strategic abilities in [4]). AT LKirF is a logic that reasons
about the strategies of memoryless agents with imperfect
information—we speak about uniform strategies—in a sys-
tem with unconditional fairness constraints [8].

Let us consider a simple example inspired by the card
game of [24]. The game is played between a player and a
dealer. It is played with three cards, an Ace, a King and a
Queen, such that the Ace wins over the King, the King wins
over the Queen, and the Queen wins over the Ace. The game
is played in two steps. First, the dealer gives one card to the
player, takes one card for himself and puts the last one on the
table, hidden from the player. Second, the player can choose
to change his card with the one on the table, or to keep it.
After this decision, the game stops, the cards are revealed
and the winner is the one with the winning card.

In this game, the player has no uniform strategy to win.
Whatever the player chooses to do, the dealer can give cards
that make the player lose. Nevertheless, if we extend the
game by introducing infinite repetition and we assume that
the dealer will give the cards in a fair way by giving each pair
infinitely often, the player has a strategy to win eventually.
He knows that, since the dealer is fair, he will eventually
receive a winning card. AT LKirF allows us to reason about
the uniform strategies of the player under the assumption
that the dealer is fair. It can also be used to reason about the
strategies of multi-agent programs under the control of a fair
scheduler [14].
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A large body of research has been developed on the the-
oretical issues of logics reasoning about uniform strategies
(see for example [23] for the complexity of checking the
existence of such strategies, or [15] for the undecidability of
the variant with perfect recall). Nevertheless, practical ap-
proaches for solving their model-checking problem appeared
only recently [27,20,8].

This paper experimentally compares the three approaches
of Pilecki et al. [27], Huang and van der Meyden [20], and
Busard et al. [8] in a unified framework based on binary
decision diagrams (BDDs) [3]. The three techniques have
been adapted to the setting of AT LKirF and implemented in
PyNuSMV [6], a Python framework based on the state-of-
the-art model checker NuSMV [12]. This paper compares the
efficiency of these implementations on three models taken
from the literature and draws conclusions on the strengths
and drawbacks of the approaches. The tests show that there
is no best approach for all cases, and that each technique is
better than the others in different situations. Based on these
conclusions, a set of guidelines are proposed to choose the
best approach when facing a new model-checking problem.

The remainder of the paper is organised as follows: Sec-
tion 2 presents the logic AT LKirF , its syntax, models and se-
mantics, and briefly describes the three approaches and their
implementation. Section 3 presents the models and proper-
ties on which the tests have been conducted, and Section 4
analyses the results. Finally, Section 5 concludes.

2 Background

This section presents an overview of the syntax and semantics
of AT LKirF . It then briefly describes the three approaches
compared in this paper and discusses their implementation
with PyNuSMV.

2.1 Reasoning about uniform strategies under fairness
constraints

The logic AT LKirF combines atomic propositions, propo-
sitional logic operators (¬, ∧,...), branching-time tempo-
ral operators (EX , AF ,...) [13], knowledge operators (Kag,
CΓ ,...) [18] and strategic operators (⟪Γ⟫X , JΓ KF ,...) [1].

More precisely, given a set of atomic propositions AP and
a set of agents Ag, AT LKirF formulas follow the grammar

φ ::= true | p | ¬φ | φ ∨φ | Eψ | ⟪Γ⟫ψ |
Kagφ | EΓ φ | DΓ φ |CΓ φ

ψ ::= Xφ | φ U φ | φ W φ

where p ∈ AP, ag ∈ Ag and Γ ⊆ Ag. The other common
propositional, temporal and strategic operators can be derived

from the previous ones:

f alse≡ ¬true

φ1∧φ2 ≡ ¬(¬φ1∨¬φ2)

φ1 =⇒ φ2 ≡ ¬φ1∨φ2

φ1 ⇐⇒ φ2 ≡ (φ1 =⇒ φ2)∧ (φ2 =⇒ φ1)

Aψ ≡ ¬E¬ψ

JΓ Kψ ≡ ¬⟪Γ⟫¬ψ

Fφ ≡ true U φ

Gφ ≡ φ W f alse

Intuitively, Eψ means that there exists a path starting at
the current state satisfying ψ . On the other hand, Aψ means
that all paths starting at the current state satisfy ψ . For exam-
ple, EXφ means that there exists a successor of the current
state satisfying φ and AFφ means that all paths starting at
the current state will eventually reach a state satisfying φ .

Furthermore, Kagφ means that agent ag knows that φ

is true in the current state, EΓ φ means that every agent in
Γ knows that φ is true, DΓ φ means that, by sharing their
knowledge of the current state, agents of Γ know that φ is
true, and CΓ φ means that φ is common knowledge among
agents of Γ .

Finally, ⟪Γ⟫ψ means that the agents of Γ have a strategy
to ensure that all paths resulting from playing this strategy
will satisfy ψ . For example, ⟪Γ⟫Gφ means that the agents
of Γ have a strategy to enforce φ forever. On the other hand,
JΓ Kψ means that the agents of Γ do not have a strategy to
achieve ψ .

2.1.1 Models and notations

AT LKirF formulas are interpreted over imperfect informa-
tion concurrent game structures with fairness constraints
(iCGSf in short). These structures extend standard (imper-
fect information) concurrent game structures with uncon-
ditional fairness constraints [1,29]. More precisely, given
a set AP of atomic propositions, an iCGSf is a structure
S = 〈Ag,Q,Q0,Act,e,δ ,V,∼,FC〉 such that

– Ag is a finite set of agents;
– Q is a finite set of states;
– Q0 ⊆ Q is the set of initial states;
– Act is a finite set of actions; a joint action is a tuple of

actions of Act, one for each agent of Ag;
– e : Ag→ (Q→ (2Act\ /0)) defines, for each agent ag ∈ Ag

and state q ∈ Q, the set of actions ag can choose in q,
that is, actions enabled in q; we write eag for the function
e(ag) returning the actions ag can choose in any state;

– δ : Q×Act |Ag|9 Q is a partial deterministic transition
function defined for each state q∈Q and each joint action
enabled in q; we write q a−→ q′ for δ (q,a) = q′;
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– V : Q→ 2AP is a function labelling states with atomic
propositions from AP;

– ∼: Ag→ 2Q×Q defines a set of equivalence classes repre-
senting the observability of agents; we assume that each
agent chooses its actions based on its own knowledge of
the system, that is,

∀q,q′ ∈ Q,q ∼ag q′ =⇒ eag(q) = eag(q′) (1)

for any agent ag;
– FC ⊆ 2Q is a set of fairness constraints.

Given a set of agents Γ ⊂ Ag, ∼D
Γ
=
⋂

i∈Γ ∼ag is the
distributed knowledge relation; ∼E

Γ
=
⋃

i∈Γ ∼ag is the group
knowledge relation; ∼C

Γ
, defined as the reflexive transitive

closure of the relation∼E
Γ

, is the common knowledge relation.
We say that a joint action a ∈ Act |Ag| completes an action

aΓ ∈ Act |Γ | for a set of agents Γ , written aΓ v a, if the
action for each agent of Γ in a is the same as the action
of the same agent in aΓ . Given a joint action a ∈ Act |Ag|

and a set of agents Γ ⊆ Ag, we write a(Γ ) for the tuple of
actions of agents of Γ in a. When Γ = {ag} is a singleton, we
write a(ag) instead of a({ag}). We call a Γ -move an element
〈q,aΓ 〉 ∈Q×Act |Γ | such that ∀ag∈Γ ,aΓ (ag)∈ eag(q), that
is, a pair composed of a state and a joint action for Γ enabled
in the state.

A path is an infinite sequence π = q0
a1−→ q1

a2−→ ... such
that δ (qd ,ad+1) = qd+1 for all d ≥ 0. We write π(d) for
qd . A path in S is fair if it meets all fairness constraints
of S infinitely often, that is, π is fair if, for each fairness
constraint f c ∈ FC, there exist infinitely many indices d
such that π(d) ∈ f c. A state q is reachable in a structure S if
there exists a path π in S such that π(0)∈Q0 and there exists
d ≥ 0 such that π(d) = q. A state q is fair if there exists a
fair path starting at q. A fair reachable state is thus a state
belonging to a fair path starting at an initial state of S; such a
state is considered, by each agent of the structure, as possibly
reached through a valid run of the structure.

A memoryless strategy for a given agent ag is a function
fag : Q→ Act such that ∀q ∈ Q, fag(q) ∈ eag(q). Intuitively,
a strategy for agent ag tells the agent which action to choose
in each state of the system. A uniform strategy for agent ag
is a strategy fag such that for all q,q′ ∈ Q, if q ∼ag q′ then
fag(q) = fag(q′). Intuitively, a uniform strategy is a strategy
that needs only the current observations of the agent to be
played. These strategies correspond to strategies that the
agent can effectively play [24]. In the sequel, when speaking
about strategies that are not necessarily uniform, we speak
about general strategies.

We call outcomes of a strategy the set of paths of the
structure that are coherent with the strategy. More precisely,
the outcomes of a strategy fag for agent ag from a state q are

defined as

out( fag,q) =

{
π = q0

a1−→ q1
a2−→ ... |

q0 = q∧∀d ∈ N, fag(qd)v ad+1

}
. (2)

Finally, a (uniform) strategy for a group of agents Γ ⊆ Ag is
a set of (uniform) strategies, one for each agent of Γ . The
outcomes of a strategy fΓ for a group of agents Γ from a
state q are defined as

out( fΓ ,q) =
⋂

fag∈ fΓ

out( fag,q). (3)

These outcomes are the paths that are coherent with every
strategy of the set fΓ . A strategy fΓ can be represented as a
set of Γ -moves as

{〈q,aΓ 〉 ∈ Q×Act |Γ | | aΓ = fΓ (q)}, (4)

that is, the set of moves such that the actions for Γ are the
ones specified by the strategy.

2.1.2 Semantics

The semantics of AT LKirF formulas is defined over states
of a structure S by the relation S,q |= φ ; S is omitted when
clear from the context. This relation is the standard semantics
for propositional operators, branching-time operators and
knowledge operators. In particular, an agent ag (or a group
Γ ) knows that φ is true in state q if φ is true in every possi-
bly reached state q′ indistinguishable from q by ag (or Γ ).
For strategic operators, the relation quantifies over uniform
strategies. More precisely, the relation q |= φ is defined as

q |= true

q |= p ⇔ p ∈V (q)

q |= ¬φ ⇔ q 6|= φ

q |= φ1∨φ2 ⇔ q |= φ1 or q |= φ2

q |= Eψ ⇔
{

there exists a fair path π such that
π(0) = q and π |= ψ

q |= Kagφ ⇔
{

q′ |= φ for all q′ s.t. q∼ag q′

and q′ is a fair reachable state

q |= KΓ φ ⇔


q′ |= φ for all q′ s.t. q∼K

Γ
q′

and q′ is a fair reachable state,
where K ∈ {D,E,C}

q |= ⟪Γ⟫ψ ⇔


there exists a uniform strategy fΓ s.t.
for all ag ∈ Γ , for all q′ ∼ag q,
for all fair paths π ∈ out( fΓ ,q′),
π |= ψ.
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The relation π |= ψ over paths π of the structure S is
defined as

π |= Xφ ⇔ π(1) |= φ

π |= φ1Uφ2 ⇔
{

there exists d ≥ 0 s.t. π(d) |= φ2
and for all e < d,π(e) |= φ1

π |= φ1Wφ2 ⇔


there exists d ≥ 0 s.t. π(d) |= φ2
and for all e < d,π(e) |= φ1,

or for all d ≥ 0,π(d) |= φ1.

While the logic integrates temporal and epistemic opera-
tors to allow users to express a large range of properties, the
remainder of this paper focuses on strategic operators only.

2.2 Model-checking techniques

This section briefly presents the three approaches for model
checking AT LKirF strategic formulas compared in this paper.
It also describes the idea of pre-filtering surely losing moves
that can make them faster. This section is intentionally short
and informal as formally describing these three approaches
is not a contribution of this paper. The interested reader can
find such formal descriptions in [5].

2.2.1 The partial approach

The first model-checking approach considered in this paper
has been proposed by Busard et al. [8]. In the sequel, it
is called the partial approach. It is based on the notion of
partial uniform strategies, that is, uniform strategies that are
not defined for all states of the structure. Given a set of
states of interest for which we want to find winning uniform
strategies—such as the initial states—, the partial approach
generates all partial strategies with a forward traversal of the
structure. More precisely, this forward traversal alternates
between discovering new states in which we need to make
a (uniform) choice, and splitting the possible choices into
non-conflicting ones. Each generated partial strategy is then
evaluated using custom fixpoint computations to determine
whether it is winning for the states of interest or not. The
whole approach is valid because partial strategies generated
from the states of interest are sufficient to determine whether
there exists a uniform strategy that is winning in these states.

The partial approach has been improved by using two sim-
ple practical optimisations. The first one is caching: for each
partial strategy, the approach needs to evaluate sub-formulas
of the considered strategic formula to determine whether it is
winning or not. But these sub-formulas can contain strategic
formulas themselves, that are re-evaluated again and again in
states belonging to several partial strategies. To avoid recom-
puting the truth value of these sub-formulas again and again,
the approach caches the results. The second optimisation is
early termination: as the approach is interested in getting the

states of interest for which there exists a winning uniform
strategy, it can stop as soon as one has been found for each
state. These two simple optimisations have been shown to be
very useful in practice [8].

2.2.2 The early approach

The second approach is based on the one proposed by Pilecki
et al. [27]. Their main idea is that we do not need to extend
a partial strategy in all states that matter before concluding
whether it is winning or not in the states of interest. More
precisely, we can check if all extensions of the current par-
tial strategy are winning, and this is easily performed using
custom fixpoint computations. If all extensions of the cur-
rent partial strategy are winning, we know that there exists a
winning uniform strategy and can stop there.

The approach used in this paper—called the early ap-
proach in the sequel—extends the original idea of Pilecki
et al. in several ways. First, in addition to checking whether
all extensions of the current partial strategy are winning, it
also tries to filter out states for which we know no winning
extension exists. More precisely, we can check whether there
exists a winning general strategy that extends the current
partial strategy, with other custom fixpoint computations. If
there is none, we can stop extending the current strategy and
explore other choices.

Second, the approach of Pilecki et al. is limited to one
initial state and one top-level strategic operator. These limita-
tions introduce simplifications in the problem they solve: they
can stop the process as soon as they find a winning strategy
for this single initial state, instead of keeping track of the
states for which they already know the truth value. Further-
more, considering only one state prevents the technique to be
applied to sub-formulas, for which we need to consider the
same strategy in different states. The early approach handles
any subset of states of interest, making it usable to check
strategic sub-formulas in subsets of states.

Third, the original approach of Pilecki et al. does not
handle fairness constraints, while the early one does. Finally,
caching and early termination can also be applied to the early
approach.

2.2.3 The symbolic approach

The last approach is based on the one proposed by Huang
and van der Meyden [20]. It is called the symbolic approach
in the sequel. Their main idea is to derive, from the struc-
ture under consideration, a new structure where the strategies
are encoded in the derived states themselves. Then, fixpoint
computations are performed on the derived structure to com-
pute all the strategies that are winning for the state they are
embedded into. These fixpoint computations are easily per-
formed, but the derived structure is exponentially larger than
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the original one as it embeds all possible uniform strategies
in its states.

The symbolic approach of this paper is a particular case of
the approach of Huang and van der Meyden [20]. Their work
describes a logic that explicitly quantifies over strategies of
agents [19]. Thanks to their logic, it is, for instance, possible
to express the fact that an agent has a strategy to ensure two
objectives at the same time.

On the other hand, the symbolic approach is tailored to
the verification of AT LKirF . More precisely, the original ap-
proach of Huang and van der Meyden is tailored by restricting
the syntax of the logic to AT LKirF . Furthermore, the original
work of Huang and van der Meyden defines so-called strate-
gic agents to be able to reason about states of the derived
structure that share the same strategy. In our setting, these
strategic agents are not necessary. They are thus omitted.

Finally, in the context of the symbolic approach, caching
and early termination make no sense because sub-formulas
are evaluated only once and all winning strategies are com-
puted at the same time.

2.2.4 Pre-filtering surely losing moves

The three approaches above can be improved by pre-filtering
losing moves. More precisely, it is easy to compute the moves
that belong to a winning general strategy—with some cus-
tom fixpoint computations—, and if some move does not
belong to a winning general strategy, then it does not be-
long to a winning uniform one. Thus we can remove, from
the structure, all the moves that do not belong to a general
winning strategy before applying any of the model-checking
techniques. The approach works with the three considered
approaches: removing surely losing moves leads to fewer
partial strategies to consider, and to fewer uniform strategies
to encode in the derived structure, reducing its size.

2.3 Implementation

The approaches have been implemented with PyNuSMV [6],
a Python framework giving access to internal functionalities
of NuSMV, a state-of-the-art symbolic model checker [12],
such as model construction and BDD manipulation. It facili-
tates the implementation of new BDD-based model-checking
algorithms, such as the ones considered in this paper. This
section briefly describes the language used to describe the
models and the actual implementation of the approaches.

2.3.1 Modeling language

The modeling language supported by the implementation is
based on the NuSMV language. The model of an iCGSf is
composed of a standard NuSMV model and a description of
its agents directly in Python. The NuSMV model describes

the states and actions of the structure, its transition function,
its labelling function and its fairness constraints. It does not
define the agents of the iCGSf, nor what they can observe and
how they can act. Instead, these agents are defined as Python
instances, with their name, the set of variables of the NuSMV
model they observe and the set of input variables represent-
ing their actions. These agents also define the actions that
are enabled for them in each state—through the transition
function of the NuSMV model—and the equivalence classes.

Additional conditions must be met by the NuSMV model
to correctly represent an iCGSf:

– the sets of actions of agents must be disjoint, that is, they
must control different actions of the model;

– for each agent and each state of the system, the enabled
actions are not constrained by the actions of another
agent;

– for each agent and each equivalence class—defined by
the variables it observes—the enabled actions are the
same in all the states of the equivalence class.

If these additional conditions are met by the NuSMV model,
it correctly represents an iCGSf. All the models presented in
this paper meet these conditions.

For instance, Figure 1 shows the NuSMV model corre-
sponding to the card game of the Introduction. It is composed
of the Player and Dealer modules defining the actions
enabled in each state for both agents, and the main mod-
ule instantiating both modules, defining the top-level vari-
ables such as the cards of the players pcard and dcard (the
odcard variable is used for the player to observe the card
of the dealer only in the final step), and the current step of
the game. It also defines the initial states and the transition
relation by describing how state variables evolve according
to the actions of the agents. It finally declares six fairness con-
straints to model a fair dealer that will give all pairs of cards
infinitely often. More information on the NuSMV modeling
language can be found in the user manual [11].

Figure 2 presents the declaration of the two agents in
Python. The first agent of the model, called player, ob-
serves the step, pcard, and odcard state variables, and con-
trols the player.action input variable. The second agent
is called dealer, observes all the state variables, and con-
trols the dealer.to player and dealer.to dealer input
variables.

2.3.2 Implementation of the approaches

The approaches are well suited to work within a BDD-based
framework. In particular, iCGSf are naturally encoded with
BDDs [20]. Furthermore, the partial and early approaches
perform an enumeration of strategies, so we can encode each
strategy as a BDD. The fixpoint computations the two ap-
proaches use can be implemented as operations on the BDDs
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MODULE Player(step)

IVAR action : {none, keep, swap};

TRANS action in

(step = 1 ? {keep, swap} : {none})

MODULE Dealer(step)

IVAR to_player : {none, Ac, K, Q};

to_dealer : {none, Ac, K, Q};

TRANS step = 0 -> (to_player != to_dealer &

to_player != none &

to_dealer != none)

TRANS step != 0 -> (to_player = none &

to_dealer = none)

MODULE main

VAR step : 0..2;

pcard : {none, Ac, K, Q};

dcard : {none, Ac, K, Q};

odcard : {none, Ac, K, Q};

dealer : Dealer(step);

player : Player(step);

DEFINE

win := step = 2 & ( (pcard = Ac & dcard = K) |

(pcard = K & dcard = Q) |

(pcard = Q & dcard = Ac) );

INIT step = 0 & pcard = none &

dcard = none & odcard = none

TRANS next(step) = (step + 1) mod 3

TRANS step = 0 -> next(pcard) = dealer.to_player

TRANS step = 1 -> case player.action = keep :

next(pcard) = pcard;

TRUE :

next(pcard) != pcard &

next(pcard) != dcard &

next(pcard) != none;

esac

TRANS step = 2 -> next(pcard) = none

TRANS step = 0 -> next(dcard) = dealer.to_dealer

TRANS step = 1 -> next(dcard) = dcard

TRANS step = 2 -> next(dcard) = none

TRANS step != 1 -> next(odcard) = none

TRANS step = 1 -> next(odcard) = dcard

FAIRNESS step = 1 & pcard = Ac & dcard = K

FAIRNESS step = 1 & pcard = Ac & dcard = Q

FAIRNESS step = 1 & pcard = K & dcard = Ac

FAIRNESS step = 1 & pcard = K & dcard = Q

FAIRNESS step = 1 & pcard = Q & dcard = Ac

FAIRNESS step = 1 & pcard = Q & dcard = K

Fig. 1 The NuSMV model of the iCGSf of the card game.

representing different parts of the model (the initial states,
the transition function, etc.) and the strategies.

The symbolic approach can be implemented in a fully
symbolic way, in the sense that, given an iCGSf, we can
build the derived structure and encode it with BDDs in the

agents = {Agent("player",

{"step", "pcard", "odcard"},

{"player.action"}),

Agent("dealer",

{"step", "pcard", "dcard", "odcard"},

{"dealer.to_player",

"dealer.to_dealer"})}

Fig. 2 The Python-defined agents of the iCGSf of the card game.

same way we encode any iCGSf. More precisely, the uni-
form strategies of the agents are encoded with new variables
in the model. That is, for each agent ag and set of states
indistinguishable for ag, a new state variable is declared, tak-
ing its values in the set of actions agent ag can play in this
equivalence class. A uniform strategy for ag is thus repre-
sented as the choice ag makes in each equivalence class of
the model. As an optimisation, only the strategies of agents
appearing in coalitions of the checked formula are encoded,
as the strategies of the others have no relevance in this case.

When the derived structure is encoded, the different op-
erations composing the approach can be implemented as
operations on the BDDs representing the different parts of
the derived model, without needing to explicitly represent the
different strategies. This advantage of reducing the model-
checking problem to fixpoint computations and manipula-
tions of BDDs is at the cost of encoding strategies as variables
in the derived structure. The resulting structure is then much
larger than the original one, making the different operations
on BDDs more costly.

These implementations are are available at http://lvl.
info.ucl.ac.be/Tools/PyNuSMV.

3 Models and properties

To compare the relative performances of the different ap-
proaches, we used three models with strategic formulas. This
section describes the three models, how they are encoded as
iCGSf, and the formulas we verified.

AT LKirF includes temporal and epistemic operators in
addition to strategic ones. However, these temporal and epis-
temic operators have a negligible impact on the performances
of algorithms checking strategic operators: temporal and epis-
temic sub-formulas can be evaluated in negligible time using
standard techniques and be provided to strategic-operator-
related algorithms as they were atomic propositions. The
formulas considered in this paper thus focus on strategic
operators only.

3.1 Tian Ji and the king

The first model is based on the ancient Chinese tale of Tian
Ji [25]. The model contains two agents, the king and his

http://lvl.info.ucl.ac.be/Tools/PyNuSMV
http://lvl.info.ucl.ac.be/Tools/PyNuSMV
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general Tian Ji, playing a horse racing game. Each agent
has N horses h1, ...,hN such that if the king plays with horse
hi against Tian Ji with horse h j, the winner is the one with
the highest index. If i = j, then the winner is chosen non-
deterministically. The game is composed of N races and
one horse can play only once. The winner of the game is
the player with the most won races. The game is replayed
infinitely.

The formal iCGSf of the game includes two agents, king
and Tian Ji. The states of the model are composed of the re-
maining horses for Tian Ji and for the king, and the score of
both players. In the initial states, all horses are available for
both players and both scores are null. There is one action per
horse, and each player can play any action corresponding to
the remaining horses. Furthermore, each player observes only
his remaining horses, not the other’s, that is, the equivalence
classes for a player are such that two states are indistinguish-
able if the states share the same remaining horses for the
player. Finally, fairness constraints are specified such that the
king chooses his horses in any order, infinitely many times
each. This is achieved by asking the king to choose the order
of his horses before starting the game, and specifying one
fairness constraint per such an initial order. The number of
reachable states grows exponentially in terms of the number
of horses.

The number of strategies of Tian Ji, depending on the
number of horses N, is given by the equation:

∏
i=1..N

iC
i
N ,

where Ci
N is the number of combinations of i elements among

N. Indeed, in each state where Tian Ji has i remaining horses,
he can choose one of them. Furthermore, there are Ci

N differ-
ent sets of i remaining horses that Tian Ji can have, giving
the equation above. For example, Tian Ji has 24 strategies
with 3 horses and 20736 ones with 4 horses. The symbolic
approach has to consider all these strategies, while the others
can reduce their number by restricting the search for partial
strategies and by pre-filtering out losing moves.

Figure 3 shows a simplified version of the game of Tian
Ji, where the king always chooses his weakest horse for the
next race and the scores are not tracked. In this simplified
game, Tian Ji has 24 complete uniform strategies. Indeed, he
can choose three different horses in the initial state, and two
different horses in states of the second row. In the states of
the third and fourth rows, he has to choose the last remaining
horse, or do nothing to restart the game. This amounts to
3∗2∗2∗2∗1∗1∗1∗1 = 24 uniform strategies. On the other
hand, he has 6 partial strategies from the initial state as, when
he chose to run with his strongest horse during the first race,
for instance, the choices he would make in states in which
he did not make this particular choice have no impact on
whether the strategy is winning or not. Figure 3 illustrates

such a partial strategy in bold. Tian Ji has the same number
of uniform strategies in the standard game as he does not
observe the choices of the king nor the tracked scores.

h1h2h3
h1h2h3

h2h3
h2h3

h2h3
h1h3

h2h3
h1h2

h3
h3

h3
h2

h3
h1

/0
/0

Fig. 3 A simplified version of the Tian Ji game. States are labelled with
the remaining horses for the king (first line) and for Tian Ji (second
line). Actions of the agents are easily inferred.

The first formula checked on this model is

φ
T
1 = ⟪Tian Ji⟫F Tian Ji wins,

where Tian Ji wins is true in all states where there are no
remaining horses and Tian Ji has a higher score than the king.
This formula says that Tian Ji can eventually win a game. It is
true in the initial states of the model. Indeed, since the king is
fair and will choose any possible order infinitely often, Tian
Ji can play the same combination over and over again, and
this combination will be winning at some point. In fact, any
memoryless uniform strategy for Tian Ji is winning.

Two other formulas have been checked on this model
to highlight the differences of behaviours of the tested ap-
proaches. The second formula is

φ
T
2 = ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins].

Similarly to Tian Ji wins, King wins is true in all states where
there are no remaining horses and the king has a higher score
than Tian Ji. This formula says that Tian Ji has a strategy
to reach states in which he can surely win the current game,
that is, a state in which he can win before the king wins. The
formula is not true in the model because there exists no state
in which Tian Ji is sure to win the current game. He does not
observe the current score, so even in states in which he wins
the current game, he does not see it. Furthermore, he does not
see the current order of the king’s horses, and cannot adapt
his choices accordingly.
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The last formula checked on the model of Tian Ji is

φ
T
3 = ⟪Tian Ji⟫X Tian Ji null score,

where Tian Ji null score is true in all states where the score
of Tian Ji is 0. This formula is not true in the initial states of
the model because Tian Ji has no horse that he is sure will
lose the race. Even the slowest horse h1 could possibly win
the race if the king also plays with h1.

3.2 The three castles

The second model is derived from [27]. It is composed of
three castles with corresponding health points ranging from
0 to 3, 0 health points meaning that the castle is defeated.
Each castle is defended by a set of workers. At each turn, a
worker can attack another castle, defend his own castle or do
nothing, but a worker cannot defend his castle twice in a row.
The number of damages a castle receives is the number of
attackers against this castle minus the number of defenders
of this castle, if it is greater than 0. The health points of the
castles are not reset at each turn, so the game is played in
several turns. Finally, the workers only observe whether they
can defend their castle or not, and, for each castle, whether
it is defeated or not. The model is parametrised with the
number of workers of each castle.

The formal model contains one agent per worker. The
states are composed of the health points of each castle and
whether or not each worker can defend his castle at the next
turn. In the initial state, all castles have 3 health points and all
workers can defend their castle. The actions of each worker
are (1) doing nothing—the only one enabled when his castle
is defeated—(2) defending his castle—only possible when he
did not defend it in the previous turn—(3) for each other cas-
tle, one action to attack it. The equivalence classes are such
that for a given worker, he can only observe whether he can
defend his castle and, for each castle, whether it is defeated
or not. Finally, a unique fairness constraint is defined, con-
taining all states of the model. This ensures that all paths of
the model are fair. The initial state is specially marked such
that all workers can distinguish it from any other state. This
is necessary to be able to specify that some workers have a
strategy in the initial state for a given objective. Without this,
they would not be able to differentiate the initial state from
other states in which the castles have fewer health points. As
for Tian Ji’s model, the number of reachable states of the
model grows exponentially in the number of workers.

Each worker has 82944 possible strategies. These strate-
gies can be decomposed as his choices in

– the initial state, in which he can choose one action among
four: doing nothing, defending his castle or attacking
one of the two other castles. This amounts to 4 possible
choices.

– the non-initial states in which his castle is not defeated
and he did not defend it in the previous turn. There
are four equivalence classes matching this case, depend-
ing on whether the other castles are defeated or not. In
these cases, the worker can choose between the four ac-
tions. This amounts to 44 = 256 possible combinations
of choices.

– the non-initial states in which his castle is not defeated
but he defended it in the previous turn. There are four
equivalence classes matching this case. The worker can
choose between three actions as he cannot defend his
castle. This amounts to 34 = 81 possible combinations of
choices.

– the non-initial states in which his castle is defeated. There
are 8 equivalence classes matching this case, depending
on whether the other castles are defeated and whether he
defended his castle just before or not. The worker can
choose only one action, giving 18 = 1 possible choice.

All these choices can be combined in any way since they
are exclusive in the equivalence classes they consider, giving
4∗256∗81∗1 = 82944 possible uniform strategies for one
worker.

The depth of the model—that is, the number of steps
needed to reach all the reachable states from the initial one—
does not change with the number of workers since it depends
only on the health points of the castles. An exception is when
there are few workers, that is, with one worker in each castle.
In this case, the depth is a bit higher because there are too few
workers to ensure to quickly reach a final state. The partial
and early approaches really depend on this depth since it
dictates how far the partial strategies are.

We are interested in two formulas. The first one is

φ
C
1 = ⟪Castle1,Castle2⟫F Castle3 defeated,

where Castlei groups the workers of the ith castle and the
atomic proposition Castle3 defeated is true in all states in
which the third castle has 0 health points. This formula is
true in all tested models, but is not true in general. If the third
castle has enough workers, they are able to defend the castle
and prevent the other workers to damage it. More precisely, if
the third castle has more workers than the addition of the two
others, the formula is false, even if the workers have perfect
information. The tested models always have enough workers
in the first two castles to make the formula satisfied.

The second formula is

φ
C
2 = ⟪Worker1,Worker2⟫F all defeated,

where Worker1 (resp. Worker2) is a worker of the first castle
(resp. second castle), and all defeated is true in the states
where all castles have 0 health points. This formula is false
in all tested models because, even if they can defeat the third
castle, the workers have not enough information to ensure
that the two other castles will be defeated at the same time.
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3.3 The prisoners and the light bulb

The third model is based on the problem of the 100 prisoners
and the light bulb [17]:

”A group of 100 prisoners, all together in the prison
dining area, are told that they will be all put in iso-
lation cells and then will be interrogated one by one
in a room containing a light with an on/off switch.
The prisoners may communicate with one another by
toggling the light switch (and that is the only way in
which they can communicate). The light is initially
switched off. There is no fixed order of interrogation,
or interval between interrogations, and the same pris-
oner may be interrogated again at any stage. When
interrogated, a prisoner can either do nothing or tog-
gle the light switch, or announce that all the prisoners
have been interrogated. If that announcement is true,
the prisoners will (all) be set free, but if it is false,
they will be executed. While still in the dining room,
and before the prisoners go to their isolation cells
(forever), can the prisoners agree on a protocol that
will set them free?”

One way to guarantee their freedom is to designate a
counter among the prisoners. This counting prisoner starts
at 0 and each time he enters the room and the light bulb is
switched on, he switches it off and increments his counter.
Every time another prisoner enters the room, if the light bulb
is switched off and he has never switched it on, he switches
it on before leaving the room. When the prisoner with the
counter enters the room and his counter is at 99, he is sure
that all prisoners have entered the room at least once and he
can safely announce that all prisoners have visited the room.
This strategy is winning if the warden fairly chooses the
prisoners each day because the counter will enter infinitely
often, thus will be able to switch the light off as many times
as he wants, and the other prisoners will also enter the room
infinitely often and be able to switch the light on once.

The formal model encodes this problem of the prisoners
and the light bulb, designates a special prisoner that can keep
track of a counter and gives the ability to the other prisoners
to remember whether they already switched the light on or
not. The idea behind the model is to verify that the prisoners
effectively have a strategy to be released with these limited
capabilities.

More precisely, the formal model is composed of the war-
den and N prisoners; one of them is the counting one. The
warden keeps track of which prisoners have been interrogated
at least once—to be able to release or execute them when
the counting prisoner makes an announce—and chooses the
next prisoner to interrogate. Furthermore, he keeps track of
whether the prisoners should be released (if the counting
prisoner correctly announces that all prisoners have been
interrogated) or executed (if the counting prisoner makes an

incorrect announce). The counting prisoner keeps track of
his counter and each prisoner keeps track of whether he has
already switched the light bulb or not. The states of the model
are thus composed of the state of the light bulb (on or off),
who has already been interrogated, should the prisoners be re-
leased or not, and executed or not, the counter of the counting
prisoner, whether each prisoner has already switched the light
bulb or not, and finally the prisoner that is being currently
interrogated. In the initial state, the light bulb is off, nobody
has been interrogated, the prisoners should not be released or
executed, the counter is at 0, no prisoner has already switched
the light bulb, and nobody is currently interrogated. When
nobody is interrogated, the warden can choose any prisoner,
and when a prisoner is interrogated, he can choose to switch
the light bulb or do nothing, and the counting prisoner can
additionally choose to make the announcement, as well as
to increment his counter. Each prisoner sees the light bulb
when he is currently interrogated, knows whether he already
switched the light or not, and knows whether he is currently
interrogated. In addition, the counting prisoner knows the
value of his counter. All prisoners (including the counting
one) can distinguish the initial state from the others. Finally,
fairness constraints are specified such that each prisoner is
interrogated infinitely often. Again, the number of reach-
able states of the model grows exponentially in terms of the
number of prisoners.

In this model, the counting prisoner has 62N uniform
strategies, where N is the number of prisoners (including
himself). Indeed, he can do nothing when he is not interro-
gated, so only his choices when he is interrogated can lead
to different strategies. The model contains 2N equivalence
classes for the counting prisoner when he is currently interro-
gated. Indeed, he observes the value of his counter (from 0
to N−1) and the state of the light bulb. In each class, he can
perform 3∗2 = 6 different actions: doing nothing, switching
the light bulb, or making an announcement, and furthermore
incrementing his counter or not. This gives us 62N possible
strategies for the counting prisoner: 1296 strategies with two
prisoners, 46656 ones with three prisoners. The other prison-
ers have 16 different strategies. Such a prisoner can only do
something when he is interrogated. In this case, the model
contains 4 equivalence classes as he observes the state of
the light bulb and whether or not he already switched it on.
In each of these classes, the prisoner can switch the bulb or
not, giving us 24 possible strategies. So there are at most
16N−1 ∗ 62N strategies to consider when checking whether
the coalition of the N prisoners (including the counting one)
can enforce a given objective.

We are interested in the formula

φ
P = ⟪prisoners⟫[¬executed U released], (5)

saying that the prisoners have a collective strategy to be
released before being executed. This formula is true in the
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model, showing that the prisoners effectively have a counting
strategy to be free.

4 Measures and comparisons

The formulas of the previous section have been checked us-
ing the approaches on models of increasing size. This section
presents and compares the results. All the experiments have
been performed on a MacBook Pro with a 2.6GHz processor
and 16GB RAM, and under a time limit of 1800 seconds.
This time limit is indicated by a horizontal line in the graphs,
and data points reaching this time limit are depicted above the
line. Each data point is the average of 20 runs. The observed
variability was very low for all measurements. Furthermore,
these experiments usually consumed less than 1GB of mem-
ory, but some consumed up to several GBs. They nevertheless
never consumed all the available memory.

In all the figures, short names are used to refer to the
tested approaches:

– Partial refers to the partial approach with caching and
early termination, but without pre-filtering;

– Partial/filt refers to the partial approach with caching,
early termination, and pre-filtering;

– Early refers to the early approach with caching and early
termination, but without pre-filtering;

– Early/filt refers to the early approach with caching, early
termination, and pre-filtering;

– Symbolic refers to the symbolic approach without pre-
filtering;

– Symbolic/filt refers to the symbolic approach with pre-
filtering.

The partial and early approaches use caching and early ter-
mination. For the former, [8] showed that using both always
increases performances, and early experiments not provided
in this paper showed the same results for the latter.

For each approach, observations are given, then the dif-
ferences of performances are explained based on these obser-
vations.

The Python implementation used for the following ex-
periments is a prototype showing the applicability of the
approaches. It would not compete with dedicated tools per-
forming the same kind of tasks. These experiments are not
meant to show the absolute performances of the implementa-
tion but the relative gain of the different approaches.

4.1 Tian Ji and the king

This section presents the results for the properties of Tian Ji’s
model.

4.1.1 ⟪Tian Ji⟫F Tian Ji wins

Figure 4 shows the evolution of the verification time in terms
of the number of horses, for the six approaches checking the
formula φ T

1 on the model of Tian Ji. As explained before, any
strategy of Tian Ji is winning for this objective because the
fair king will ensure that all configurations will eventually
happen.

Pre-filtering Pre-filtering removes no move because any gen-
eral strategy is winning.

Partial approaches The Partial approach checks only one
strategy. Since all of them are winning, early termination
allows the approach to stop its processing after one strategy.

The Partial/filt approach also checks one strategy. Pre-
filtering removes no move, so the extra effort is not beneficial.
Nevertheless, the time needed for pre-filtering is not negligi-
ble. But dynamic reordering of BDD variables accelerates the
process of checking the single strategy, thanks to the better
variable order computed during pre-filtering.

Early approaches The Early approach extends the first strat-
egy to bN

2 c+1 steps before concluding it is a winning strat-
egy. At smaller steps, the approach cannot decide whether all
extensions are winning because Tian Ji did not win enough
races to be sure to win the game.

The Early/filt approach also extends the first strategy to
bN

2 c+1 steps before concluding it is a winning strategy, as
pre-filtering is not beneficial. Pre-filtering is not negligible,
but the dynamic reordering of variables accelerates the rest
of the process.

Symbolic approaches The Symbolic approach encodes and
tests all strategies at once. The Symbolic/filt approach be-
haves exactly like Symbolic since pre-filtering removes no
move. In this case, the time needed for pre-filtering is negli-
gible.

Comparison First, pre-filtering removes no moves, thus is
useless in reducing the number of strategies to consider. The
time needed to perform pre-filtering in the Symbolic/filt ap-
proach is negligible compared to the time needed for check-
ing the strategies. This explains why both versions of this
approach are the same.

On the other hand, pre-filtering takes a significant amount
of time in the partial and early cases, as the number of
checked strategies is very small. But the time needed by
both versions (with and without pre-filtering) are very sim-
ilar. This is explained, for both approaches, by the fact that
pre-filtering, while removing no moves, triggers the dynamic
reordering of the BDD variables. The new order computed
after pre-filtering is substantially better than the initial one
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Fig. 4 Evolution of the verification time of the approaches for the formula φ T
1 = ⟪Tian Ji⟫F Tian Ji wins.

and allows the verification of strategies to be performed faster.
This can be shown by disabling dynamic reordering. In this
case, the approaches with pre-filtering take more time to
check the formula, and the difference is the time needed to
perform the useless pre-filtering. The fact that the approaches
with and without pre-filtering perform similarly is thus purely
coincidental.

Second, the Partial approach is better than the Early ap-
proach because Partial checks only one partial strategy while
Early needs to check bN

2 c+1 sub-models before concluding
that there is a winning strategy.

The symbolic approaches have worse performances than
the others. This is explained by the fact that, as all strategies
are winning and the other approaches stop as soon as a win-
ning strategy is found, symbolic approaches have to perform
more work to check all strategies at the same time.

4.1.2 ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins]

Figure 5 shows the evolution of verification time for the
six approaches on the formula φ T

2 checked on the model of
Tian Ji. As said before, this formula is not satisfied by the
initial states of the model because the inner strategic formula
⟪Tian Ji⟫[¬King wins U Tian Ji wins] is false in all states.
On the other hand, Tian Ji has a winning strategy if he can
observe the whole system because he knows which order the
king will play for the current game.

Pre-filtering Empirically, we can observe that pre-filtering re-
moves about 50% of the moves for the strategic sub-formula.
Tian Ji has a winning general strategy in many states, but
not all actions lead to winning the game. Furthermore, pre-
filtering really helps for the top-level strategic formula be-
cause no state satisfies the sub-formula, making the top-level
one trivially unsatisfiable, even with perfect information.

Partial The Partial approach checks all partial strategies for
the sub-formula

⟪Tian Ji⟫[¬King wins U Tian Ji wins]

in all reachable states as the partial strategies for the initial
states lead to all reachable states. Furthermore, since the top
formula is false in the initial states, the approach checks all
partial strategies for the initial states for the top formula.
Thus, it has to check all partial strategies, for both strategic
sub-formulas, to conclude that the formula is false.

Nevertheless, this approach has to check the sub-formula
for relatively small subsets of the reachable states each time,
since partial strategies reach relatively small subsets of the
reachable states. Indeed, as the top-level strategies do not
cover the complete set of reachable states—for instance, if
Tian Ji chooses his best horse, he will not consider the states
in which he still can play this horse—, the number of strate-
gies to consider for the sub-formula (for this particular top-
level strategy) is not large.

Partial/filt Pre-filtering in the Partial/filt approach triggers
the evaluation of the sub-formula in all the reachable states
at once. This represents a large number of partial strategies,
compared to computing strategies for different separate sub-
sets of states as for the Partial approach. More precisely,
as all reachable states are considered at the same time, all
choices remain in all equivalence classes, thus the number of
strategies is not reduced.

Nevertheless, when the evaluation of sub-formula is done,
the approach detects that there are no general winning strate-
gies in the initial states, thus it can directly conclude that the
formula is violated.

Early The Early approach evaluates N strategies for the top
formula because there are N possible initial moves for Tian
Ji. It needs to check this small amount of strategies (for the
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Fig. 5 Evolution of the verification time of the approaches for the formula φ T
2 = ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins].

top formula) because, for each of them, it evaluates the sub-
formula in the reached states and immediately determines
that there is no extending winning strategy. On the other hand,
it checks the sub-formula on a large subset of the reachable
states because the top-formula-related strategies reach a large
number of states.

The sub-formula is evaluated on many states at once. This
means that a large partial strategy is already reached when
splitting the moves in these states. This large partial strategy
is sufficient to determine that the formula is false in these
states. Thus, the Early approach has to check several strate-
gies, but these strategies are determined as losing without
extending them.

Early/filt The Early/filt approach triggers pre-filtering for the
top formula, that evaluates the sub-formula on all the reach-
able states. This means that the approach has to check the
sub-formula for all these states at once. Evaluating the sub-
formula on all the reachable states also triggers pre-filtering
for the sub-formula removing about half the moves.

Furthermore, the number of strategies (splitting the other
half of the moves) in the whole set of reachable states is
large. Nevertheless, the Early/filt approach can directly de-
termine that each strategy is losing, avoiding to extend them
completely.

The number of strategies to check in the whole set of
reachable states is way larger than the strategies checked by
the Early approach. Nevertheless, when the sub-formula has
been evaluated on all the reachable states, pre-filtering for
the top formula determines that no state is winning and no
strategy must be checked for the top formula.

Symbolic The Symbolic approach checks all the strategies
at once. First, it computes the set of states satisfying the
sub-formula, then the set of states satisfying the top formula.
It encodes strategies for Tian Ji once, even if there are two

strategic formulas, because it can reuse the encoded strategies
for both formulas.

Symbolic/filt The Symbolic/filt approach first triggers pre-
filtering. This leads to checking the sub-formula. This sub-
formula is first pre-filtered, but nothing is gained because any
action that is ruled out in a state can be winning in another
indistinguishable state. Nevertheless, the approach does not
have to encode the strategies for the top formula because pre-
filtering evaluates that there are no possibly winning moves,
directly determining that the top formula cannot be true.

Comparison Pre-filtering in the Partial/filt approach evalu-
ates the sub-formula for all reachable states at once, repre-
senting a large number of strategies. On the other hand, the
Partial approach evaluates the sub-formula on smaller subsets
of states. These states reach only a subset of the states of the
model, reducing the number of strategies to consider. Overall,
this lazy evaluation allows the Partial approach to compute
fewer strategies than Partial/filt to evaluate the sub-formula.
Nevertheless, after evaluating the sub-formula, the Partial/filt
approach detects that there are no general winning strategies
in the initial states and can directly conclude. All in all, the
Partial/filt approach performs worse than Partial because it
considers all reachable states at once, instead of different sub-
sets of the reachable states separately, leading to many more
strategies to check. In the case of 4 horses, the Partial/filt
approach does not succeed in checking all the strategies for
the sub-formula within 30 minutes, while Partial does.

Regarding the early approaches, the number of strategies
to check in the whole set of reachable states (as done by the
Early/filt approach) is larger than the strategies checked by
the Early approach, since the Early strategies already made
a choice in the initial states. This allows the Early approach
to conclude for 4 horses within 30 minutes while Early/filt
does not.
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Regarding the Symbolic approaches, it is a coincidence
that both approaches take a similar amount of time. The
Symbolic approach has to evaluate the two strategic sub-
formulas. On the other hand, Symbolic/filt has to perform
pre-filtering on the sub-formula and then evaluate it, but does
not have to evaluate the top formula.

Regarding all the approaches, the Partial approach takes
a substantial amount of time because it has to check a large
number of strategies to determine that none of them are win-
ning. The Early approach has less work to do as it does not
extend the strategies. Finally, the symbolic ones are better
because they can evaluate all the strategies at once and deter-
mine that they are not winning.

Pre-filtering does not work for the partial and early ap-
proaches because, in both cases, it triggers the evaluation
of the sub-formula on all reachable states, leading to many
more strategies to consider, as these strategies have to take
all states into account at the same time.

4.1.3 ⟪Tian Ji⟫X Tian Ji null score

Figure 6 shows the evolution of verification time of the six
approaches for the formula φ T

3 on the model of Tian Ji. This
formula encodes the fact that Tian Ji can enforce to lose the
first race, and is false because even if he chooses his slowest
horse, the king could use his slowest one, too.

Pre-filtering Pre-filtering removes a lot of moves. Indeed,
there are only few states in which Tian Ji can keep his score
at 0. In these states, he has to have a score of 0, and he
has to still have a horse that surely loses the next race.
Furthermore, pre-filtering for the Partial/filt and Early/filt
approaches is even more efficient as they restrict the sub-
formula Tian Ji null score to the successors of the initial
states.

Partial approaches Thanks to the restriction to partial strate-
gies, the Partial approach has fewer strategies to check before
concluding that the formula is false.

Furthermore, thanks to the very efficient pre-filtering, the
Partial/filt approach has very few strategies to check: there
remains only N− 1 strategies, as only the initial moves of
the game are kept (except the one playing the best horse, as
it cannot be used to win the first race). In this case, most of
the time (50−70%) is spent to perform pre-filtering.

Early approaches The Early approach has to check the N
initial strategies to conclude that the formula is false. Indeed,
it is not necessary to extend them as the approach can directly
conclude that there is no winning strategy. Nevertheless, it
has to complete each strategy with the compatible reachable
moves to check that they are not winning, leading to extra
work compared to the Partial/filt approach.

The Early/filt approach computes the same pre-filtering
as the Partial/filt approach. It thus still has to check N− 1
strategies before concluding that the formula is false. As for
the Early approach, it has to complete each strategy with
the compatible reachable moves to check that they are not
winning.

Symbolic approaches The Symbolic approach encodes all
strategies for Tian Ji, and checks them all at the same time,
while Symbolic/filt benefits from pre-filtering and encodes
fewer strategies.

Comparison The approaches with pre-filtering perform bet-
ter than their counterpart without pre-filtering. This is due
to the fact that the number of remaining strategies is signifi-
cantly smaller than the initial number of strategies.

Furthermore, the Early/filt approach performs worse than
Partial/filt because it has more work to do: for each initial
move, it has to extend the strategy with compatible reachable
moves before concluding that the strategy cannot win. On the
other hand, the Partial/filt approach completes the strategy
with pre-filtered moves only, and there are no such moves as
pre-filtering is limited to the initial states.

The Partial approach performs worse than Early because
it has to check partial strategies, while the Early approach
only has to check the N initial moves (and complete them
before checking them).

4.2 The three castles

This section presents the results for the properties of the three
castles.

4.2.1 ⟪Castle1,Castle2⟫F Castle3 defeated

Figure 7 shows the evolution of verification time of the six
approaches for checking the formula φC

1 on the model of the
castles. The size of the model (Number of workers) is given
as a triplet 〈1 2 3〉, meaning that the first castle is defended by
one worker, the second one by two and the third one by three
workers. The tests were performed on instances in which
there are at least as many workers in the first two castles as in
the third castle. Cases in which there are more workers in the
third castle than in the other two have not been considered
because, in this case, the formula is false even with perfect
information.

Pre-filtering Pre-filtering removes from 18% (〈1 1 1〉 case)
to 77% (〈1 1 2〉 case) of the moves. For the other sizes, the
gain of pre-filtering is between these two bounds.

The huge gain of 77% in the 〈1 1 2〉 is explained by the
fact that the power of the workers of the first two castles is
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Fig. 7 Evolution of the verification time of the approaches for the formula φC
1 = ⟪Castle1,Castle2⟫F Castle3 defeated.

comparable to the power of the workers of the third castle.
This means that the first two castles workers do not have many
winning moves, even if they know whether their opponents
defended their castle before and the actual health points of
the castles. On the other hand, in the 〈1 1 1〉 case, the first
two castles have more power compared to the third one and
can more easily win if they have perfect information. The
other cases are between these two extremes. In all cases, the
time needed to perform pre-filtering is negligible compared
to the search for a winning strategy.

Partial approaches The Partial approach succeeds in finding
a winning strategy within 30 minutes for the 〈1 1 1〉 case.
Nevertheless, for the 〈1 1 2〉 case, it cannot find a winning
one. In this case, there is the same number of strategies, but
it is more costly to check each strategy as the model is bigger.
On the other hand, the Partial/filt approach benefits from
pre-filtering and finds a winning strategy more quickly than
Partial. Nevertheless, it fails at finding a winning one in the
〈2 1 2〉 case.

Early In the 〈1 1 1〉 case, the Early approach needs to reach
up to half the depth of the model to determine the strategies to
be losing. This allows the approach to find a winning strategy
easily.

In the 〈1 1 2〉 case, it needs to split only a few steps to
determine that the strategies are losing. This is because the
group of agents of the first two castles have relatively less
power than in the previous case.

In the larger cases, the Early approach needs to reach
about half way, again. The number of strategies increases
with the number of workers to consider, as well as the time
needed to check larger models.

Early/filt In the 〈1 1 1〉 and 〈1 1 2〉 cases, the Early/filt ap-
proach has fewer strategies to check than the Early approach
because it benefits from pre-filtered moves.

In the 〈2 1 2〉 case, the approach finds a winning strategy
within the same time as the Early approach.

In the 〈2 2 2〉, 〈3 2 2〉 and 〈3 3 3〉 cases, it very quickly
finds a winning strategy (after resp. 18, 37 and 52 strategies).
It benefits substantially from pre-filtering and finds a good
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strategy after a few steps. It still has to reach about half way
to find this winning strategy. In the 〈3 2 3〉 case, it needs to
consider many more strategies before finding a good one.

The Early/filt approach benefits from pre-filtering and
decreases the number of strategies to check, compared to the
Early approach, but still struggles to find winning strategies
for some cases such as the 〈3 2 3〉 and 〈4 3 3〉 cases.

Symbolic approaches The Symbolic approach has to encode
and check all strategies at the same time. As the number of
workers increases, there are more and more strategies for
the group. Furthermore, the Symbolic/filt approach cannot
benefit from pre-filtering because all equivalence classes are
still present and all actions are still possible in each of them.
Thus, it performs exactly as Symbolic, as the time to perform
pre-filtering is negligible.

Comparison The partial approaches succeed in decreasing
the number of uniform strategies to consider, and thanks to
early termination, can stop as soon as a winning strategy
is found. Nevertheless, the number of partial strategies to
consider is still large, and the approaches quickly fail to find
a winning one.

The symbolic approaches are better. Nevertheless, pre-
filtering does not benefit to the Symbolic/filt approach, thus
both approaches do the same work.

The early approaches are the best in the present scenario
because they can quickly determine that a partial strategy
and all its extensions cannot be winning. In particular, the
Early/filt approach benefits from pre-filtering and drastically
reduces the number of strategies it checks for the largest
models. The Early/filt approach shows some irregularities in
performances because it sometimes makes the right choices
of actions, and sometimes not.

4.2.2 ⟪Worker1,Worker2⟫F all defeated

Figure 8 shows the evolution of verification time of the six
approaches for checking the formula φC

2 on the model of the
castles. This formula is false for all checked sizes.

Pre-filtering A major difference between the 〈1 1 1〉 case
and the others is that, in the former case, the two workers
have a strategy to achieve their goal when they have perfect
information, while it is not the case for the greater sizes.
Thus, pre-filtering, in the cases of larger models, allows the
Partial/filt and Early/filt approaches to directly determine that
the formula is false, without checking any strategy.

Partial approaches The Partial approach reaches the time-
out even for the smallest model size. Given the number of
possible strategies (6.9×109) and the fact that the approach

must check them all to determine that the formula is false,
this result is not surprising.

On the 〈1 1 1〉 case, pre-filtering drastically reduces the
number of moves to consider, and thus the number of strate-
gies the Partial/filt approach needs to check before stating
that the formula is false. The approach shows that the remain-
ing strategies are losing within the time limit, while Partial
fails to do so. For the other cases, pre-filtering performs all
the work.

Early For the 〈1 1 1〉 case, the Early approach needs to reach
about half way from the initial state to determine strategies
to be losing, as for the previous formula. This allows the
approach to check all strategies more easily.

For the other cases, the approach only needs to check the
16 initial actions of the two workers to conclude that there
can be no winning strategy. Indeed there are no winning
strategy in these cases, even with perfect information, and
the approach can determine it directly.

The increasing of time for the Early approach only comes
from the fact that the model is bigger and bigger, making the
verification of these 16 strategies longer and longer.

Early/filt For the 〈1 1 1〉 case, the Early/filt approach does
not gain from pre-filtering. In fact, the moves that are filtered
out are never reached by the Early/filt approach because it
can determine that the strategies are losing before reaching
them. Thus, it behaves like Early on this case. For the other
cases, the Early/filt approach does not check any strategy
since pre-filtering directly determines that there can be no
winning strategy.

Symbolic approaches The Symbolic approach behaves in
the same way for all model sizes. The only differences come
from building a model of increasing size. The actual fixpoint
computation to determine the winning strategies is the same
in all cases. On the other hand, the Symbolic/filt approach
gains from pre-filtering. It drastically reduces the number of
strategies to encode for the first two cases. For the three last
ones, there remains only one strategy to encode and check.

Comparison The Partial approach does not handle the small-
est model because it has to check the huge number of strate-
gies to determine that there are no winning ones. On the other
hand, the Partial/filt and Early/filt approaches only need pre-
filtering to conclude. The Early approach can also quickly
determine that the formula is false because it just needs to
check all possible actions in the initial state. The symbolic ap-
proaches also perform well because the BDDs they compute
remain very small.

In conclusion, all approaches are comparable for the case
〈2 1 2〉 and after because it is easy to show that the formula
is false, except for the Partial approach that must check all
possible strategies to reach this conclusion.
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Fig. 8 Evolution of the verification time of the approaches for the formula φC
2 = ⟪Worker1,Worker2⟫F all defeated.

4.3 The prisoners and the light bulb

This section presents the results for the property

⟪prisoners⟫[¬executed U released]

of the prisoners model. Figure 9 shows the evolution of verifi-
cation time of the six approaches for checking the formula on
the model of the prisoners. The formula is true in all tested
models, showing that the prisoners effectively have a strat-
egy to be released without being executed. The number of
partial strategies from the initial state grows exponentially in
terms of the number of prisoners. Furthermore, the number of
strategies is already huge for the smallest model, compared to
the model of Tian Ji: the 2 prisoners have ≈ 20000 strategies
while Tian Ji has only 24 strategies with 3 horses.

Pre-filtering Pre-filtering does not remove a lot of moves.
Indeed, when the prisoners have perfect information, the
counting one knows who has already been interrogated and
can make a correct announcement as soon as possible. The
only moves that are removed are those leading to an incorrect
announcement and the execution of all prisoners.

Partial approaches The Partial approach is lucky to find a
winning strategy for 2 prisoners. For 3 prisoners, it does not
find a good one within 30 minutes. Partial/filt benefits from
pre-filtering and even achieves to find a winning strategy for
3 prisoners, but fails for 4 prisoners.

Early approaches The Early approach is quicker than the
Partial approach to find a winning strategy for 2 prisoners. It
is explained by the fact that as soon as the current strategy
considers an incorrect announcement, the approach stops
extending it because it is surely losing. Early/filt performs
even better for 2 prisoners than the Early approach, but it
is the opposite for 3 prisoners. As the time needed to per-
form pre-filtering is negligible, this simply means that the

Early approach makes better decisions than Early/filt for 3
prisoners.

Symbolic approaches The Symbolic approach is very effi-
cient for 2 prisoners, but is less for 3. This is because there
are sufficiently few strategies to encode in the former case,
but too many for the latter. The other approaches that succeed
in finding winning strategies for 3 prisoners simply made the
right choices, as they are not able to check all possible strate-
gies within 30 minutes, while the symbolic approaches have
to check them all. The Symbolic/filt approach behaves like
Symbolic because pre-filtering does not remove any equiva-
lence classes, nor any actions in these classes.

Comparison As for the previous model, the number of strate-
gies to consider is huge. The Partial approach fails at finding
a winning strategy for 3 prisoners.

The number of partial strategies to check by the Par-
tial/filt approach is lower than for Partial. This means that
pre-filtering is useful here. On the other hand, the partial ap-
proaches are less efficient than the early ones because the lat-
ter can rule out strategies more easily. Both early approaches
behave similarly.

Finally, the symbolic approaches both behave in the same
way, and are very efficient when considering the strategies
for 2 prisoners. Nevertheless, for 3 prisoners, the number of
strategies is too large, and the other approaches make the
right choices and find a winning strategy within the time
limit, while the symbolic approaches have to consider all
strategies at once to conclude.

4.4 BDD variable reordering techniques

The implementation of the approaches is based on BDDs. It
is well-known that ordered binary decision diagrams perfor-
mances are highly correlated to the order of their variables.
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Fig. 9 Evolution of the verification time of the approaches for the formula φ P = ⟪prisoners⟫[¬executed U released].

The implementation being based on NuSMV, it inherits all
the functionalities of the tool to dynamically reorder the
BDD variables. NuSMV proposes 19 different heuristics
for dynamic reordering. To assess their performances, 18 of
them have been tested with the approaches (see the NuSMV
Manual for more information about the different reordering
heuristics [11]). The omitted one is the exact heuristic that
computes the optimal order. It can take a lot of time and is
not advised with more than 16 Boolean variables [11]. The
18 heuristics have been tested on different formulas, one for
each approach. These formulas have been chosen such that
the time needed to solve the model-checking problem is not
too low—when it is too low, other quick computations such
as building the model can have a significant impact on the
overall model-checking time—, and not too high—hitting
the 1800 second timeout would yield no useful information
for comparing the heuristics. As for the previous tests, each
formula has been checked 20 times. The formulas are

– φ T
1 with 6 horses for both Partial and Partial/filt ap-

proaches;
– φ T

2 with 4 horses for the Early approach;
– φ T

3 with 4 horses for the Early/filt approach;
– φC

1 with 2, 1 and 2 workers for the Symbolic and Sym-
bolic/filt approaches.

Figure 10 shows the time needed for the Early approach
to verify the formula

⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins]

on the model of Tian Ji with 4 horses.
First, these tests show that no heuristic is better than an-

other. The approach takes about 120 seconds to verify the for-
mula, regardless of the reordering technique. Second, these
tests show the variability stays small: the approach usually
needs from 115 to 130 seconds to perform the verification.

The other tested approaches showed similar results. For
all reordering heuristics, the partial, Early/filt and symbolic

approaches took about 100 seconds. No heuristic showed
better performances in verifying the formulas, with all tested
model sizes and approaches. This leads to the conclusion that
the chosen heuristic is not important in the present cases and
that choosing the default sift one is a sensible choice. This
heuristic has been used for all the other tests presented in this
paper.

4.5 Conclusions on the experiments

Based on the observations made on the experiments presented
above, we can draw some general conclusions.

The best approach to check that there exists a winning
strategy when most of them are winning is the Partial ap-
proach. Nevertheless, it performs poorly to show that there
are no or few winning strategies.

The early approaches present a better trade-off since they
take more time to show that there is a winning strategy if
most of them are winning, but can more easily find one when
there are only few winning ones, or even show that there
are no winning strategies. Nevertheless, in the case in which
only complete partial strategies are winning, and not some
incomplete ones, the early approaches tend to perform extra
work that is not needed. Indeed, they have to extend a strat-
egy completely to find a winning one, and the intermediate
computations of losing and winning states do not yield any
gain.

The symbolic approaches work better when there is a
huge number of strategies to consider because they can rep-
resent them in a compact way. On the other hand, the other
approaches cannot handle a huge amount of strategies since
they need to enumerate them. Furthermore, the symbolic
approaches work well with nested strategic formulas.

Pre-filtering may or may not help. Either it removes a
large number of losing moves when there are big parts of the
model in which the agents have no winning strategies at all
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Fig. 10 Time taken with all variable reordering heuristics with the Early approach for checking formula φ T
2 on the model of Tian Ji with 4 horses.

(even non-uniform ones), or it removes only a few of them,
producing extra work that is not needed. In some cases, it can
even directly conclude that there are no winning strategies,
avoiding the need to check any strategy.

The symbolic approaches are more stable than the others,
in the sense that the time needed to perform the model check-
ing is less dependent on the property being checked. This
can be seen on the first two formulas of the model of Tian
Ji: the Symbolic approach can evaluate them for 4 horses but
never for 5 in the available time. On the third formula, the
⟪Γ⟫X operator is easier to deal with because the fixpoint
computation is simpler, allowing the approach to evaluate the
formula for 5 horses. On the other hand, the other approaches
have very variable performances depending on the formula.

While the approaches can be efficient in finding winning
strategies when there are a lot of them, or to check that
there are no winning strategies when there are not even non-
uniform ones, they can be very unpredictable when there are
only few winning strategies. Partial and early approaches can
take a long time to find the winning combinations of moves,
and symbolic approaches have to deal with more complicated
BDDs.

While NuSMV and PyNuSMV propose some heuristics
to dynamically reorder the BDD variables, the tests showed
that none of them is better than the others.

In summary, there is no best approach for all cases. The
easiest way to solve a model-checking problem is thus to
run all approaches in parallel. We can also build some guide-
lines from the conclusions above to try to identify the best
approach depending on different criteria:

– If most of the uniform strategies of the agents should be
winning, the partial approaches are the best to find one.

– If it is not clear whether there are many winning strate-
gies, then the early approaches present a better trade-off.
They are able to find winning strategies, but also show
that there are none.

– The symbolic approaches are a better choice if the num-
ber of strategies is really huge, or when the property
contains nested strategic formulas.

– If many moves of the game do not belong to winning
general strategies, then pre-filtering should reduce the
number of strategies to check.

– But if the agents can easily win the game when observing
the whole state (for instance, if they can observe the
solution of a puzzle, or the code for a safe), then pre-
filtering is not useful.

Most of these guidelines rely on features of the model
that an automated tool cannot easily grasp. The responsibility
is thus on the user to choose the approach to use. Furthermore,
these guidelines are based on the experiments presented in
this paper, and these experiments showed that the approaches
can be unpredictable when there are only few winning strate-
gies.

5 Conclusion

Starting from Alternating-time Temporal Logic (AT L), rea-
soning about strategies of the agents of a system has been
investigated for a long time. In particular, some logics focus
on reasoning about the strategies that the agents can actu-
ally play based on their current observations of the system.
While these logics have been studied for 15 years, practi-
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cal approaches to solve their model-checking problem only
appeared recently.

This paper briefly described the three approaches of
Pilecki et al. [27], Huang and van der Meyden [20,19], and
Busard et al. [8], adapted to AT LKirF , an extension of AT L
with memoryless uniform strategies and unconditional fair-
ness constraints on states [9]. It also presented their im-
plementation with PyNuSMV, a Python library for proto-
typing BDD-based model-checking algorithms based on
NuSMV [6]. Their implementation in the same BDD-based
framework, within the same tool, lead to a fair compari-
son of the techniques on practical examples. More precisely,
this paper described three models with strategic formulas
used to compare the practical performances of the differ-
ent approaches. These experiments showed that the three
approaches have their own advantages and disadvantages,
and none of them effectively surpassed the others on all the
experiments. From these experiments, some guidelines have
been proposed to choose the approach when facing a new
model-checking problem.

The experiments also showed that none of the approaches
is scalable: none of them succeeded for Tian Ji’s problem
with more than 6 horses, for the castles problem with more
than 9 workers, and for the prisoners’ problem with more than
3 prisoners. The problem of model checking strategies under
imperfect information, already known to be theoretically
complex1, seems to be complex in practice, too.

5.1 Related work

Several other approaches have been proposed to deal with
problems similar to the ones of this paper.

Calta et al. Calta et al. propose an algorithm to check the
existence of uniform strategies over sets of states of iCGS,
that is, iCGSf without fairness constraints [10]. Nevertheless,
it is difficult to adapt their approach to the case of AT LKirF , to
take fairness constraints into consideration, and to implement
it in a BDD-based framework.

Lomuscio and Raimondi Lomuscio and Raimondi propose
to perform the model checking of uniform strategies by enu-
merating all Γ -uniform systems compatible with a given in-
terpreted system. Such a Γ -uniform system compatible with
the original model is a restriction of the system where agents
of Γ choose only one action in each equivalence class. They
then conclude that the original system satisfies the formula
if there exists a Γ -uniform compatible system satisfying the
formula [26].

1 The problem of model checking strategies under imperfect infor-
mation is ∆ P

2 -complete [22,23].

Nevertheless, the semantics they handle is different from
AT LKirF . In the case of Lomuscio and Raimondi, the strate-
gies must be winning for the whole formula, that is, the
same uniform strategy must be winning for all strategic sub-
formulas, and for all states of interest. On the other hand,
AT LKirF semantics is local to the sub-formula, and two dif-
ferent formulas or distinguishable states can have a differ-
ent winning strategy. AT LKirF semantics follows the ideas
of AT L, where two strategic sub-formulas can be satisfied
because of two different strategies, while the semantics of
Lomuscio and Raimondi diverges from it. Furthermore, their
idea is similar to the first idea proposed by Busard et al. [7,
9], shown to be highly ineffective compared to the partial
approach [8].

Observation-based two-player games Raskin et al. propose
an approach to check the existence of winning observation-
based strategies with perfect recall in the context of two-
player games [28]. Their algorithm is based on fixpoint com-
putations on sets of states and works with anti-chains. The
objectives of their strategies are ω-regular ones, such as
Büchi and co-Büchi objectives.

Similarly, Bozianu et al. propose another anti-chain based
algorithm for checking the existence and synthesising strate-
gies with imperfect information and perfect recall in the con-
text of two-player games [2]. The objectives of their strate-
gies are defined using an extension of LT L with knowledge
operators.

These problems are related to the problem of AT LKirF
model checking. Nevertheless, they put different limitations
on the problem. AT LKirF is limited to memoryless strategies.
The approaches of Raskin et al. and Bozianu et al. limit the
games to be two-player games. In this context, checking
the existence of winning memory-full uniform strategies is
decidable. Furthermore, the approaches they propose, based
on anti-chains, are far from the BDD-based algorithms used
in this paper.

5.2 Future work

There remain many ways to go further than the experiments
of this paper.

Experiments with real-life cases The tested models and for-
mulas are toy models based on the ones found in the litera-
ture. They do not necessarily reflect the structure, size and
complexity of real-life cases. It would be interesting to find
real-life cases of iCGSf and to test the approaches on them.

Investigating the initial order of BDD variables Section 4.4
showed that, while NuSMV and PyNuSMV propose several
heuristics to dynamically reorder the BDD variables during
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the process, none of these heuristics had a significant impact
on the performances. Nevertheless, there exist other ways
to improve the performance of BDD-based algorithms by
manipulating this variable order. In particular, the initial or-
der of the variables plays a big role in the successive orders
computed by the heuristics. For the experiments of this pa-
per, the standard initial order defined by the order in which
the variables have been declared in the description of the
model has been used. It would be interesting to evaluate the
impact of this initial order and to define, if possible, general
guidelines for specifying efficient initial orders.

Mixing approaches This paper showed that the partial, early
and symbolic approaches are comparable in efficiency, and
that they are efficient in different situations. It would be
interesting to mix them, to evaluate different sub-formulas
using different approaches. For instance, given the formula
⟪Γ1⟫F p∧⟪Γ2⟫G q, the first sub-formula ⟪Γ1⟫F p could be
evaluated with the partial approach while the second one
⟪Γ2⟫G q could be evaluated with the early approach. The
approach to use for each sub-formula could be defined by the
user, but it would also be interesting to investigate criteria to
automatically select the best approach.
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