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Abstract 

To ensure optimal functionality and adherence to specified requirements, a Wireless Sensor 

Network (WSN) must prioritise the validation of its three fundamental attributes: 

Connectivity, Coverage, and Network Lifetime. Existing literature highlights numerous 

research endeavours to resolve reliability issues in WSNs, often concentrating on singular 

properties such as coverage and/or connectivity. These properties are frequently treated 

interchangeably and seldom concurrently addressed due to the intricate challenges arising 

from the distributed nature and resource constraints typical of WSNs. Moreover, safety 

critical WSNs  applications require to follow rigid and strict policies such as strict 

deadlines  while deploying in emergency situations  which adds an additional layer 

of  complexity. This layer of complexity  is caused by  new set of additional requirements 

not only connectivity, coverage, and lifetime. That is technically challenging in terms of 

optimizing the basic parameters required for the  implementation of WSNs. Notably, there 

is a scarcity of published work comprehensively analysing and testing all three primary 

requirements; connectivity, coverage, and network lifetime of WSNs simultaneously, owing 

to their inherent complexity. This thesis tackled the three mentioned properties of safety 

critical WSNs as a Multi-Objective Optimisation (MOO) problem. The research 

methodology encompasses six key principles. Firstly, the Randomised Coverage-based 

Scheduling (RCS) algorithm is replicated, validated, and verified using a MATLAB 

simulation environment, revealing insights into node utilisation imbalances. Secondly, the 

performance of the RCS algorithm is scrutinised using the Perceptron Multilayer Artificial 

Neural Network (ANN) scheduling algorithm, exposing limitations. Thirdly, the Hidden 

Markov decision-process Model (HMM) is employed to enhance the service availability 

and reliability of the RCS algorithm, demonstrating superior optimisation metrics over RCS 

by increasing network lifetime while improving coverage and connectivity. Fourthly, a 

novel Bio-Inspired Bat algorithm was developed to address the identified limitations of 

previous scheduling algorithms, utilising objective optimisation functions and Pareto 

optimisation. The Bat algorithm outperformed the HMM algorithm across all metrics. 

Fifthly, the Self-Organising Feature Map (SOFM) algorithm surpasses the Bat algorithm 

with its straightforward approach to dimension reduction and classification. Sixthly, critical 

analyses of implemented algorithms (HMM, Bat, and SOFM) reveal similar patterns in 
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coverage data. Consequently, a Long Short-Term Memory (LSTM)-based node scheduling 

algorithm was introduced to analyse and provide an energy-efficient scheduling solution, 

addressing the Multi-Objective Optimization (MOO) highlighted in this research. 
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Chapter 1 Introduction 

WSNs are embedded systems consisting of multiple distributed Sensor Nodes and one or more 

Base Stations, placed within an area of interest, to monitor and detect given behaviours and 

changes as shown in Figure 1.1 [Dener et al., 2022; Hill, 2003]. WSNs are used in a variety of 

monitoring, tracking, and control applications  [Sohraby et al., 2007]. They make it easier to 

deploy applications in situations where infrastructure, such as communications and power, is 

scarce, especially for safety-critical applications. Safety-critical systems are concerned with 

the safety of human beings and their assets, and aim to avoid human injuries, deaths, economic 

loss, or environmental damage [Meier, 2009]. Hence, ensuring that a WSN functions correctly 

in the runtime is of paramount importance. WSNs are resource-constrained types of networks. 

Thereby, WSNs must be enabled with the ability to make a dynamic trade-off between energy 

consumption, application requirements and the system performance with respect to 

dependability requirements. 

 
Figure 1.1 Demonstration of the WSN Structure 

WSN systems must be made dependable, where their dependability is determined by three 

primary properties: Coverage, Connectivity and Network lifetime [Sohraby et al., 2007]. 

Coverage is concerned with the ability to detect events in the area to be monitored; 

Connectivity is the ability to communicate the detected events; and lifetime is the length of 

time a WSN needs to perform its functions [Tian and Georganas, 2002; Ye et al., 2003].  Figure 

1.2 illustrates the increased usage of the WSN between 2015 and 2025 [Dener et al., 2022]. 
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Figure 1.2 The Industrial WSN market size, 2015 -2025 (USD Million)  

 

The dependability requirements such as reliability and availability for WSNs must be addressed 

to achieve the level of Quality of Service (QoS) required by the application. [Hartung et al., 

2006]. Several factors can impact the dependability of the services in WSNs such as the harsh 

environments they are deployed in, the wireless link they communicate with, and their limited 

energy supply (via batteries) they are equipped with [Ammari and Das, 2006]. Thus, what 

follows is an overview of the factors that impact the dependability of the WSNs.  

1.1 An Overview of WSNs 
A WSN has two main elements: nodes and a base station. WSN nodes operate with limited 

resources, e.g., limited communication range, limited processing, and limited power supply.  

The role of a node is to sense the surrounding environment (Coverage) and communicate with 

other nodes to report the sensed data to the base station (Connectivity). The maximal sensing 

area of a node is called the sensing range, that is, the coverage area of the sensor node [Tian 

and Georganas, 2002; Ye et al., 2003]. The area covered by the whole network or network 

coverage is determined by the coverage areas of all of its nodes. The maximal communication 

radius of a node is called a communication link. A node is connected to the base station if there 

is a communication path or link from the node to the base station. Let A and B be two nodes. 

If node A is within the communication range of B, A is a neighbour of B; conversely, B is a 

neighbour of A. 
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Figure 1.3 Demonstration of the WSN elements of dependability. 

In this work, to study the elements of dependability in WSNs, a WSN will be divided into Hop 

areas whereby nodes that are 1 Hop count away from the Base station belong in 1-Hop area; 

nodes that are 2 Hop counts are in 2- Hop areas and so forth as illustrated by Figure 1.3 

The following are important element to study the dependability of WSN: 

• Definition 1 (Nodes). A node is a device that senses its environments in order to detect 

given events. 

• Definition 2 (Base station). A base station is a special node that collects data sensed by 

other nodes and typically has an infinite lifetime. 

• Definition 3 (Downstream). A communication is downstream if it flows from the base 

station to the nodes. If a node is receiving information from (the direction of) the base 

station, this node is called a downstream node. Let A and B be two nodes. If A sends a 

message downstream to B, then B is called a downstream node of A. 

• Definition 4 (Upstream). A communication is upstream if it flows from any node to the 

base station. If a node is sending information to the base station, then this node is an 

upstream node. Let A and B be two nodes. If B sends a message upstream to A, then A 

is called an upstream node of B. 

• Definition 5 (Neighbours). The neighbours of a node are all the nodes within its 

communication range. Let neighbours(A) denote the neighbours of node A. 
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• Definition 6 (Minimum hop count). The minimum hop count of a node is the shortest 

path to the base station, where a path is the number of (intermediate) nodes from a given 

node to the base station. 

• Definition 7 (Rounds). All the processes that occur within a single iteration cycle in 

regard to system process scheduling algorithms It is the time where all the sensor nodes 

send data to the base station. 

 

Dependability of WSN: According to [Xu et al., 2001], the dependability of a system is the 

ability of the system to avoid service failures that are more frequent or more severe than is 

acceptable. The principal threats to the dependability of WSNs stem from the failures relating 

to energy efficiency [Busse, 2008] [He et al., 2004] [Hartung et al., 2006]. One must also 

consider failures linked to WSN components. Node failure can be due to a malfunction or a 

breakdown in one of its components, e.g., memory, processor, sensor, and battery. 

Communication (link) failure can be due to many reasons, e.g., radio interference, collision, 

or due to a node dying as a result of fully depleting its energy. Coverage failure occurs when 

a node fails to collect data in its target area due to battery depletion. Coverage and 

communication go together. If a node covers an area but cannot communicate back to the Base 

Station, this is as if the area is not covered. Reciprocally, if a node can communicate back to 

its Base Station but there is no coverage, then events cannot be detected, as if there is no 

communication. 

 In this work, a WSN is dependable for a given application if its maximum lifetime is 

equal or greater than its expected service time. In addition, a WSN must be rigorously tested 

to state its dependability. 

A WSN has a number of performance challenges such as connectivity compromise, coverage 

holes, network lifetime reduction, throughput delay, and reduced data volume in a network. If 

such challenges are mitigated, then a dependable WSN can be achieved. Hereafter is a deeper 

dive into such challenges as they become the focus of the multi-objective optimization work 

presented in this thesis. 

 Connectivity: A WSN is required to report back data captured from sensors to the base station. 

Hence, connectivity at a global level (from all nodes to the base station) is considered 

important. For example, consider a WSN with all nodes connected - if a link failure happens, 

where two neighbouring nodes are disconnected, may lead to partition the network into 

different sub-networks. Where one sub-network (X) is connected to the base station, while the 
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other (Y) is not. Then events in Y will not be reported, thus affecting the dependability (service 

availability and reliability) of the whole WSN.  

The notion of ‘k-connectivity’ has been used to address the connectivity problem in WSNs and 

will be adopted throughout the course of this thesis. For example, a network has ‘1-

connectivity’ means that there exists one link between two nodes. A WSN is said to be 

connected when there is at least one connection between all its nodes [Ammari and Das, 2006]. 

 

Coverage: Coverage is concerned with the physical distribution of nodes in the area to be 

monitored. Coverage is an essential attribute for WSNs because it affects the way events are 

detected. What is enough coverage? To answer this question, an explanation of how coverage 

is measured in WSNs is needed.  As defined by [Tian and Georganas, 2002; Ye et al., 2003], 

"the degree of coverage at a particular point in the sensing field can be related to the number 

of sensors whose sensing range covers that point".  

 In this thesis we will use ‘C-coverage’, where C is the number of sensors e.g., ‘1-

coverage’ means that a point in the area to be monitored is covered by the sensing range of 

only one active sensor node. Then, if an area is covered by one sensor node, then the degree 

coverage of that area is 1.  

The degree of sensing coverage varies from an application to another. While in some 

applications the degree of sensing coverage is required to be high, e.g., military applications, 

in other applications it might be low, e.g., animal and habit monitoring. Other applications may 

require a dynamic configuration from low to a high degree of sensing coverage, e.g., intrusion 

detection system  [Wang et al., 2003]. Thus, a WSN that has a higher degree of sensing 

coverage will accurately sense and capture events, and therefore will be more robust to 

potential sensing failure  [Cerpa and Estrin, 2004]. 

Moreover, in this thesis the sensing coverage is defined as a function of at least three main 

parameters: node presence or the location / deployment of a node in a point of interest in the 

monitored area; node lifetime or the battery life expectancy of the node; node malfunction or 

the healthy performance of nodes without defects / errors / faults. In this thesis, a WSN is 

covered if at least the point of interest which is part of the WSN monitored area is covered by 

one, healthy (not malfunctioning) and alive (known lifetime) node. 

 Network lifetime: It is the time during which a WSN is able to sense and communicate data 

to the base station. The network lifetime of the WSN is affected by the number of 

communications (connectivity) and the sensing (coverage) activities where events are detected 
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and reported due to energy consumption to perform such activities. There is a trade-off between 

cost and performance in any WSN. The cost is energy consumption, and the performance is 

manifested by coverage as well as connectivity. A WSN may have all sensors switched ON at 

all times, maximizing the coverage and the connectivity factors, but that would consume more 

energy. Energy consumption is a key metric that can provide an estimate of the WSN lifetime.  

 There are multiple definitions of the lifetime in the literature: "the time till the first 

sensor node runs out of its battery energy" [Xu et al., 2001]; "the total number of nodes alive 

over time" [Cardei et al., 2005]; "the time until a given percentage of nodes in the WSN goes 

below a given threshold"  [Chiang, 2007]. 

 In this thesis, network lifetime is the longest (for availability), useful (for always being 

reliable), and meaningful (for corruption-free data transferred) network lifetime.  

 

There are several approaches to ensure the dependability of a resource-constrained WSN 

[Thomas et al., 2020]. One approach is having an endless power source in each node, but since 

sensor nodes operate on a limited battery, inherently, this solution is deemed impossible. 

Another approach is scheduling nodes to sleep and wake up to preserve the energy [Tian and 

Georganas, 2002]. However, a node that is scheduled to sleep loses its connectivity and 

coverage and no longer participates in the network activity. This can introduce a coverage hole 

whereby critical events cannot be detected, or a connectivity hole whereby detected events are 

not being routed to the Base Station. In resource constraints WSN this is known as the MOO 

[Liu et al., 2006], [Wang et al., 2010]; or the M-connected coverage MOO problem [Mini et 

al., 2012]. 

 

Several works have attempted to solve the MOO problem, however, they consider one or two 

objectives only, e.g., [Ambrose, 2008; Cerpa and Estrin, 2004; Chipara, 2010; Ha, 2006; He et 

al., 2004; Tate and Bate, 2011; Viera et al., 2003; Wu et al., 2005; Xu et al., 2001; Yang, 2011; 

Ye et al., 2003] do not consider network coverage in their works; other works such as [Tian 

and Georganas, 2002] and [Cardei et al., 2005] consider network coverage, but without 

ensuring a good level of network connectivity. Only a few works address the MOO problem 

considering the three  objectives: Coverage, connectivity and network lifetime at the same time, 

e.g., [Liu et al., 2006], [Wang et al., 2010].  
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[Liu et al., 2006] propose the RCS algorithm which splits the network into different sub-

networks where Nodes join each of these sub-networks randomly. These sub-networks 

alternate between ON and OFF states (a subnetwork is ON/OFF meaning that all of its nodes 

are ON/OFF). An issue with RCS is that it forces nodes to be turned ON although they are 

scheduled to be in an OFF state, thus causing nodes to consume energy faster and die 

prematurely. Another issue is that Nodes which are closer to the Base Station are more likely 

to be used than others. This will lead to the partition of the network where events can be 

detected but not reported back to the Bases Station.  

 

In this thesis, the main concern was to address the limitations of the RCS algorithm and provide 

an optimal solution for the MOO problem. Therefore, First, the state of the WSN needs to be 

extensively analysed. Second, the search space must be fully explored to obtain the optimal 

solution. 

1.2 Problem Definition   
Examining the work of [Liu et al., 2006], there is a necessity to thoroughly investigate 

the  (solution space for identifying the optimal schedule. In particular, investigate how the 

parameters like connectivity, coverage and network lifetime would manage to provide the best 

duty cycle preserving the energy and topology of the WSN. The effectiveness of the proposed 

RCS algorithm is not evident. Considering that sensor nodes near the base station may 

experience earlier depletion due to increased workloads, it is conceivable that nodes in a 2-Hop 

area could potentially offset the workload of a node in a 1-Hop area. While increased energy 

consumption is anticipated for the backup nodes due to the extended communication distance, 

this remains a more favourable option compared to network partitioning. Consequently, it is 

imperative to delve into the solution space. A method for comparing the RCS original schedule 

with alternative scheduling algorithms is essential for determining the most optimal schedule. 

Regrettably, RCS lacks the capability for such a comparison on its own. Only through this 

comparative analysis one can ascertain the optimal solution. 

The solution space for RCS scheduling algorithm is very large. One way of finding best 

schedules is by feeding each one of them into a simulator and see which one works best. 

Using a WSN simulation model where we can exactly show the best scheduling with the 

help of scheduling and optimization processes that are built in the simulator. 
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In this work we propose exploring alternative ways to represent the solution space that make it 

easier to explore a larger portion of the solution space and select the optimal solution. In the 

literature multiple approaches are possible including Hidden Markov Model, Bio-inspired 

computation, and machine learning. Due to the distinct representations of the problem offered 

by each scheduling algorithms, it is impossible to determine in advance which one will yield 

the optimal result. This is because each problem has its own new presentation for the solution.  

Consequently, the approach involves (1) employing each algorithm separately to identify the 

most effective schedule and subsequently (2) comparing the outcomes of each approach 

through simulation. Furthermore, one will assess the user-friendliness of each approach and 

examine the ease of verification for each. 

1.3 Research Questions 
The hypothesis of the thesis is: 

“There is a mechanism for studying, analysing the complexity of safety critical WSNs to 

improve connectivity, coverage, and network lifetime. Such analysis will improve the service 

availability and reliability of dependable safety critical WSNs.” 

  

From this hypothesis, the following research questions have been derived which were 

addressed in this thesis’s technical chapters as illustrated below: 

1. Can Neural Networks ANN analyse the complex behaviour of WSNs’ scheduling 

algorithms to uncover limitations to improve performance? Chapter 3 addresses this 

question with the novel artificial neural network ANN analyser. 

2. Is there a method for improving the previous work in the previous research question 

using machine learning AI algorithms? Chapter 4 addresses this question with the novel 

HMM utilisation of the RCS algorithm. 

3. Can Bio-inspired algorithms improve on the work achieved in previous chapters and 

research questions with respect to the multi-objective optimisation problems? Chapter 

5 addresses this question with the novel Bat algorithm. 

4. Can the aforementioned scheduling improvements be maintained with simple design 

principles to mitigate network overheads? Chapter 6 addresses this question with the 

novel application of the SOFM algorithm in safety critical WSNs. 
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5. Is there a scheduling algorithm that can address the limitations of the previously 

analysed scheduling algorithms? Chapter 7 addresses this question with the proposed 

novel application of the LSTM algorithm. 

1.4 Aims and Objectives 
The main aim is to address the MOO problem in WSNs [Liu et al., 2006], [Wang et al., 2010], 

[Thomas et al., 2020] scheduling algorithm. Wherein, by optimising the network 

requirements will improve the dependability (service availability and reliability) of the 

WSNs. Hence, the main task is to improve the key functional network requirements of a WSN 

namely, lifetime, coverage, and connectivity via the use of Machine learning and Bio-inspired 

methods in the Node scheduling approach.  

In order to meet the aim as mentioned above the following objectives will be implemented as 
follows: 
 

• The ANN algorithm analyses the complex behaviour of the WSNs during their run time. 

Thereby, capture limitations that when addressed shall improve the performance of the 

WSNs. 

• The HMM Model is utilised to optimises the nodes Sending and Receiving states 

whereby, an energy efficient HMM based scheduling algorithm is proposed to improve 

upon the three network requirements (lifetime, coverage, and connectivity) to achieve 

optimal QoS. 

• The Bio-inspired Bat based scheduling algorithm is built to optimize the node 

scheduling of WSNs along the three requirements of coverage, connectivity, and 

lifetime. This notably permits the exploration of a larger search space to find the best 

scheduling solution. Moreover, the Bat algorithm is coupled with the filtering power of 

the pareto algorithm where it is used to provide more accurate values of energy of 

sensor nodes to provide better QoS of the network. 

• The (SOFM and LSTM) Machine learning based scheduling algorithms were used to 

optimise and achieve optimal QoS. Several proposed scheduling solutions in the 

literature kept out critical design considerations such as network coverage and 

connectivity.  

Therefore, this thesis is to look into these challenges and to find an optimal solution to reconcile 

these three network requirements which are essential to resource constrained WSNs. 
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1.5 Thesis Contributions 
In order to find the solution to the MOO problem, the following contributions of the 

optimal node schedule are listed below:  

 

Contribution: A Perceptron-based Artificial Neural Network (ANN) Analyser. The 

ANN analyse, learn, train, and test the performance of scheduling algorithms and returns 

the number of times for each node working schedule (Overworked/Overused) to better the 

overall dependability in WSN. The Analysis of the RCS by [Liu et al., 2006] using the ANN 

analyser confirms the initial Hypothesis, that is nodes which are closer to the Base Station 

are more likely to be used than others. The ANN analysis shows the limitation of the RCS 

algorithm in which the network will be partitioned. The contribution of the ANN analyser 

are two folds:  

 
• A model for a WSN, comparable to the one defined in by [Liu et al., 2006]. 

• A Dataset Model for a WSN scheduling algorithm. 

 

Contribution: A New HMM-based scheduling algorithm. The HMM algorithm show that it 

improves the lifetime of the network by detecting nodes that will die early and rebalancing 

their workload. The HMM technique can also be used for diagnosis and provide maintenance 

warnings to WSN system administrators. Ultimately, the HMM technique can be used to 

improve algorithms other than the RCS.  

 

The hypothesis was validated by applying the Hidden Markov Model, the HMM solution 

achieve two main tasks: 

• Analyse the duty cycle of every node (Sleep-Awake /Send-Receive) state 

locally. 

• Minimise the sending state and maximise the receiving state to balance the 

workload of the node duty cycle locally. 

Since, the RCS scheduling algorithm does not explore the state space of the problem. HMM 

scheduling algorithm explore the information made available by the nodes, but it is stuck in a 

local minima and local maxima.  

Contribution: A New Bio-inspired Bat based Scheduling Algorithm. A number of problems 

related to explore the search space globally have been solved.  
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• The Bat algorithm defines a fitness and objective function over a search space which 

returns all possible sleep and wake up schedules for each node in the WSN. This yields 

a (scheduling) solution space that is then organized by Pareto sorting whose output 

coordinates are the distance of each node to the Base station and the residual energy of 

the node shows significant improvements on all three (3) dimensions, and Pareto 

sorting guarantees us that the proposed Bat scheduling is the best, for all possible 

fitness and objective functions and for a given search space. The Bat algorithm has 

limited scalability so when parameters is less it performs reasonably well, but it falters 

when number of parameters is large. The Bat Algorithm relies on randomness in its 

search process, which means that its performance can vary from one run to another. 

The Bat algorithm converges slowly due to its computational complexity. While the 

computation is heavy, it takes shorter path to achieve the result avoiding the global 

search space.  

 

Contribution: A New Machine learning-based scheduling algorithms. A number of 

problems related to explore different representations of the solution space have been solved.  

A New Self-Organising Feature Map (SOFM) spatial-based scheduling algorithm is 

proposed to a achieve an optimal scheduling solution. The proposed SOFM algorithm 

is based on the Self-Organising Map (SOM) model that uses variables such as, ‘The 

position of the cluster head to the Sink, the distances between the parent to child nodes, 

the Energy levels, Tx (transmission distance) and Rx (receiving distance)’ which do not 

change over time. The SOFM algorithm visualise the desired topology based on the 

input variables above where the optimal lifetime coverage and connectivity is attained. 

In another words, the SOFM algorithm summarizing the data in a lower-dimensional 

space to facilitate easier analysis and understanding of the network behaviour hence 

obtain the new topology. The limitation of SOFM approach is that once the predefined 

features are considered, the scheduling algorithm will be limited to these features. This 

limitation can be addressed using the LSTM model, where selection and/or 

adding/deleting of features are possible. 
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• A New Long Short-Term Memory (LSTM) time-based scheduling algorithm. The 

LSTM algorithm achieves the energy-efficient scheduling solution, by replicating a 

pattern of high value so that the nodes in the networks adapt the same performance in 

all the rounds. The LSTM algorithm confirms our hypothesis by finding an efficient 

sequence of coverage with improved coverage without compromising network 

connectivity and lifetime. The LSTM time-based node scheduling algorithm limitations 

are: (1) there is an issue with the long chain of sequences in managing the best possible 

cycle. (2) the LSTM is computationally intensive due to long chains, (3) data requires 

are comparatively large to find the better to best (more data the better the results) and, 

(4) LSTM has limited memory processing.  

 

1.6 Thesis Scope 
Many solutions attempt to address the MOO problem; however, they are not all optimal in their 

search space in the sense that given a node scheduling algorithm such as [Liu et al., 2006], it 

often remains possible to find a better schedule showing that the proposed solution is not the 

best, even when it is better compared to a distinct algorithm. Therefore, this thesis looks at 

different models to find the best solution within their search space, i.e., within these models, 

the proposed solution is considered to be the best one. The literature provides many 

optimisation approaches for WSNs optimisation such as Bio-Inspired 

Computation, Evolutionary, Genetic, Machine Learning, and Node Scheduling Algorithms. 

This thesis focuses on Node Scheduling, where the use of HMM, Bat Algorithms, Self- SOFM, 

and LSTM as models to build node scheduling algorithms and provide optimal schedules 

within their respective search space have been explored. Also, the ANN analyser is used as a 

tool to for a given algorithm to analyse and tell if the algorithm's proposed solution is optimal. 

This analysis technique is applied against the [Liu et al., 2006] algorithm and found that 1-Hop 

area nodes would all die first. It is difficult, however, to generalise the ANN-based analysis 

because different algorithms have a different state space, making it necessary to build a new 

ANN-analyser each time. It also did not seem feasible within this timeline to try and build a 

general-purpose analyser say for all Bat Algorithms, or for all HMMs. Whilst it is more difficult 

to provide guarantees for very complex algorithms, building a general-purpose analysis tool 

capable of certifying that a given algorithm, independently of its underlying model and state 
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space is optimal, is out of the scope of this thesis. Thus, to find the best solution within different 

search spaces, the simulation results of the proposed algorithms have been compared. Also, the 

complexity of the model and possible shortfalls as elements to consider before choosing one 

model or another have been evaluated. Since some models add only complexity with little 

added performance value, e.g., SOFM is more complex than LSTM but offers similar 

performance results which could be future work consideration. Obviously, a more systematic 

study needs to be realised to reach a more definitive conclusion. Other methods could be 

envisaged, notably testing, whereby a single specification could be used to test different 

algorithms, however, differences in search space would mean building different test cases or 

being able to translate some initial test case into another. Alternatively, the models themselves 

could be compared and see if they could be mapped /translated say a Bat algorithm into a 

SOFM model.  

 

1.7 Thesis Outline 
This section highlights the structure of this thesis. The chapter titles are listed below with a 

brief introduction for each one. 

 

Chapter 2: Literature Review 

In this chapter, the latest published literature of state-of-the-art node scheduling of WSNs was 

reviewed that including the ANN, HMM, and the Bio-inspired BAT works. Such areas of 

research will be defined in Chapter 2 to introduce the topics before reviewing the related works. 

The optimization in this work depends on a new definition of WSN dependability which is 

introduced in Chapter 3. 

The Chapter has also included relevant and similar work published in SOFM of which the 

author of this thesis has developed a new scheduling WSN algorithm which has addressed the 

multi-objective WSN scheduling optimisation problem in a novel way. 

 

Chapter 3: A Perceptron-Based Neural-Network Analyser to Enhance the Scheduling 

Performance  

The ANN algorithm is used to inspect and analyse the RCS algorithm’s behaviour and 

performance with respect to the discrepancy in the nodes being scheduled ON or OFF. This is 

critical in order to increase coverage, connection, longevity, and hence WSN dependability. 
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The additional benefit of the presented ANN-based analyser is its extended scalability of 

implementing the proposed analyser in all WSN scheduling algorithms, not limited to RCS per 

se. 

 

Chapter 4:  Using Hidden Markov Chain for Improving the Dependability of Safety-Critical 
WSNs 
 

The HMM HMM-based scheduling algorithm is proposed to optimise duty cycles assigned to 

nodes with respect to their distance from the base station as well as the overall number of nodes 

in the network. Using HMM, the base station is able to predict the On and Off states for each 

node, hence an optimal number of duty cycles can be deployed to each node to ensure coverage, 

connectivity as well as increased network life longevity. 

  

Chapter 5: A Novel Implementation of a Bio-inspired Bat WSN Scheduling Algorithm 
 

The Bat algorithm is proposed as an improved solution to the HMM in which the former does 

not require randomized seed sequencing in its search space optimization. The BAT algorithm 

uses Bio-inspired techniques for its search space without the need for computational overheads 

where the new results is obtained at a global level.  

 

Chapter 6: A New WSN Scheduling Improvement via the Self-Organizing Feature Map 
(SOFM) 
 

In this chapter, a SOFM is used to enhance the scheduling results obtained from previous 

chapters which allows a complex ad-hoc network to be represented in a hierarchical manner, 

allowing SOM optimisations to work with lower computational complexity to meet the WSN 

scheduling objectives. The advantages associated with SOM implementation are reduced 

complexity and a simple depiction of the scheduling results. The novelty of the work presented 

in this chapter stems from utilising SOFM in WSN scheduling to improve the analysis of the 

results. 

 

Chapter 7: A New Scheduling Algorithm for Improved Performance of Multi-Objective 
Safety-Critical WSN Using LSTM 
 
Given the critical analyses of the previously implemented algorithms namely HMM, Bat and 

SOFM notable observations have yielded the detection of similar patterns in our coverage data. 
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Therefore, an LSTM-based algorithm was introduced to analyse and provide a suitable, energy-

efficient scheduling solution that addresses the MOO problem. 

 

Chapter 8: Conclusions and Future Work 

This chapter presents an evaluation, conclusion, and a summary of the proposed 

work.  Furthermore, a future work is presented in this thesis. 
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Chapter 2 Literature Review   

This chapter will include the literature review for the upcoming technical contributions 

discussed in the individual chapters. A great deal of attention will be given to node scheduling 

approaches [Thomas et al., 2020] as it is the main area of focus. The reviewed works, to the 

author’s best knowledge, confirm that the present problems within WSNs go beyond energy 

efficiency, other areas of focus should also include coverage and connectivity of WSNs. 

2.1 Node Scheduling Approaches  
Most node scheduling algorithms in the literature do not address the three requirements of the 

WSN altogether, i.e., coverage, connectivity, and network lifetime. In particular, most 

algorithms address each requirement in isolation or make unrealistic assumptions like ideal 

conditions of WSN, no coverage considered, etc. [Xu et al., 2001] proposed a scheduling 

algorithm called Geographic Adaptive Fidelity (GAF). GAF saves energy by assuming sensor 

nodes maintain a good level of connectivity. This presumption poses a limitation since the 

communication links between nodes can be susceptible to various factors impacting the 

scheduling algorithm's performance. Consequently, their suggested solution becomes 

impractical for Wireless Sensor Networks (WSNs) with safety-critical applications such as 

forest fire detection systems. Additionally, GAF overlooks network coverage, primarily due to 

nodes being powered down (scheduled to sleep) by deactivating their communication units, 

resulting in a blind spot. 

The scheduling algorithm proposed by [Tian and Georganas, 2002] examines the relationship 

between energy conservation and the time it takes for a node to determine its eligibility for 

being powered down (asleep). The faster a node makes this decision, the greater the energy 

savings. However, this approach is plagued by control message overheads, as it necessitates 

the use of GPS for obtaining geo-location information of sensor nodes. While convenient, this 

method is costly. As networks age over time, neither network connectivity nor coverage is 

maintained. In the event of a node failure (due to depleted energy), the dormant nodes 

erroneously assume the failed nodes are still active. Consequently, the network becomes 

partitioned, isolating some nodes. Tian et al.'s approach concentrates solely on network 

connectivity and energy efficiency, neglecting the aspect of coverage. 
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[Ye et al., 2003] developed a robust energy-conserving algorithm for long-lived sensor 

networks called Probing Environment and Adaptive Sleeping (PEAS). The algorithm tends to 

maintain network coverage by activating nodes that do not receive a reply to the probe message. 

This approach also suffers control message overheads due to broadcasting the probe messages 

periodically to maintain a set of active nodes. This approach is ineffective, when a node is 

designated as active, it sustains activity until its energy is completely depleted.  Consequently, 

this results in a coverage gap within the network. This method does not guarantee the 

preservation of the initial sensing coverage, potentially causing significant events to go 

unnoticed and unreported to the base station. 

 

[Viera et al., 2003] developed a scheduling algorithm based on the Voronoi diagram. The 

algorithm extends the network lifetime by exploiting node redundancy. Once a node is 

determined active and responsible for monitoring an area of interest it stays active until its 

energy is depleted. The paper fails to specify the timeframe for reactivating the powered-down 

nodes, and it does not discuss the effectiveness of coverage maintenance. Even if nodes within 

a limited area are designated to be turned off, the challenge of addressing network coverage is 

not adequately addressed. 

 

An Adaptive Self-Configuring Sensor Networks Topologies (ASCENT) algorithm is presented 

by [Cerpa and Estrin, 2004].  ASCENT has several drawbacks. First, it demands each node to 

be aware of the network state information resulting in control message overheads. Second, the 

authors did not consider network coverage in the design of this solution.  Finally, having two 

states (passive and test) to alternate between active and sleep states, requires additional waiting 

time and data collection in each of these states; consequently; this affects ASCENT's ability to 

adapt to network dynamics rapidly. In addition, once nodes become active, they stay active till 

they deplete energy, this results in portioning the WSNs. 

  

The authors in [He et al., 2004] proposed a distributed scheduling algorithm. The proposed 

solution suffers from a control message overhead. Another drawback is in its reactive approach 

where sensor nodes may drift in time. As a result, sentry (master) nodes may not know for 

certain which nodes are asleep and which are awake. Hence, the non-sentry nodes will keep 

broadcasting multiple wake-up beacon messages to all non-sentries in the network.  
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While the authors in [Cardei et al., 2005] proposed a scheduling algorithm which organises the 

network’s sensor nodes network into sets. Each set covers the target area at different time 

intervals. Finding the maximum number of sets can provide good network coverage and extend 

the network lifetime. This approach has limitations; First, it requires the geo-location of each 

sensor node which is very expensive. Many applications do not require the use of the GPS. In 

addition, the solution focuses on providing good sensing coverage while omitting network 

connectivity. Thus, important events may be detected but not reported back to the base station 

for processing, which is meaningless. 

 

A Lightweight Deployment-Aware Scheduling (LDAS) presented by [Wu et al., 2005] 

assumes a sensor node maintains three states: on-duty, ready-to-off, and off-duty to improve 

the network lifetime as part of its scheduling algorithm. LDAS has managed to extend the 

network lifetime, but it didn't consider network coverage. 

 

Another interesting sleep scheduling algorithm  proposed by [Ha, 2006] is based on spanning 

tree topology which is used to manage energy consumption and extend the network lifetime of 

the WSN. The algorithm is susceptible to parent node failures.  For example, the failure of a 

parent node would cut off the communication with its sub-tree nodes (children) affecting the 

end-to-end communication reliability. Such failure would partition the WSN even if it remains 

connected. The use of tree-based routing achieves energy efficiency but at the cost of delay 

because data will always be reported via a single route. This prevents promptness and timing 

performance of reporting data to the sink node at the appropriate desired time.  

 

Another study proposed by [Ambrose, 2008] in which a distributed scheduling algorithm for 

composite events detection in WSNs to solve multi-objective problems concerning coverage 

and energy consumption was introduced. A composite event detection is an event that consists 

of two or more simple events. This work tends to save energy by (1) scheduling nodes to sleep, 

and (2) minimising the transmission range between each node in the network while maintaining 

network connectivity. The author assumed that node locations are known either by GPS or 

other computation localisation methods. This assumption is unrealistic and cost-efficient in 

large-scale WSNs. The deployment environment in the paper was a simple grid area, but large-

scale WSNs usually consist of complex and dynamic obstacles. The distributed scheduling 

algorithm implies a complex computation process, especially when maintaining network 
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connectivity, which causes an energy overhead. In a busy WSN, such a computation is not 

acceptable, hence the need for a simple computation algorithm is highly sought after in resource 

constrained WSNs. 

 

Another equally important study by [Chipara, 2010] proposed Energy Efficient Sleep 

Scheduling algorithm based on the Application Semantics (ESSAT) model which introduces a 

sleep schedule that considers both energy consumption and the application deadline. ESSAT 

consists of two main components: a traffic shaper and a sleep schedule. ESSAT addressed a 

challenging optimisation problem, but it depends on the prediction of the time properties of the 

workload information that is obtained from earlier message exchanges amongst sensor nodes. 

ESSAT is in turn vulnerable and dependent on time. However, an advantage is that the sleep 

schedule requires no time synchronisation algorithm and hence a node can sleep and wake up 

according to information made available by message communication.  

 

The work in [Saravanakumar et al., 2010] introduced the concept of Sleep a wake node 

schedule in the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to address the 

problem of energy efficiency for both homogenous and Heterogenous types of WSNs. In 

particular, using the benefits of the LEACH Cycle in which node scheduling and Re-clustering 

head rotation mechanism by rotating cluster head positions to distribute the energy nodes 

among all nodes in the WSNs. Extending the LEACH properties for a Homogonous type of 

network.  The run-time scheduling is a problem for Large-scale networks due to the low 

channel capacity which would lead to the condition.  There will be loads of control packets 

which will food the network which will affect network quality.  Unlike our work, the sleep 

scheduling is in the design time where the generation of control packet is very low hence 

providing a good QoS. 

 

An algorithm called Lightweight Integrated Protocol Suite (LIPS) was proposed by [Tate and 

Bate, 2011]. The algorithm assumes that sensor nodes within a cell can hear each other and 

hence synchronize. In WSNs, the wireless links are subject to many sources of obstacles which 

makes it difficult to maintain connectivity. In a forest fire system scenario, as nodes are 

deployed in a harsh environment and surrounded by dynamic obstacles, this would have an 

impact on energy consumption and the time a WSN takes to converge to the ready stable state. 
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Moreover, [Yang, 2011] addressed a sleep scheduling strategy at the application layer where a 

set of sensor nodes is selected and activated according to a cost function to extend the network 

lifetime of the WSN. Although the proposed selection strategy based on the Sensor Usage 

Index (SUI) seems to have achieved a near-optimal lifetime, the periodic broadcast of a beacon 

control message by the base station every half an hour to manage the WSN would lead to 

communication overhead which in turn leads to energy inefficiency. 

 

An interesting approach proposed by [Chen et al., 2014] where a sleep-awake cluster-based 

routing algorithm is introduced to address the MOO problem. The basic idea is to group nodes 

in the same neighbourhood into clusters where only one node is awake at a time within each 

cluster to collect and send data to the base station. [Chen et al., 2014] address the MOO problem 

by introducing a clutter head selection mechanism that alternates between sleep and awake 

mode based on the node's residual energy level. Thereby, extending the network lifetime and 

maintaining connectivity and coverage. [Chen et al., 2014] proposed a cluster-based routing 

Scheduling to be applied over the WSN which already has a sleep-awake schedule; the sleep-

awake schedule has to be augmented with the routing protocol implemented. However, this 

approach does not discuss synchronisation between the routing and sleep-awake schedule 

mechanisms, which in turn will generate more control packets and will introduce traffic 

congestion in the network as a result there will be energy loss. 

 

Similarly [Mostafaei et al., 2017] proposed a Sleep Scheduling Algorithm called Partial 

Coverage with Learning Automata (PCLA) for managing the Sleep Awake schedule in WSNs. 

The main goal of the PCLA algorithm is to optimise energy consumption to extend the lifetime 

of the WSN.  [Mostafaei et al., 2017] consider the partial coverage problem in WSNs, where 

only a portion of the target area needs continuous monitoring. PCLA utilizes Learning 

Automata (LA) to schedule sensors into sleep states, aiming to minimize the number of active 

sensors while preserving network connectivity and coverage. The PCLA algorithm operates in 

two phases: (1) learning and (2) partial coverage. Initially, a backbone set of nodes is selected 

to ensure connectivity, and then additional nodes are activated if necessary to meet coverage 

requirements. The authors provide a detailed theoretical framework for PCLA, including 

formal definitions, analytical models, and complexity analysis. [Mostafaei et al., 2017] 

demonstrate that PCLA has a lower time complexity compared to state-of-the-art scheduling 

algorithms and that it performs better in terms of the ON nodes ratio and network lifetime. The 
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effectiveness of PCLA is validated through simulations, showing its superiority over existing 

methods in various node distribution schemes, such as, (100×100, 200×200) [Mostafaei et al., 

2017] includes a comprehensive performance evaluation, comparing PCLA to other algorithms 

under different conditions, such as network resources and coverage requirements. The results 

indicate that PCLA is scalable and efficient, particularly in dense networks with higher 

coverage requirements. The study by [Mostafaei et al., 2017] presents PCLA as an energy-

efficient and scalable solution for managing partial coverage in WSNs, capable of prolonging 

network lifetime and optimizing resource usage. The authors suggest that PCLA's performance 

enhancements are significant, especially in scenarios with stricter coverage constraints and 

larger network sizes. In other words, the sensing range is always fixed. 

 

Additionally, [Srivastava and Hasan, 2018] proposed a selective sleep-wake node scheduling 

algorithm based on collected sensory data that the base station shares with the cloud. The main 

goal of introducing cloud computing is to make an informed scheduling decision and overcome 

the limitation of a resource constrained WSN, mainly energy.  The main idea is to synchronise 

the variations of sleep awake schedule of inter sensors and extend the overall network lifetime 

in WSN. The proposed algorithm uses a flag-based scheme where the cloud periodically checks 

the sensor data from the sensor nodes and compares it with a set of rules to put sensor nodes to 

sleep.  Unlike the [Srivastava and Hasan, 2018] algorithm where the main consideration is 

energy only, this thesis addresses the intra-sensor nodes where network lifetimes, connectivity, 

and coverage are considered. In addition, [Srivastava and Hasan, 2018] used a simple WSN 

where nodes are always ON to compare their approach. 

 

Furthermore, [Shagari et al., 2020] presented the Traffic and Energy Aware Sleep-Awake 

Cluster-Based Routing algorithm (TEAR), in which nodes sleep and awake based on their 

traffic rate and energy. The idea of TEAR is that a node with a high terrific rate of low energy 

is not selected as a cluster head, while nodes with a low traffic rate and high energy are selected 

as a cluster head. TEAR does improve the network lifetime, but it suffers from message 

overhead as its mechanism depends on sending messages continuously for the election of the 

cluster head. In addition, TEAR suffers from redundant message exchange that dissipates 

energy unnecessarily which in turn impacts data efficiency. To solve this problem, the authors 

[Shagari et al., 2020]  proposed a hybrid approach, Energy and Traffic Aware Sleep-Awake 

(ETASA) introduced the sleep-awake mechanism by pairing nodes that are within a cluster 
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where nodes sleep and awake to communicate with the cluster head. In ETASA, a revised 

version of Sleep-awake Energy Efficient Distributed (SEED) is introduced in which one slot is 

provided for each cluster. Consequently, improves the load balancing where energy is 

consumed efficiently.  In-network processing is an approach to save energy; however, it is at 

the expense of message communication which causes overhead and delays.  In this thesis, the 

goal is to explore the state space to find an optimal solution. 

 

The author in [Vashisht, 2023] proposed a sleep-a-wake schedule algorithm in which the timing 

of the sleep and waking is determined. The proposed solution consists of two components 

where the first component is asleep-awake algorithm to put some nodes to sleep and the second 

component is a wake-up algorithm to wake up the sleeping nodes. The author controls the 

sleep-wake scheduling using parameters such as the node’s energy level, the acceptable 

transmission rate, the current network load, and the network topology. [Vashisht, 2023] 

proposed a predefined scheduling algorithm to systematically study the variation of residual 

energy that is accumulated over different scenarios over the network parameters. 

 

Moreover, [Vashisht, 2023]compared his work against the four scheduling algorithms and 

found significant improvement in the efficiency of various network services. The author in  

[Vashisht, 2023] did not use hybrid scheduling techniques that utilise clustered nodes in the 

network. Instead, they used one technique for the whole network. This work focuses on only 

the sleep-awake module of the sensor nodes network, without considering the performances of 

other modules We have holistically covered the net efficiency of the network considering all 

modules viz network module, sleep awake, connectivity coverage, energy considerations 

residual, and spent energy. 

 

The authors of [Rudati et al., 2023] proposed to extend the lifetime of the WSN by 

combining the power of the transmission and the periodic transmission time. The basic 

premise is that by varying the transmission Power Level between the sensor nodes and the 

base station, the optimum transmission Power Level a sensor node needs is obtained. 

Combining the optimum transmission (Tx) Power Level and periodic transmission time, the 

authors found that the power consumption decreased by about 42% and the power supply’s 

lifetime increased by about 71% in the 280m distance between the sensor node and base 

station, with a 108 Wh power supply. As a result, the optimum periodic transmission time 
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is 8 seconds, and the power supply lifetime is 40 times longer. The goal of [Rudati et al., 

2023] work focuses only on increasing the network lifetime of the network specifically by 

adjusting the signal strength needed for sending and receiving. This research considers other 

important objectives: connectivity and coverage where the goal is to improve the overall 

dependability of the WSN which is beneficial in many application scenarios such as, 

advanced fire detection system, intrusion detection system. 

 

Another comparable study in [Pandiyaraju et al., 2023] proposed a multi-objective clustering 

approach combined with deep learning to enhance energy efficiency in WSNs for agricultural 

applications. [Pandiyaraju et al., 2023] introduced a hybrid optimization technique called 

Election-based Aquila Optimizer (EAO) to select the best Cluster Head (CH) integrated with a 

neural network to improve clustering precision and training accuracy.  utilize a multi-objective 

function neural network taking into consideration parameters such as energy consumption 

level, the distance of the sensor nodes to the base station, the inter and intra cluster distance 

among sensor nodes, and the communication to form the clustering routing WSN.  In 

[Pandiyaraju et al., 2023] the proposed precision agriculture base WSN performed well where 

it shows superior performance over other approaches, with classification accuracy of 99.23%, 

Throughput of 76.92%, Packet Delivery Ratio (PDR) of 99%, network lifetime of 98.24%, and 

maximum energy consumption of 50%. In [Pandiyaraju et al., 2023] connectivity and coverage 

are ensured when all CH is optimally selected. The work can be improved by introducing a 

lightweight routing mechanism that can optimise the routing path further. In addition, a 

lightweight neural network reduces the learning rate so that a decision can be made in a short 

time.  

 

In [Bajaber, 2023] a node scheduling and partial coverage algorithm is presented for WSNs 

(NSPC) to improve energy efficiency and network lifetime in wireless sensor networks. The 

NSPC uses a scheduling phase and a sensing phase to coordinate the activities of the nodes, 

where sensor nodes are divided into three states: active, active redundancy (for example acting 

as a sleep state in terms of consuming energy), and standby. The NSPC algorithm adopts 

eligibility rules to determine the active and standby nodes, where the active redundancy node 

is put to sleep. The active nodes are responsible for sensing and data transmission, while the 

active-redundancy nodes alternate between active and standby modes to conserve energy. The 

standby nodes are those whose coverage areas are already covered by other nodes, so they can 
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be put into sleep mode. The simulation results show that the NSPC algorithm can significantly 

improve the network's stability period and overall lifetime compared to the LEACH protocol, 

especially as the number of deployed nodes increases. The limitations of the NSPC algorithm 

are: (1) The states can be further divided into more meaningful states such as (active-standby, 

transmit-active, receive-active and sleep) which means that this algorithm has room for 

improvement in state optimisation, (2) This algorithm does not employ Time Division Multiple 

Access (TDMA) so the channels of communication are limited or fixed from the beginning, 

and (3) The proper optimal data transmission is possible if the state is properly optimised 

according to the networking characteristics such as clustering etc. 

 

Alternatively [Harizan et al., 2024] presented a multi-objective optimization problem for the 

placement of Relay Nodes (RNs), Relay Nodes are powered access points acting as sub-base 

stations, in a WSN to ensure coverage of all deployed sensor nodes, connectivity among the 

RNs and the base station in WSNs. The main idea is to minimize the Intra-Cluster Distance 

(ICD), where energy consumption is optimised to extend the network lifetime. To achieve this 

goal [Harizan et al., 2024] introduced four evolutionary algorithms, namely, PSO, Differential 

Evolution (DE), Multi-Objective Differential Evolution (MODE), and Multi-Objective Particle 

Swarm Optimization (MOPSO) - to solve the coverage and connective problem in WSNs. The 

solution vectors are efficiently encoded, and appropriate objective functions are derived for 

each algorithm. In [Harizan et al., 2024], the justification for using such Relay Nodes will 

provide better coverage connectivity and lifetime. However, using the above four evolutionary 

algorithms collaboratively in such resource constraints in WSN will introduce computational 

complexity. 

 

Furthermore, in [Hameed and Idrees, 2024] an Energy-Aware Scheduling Protocol (ESP) based 

on a hybrid metaheuristic technique is proposed to optimise the lifetime of WSNs. The ESP 

protocol is composed of two main phases. (1) A distributed clustering phase, where sensor 

nodes are grouped into clusters is to be monitored. A periodic cluster head election approach 

was utilized according to the residual energy of the nodes, the number of neighbours, and the 

distance for each node in the cluster. (2) Sensor node scheduling phase, In this phase, the 

scheduling optimization model is constructed with three objectives, (a) reducing the number of 

uncovered zones in the area to be monitored, (b) minimizing the number of active sensors, and 

(c) selecting the active sensor nodes with the maximum residual energy. [Hameed and Idrees, 
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2024] solved the MOO using a hybrid metaheuristic algorithm that combines the Cuckoo and 

Genetic algorithms. The problem of these types of considerations does not hold, as there is no 

logic why cuckoo should be coupled with a genetic algorithm. The coverage is attained sector-

wise i.e., targeted coverage which has its limitations as some nodes will be in a sleep mode and 

there will be coverage holes created apparently. 

 

In alternative work,  [Jaiswal and Anand, 2024] address connectivity, coverage and lifetime in 

homogenous network scenarios, the author did not consider heterogeneity. Until for a specific 

purpose the WSN coverage should not be target limited based. As better coverage provides 

better utilisation of the network.  In [Harizan et al., 2024], the justification of using such Relay 

Nodes will provide better coverage connectivity and lifetime. However, using the above four 

evolutionary algorithms collaboratively in such resource constraints in WSN will introduce 

computational complexity.  The authors in [Shagari et al., 2020]proposed a hybrid approach, 

heterogenous Energy and Traffic Aware Sleep-Awake (ETASA) introduced the sleep-awake 

mechanism by pairing nodes that are within a cluster where nodes sleep and awake to 

communicate with the cluster head. In ETASA, a revised version of SEED is introduced in 

which one slot is provided for each cluster. Consequently, improves the load balancing where 

energy is consumed efficiently.  In-network processing is an approach to save energy; however, 

it is at the expense of message communication which causes overhead and network delays. In 

[Pandiyaraju et al., 2023]connectivity and coverage are ensured when all CH is optimally 

selected. The work can be improved by introducing a lightweight routing mechanism which 

can optimise the routing path further. In addition, a lightweight neural network reduces the 

learning rate so that a decision can be made in a short time.  

 

The author would like to draw the reader’s attention that the deployed machine learning 

methods in the WSN in this thesis are not invented from scratch, they were used in past WSN 

literature, however in a different context addressing different problems such as routing, load 

balancing and security problems. These methods were deployed specifically in the scheduling 

approach for example at the application layer of the OSI stack of the WSNs. Below is the 

related work in each component of this thesis that has been deployed and differentiated from 

the work presented in this thesis as per component. 
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2.2 A Perceptron Multi-Layer Neural Network-based 
Approaches 
  There is a wide range of related works on the application of the ANN model for solving a 

different problem in WSNs, the interested reader may visit the surveys in [Aliyu et al., 2019] 

and [Vidhya, 2023]. For example, the authors in [Alrajeh and Lloret, 2013] utilised ANN for 

intrusion detection systems to address security aspects such as integrity, confidentiality and 

reliability of  WSNs. Other work proposed by [Zroug et al., 2023] makes use of ANN to 

evaluate the performance of WSNs. Other related works which considered the use of ANN can 

be found in [Sharma et al., 2015], [Wan et al., 2018] and [Masti et al., 2019]. 

 

The authors in [Sharma et al., 2015] proposed to enhance the network lifetime by the use of 

ANN in the Cluster Head selection mechanism in WSNs. Sharma et al, 2015 consider residual 

energy for selecting the Cluster Head nodes. The radial basis function network model is used 

for the cluster head selection mechanism. The new enhanced LEACH-C protocol is compared 

to the original LEACH and LEACH-C protocol where the result is to be found that the new 

enhanced version improved in terms of energy utilisation. Unlike the approach proposed by 

[Sharma et al., 2015] where the work is targeting the routing protocol at the network layer, the 

ANN analyser is used in this thesis to analyse the complex behaviour of WSNs, such as the 

continues and unpredictable dynamic changes of the network topology due to energy constrains 

of the sensor nodes.   

 

[Wan et al., 2018] proposed an Energy-Efficient Sleep Scheduling algorithm (ESSM) using the 

fuzzy logic principle with similarity measures for WSNs. The basic idea of ESSM is to turn on 

a set of sensor nodes in the target area where it is highly dense. Hence, exploiting the nodes in 

dense areas and reserving a level of energy. The approach has limitations in that it is sensitive 

to parameters initializing which will lead to overlapping of the selection of the set of nodes that 

have similarities. In this solution, the fuzzy mechanism depends on nodes that are densely 

deployed in the network. Hence, it becomes difficult to evaluate the performance of the 

algorithm in less dense areas or where nodes are spars, especially in large WSNs. 

 

The authors [Masti et al., 2019] attempted to address the problem of reducing computation and 

memory capacity in virtual sensor scheduling (Software that is embedded in an IoT device that 

acts like a sensor). The author [Masti et al., 2019] utilises the use of ANN to discover patterns 
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that are of use for WSNs activities such as node scheduling, energy consumption, packet 

communications etc, In particular, through the use of linear observers where the processed 

dataset and the inputs and outputs measurements where time-variant model are fed to delineate 

and obtain the abstracted data to fit the virtual sensor. Since there is an architecture difference, 

[Masti et al., 2019] try to delineate the data to fit the architecture of virtual sensors. Hence, 

enables to mapping of the data into the virtual sensors. The ANN-based scheduling algorithm 

proposed in this thesis is built for a real sensor node while keeping in mind the concept of 

longer lifetime, coverage and connectivity simultaneously whereas the solution of [Masti et al., 

2019] virtual sensor nodes design irrespective of energy, coverage and connectivity 

considerations hence, they are called Virtual sensors.  

2.3 Hidden Markov Decision Process on Approaches 
There are several papers in the literature that used the HMM model to address multiple 

problems that are related to energy consumption in the WSNs [Hu et al., 2007]. Therefore, 

renderer the use of the HMM model in WSNs is not new. What follows sheds light on some of 

the related work that utilizes the HMM model in WSNs. 

 

The use of the HMM method in WSNs was presented by [Krishnamurthy, 2002], where a 

scheduling algorithm that utilized the HMM model to observe states for a resource-constrained 

WSN was proposed. The work addresses the problem of data reliability of obtaining certain 

physical data e.g., measurements of certain processes, known as signal processing applications. 

The basic principle is to utilize the HMM finite states to locate noisy sensor nodes in the WSN 

and then select these nodes to send the required data. The solution utilized a dynamic stochastic 

programming which is achieved in two folds: (1) find the optimum channel allocation among 

various components of a measurement vector. For example, transmitting within a time-shared 

communication channel but with limited noise sensor bandwidth. (2) given resource 

constraints, best to identify optimal measurement periods of the sensor while exploring the 

trade-offs between rate and  measurement ranges. Identifying the optimal sensor measurement 

schedule is a scheduling problem manifested by dynamic programming. However, Bellman’s 

equation of dynamic programming does not necessarily lead to practical solutions 

[Krishnamurthy, 2002]. The reason for this is due to the cost of dynamic programming per 

recursion over innumerate infinite set. Their paper includes optimal dynamic programming-

based HMM sensor scheduling algorithms which take into consideration the WSNs constraints 
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- including sensor management, estimation, and utilisation constraints. Steady-state HMM 

scheduling, however, is presented for larger-sized WSNs where the computational complexity 

of dynamic programming is restrictive. 

[Goudarzi et al., 2010] proposed the use of HMM in combination with Particle Swarm 

Optimisation (PSO) to predict the energy level in WSN. The algorithm used PSO to select the 

cluster head Nodes. The proposed methods reduce the cost of clustering and improve the 

performance of the WSN. The optimization problem defined for the best possible energy values 

can be obtained by solving it with PSO to find the best position that evaluates from the fitness 

function. To initialize the PSO all the defined variables are assigned with random values in the 

search space. In each run, each particle generates the best individual position (associated with 

energy) and global best position to obtain the best possible solution in search space. The 

communication overhead is reduced due to the use of PSO. In comparison, this thesis’s work 

in reducing energy utilized a very simple HMM algorithm where the energy was optimised as 

well as the position of nodes for effective scheduling and energy management. Meanwhile, the 

work by [Goudarzi et al., 2010], involves complexity in producing the intended solution. In 

such work, there is always a trade-off between the cost of finding the energy versus the 

accuracy. If the cost is higher the accuracy is better and a lower cost leads to lower accuracy. 

This solution introduces an overhead in the WSN because of the complexity involved in using 

the PSO algorithm at the expense of opening a good level of accurate energy solution.  

[Qihua et al., 2015] proposed a scheduling algorithm to extend the network lifetime. HMM is 

utilized to model sensor node states in the WSN where a node can be in two states 0 asleep and 

1 active. The approach bases its HMM model on two factors that are the energy cost and the 

errors of the sensor nodes. In addition, this approach considers the use of an actuator which 

takes the reading of the node's energy and sends that data to the central controller which 

manages the entire WSN. This approach seems to improve the lifetime of the WSN however, 

the introduction coordinator led to an overhead control message on the WSN. The approach 

adopted in our thesis uses a simple method of utilizing the HMM model to extend the network 

lifetime and has no control message overhead. 

 

In [Bhatia et al., 2019] proposed Prediction Based CH Selection (PBCS) algorithm that 

combines PSO for clustering and an HMM for selecting CHs based on predicted energy levels 

of nodes. The basic idea is to dynamically cluster the WSN to avoid node failures this will 
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maintain connectivity and implore network lifetime. The authors presented their work in two 

parts one is clustering and other is cluster head selection both are performed with two 

computationally intensive algorithms like PSO and HMM chains. The outcome is measured by 

using some conventional routing algorithm like flooding and spanning tree protocols to check 

the energy considerations. But this paper does not discuss about network lifetime coverage 

which is the essence of the WSN communications. 

 

In summary, to the author's best knowledge, there are not many works that utilized HMM to 

address multi-objective optimization problems involving energy consumption, network 

lifetime, coverage, and connectivity, in the context of the WSNs scheduling approach. In 

comparison, our work in reducing energy utilized a very simple HMM algorithm that we used 

to optimize the energy as well as the position of nodes for effective scheduling and energy 

management. Hence, our approach utilizes the HMM method to extend the network lifetime 

and introduce no control message overhead. 

 

2.4 Bio-inspired Approaches 
Bat-inspired algorithms (part of NIA’s) have been used by the scientific community for solving 

hard optimisation problems, as they have been extensively surveyed in the [Chawla and Duhan, 

2015].Bat algorithms solve optimization problems in complex systems such as WSNs, 

specifically, by utilizing a cost function to find the best possible value of the solution in the 

search space [Sendra et al., 2015]. There are several bioinspired computation approaches for 

optimizing energy only such as Genetic algorithm [Jin et al., 2003] and [Huang et al., 2010]. 

Other bio-inspired flocking techniques were used to detect anomalies in the stream of data in 

the WSNs [Forestiero et al., 2009]. The interested reader may refer to the comprehensive 

survey of node scheduling schemes in WSN. 

 

In the paper [Forestiero et al., 2009], the authors solve the problem of topology management 

in WSNs. First, the solution is restricted to 2D space. Second, they are trying to use the density 

distribution of the sensor nodes in the network. In particular, the authors are using the flocking 

model in which the agent is moving into a space in a fixed time. When these agents encounter 

another agent, they will form a flock if they are similar in density.  Since these flocks form a 

swarm so the offline computation can easily be avoided using this approach. The approach 
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assumes the agents are on when sensor nodes are active which is not the case in the WSNs as 

sensor nodes alternate between ON and OFF rendering the density changeable.  

 

In [Nilsaz Dezfuli and Barati, 2019] the author proposed a Distributed energy-efficient 

algorithm for ensuring coverage of wireless sensor networks for addressing a MOO problem 

in WSN. The main idea is the application of Firefly to grid-based computing used for 

wine.  Unlike bat optimisation techniques, the firefly when in a higher energy state flies at a 

higher altitude when the energy is low it settles down or on leaves etc. Taking several fireflies 

in this case, a part will fly another will rest, which creates an equilibrium or optimization sense 

when applied to WSN. Hence, in [Nilsaz Dezfuli and Barati, 2019] the method involves 

dividing the network area into square cells and selecting the node with the highest energy in 

each cell as an aggregator. The firefly algorithm is then used to choose and maintain the most 

suitable node in each cell, maximizing coverage while minimizing energy demand and 

extending the network lifetime. 

 

The research work was proposed by a Bat-NIA algorithm called target-connected coverage. 

The author formulated the problem by proposing a couple of bats that are based on a binary 

search space. The first bat’s main goal is to find the active node in the WSN, and the second 

bat’s goal is to use the active node to find at least one path to the sink node to report data 

maintaining connectivity. The bat algorithm proposed in this paper is based on a continuous 

search space, not a binary search space as proposed. This is because energy varies with respect 

to time i.e., as time progresses energy is depleted. Furthermore, the algorithm has approached 

the same problem but from a different perspective as the authors did not consider node 

scheduling. Nodes were assumed to be always in one state e.g., active state. However, the work 

presented by [Kim and Yoo, 2020] provides a sleep-awake schedule for each node. Introducing 

node scheduling has increased the complexity of the multi-objective optimization problem in 

this thesis, e.g., working with more than states of nodes sleep and wake. Additionally, the 

mechanism proposed by [Kim and Yoo, 2020] did not provide a sleep schedule for each node 

in the network but limited the proposed algorithm’s search space to find the active nodes only 

and always maintain a link to the sink. 

 

The authors in [Narayan et al., 2023], addressed the MOO problem by introducing the 

clustering approach in which fuzzy logic is utilised. The main idea behind this work is to 
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construct a fitness function in which swarms work collaboratively to optimise a fitness function 

and send data from all sensor nodes to the Base station. [Narayan et al., 2023] attempted to 

reduce the residual energy of each sensor node in which the minimum amount of energy is 

consumed. Using a fuzzy controller can ensure that effective routing is done considering the 

above condition as the backbone. Our approach for the Bat Node scheduling algorithm is 

similar to the approach of [Narayan et al., 2023] which has MOO using PSO. The proposed 

BAT approach will have the same formulation for the MOO problem, but the involved 

parameters are different. 

 

An interesting example proposed by [Yang and Xia, 2024] a cuckoo search based on Cauchy 

optimization in which it addresses both coverage and routing in WSNs. The main idea is to use 

a dynamic cluster radius for routing based on a non-uniform clustering type of WSN. [Yang 

and Xia, 2024] addressed the coverage and routing challenges in the network but did not 

address the connectivity issues, and node scheduling i.e., in confirmation with TDMA which 

is practical while implementing in real life. The results indicate that the proposed algorithms 

outperform traditional methods in terms of coverage, energy efficiency, and network stability. 

However, the delivery rate is not considered, [Yang and Xia, 2024] present a very unrealistic 

view of energy loss of less than 1% which is the case if fewer packets are delivered and almost 

no control packets are generated in this case. The research suggests that while the proposed 

algorithms show promise, there is room for further exploration of the complex structure of 

WSNs. 

 

In [Ovabor and Atkison, 2024] a hybrid Multi-objective Optimization technique integrates 

cascading firefly and Greywolf algorithms to improve connectivity, coverage and network 

lifetime in WSNs. [Ovabor and Atkison, 2024] coupled with the Pareto front in which the 

optimal solution provides insights on the trade-off between the three optimised objectives. The 

algorithms complement one another in terms of their strength. For example, firefly's 

optimization techniques are better for connectivity and Greywolf's optimization techniques are 

better for coverage, now in this case if they are applied in a cascading manor, they will 

complement one another resulting in better connectivity and coverage. The difficulty of this 

type of hybrid approach is in the increase of computational complexity and more convergence 

time required for optimization.  
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Another example that addressed the MOO problem is proposed by [Jaiswal and Anand, 2024] 

in which a node deployment algorithm using Firefly Optimization (FA) to achieve target 

location coverage and sensor node connectivity is introduced. To ensure the best QoS [Jaiswal 

and Anand, 2024] introduced a multi-objective fitness function that considers factors like 

maximum survival, distance from the base station, coverage, number of sensor nodes, and 

connectivity. Furthermore, [Jaiswal and Anand, 2024] introduced the distance to the base 

station as an important factor for delay-sensitive applications. [Jaiswal and Anand, 2024] 

achieved fault tolerance through the p-coverage and q-connectivity which make the network 

perform efficiently in the complex. Although [Jaiswal and Anand, 2024] address connectivity, 

coverage and lifetime in homogenous network scenarios, the authors did not consider 

heterogeneous which is the common deployment scenario in WSNs. Until for a specific 

purpose the WSN coverage should not be limited to a target-based coverage, as better coverage 

means better utilization for WSNs. 

 

Moreover, the authors in [Jia and Zhang, 2024] proposed to improve the existing Graywolf 

algorithm optimization techniques and provide an energy saving coverage model. The model 

ensures that at least each point in the target area is covered by at least one sensor node. This 

work is an improvement over the existing Grey wolf algorithm used in WSN, it has significant 

improvement over the original which provides better coverage and energy saving in the 

process. 

 

In the literature, Bat algorithms are used via their prey-hunt process [Sendra et al., 2015]. 

However, the novelty of the proposed work in this paper is manifested by using a new concept 

of the Bat algorithms in which bats’ wake-sleep process is used for the multi-objective 

optimization problem which this thesis solves. In particular, the Bat theory was modified based 

on experimental results. 

2.5 Self-Organising Map Approaches 
There are several approaches in the literature that use SOM to address the problem of energy 

optimisation in the WSN [Miljković, 2017]. For example, the author in [Cordina and Debono, 

2008] utilised SOM to propose an energy optimisation model to reduce communication in 

clustered WSNs. In particular, the author proposed an approach for cluster selection based on 

the Extension to Growing Self-Organising Map (E-GSOM) technique. The author compared 
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two evolutionary-based genetic computing techniques against the E-GSOM where the result 

showed an improvement of energy efficiency among its peers.  

 

Another work that utilised SOFM to provide efficient cluster routing algorithms was proposed 

by [Cordina and Debono, 2008]. The work reduces energy consumption by organizing sensor 

nodes into clusters whereby better communication nodes in the WSN are minimized. The 

solution improves the network lifetime via the distance reduction among CH nodes and load 

balancing cost function.  Since communication is the most expensive energy expenditure in 

WSN, the proposed solution managed to optimize communication distance among CHs, 

reducing the closest communication distance to the base station. Although this approach 

extends network lifetime, by reducing the communication distance to the base station. The 

proposed approach incurs messages overhead due to the setup cost of forming the CHs with 

the short distinct to the base station. 

 

On the other hand, the author in [Bai et al., 2008] introduced the Self-Organising Map 

Scheduling Algorithm (SOMSA) for sensor networks where the scheduling of the nodes is 

based on dynamic environment settings with local interactions. These settings are entirely 

based on the changing energy levels of the WSN. The SOM, therefore, uses these patterns as 

input vectors to produce dynamic scheduling for efficient data transfer. In our case, we already 

computed the final scheduling before the WSN operation, but in [Bai et al., 2008] case, the 

scheduling is computed using the SOFM dynamically, hence the energy consumption is more 

in this case than ours due to the message control exchange overhead.  

 

In [Patra et al., 2010], the author proposed the SOFM Topology Building (SOFMTB) 

Algorithm to optimise energy in WSNs. The work utilised the SOFM technique to adjust the 

clusters based on energy levels for efficient dissemination of data over the network. The 

SOFMTB divides the WSN into tiers using the k-means algorithm as cluster head and cluster 

members. It also modifies the topology of the network providing efficient partitions in the 

network. 

 

In the work of [Mittal and Kumar, 2015] SOFM was used to reduce energy consumption and 

bandwidth usage in a resource-constrained WSN. The solution tends to reduce the data 

communication during the entire network lifecycle by reducing its size. For instance, in this 
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work,1500 data volumes were generated and aggregated from all sensor nodes and sent to the 

base station. This approach clusters these data and reduces its size by selecting the most suitable 

size that has a meaningful one and sending it instead of that 1500 large volume one. 

 

In [Kulkarni et al., 2021] a Dynamic Decision-Making Algorithm (DDMA) is proposed for 

sensor node deployment in a heterogeneous WSNs using SOM model. The DDMA algorithm 

has two phases - a sensor setup phase and a sensing phase. In the sensor setup phase, the 

algorithm uses SOM to pair each coverage point in the deployment area with a nearby sensor 

node. This ensures that all coverage points are monitored by at least one sensor. In the sensing 

phase, when a sensor node fails, the algorithm uses the pairing information to identify the 

uncovered coverage point and instructs a neighbouring node to move and cover it. The main 

objective of this work is to address the coverage hole problem by introducing node mobility. 

The solution to the problem is practically not feasible as in remote environments the nodes 

cannot be moved through locations unless it is mounted on some vehicle. 

 

On the other hand, the work in [Talei et al., 2023] used the self-organising map technique for 

high buildings, in the HVAC system, to find energy-saving opportunities and thus distribute 

the energy efficiently. This work used one year of data set in time serious analysis to provide 

service that accommodates user requests regarding outdoor/indoor temperature. Utilising SOM 

has proven to provide energy energy-efficient solution.  

In summary, having assessed the latest state-of-the-art SOM technique in WSN, it has been 

noticed that there is still more room to state space exploration and obtain the best optimal 

solution to find the optimal scheduling for the MOO problem.  

2.6 Long Short-Term Memory Approaches  
Several studies in the literature have looked into time series prediction using the Long Short 

term Memory approach, LSTM, to tackle various issues in WSN, including energy efficiency, 

as demonstrated in the works by [Mohanty et al., 2020; Shu et al., 2019]. In their work, [Shu 

et al., 2019] suggested optimising energy consumption by means of minimising the number of 

communication links between the Fusion centre/Base station (BS) and the sensor nodes in 

WSNs. [Shu et al., 2019] utilised a dual prediction scheme (DPS) based on a Least Mean 

Square (LMS) filter to predict the number of communications links between BS and the sensor 

nodes. The sensor nodes can only send data when the error margin between the sensed data and 
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the predicted data is below a certain user-defined threshold. A Beacon signal is then used in 

the network to notify nodes (sender/Receiver) to use the predicted value of LSTM as the current 

time step to send the actual data. The use of Beacon single consumes less energy in comparison 

to sending large data packets. The limitation of this approach is that it considers stationary 

nodes that cannot be employed with the dynamic nature of the WSNs. In addition, [Shu et al., 

2019] consider no node failure scenario that is unrealistic for WSN. 

 

In [Cheng et al., 2019] a Multi-Node Multi-Feature (MNMF) model based on bidirectional 

LSTM networks is presented. The main aim is to reduce unnecessary data transmission thereby 

improving the quality of the data collected in WSNs. To exploit spatial-temporal correlations 

among sensory data. To address this, the MNMF model first enhances data quality through the 

quartile method and wavelet threshold denoising. First, quartile and wavelet threshold methods 

were used to filter and remove noise from the data to improve its quality. After denoising the 

pre-processed data feature extraction is performed with bidirectional LSTM. Finally, the 

merged layer of the neural network (i.e., the last layer of LSTM) fuses these pre-processed data 

features to predict future sensory data. This approach utilises LSTM for sensory data prediction 

only, this algorithm is not at all catered towards implementing the connectivity, coverage, and 

a lifetime of the network, on the contrary, our work focuses on predicting the data as well as 

catering towards the best coverage, connectivity, and lifetime of the WSN. 

The author in [Mohanty et al., 2020] attempted to reduce energy consumption by utilising  

RNN-LSTM based model. The used LSTM based components split the WSN into a different 

layer on the sensor nodes. The approach by [Mohanty et al., 2020] reduced data communication 

by utilising LSTM in that it compared the actual data and the data that needed to be sent. Thus, 

reducing the communication and balancing the workload in the sink node. The use of the LSTM 

in the [Mohanty et al., 2020]  approach is limited to communication reduction only. 

Unfortunately, great details were spent on reducing communication, yet no efforts were spent 

on coverage.  

 

A more recent work proposed by [Jeyalaksshmi and Ganesh, 2022] utilised the Bidirectional 

Long Short-Term Memory (BiLSTM) technique and provided adaptive duty-cycle scheduling 

for WSNs. The BiLSTM stores the previous and future steps to adjust the node's sleep schedule. 

The algorithm employs an eligibility check based on the Jaccard Similarity Index (JSI) value 

among sensor nodes. The nodes that have a higher value are elected to sleep where their sleep 
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schedule is extended based on data patterns obtained (e.g., traffic load and energy level) by 

BiLSTM. This work assumes that sensor nodes are already in a sleep mode where the 

intervention is on their sleep duty cycle only. The BiLSTM algorithm did not consider network 

coverage and connectivity as it assumes a random duty cycle for all the nodes. Also, as nodes 

progress in time the legibility rule will take its toll on the residual energy hence on network 

performance. 

 

Other works such as [Salmi and Oughdir, 2022] have used the LSTM model to detect 

Distributed Denial Of Services attacks (DDOS)  in WSNs.  Our work, however, utilised the 

LSTM model to address the MOO problem in WSN from a different and new perspective i.e., 

to use data centric modelling which is to detect a certain useful sequence of events (data) that 

has a good degree of coverage performance, connectivity, and a lifetime to predict a useful 

LSTM based node scheduling model.   

2.7 Summary and Concluding Remarks 
The literature itself shows that the MOO problem in WSNs is not trivial [Purushothaman and 

Nagarajan, 2021], especially when node scheduling is the solution. Most of the reviewed works 

lacked focus on the dependability issues of WSNs including coverage, connectivity, and 

lifetime of WSN nodes [Thomas et al., 2020]. The problem exhibits more complications when 

the considered type of the WSN is for safety-critical applications. This chapter has reviewed 

state-of-the-art node scheduling ANN, HMM, Bioinspired Bat, SOM, and LSTM approaches 

where the literature has mainly focused on the energy-efficient aspect of WSNs.  In contrast to 

most published works in the literature that focused on optimised energy efficiency (network 

lifetime), the focus in this thesis includes the WSN’s service reliability (nodes’ connectivity 

and coverage) as well as service availability (network lifetime). 

 

To the author’s best knowledge, after assessing the available node scheduling approaches in 

the literature, a limited amount of research was found to have focused on the MOO problem of 

the WSN node scheduling that focuses on network lifetime and coverage.  For example, [Cardei 

et al., 2005] consider WSN coverage requirements, but without ensuring a good level of 

network connectivity which hinders service reliability and availability at some point in time. 

The Authors in [Tian and Georganas, 2002] didn’t cater for network coverage instead they 

assumed a simple scenario of no coverage. 
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In addition, no work addresses the network’s service reliability together with its service 

available. The RCS [Liu et al., 2006] and [Wang et al., 2010] scheduling algorithms were found 

to focus on the aforementioned three optimisation objectives. Hence, the RCS algorithm is the 

earlier to address the MOO problem (cf. Section 1.2). and easy to replicate it was selected as 

the basis of the work in the upcoming chapter. The argument is that WSNs sometimes operate 

with such resources in a harsh environment where there is no human intervention. Hence, the 

level of complexity in predicting the performance of WSNs during the run time is extremely 

complex. This necessitates the use of a technique such as ANN that has the ability of 

dimensionality reduction to help in reducing such level of complexity particularly with 

predicting the lifetime of each sensor node. Consequently, it is reasonable to use the ANN to 

simulate and analyse the RCS performance. 

 

Limitations of the state space exploration: The proposed ANN analyser, train, analyse and 

detects the Node's sleep and wake cycle Hence, helps in pointing out limitations of the RCS-

based scheduling algorithm e.g., it provides a classification of the overused and the underused 

Nodes. Thereby, conclude more room for state space explorations. Hence, the ANN analyser 

advantage points out in limitations of the algorithm itself. Unlike, traditional simulation 

compares algorithms against one another in terms of performance, but it does not tell why they 

are not performing as they should, the ANN analyser can help to find if the algorithm is optimal 

or not. 

 

Given the limitations of the RCS algorithm, it would be possible to extend the network lifetime 

e.g., by making use of the nodes which are in the 2-Hop area joining the 1-Hop area and 

balancing their duty cycle in terms of communication loads. The ANN analyser confirms that 

the RCS algorithm is not good enough in terms of state space exploration, so we can explore 

the state space by the output of the ANN analyser.  

 

Although the ANN analyser helps in analysing and identifying the limitations of the RCS 

algorithm, it is difficult to tune up for other algorithms. The ANN might not need to be used 

on the proposed algorithms such as HMM-based scheduling algorithm, Bio-inspired 

computation, etc. That is because those proposed algorithms are good at what they are doing, 

as in their search space they already proposed the optimal solution, unlike the RCS. The ANN 
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analyser algorithm gives more room regarding the state space exploration (possible solutions). 

The RCS algorithm doesn’t give us such information. As a result, the HMM algorithm was 

devised to overcome the limitations of the RCS algorithm.  

 

Hence, the Bio-inspired Bat scheduling algorithm is assessed as a means for exploring a larger 

search space. As WSNs are a distributed type of network, then it is logical, that the proposed 

Bio-inspired Bat solution is performed in terms of distributed computing to solve the 

scheduling problem. Notably, this will improve and help in finding the optimal scheduling 

algorithms for MOO problems. Furthermore, since the aim is to solve the MOO problem and 

achieve the optimal solution, SOM and LSTM approaches will be used to explore different 

representations of the solution space. For example, SOM is used for exploring solution space 

spatially, Whereas LSTM is used to explore the solution in a temporal approach. In the 

literature, there were applications for finding optimal WSN routing paths to the Base station 

utilising SOM. Such approaches were used in the literature for a different use case i.e., routing 

or path optimality than the ones presented in this thesis.  
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Chapter 3  A Perceptron-Based Neural-

Network Analyser to Enhance the 

Scheduling Performance  

This chapter illustrates the MOO problem, namely the limited solution space exploration of 

existing algorithms, by evaluating the RCS algorithm [Liu et al., 2006]. We notably propose 

using an ANN-based algorithm to diagnose issues with the RCS algorithm which cannot be 

determined easily through simulation or by comparison with other algorithms. This case study 

then provides us with the motivation for exploring more systematic ways for developing 

efficient scheduling algorithms as a solution for critical WSN systems. Hence, this chapter 

starts by evaluating the simulation platform available for WSN, followed by the required 

parameters and the energy model. Finally set the scene for the simulation experiment using 

MATLAB to study the performance and behaviour of WSNs scheduling algorithm. 

3.1 Simulation Platforms for WSN 
There are many approaches to study, analyse and evaluate the performance of WSNs during 

the run time. One approach is developing a real physical hardware testbed, this enables 

researchers to experiment with physical nodes and analyse the data in real time for WSNs. 

While this approach provides accurate results, it is expensive and may not be available or 

affordable, which is the case with the author of this thesis. 

 

Simulation is a widely used and accepted approach in the scientific community [Adday et al., 

2024]. On the one hand, simulation is easy to use, affordable, and open-source [Zhang et al., 

2024]. For example, there are many simulation environments are heavily supported in public 

forums such as NS-2, NS-3, COOJA and MATLAB network simulators [Horneber and 

Hergenröder, 2014]. On the other hand, simulations may not accurately represent the real 

system that the researchers intend to simulate. Nevertheless, the level of accuracy is accepted 

with a certain commonly used parameter value [Liu et al., 2006] and [Saravanakumar et al., 

2013]. In general, an in-depth review to identify and quantify the acceptable values of 

parameters is required to ensure the simulation model represents a reasonable commonly used 
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value, such parameters include the location of nodes, sensing range, communication range etc 

[Abdulzahra et al., 2023]. 

 

An alternative approach combines a small-scale physical testbed with simulation tools [Stehlık, 

2011]. Another approach couples simulation with mathematical Theorem proofs [Timo and 

others, 2005]. In this thesis, well-known models of energy consumption, and communication 

parameters for WSNs are used. Moreover, parameter values that are accepted in the research 

community for sensing range, communication range, energy consumption per packet  are used 

[Liu et al., 2006] [Bajaber, 2023] and [Saravanakumar et al., 2013]. In WSN simulations, most 

researchers adopted the NS-2 environment which is primarily designed for simulation routing 

protocol. NS-2 is not selected in this thesis because its technical support manuals are 

unorganized and it is very difficult to find such documentation to use NS-2 for scheduling 

algorithms in the field of WSNs, despite its vast documentation on routing algorithms which is 

not the focus of this thesis. There are no single models for WSNs, depending on the WSN area 

of interest in research, e.g., routing protocols, or security aspects, the WSN layer of interest has 

different models and simulation environments. Some researchers built their research 

environment to allow them flexibility in configuring the models and simulation environment 

[Coronato and Testa, 2013]. 

 

In terms of simulation model availability, OMNET++, JiST, and SSFNet have fewer available 

routing protocol models than other simulators (especially NS-2). For other simulation 

environments like J-Sim and Ptolemy II, the basic building blocks to create a simulation testing 

environment are available which can be time-efficient in building a complete model. However, 

issues with such solutions stem from the technical difficulty in combining building blocks to 

represent a complete WSN model because such solutions lack examples, tutorials and technical 

documentation, as they are primarily used in traditional wireless and wired networking 

systems, but they are not widely used in WSNs. TOSSIM, EMTOS, and ATEMU are examples 

of tools that can replicate genuine sensor code. 

 

Recent simulators, such as JiST/SWAN, claim to outperform NS-2 and GloMoSim in their 

sequential version. Parallel simulations should, by definition, perform and scale better than 

sequential simulations. The cost is manifested in the increased programming complexity. 

GloMoSim whose goal is performance rather than scalability can simulate up to 10,000 
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wireless sensor nodes in parallel. The DaSSF parallel tool, which focuses on scalability, can 

handle network topologies with up to 100,000 connected sensor nodes. 

 

Graphical User Interface support is included in all the aforementioned simulator environments. 

For animation, tracing, and debugging, OMNET++, NCTUns2.0, J-Sim, and Ptolemy provide 

strong Graphical User Interface frameworks. All of them include features such as parameter 

adjustment during execution. JiST, on the other hand, does not contain any Graphical User 

Interface support except for an event logger and viewer. The uncomplicated and 

straightforward trace reproduction Nam tool is currently supported in NS-2. 

 

Specific tools also have remarkably detailed user interfaces. TinyViz is a Java extension to the 

TOSSIM visualization tool that gives important debug information. Users can create their 

plugins that listen to TinyViz's TOSSIM events and perform some action. EmTos has a utility 

called EmView, which is very similar to EmTos but written in C. Ptolemy-II and NCTUns2 

both have graphical editors that are quite easy to use. Because the remainder of the packages’ 

graphical editors are not as straightforward, it is usually better to develop models using their 

script-oriented approach. It is worth mentioning, that there is a definite tendency in simulations 

to use native code from genuine devices (e.g., TinyOS/NesC). This feature is available in all 

WSN frameworks. Cooja is a Java-based simulator, the programming can be extensively hard 

as it has very poor visualization capabilities. The software bugs are unprecedented in NS2 and 

NS3 because of versioning issues. Hence, it is a common problem in NS2 and NS3. In an open-

source simulation tools, versioning bugs are a common issue. 

 

MATLAB, on the other hand, is a well-documented environment with toolboxes and strong 

technical support and documentation for its users. Furthermore, MATLAB has the following 

set of advantages:  

 

• The rapid prototyping in MATLAB gives the software engineering walkthrough with a 

spiral model used in developing long-term service software.  

 

• The visualization capabilities are very crucial in displaying various performance and 

animated sequences of the Transmission (Tx) and Receiving (Rx) among the nodes as 

well as the topology geometry associated with networking between the nodes. 
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• MATLAB allows easy integration and reusability of the third-party plugin modules 

developed by many languages such as C, C++, Java, and Python. This property is 

inherent with MATLAB simulators which are not available with NS2.NS3. 

 

Due to the above-mentioned advantages of the MATLAB network simulator has over other 

simulation tools, it is therefore selected for the work presented in this thesis. 

3.2 Simulation for Scheduling algorithm in MATLAB 

 
Figure 3.1 Simulation Set-up for Scheduling Algorithm  

Figure 3.1 shows a WSN which consists of 1 sink node and 150 nodes, where each node has a 

transmission range (R) of 3.5 metres on an area of interest of x = 100, y = 100, the initial energy 

consumption of each node is 0.25 joules, whilst the energy required to receive and to transmit 

one bit is 1.0000e-09 joules, this is also the value of the data aggregation. The desired packet 

size of a cluster head per round is 3000 bits; all the data mentioned can be seen in table 3.1. 

The figure indicates how each node in the network consumes energy during the simulation run 

time. As the simulation runs, the network's performance can be observed where each node fully 

depleted energy using the standard cluster routing algorithm, without the scheduling algorithm. 

The result of the analysis is populated from both the classical configuration and the 

configuration with the scheduling algorithm's addition to compare the rate of improvement in 
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efficiency between the two scenarios, as displayed from Figures 3.3 to 3.4. Simulation was 

individually tested 30 times. 1-way ANOVA analysis was implemented on the RCS algorithm 

to identify the p-value for statistical results. 

 

3.2.1 Simulation Parameters 
The parameters used in this work include simulation parameters, coverage, and nodes. Those 

parameters can be turned upwards and downwards in values which are commonly used in the 

literature. In this work, the same values are adopted for the simulator environment [Liu et al., 

2006] [Bajaber, 2023] and [Saravanakumar et al., 2013]. 
 

Table 3.1 Parameters set within the simulation of the WSN. 

Simulation Parameter Value 

Coverage Parameters 

Number Of Sink Nodes 1 

Number Of Nodes 150 

Width of Y-Axis 100 meters 

Height of X-Axis 100 meters 

Distance from sink to sensor area 5 meters 

Node Parameters 

Initial Energy [EI] 0.25 joules 

Energy for transmitting one bit 

[Etrans] 

1.0000e-09 

joules 

Energy for receiving one bit [Erec] 1.0000e-09 

joules 

Data Aggregation Energy 1.0000e-09 

joules 
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Energy of free space model amplifier 5.00e-08 

joules 

Maximum Range of transmission per 

node [R] 

15 meters 

Scheduling Algorithm 

Parameters 

Packet Size for Cluster Head Per 

Round 

3000 bits 

Desired Percentage of Cluster Heads 5/100 

Packet Size for normal nodes per 

round 

80 bits 

Simulation Parameters Number of Rounds 2000 

 
3.2.2 Energy Model 
 

There are multiple energy models for calculating energy consumption in WSNs, most 

published literature confirms that sending and receiving data packets in WSNs consume the 

most energy, more specifically sending packets uses the highest energy levels in WSNs. 

EONi symbolises the energy consumed by node 'i' when turned 'ON' and is part of the WSN, 

EOFFi symbolises the similar but OFF state. When a node listens to the network and decides 

to send packages, this is a complicated stage. This is due to the prior state of listening to the 

channel before sending/receiving packets. With a free channel, the node utilises ETXi (i.e., 

transmission energy) to send a packet (PTXi); with a busy channel, the node generates re-try 

variable (NRTi) because it has to execute the CSMA/CA algorithm using the CSMA energy 

(ECSMAi). The node, then, will receive an acknowledgement signal, ACK, using ERXi and 

PRXi. In the absence of ACK reception, a retransmission PRTXi is generated. Furthermore, 

ESwitching energy is used for nodes' activity changes consuming switching energy. The 

aforementioned packet cycle includes receive, listen, transmit, and change states until network 

energy depletion (simulation time ends) using EOFFi. EMCi (microcontroller energy) is 

consumed for sampling the WSN. For calculating the energy, the method used in this work is 
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by multiplying time, T, with energy, E. T is the simulation period whereas E is measured in 

Joules. I is the current which is measured in Ampere whereas V is the voltage which is 

measured in Vols. The method adopted in this thesis for calculating energy consumption is by 

multiplying the time ‘T’ which represents the simulation period of the respective components 

subscripted to the variable ‘T’ with ‘E’ the energy which is measured in joules, ‘I’ is the current, 

which is measured in ampere, and ‘V’ is the voltage that is measured in volts. 

1. 𝐸𝐸𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑀𝑀𝑀𝑀 . 𝐼𝐼𝑀𝑀𝑀𝑀 . 𝑉𝑉𝑀𝑀𝑀𝑀                       (1.1 - Microcontroller circuit) 

2. 𝐸𝐸𝑂𝑂𝑂𝑂 = 𝑇𝑇𝑂𝑂𝑂𝑂 . 𝐼𝐼𝑂𝑂𝑂𝑂 . 𝑉𝑉𝑂𝑂𝑂𝑂                     (1.2 - Microswitch ON state)  

3. 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂. 𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂. 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂    (1.3 - Microswitch OFF state) 

4. 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖. 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖. 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖  (1.4 - Switching for Tx and Rx states) 

5. 𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶 = 𝑇𝑇𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶. 𝐼𝐼𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶. 𝑉𝑉𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶    (1.5 - CSMA circuit) 

6. 𝐸𝐸𝑇𝑇𝑇𝑇 = 𝑃𝑃𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑆𝑆ℎ. 𝑇𝑇𝑇𝑇𝑇𝑇. 𝐼𝐼𝑇𝑇𝑇𝑇. 𝑉𝑉𝑇𝑇𝑇𝑇                   (1.6 - TX circuit) 

7. 𝐸𝐸𝑅𝑅𝑇𝑇 = 𝑃𝑃𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑆𝑆ℎ. 𝑇𝑇𝑅𝑅𝑇𝑇. 𝐼𝐼𝑅𝑅𝑇𝑇. 𝑉𝑉𝑅𝑅𝑇𝑇                     (1.7 - RX circuit) 

The total energy consumed is then obtained by a sensor node by adding the aforementioned E 

values as in the following equation. Whereas the first three E values represent packet-

independent energy factors (Microcontroller, ON and OFF states); the other four E values 

represent packet-dependent energy factors (Switching, CSMA, TX and RX). 

 

𝐸𝐸𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 = 𝐸𝐸𝑀𝑀𝑀𝑀 + 𝐸𝐸𝑂𝑂𝑂𝑂 + 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶 + 𝐸𝐸𝑇𝑇𝑇𝑇 + 𝐸𝐸𝑅𝑅𝑇𝑇  (1.8) 

 

Consider that there is N number of the sensor nodes in the target area under consideration so 

the ith sensor with ON state will be responsible for transmission, reception, retransmission, and 

ACK packets. Using the previously introduced equations can be applied here as follows: 

 

𝐸𝐸𝑇𝑇𝑇𝑇𝑆𝑆 = [𝑃𝑃𝑇𝑇𝑇𝑇𝑆𝑆 + 𝑃𝑃𝑅𝑅𝑇𝑇𝑇𝑇𝑆𝑆]. 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆. 𝐼𝐼𝑇𝑇𝑇𝑇𝑆𝑆. 𝑉𝑉𝑇𝑇𝑇𝑇𝑆𝑆      (1.9)

 𝐸𝐸𝑅𝑅𝑇𝑇𝑆𝑆 = 𝑃𝑃𝑇𝑇𝑇𝑇𝑆𝑆 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆. 𝐼𝐼𝑇𝑇𝑇𝑇𝑆𝑆. 𝑉𝑉𝑇𝑇𝑇𝑇𝑆𝑆                  (1.10) 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆 = [𝑃𝑃𝑇𝑇𝑇𝑇𝑆𝑆 + 𝑃𝑃𝑅𝑅𝑇𝑇𝑇𝑇𝑆𝑆 + 𝑃𝑃𝑅𝑅𝑇𝑇𝑆𝑆]. 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆. 𝐼𝐼𝑇𝑇𝑇𝑇𝑆𝑆. 𝑉𝑉𝑇𝑇𝑇𝑇𝑆𝑆                (1.11) 

𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶𝑆𝑆 = [𝑃𝑃𝑇𝑇𝑇𝑇𝑆𝑆 + 𝑃𝑃𝑅𝑅𝑇𝑇𝑇𝑇𝑆𝑆 + 𝑃𝑃𝑅𝑅𝑇𝑇𝑆𝑆]. 𝑇𝑇𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶𝑆𝑆 . 𝐼𝐼𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶𝑆𝑆 . 𝑉𝑉𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶𝑆𝑆               (1.12) 

𝐸𝐸𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆 = 𝐸𝐸𝑀𝑀𝑀𝑀𝑆𝑆 + 𝐸𝐸𝑂𝑂𝑂𝑂𝑆𝑆 + 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆 + 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆 + 𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀𝐶𝐶𝑆𝑆 + 𝐸𝐸𝑇𝑇𝑇𝑇𝑆𝑆 + 𝐸𝐸𝑅𝑅𝑇𝑇𝑆𝑆   (1.13) 

 

In summary, each node in WSNs undertakes ‘listen’, ‘transmit’ and ‘receive’ (communication) 

tasks and switching node’s states ON/OFF. Each of these three actions consumes energy. As 

every node has a preliminary total energy, once the node starts any of the listening / 
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communication actions the energy (cost) for undertaking such actions will be deducted from 

the node’s total energy - this manifests the approach presented in this thesis for calculating the 

nodes’ energy which is already published in the literature. In addition, for enhanced simulation-

based experimentations and making the results as close to real-life data as possible, the energy 

space model amplifier (𝐸𝐸𝑂𝑂𝑆𝑆) is included which effectively consumes energy too, as part of the 

energy consumption calculation.  

 

3.2.3 The RCS Scheduling Algorithm 
The rationale of RCS is to group the nodes into K sub-networks, where each subnetwork is 

scheduled to be ON at a specific time slot. RCS algorithm works as follows: 

● In the Initialisation phase: The base station determines the number of sub-networks and 

randomly assigns each node to a sub-network. The base station then sends out a broadcast 

message to its neighbour nodes or simply neighbours. This broadcast message contains Node 

ID, the nodes sub-IDs, Minimum hop count to the base station. 

Nodes that are close to the base station receive this Broadcast message and allow a backoff 

delay timer. For example, after a node receives the broadcast message, it allows some time 

delay before it updates its hop count in case another message is received from a closer 

neighbour. Without the backoff delay, a closer neighbour might be ignored. 

● Initial hop count propagation: The hop count is propagated from the base station. The base 

station hop count is 0.  Now, the nodes that receive the broadcast message from the base station 

increment their hop count by 1 and rebroadcast the message to their neighbours. The latter do 

the same process when they receive the broadcasted message, and so forth through the whole 

network. 

● Determining the sleep schedule: After a node exchanges information with its neighbours, 

each node knows its sub-network and the specific time to be ON and OFF. 

● Determining the upstream nodes: Each node does a simple processing in order to select its 

upstream neighbour node.  The node that sends the broadcast message first would be the one 

selected as the default upstream node. This decision is maintained during the initialisation 

phase. For example, assuming there are 4 nodes A, B, C and D and 1 base station, where nodes 

B and C are the upstream nodes of node D. The 4 nodes are scheduled to be ON respectively 

at time slot 1, 2, 3 and 4. When nodes exchange information, there will be two cases: 
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● Nodes B and C are neighbours: if B broadcasts its message to C first, then C would know 

that B is also an upstream node of D, then it would be ON during its original time slot only, 

i.e., time slot 3. However, node B would be scheduled to be turned ON in time slots 2 and 4. 

● Nodes B and C are not neighbours: In this case, both nodes will be ON in time slot 4 in 

addition to their time slots, i.e., node B will work in time slot 2 and 4 and node C will work in 

time slot 3 and 5 as illustrated by Figure 3.2. 

 
 Figure 3.2 An example of how nodes are tuned ON and OFF by RCS. 

● Set the schedule, the sub-networks will alternate between ON and OFF periodically. 

Figure 3.3 represent the main functionalities of RCS algorithm.  
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 Figure 3.3 The main functionalities of RCS algorithm. 
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The following is the pseudocode of Algorithm 3.1 that summarises the main functionalities of 

RCS algorithm: 

 

 

Algorithm 3.1 The RCS Algorithm 

Input: Set of sample data of Sensor Nodes 

Output: Sensor nodes operates with sleep awake schedule  

1: Start  
2: Initialize Sensor Network:  

3: Deploy sensor nodes randomly.  

4: Divide sensor nodes into multiple disjoint subsets.  

5: Random Subset Selection:  

6: Each sensor node randomly selects and joins one of the subsets.  

7: Activate Subset:  

8: Activate one subset while keeping others inactive to conserve energy.  

9: Propagate Minimum Hop Count: 

10:  Each node calculates its minimum hop count to the sink node.  

11:  Propagate the hop count information to neighbouring nodes. 

12:  Exchange Information with Neighbours: 

13: Nodes exchange their hop count, subset membership, and 

upstream/downstream information with their neighbours.  

14: Apply Extra-on Rule:  

15: For each node: - If the node's downstream neighbour is active and no 

upstream neighbour is active: 

 6: Activate the current node outside its scheduled time slot. 

17:  Check Connectivity and Coverage:  

18: If the network is connected and coverage is sufficient: - Proceed to the next 

step 

19:  Else: - Activate additional nodes and repeat the extra-on rule.  

20: Operate and Monitor:  

21: Nodes operate according to the finalized schedule. 

22:  Monitor network performance for connectivity and coverage.  

23: End 
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3.3 Experimentations Set-Up 
Two sets of experimentations were performed. The motivation behind such experiments is to 

observe the behaviour of the WSN with and without any supporting scheduling algorithm i.e., 

having the nodes “turned ON” throughout the experiment time. This will allow us to evaluate 

how nodes consume energy and behave in the deployed environment. This is to manifest how 

crucial scheduling behaviour for dependable WSNs has such an impact on network lifetime, 

and hence service availability and reliability. This can be used to highlight what is analysed in 

the literature regarding the importance of preserving network lifetime via manipulating nodes’ 

states ON/OFF i.e., scheduling. During the test-based portion of the experiment, a neural 

network will be supplemented into the system. 

 

3.3.1 Experiment 1: WSN without A Scheduling Algorithm 

 
 

Figure 3.4 Simulation Set-up of WSN without Scheduling Algorithm. 

 
In the simulation, 1 stationary Sink Node and 150 stationary homogeneous sensor nodes are 

considered distributed randomly in a 100 by 100 m2 field as the area to be monitored as shown 

in Figure 3.4. The experimentation is based on executing multiple simulation rounds. The 

number of rounds is set to 2000 as the upper bound. The simulation will halt execution once 
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95% of the nodes reach complete energy depletion i.e., nodes break point. The sensing range 

of each sensor node is set to 5 m. The maximum communication range per sensor is set to 15 

m. The network lifetime is calculated by the consumption of communication (transmitting and 

receiving), and sensing units of each node. Refer to Table 3.1 for a tabulated form of the 

aforementioned parameters. 

In the beginning of the simulation, each node starts its operation with an initial energy of 3 

joules. Every sensor node consumes 1.0000e-09 joules of its initial energy when transmitting or 

receiving one bit. In addition, amplifying the signals i.e., digitising them for transmitting 

to/from nodes in free space consumes 5.00e-08 joules energy. As the simulation progresses in 

time, there will be more energy consumption due to nodes activities i.e., sending, receiving, 

sleeping, and awaking etc, which will have effects on network lifetime, connectivity, and 

coverage. 

To the author’s best knowledge, factoring in this specific energy consumption element has not 

been considered in any work by previous authors. This adds more novelty and contribution to 

this chapter in the WSN community.  

 

3.3.2 Experiment 2: WSN with RCS Scheduling Algorithm 
 

 
Figure 3.5 Simulation Set-up of WSN with RCS Scheduling Algorithm. 
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The motivation behind this experiment is to evaluate the behaviour of nodes when a scheduling 

algorithm is implemented to turn nodes ON and OFF with respect to optimisation objective(s). 

In this experiment, albeit using the same configurations of Experiment 1 above, a new 

parameter called K which represents the number of subsets of nodes in the network was added 

to the simulation. This K parameter is introduced by the RCS algorithm where K divides the 

nodes into a number of K subsets. Each subset alternates between On and Off states to preserve 

energy and extend the network lifetime. In this experiment, the parameter K is set to 3. Figure 

3.4 above presents the simulation setting. 

3.4 Experiments Results 
This section represents the key metrics in which the simulation results are obtained, the focus 

will be on all used energy, lifetime of sensor nodes, efficiency, connectivity, and coverage.   

3.4.1 All Used Energy 

The energy consumption of each node is dramatically higher without the scheduling algorithm 

as in Experiment 1, even managing to cease activity at 640th rounds. In contrast, when the RCS 

scheduling algorithm is used in Experiment 2, each node uses substantially less energy and 

remains active for 1180th rounds. This shows that the WSN application uses less energy (energy 

efficient) in the absence of an RCS scheduling algorithm. This is due the exploitation of node 

redundancy in utilizing the scheduling mechanism where nodes are alternating between ON 

and OFF states, thereby, the optimising the sensor nodes energy level for better performance. 
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Figure 3.6 All Used Energy Lifetime of a Sensor Node 

Figure 3.6 presents the number of nodes alive at any given round. The number of active nodes 

starts dropping at 5th rounds, 50% of nodes have ceased to be alive at rounds 23, and 100% are 

dead at 49 rounds. In contrast, in Experiment 2, 50% of nodes have died at round 34, and 100% 

at round 85. 
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3.4.2 Lifetime Sensor Nodes 
 
 

 
Figure 3.7 Lifetime of Sensor Nodes. 

As can be noted from the blue curve Figure 3.7, the number of active nodes starts dropping at 

round 5, where 50% of nodes cease to be alive at rounds 23, and 100% are dead at round 49. 

In contrast, in Experiment 2, an orange curve where nodes are scheduled to be ON and OFF, 

thereby participating in network activities but preserving energy when they are in an OFF 

mode. As can be noted from the orange curve, the number of active nodes starts dropping at 

round 7, where 50% of nodes died at round 34, and 100% at round 85. Hence, Experiment 2 

when node scheduling is used the number of a live sensor remains for a longer period of time 

(rounds), in composition to Experiment 1 which clearly shows an improvement in network 

lifetime. 

 
 

3.4.3 Efficiency 

The efficiency of the data packet passed through 100 sensor nodes over 1200 seconds. Figure 

3.8 shows that the efficiency is lower for nodes activated in the absence of a scheduling 

algorithm because the bandwidth consumption is higher for non-scheduled nodes. As for the 

scheduled nodes there is appropriate usage of bandwidth, hence reflects the efficiency of the 
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scheduling nodes. This is shown in the Figure 3.8 as for non-scheduled algorithm the data 

packet generation stopped at the rounds 600th and for scheduled algorithm at 1100th rounds. 

 

Figure 3.8 Efficiency 

3.4.4 Connectivity 

During 90th rounds, the nodes' connectivity was tested separately using a scheduling algorithm 

(experiment 2), and without using one (experiment 1). The results show that connectivity 

efficiency is dramatically reduced when the system is not supplemented with a scheduling 

algorithm, as the nodes cease to run after 50th rounds. The data provided in Figure 3.9 show 

service availability is maintained for a longer duration when a scheduling algorithm is present 

in a system. This attributed due the fact that non-scheduled nodes are not well managed, as a 

result they tend to expend energy in burst mode and therefore using the max part in setting up 

the network and very less of useful energy to run the connectivity functions. 
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Figure 3.9 Connectivity 

 

3.4.5 Coverage  
Figure 3.10 depicts the ratio of coverability for a sensor node to monitor, using a scheduling 

algorithm (experiment 2) and in its absence (experiment 1). In conjunction with Figure 3.9, 

once the nodes cease to be connected, their coverage will drop without a scheduling algorithm. 

This is possible because the RCS algorithm identifies some sensor nodes from the population 

of 100 nodes to be more active than others so that we could improve the performance and hence 

obtain better coverability in the network. In Figure 3.10, the rapid reduction in the coverage 

from 0 to 10th  round is due to the initial setup process and after the setup process is stabilized 

the coverage functions are back in full performance as per the condition’s setup in the 

scheduling and non-scheduling algorithm. 
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Figure 3.10 Coverability 

It is clearly noted from the Figure 3.10 above that the none scheduling algorithm coverage 

stopped at 50th rounds this is because nodes are always active in an ON state.  Hence, the level 

of energy consumption is higher in contracts with the use of scheduling algorithm where nodes 

are not always ON, but alternating between ON and OFF states where the level of energy 

consumption is low the coverage is maintained until the 85th rounds. Hence, more time in 

performance and improved level of services availability and reliability in the WSN.  

3.5 A Perceptron Multi-Layer Neural Network 
This section presents the proposed solution and the simulation of the RCS algorithm [21] in 

MATLAB. The elements of the simulation are the RCS scheduling algorithm, the Perceptron 

ANN-based analysis tool, and a generic WSN application. Figure 3.11 below illustrates the 

basic framework of the analysis of the Scheduling Algorithm:  

1. Initialise the Sleep/Wake up Schedule Algorithm via MATLAB, with randomised Node 

deployment.  
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Figure 3.11 Proposed Framework 

2. Apply a Neural Network Schedule Analyser to predict which Nodes are activated more 

often, given the number K of groups. 

 

3. Evaluate the data collected to ensure that the error rate (accuracy of classification) is 

withheld to a decent percentile: if the error is not within an acceptable range, another 

scenario is commenced to increase the sample size of data, as continuous testing allows 

the neural network analyser to predict with a higher level of accuracy.     

 
The proposed ANN analyser is a computational solution used to process, analyse, and interpret 

data using Artificial Neural Networks model designed specifically for node scheduling in 

WSNs. The ANN analyser is composed of the following functions:  
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• Normalization: Scaling input data to a standard range, often between 0 and 1. For 

example, it can normalize the data produced by WSN.  

• Encoding: Converting categorical data into numerical formats. 

• Feature Extraction: Identifying and extracting relevant features from raw data to 

improve model performance. 

• Prediction: Using the trained model to predict new, unseen data and providing valuable 

insights and predictions that are crucial for decision-making in various domains. 

It is worth mentioning that there are several commercial and open sources ANN tools, but they 

are built for very general purpose and not specific for our problem domain. In addition, it is 

very difficult to reverse engineer these general tools to build functions that suit our 

specification requirements.            

3.6 Problem Formulation 
    Perceptron supervised learning algorithm is a simple version of artificial neural networks. 

The basic process is to train the given input X with the output Y mapping and then test it with 

some data samples. It is a supervised algorithm as it supervises the outputs mapping data Y. 

The main goal is to convert the data into two classes: class 1 and class 2. As shown in Figure 

3.12. 

 
Figure 3.12 Perceptron-based Neural-Network Algorithm 

 Hence, a perceptron algorithm is known as a binary classifier as shown in equations (3.4) and 

(3.5). The following equation represents the data structure of the perceptron algorithm in the 

WSN scheduling algorithm, the general structure of the perceptron algorithm is borrowed 

from [Kubat, 1999]. 
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𝑅𝑅 = 𝑖𝑖1𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑏𝑏 (3.1) 

Where R is the results, sigma is the summation of all intended X features, and the associated 

weight W. n represents the number of features and b is the bias value. In the main problem of 

concern domain X represents the position of each sensor node in the network to the Base 

Station. Simplifying the above equation will give us the following result: 

𝑅𝑅 = ∑𝑛𝑛 . 𝑛𝑛 + 𝑏𝑏    (3.2) 

The following function called the activation function, takes the input of equation (3.2), R, and produces the binary 

classification.  

𝑭𝑭(𝒙𝒙) = 1
1+𝐿𝐿−𝑥𝑥 (3.3) 

The output of the activation function is of either 1 or 0. In the assumed scenario it is called 

class 1 or class 2.  

(𝑛𝑛 . 𝑛𝑛 + 𝑏𝑏) > 4 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 (3.4) 

(𝑛𝑛 . 𝑛𝑛 + 𝑏𝑏) < 4 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 (3.5) 

The above process of training goes through multiple iterations to reach zero error of the 

smallest possible error value. 

𝑛𝑛New = 𝑛𝑛Old+ ∝ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖) (3.6) 

The update function adds the new weight (Wnew) to, the learning rate, multiplied by the 

difference of the right Yi and Yi wrong output which is the error rate. The weight is updated 

until the desired solution is achieved. Note, the value of the error rate which influences the 

learning time. 
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The following is the pseudocode of Algorithm 3.2 that summarises the proposed solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3.2 Perceptron-based Neural-Network Algorithm 

Input: Set of sample data of Sensor Nodes 

Output: Set of sample Sensor Nodes of Class 1 or Class 2 

 

1: Initialize:  Sleep Awake Cycle (k to k+1) 

2: Read data from the data sample as ~x 

3: Train Neural Network () 

4: Choose an initial weight vector ~W 

5: Initialize the minimization approach 

6:  While the error did not converge do 

7:  For all (~x, ~d) € D do 

8:       apply ~x to the network and calculate the network output 

9:       calculate error (~x) 

10:  end For 

11:   calculate error (D) 

12:  For all weights summing over all training patterns 

13:   perform one update step of the minimization approach 

14:  end while 

15: if Threshold > 4 then 

16:      Class 2 

17:  Else 

18:      Class 1 

19: end if 
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3.6.1 Experiment 3: WSN with RCS Scheduling Algorithm Supported by 

ANN 

 
Figure 3.13 Scheduling Algorithm for WSNs with the use of Neural Networks 

The purpose of the ANN is to analyse the performance of the scheduling algorithm by returning 

the number of nodes that are overworked. The ANN returns for each node if it is overworked 

(class 2) or not (class 1). The data collected from the ANN is used to further analyse and 

enhance the dependability of the WSN. Figure 3.13 above present the simulation environment 

in which, the ANN analyser applied to analyse the RCS scheduling algorithm. As can be noted, 

the overwork node is highlighted in green. Table 3.2 represents the new ANN parameters that 

were generated from the simulator. 
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Table 3.2 Parameter of the Perceptron Artificial Neural Network Analyser 

Neural Network Parameters Value 

NumToCreate (# of data sampled) 1000-2000 

R (Maximum Range of Transmission) 15 

S X (X-Axis Coordinates of Sink Node) -15 

S Y (Y-Axis Coordinates of Sink Node) 50 

Number of Input Variables 2 

Number of Functions to fit 1 

Ratio of Data used for creating model 0.85 

Error Rate @ 200th Iteration 4.990006e-01% 

Accuracy of Classification @ 200th Iteration 86.1302 

  

3.6.1.1 Training Progression 

Figure 3.14 depicts the neural network's training progression, and the error rate changes across 

every consecutive iteration of the training, ending at 200 iterations. It is worth noting that the 

training depends upon the amount of data taken into consideration with the fine tuning of 

hyperparameters. During the simulation process, the error rate reaches an acceptable range 

during the 149th iteration, holding a value of 4.998903e-01 (0.005%), where the final stabilised 

error rate at the 200th iteration is 4.990006e-01% (0.005%). Those value were generated from 

the simulator. 
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Figure 3.14 Training Progression 

The accuracy of classification for the training is 86.130, meaning the neural network could 

detect which nodes will 'Extra On' in four or more occurrences throughout the 200 iterations 

of testing taken place in the training segment of the experiment. 

 

3.6.1.2 Neural Network Analysis 

 
Neural Network Analysis: The experiment was undertaken to emphasise the scheduling 

algorithm's strengths; a simulation was performed using a pre-existing replicated RCS within 

MATLAB, which was built from the ground up as there is no open-source framework for this 

algorithm and one simulation in the absence of the RCS. The algorithm in question was chosen 

due to its ability to consider coverage, connectivity, and a lifetime of a network regarding 

wireless sensor nodes. Coverage, connectivity, and a lifetime of a network were used to 

measure the wireless sensor network's performance, as shown in the figures presented above 

as matrices. It was clear that the RCS's presence substantially increased a system's performance 

in the parameters mentioned earlier throughout every matrix. 

 

Evaluation of the ANN analysis: Following our experiment, the ANN algorithm returns 19 

Nodes that died earlier than any other node in the network (Overused). Figure 3.13 shows all 

19 Overused Nodes (Highlighted in green colour), which are situated in the 1-Hop area.  This 
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will create a partition in the network whereby events will be detected in the subsequent k-Hop 

areas (k > 1) but will not be reported to the Base station, thus rendering the whole 

implementation of the WSN useless and undependable.  The ANN analysis hence confirms the 

initial hypothesis that nodes that are closer to the Base station are more likely to undertake 

more workload. However, the ANN analyser is limited to discovering the number of Overused 

nodes and where partitioning is more likely to occur in the network but does not provide a way 

to improve the existing algorithm in question (e.g., RCS in this case) or come up with a new 

suggestion to revive the 1-Hop area, e.g., by utilising nodes in the 2-Hop area instead. 

3.7 Evaluation and Interpretation 
In this chapter, an ANN Analyser has been developed to analyse the scheduling performance 

and suggest possible solutions with respect to state space exploration for the MOO problem. 

The simulation results have shown limitations in the mechanism of the algorithm itself in this 

case the RCS-based scheduling algorithm. Hence, indicates there is more room for state space 

exploration to obtain a better solution. For example, the randomisation of the RCS algorithm 

mechanism partitions the network into two or three segments. In particular, a partition can 

occur close as well as further away from the base station, as the death of subsequent nodes can 

result in active nodes attempting to compensate for the drop-in coverage and connectivity in 

the system.  

 

Hypothetically, there are possible ways to improve the lifetime of these sensor nodes by using 

a more dynamic connectivity/coverage strategy, which can involve increasing the transmission 

radius of certain nodes to balance the load on 1-Hop Nodes. Another possible solution would 

be further to divide the area into 1-Hop, 2-Hop N-Hop areas, and determine the best trade-off 

between all these areas (in terms of connectivity and coverage) that helps improve Network 

lifetime.  

 

It is worth mentioning, that the ANN analyser doesn’t provide the best solution, but it tells the 

limitations of the algorithm under testing in this case the RCS. In specific, it confirms if the 

solution is optimal and why if it is not. Now that the methods to analyse scheduling algorithms 

using ANN analyser to train then test the performance of the scheduling algorithm [Liu et al., 

2006] is obtained. The research methodology is to investigate different techniques for state 

space exploration to find the better or optimal solution for the MOO problem in WSNs. In 



  

81 

 

addition, the emphasis is to find an approach that provides the solution or a method to confirm 

that the obtained solutions are the right or optimal solutions.  

 

The methodology stems from ANN Analysis outcome in which more state space exploration 

is needed to find possible avenue that would lead to the near optimal or optimal solution for 

the MOO problem. Thereby, improves the WSN system’s overall dependability.  

There is a promising avenue in term of Bio-inspired computation, and Machine learning 

approach. There are many methods and approaches to address state space exploration. For 

example, Bio-inspired based Bat approach and Machine learning using spatial and temporal 

approach is selected to address the state space exploration. However, from the outset of it 

cannot be determined which approach would provide the best possible solution. Therefore, to 

ensure which algorithm should give the best possible solution.  
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Chapter 4 Using Hidden Markov Chain for 

Improving the Dependability of Safety-

Critical WSNs 
4.1 Introduction 

The main aim of the ANN analyser is to explore the state space and find a unique 

solution to the given problem regarding connectivity, coverage, and energy efficient in node 

scheduling mechanism. For example, in chapter three the ANN analysis confirms the limitation 

in the RCS algorithm mechanism itself [Liu et al., 2006]. For instance, many unique solutions 

can be explored to provide a better solution which shall improve the WSN’s lifetime, and 

service continuity, reliability, and availability. Specifically, through the ANN analysis, 

scenarios were captured, and each round discovered that some nodes are over-worked, while 

others under-worked, hence the network's service availability and lifetime are compromised. 

The reason for this is because nodes are not working in an efficient manner, this level of non-

determinism makes optimal load balancing for future performance optimization a challenging 

task due to the randomized nature of the RCS algorithm. For example, towards the end of the 

network life cycle, some nodes are found to be already obsolete (dead), this can lead to breaking 

the WSN into different segregations due to nodes' absence/death. The result of this situation 

can lead to data loss due to inability to transmit messages across the WSN because of the dead 

nodes. 

ANN analysis [Chapter 3] has shown for a simple WSN example how in each round of 

the simulation, some nodes are overworked while others are underworked, eventually leading 

to an early partition of the network whereby 1-hop nodes die first and no communication can 

reach the base station. Consequently, many unique solutions/schedules can be explored that 

improve on the performance of RCS initial (random) schedule. However, these unique 

solutions are determined in an ad hoc way such that a further step is yet needed to find amongst 

them which one (or set thereof) provides the best solution.  

The purpose of utilizing HMM to lengthen the WSN service availability by delaying 

reaching the state of nodes’ obsoleteness via optimal load balancing. Reaching a state of 

obsoleteness is an inevitable state for nodes, and WSNs by and large. However, delaying 
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reaching this state has service, and arguably economic, benefits. HMM was utilised to 

intelligently extend the usability of nodes to collectively increase the service availability and 

reliability of the WSN. The author of this thesis acknowledges to the best of his ability that the 

literature lacks focusing on extending the WSN lifetime in the best, useful, and most possible 

meaningful way. Hence, exploring the state space to find such a near-optimal solution is 

important. Related work in literature has focussed on extending the last remaining node alive, 

while having aimed for extending the collective lifetime of the WSN. 

In this chapter, a HMM is proposed to model the behaviour of a WSN. An optimal 

solution can then be achieved by ensuring that each node is used for transmission dependent 

on its current energy level. As the latter decreases, the probability for the node to be in a 

transmit state decreases while its probability of being in a receive state increases. Notably, a 

new algorithm is introduced that ensures the assigned probabilities are the best possible. Unlike 

the RCS algorithm, the HMM-based algorithm returns the energy levels of every node and 

triggers maintenance warning messages such that dying nodes can be replaced in due time. 

4.2 HMM and its Usability in WSNs 
The HMM Model is used to optimize the ON/OFF states by analysing the OFF states 

and the ON states as well as the IDLE states. The latter also consumes energy via memory 

buffering and CPU processing of already stored data. More specifically, in this chapter, the 

number of Transmit (Tx) and Receive (Rx) states were balanced in the nodes ON states. As 

known, Tx states are more expensive, energy consumption wise, than Rx states.  
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Figure 4.1 Balancing Tx and Rx states using HMM. 

Figure 4.1 illustrates a simple example of one sensor node (A) that has two main 

functions (transmit and receive) where the probability for both states is equal (0.5,0.5). As there 

are hidden states like s1, s2, s3, and s4 in the above diagram, their initial probability values 

would be (⅛ + ⅛) per state. It is noticeable that all states have equal probability values, but in 

the long run, and as the energy depletes, the receive-state will take less energy so it will have 

higher probability and, hence, the more expensive it will be for transmit-state to take place. 

This will result in assigning less probability values to transmit-states, then more states will 

behave as a receiver rather than a transmitter. 

Consider the WSN application from Chapter 3. Figure 4.1 illustrates the HMM of a 

node from that WSN, showing on the left the initial probabilities assignment and on the right 

the probabilities after 800 rounds. Between 800-850 rounds, 10% of nodes function as 

transmitters only; and between 801-820 rounds, 80% of nodes may act as a transmitter node 

but they rest afterwards until the 850th round by acting as receiver nodes. 

4.3 The HMM Algorithm 
The transmit and received states were split into four probability states which divides 

the transmission states as well as the receiving states into four transition probability states as 
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shown in the Figure 4.1 above. The HMM optimization uses these transmission probabilities 

for switching into four different states for granularization (e.g., stepwise refinement splitting 

the big problem into small pieces) using the HMM functions. The HMM function assigns 

predefined probabilities as they are above (⅛, etc.) per transition probability. 

A sensor node initially has two states, but now after using HMM a senor node will be 

assigned four states (S1, S2, S3, S4) as illustrated in Section 4.2; the greatest probability 

amongst S1, S2, S3, S4 will be assigned the sensor node instantaneously. This means, as the 

network progresses in time, energy of each node reduces, hence probability using HMM is a 

good fit to keep up with which nodes to transmit and which nodes to receive. As time evolves, 

the probability of receiving is higher than transmitting. For a WSN of five nodes: A, B, C, D, 

and E. Not all nodes will be classified as Tx and Rx nodes, but only those whose energy 

decreases in time at a rate that the WSN’s base station decides to transition them to be Rx nodes 

only. However, there will remain Tx nodes too, depending on their current predicted energy 

levels. 

Algorithms 4.1 represents the Pseudo code functionality of the HMM node scheduling algorithm.: 

Algorithm 4.1 Pseudo code for the HMM Algorithm 

Input Parameters:  X: the input domain of the function to optimize (Sleep, awake, transmit, receive) 
F: the function to optimize (optimised s-w-t-r cycles) 
N: the number of hidden states in the HMM 
T: the length of the observation sequence (suppose there is (S, W, T, R, ........)) 
 max_iterations: the maximum number of iterations for the optimization algorithm 
 

Output Parameters 

(epsilon): 

the threshold for convergence (minimum number elements in the sequence e.g., S, R) 

 

1. Initialize the HMM: 
   - Randomly initialize the initial state probabilities, transition probabilities, and emission probabilities. 
2. Initialize the observation sequence: 
   - Generate a random sequence of length T by selecting inputs from the input domain X. 
3. Run the Viterbi algorithm: 
   - Use the Viterbi algorithm to find the most likely sequence of hidden states given the observation sequence. 
4. Update the model parameters: 
   - Update the initial state probabilities, transition probabilities, and emission probabilities based on the most 

likely sequence of hidden states found in step 3. 
    
5. Repeat steps 3 and 4 until convergence or until the maximum number of iterations is reached: 
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   - Generate a new observation sequence using the updated model parameters. 
   - Run the Viterbi algorithm to find the most likely sequence of hidden states given the new observation 

sequence. 
   - Update the model parameters based on the most likely sequence of hidden states found in step 5. 
   - Check for convergence by comparing the log-likelihood of the observation sequence between iterations. 
6. Return the optimized function: 
   - The optimized function is given by the emission probabilities of the final HMM. 
 
Viterbi Algorithm: 
function Viterbi (Observations, States, Transition_Probabilities, Emission_Probabilities): 
    T = length of Observations 
    N = length of States 
    V = matrix with dimensions (N x T) initialized to 0 
    Backpointer = matrix with dimensions (N x T) initialized to 0 
    # Initialization 
    for i in range(N): 
        V[i][0] = Transition_Probabilities[0][i] * Emission_Probabilities[i] [Observations [0]] 
        Backpointer[i][0] = 0 
         
    # Recursion 
    for t in range (1, T): 
        for i in range(N): 
            max_prob = -1 
            max_state = -1 
            for j in range(N): 
                prob = V[j][t-1] * Transition_Probabilities[j][i] * Emission_Probabilities[i][Observations[t]] 
                if prob > max_prob: 
                    max_prob = prob 
                    max_state = j 
            V[i][t] = max_prob 
            Backpointer[i][t] = max_state 
    # Termination 
    max_prob = -1 
    max_state = -1 
    for i in range(N): 
        if V[i][T-1] > max_prob: 
            max_prob = V[i][T-1] 
            max_state = i 
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    # Backtracking 
    Path = [max_state] 
    for t in range (T-1, 0, -1): 
        max_state = Backpointer[max_state] [t] 
        Path.append(max_state) 
    Path.reverse() 
    return Path 

4.4 Experiment Results 
As described in Chapter 3, the same experimental set-up is implemented. The main objective 

of this experiment is to analyse the performance of the new proposed HMM algorithm with 

RCS scheduling algorithm. The proposed solution can be applied to any scheduling solution 

since it alerts the state of the ON node at a very particular point in time at a very particular 

event, e.g., when a node’s level of energy reaches a certain level. In this experiment, the new 

HMM Node scheduling algorithm was analysed using the MATLAB simulation environment. 

The experiments were set up in a 100m2 area to be monitored. The simulation consists of 100 

stationary sensor nodes that are randomly deployed. The base station is located on the far-left 

edge of the network. All nodes are homogeneous which means that they have the same sensing 

and communication capabilities as depicted in Figure 4.2. 
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Figure 4.2 Simulation Set-up of HMM Node Scheduling Algorithm. 

The simulations were performed over 2000 rounds as the upper pound of the simulation 

experiment. The breaking point of the simulation experiment e.g., the simulation will 

completely stop when 95% of the sensor nodes have depleted their energy. In each simulation 

round, an event is detected and reported to the base station. In this experiment, the performance 

of the original RCS algorithm against the HMM Node scheduling algorithm version were 

compared and analysed, in terms of the following metrics: All Used Energy; Lifetime of WSNs; 

Throughput; Connectivity; Coverage; Coverability. Below are the graphs obtained per metric, 

in each graph there are two simulation factors: 

1. RCS scheduling algorithm, referred to as “scheduling_o”. 

2. HMM Node scheduling algorithm, referred to as “scheduling_m”. 
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4.4.1 All Used Energy 

 

Figure 4.3 All Used Energy 

The All Used Energy metric is concerned with the sum of consumed energy in the WSN during 

its lifetime of operability (simulation time for the purpose of this thesis). The X-axis is the 

number of simulation seconds/times, while the Y-axis represents the energy consumption unit 

in Joules as shown in Figure 4.3. The performance of the curves in the above diagram can be 

interpreted as a metric performance evaluation whereby the less the curvature with respect to 

Energy levels the better because this shows the WSN achieves the same number of rounds 

(Time) with less energy. As it can be seen in the Figure 4.3 at the 168th round (Time) the 

energy consumed by the original RCS is 7.867 Joules, in contrast, the energy consumed by the 

improved proposed algorithm (using HMM) is 7.133 Joules. Hence, the HMM-assisted 

algorithm shows improved performance with respect to energy consumption than its RCS peer. 

This proves the earlier proposed hypothesis in Chapter 1. Furthermore, as time progresses, 

energy will naturally deplete, and the difference in energy consumption levels between the two 

algorithms is almost non-existent. This is because there is a positive correlation between the 

granularity value (of the parameter) and the distance between the curves. This can be noted 

from round 200th to 600th that the HMM recorded energy saving of almost 2 joules. 
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4.4.2 Lifetime of Sensor Nodes 

 

Figure 4.4 Lifetime of Sensor Nodes. 

The ‘Lifetime of Sensor Nodes’ metric refers to how long the sensor nodes will last before their 

energy deplete. The X-axis is the time in Rounds, while Y-axis is energy of each sensor node 

as shown in Figure 4.4. From the Y-axis, the remaining number of nodes at the end of the 

simulation run-time is 15 for both HMM and RCS. Yet, the X-axis shows with HMM the WSN 

lifetime reaches 107th rounds before the end of simulation, but RCS lasted to 102nd rounds only. 

Despite the small improvement made with the HMM (of 5 rounds only), this can be explained 

due to the small value allocated to the sensor parameters (number of nodes, energy, 

communication, and sensing ranges etc.). Note, assigning large parameter values is an 

unrealistic experimentation practice [Xianglin et al., 2012]. The differential energies with 

respect to HMM curve for the 20th rounds to 40th rounds and 40th rounds to 60th rounds are due 

to the stochastic fluctuations in the energy level for sudden wake up and sleep cycles, these 

fluctuations are prominent when the number of alive nodes is in between 80 to 40. 
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4.4.3 Efficiency 

 

Figure 4.5 Efficiency. 

Efficiency is the bandwidth consumed of data packets sent and received in the network. Since 

the bandwidth of the network is defined as the number of packets generated in the network, 

hence we can clearly say lower bandwidth will have less congestion and less information. The 

more bandwidths will result in more congestion and more information. More packets will 

require more energy for its generation and more packets lost due to congestion which will result 

in loss of energy and information. The X-axis is the time which is in Rounds, and the Y-axis is 

the number of data packets transmitted in the networks as shown in Figure 4.5. It can be noticed 

the distance between the two curves of HMM and RCS algorithms can be explained by the idea 

that there are lots of packets generated in the networks which indicates that a 

considerable number of packets are discarded due to collision; the excess generation of packets 

lead to the wastage of energy and hence, the resultant data transfer is less. With HMM, 

transferring less packets were possible which resulted in better performance with respect to 

efficiency. In the above figure, with HMM, the number of packets generated at the 1414th 

round is 2275957. Meanwhile with RCS, at the same 1414th round, the number of generated 

packets is 2379214. Hence, HMM generated 10,000 packets less than RCS. Hence there was 

less congestion in the network and less packet loss and better efficiency than RCS. 
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Hence, more energy saving leads to a better performance in the WSNs with respect to coverage 

and connectivity functions. This in turn will provide more available and reliable data readings 

from WSN. 

4.4.4 Connectivity 

 

Figure 4.6 Connectivity. 

Connectivity is the number of nodes connected at any instance in time. The X- axis is time in 

rounds, and the Y-axis is the fraction or percentage of nodes being connected. The HMM’s 

connectivity performance is similar to the RCS’ performance with respect to the fractions of 

the nodes that are connected as shown in Figure 4.6. Both algorithms scored equal connectivity 

values of 99.99, which indicates that there is almost no scope of improvement over the RCS as 

far as this metric is concerned. The fluctuations can be attributed due to the stochastic nature 

of the HMM algorithm over the randomization nature of the RCS algorithm. 
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4.4.5 Coverage 

 

Figure 4.7 Coverage. 

The coverage metric is defined as the percentage of the area covered by the WSN. The X-axis 

is the number of rounds in time, and the Y-axis is the ratio of the coverage for the WSN by 

large. At the 65th round, for instance, the HMM coverability is found to be 0.005, while the 

RCS algorithm scored 0.05 as shown in Figure 4.7. This indicates network coverage has been 

multiplied by 10 using the HMM algorithm. 

There is a noticeable fluctuation recorded from the 1st round to 20th rounds, in these rounds, 

the performance in terms of coverage for HMM is better as compared to RCS because the local 

maxima obtained in Markov scheduling perfectly managed the decision process in such a way 

that better coverage can be obtained as seen energy efficiency graphs as discussed above. The 

curves are the output of a discrete event simulation, so each time the simulation run the output 

result will have the same result but with the small variation; hence, the curves will fluctuate 

differently by nature, but the result of the performance remains the same, this is attributed by 

the fact that discrete event simulation is stochastic by nature. 
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Another note can be taken from is that from the 20th rounds to 40th rounds is that due to the 

presence of network holes some negative coverage can be seen in case of HMM but is quickly 

recovered by adjusting the local maxima in Hidden Markov Chains in sleep, awake transmit, 

receive cycles. 

A remarkable observation is that from 40th  to 113th  rounds, at these rounds the number of alive 

sensor nodes is almost 40 %, so now the challenges of keeping the test area covered is equally 

daunting for both RCS and HMM. In all, the conclusions, the coverage functions are 

continuously riddled with energy depletion and network hole problems as the number of alive 

nodes falls below 40%. 

The objective here is to study the network’s coverage per section of nodes. For 70 nodes 

out of a total of 120 nodes, the HMM normal coverage (0.31) > RCS normal coverage 

(0.27869) and HMM scheduling coverage (0.231885) is also greater than RCS scheduling 

(0.15254) and this trend follows as the number of nodes increases. It is worth noting that the 

term ‘Coverability’, while sounding synonymous with ‘Coverage’, refers to the percentage of 

the coverage per sensor node. The above figures explain the result of the experiments. The RCS 

algorithm was originally tested on the basis of coverability, not coverage in C Liu’s work [Liu 

et al., 2006]. This is understandable because the algorithm is not compared or evaluated against 

other algorithms with respect to (1) the coverage metric of the extra ON nodes, and (2) network 

lifetime improvement. In the HMM improved algorithm, the aim is for improving network 

lifetime to contribute to the safety critical system requirements, and further contribute to 

dependability of such systems. The Coverage metric is concerned with all of the network’s 

nodes, while the Coverability metric is concerned with a certain number of nodes and can be 

used to analyse single nodes only. Therefore, the Coverage metric has been the focus in the 

experimentations. 

4.5 Evaluation and Interpretation  
In this chapter, a new HMM-based node scheduling algorithm is used to address the 

coverage, connectivity and limited lifetime problem as seen in RCS algorithm. This solution 

outweighs the computational complexity associated with it by performing the computation of 

scheduling offline before the actual operation of the network. The main goal is to predetermine 

the receive and transmit states’ schedule of each node in the WSN in the design time. As a 

result, each node knows its receive and transmit states’ schedule and operates accordingly in 
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the runtime. In this process, the transitioning probability between the states have been 

intervened in that there are receive and transmit states. 

 

For safety aspects, it can be concluded that the proposed HMM algorithm does not lead 

to safety issues when its scheduling algorithm forces certain nodes to transition to, for instance, 

‘receiving’ states. This is mitigated by ensuring both receiving and transmitting nodes at every 

round of simulation time to ensure network’s operability. The HMM node scheduling 

algorithms provide a better solution through the utilisation of probability distribution function. 

This solution is found among many solutions in the state space. Since, the decision is based on 

information made available by sensor nodes locally. This is an example of localized application 

of HMM in sensor nodes, and hence the receive and transmit states’ schedule is determined. 

The limitation here, however, is that this solution is bound to the problem restriction as dictated 

by WSNs configuration.  

The HMM-algorithm is interested only in the energy level of a node and is concerned 

about two states: transmit and receive. In reality, a node may have other states depending on 

varied processing it may perform, computing location. These may be represented by an abstract 

‘processing state’, however, only the energy level after the processing interests the HMM 

algorithm. Besides these ‘expected’ states, unexpected events can occur that affect the actual 

state of a node. A given phenomenon might interfere with the transmission state of a node, turn 

a node off for a short while then turn it back on, etc. These can be infinite and are modelled by 

hidden states and affect the probability of transition between transmit and receive states. A 

limitation to this is that the number of hidden states is undetermined/unknown and has an effect 

on the performance of the algorithm. Notably, it is possible to model hidden states that never 

occur in reality; or to have states that occur in reality but are not modelled. In both instances, 

information about these real states cannot be used by the algorithm to improve its performance. 

The HMM algorithm is stuck in local minima and local maxima as it proceeds only with 

information it was given during the initial configuration.  

A possible solution might be to insert a feedback loop to provide additional information 

to the HMM algorithm. This would require monitoring the network to decide what hidden states 

to add or preserve, which may not be ideal when the WSN is placed in an environment with a 

lot of dynamic changes. In the next Chapter, a bio-inspired computation to bypass this 

limitation is considered. 
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Chapter 5 A Novel Implementation of a Bio-

inspired Bat WSN Scheduling Algorithm 
5.1 Introduction 

This chapter adds to the contributions of a new implementation of a Bio-inspired 

computation algorithm to solve the MOO problem in WSNs. Since the difficulty with HMM is 

that it is bounded with suboptimal solutions, the question remains open if further improvement 

is possible as previous HMM algorithms explore solutions in terms of local minima and local 

maxima, not in terms of the unique solutions in search space globally. Bio-inspired algorithms 

are a perfect fit for MOO problems [Singh et al., 2021] which provide the global solutions 

instead of local values. The proposed Bio-inspired BAT algorithm is performed in two levels: 

(1) a search space - where a fitness function is created to represent the best solution; and (2) a 

Pareto optimization technique to organize and then select the best solution in this search space. 

There are two functions involved with the proposed algorithm, objective, and fitness functions 

to find the best possible solution, which in this case is the optimal scheduling of nodes’ 

ON/OFF duty cycles. 

 

The concept of the Bat algorithm is based on the use of computational methods inspired 

by nature. For example, the behaviour of a particular species such as Bats when hibernating 

(going into a deep sleep) in the cold mountains to preserve energy is an inspiration for the 

proposed work in this chapter. Recent studies show that certain groups of Bats hibernate by 

grouping themselves, reducing their temperature, slowing their heartbeat rates, and breathing 

rates significantly, and expending little energy. When the Bat group decides to wake up, the 

bat in the middle of the group accelerates its heartbeat, which in turn accelerates its blood 

circulation, as a result, heat is produced. Finally, the heat is propagated from the closer to the 

rest of the bats in the group, where they start waking up gradually. 

 

In this work, for the first time, we propose using a Bat algorithm at the application layer to 

optimize the node scheduling of WSNs along the three requirements of coverage, connectivity, 

and lifetime. This notably permits the exploration of a larger search space to find the best 

scheduling solution.  
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5.2 The Bat Algorithm 
In this chapter, the bat-inspired algorithm is first mapped to the WSN model in Figure 5.1 

below. 

 
Figure 5.1 Interpretation of the Bat model into the WSNs Model 

The Bat-inspired concept here stems from the mechanism bats use where they increase their 

heartbeat to propagate heat to the farthest bat in the group. The higher the heartbeat of the 

middle bat in the group, the higher the distance the heat covers. The concept here revolves 

around two key notions: energy, and distance.  

1. Energy: the residual energy of the nodes is catered for. As the network progresses in 

time, the energy is defined for each node, which will eventually be depleted.  

2. Distance: it is the distance of the nodes from the base station. e.g., the X and Y 

coordinates of each node from the base station. 

 

Below is the pseudo-code developed to describe the functionality of the proposed algorithm.  
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Algorithm 5.1 represents the pseudo code of the developed approach. 

Algorithm 5.1 BAT Algorithm 
Input: Initial population, frequency, and velocity of Bats 
Output: Global umber of iterations. 
1: Initialize the Bat population n, the heart pulse rate r(i), the velocity v(i) 
2: While (t < max _iter) 
3: Fi = f min + (fmax - fmin) * beta 
4: Vi (t+1) = vi (t) + (xi(t) - x*) 
5: xi(t+1) = xi(t) + vi(t+1) 
6:                              If (rand > ri) 
7:                              x(new) = x(old) + epsilon* fi 
8:                              End If 
9:      If (rand < E) && (zi < zsol) 
10:    E(t+1) = alpha * E(t) 
11:    Z(t+1) = z(t) + b(t)*P(t) 
12:    End If 
13: Find the solution Zsol for Ei; 
14: Rank the Bats in P [],  
15. Pareto-optimal (P []) 
16:  For each solution s₁ in S: 
17:         Initialize a Boolean flag dominated = False. 
18:       For each solution s₂ in S: 
19:         If s₁ is dominated by s₂ (all objectives of s₂ are better or equal to s₁), 
20:  set dominated = True and break. 
21:        End If 
22:      If dominated is False,  
23 add s₁ to P as it is a Pareto-optimal solution. 
24:     End If 
25:        End For  
26: Return P as the set of Pareto-optimal solutions. 
27:  End For  
28: End While 

The proposed algorithm is inspired by mimicking the mechanisms of how bats operate 

in energy consumption and network coverage via their heartbeats into the WSN 

implementations. The framework of the algorithm is depicted and runs with these precalculated 

input values: 

● Location coordinates of nodes 

● The energy level of each node at start 

● The energy consumption due to Tx and Rx 

● The base station location 
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● The test area dimension 

● Time of operation of sensor network 

● The threshold value that limits the operation of sensor nodes 

These input instances are fed to the proposed algorithm where the following output 

metrics are obtained. 

● Energy values at instantaneous time 

● Sleep and awake schedule.  

The objective function presents the possible solutions in the search space, whereas the fitness 

function is a function that analyses a candidate solution to a problem. The candidate solutions 

are processed as inputs by the fitness function and the produced outputs are analysed by how 

“fit” i.e., how close the solutions are with respect to solving the problem in consideration. 

There are 4 dimensions as input these can be viz. the frequency, velocity, position, 

and pulse. The difference fmax-fmin is considered as one where f is the max and min value 

for the Bat population/solution. By using equations 5.1, 5.2, 5.3, 5.4, and 5.5 from the 

theoretical aspect of bat algorithms, there are updated output values for energy, position, 

and heart rate with �itness functions as described in equations 5.4 and 5.5. Pareto 

optimization is utilized over the output values of the bat algorithms to visualize and 

organize the data in a meaningful manner. The mathematical formulation relates to 

higher energy levels, which are required to wake the farthest bats. The position can be 

mathematically determined by adjusting the energy levels. The novel approach proposed 

in this paper stems from adding convergence time and energy to the multicore space 

search problem. 

In the search space, there are solutions, and, in the solutions space, there are all 

the solutions listed among the solutions, there is one best solution. Let the coordinates of 

a Bat under consideration in search space be (Zi, Ei) where Zi is the position with respect 

to time (position with reference to base station) and E is the energy of the Bat with 

respect to time. The distance between nodes and the base station is also a contributing 

factor to the search space, the general structure of the Bat algorithm is borrowed from 

[Yang, 2020]. Therefore, the search space equations are represented as: 
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𝑍𝑍[𝑡𝑡 + 1]  =  𝑍𝑍[𝑡𝑡]  +  𝐸𝐸[𝑡𝑡 + 1]                               (5.1)   

𝐸𝐸[𝑡𝑡 + 1]  =  𝐸𝐸[𝑡𝑡]  +  [𝑍𝑍[𝑡𝑡] –  𝑘𝑘[𝑡𝑡]]                            (5.2) 

Now, the solution is obtained in the search space, we need to make sure these solutions are 

withing certain range/loudness (viz., the loudness is related to the amplitude of the wave 

generated by bats. The factor C is used to bring the loudness within the specific range). Unlike 

the standard bat algorithm which uses echolocation to generate loudness, the modified 

Hibernation bat algorithm uses the Heat rate to generate waves, so this heart rate has an 

amplitude as it has loudness. 

 

𝐴𝐴 =  𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛 + [𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 −  𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛]  ∗  𝐶𝐶                  (5.3) 

𝐶𝐶 =  [𝐴𝐴 − 𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛] / [𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 −  𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛]             (5.4)   

where f is the heart rate of the bat under consideration, whereas C is a gradient (steepness/ 

slope of a curve in search space) average position. Where k(t) is a proposed global solution, 

not possible as the energy is depleted with respect to time because the sensor battery is drained 

after each cycle. Hence, the solution proposed in this paper will be local. This algorithm will 

have both local and global solutions. So, the local solution is: 

 

𝑍𝑍[𝑡𝑡 + 1]  =  𝑍𝑍[𝑡𝑡]  +  𝑏𝑏[𝑡𝑡] ∗ 𝑃𝑃[𝑡𝑡]                       (5.5) 

 

Where P[t] is the population density of Bats and b can be a varying constant. P(t) is a normal 

distribution of the bats with high density inside and sparse outside. In other words, The Bat 

population are highly concentrated/dense as you get close to the centre and spares as you move 

out away from the centre of the bat cluster. The global solution can be obtained by the addition 

of the P[t] variable to the local solution as described. If the population P[t] can be averaged out 

by the following relation representing the global solution by 

 

𝑃𝑃[𝑡𝑡 + 1]  =  𝑐𝑐 ∗ 𝑃𝑃[𝑡𝑡]                                      (5.6) 

 

This equation describes the average number of bats per layer (hops in terms of a sensor 

network in the cluster, to have an average of the bats per layer, equation 5.6 is used) this 
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population variation equation with respect to time. This triggers multiple solutions rather than 

a single solution.  

In this thesis, the search space is in the remit of the energy of sensor nodes and how the 

energy depletes with respect to the network’s performance. Assuming the following nodes-

schedule as proposed in the following Table5.2, where each node will have various On-Off 

time instants. 

Table 5.1 Nodes scheduling with variant ON/OFF time instants. 

Nodes ID Instant 1 Instant 2 Instant 3 Instant 4 

Node 1 OFF ON OFF ON 

Node 2 ON OFF ON OFF 

Node 3 OFF OFF ON ON 

Node 4 ON ON OFF OFF 

 

If time values are arbitrarily assigned to the instants such as: Instant 1 = 1; Instant 2 = 2; Instant 

3 = 4; Instant 4 = 7, but applying some arithmetic’s: 

● Instant 2 - Instant 1 = 2 seconds - 1 second = 1 second;  

● Instant 3 - Instant 2 = 4 seconds - 2 seconds = 2 seconds; 

● Instant 4 - Instant 3 = 7 seconds - 4 seconds = 3 seconds; 

The proposed algorithm processes the residual energy of bats/nodes into a function of 

On-Off values with respect to time. Since energy depletes as time naturally progresses of the 

WSN, the residual energy is a proportional attribute to time, the On-Off values will be 

dynamically updated from the proposed algorithm. The premise of the work is based upon a 

previously calculated data table which contains the sleep awake and energy, communication 

requirements, scheduling values. The core of the proposed algorithm is to optimize the 

objective function related to the product of energy, distance, and network lifetime as explained 

in the following scenario 1. In the proposed solution, the objective function is considered which 

takes into its optimisation goals energy (drive the network and lifetime), distance (related to 

connectivity), and network lifetime (related scheduling). 
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Use-Case Scenario of the BAT Node Scheduling Algorithm  

The following is a step-by-step use-case scenario based on three Bat populations presented to 

demonstrate the mechanism of how the Bat algorithm provides a solution for the problem at 

hand. The BAT algorithm considers in its search space an objective function and a fitness 

function to achieve the best optimal solution. The objective function is the function where it 

contains the main parameters which represent the solution in the search space, the main aim is 

to produce the best scheduling solution. The objective function is represented as:  

 

Objective function= f (frequency, velocity, position, pulse) 

 

Where its primary parameters define as: 

• Frequency: The Rate of ON and Off nodes in the WSN. 

• Velocity: Is the mobility status of our node in our scenario it is 0 as our Bat 

(Sensor Node) are not moving stationary. 

• Position: Is the X and Y coordinate position of the sensor nodes or Bat 

• Pulse: is the residual energy of the node. 

1: Initialize the bat population, energy levels, and the objective functions; 

The first step is where the population of sensor nodes is initialized with the energy value and 

an objective function randomly as in Table 5.3. 
2: Define heartbeat rate (relates with the energy), for the bat population sample (number of 

bats), population density (number of bats/total test area) 

The second step heartbeat rate is defined (relates with the energy), for the Bat population 

sample (number of bats), population density (number of bats/total test area); the heart Pulse 

rate is the energy level of the sensor node (Bat population is number of sensor nodes). For 

example, suppose there are 100 Bats, and the test area is 100 square meters then the population 

density is 100/100 =1 Bat per square meter (coverage).  
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Table 5.3 is the 1st iteration with random values assigned to the variables. In this step the 

initialization take place. 

 
Table 5.2 Initializing the population of Bat with random values 

Bat 1 Bat 2 Bat3 Variables C threshold value 

10% 15% 13% 
Frequency F (percentage or 

population of Nodes ON) 

F > 0 

0 0 0 Velocity V (mobility status) V = 0 

1 3 5 Position N (No. of hops) N < Number of nodes 

25 26 30 
Heart Pulse E (energy) E <= 30 J 

 

 
3: Generate new solution by adjusting the heart rate, and updating the energy level with 

locations to generate the new solutions; 

 

4: (𝑖𝑖𝑓𝑓 ((𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟 > 𝑐𝑐 = 𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡; )    // 𝑐𝑐 = 𝑡𝑡ℎ𝑟𝑟𝑡𝑡𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑟𝑟 𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡;  

 

Condition: There is a lower threshold values for each variables Frequency > 0, velocity =0, no 

of hops < number of nodes, energy level <= max energy of the battery used in sensor nodes. 

From the above, Bat 2 is selected amongst the three bat populations because it has the highest 

frequency population with a moderate energy level good then this condition makes it suitable 

to have better connectivity and coverage. 

 
5: Choose the best solutions based on the fitness function defined by equation 5.5; 

 

The fitness function operates as follows:  

 

Fitness function:  z(t+1) = z(t) + b(t)* p(t) 

 

Where t is the seconds t=1 seconds and b is b=0.02 similar to the learning parameters. 

z (2) = z (1) + b (1) *p (1) 

        = 10 + 0.02*10 =10(1+0.02) = 10.2 Bat 1 (1st population) 

        = 15(1+b) =15(1+0.02) =15.3  Bat 2 (2nd population) 
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        = 13(1+b) =13(1+0.02) =13.26   Bat3 (3rd population) 

 

6: else go step 4; 

Step 6 means (Else go to step 4) means if you arrive at all the same values for all bat 

populations, it will execute this step to recalculate from the beginning. 

 

7:  if (rand) > A && (zi < z solution) = true; 

 

This step A means selecting those Bats which have the lower energy values to achieve these 

objectives (the minimum operating energy of the Sensor nodes). The objective  here is to 

achieve 100 % efficiency in utilisation, which is the ideal Z solution. For example, suppose a 

network requires 3 nodes with minimal operating energy and two sensor nodes have met the 

condition while one has not. In that case the energy for the 3rd node must tune up to join in.  

 
8: update the solution. Increase Ei and reduce Zi; 

 

Step 8 updates the solution, where the energy level Ei is increased and the Zi is reduced. This 

means the more energy/node fewer nodes are involved and the less energy/node more senor 

nodes are involved. 

9: Rank the bats, find the solution Zsol for Ei; 

 

At this step after the Bat 2 solution is accepted, and ranking of the best to worst solution is 

taken.  Ei is reset and Zi is reduced. There is a solution generated after each iteration. This 

iteration is based on the Bat population. Finally, the best solution is communicated to the base 

station. 

5.3 Experiment Assumptions 
In this work, a uniform deployment with a random distribution over an area to be monitored 

was considered. It is assumed that the area to be monitored is composed of multiple grids, 

where each grid represents the Points Of Interest (POI) [Liu et al., 2006]. In order to ensure 

that the event is detected and reported back to the base station, we assumed that the network 

coverage intensity was high and was based on the probability coverage model [Sendra et al., 

2015]. Thus, a POI is defined as the area to be covered by at least one sensor node in the WSN. 
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Moreover, to ensure a good level of coverage, the coverage metric is defined to be greater than 

or equal to the area to be monitored. Consequently, the assumption is made that when 

connectivity between sensor nodes is established, all nodes are connected in the WSN. 

Thereby, there is always a maintained path from the base station to all nodes deployed over the 

area to be monitored. Furthermore, the network lifetime is defined as the most useful lifetime 

where sensor nodes maintain a level of connected coverage with the expected network 

operational lifetime over the area to be monitored. Figure 5.2 represents the possible spatial 

coverage scenario over the area to be monitored. In each scenario, the level of node density 

distributed randomly within a certain zone can be noted. 

 
Figure 5.2 Spatial Connected Coverage Scenarios (A, B, C, D, and E) 

 

5.4 Experimentations Set-Up  
            MATLAB-based event-driven programming simulator is used in this work. The 

simulation is performed to study and analyse the performance of the new proposed bat 

algorithm and compare it against the HMM algorithm, introduced in Chapter 4, and a normal 

non-scheduling, cluster-head, algorithm. In this simulation, a 20 𝑓𝑓2 of an area is to be 

monitored. The simulation is composed of rounds, in each round an activity of sensing and 

reporting the sensed data back to the base-station. The simulation parameters are identified 

Table 5.4 below: 
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Table 5.3 Simulation Parameters 

Parameter name Value 
Length of the network (meter) W = 20              
Width of the network (meter) L = 20              
Initial energy of each node (Joules) Ei = 0.25          
Packet size for cluster head per round (bits) CHpl = 3000          
Desired percentage of cluster heads p = 5/100      
Max Number of simulated rounds num_rounds = 2000   
Average Time in seconds taken in setup phase Tsetup = 4 
Average Time in seconds taken in steady state 
phase 

Tss = 10           

Energy for transmitting one-bit Etrans = 1.0000e-09  
Energy for receiving one bit Erec = 1.0000e-09   
Data aggregation energy Eagg = 1.0000e-09    
Energy of free space model amplifier Efs = 5.00e-8        
Distance from the sink to sensors area Marg = 5             
Packet size for normal node per round (bits) for 
each type 

rates = 80           

Max range for wireless transmission for each node R = 3.5                
 

The simulation is composed of 2000 rounds with a threshold to stop when the last number of 

nodes consumes all its energy. The Figure 5.3 below illustrates the experimentation set-up with 

the area to be monitored using 150 nodes. 

 

 
Figure 5.3 Simulation Set-Up of the Bat Node Scheduling Algorithm 
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Simulation was individually tested for 30 times. 1-way ANOVA analysis was implemented on 

BAT and HMM algorithms to identify the p-value for statistical results. 

 
Table 5.4 Statistical Analysis 

Metrics BAT Algorithm HMM Algorithm 
Number of Hops 26 20 
Connectivity 0.99 0.99 
Coverage 0.77 0.56 
Lifetime 196 183 
ANOVA 1(P-value) 4.12002e-188 3.34456e-148 

 

The P-value in table 5.5 represents an observation for the 30 times run test. If the P-value is 

less than 0.05, this means one or more values among the tested data are greater than the 

assumed mean. Thus, rejecting the null hypothesis, otherwise accepting the null hypothesis; 

implying no extreme difference between the values. In this research, the P-value is below 0.05 

as shown in Table 5.5. 

 
 
 
5.4.1 All Used Energy 
 The Y-axis is the nodes’ used energy, and the X-axis is the round number. The energy 

usage for the bat algorithm is better as compared with the RCS and HMM algorithms.  

 

Figure 5.4 All Used Energy 
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It can be noticed that the BAT algorithm reached an energy consumption of 24 joules 

at the 2555th round, while the HMM algorithm scored it at the 1000th round. This shows how 

energy efficient the Bat algorithm is by preserving energy for more than the double of time 

rounds which was achieved by the HMM. As energy is one of the main critical parameters so 

using it cautiously is one of the prime requirements of the WSN. As described earlier the Bat 

algorithm uses energy as one of the optimizing parameters due to the stable energy 

considerations in terms of distance as depicted in Figure 5.4. However, in the HMM and RCS, 

there was randomisation of node allocations in the set-up phase to join WSN subsets, hence 

their ON/OFF deployment will be based on that result. Additionally, there were extra-ON 

nodes to fill the network’s coverage holes. The main advantage that the BAT algorithm's 

success over HMM is the ability to find global solutions more efficiently than HMM, though 

HMM ‘s successful ability to find a set containing global as well as local solutions. Hence, we 

can see the abrupt performance hike in the case of BAT without expending more energy. 

Preserving more energy reflects automatically on the performance of the sensor nodes in terms 

of coverage and connectivity. Hence, providing a better performance to obtain a better or 

optimal QoS of the WSN. 

When not considering the sensor residual energy, the performance was compromised 

with respect to RCS and HMM. This result substantiates that the residual energy information 

is useful in extending the time taken to the first depletion of node energy in the Bat Algorithm. 

5.4.2 Lifetime of Sensor Nodes 
The Y-axis represents the number of nodes alive, and the X-axis represents the number 

of rounds. The BAT algorithm is improved noticeably in terms of nodes’ lifetime energy as 

can be seen in Figure 5.5.  As can be noticed in the BAT algorithm the number of nodes that 

stay alive are 18 nodes at the 181st round. It can be noticed that the BAT algorithm 

outperformed the HMM and the RCS algorithms by a noticeable margin. 
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Figure 5.5 Lifetime of Sensor Nodes 

The RCS algorithm uses a random coverage model utilizing an integrated method that provides 

statistical sensing coverage and guaranteed network connectivity. However, the network’s 

lifetime was compromised in this experiment due to the randomisation of allocating nodes in 

joining network subgroups. Furthermore, there were nodes with extra-ON states to compensate 

for the coverage holes. This all results in energy consumption limited efficiency to a limited 

time period of the WSN lifetime, then eventually there will be energy consumption 

inefficiencies across the whole WSN for the remainder of its lifetime. Initially, we can notice 

that the Bat algorithm as well as the other algorithms has recorded a sharp decrease from the 

1st round up to the 60th round there is a sharp decrease in the curves due to the random 

deployment of the nodes and loss of energy due to setting up the network. However, the bat 

has retained in the number of nodes a life until the 190th round this is due to the optimal global 

solution as provided by the BAT algorithm. 

All these lead to saving up energy in using superior global solutions, hence we can use the 

utilizable energy in performing other functions like connectivity and converge and lifetime 

efficiently  

The proposed Bat algorithm here solves these shortcomings by replacing the nodes allocation 

randomisation with an objective function focussing on network lifetime, coverage, and 

connectivity during the network’s runtime. This objective function introduces pre-determined 

schedules for the nodes across their lifetime, enabling the nodes to be fully aware of their 

ON/OFF states without disturbances due to randomisations. This determinism in stochastic 
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scheduling improves the network’s lifetime, coverage, and connectivity. These schedules 

identify the WSN’s optimal points as illustrated in Figure 5.3. 

It can easily be found in Figure 5.4 that those optimal points of energy and distance 

considerations were on the upper part of the curve or somewhat less scattered. Furthermore, 

when the bat algorithm was implemented, coupled with pareto, it provided those points in the 

space which were noticed to be stable. The proposed approach here allowed us to sustain the 

process of dissemination of messages over the network for a longer time.  

 

5.4.3 Efficiency   
The Y-axis represents the number of packets sent and received, and the X-axis is the number 

of rounds.  

 
Figure 5.6 Efficiency. 

During the lifetime of the networks there are a number of packets sent and received, and the 

throughput of all the mentioned algorithms were compared with the proposed Bat algorithm. 

The correlation measured here shows that the longer the network lifetime the higher the packet 

send/receive rate is. It is noticeable from Figure 5.6 that the Bat algorithm has recorded a higher 

throughput than the other algorithms. For example, the bat recorded 2,500,000 packets of 

throughput at the longest lifetime in of the recorded simulation at the 2,555th round. 
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Since the bandwidth of the network is defined as the number of packets generated in the 

network, it is clear that lower bandwidth will have less congestion and less information. and 

more bandwidths will result in more congestion and more information. 

Hence, it can be noted from the graphs that the BAT algorithm provides the trade-offs between 

congestion and information. Hence the efficiency of the network will be better as compared to 

others. It can be noticed that the Bat algorithm has recorded the lowest packet generated (less 

congestions) from the 1st to 1000th rounds.  

The more packets generated will use the maximum bandwidth available and hence the energy 

will be lost due to excess packet generation and hence other functions like connectivity 

coverage and lifetime will be hampered. 

 

5.4.4 Connectivity 
The Y-axis is the performance of connectivity which is measured by number as a value 

fraction of nodes connected in the network. Here there are 150 nodes in the network, if the 

connectivity is 0.98, then the total connected nodes are 150*0.98=149. The X-axis is the 

number of rounds. 

 
Figure 5.7 Connectivity. 
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As can be noticed from Figure 5.7, at the 140th round to 158th round the Bat algorithm 

recorded a connectivity value of 1 which means that the network is live, and it has better 

connectivity in comparison to the other algorithms. This observation shows the bat algorithm 

has achieved the highest connectivity measurement with respect to the number of bat-optimized 

energy (E) and the distance (d) manifested in the prolonged network lifetime. The network 

lifetime was defined as the time slots passed until there was no set of active nodes that covered 

all POI or guaranteed the connectivity between the sink and sensing nodes. As E and d reached 

the stable point as shown in Figure 5.7, the average lifetime has also increased.  

Again, the Bat algorithm has recorded that from 1st round to the 30th round starts a 

higher a higher number of nodes are connected due to the random deployment of the nodes and 

loss of energy due to setting up the network. the remaining part is stabilized due to the algorithm 

providing general global solutions. 

5.4.5 Coverage 
In Figure 5.8, the Y-axis is the ratio of the coverage to the total area to be monitored, and the 

X-axis is the number of rounds. 

 

Figure 5.8 Coverage. 
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As can be noted the BAT has an improved coverage at the 180th round. The HMM recorded 

coverage of 0 at round 100 because the nodes there have already lost their coverage since they 

prematurely depleted their energy reserve. In case of coverage the fraction of the area covered 

by the network. If the area of the test field is 100 m2, the coverage of 0.8 would mean 0.8*100 

= 80 m2 has been covered. More nodes in the network are presented in Figure 5.8 from the 1st 

to 75th rounds in the simulated experiment and hence better coverage is demonstrated. In 

addition, it can be noted that the Bat algorithm coverage stabilization from the 75th round this 

is due to nodes' energy consumption in the early setup phase of the lifetime of the bat algorithm, 

hence providing the global solution.  

5.5 Evaluation and Interpretation 
To improve the coverage, connectivity, and network lifetime of WSNs, many scheduling 

algorithms are possible. However, how good an algorithm is, or if an algorithm is the best is 

not trivial to answer. Bio-inspired computation opened the way for search space exploration; 

hence, a Bat-based scheduling algorithm has proposed to determine if a solution better than 

that proposed by an earlier HMM algorithm is possible.  

The novel, proposed Bat algorithm has improved the network lifetime and has in turn 

improved the service availability for more dependable WSNs. The Bio-inspired Bat-based 

node scheduling algorithm prevents the languishing of the values within the local maximum 

and local minimum. Instead, it provides stable global maximum and minimum values which 

remain the same throughout the timeline of the algorithm. In particular, the improvement of 

network coverage, connectivity and network lifetime were considered as can be seen in the 

implementation Section 5.3. In addition, from the algorithmic point of view, the Bat and the 

Pareto optimization algorithms worked in tandem to improve the performance of the network 

parameters like connectivity, coverage, and throughput. The network lifetime, coverage, and 

connectivity were improved in contribution to the dependability of WSNs where 

assumptions/simulation parameters were used to make the work presented here more relevant 

to real-time WSN scenarios. The specification of the Bat algorithm improves energy and 

distance which were not accommodated in other algorithms experimentations where distance 

is interpreted as connectivity, and energy is referred to as lifetime. 

While programming in a MATLAB environment was possible, the handling of discrete 

variables with MATLAB’s own optimization technique uses mixed integer optimization which 
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can sometimes be non-trivial. For example, the solution can sometimes be wrong. This is due 

to the approximation used in mixed-integer optimization techniques. This was solved by 

manually implementing, coding, the whole Bat-based node scheduling algorithm without using 

MATLAB functions.  

The Bat node scheduling algorithm can be compared and evaluated with other algorithms like 

the HMM or RCS. In our case, the new proposed Bat node scheduling algorithm has been 

compared with the HMM scheduling algorithm as it is the latest improved version. Our results 

show significant improvements on all three dimensions, and Pareto sorting guarantees us that 

the proposed Bat node scheduling is the best, for all possible fitness and objective functions 

and for a given search space. This leaves open the possibility for another algorithm to 

outperform our Bat algorithm. Hence our quest for finding the best scheduling algorithm for a 

WSN is not over yet. Therefore, in the next chapter, we provide a new representation of the 

MOO problem based on the Unsupervised Machine Learning Model utilising the SOFM. 
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Chapter 6 A New WSN Scheduling 

Improvement via the Self-Organizing 

Feature Map (SOFM) 
6.1 Introduction 

This chapter explores the state space of the solution domain from a spatial perspective 

based on an Unsupervised Machine learning approach. The new approach utilises the SOFM 

model and proposes a new node scheduling algorithm to enhance the dependability of WSNs 

by finding the best optimal solution for the MOO problems. Therefore, spatial-based 

representations of the solution space are explored to obtain the right combination of nodes for 

efficient scheduling which extends the needed level of availability and reliability of the network 

service, as identified in [Chapter 1]. The Kohonen map or SOM is a technique that allows 

dimensionality reduction for the data in the state space from a higher dimensional space to a 

lower dimension [Taleb, 2021]. The SOM technique has a unique property of producing feature 

maps that can be visually observed and then realized; hence it is known as SOFM. By proof, 

the feature map of sur-faces tends to converge on global maxima and minima rather than local 

maxima and minima. In SOFM, nodes are programmed to learn and become their input 

values/parameters by mapping their weights to follow their given input data [Sharma et al., 

2011].  

 

The SOFMs learn through their unsupervised, yet driven, learning. SOFM nodes are 

programmed to learn and become their input values/parameters by mapping their weights to 

follow their given input data [Sharma et al., 2011]. To illustrate the principle, an example is 

drawn here as the basic idea is to classify and identify datasets, for example, if there is a basket 

full of green apples and red apples. One can write an ML algorithm to classify them with respect 

to their colour. For ANN, it can even cluster (group) with SOFM. Clustering can be based on 

colour or weight.  In clustering there is a feature associated with it, if colour is used, the red 

apples and the green apples are separated. If weight is considered like the apples which have a 

weight less than 250g to be considered in a cluster all kinds of apples will be placed considering 

their weight. 
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6.2 SOFM Overview 
A typical WSN is formulated out of multiple sensor nodes connected to each other 

through one or two base stations to provide application services  [Sohraby et al., 2007]. The 

WSN applications can range from simple detection systems, i.e., environmental monitoring 

systems, to complex safety-critical systems, i.e. forced fire detection systems as shown in 

Figure 6.1. Such safety-critical applications have real-time requirements which in some cases 

require an immediate alert response from the network [Rausand, 2014]. For example, a forest 

fire detection system requires rapid detection of a fire breakout, so the incident can be mitigated 

as soon as possible without causing any casualties such as loss of forest, animals, and people 

in the forest. Another example is the use of the Earthquake Early Warning Systems (EEWS) 

requires instantaneous detection of the ground motion before, during, and after the earthquake 

[Sohraby et al., 2007] [Knight, 2002] [Aslan et al., 2012]. Therefore, the specification 

requirements of a dependable WSN safety-critical system must be taken into consideration to 

ensure proper and functional operations. 

 
Figure 6.1 The WSN Architecture with the use of fire forest detection systems. 

 

In principle, SOFM is the process of randomly choosing a node from a Map or a Grid and 

comparing its distance with the distance of all other nodes in the Grid. Then a comparison is 

performed by calculating the difference in distance between the chosen node and the rest of the 

nodes in the Grid. There are many methods to calculate the distance between the nodes in the 
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Grid. The Euclidean distance is one method; which is the shortest line between two points A 

source and B destination as shown in Figure 6.2 [Mittal and Kumar, 2015].  

 

For example, in Figure 6.2 it has been assumed that node X1 is randomly selected from the 

Grid as a first node then the distance between X1 and the rest of the nodes in the Grid is 

calculated, where the closest node to X1 is found and specified. Once, the closest node is 

specified it is then considered the Best Matching Unit (BMU). Then we start updating the 

values of all the nodes in the Grid according to the input which is Xi e.g., the BMU found. 

Note, that a certain range is edited by a certain percentage. This update happens with different 

values but at a close range to the BMU (e.g., Sensor Node) that is initially found. The main 

goal of the SOFM is that the BMU value will reach the same absolute value as X1. This process 

is iterated from one node to another (X1, X2…Xi), where another node in the Grid in this case 

X2 is chosen for the same calculation of applying the Euclidean distance and comparing and 

reapplying the same process [Kohonen, 2013]. 

 
Figure 6.2 Updating the Best Matching Unit and its Neighbours. 

In a typical SOFM environment, the optimisation algorithm works towards decreasing the 

problem-to-solution domain from multiple dimensions (e.g., 32) to limited dimension (e.g., 3) 

which makes it very easy to handle. It allows us to handle a large amount of data into 

manageable datasets without losing its functional properties with respect to the optimized 

solution. The main objective of this chapter is to further optimize the Bat node scheduling 
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algorithms by using the SOFM optimization technique, which is based on update functions, 

unlike other algorithms like ANN which are based on activation functions. 

 

 The work in this chapter is based on enhancing the Bat node scheduling on unsupervised 

learning, therefore the HMM was not included in the optimisation efforts in this chapter 

because HMM and Principal component analysis are considered supervised learning which lies 

outside the focus of this chapter.  

6.3 Proposed SOFM Node Scheduling Algorithm  
The state space is represented/visualised spatially where a cluster type of WSN is assumed. 

The proposed SOFM node scheduling algorithm considers five features to provide the schedule 

solution: (1) the position of cluster heads with respect to the Sink, (2) the distance between the 

parent to child nodes, (3) the energy levels, (4) the Transmission link (Tx), and (5) the Receive 

link (Rx).  

As SOM utilises the above-mentioned features to model the scheduling solution, it is known 

as SOFM. SOFM then can be used to find the winner node consisting of the best of the available 

features amongst all other available nodes. These features network is fed into the scheduling 

algorithm to provide the best scheduling process. The scheduling algorithm is based on the 

energy levels of the sensor node as it considers the distances between the Cluster Head and 

sink, parent and child node distances, Tx, and Rx. This energy feature function literally controls 

the other features on the formation of SOFM which is used in the optimizing process of the 

features in WSN. 

 

In the SOFM model, the nodes are classified on the basis of 5 features, these features are in 

turn used to create the SOFM node schedule for the WSN. The SOFM partitions the network 

in the form of 5-D space layers. In order to illustrate the principle of the 5-D space layers, let’s 

consider three layers starting from 1 to 3 where (layer 1) is presented for the information 

dissemination, e.g., packet exchanging, etc. As the WSN progresses in time, after SOFM 

iterations, some sensor nodes will experience a change in the level of energy i.e., consume 

energy, those sensor nodes are then replaced with other nearby available nodes that have the 

same features from the next layers e.g., updated from (layer 2) and consequently (layer 3). 

After some time, the layer under consideration will exhaust the solutions, now the onus is on 

the immediate next layer to take on the responsibility of the running node present.  
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6.4 Problem Formulation 
To explore the search space and find the optimal solution for the MOO problem, 

especially, in the context of the WSN safety-critical systems. a multidisciplinary approach was 

used (i.e., that combines the optimization of three objectives: coverage, connectivity, and 

network lifetime) utilising the SOFM model spatial feature to formulate and solve the MOO 

problem. Therefore, this work proposes a novel node scheduling algorithm Using the SOFM 

node scheduling algorithm. In the SOFM node scheduling algorithm, nodes are grouped 

according to their similar features. For example, in the WSN, nodes share similar features such 

as energy levels, Transmission (Tx), Receiving (Rx), and distance (D) from the sink node or 

distance between the parent to child nodes, and the fifth feature is the sleep/ awake scheduling. 

The main purpose is to reduce high-dimensional data to a map.  

Henceforth, assuming a data set of size (m, n) where m is the number of training examples 

e.g., the number of sensors in the WSN. While n is the number of features, a matrix of (100, 2) 

initialises weights (n, C) where C is the number of clusters. Iterating over the input data for 

each training example, it updates the weight vector with the shortest distance (Euclidean 

distance) from the training example. The updated rule of weight is represented in Equation 3. 

The general structure of the SOFM node scheduling algorithm is represented from [Kohonen, 

2013] where we start the formulation by calculating the Euclidean distance (e.g., the shortest 

distance between two vectors ) as in Equation 6.1 : 

𝐷𝐷 = [(𝑓𝑓2  −  𝑓𝑓1)2 + (𝑦𝑦2 −  𝑦𝑦1)2]0.5 (6.1) 

Where D is the Euclidean distance, x and y are the cartesian coordinates of the nodes in the 

field. where (𝑓𝑓1, 𝑦𝑦1) and (𝑓𝑓2, 𝑦𝑦2) are the input coordinates of the randomly selected vector 

/neuron. The mc is the Codebook (feature set) vector matching a given input vector X. as 

described in Equation 6.2: 

𝑓𝑓 − 𝑓𝑓𝑐𝑐 = 𝑓𝑓𝑖𝑖𝑛𝑛{𝑓𝑓 − 𝑓𝑓𝑖𝑖} (6.2) 

The mi is the average spatial x-coordinate of a neuron.  In this work, we formally defined the 

mc as the neuron (sensors). 

 

The SOFM units receive updates, as well as their neighbours where the unit of the highest 

match is achieved. Within such a process, the best unit becomes updated closer towards the 

sample vector in the space of input value. In Equation 6.3 
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𝑤𝑤𝑆𝑆.𝑗𝑗  =  𝑤𝑤𝑆𝑆.𝑗𝑗[𝑜𝑜𝑐𝑐𝑟𝑟]  +  𝑐𝑐𝑐𝑐𝑎𝑎ℎ𝑐𝑐 [𝑡𝑡]  ∗  [𝑓𝑓𝑆𝑆.𝑘𝑘 − 𝑤𝑤𝑆𝑆.𝑗𝑗[𝑜𝑜𝑐𝑐𝑟𝑟]] 

(6.3) 

 
where alpha is a learning rate at time t, j denotes the winning vector, i denotes the 𝑖𝑖𝑆𝑆ℎfeature 

of the training example and k denotes the 𝑘𝑘𝑆𝑆ℎtraining example from the input data. After 

training the SOFM network, the trained 𝑤𝑤𝑆𝑆.𝑗𝑗 weights are used for clustering new examples. A 

new example falls in the cluster of winning vectors. The first step is to find the distance between 

two sensor nodes. For example, if the distance between, say, node A and node B is found then 

they will be compared, at that point the distance between sensor B and sensor C can be found 

as well. The calculations for clustering new examples are calculated by Equation 6.4: 

 
𝑟𝑟_𝐸𝐸 [𝑓𝑓, 𝑦𝑦] =  ‖𝑓𝑓 − 𝑦𝑦‖ (6.4) 

Where  ∥  ∥ represent the Euclidean distance can be found in terms of the Euclidean norm of 

the difference between two vectors (sensor nodes). Please note that A and B represent two 

sensor nodes in the system as shown in Equation 6.5:  

𝐴𝐴[𝑓𝑓1, 𝑦𝑦1], 𝐵𝐵[𝑓𝑓2, 𝑦𝑦2] (6.5) 

Finally, the Best Matching Unit (BMU) is updated with respect to the next immediate 

neighbour, usually noted as 𝑓𝑓𝑆𝑆 which is represented by Equation 6.6 

�|𝑓𝑓 − 𝑓𝑓𝑆𝑆|� = 𝑓𝑓𝑖𝑖𝑛𝑛𝑆𝑆{�|𝑓𝑓 − 𝑓𝑓𝑆𝑆|�} (6.6) 

Equation 6.6 represents the normalization of the input vector X and the output vector, where 

the value of the output vector is equivalent to the minimum Euclidean distance between 

normalized input vector and the path weight vector. 

 
The purpose of Equation 6.6 is to identify the nodes which can be CH nodes i.e., the nodes 

have better position and energy levels. For example, if 3 sensors are considered, A, B, C 

logically there will be a path from A to B, and a path from B to C, hence there are two paths 

which are two distances noted by D0 and D1. If D0 > D1, then the B sensor is not CH, otherwise 

then it becomes a CH. Operating Equation 6.6 function might find more CHs than required, 

hence another function is needed which will select the best 5 CHs among them. The second 

function updates the weights and assigns each weight to the sensor node. This function will 

collect the highest weights assigned to the sensor nodes. Hence, the Pseudocode of the SOFM 

node scheduling algorithms is presented in Algorithm 6.1. 
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Algorithm 6.1 SOFM node scheduling algorithms 
Input:  
 

1.  Input data = "sensor_data.txt" (five features of 
sensors) which is represented in a tabular form in csv 
format  

2.  Number of Sensor Nodes = 10 (100) 
3.  Number of epochs = 100 (1000) 
4.  learning_rate = 0.1 (0.1) 

Output: SOFM Optimized 5 features for creating efficient 
network for WSN. 

1.  Define function to train SOFM (box) 
2.  Initialize SOFM weights with random numbers between 0 to 1 
3.   for i = 1 to num_epochs 
4.              Loop through input data 
5.              Calculate the best matching unit (BMU) for the input 

data     
6.              Update the weights of the BMU and its neighbors 
7.  End for 
8.   for i = 1 to (number of nodes): 
9.             calculate_distance (updated weights of BMU, Input 

data)  
10.            if distance < min_distance: 
11.                     min_distance = distance 
12.                         BMU Index = i 
13.                 End if 
14.  End for 
15.     return BMU Index 
16.  Define function to optimize the network in terms of energy and 

communication 
17.  Use the trained SOFM to extract features from sensor nodes 
18.  Use the extracted features to optimize the network 
19.   for i = 1 to (number of nodes): 
20.          calculate the distance to each SOFM node  
21.  End for 
22.  Assign the node with the minimum distance as the feature for 

the sensor node 
23.  Obtain the SOFM Optimized 5 features for creating efficient 

network for WSN. 
 
The operational setup of the SOFM algorithm includes the five features mentioned 

earlier, each feature is associated with a certain weight value which needs to be updated in 

every iteration based on those features. Here the Euclidean distance is calculated, and the best 

matching is identified where the clustering starts to form a group as a potential solution. Each 

group would have its own sleep scheduling which is based on a value obtained from the 

features. All these processes are calculated by the sink node during the design time and 

implemented in the run time. Figure 6.3 illustrates the output of the SOFM node scheduling 

algorithm for creating an efficient network for the WSN. 
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Figure 6.3 The Visualization of the WSN using SOFM Node Scheduling Algorithm. 

 
These features are fed into the SOFM model to provide the best node scheduling process where 

the SOFM node scheduling algorithm can be used to find the winner node consisting of the 

best of the available features amongst all other available nodes. The mechanism of the SOFM 

node scheduling algorithm is based on the energy levels of the sensor node and the distances 

between the CH and sink, parent and child node distances, Tx, Rx, and the node sleep/ awake 

scheduling. Thus, the SOFM node scheduling algorithm partitions the network in the form of 

five-dimensional space layers.  

 

In order to illustrate the principle of the five-dimensional space layers, let’s consider a simple 

example of three layers starting from one to three where (layer one) is presented for the 

information dissemination, e.g., packet exchanging, etc. As the WSN progresses in time, after 

SOFM node scheduling algorithm iterations, some sensor nodes will experience a change in 

the level of energy i.e., consume energy, those sensor nodes are then replaced with other nearby 

available nodes that have the same features from the next layers e.g., updated from (layer two) 

and consequently (layer three). After some time, the layer under consideration will exhaust the 

solutions, now the onus is on the immediate next layer to take on the responsibility of the 

running node present.  
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6.5 Experimentations Set-Up 
The simulation experimentations were created in the MATLAB environment, where 

the following parameters were used as illustrated in Figure 6.4. The simulation consists of 100 

homogenous nodes i.e., having the same capabilities (sensing, communicating, power battery 

and processing power). The WSN monitored area in simulations is 100 𝑓𝑓2. 

1. All nodes are connected to one sink node. 

2. Nodes are randomly deployed. 

3. The number of iterations is fixed to 200 epochs. 

4. Number of simulation iterations is limited by convergence of the SOFM network, when 

the wait time reaches a stable condition. 

 

 
Figure 6.4 Simulation Set-up of the SOFM Node Scheduling Algorithm 

In the experimentations, without the loss of generality (all the assumptions considered 

in this literature are valid.) the SOFM algorithm was compared to the Bat node scheduling 

algorithm. In figure 6.4, the red node is the Cluster Head, the blue node is the Child node, and 

the Yellow node is the Dead Node. Comparisons were not included between SOFM and other 

algorithms (like RCS and HMM) because they were demonstrated in previous chapters 

showing how the Bat node scheduling algorithm outperforms the RCS and HMM. Therefore, 

if improvements are shown from the SOFM over the Bat node scheduling algorithm, it can be 

deduced SOFM also outperforms RCS and HMM algorithms. 
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The simulation was individually tested 30 times, where one-way ANOVA analysis was 

implemented on both the SOFM and the BAT node scheduling algorithms to identify the p-

value for the statistical analysis, the statistical results are shown in Table 6.1. 
 

Table 6.1 Statistical Analysis 

Metrics Bat Algorithm SOM Algorithm 
Number of Hops 26 28 
Connectivity 0.99 0.99 
Coverage 0.77 0.99 
Lifetime 196 126 
ANOVA 1 4.12002e-188 6.04755e-89 

 
6.5.1 All Used Energy 
  The all used energy metric refers to the energy consumed by the nodes throughout the 
simulation time until all nodes fully deplete/consume their energy. In Figure 6.5, the X-axis 
represents time in round units, and the Y-axis is the energy used in Joule. 
 

 
Figure 6.5 All Used Energy 

For this metric, the SOFM algorithm was able to collectively consume less energy by 

the WSN as a whole and last longer up to the 1638th  rounds, while the Bat node scheduling 

algorithm lasted up until the 1498th  rounds only. This observation shows the SOFM algorithm 

consumed less amount of jealous energy hence, extended the network’s lifetime more than the 

Bat node scheduling algorithm. Albeit these results, the Bat node scheduling algorithm did 

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

En
er

gy

Time (Rounds) 

All used energy 

Bat Scheduling Algorithm SOFM Scheduling Algorithm



  

125 

 

consume less energy during the first half of the simulation. As, for instance, can be noticed in 

the 42nd round with respect to the Bat node scheduling algorithm, the amount of energy used is

1.28 joules in contrast to the amount of energy used in SOFM is 2.97 joules. Figure 6.5, 

observation shows that at the 1st round to the 1000 rounds that the SOFM algorithm consumed 

more energy as compared to Bat node scheduling, but still it was able to compensate with the 

Bat node scheduling algorithm performance in consuming energy during the last performance 

for 1000 to finish. This extraordinary performance is entirely due to SOFM algorithm 

simplicity and effectiveness in finding the global minima in terms of energy of the network. 

The setup mechanism of the SOFM algorithm was based on features mainly the residual energy 

feature, thereby, this visualises the performance of the WSN in terms of the best topology that 

should achieve the optimal QoS. 

6.5.2 Lifetime of Sensor Nodes 
The lifetime of sensor nodes metric represents the number of live sensor nodes in the network 

during the simulation rounds. In this metric, the Y-axis represents the number of alive sensor 

nodes, while the X-axis represents times in rounds as shown in Figure 6.6. 

 
Figure 6.6 Lifetime Sensor Nodes 

Initially both algorithms in the WSN started their operation with 100 nodes. It can be noted 

from the Figure that SOFM falls below Bat node scheduling from round 0 up to 85th rounds, 
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this is not a disadvantage by the SOFM algorithm because the higher the number of the live 

sensors the higher the energy consumption which is an undesired result. It can be noticed that 

Bat node scheduling algorithm fully depletes its energy at the 108th  round where it is recorded 

to have only 15 nodes alive, where the simulation threshold is set to finish when the number of 

nodes reaches 15. In contrast, the SOFM algorithm has maintained the live sensors for a longer 

period until the 118 round which is an advantage by 10 rounds over the Bat node scheduling 

algorithm. Figure 6.6 shows similar pattern as the SOFM algorithm the orange curves tends to 

compensate with the Bat node scheduling algorithm blue curve performance at the 83th rounds 

till 97th rounds then it out performed from the 96th rounds to 119th rounds. This is due the 

features consideration mainly the residual energy in visualizing the self-organizing feature map 

of the WSN. 

6.5.3 Efficiency 
The X-axis is the number of rounds, and the Y-axis is the number of packets generated in the 

network which  reflect the congestion of the packets in the network as shown in Figure 6.7, the 

less packets generated the less congestion and the more packet generate is the more the 

congestion which will results to eventually impact the nodes to deplete energy. The main point 

of interest is the number of packets sent and received in the WSN. 

 
Figure 6.7 Efficiency. 

After 110th rounds, it can be noticed SOFM algorithm has recorded a higher Efficiency 

with extended Efficiency-lifetime too where the Bat node scheduling algorithm recorded a 
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network lifetime at the 110th  round (died). The SOFM algorithm has the larger number of 

packets sent/received in the network without any jitters which indicates better connectivity and 

lifetime of the network with greater expense of useful energy which is available in SOFM than 

in Bat node scheduling. 

 

6.5.4 Connectivity 
 The Y-axis is the performance of connectivity which is measured by number as a value 

fraction of nodes connected in the network. For example, in the simulation, if there are 100 

nodes in the network as shown in Figure 6.8, if the connectivity is 0.98, then the total connected 

nodes are 100*0.98=98.  The simulation experiment is comprised of 120 sensor nodes. The X-

axis is the number of rounds. 

 

Figure 6.8 Connectivity. 

It can be noticed that both algorithms performed similarly well during the simulation 

period with the exception of the SOFM’s extended network lifetime as can notice the Bat node 

scheduling algorithm stopped/died at the 108th round, where SOFM continues its life cycle 

until the 118th round.  This attributed by the simplistic nature of the SOFM preserving more 

energy to be used at later stages in the network. 
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6.5.5 Coverage 
In figure 6.9, the Y-axis is the performance of coverage which is measured by number 

as a value fraction of nodes connected in the network. In the simulation, the coverage is 

represented by the fraction of area covered by the network. If the area of the test field is 100m2, 

the coverage of 0.8 would mean 0.8*100 = 80m2 has been covered. The X-axis is the number 

of simulation rounds. 

 
Figure 6.9 Coverage. 

The overall coverage as seen in Figure 6.9 fluctuates as time progresses, as the nodes’ 

battery power falls the coverage decreases. Similarly, to previous metrics, after the 108th round 

the Bat node scheduling algorithm dies off and hence no coverage is seen but the SOFM carries 

the coverage up to the 118th round due to the availability of the SOFM algorithm preserving 

more energy to be used at later stages in the network. 

The sharp negative fluctuations in the network are generated mainly by two causes. 

1.  The energy holes 

2.  The delay in communication between the BS and the concerned sensor node. 

Meanwhile, the positive fluctuations are provided by both SOFM and Bat node scheduling 

algorithms from the 60th rounds to the 108th round. It can be clearly noticed from the blue 

curve in Figure 6.9 that the Bat node scheduling algorithm provides the same level of coverage 

which is 0.4% as the SOFM algorithm (orange curve). However, the orange curve extends its 
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stabilization to outperform the blue curve, and this is due to the stochastic mechanism of the 

SOFM algorithm. 

 

6.5.6 Evaluation and Interpretation 
This chapter presented a new node scheduling algorithm based on the SOFM model to 

provide a better optimal solution for WSNs. The achieved results showed an improvement in 

service availability, reliability, and network lifetime in comparison to the Bat node scheduling 

algorithm. The spatial feature of the SOFM enabled a better representation of the WSN 

configuration, hence, providing a better performance solution with respect to all three 

objectives of the MOO problem. In particular, the self-organizing capacity in the SOFM 

algorithm outperforms the Bat node scheduling algorithm through its simplistic method of 

dimension reduction and classification. The SOFM algorithm has outperformed the Bat node 

scheduling algorithm in all metrics, whereas in some metrics both have scored similar values, 

however, the SOFM algorithm always provides an extended network lifetime over the Bat node 

scheduling algorithm. Hence, the output results are shown to be better than the previously 

proposed algorithms e.g., RCS, HMM and Bat node scheduling algorithms by far in this thesis. 

The cost of implementing the Bat node scheduling algorithm is higher as compared to 

the SOFM algorithm [chapter 6]. In the Bat node scheduling algorithm, there was a complexity 

level concerning operational design, fitness and objective function settings coupled with the 

Pareto sorting algorithm to select the best possible solution. The SOFM is a method which is 

based on a neural network structure that constitutes dimensionality reduction. In general, 

dimensionality reduction is used to represent high-dimensional datasets as a two-dimensional 

dataset with an abstract pattern that contains the best solutions. After the convergence is 

achieved the weights associated with the features are stable, this provides a topology-

preserving mapping from the high dimensional space i.e., lossless data compression occurs. 

The SOFM node scheduling algorithm is designed for spatial-related spaces rather than 

in time-dependent spaces, so the data representations may be abstracted due to the migration 

from spatial to temporal spaces. In the scheduling scheme, the time length of 30 minutes will 

be represented approximately by the SOFM with pointers to the time difference. The next 

chapter addresses this limitation by introducing the LSTM networks whose approach is entirely 

on a time-dependent framework. 
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Chapter 7 A New Scheduling Algorithm for 

Improved Performance of Multi-Objective 

Safety-Critical WSN Using LSTM 
7.1 Introduction 

This chapter addresses the MOO problem by exploring a different representation of the 

solution space, in which time series data prediction is utilised, using the LSTM model. The 

time series data prediction method refers to the process in which the occurrences of important 

future processes is predicted [Widiasari et al., 2018]. One approach to address the MOO 

problem is to find time series data of good coverage patterns, through the performance analysis 

of the WSN. Then, replicate this time series of data coverage patterns to obtain a better 

performance throughout the entire lifetime of the WSN. This shall achieve a state of improved 

coverage stable connectivity and network lifetime. Many predictive analysis models exploit 

time series data to improve the system performance. For example, nonlinear prediction NLPs, 

ANN, and HMM are all data prediction analysis models to improve accuracy. However, the 

difference between the formers and LSTM is that LSTM can gather, process, and predict data 

sequences without forgetting unimportant information useful for time series prediction. Hence, 

a based scheduling algorithm is proposed to analyse and provide a suitable, energy-efficient 

scheduling solution.  

Several node scheduling attempts in the existing literature show that there is still room 

for improvement. In particular, previous analyses [chapter 6] have yielded patterns in our 

coverage data, LSTM is a Recurrent Neural Network (RNN) based model which remembers 

the short useful patterns to predict the next sequential time series data [Mohanty et al., 2020]. 

Since LSTM can balance the temporal parameters in the WSN and provide the best possible 

scheduling sequence for a given system, in this work an LSTM-based node scheduling 

algorithm is proposed to provide an energy-efficient scheduling solution where the system 

output here includes the following parameters: (1) Less Energy consumption, (2) Better 

Connectivity, (3) Best coverage and (4) best scheduling solution. The motivation behind 

choosing LSTM as one of the proposed solutions to solve the issue of the MOO in WSN is the 

following key features of the LSTM model [Cheng et al., 2019].  
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• First, the LSTM model is well-suited for capturing temporal dependencies and patterns 

in sequential data, known as Sequence Modelling. In WSNs, where sensor readings are 

often collected over time, the LSTM model can help WSN models predict patterns or 

events. 

• Second, LSTM can automatically learn relevant features from raw sensor data, reducing 

the need for manual feature engineering, this is known as Feature Extraction. 

• Third, LSTM can capture complex relationships and non-linearities in data, which can 

be valuable for detecting anomalies, predicting events, or performing other tasks in 

WSNs, this is known as non-Linearity. 

• Fourth, LSTM can handle variable-length sequences, which is important when dealing 

with irregularly sampled sensor data (Flexibility). 

Despite the many advantages the LSTM offers, several challenges be taken into consideration 

when utilising the LSTM model in WSN. The following is the list of challenges that revolve 

around the LSTM implementation [Salmi and Oughdir, 2022]:  

• LSTM can be computationally intensive, which may pose challenges in resource-

constrained sensor nodes with limited processing power, memory, and energy. 

• LSTM might be challenging in collecting and storing data for training resource-

constrained environments. In WSN, data transmission is limited to the power battery of 

the sensor node, thus it could consume significant energy which makes it challenging 

to collect and store data for training WSN.  

• LSTM is prone to overfitting when training data is limited. Proper regularization 

techniques and careful model selection are important to mitigate overfitting. 

• LSTM may struggle with noisy or missing data sets obtained from real-life sensor 

networks, as WSNs may have lossy wireless links. Therefore, the reading from the 

sensor nodes can be unreliable. Hence, pre-processing and data cleaning is crucial 

before passing it into the LSTM model to mitigate the data quality issue. 

• LSTM is often considered a "black box" model, making it challenging to interpret the 

reasoning behind its predictions, which may be important in some applications (known 

as Interpretability). 
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In the WSN context, assuming a sensor network that can run a maximum of 2000 rounds 

after each round, say round 1, the LSTM models will predict the best possible configuration 

for the current rounds. This configuration is the best possible sequence of nodes predicted from 

the precious in here 2nd round. Consequently, the 3rd round would be the best prediction of its 

predecessor which is the 2nd round. This process of prediction will continue until a particular 

threshold of energy is achieved.  

7.2 Long Short-Term Memory  
As stated earlier, the LSTM model is based on the RNN training model of the error gradient to 

vanish or explode out (error-free). For example, if there is an error gradient value of 0.1 and 

another error gradient value of 0.1, the multiplication of both errors would be 0.01 which means 

the error rate is increasing. In this situation, there will be inaccurate predictions in both cases 

due to the underflow or overflow of the error gradient. Hence to overcome this situation we 

must introduce a cell which will be responsible for memory in the short term. The predictions 

must have errors where the smaller the errors the more accurate the predictions, hence, the 

network is therefore learning to predict. Unlike prediction, reproduction memorizes the object 

with zero errors and when the error gradient tends to zero, reproduction here is undesirable. 

The aim is to ensure as accurate a prediction as possible with the least errors while maintaining 

a second objective for increasing the prediction range by introducing a FORGET GATE 

parameter. A simple example of these two objectives is illustrated in a text prediction task 

where, say, we want to predict a complete sentence of “I want to go to London” - by checking 

the error gradient, our prediction might have a gradient error of 0.1 which may produce an 

output sentence “I am going to Dodnon” we can notice Dondon instead of London. The main 

aim here is to work on our gradient error so we can have as much as possible of a near-optimal 

solution. LSTM can remember the sequence of events that occurred longer than the case of 

reproduction of this output. The short sequences are stored in short-term memory whereas the 

long sequences which are a combination of short sequences are stored in long-term memory to 

form useful patterns for prediction purposes. 

To continue with the same example for the FORGET GATE parameter, this gate will be 

triggered after a certain pattern is complete (e.g., the example of the text above “I want to go 

to London”) and then it starts a new pattern. If we want our text prediction task to predict a 

longer sentence “I want to go to London and catch a connecting flight to Dublin to meet a 
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friend”.  Here, we have two parts of the sentence, whereby introducing the FORGET GATE 

our network can control what to forget and what to remember. In our case here, it will forget 

the first part which is “I want to go to London” and it will remember the second part which is 

“and catch a connecting flight to Dublin to meet a friend”, hence our prediction task will be 

more efficient. The process of the first sentence is finished and completed where LSTM is used 

to predict the second sequence of the sentence which needs to be processed and predicted too. 

LSTM classification can be found in many real-life use cases, for instance, in text predictions, 

voice recognition and stock market predictions, as well as computing WSNs. 

7.3 Problem Formulation 
The proposed LSTM node scheduling algorithm manages the scheduling process and the 

behaviour of the sensor nodes in WSN concerning performance throughout discrete-time 

sequences which is time-bound multiplexing. For example, dividing the timeline (T) between 

the number of sensors (S) in the WSN as T1=S1 and T2=S2 etc. The LSTM network will 

recognize patterns that are short and efficient in terms of energy. Considering the following 

sensor cycle invocation at an energy level, say 10 Joules and sensors range of S = {(S1, S2, S3, 

S4)} where these are considered efficient patterns.  The next best pattern will be obtained from 

the prediction of the LSTM network as trained from the WSN. The output of the LSTM 

network will be energy function per range which will be used as a projection to the next cycles 

where it can be suitably used to provide the best cycle for dependability and efficiency 

throughout the WSN lifecycle. In our previous experiments, we have managed to analyse and 

find that coverage data include “good” and “bad” results in some zones the sensor nodes 

performed better than other sensors in different zones. Hence, the classical algorithm RCS, 

IHMM, BAT and SOFM algorithms cannot capture the best coverage patterns. The analysis of 

the coverage metrics outputs random fluctuation behaviour, see the coverage graphs in Figure 

4.7, Figure 5.8, and Figure 6.9 in the previous chapters. 

To reduce the fluctuation, the LSTM algorithm is used to predict good and meaningful patterns 

as far as practicable. Therefore, a new LSTM node scheduling algorithm is proposed to capture 

good and meaningful coverage patterns and replicate them for the entire cycle of the WSN. 

Hence, providing a good improvement in the availability and reliability of the WSNs network 

services. 
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LSTM node scheduling algorithm introduces, the new, the following parameters: an input 𝑓𝑓𝑆𝑆 , 

where subscriptions the current Energy level, a  where ℎ𝑆𝑆−1 is the previously consumed Energy 

level and 𝑐𝑐𝑆𝑆−1, where  is a dependent parameter on energy level at a time 𝑡𝑡 − 1, an 𝑜𝑜𝑆𝑆  is the 

output of the LSTM algorithm for this time step. The LSTM also generates the c(t) and h(t) for 

the consumption of the next time step t as illustrated by Figure 7.1. 

𝑓𝑓𝑆𝑆 = 𝜎𝜎𝑖𝑖(𝑛𝑛𝑓𝑓  ×  𝑓𝑓𝑆𝑆 +  𝑈𝑈𝑓𝑓  ×  ℎ𝑆𝑆−1  +  𝑏𝑏𝑓𝑓)                      (7.1) 

Where 𝑓𝑓𝑆𝑆is the forget gate 

𝑖𝑖𝑆𝑆 = 𝜎𝜎𝑖𝑖(𝑛𝑛𝑆𝑆  ×  𝑓𝑓𝑆𝑆 +  𝑈𝑈𝑆𝑆  ×  ℎ𝑆𝑆−1  +  𝑏𝑏𝑆𝑆)                            (7.2) 

Where 𝑖𝑖𝑆𝑆is the input gate 

𝑜𝑜𝑆𝑆 = 𝜎𝜎𝑖𝑖(𝑛𝑛𝑇𝑇  ×  𝑓𝑓𝑆𝑆 +  𝑈𝑈𝑇𝑇  ×  ℎ𝑆𝑆−1  +  𝑏𝑏𝑇𝑇)                        (7.3) 

Where 𝑜𝑜𝑆𝑆 is the output gate 

𝑐𝑐𝑆𝑆
′ = 𝜎𝜎𝑆𝑆(𝑛𝑛𝑆𝑆  ×  𝑓𝑓𝑆𝑆 +  𝑈𝑈𝑆𝑆  ×  ℎ𝑆𝑆−1  + 𝑏𝑏𝑆𝑆)                        (7.4) 

𝑐𝑐𝑆𝑆 =  𝑓𝑓𝑆𝑆 . 𝑐𝑐𝑆𝑆−1  +  𝑖𝑖𝑆𝑆 . 𝑐𝑐𝑆𝑆
′                                                        (7.5) 

Where 𝑐𝑐𝑆𝑆is the cell gate 

ℎ𝑆𝑆 =  𝑜𝑜𝑆𝑆 . 𝜎𝜎𝑆𝑆(𝑐𝑐𝑆𝑆)                                                                    (7.6) 

Where ℎ𝑆𝑆is the hidden state 

 

Figure.7.1 Utilisation of LSTM model in WSN scheduling approach. 

LSTM node scheduling algorithm uses the current state of the network e.g., each sensor node 

energy level at time t, to predict the real-time energy of the network. Hence, the solution is 
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time dependent. LSTM is a memory model which is time-dependent thus the future step can 

be predicted based on the current step. Unlike the SOFM node scheduling algorithm which is 

a space model that is solely based on the spatial configuration of the network hence a feature-

based solution is provided.  

7.4 The proposed LSTM Node Scheduling Algorithm  
The LSTM model operates independently and performs the training during the WSN rung time. 

As the WSN start its operation, a dataset is generated, and the LSTM scheduling algorithm then 

starts its training process. The dataset is taken as inputs to the LSTM machine learning 

algorithm. The dataset consists of maximum connectivity and coverage values that correspond 

to subsequent energy values known as data points. These data points are fed into the LSTM 

algorithm to scour, match, and filter the same patterns of data points from the rounds of the 

WSN while it is on runtime. 

For a better understanding of the mechanism of the LSTM algorithm, suppose we have the first 

10 rounds generated from the WSN with rounds 4th, 5th, and 6th rounds showing interesting 

patterns of maximum coverage and connectivity, energy, and scheduling coordinates points. 

Subsequently, for the next 10 rounds, these patterns of data points are identified by using the 

LSTM learning method and released as the output of the LSTM algorithm. The LSTM 

algorithm will cease to run until the threshold energy level of the sensor node falls below the 

operating energy level of the node. 

Finally, this output is stored as a logbook and is used successfully by the same WSN without 

using the LSTM Algorithm. Figure 7.2 explains the mechanism of the LSTM Node Scheduling 

Algorithm. 
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Figure 7.2 The mechanism of the LSTM node scheduling algorithm. 

The process of the LSTM Algorithm begins by running the network with a Node Scheduling 

Algorithm to collect the dataset required for the training process. Once an interesting sequence 

is identified, the algorithm detects and records it. Subsequently, this sequence of interest is 

replicated throughout the lifetime of the WSN. Thus, after illustrating the LSTM Node 

Scheduling Algorithm mechanism, Algorithm 7.1 presents step by step pseudocode of the 

LSTM mechanism. 
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Algorithm 7.1 The process of LSTM model implementation in WSN 

− Input: Energy level values at t =t-1 and t=t, dependable parameters (coverage and 

connectivity) 

− Output: Scheduling (Energy levels at t=t+1 (prediction), dependable parameters, 

(coverage and connectivity)) 

1: Initialize LSTM model 

2: Define input shape based on sensor data dimensions  

3: Define LSTM layers 

4:  Add LSTM layer with specified number of units and input shape 

5:  Add additional LSTM layers if necessary    

6:   Add Dense layers 

7:   Add dense layers with appropriate activation functions    

8:   Compile the model 

9: Specify loss function, optimizer, and metrics  

10: Train the model 

11: Provide training data (sensor data and corresponding energy consumption) 

12: Specify the number of epochs and batch size   

13: Evaluate the model 

14: Provide test data to evaluate the model's performance   

15:  Use the trained model for energy scheduling 

16: Collect real-time sensor data 

17: Pre-process the data to match the input shape of the LSTM model 

18:  Use the model to predict the energy consumption for the given sensor data    

19:  Implement energy scheduling algorithm 

20: Determine the energy requirements and constraints of the wireless sensor network 
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21:  Use the predicted energy consumption values to schedule energy usage and optimize 

resource allocation 

22:  Consider factors such as battery life, energy efficiency, network coverage, and data 

transmission requirements     

23: Repeat the energy scheduling process periodically 

24: Collect updated sensor data 

25: Pre-process the data and feed it to the LSTM model for energy consumption prediction 

26: Adjust the energy scheduling algorithm based on real-time sensor data and network 

conditions    

7.5 Implementing LSTM in WSN 
LSTM stems from RNN methodology with the objective of finding meaningful patterns with 

respect to the design’s interest and detecting such patterns using training algorithms as 

illustrated in Figure 7.3 below. 

 

Figure 7.3 LSTM implementation in WSN  

The LSTM architecture comprises several key components: 
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Sequential RNN Unit: The LSTM begins with an assembly of sequential recurrent neural 

network (RNN) units. 

Cell state (LSTM): The core of the LSTM is the cell state. It serves as a memory unit that 

stores information from past time steps and controls the flow of information within the network. 

Hidden state: A cell that is responsible for the encoding of the most recent time steps of 

the data. 

Forget gate: This gate determines what information from the cell state should be discarded 

and what should be retained. It uses a sigmoid function to make a decision . Two inputs x(t), 

i.e., an input of schedule sequence at the particular current time from the WSN and h(t − 1), 

i.e., the previous cell output of schedule sequence from the WSN, are fed to the forget gate and 

multiplied with weight matrices followed by the addition of bias. The result is passed through 

an activation function which provides a binary output. If, for a particular cell state, the output 

is 0, then the piece of information is forgotten, and for output 1, the information is retained for 

future use for the input gate. 

Input gate: This gate is responsible for deciding what new information should be added to 

the cell state. It uses another sigmoid function for this purpose. First, the information is 

regulated using the sigmoid function and the values to be remembered are filtered similar to 

the forget gate using inputs h(t − 1), i.e., an input of schedule sequence at the particular current 

time from the WSN and x(t), i.e., the previous cell output of schedule sequence from the WSN. 

Then, a vector is created using the tanh function that gives an output from −1 to +1, which 

contains all the possible values from h(t − 1), i.e., an input of schedule sequence at the 

particular current time from the WSN and x(t), i.e., the previous cell output of schedule 

sequence from the WSN. Finally, the values of the vector and the regulated values are 

multiplied to obtain useful information. 

Output gate: This gate controls what information from the cell state should be used to 

produce the output. It employs a hyperbolic tangent (tanh) function to create a vector, which is 

then used for the prediction. First, a vector is generated by applying the tanh function on the 

cell. Then, the information is regulated using the sigmoid function and filtered by the values to 

be remembered using inputs h(t − 1), i.e., an input of schedule sequence at the particular current 

time from the WSN and x(t), i.e., the previous cell output of schedule sequence from the WSN. 

Finally, the values of the vector and the regulated values are multiplied to be sent as an output 

and input to the next cell. 
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The training process of the LSTM involves three sigmoid functions and two hyperbolic 

tangent functions. These functions are well-suited for handling data that evolve over time [11]. 

The training of the LSTM network results in an equation with two variables, one of which is 

time. This enables the network to predict one variable when the other is provided. The accuracy 

of these predictions serves as a measure of the LSTM network’s efficiency. 

In WSN applications, each round involves predicting the network configuration with a 

focus on optimising energy usage and minimising the distance from the sink. These network 

configurations are linked to the locations of nodes and play a crucial role in achieving 

convergence and extending the network’s lifespan. 

7.6 Experimentations Set-Up 
MATLAB simulator was employed to conduct simulations and experiments on the network. 

Specifically, we exclusively compared the LSTM scheduling algorithm with the SOFM 

algorithm. This selection is based on SOFM's demonstrated superiority over other algorithms 

that were previously investigated, namely HMM, and RCS. The SOFM node scheduling 

algorithm uses features to provide the schedule solution. There are five features considered in 

the process of SOFM, namely: (1) the position of cluster heads to the Sink, (2) the distance 

between the parent to child nodes, (3) the energy levels, (4) the Transmission link (Tx), and (5) 

the Receive link (Rx). In the SOFM process, the Euclidean distance is calculated, and the best 

matching is identified where the clustering starts to form a group as a potential solution. Each 

group have its scheduling which is based on a value obtained from the features. The SOFM 

algorithm provides a spatial customised cluster-based configuration that is associated with a 

certain weight value which is updated in every iteration. All these features’ processes are 

calculated by the BS during the design time and implemented in the run time. Thus, we find it 

suitable to benchmark the new proposed algorithm against SOFM for performance evaluations. 

The experiments were conducted using the following parameters, and all resulting data were 

collected over a 30-run period. 

https://www.mdpi.com/2079-9292/12/23/4766#B11-electronics-12-04766
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Figure 7.4 Simulation Set-up of LSTM Node Scheduling Algorithm 

Figure 7.4 demonstrates the simulation experiment of the LSTM with 100 homogenous nodes 

i.e., having the same capabilities (sensing, communicating, power battery, processing power). 

The following assumptions were considered: 

1. The WSN monitored area in simulations is 100 m2. 

2. All nodes are connected to one sink node. 

3. Nodes are randomly deployed. 

4. The number of iterations is fixed to 200 epochs. 

5. The number of simulation iterations is limited by the convergence of the LSTM network 

when the wait time reaches a stable condition.  

 

The Simulation experiment was individually tested 30 times as mentioned above using one-

way ANOVA analysis. ANOVA is a method to analyse and test the variance  of the average of 

one or more group of data.  A one-way ANOVA analysis was implemented on the SOFM and 

the LSTM algorithms to identify the P-value for statistical results. Table 7.1 presents the 

statistical analysis of both LSTM and SOFM node scheduling algorithms.  
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          Table 7.1 Statistical Analysis 

Metrics SOFM Algorithm LSTM Algorithm 
Number of Hops 28 50 
Connectivity 0.99 0.99 
Coverage 0.99 1.6 
Lifetime 126 46.69 
ANOVA 1 6.04755e-89 1.11e-16 

1. 100 homogenous nodes i.e., having the same capabilities (sensing, communicating, 

power battery, processing power). The WSN monitored area in simulations is 100 m2. 

2. All nodes are connected to one sink node. 

3. Nodes are randomly deployed. 

4. The number of iterations is fixed to 200 epochs. 

5. Number of simulation iterations is limited by convergence of the LSTM network, when 

the wait time reaches a stable condition.  

 

Figure 7.5 Training Progress 

Our algorithm training is needed to identify the sequence of efficient coverage. As illustrated 

in Figure 7.5 above, the Root Mean Square Error (RMSE) shows a clear trend over iterations. 
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It reaches a saturation point after the 40th iteration, suggesting that the network weights have 

stabilised. This stabilisation is reflected in the improvement of the loss function, which in turn 

enhances the accuracy of the training. 

7.6.1 All Used Energy 
This metric refers to the energy used in the whole network throughout the simulation time until 

all nodes fully deplete/consume their energy. The X-axis represents time in round units, and 

the Y-axis is the energy used as shown in Figure 7.6. 

 

Figure 7.6 All Used Energy 

Although both algorithms had a similar consumption rate of energy at the beginning of the 

simulation, up until closer to the 200th round, the SOFM algorithm consumed overall lower 

energy than the LSTM algorithm. However, the difference in consumption rate gets smaller 

and smaller after the 600th round, until towards the end of the simulation time when the 

difference is close to zero. This counterintuitive observation stems from the trade-off design in 

LSTM where we invoke the maximum ON nodes in the WSN. An important point to mention 

is that the dependability (e.g., service availability and reliability of the network) of WSN is 

more temporal by nature this is because the energy of the WSN depletes concerning time as 

compared to the spatial change in terms of geometry. This point is noted from the performance 

of the LSTM algorithm in terms of energy consumption as marked by the blue curve. 
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7.6.2 Lifetime of Sensor Nodes 
This metric represents the number of live sensor nodes in the network during the simulation 

(network lifetime). This is shown as the Y-axis in Figure 7.7 below. 

 

Figure 7.7 Lifetime of Sensor Nodes 

 The curves here affirm our observation in 7.6 where both algorithms kept the WSN 

alive for a similar number of simulation rounds. Since we need at least 2 input values at the 

time (t-1), t to predict the value at t+1, so the LSTM curve i.e., the blue curve starts from a gap. 

It is noted in the above figure that LSTM curve performed lower than SOFM exactly between 

40 rounds to 55 rounds, this is due to the number of short sequences of nodes that could provide 

us with the best lifetime performance as well as coverage and connectivity. The results here 

support our hypothesis in finding a better scheduling algorithm for service availability without 

compromising other metrics drastically like this one where we can observe fewer Alive Sensor 

Nodes by LSTM than SOFM, however not much lower throughout the simulation time. There 

is not much improvement in the lifetime of the sensor network in the LSTM at the 117 rounds, 

case because the training network did not provide sufficient energy residues to carry for the 

next rounds. This is due to the threshold (this is the cut-off energy that the nodes will not 

continue operation) of the minimum energy setup in the sensor nodes in the WSN. 
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7.6.3 Efficiency 
The bandwidth of the network is defined as the number of packets generated in the network, 

so the lower bandwidth will have less congestion and less information, and more bandwidths 

will result in more congestion and more information. The X-axis is the number of rounds, and 

the Y-axis is the number of packets in the network as shown in Figure 7.8 The main point of 

interest is the number of packets sent and received in the WSN. 

 

Figure 7.8 Efficiency. 

For efficiency, The LSTM curve i.e., the blue curve is efficiently transmitting and receiving 

the information in the considered LSTM network as can be noted from the 10 to 105 rounds. 

The LSTM algorithm has shown its advantage over the SOFM algorithm in providing more 

efficiency up until the end of the simulation rounds where they were the same. It is also a usual 

observation for having both algorithms to have similar efficiency performance towards the end 

of the simulation because the number of alive nodes by then is less and similar, hence no matter 

how many data packets are generated constrained by the availability of alive nodes, the 

efficiency is the same. Again, we can notice here after 105 round there is a stoppage of the 

LSTM i.e., the blue curve, this is due to the threshold (this is the cut-off energy that the nodes 

will not continue operation) of the minimum energy setup in the sensor nodes in the WSN. 
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7.6.4 Connectivity 
Connectivity is the measure of the number of nodes connected to the network. In Figure 7.9 Y-

axis is the performance of connectivity which is measured by number as a value (fraction of 

nodes connected in the network). In our simulation we have 100 nodes in the network, if the 

connectivity is 0.98, then the total connected nodes are 100*0.98=98 and the X-Axis is the 

number of rounds. 

 

Figure 7.9 Connectivity. 

From this figure 7.9, it can be concluded that in support of the thesis hypothesis, the newly 

proposed LSTM algorithm didn’t compromise or outperform the SOFM algorithm in 

connectivity. LSTM focused on improving service availability without compromising the other 

metrics e.g., efficiency, coverage, and lifetime of sensor nodes. In LSTM, some metrics like 

the lifetime of sensor nodes, efficiency and coverage outperformed or remained the same with 

small variations as SOFM due to efficient temporal management of energy and topology of the 

WSN, however, in connectivity we did not observe much difference between the two 

algorithms which resides in the remit of our hypothesis. Notably, the blue curves starting for 

sensor networks are not positively controlled in terms of messages sent and revised by the Base 
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station but rather indirectly managed which is one of the reasons why these networks are prone 

to perturbations. 

7.6.5 Coverage 
Coverage is the measure of the test field of interest. In Figure 7.10, the Y-axis is the 

performance of coverage which is measured by number as a value (fraction of nodes connected 

in the network). In our simulation, the coverage is represented by the fraction of the area 

covered by the network. If the area of the test field is 100 m2, the coverage of 0.8 would mean 

0.8*100 = 80 m2 has been covered. The X-axis is the number of simulation rounds. 

 

Figure 7.10 Coverage. 

The main objective here is to achieve the total coverage of all ON nodes (i.e., the sequence of 

efficient nodes a stable coverage (when fluctuations are low in the Y axis)) to be greater than 

or equal to the area to be monitored. Hence, there is need to stabilize the coverage and optimize 

it to acceptable network lifetime. It can be observed that from the 39th round, the coverage 

starts to converge to a less fluctuating state up until the 116th round. Our hypothesis is to find 

and detect a sequence of efficient coverage and then replicate it using LSTM throughout the 

entire network life cycle. The Figure illustrates how our hypothesis is achieved as the LSTM 

values are more stable towards the second half of the simulation and are also higher in value 

than SOFM. 
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7.7 Evaluation and Interpretation 
The hypothesis is proved by finding an efficient sequence of coverage with improved coverage 

and without compromising network connectivity and lifetime. Our previous algorithms have 

uncovered multiple issues in scheduling algorithms. One issue was the fluctuating behaviour 

in coverage - with LSTM, this was managed to be a more stable behaviour after the first half 

of the network lifetime after the LSTM network reached a certain acceptable level of accuracy. 

More training data will require more time for training and less data will require less amount of 

training time for training. There is a trade-off; when more time is utilised, the output is more 

accurate than when less time is utilised. These findings are beneficial for safety critical WSNs 

which are the area of research interest by the author of this thesis, where the coverage has been 

observed to be higher when using the LSTM algorithm than the SOFM node scheduling 

algorithm. There is also another benefit for the LSTM node scheduling which is manifested in 

the automation of its design process: LSTM first spends its efforts and time in finding a good 

sequence of coverage. For example, this is why the start of the coverage curve in Figure 7.9 

was fluctuating), however once the good values are identified, LSTM automatically ensures 

coverage for the rest of the network lifetime there will be guarantees for service availability 

and reliability.  

The efficiency of the LSTM algorithm was obtained using epochs (iterations) to confirm our 

desired level of quality-of-service levels. For example, when training is performed, functions 

like loss and error, both need to be on scoring low in (i.e., minimizing) the Root Mean Square 

Error (RMSE) and Loss Function as illustrated in Figure 7.5, this is performed using 200 

iterations in our experiments to reach a stable weight state. From the training graph in Figure 

7.5 we can see that after 100 iterations both RSME and Loss Function score similar values with 

similar patterns of fluctuations throughout the remainder of the iterations. This indicates a 

stable configuration of the weights in the LSTM algorithm in case the stability is not achieved 

then the number of iterations must be increased to improve the training network. 

In the context of future research considerations, we recommend refining the design of the 

LSTM algorithm to better handle training with a larger dataset, as the current algorithm 

encountered difficulties after processing just 100 training samples [Cheng et al., 2019]. This 
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limitation is also applicable to large-scale WSNs containing millions of sensor nodes, where 

the LSTM’s memory constraints impede its performance. While transformers present a logical 

alternative to LSTM, our system’s capacity was limited to 100 to 150 nodes, and to reduce 

computational costs, we opted for LSTM.  
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Chapter 8 Conclusions and Future Work 
8.1 Evaluation  
This section presents a critical evaluation and comparison of the proposed solutions with recent 

existing published work in the literature. Overall, most Node Scheduling Algorithms in the 

literature do not address the three objectives (coverage, connectivity, and network lifetime) of 

the WSN altogether. In fact, most works address each objective in isolation, such as [Ambrose, 

2008, 2008; Cerpa and Estrin, 2004; Chipara, 2010; Ha, 2006; He et al., 2004; Tate and Bate, 

2011; Viera et al., 2003; Wu et al., 2005; Xu et al., 2001; Yang, 2011] and [Ye et al., 2003] do 

not consider network coverage in their works; while other works such as [Tian and Georganas, 

2002] and  [Cardei et al., 2005] consider network coverage but without ensuring good level of 

network connectivity; other work as [Cardei et al., 2005] and [Srivastava and Hasan, 2018] 

uses a very simple WSN scenario lacking tests on realistic and complex WSNs. In addition, 

[Vashisht, 2023] and [Rudati et al., 2023] work focuses on only to improve the network lifetime 

of the sensor nodes, without considering the performances of other objectives such as coverage, 

connectivity. 

In [Bajaber, 2023] the solution address a partial coverage of the WSNs and lifetime. Alternative 

work of [Jaiswal and Anand, 2024; Pandiyaraju et al., 2023a; Shagari et al., 2020] address 

connectivity, coverage and lifetime in homogenous network scenarios. In [Harizan et al., 2024], 

uses Relay Nodes to provide better coverage connectivity and lifetime. Our investigation 

revealed that a few published works address the three objectives collectively in the node 

scheduling approach: the RCS algorithm by [Liu et al., 2006] and a Clique-based node 

scheduling by [Wang et al., 2010] solved the MOO using node scheduling algorithm.  

There are several approaches that utilise ANN for different optimization problems in field of 

WSNs. For an example, the approach in [Masti et al., 2019] utilises the ANN to discover 

patterns that are of use for WSNs activities such as node scheduling, energy consumption, 

packet communications for virtual sensors design irrespective of energy, coverage and 

connectivity considerations. Another example presented in [Sharma and Kansal, 2023] that 

uses ANN in the cluster head selection mechanism to enhance the network lifetime in WSNs. 

On the other hand, [Vidhya, 2023] proposed an ANN method that trains the network on a large 

dataset, enabling it to adapt to various scenarios and extend the network’s lifetime. The 
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proposed method is limited to a small scale WSN. In contrast, in our study, the proposed ANN 

is built for analysing the node scheduling in WSNs and investigating its effects on key 

performance metrics such as network lifetime, coverage and connectivity simultaneously and 

in large scale WSN. Performing manual analysis is a difficult task, especially in a large 

distributed WSN system. Hence, necessitate the need to automate the analysis using the ANN.  
Unlike the approach proposed by [Vidhya, 2023] and [Sharma and Kansal, 2023] where the 

work is targeting the routing protocol at the network layer. In this thesis, the ANN is used to 

analyse the complex node scheduling behaviour in WSNs at the level of application layer, 

where key parameters such as positional distances of each node from the Base station, residual 

energy and communication range of each node are considered to reveal certain potential areas 

of improvement in the RCS Node Scheduling Algorithm.  

Given the ANN analysis of the node scheduling behaviour, a limitation on which nodes will be 

overworked e.g., consume energy faster are obtained and classified. The HMM model has been 

used widely in the field of the WSN but in a different context. For example, [Krishnamurthy, 

2002] addressed the problem of data reliability by obtaining certain physical data e.g. 

measurements of certain processes, known as signal processing applications. However, there 

is an interesting example in the literature that fits within the context of this study, [Qihua et al., 

2015], that used the HMM to model the behaviour of the WSN. In this thesis a new HMM node 

scheduling algorithm is introduced and compared against the RCS in [Liu et al., 2006]. In the 

HMM node scheduling algorithm, the optimal solution is achieved by ensuring that each node 

is used for transmission dependent on its current energy level. As the latter decreases, the 

probability for the node to be in a transmit state decreases while its probability of being in a 

receive state increases. Thus, the new solution improved the network lifetime while 

maintaining the required level of connectivity and coverage of the WSN. 

Although the HMM Node Scheduling Algorithm has shown an improvement over the existing 

RCS algorithm in the literature, it is limited to the information made available by the sensor 

node e.g., stuck in local maxima and local minima. Hence, a Bio-inspired Bat algorithm has 

been proposed to find an optimal solution within its search space. There are various Bio-

inspired algorithms for different MOO problems in WSNs. For instance, [Jaiswal and Anand, 

2024] uses the FA to achieve target location coverage and sensor node connectivity. However, 

the study in [Jaiswal and Anand, 2024] did not cater for heterogeneity which is an important 

mechanism for a resource constrain WSN. Another limitation in [Jaiswal and Anand, 2024] is 
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that the entire approach is based on target-based coverage calculation. Another example for the 

use of the Bio-inspired approach in WSNs is proposed by [Ovabor and Atkison, 2024], where 

a hybrid MOO technique integrates cascading firefly and Greywolf algorithms to improve 

connectivity, coverage and network lifetime in WSNs. The difficulty of firefly and Greywolf 

type of hybrid optimisation technique is in the increase of computational complexity and more 

convergence time required for optimization. Another recent approach proposed by [Yang and 

Xia, 2024] which addresses the coverage via the use of dynamic cluster routing on a non-

uniform clustering type of WSNs. The authors in [Yang and Xia, 2024] present a very 

unrealistic view of energy loss of less than 1% which is the case if fewer packets are delivered 

and almost no control packets are generated in this case. 

Accordingly, a Bio-inspired computation opened the way for search space exploration; hence 

a Bat-based scheduling algorithm is proposed to determine if a solution better than that 

proposed by an earlier HMM algorithm is possible. The Bio-inspired Bat node algorithm 

generates a set of solutions randomly and then uses a loop search to find the optimal solution 

based on an objective and fitness functions. In comparison to the recent discussed approach in 

the existing literature i.e., [Jaiswal and Anand, 2024], [Ovabor and Atkison, 2024], and [Yang 

and Xia, 2024], where the technique and the interest is different. Thus, the results of the Bat 

node scheduling algorithm in comparison to the HMM showed significant improvements on 

all three objectives (coverage, connectivity, and network lifetime) for a given search space. 

This leaves open the possibility for another algorithm to outperform our Bat algorithm. Hence, 

exploring a new state space necessitates a new and different representation of the problem 

domain. 

Subsequently, an interesting observation of the coverage objective have led to the utilization 

of SOM model to represent the search space from a spatial perspective in WSN. The spatial 

features of the SOM enabled a better abstract representation based on special configuration.  

Similar to the HMM and Bat models, the SOM model has also been used widely in the literature 

though in different context. For instance, the work in [Kulkarni et al., 2021] used Self-

organising map-based for dynamic decision-making algorithm for node deployment for 

heterogeneous WSN. The author in  [Kulkarni et al., 2021] addressed the coverage hole 

problem using node mobility. The solution to the problem is practically not feasible as in 

remote environments the nodes cannot be moved through locations unless it is mounted on 

some vehicle. Another example that used the SOM model is [Mittal and Kumar, 2015]. The 
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solution tends to reduce the data communication during the entire network lifetime by reducing 

its size. In this work [Mittal and Kumar, 2015], 1500 data volumes were generated and 

aggregated from all sensor nodes and sent to the base station. the real mapping of the coverage 

is absent in this case, it can be used for data transferring only. Another interesting study that 

used the SOM model is [Talei et al., 2023] to optimize and use energy efficiently to be used in 

HVAC indoor systems. This study considered energy optimisation and it is used in a very 

specific context.  

Hence, an SOFM node scheduling algorithm is proposed to provide a better performance 

solution with respect to all three objectives of the MOO problem. In particular, the self-

organising capacity in the SOFM algorithm outperforms the Bat node scheduling algorithm 

through its simplistic method of dimension reduction and classification. The SOFM results 

indicated a good sequence of spatial coverage which could be captured for further 

improvement. Accordingly, to further fulfil this objective, the problem domain is represented 

from a spatial to a temporal state space where the LSTM model is proposed.  

The LSTM model is especially designed to account for the temporal data types which is highly 

suitable for data analysis and prediction modelling in WSN. The main idea behind using 

LSTM lies in the training of the data generated by the WSN system. In other words, the longer 

the data the better the prediction in the time series of WSN parameters like connectivity, 

coverage, and lifetime. The use of LSTM for WSN systems is appropriate as the network 

parameters tend to be nonlinear by nature, which is very hard to model. Hence, data 

abstraction e.g., wrangling, and crushing methods are used by different LSTM layers coupled 

will activation function like sigmoid, tanh etc. The LSTM model, provide highly optimised 

coverage and connectivity and lifetime with the available physical parameters (i.e., residual 

energy, position of the node in the WSN).  

The LSTM model is used in WSNs but in specific optimization contexts, such as the work in 

[Cheng et al., 2019] which aims to reduce unnecessary data transmission thereby improving 

the quality of the data collected in WSNs. The approach in [Cheng et al., 2019] did not cater 

for the connectivity, coverage and a lifetime of the network. [Mohanty et al., 2020] attempted 

to reduce energy consumption by utilising RNN-LSTM based models, but their approach is 

limited to communication reduction only, thereby, improving the network lifetime. Another 

interesting example in  [Jeyalaksshmi and Ganesh, 2022] utilised the Bidirectional Long Short-

Term Memory (BiLSTM) technique and provided adaptive duty-cycle scheduling for WSNs; 
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they address the energy consumption to improve network lifetime problem, but fail to cater for 

the coverage and connectivity issues. In this thesis, the LSTM node 

scheduling algorithm exploits spatial-temporal correlations among sensory data by tuning the 

available physical parameters to address the best coverage, connectivity, and lifetime, which is 

not addressed by a single paper till date. 

8.2 Conclusion and Future Work 
This thesis addressed the MOO problem in the domain of safety-critical systems in the 

WSNs. The principles of WSN dependability, service availability and reliability were the main 

considerations in this work. The motivation of this work emerged from, failure related to, the 

limited resources of the WSN systems, i.e., processing, memory capacity and mainly limited 

battery life. Hence improving the energy consumption would in turn improve the service 

availability and reliability. The solutions proposed are based on novel scheduling frameworks 

utilising methods such as ANN, HMM, BAT, SOFM and LSTM models to find a justifiable 

optimal solution. Each proposed solution adopts a different representation of the problem to 

obtain better results in the state space which reduce the computational complexity along with 

the improvement of connectivity, coverage, and energy lifetime. First, in order to build this 

research on a solid foundation an existing and proven approach from the literature was 

replicated with validation and verification activities.  

This work proposed six main contributions that each was discussed in a separate 

chapter, in which, each contribution addressed each research question distinctively. 

Accordingly, there are six research questions which are derived from the research hypothesis 

proposed in Section 1.3. The first research question is whether the ANN approach can be used 

in safety critical WSNs to find suitable scheduling solutions for MOO problems. In Chapter 3, 

the ANN Analyser algorithm chapter, the first research question was addressed with the 

proposed ANN Analyser of the RCS algorithm to analyse its scheduling performance and 

demonstrate improvements with respect to the MOO problem in WSNs. The solutions 

stemming from such analysis show improved performance than existing policies in the 

literature. In particular, the New ANN algorithm was able to detect the “Overused” Nodes e.g., 

the number of times nodes were switched ON and the “Underused” nodes e.g., the number of 
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times nodes were switched OFF during the run time of the simulation. Then classify the nodes 

that are “Overused” into a Class 2 otherwise 1. When balancing the workload or the sleep 

schedule of those nodes, the network’s lifetime increases by avoiding unnecessarily depleting 

nodes’ energy. Those nodes tend to be, as found in this work, closer to one or two Hops from 

the Base station and naturally experience a high workload. Thus, saving energy for these 

critical nodes would not only increase the network’s lifetime but also increase its dependability 

for safety-critical applications. Given the result of the ANN analyser, it would be interesting to 

synthesize a new scheduling that would improve on the scheduling from the analysed algorithm 

(here RCS) or would return a verdict indicating that no further improvement is possible. This 

question is considered for future work. Alternatively, a new scheduling algorithm could be 

proposed “manually”; however, approaches different from that used by RCS exist which can 

provide better results such as the Hidden Markov Model-based algorithm proposed. 

The second research question is whether (HMM) can provide performance improvements for 

scheduling algorithms to address the MOO problem. In Chapter 4, this research question was 

addressed by introducing a novel HMM algorithm, which proposes a scheduling algorithm that 

is based on Transition Probabilities (ref w.r.t transition probabilities), unlike the original RCS 

which is based on random scheduling. The HMM improved the network lifetime while 

maintaining both connectivity and coverage of the network. A scheduling algorithm was 

introduced for the node duty cycle e.g., the manipulation of transmission and receiving states. 

The transition states of the nodes are restricted to four states in the algorithm to avoid 

computational overheads. The main goal here is to determine the receive and transmit states’ 

schedule of each node in the WSN in the design time. As a result, each node knows it receive 

schedule and operates accordingly in the runtime. In this process, it intervened in the 

transitioning probability between the states that are received and transmit states. Network 

connectivity and path optimality are important metrics considering broadcast collision and 

channel errors as quality-of-service metrics. The RCS algorithm has had several errors due to 

inefficient network configuration (e.g., The spatial network topology was not in favour of better 

data transmission), but it was mitigated using transition probability-based optimization to 

obtain better network configuration in the HMM algorithm. 
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The third research question is Bio-inspired node scheduling mechanism can provide further 

performance improvements on existing scheduling algorithms in the literature to address the 

multi-objective WSN optimization. In Chapter 5, Bio-inspired computation was demonstrated 

to address the M-covered connected optimization problem in WSNs [Liu et al., 2006]. This 

was achieved by the proposed Bat algorithm that is coupled with the Pareto optimisation 

algorithm which has improved the performance of the network parameters like connectivity, 

coverage, and efficiency. The network lifetime, coverage, and connectivity were improved and 

contributed to the dependability of WSNs where assumptions/simulation parameters were used 

to make the work in this thesis close to real-time WSN scenarios. The specification of the Bat 

algorithm improved energy and distance which were not accommodated in other algorithms 

were included in the simulation experiments. Distance is interpreted as connectivity, and 

energy is referred to as network lifetime. 

The fourth research question is about further improvement in scheduling performance when 

using SOFM by implementing a self-organizing map to reduce the data from a higher 

dimension to a lower dimension to further improve the scheduling multi-objective optimisation 

performance. In Chapter 6, there was a further improvement by introducing on-service 

availability, and reliability compared to the Bat algorithm (which in turn was shown to be better 

than the previously proposed algorithms in this thesis). The self-organising capacity in the 

SOFM algorithm outsmarts the Bat algorithm through its simplistic method of dimension 

reduction and classification. In particular, the SOFM algorithm has outperformed the Bat 

algorithm in network lifetime, where in some metrics both have scored similar values, however, 

the SOFM algorithm always provides an extended network lifetime over the Bat algorithm. 

The cost of implementing the BAT algorithm is higher than the SOFM algorithm. In the Bat 

algorithm, there was a complexity level with respect to the operational design and fitness and 

objective functions settings coupled with the Pareto algorithm to select the best possible 

solution which was higher than the SOFM set-up. The SOFM is a neural network-based 

dimensionality reduction algorithm. 

 The fifth research question will show an algorithm that can identify and remember the good 

coverage states to help further improve service availability without compromising network 

lifetime. In Chapter 7, an efficient sequence of coverage based on LSTM is proposed with 
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improved coverage without compromising network connectivity and lifetime. One issue, in 

particular, can be foreseen to be the fluctuating behaviour in the coverage metric. The findings 

of this chapter can be beneficial for safety critical WSN systems which are the area of research 

interest. 

The recommended future work of this thesis will revolve around the possibility of a framework 

that can support the decision-making for achieving a minimum, acceptable level of coverage 

and connectivity with minimal ON nodes. This will be achieved by a testing framework that 

helps in identifying and evaluating the total coverage percentage per zone to the total WSN. 

Therefore, a novel testing framework will be proposed to test the performance of WSN 

scheduling algorithms. The new testing framework will identify the number of nodes in the 

WSN then it will classify and prioritize them based on their positions/coordinates from the 

Base Station. A step-side refinement approach will be used and the WSN into a number of 

zones, where, in each zone, each node’s performance will be tested with respect to coverage, 

connectivity and network lifetime. Then each zone will be examined with respect to the 

network’s total coverage, connectivity, and network lifetime. This way, the weakness of the 

algorithm can be identified. The proposed testing framework will provide a key design 

principle to better analyse and propose a scheduling algorithm that meets the QoS requirements 

with respect to coverage, connectivity, and network lifetime in safety critical WSNs. The future 

new testing framework shall test the behaviour of the WSN and the performance of the WSN 

scheduling algorithm, during the run time, based on the main factors below: 

● Number of zones, where a WSN is divided into a number of zones based on their 

positions from the Base station. E.g., 1 Hop zone, 2 Hops zone, etc. 

● Number of Hops (the connection between two nodes is called Hops). The network is 

required to be covered by a number of hops to connect the outlier nodes. 

● Average nodes per zone, the average number of nodes per zone. 

Additionally, the future testing algorithm shall uncover multiple issues in scheduling 

algorithms. One issue, in particular, is the fluctuating behaviour in coverage. These findings 

will be beneficial for safety critical WSNs which are the area of research interest in this research 

work. Also, evaluating the introduction of mobile nodes is recommended that act as backup 
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nodes to avoid network partitioning and improve the network’s lifetime in the realm of WSN 

scheduling. In addition, the testing framework can be automated with ML functions after 

testing any scheduling algorithms and automatically lay out the number of zones and coverage 

performance as well as connectivity with the desired network lifetime. Furthermore, the 

simulation project can be emulated in real life by considering a test bed of 20 real sensor nodes 

which can be replicated for 100 to 150 nodes in software, the simulation results can be tested 

on this test bed using a customised WSN framework that uses Message Queue Telemetry 

Transport (MQTT) protocol for data transfer – MQTT is an OASIS standard messaging 

protocol for the Internet of Things (IoT). 
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Appendices 

Appendix A - Experiment 1: WSN without A Scheduling Algorithm code 

% Clean memory and command window 
clear,clc,close all 

Parameters 
m = 1;                          % Number of different types of 
sensors 
rates = 80;                     % Packet size for normal node per 
round (bits) for each type 
R = 15;                         % Range for cluster for each type 
  
N = 150;             % Number of nodes 
W = 100;             % length of the network 
L = 100;             % width of the network 
Ei = 3;              % Initial energy of each node (joules) 
CHpl = 3000;         % Packet size for cluster head per round (bits) 
p = 5/100;           % desired percentage of cluster heads 
num_rounds = 2000;   % Max Number of simulated rounds 
Tsetup = 4;          % average Time in seconds taken in setup phase 
Tss = 10;            % average Time in seconds taken in steady state 
phase 
Etrans = 1.0000e-09; % Energy for transmitting one bit 
Erec = 1.0000e-09;   % Energy for receiving one bit 
Eagg = 1.0000e-09;   % Data aggregation energy 
Efs = 5.00e-8;       % Energy of free space model amplifier 
Marg = 15;           % Distance from the sink to sensors area 
Rsense = 7;          % radius for sensing area around each node 
 
Ta = [10 0 2;20 0 4.459;30 0 3.75;40 1.38 7.14;50 2.09 20.37 
      60 2.54 10.18;70 1.86 10;80 2.77 30;90 5.9 30.95;100 23.33 
60.74]; 
 
pMin = 10^-4;        % Lowest possible CH_prop 
if length(rates)~=m || length(R)~=m 
    error('The length of rates and ranges is not equal to m please 
check parameters') 
end 

Building the WSN 
1st row: Clustering indexing 2nd: x-position, 3rd: y-position 
net = [zeros(1,N);rand([1,N])*W;rand([1,N])*L;randi(m,[1,N])]; 
tmp = sqrt(net(2,:).^2 + net(3,:).^2); [~,I] = sort(tmp); net = 
net(:,I); 
NonCHpl = zeros(1,N); ranges = zeros(1,N); 
for i=1:m 
    idx = net(end,:)==i; 
    NonCHpl(idx) = rates(i); 
    ranges(idx) = R(i); 
end 
 
% Position of sink 
SX = -Marg; SY = L/2; 
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% area to be sensed 
pgonx = [0 0 W W]; 
pgony = [0 L L 0]; 

Start communication simulation 
% calculating costs 
cost = zeros(1,N); 
for i=1:N 
    Dist = sqrt(((net(2,:)-net(2,i)).^2) + ((net(3,:)-net(3,i)).^2)); 
    d = sqrt(((SX-net(2,i)).^2) + ((SY-net(3,i)).^2)); 
    Snbr = Dist <= ranges(i); 
    cost(i) = sum(Dist(Snbr))/(sum(Snbr)-1)+d; 
end 
 
% Preallocation for energy calculations 
E = Ei*ones(1,N);          % Energy left in each node 
EH = zeros(1,num_rounds);  
% Preallocation for dead nodes calculations 
Ecrit = 0;                 % Critical energy left in node to call it 
alive 
Ncrit = fix((90/100)*N);   % Critical number for dead nodes to stop 
simulation 
Dead = false(1,N);         % Status of all nodes 0:Alive 1:Dead 
DeadH = zeros(1,num_rounds); 
Cover = zeros(1,num_rounds); 
% Preallocation for Bits sent calculations 
BitsH = zeros(1,num_rounds); 
BitsLost = zeros(1,num_rounds); 
AED = zeros(1,num_rounds); 
BitsNode = zeros(1,N); 
TotSentCH = 0; TotRecCH = 0; 
TotSentSink = 0; TotRecSink = 0; 
figure('Position',[68,25,1347,875]); 
 
% Simulating for each round 
for r=1:num_rounds % iterating on each round 
     
    % Updating alive status to all nodes 
    Dead(E<=Ecrit) = true; E(Dead) = 0; DeadH(r)=sum(double(Dead)); 
     
    %%%% Choosing Clusters heads %%%% 
    [CH,net,Num_itr] = UpdateCH(ranges,Dead,p,pMin,E,Ei,net,cost); 
     
    %%%%%%%% Energy calculations %%%%%%% 
    EH(r) = sum(E); %get all energy left in all nodes 

first : Clustering stage %%% 
    E = E - ((NonCHpl*(Etrans+Eagg)).*Num_itr); 

second : Steady state stage %%% 
Cluster heads energy calculations 
    numClust = length(find(CH)); 
    D = sqrt((net(2,CH) - SX).^2 + (net(3,CH) - SY).^2); 
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    E(CH) = E(CH) - (((Etrans+Eagg)*CHpl)+(Efs*CHpl*(D.^ 
2))+(mean(NonCHpl)*Erec*round(N/numClust))); 
    % Rest of nodes energy calculations 
    rest = N-numClust-sum(double(Dead)); 
    mD = zeros(1,rest); tmp = net(2:3,~CH&~Dead); 
    for i=1:rest, mD(i) = fun(tmp(1,i),tmp(2,i),net,CH,SX,SY); end 
    E(~CH&~Dead) = E(~CH&~Dead) - ((mean(NonCHpl)*Etrans) + 
(Efs*CHpl*(mD.^2)) + ((Erec+Eagg)*CHpl)); 

sent bits considering bucket loss %%%% 
    for i=1:N 
        if CH(i)==true 
            Di = sqrt(((net(2,i)-SX).^2) + ((net(3,i)-SY).^2)); 
            delay = (3.3e-9)*Di - (1.7e-8); 
            AED(r) = AED(r) + delay; 
            tmp = P_loss(Di,Ta); 
            BitsNode(i) = round((1-tmp)*CHpl); 
            BitsLost(r) = BitsLost(r) + round(tmp*CHpl); 
            TotRecSink = TotRecSink + BitsNode(i); 
        else 
            idx2 = find(((net(1,:)==net(1,i)) & CH) & ~Dead); 
            Di = sqrt(((net(2,i)-net(2,idx2)).^2) + ((net(3,i)-
net(3,idx2)).^2)); 
            if isempty(Di) 
                BitsNode(i) = 0; 
            else 
                tmp = P_loss(Di,Ta); 
                BitsNode(i) = round((1-tmp)*NonCHpl(i)); 
                BitsLost(r) = BitsLost(r) + round(tmp*NonCHpl(i)); 
                TotRecCH = TotRecCH + BitsNode(i); 
            end 
        end 
    end 
    if r==1 
        BitsH(r) = sum(BitsNode); 
    else 
        BitsH(r) = BitsH(r-1) + sum(BitsNode); 
    end 
    TotSentCH = TotSentCH + sum(NonCHpl(~CH&~Dead)); 
    TotSentSink = TotSentSink + numClust*CHpl; 
    BitsLost(r) = BitsLost(r)/(TotSentCH+TotSentSink); 
    AED(r) = AED(r)/sum(CH); 
     
    % Coverability calculation 
    warning off 
    netAlive = net(:,~Dead); 
    [Xcov1,Ycov1] = Make_cir(netAlive(2,1),netAlive(3,1),Rsense); 
    for i=2:size(netAlive,2) 
        [X,Y] = Make_cir(netAlive(2,i),netAlive(3,i),Rsense); 
        [Xcov1, Ycov1] = polybool('union', Xcov1, Ycov1, X, Y); 
    end 
    [Xuncov, Yuncov] = polybool('subtraction', pgonx, pgony, Xcov1, 
Ycov1); 
    idxnan = find(isnan(Xuncov)); idxnan = 
[0,idxnan,length(Xuncov)+1]; 
    A = 0; 
    for i=1:length(idxnan)-1 
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        tmpx = Xuncov(idxnan(i)+1:idxnan(i+1)-1); 
        tmpy = Yuncov(idxnan(i)+1:idxnan(i+1)-1); 
        A = A + polyarea(tmpx, tmpy); 
    end 
    Cover(r) = 1 - (A/(W*L)); 
    warning on 
     
    %%%% Showing updated net %%%% 
    net = DrawNet(net,N,CH,Dead,SX,SY,Xcov1,Ycov1); 
    title(['CH : Red  ----  Dead : Empty  ---  round 
(',num2str(r),')']); 
    drawnow 
    if sum(Dead)>=Ncrit,break;end % Stop simulation when 5% or less 
is alive 
end 
close all 
figure('Position',[664,140,1170,775]); 
net = DrawNet(net,N,CH,Dead,SX,SY,Xcov1,Ycov1); 
title(['CH : Red  ----  Dead : Empty  ---  round (',num2str(r),')']); 
T = (Tsetup+Tss)*(0:r-1); 
EH = EH(1:r); EHdis = EH; 
DeadH = DeadH(1:r); AliveH = N-DeadH; 
BitsH = BitsH(1:r); 
BitsLost = BitsLost(1:r); 
AED = AED(1:r); 
Cover = Cover(1:r); 
 
PDR_CH = TotRecCH/TotSentCH; 
PDR_Sink = TotRecSink/TotSentSink; 
 
disp('Analysis:') 
disp('=========================') 
disp(['Packet delivery ratio to the cluster heads = 
',num2str(100*PDR_CH),'%']) 
disp(['Packet delivery ratio to sink = ',num2str(100*PDR_Sink),'%']) 
disp('') 

Plotting analysis of network preformance 
figure('Position',[131 59 792 613]); 
plot(T,EHdis,'-x'); 
xlabel('Time (s)'); ylabel('Energy (j)') 
title('Residual energy') 
 
figure('Position',[298 66 792 613]); 
plot(N-AliveH,'-x'); 
xlabel('Round'); ylabel('No of dead Sensors nodes') 
title('Life time of sensor nodes') 
 
figure('Position',[511 61 792 613]); 
plot(T,BitsH,'-x');  
xlabel('Time (s)'); ylabel('Overall Throughput (no of packets)') 
title(['Throughput (' num2str(N) ' Sensor nodes)']) 
 
figure('Position',[611 61 792 613]); 
plot(1-BitsLost,'-x') 
xlabel('Round'); 
title('Connectivity') 
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figure('Position',[711 61 792 613]); 
plot(Cover,'-x'); 
xlabel('Round'); ylabel('Coverability') 
title('Ratio of coverd area to total area') 

 

 

Appendix B - Experiment 2: WSN with RCS Scheduling Algorithm code 

% Clean memory and command window 
clear,clc,close all 

Parameters 
rates = 80;          % Packet size for normal node per round (bits) 
for each type 
R = 14;              % Max range for wireless transsmion for each 
node 
 
k = 4;               % Number of ON/OFF groups  
 
N = 150;             % Number of nodes 
W = 100;             % length of the network 
L = 100;             % width of the network 
Ei = 3;              % Initial energy of each node (joules) 
CHpl = 3000;         % Packet size for cluster head per round (bits) 
p = 10/100;          % desired percentage of cluster heads 
num_rounds = 2000;   % Max Number of simulated rounds 
Tsetup = 4;          % average Time in seconds taken in setup phase 
Tss = 10;            % average Time in seconds taken in steady state 
phase 
Etrans = 1.0000e-09; % Energy for transmitting one bit 
Erec = 1.0000e-09;   % Energy for receiving one bit 
Eagg = 1.0000e-09;   % Data aggregation energy 
Efs = 5.00e-8;       % Energy of free space model amplifier 
Marg = 15;           % Distance from the sink to sensors area 
Rsense = 7;          % radius for sensing area around each node 
 
Ta = [10 0 2;20 0 4.459;30 0 3.75;40 1.38 7.14;50 2.09 20.37 
      60 2.54 10.18;70 1.86 10;80 2.77 30;90 5.9 30.95;100 23.33 
60.74]; 
m = 1; 
pMin = 10^-4;        % Lowest possible CH_prop 
if length(rates)~=m || length(R)~=m 
    error('The length of rates and ranges is not equal to m please 
check parameters') 
end 

Building the WSN 
1st row: Clustering indexing 2nd: x-position, 3rd: y-position 
net = [zeros(1,N);rand([1,N])*W;rand([1,N])*L;randi(m,[1,N])]; 
tmp = sqrt(net(2,:).^2 + net(3,:).^2); [~,I] = sort(tmp); net = 
net(:,I); 
NonCHpl = zeros(1,N); ranges = zeros(1,N); 
for i=1:m 
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    idx = net(end,:)==i; 
    NonCHpl(idx) = rates(i); 
    ranges(idx) = R(i); 
end 
 
Groups = randi(k,[1,N]); % ON/OFF grouping 
 
% Position of sink 
SX = -Marg; SY = L/2; 
 
% area to be sensed 
pgonx = [0 0 W W]; 
pgony = [0 L L 0]; 
 
% calculating costs 
cost = zeros(1,N); 
for i=1:N 
    Dist = sqrt(((net(2,:)-net(2,i)).^2) + ((net(3,:)-net(3,i)).^2)); 
    d = sqrt(((SX-net(2,i)).^2) + ((SY-net(3,i)).^2)); 
    Snbr = Dist <= ranges(i); 
    cost(i) = sum(Dist(Snbr))/(sum(Snbr)-1)+d; 
end 

Start communication simulation 
% first run no scheduling 
USE_schedule = 0; 
simulate_WSN 
second run using scheduling 
USE_schedule = 1; 
simulate_WSN 
 
function [ON,net] = Scheduling(net,CH,r,k,Groups,USE,R) 
if USE 
     
    ON_group = mod(r,k)+1; % The choosen group to be ON this round 
    ON_CH = find((Groups == ON_group) & CH); % the cluster heads that are 
ON 
    OFF_CH = find((Groups ~= ON_group) & CH); % the cluster heads that 
are off     
     
    % Extra-On Rule 
    X = net(2,:); Y = net(3,:); 
    for i=1:length(ON_CH) 
        sx = X(ON_CH(i+1:end)); ix = X(ON_CH(i)); 
        sy = Y(ON_CH(i+1:end)); iy = Y(ON_CH(i)); 
        d = sqrt((sx - ix).^2 + (sy - iy).^2); 
        d = min(d); 
        if d > R 
            sx = X(OFF_CH); 
            sy = Y(OFF_CH); 
            d = sqrt((sx - ix).^2 + (sy - iy).^2); 
            [~,d] = min(d); 
            % rempve it from off cluster heads and put it in ON ones 
            if ~isempty(d) 
            ON_CH(end+1) = d; 
            OFF_CH(d) = []; 
            end 
        end 
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    end 
     
    % Turning ON the cluster heads and their children 
    ON = false(1,size(net,2)); 
    for i=1:length(ON_CH) 
        c = net(1,ON_CH(i)); 
        ON(net(1,:)==c) = true; 
    end 
     
    % remove OFF nodes from clustering 
    net(1,~ON) = 0; 
     
     
else 
    ON = true(1,size(net,2)); 
end 
 

 

Appendix C - Replication of Randomised Coverage Based Scheduling Algorithm RCS 
code 

% Clean memory and command window 
clear,clc,close all 
 
% Load the trained neural network 
addpath('codes') ; % load codes library 
load('Nets.mat') 
nnet = Nets.Net1; 

Parameters 
k = 3;               % Number of ON/OFF groups  
N = 100;             % Number of nodes 
Rsense = 1;          % radius for sensing area around each node 
W = 20;              % length of the network 
L = 20;              % width of the network 
 
Ei = 0.25;           % Initial energy of each node (joules) 
CHpl = 3000;         % Packet size for cluster head per round (bits) 
p = 5/100;           % desired percentage of cluster heads 
num_rounds = 2000;   % Max Number of simulated rounds 
Tsetup = 4;          % average Time in seconds taken in setup phase 
Tss = 10;            % average Time in seconds taken in steady state phase 
Etrans = 1.0000e-09; % Energy for transmitting one bit 
Erec = 1.0000e-09;   % Energy for receiving one bit 
Eagg = 1.0000e-09;   % Data aggregation energy 
Efs = 5.00e-8;       % Energy of free space model amplifier 
Marg = 5;            % Distance from the sink to sensors area 
rates = 80;          % Packet size for normal node per round (bits) for 
each type 
R = 3.5;               % Max range for wireless transition for each node 
Ta = [10 0 2;20 0 4.459;30 0 3.75;40 1.38 7.14;50 2.09 20.37 
      60 2.54 10.18;70 1.86 10;80 2.77 30;90 5.9 30.95;100 23.33 60.74]; 
m = 1; 
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pMin = 10^-4;        % Lowest possible CH_prop 
if length(rates)~=m || length(R)~=m 
    error('The length of rates and ranges is not equal to m please check 
parameters') 
end 

Building the WSN 
% Position of sink 
SX = -Marg; SY = L/2; 
 
% 1st row: Clustering indexing 
% 2nd: x-position, 3rd: y-position 
net = [zeros(1,N) ; rand([1,N])*W ; rand([1,N])*L ; randi(m,[1,N])]; 
tmp = sqrt((net(2,:)-SX).^2 + (net(3,:)-SY).^2);  
[~,I] = sort(tmp,'descend');  
net = net(:,I); 
NonCHpl = zeros(1,N); ranges = zeros(1,N); 
for i=1:m 
    idx = net(end,:)==i; 
    NonCHpl(idx) = rates(i); 
    ranges(idx) = R(i); 
end 
 
Groups = randi(k,[1,N]); % ON/OFF grouping 
ON_pr = []; 
% area to be sensed 
pgonx = [0 0 W W]; 
pgony = [0 L L 0]; 
 
% calculating costs 
cost = zeros(1,N); 
for i=1:N 
    Dist = sqrt(((net(2,:)-net(2,i)).^2) + ((net(3,:)-net(3,i)).^2)); 
    d = sqrt(((SX-net(2,i)).^2) + ((SY-net(3,i)).^2)); 
    Snbr = Dist <= ranges(i); 
    cost(i) = sum(Dist(Snbr))/(sum(Snbr)-1)+d; 
    % special case of isolated node 
    if isnan(cost(i)),cost(i)=max(Dist);end  
end 

Use Neural network to predict Extra_on nodes 
Xnet = ((net(2,:) - SX)./R)'; 
Ynet = ((net(3,:) - SY)./R)'; 
ON_pr = predictNN([Xnet,Ynet], nnet); % the prediction 

Start communication simulation 
SHOWPLOTS = 1; 
 
% first run no scheduling 
USE_schedule = 0; 
simulate_WSN 
second run using scheduling 
USE_schedule = 1; 
simulate_WSN 
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function [ON,net,ExtraOn] = Scheduling(net,CH,r,k,Groups,USE,R,D) 
 
ExtraOn = false(1,size(net,2)); 
 
if USE 
     
    ON_group = mod(r,k)+1; % The chosen group to be ON this round 
    ON_CH = find((Groups == ON_group) & CH & ~D); % the cluster heads that 
are ON 
    OFF_CH = find((Groups ~= ON_group) & CH & ~D); % the cluster heads 
that are off     
     
    % Extra-On Rule 
    X = net(2,:); Y = net(3,:); 
    len = length(ON_CH); 
    for i=1:len-1 
        sx = X(ON_CH(i+1:len)); ix = X(ON_CH(i)); 
        sy = Y(ON_CH(i+1:len)); iy = Y(ON_CH(i)); 
        d = sqrt((sx - ix).^2 + (sy - iy).^2); 
        d = min(d); 
        if d > R 
            sx = X(OFF_CH); 
            sy = Y(OFF_CH); 
            d = sqrt((sx - ix).^2 + (sy - iy).^2); 
            [~,d] = min(d); 
            % remove it from off cluster heads and put it in ON ones 
            if ~isempty(d) 
            ON_CH(end+1) = OFF_CH(d); 
             
            ExtraOn(OFF_CH(d)) = true; 
             
             
            OFF_CH(d) = []; 
            end 
        end 
    end 
     
    % Turning ON the cluster heads and their children 
    ON = false(1,size(net,2)); 
    for i=1:length(ON_CH) 
        c = net(1,ON_CH(i)); 
        ON(net(1,:)==c) = true; 
    end 
     
    % remove OFF nodes from clustering 
    net(1,~ON) = 0; 
     
     
else 
    ON = true(1,size(net,2)); 
end 

Appendix D - A Perceptron-Based Neural-Network Analyser to Enhance the Scheduling 
Performance in WSN code 
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% This code makes the data samples and add them to the folder named 
% Database .... I already created a lot 
clear,clc,close all 
% number of files already in Database folder 
Numfiles = dir('Database'); Numfiles = length(Numfiles)-2; 
% number of new sample files you want to create 
NumToCreate = 1; 
 
% Parameters 
rates = 80;          % Packet size for normal node per round (bits) for 
each type 
R = 15;              % Max range for wireless transition for each node 
 
k = 2;               % Number of ON/OFF groups  
 
N = 120;             % Number of nodes 
W = 100;             % length of the network 
L = 100;             % width of the network 
Ei = 3;              % Initial energy of each node (joules) 
CHpl = 3000;         % Packet size for cluster head per round (bits) 
p = 5/100;          % desired percentage of cluster heads 
num_rounds = 2000;   % Max Number of simulated rounds 
Tsetup = 4;          % average Time in seconds taken in setup phase 
Tss = 10;            % average Time in seconds taken in steady state 
phase 
Etrans = 1.0000e-09; % Energy for transmitting one bit 
Erec = 1.0000e-09;   % Energy for receiving one bit 
Eagg = 1.0000e-09;   % Data aggregation energy 
Efs = 5.00e-8;       % Energy of free space model amplifier 
Marg = 15;           % Distance from the sink to sensors area 
Rsense = 5;          % radius for sensing area around each node 
 
Ta = [10 0 2;20 0 4.459;30 0 3.75;40 1.38 7.14;50 2.09 20.37 
      60 2.54 10.18;70 1.86 10;80 2.77 30;90 5.9 30.95;100 23.33 60.74]; 
m = 1; 
% Position of sink 
SX = -Marg; SY = L/2; 

Start creating samples 
WB = waitbar(0,'Creating data samples .... please wait'); 
for KK=1:NumToCreate 
 
pMin = 10^-4;        % Lowest possible CH_prop 
if length(rates)~=m || length(R)~=m 
    error('The length of rates and ranges is not equal to m please check 
parameters') 
end 
 
% Building the WSN 
% 1st row: Clustering indexing 
% 2nd: x-position, 3rd: y-position 
net = [zeros(1,N) ; rand([1,N])*W ; rand([1,N])*L ; randi(m,[1,N])]; 
tmp = sqrt((net(2,:)-SX).^2 + (net(3,:)-SY).^2);  
[~,I] = sort(tmp,'descend');  
net = net(:,I); 
NonCHpl = zeros(1,N); ranges = zeros(1,N); 
for i=1:m 
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    idx = net(end,:)==i; 
    NonCHpl(idx) = rates(i); 
    ranges(idx) = R(i); 
end 
 
Groups = randi(k,[1,N]); % ON/OFF grouping 
 
% area to be sensed 
pgonx = [0 0 W W]; 
pgony = [0 L L 0]; 
 
% calculating costs 
cost = zeros(1,N); 
for i=1:N 
    Dist = sqrt(((net(2,:)-net(2,i)).^2) + ((net(3,:)-net(3,i)).^2)); 
    d = sqrt(((SX-net(2,i)).^2) + ((SY-net(3,i)).^2)); 
    Snbr = Dist <= ranges(i); 
    cost(i) = sum(Dist(Snbr))/(sum(Snbr)-1)+d; 
    % special case of isolated node 
    if isnan(cost(i)),cost(i)=max(Dist);end  
end 
 
% run using scheduling 
USE_schedule = 1; 
simulate_WSN 
 
% Save this sample to a file in Database folder 
save(['Database/test',num2str(Numfiles + KK),'.mat'],'Extra_ON','net') 
waitbar(KK/NumToCreate,WB,'Creating data samples .... please wait') 
end 
 
close(WB) 
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% Once the data samples are created this code creates the database from 
the 
% Samples to be used in neural network training 
% Clean memory and command window 
clear,clc,close all 
 
R  = 15;      % Max range for wireless transition for each node 
SX = -15;     % X-coordinate of the base station (sink) 
SY = 50;      % Y-coordinate of the base station (sink) 
 
Files = dir('Database'); 
sample_data = []; 
for i=3:length(Files)-1 
    try 
    load(fullfile('Database',Files(i).name)) 
     
    X = ((net(2,:) - SX)./R)'; % second row all columns 
    Y = ((net(3,:) - SY)./R)'; 
     
    tmp = sum(Extra_ON)'; 
     
    class = zeros(size(tmp)); 
    class(tmp <  4) = 1; 
    class(tmp >= 4) = 2; 
     
    sample_data = [sample_data;[X,Y,class]]; 
    catch 
    end 
end 
 
% Take the dataset parameters from user 
n = fix(input('Enter the number of input variables: ')); 
m = fix(input('Enter the number of functions to fit: ')); 
train_ratio = input('Enter the ratio of data used for creating the model: 
'); 
if n+m ~= size(sample_data,2) 
    error('Your inputs are not consistent with data size'); 
end 
 
% Divide data to train set and test set 
totalSamples = size(sample_data,1); 
[trainInd,~,testInd] = dividerand(totalSamples,train_ratio,0,1-
train_ratio); 
Xtrain = sample_data(trainInd,1:n);  
Xtest = sample_data(testInd,1:n); 
Ytrain = sample_data(trainInd,n+1:end);      
Ytest = sample_data(testInd,n+1:end); 
 
clear sample_data testInd trainInd; 
save('Data.mat'); 
disp('============================================================'); 
whos 
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% Once the data.mat file created to be used in NN training this is the 
% code that does the training 
% Initialization 
clear; close all; clc; % clear memory of old values 
addpath('codes') ; % load codes library 
  
% Parameters 
NumEpochs = 200;  % number of iterations 
contFromLastTime = 0; % 0:false ,,, 1:true 
  
%% 1) Import Data 
load('Data.mat'); 
numOut = size(Ytrain,2); 
Ytest_orig = Ytest; % save original test output values 
Nets = struct(); % Initialize Nets with empty struct 
  
%% 2) Build NN architecture 
options = {'lambda', 0.1,... 
    'maxIter', NumEpochs ,... 
    'hiddenLayers', [40 30 20],... 
    'validPercent', 30,... 
    'doNormalize', 1}; 
  
%% 3) Combine all in one system for training 
% Approximate values of output to discrete classes 
for i=1:numOut 
    disp(' '),disp(['Output number ',num2str(i),' :']) 
    disp('======================================') 
     
    if ~contFromLastTime 
        tmpNet = learnNN(Xtrain,Ytrain,contFromLastTime,options); 
    else 
        tmpNet = learnNN(Xtrain,Ytrain,i,options); 
    end 
    Nets = setfield(Nets,['Net',num2str(i)],tmpNet); 
     
    % Testing to get accuracy 
    p = predictNN(Xtest, tmpNet); % the prediction 
    correctIDX = (p-Ytest)==0; 
    Accuracy_classification = 100*sum(correctIDX)/size(Ytest,1); 
    disp(['Accuracy of classification = 
',num2str(Accuracy_classification)]) 
  
end 
  
% Saving trained Model 
save('Nets','Nets'); 
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Appendix E - The Hidden Markov Model (HMM) Node Scheduling Algorithm code  

The code of the described HMM function is borrowed from the below reference: 

[“Hidden Markov model states and emissions - MATLAB hmmgenerate - MathWorks India,” 
n.d.] 

% The function performs the state probabilities considering an input as 
described below when a particular input is taken to achieve its full state 
 
function [tr]= RegenerateMarkov(L) 
 
T1 = [0.95,0.05; 0.90,0.90]; 
T2 = [1/6 1/6 1/6 1/6 1/6 1/6; 
   1/10 1/10 1/10 1/10 1/10 1/2]; 
 
 
seq = zeros(1,L); 
states = zeros(1,L); 
 
% T1 Should be a square matrix 
 
numStates = size(T1,1); 
checkTr = size(T1,2); 
if checkTr ~= numStates 
    error(message('stats:RegenerateMarkov:BadTransitions')); 
end 
 
% The number of rows of e must be same as number of states 
 
checkE = size(T2,1); 
if checkE ~= numStates 
    error(message('stats:RegenerateMarkov:InputSizeMismatch')); 
end 
 
numEmissions = size(T2,2); 
 
customSymbols = false; 
customStatenames = false; 
 
if nargin > 3 
    okargs = {'symbols','statenames'}; 
    [symbols,statenames] = ... 
        internal.stats.parseArgs(okargs, {[] []}, varargin{:}); 
     
    if ~isempty(symbols) 
        numSymbolNames = numel(symbols); 
        if ~isvector(symbols) || numSymbolNames ~= numEmissions 
            error(message('stats:RegenerateMarkov:illegalSymbols')); 
        end 
        customSymbols = true; 
    end 
    if ~isempty(statenames) 
        numStateNames = length(statenames); 
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        if numStateNames ~= numStates 
            
error(message('statistics:RegenerateMarkov:illegalStateNames')); 
        end 
        customStatenames = true; 
    end  
end 
 
% create two random sequences, one for state changes, one for emission 
statechange = rand(1,L); 
randvals = rand(1,L); 
 
% calculate cumulative probabilities 
trc = cumsum(T1,2); 
ec = cumsum(T2,2); 
 
% normalize these just in case they don't sum to 1. 
trc = trc./repmat(trc(:,end),1,numStates); 
ec = ec./repmat(ec(:,end),1,numEmissions); 
 
% Assume that we start in state 1. 
currentstate = 1; 
 
% main loop  
for count = 1:L 
    % calculate state transition 
    stateVal = statechange(count); 
    state = 1; 
    for innerState = numStates-1:-1:1 
        if stateVal > trc(currentstate,innerState) 
            state = innerState + 1; 
            break; 
        end 
    end 
    % calculate emission 
    val = randvals(count); 
    emit = 1; 
    for inner = numEmissions-1:-1:1 
        if val  > ec(state,inner) 
            emit = inner + 1; 
            break 
        end 
    end 
    % add values and states to output 
    seq(count) = emit; 
    states(count) = state; 
    currentstate = state; 
end 
 
% deal with names/symbols 
if customSymbols 
    seq = reshape(symbols(seq),1,L); 
end 
if customStatenames 
    states = reshape(statenames(states),1,L); 
end 
if nargin > 0 
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    if isstring(seq) 
        seq = cellstr(seq); 
    end 
end 
 
if nargin > 1 
    if isstring(states) 
        states = cellstr(states); 
    end 
end 
 
if nargin > 2 
    [varargin{:}] = convertStringsToChars(varargin{:}); 
end 
 
pseudoEcounts = false; 
pseudoTRcounts = false; 
tr = []; 
E = []; 
seqLen = length(seq); 
if length(states) ~= seqLen 
    error(message('InputMismatch')); 
end 
uniqueSymbols = unique(seq); 
uniqueStates = unique(states); 
 
if isempty(uniqueSymbols)  
    warning(message('EmptySequence')); 
    return 
end 
if isempty(uniqueStates) 
    warning(message('EmptyState')); 
    return 
end     
 
% If sequence(seq) is numeric, assume that the number of symbols is the 
largest 
% number in seq Otherwise, assume it's the number of unique symbols in 
% seq Use the same logic for the number of states. 
if isnumeric(seq)  
    numSymbols = max(uniqueSymbols);  
else  
    numSymbols = length(uniqueSymbols);  
end  
if isnumeric(states)  
    numStates = max(uniqueStates);  
else  
    numStates = length(uniqueStates);  
end  
 
if nargin > 2 
    okargs = 
{'symbols','statenames','pseudoemissions','pseudotransitions'}; 
    [symbols,statenames,pseudoE,pseudoTR,setflag] = ... 
        internal.stats.parseArgs(okargs, {[] [] [] []}, varargin{:}); 
     
    if setflag.symbols 
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        numSymbols = numel(symbols); 
        if length(symbols) ~= numSymbols 
            error(message('BadSymbols')); 
        end 
        [~, seq]  = ismember(seq,symbols); 
        if any(seq == 0) 
            error(message('SymbolNotInSymbolNames')); 
        end 
    end 
    if setflag.statenames 
        numStates = numel(statenames); 
        if length(statenames) ~= numStates 
            error(message('BadStateNames')); 
        end 
        [~, states]  = ismember(states,statenames); 
        if any(states == 0) 
            error(message('StateNotInStateNames')); 
        end 
    end 
    if setflag.pseudoemissions 
        [rows, cols] = size(pseudoE); 
        if  rows < numStates 
            error(message('StatesPseudoMismatch')); 
        end 
        if  cols < numSymbols 
            error(message('SeqPseudoMismatch')); 
        end 
        numStates = rows; 
        numSymbols = cols; 
        pseudoEcounts = true; 
    end 
    if setflag.pseudotransitions 
        [rows, cols] = size(pseudoTR); 
        if rows ~= cols 
            error(message('BadTransitions')); 
        end 
        if  rows < numStates 
            error(message('StatesPseudoMismatch')); 
        end 
        numStates = rows; 
        pseudoTRcounts = true; 
    end 
end 
 
 
tr = zeros(numStates); 
E = zeros(numStates, numSymbols); 
% count up the transitions from the state path 
for count = 1:seqLen-1 
    tr(states(count),states(count+1)) = tr(states(count),states(count+1)) 
+ 1; 
end 
 
if pseudoTRcounts 
    tr = tr + pseudoTR; 
end 
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trRowSum = sum(tr,2); 
 
 
% If we don't have any values then report zeros instead of NaNs (Error 

correction in case of Not a Number) 

. 
trRowSum(trRowSum == 0) = -inf; 
 
 
% Normalize to give frequency estimate. 
tr = tr./repmat(trRowSum,1,numStates); 

 

Appendix F - The Bio-inspired BAT Node Scheduling Algorithm Code 

% Clean memory and command window 
clear; 
clc; 
close all; 
 
% Load the trained neural network 
addpath('codes') ; % load codes library 
% load('Nets.mat') 
%  
% nnet = Nets.Net1; 
N = 100;             % Number of nodes 
 bat = test_bat(N); 
 bat = bat'; 

Parameters 
 k = ceil(bat(1,49));               % Number of ON/OFF groups  
  
%k=3; 
 
 
W = 20;              % length of the network 
L = 20;              % width of the network 
 
Ei = 0.25;           % Initial energy of each node (joules) 
CHpl = 3000;         % Packet size for cluster head per round (bits) 
p = 5/100;           % desired percentage of cluster heads 
num_rounds = 2000;   % Max Number of simulated rounds 
Tsetup = 4;          % average Time in seconds taken in setup phase 
Tss = 10;            % average Time in seconds taken in steady state 
phase 
Etrans = 1.0000e-09; % Energy for transmitting one bit 
Erec = 1.0000e-09;   % Energy for receiving one bit 
Eagg = 1.0000e-09;   % Data aggregation energy 
Efs = 5.00e-8;       % Energy of free space model amplifier 
Marg = 5;            % Distance from the sink to sensors area 
rates = 80;          % Packet size for normal node per round (bits) for 
each type 



  

183 

 

R = 3.5;               % Max range for wireless transmition for each 
node 
Ta = [10 0 2;20 0 4.459;30 0 3.75;40 1.38 7.14;50 2.09 20.37 
      60 2.54 10.18;70 1.86 10;80 2.77 30;90 5.9 30.95;100 23.33 60.74]; 
m = 1; 
pMin = 10^-4;        % Lowest possible CH_prop 
if length(rates)~=m || length(R)~=m 
    error('The length of rates and ranges is not equal to m please check 
parameters') 
end 

Building the WSN 
% Position of sink 
SX = -Marg; SY = L/2; 
 
% 1st row: Clustering indexing 
% 2nd: x-position, 3rd: y-position 
 
net = [zeros(1,N) ; rand([1,N])*W ; rand([1,N])*L ; randi(m,[1,N])]; 
% net = [zeros(1,N) ; bat(1,:)*W ; bat(2,:)*L ; randi(m,[1,N])]; 
tmp = sqrt((net(2,:)-SX).^2 + (net(3,:)-SY).^2);  
[~,I] = sort(tmp,'descend');  
net = net(:,I); 
NonCHpl = zeros(1,N); ranges = zeros(1,N); 
for i=1:m 
    idx = net(end,:)==i; 
    NonCHpl(idx) = rates(i); 
    ranges(idx) = R(i); 
end 
 
Groups = randi(k,[1,N]); % ON/OFF grouping 
ON_pr = []; 
% area to be sensed 
pgonx = [0 0 W W]; 
pgony = [0 L L 0]; 
 
% calculating costs 
cost = zeros(1,N); 
for i=1:N 
    Dist = sqrt(((net(2,:)-net(2,i)).^2) + ((net(3,:)-net(3,i)).^2)); 
    d = sqrt(((SX-net(2,i)).^2) + ((SY-net(3,i)).^2)); 
    Snbr = Dist <= ranges(i); 
    cost(i) = sum(Dist(Snbr))/(sum(Snbr)-1)+d; 
    % special case of isolated node 
    if isnan(cost(i)),cost(i)=max(Dist);end  
end 

Use Neural networkto predict Extra_on nodes 
Xnet = ((net(2,:) - SX)./R)'; Ynet = ((net(3,:) - SY)./R)'; ON_pr = predictNN([Xnet,Ynet], nnet) % 
the prediction 
%ON_pr = ceil(bat(1,50)); 
ON_pr =ceil(bat(2,:)); 

Start communication simulation 
SHOWPLOTS = 1; 
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% first run no scheduling 
USE_schedule = 0; 
    Rsense = 1;          % radius for sensing area around each node 
    simulate_WSN 
%%=\]we3231% second run using scheduling 
USE_schedule = 1; 
    Rsense = ceil(bat(2,49)); 
    simulate_WSN 

 

function P=test_bat(NPareto) 
if nargin<1,  
    NPareto;  % Number of points on the Pareto front  
end 
global w; 
for k=1:NPareto, 
    % Generate a weighting coefficient:w so that w1=w, w2=1-w, w1+w2=1.   
    % ObserEations suggest that systematically monotonic weights are 
    % better than random weights. 
    w=k/NPareto;  
    [best,fmin]=bat_algorithm; 
    [o1,o2]=optimizer(best); 
    P(k,:)=[o1,o2]; 
    % Output/display 
  disp(['Weight: ',num2str(w)]); 
  disp(['Best o1=',num2str(o1),'   o2=',num2str(o2)]); 
    
end 
% Display the Pareto front 
% plot(P(:,1),P(:,2),'o'); 
% xlabel('o_1'); ylabel('o_2'); 
% The main part of the Bat Algorithm                       %  
% Usage: bat_algorithm([20 0.25 0.5]);                     % 
function [best,fmin,N_iter]=bat_algorithm(para) 
% Default parameters 
if nargin<1,  para=[10 0.25 0.5];  end 
n=para(1);      % number of bats typically 10 to 150 
A=para(2);      % population Density  (constant or decreasing) 
r=para(3);      % Heart rate (constant or decreasing) 
 
Pmin=0;         % heart beat freq minimum 
Pmax=2;         % heart beat freq maximum 
% Iteration parameters 

In order to obtain better/more accurate results, N_iter 

should be increased to N_iter=2000 or more if necessary. 
N_iter=1000;       % Total number of function eEaluations 
       % Dimension of the search variables 
d=4; 
% Initial arrays 
P=zeros(n,1);   % Heart Rate 
E=zeros(n,d);   %  Energy 
% Initialize the population/solutions 
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for i=1:n, 
  Sol(i,:)=randn(1,d); 
  Fitness(i)=Fun(Sol(i,:)); 
end 
% Find the current best 
[fmin,I]=min(Fitness); 
best=Sol(I,:); 
% ======================================================  % 
% Note: As this is a demo, here we did not implement the  % 
% reduction of loudness and increase of emission rates.   % 
% Interested readers can do some parametric studies       % 
% and also implementation Earious changes of A and r etc  % 
% ======================================================  % 
% Start the iterations -- Bat Algorithm 
for i_ter=1:N_iter, 
        % Loop oEer all bats/solutions 
        for i=1:n, 
          P(i)=Pmin+(Pmin-Pmax)*rand; 
          E(i,:)=E(i,:)+(Sol(i,:)-best)*P(i); 
          S(i,:)=Sol(i,:)+E(i,:); 
          % Heart rate 
          if rand>r 
              S(i,:)=best+0.01*randn(1,d); 
          end 
     % EEaluate new solutions 
           Fnew=Fun(S(i,:)); 
     % If the solution improEes or not too loudness 
           if (Fnew<=Fitness(i)) & (rand<A) , 
                Sol(i,:)=S(i,:); 
                Fitness(i)=Fnew; 
           end 
          % Update the current best 
          if Fnew<=fmin, 
                best=S(i,:); 
                fmin=Fnew; 
          end 
        end 
         
end 
% End of the main bat algorithm and output/display can be added here. 
% Put your oectiEe functions here 
function z=Fun(u) 
global w; 
[o1,o2]=optimizer(u); 
z=o1*w+(1-w)*o2; 
% Two oectiEes 
function [o1,o2]=optimizer(u) 
% In the simplest 1D case, f1=x^2, f2=(x-2)^2.  
% In the d-dim case, the Pareto front extends from (0,4d) to (4d,0). 
o1=sum(u.^2); 
o2=sum((u-2).^2); 

  

 Appendix G - The Self-Organizing Feature Map (SOFM) Node Scheduling Algorithm 
code 
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% Clean memory and a command window 
clear; 
clc; 
close all; 
  
% Load the trained neural network 
%addpath('codes') ; % load codes library 
% load('Nets.mat') 
% 
% nnet = Nets.Net1; 
 N = 100;          % Number of nodes 
 
C = readtable('coordinate.csv'); 
C= table2array(C); 
S =readtable('som.csv'); %store som data 
S= table2array(S); 
S =S'; 
 

Parameters 
     k = ceil(bat(1,39));               % Number of ON/OFF groups  
%  k = ceil(bat(49,1));  
%k=3; 
 
 
W = 20;              % length of the network 
L = 20;              % width of the network 
 
Ei = 0.25;          % Initial energy of each node (joules) 
CHpl = 3000;        % Packet size for cluster head per round (bits) 
p = 20/100;         % desired percentage of cluster heads 
num_rounds = 200;   % Max Number of simulated rounds 
Tsetup = 4;         % average Time in seconds taken in setup phase 
Tss = 10;           % average Time in seconds taken in steady state 
phase 
Etrans = 1.0000e-09; % Energy for transmitting one bit 
Erec = 1.0000e-09;   % Energy for receiving one bit 
Eagg = 1.0000e-09;   % Data aggregation energy 
Efs = 5.00e-8;       % Energy of free space model amplifier 
Marg = 5;            % Distance from the sink to sensors area 
rates = 80;          % Packet size for normal node per round (bits) for 
each type 
R = 3.5;              % Max range for wireless transmition for each node 
Ta = [10 0 2;20 0 4.459;30 0 3.75;40 1.38 7.14;50 2.09 20.37 
      60 2.54 10.18;70 1.86 10;80 2.77 30;90 5.9 30.95;100 23.33 60.74]; 
m = 1; 
pMin = 10^-4;        % Lowest possible CH_prop 
if length(rates)~=m || length(R)~=m 
    error('The length of rates and ranges is not equal to m please check 
parameters') 
end 

Building the WSN 
% Position of sink 
SX = -Marg; SY = L/2; 
 
% 1st row: Clustering indexing 
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% 2nd: x-position, 3rd: y-position 
 
%net = [zeros(1,N) ; rand([1,N])*W ; rand([1,N])*L ; randi(m,[1,N])]; 
net = [zeros(1,N) ; C(:,1)'*W ; C(:,2)'*L ; randi(m,[1,N])]; 
% net = [zeros(1,N) ; bat(1,:)*W ; bat(2,:)*L ; randi(m,[1,N])]; 
tmp = sqrt((net(2,:)-SX).^2 + (net(3,:)-SY).^2);  
[~,I] = sort(tmp,'descend');  
net = net(:,I); 
NonCHpl = zeros(1,N); ranges = zeros(1,N); 
for i=1:m 
    idx = net(end,:)==i; 
    NonCHpl(idx) = rates(i); 
    ranges(idx) = R(i); 
end 
%%03340291100 
Groups = randi(k,[1,N]); % ON/OFF grouping 
ON_pr = []; 
% area to be sensed 
pgonx = [0 0 W W]; 
pgony = [0 L L 0]; 
 
% calculating costs 
cost = zeros(1,N); 
for i=1:N 
    Dist = sqrt(((net(2,:)-net(2,i)).^2) + ((net(3,:)-net(3,i)).^2)); 
    d = sqrt(((SX-net(2,i)).^2) + ((SY-net(3,i)).^2)); 
    Snbr = Dist <= ranges(i); 
    cost(i) = sum(Dist(Snbr))/(sum(Snbr)-1)+d; 
    % special case of isolated node 
    if isnan(cost(i)),cost(i)=max(Dist);end  
end 
nnet = selforgmap([100 2]); %SOFM is created here 
%(https://in.mathworks.com/help/deeplearning/ref/selforgmap.html) 
nnet = train(nnet,C); 
Xnet = ((C(:,1) - SX)./R)'; Ynet = ((C(:,2) - SY)./R)'; ON_pr = ([Xnet,Ynet], nnet); % the prediction 
ON_pr=nnet(C); 
 

Start communication simulation 
SHOWPLOTS = 1; 
 
% first run no scheduling 
USE_schedule = 0; 
    Rsense = 1;          % radius for sensing area around each node 
    simulate_WSN 
%%=\]we3231% second run using scheduling 
USE_schedule = 1; 
%     Rsense = ceil(bat(2,39)); 
%     %Rsense = ceil(bat(49,2)); 
     Rsense = 1; 
     simulate_WSN 
 

  

Appendix F – Long-Short-Term-Memory (LSTM) Node Scheduling Algorithm code 
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The LSTM code was modified to delete missing values, such as outlier values and noises and 
develop single best output amongst other possible values. For example, if the LSTM model is 
applied to WSN for 20 sec it can train on 20 secs data and predict upto next 20 sec data. The 
LSTM code was borrowed from the source below: 

[“Multivariate and Univariate Time Series Prediction,” 2024] 

%clc; clear; close all; 
function data = TimeSeriesPrediction() 
%% ---------------------------- init Variabels --------------------------
-- 
  
opt.Delays = [1 2 3 4 5 6 7 8 9 10 12 16 20]; 
opt.dataPreprocessMode  = 'Data Standardization'; % 'None' 'Data 
Standardization' 'Data Normalization' 
opt.learningMethod      = 'LSTM';                 % 'MLP' 'LSTM'     
opt.trPercentage        = 0.8;                    %  divide data into Test  
and Train dataset 
  
% ------------- BILSTM parameters  
opt.NumOfHiddenLayers = 2;                        %  number of (bi)LSTM 
layers 
  
opt.NumOfUnitsInFirstlayer  = 100;                %  number of (bi)LSTM 
units in the first  layer 
opt.NumOfUnitsInSecondlayer = 100;                %  number of (bi)LSTM 
units in the second layer 
opt.NumOfUnitsInThirdlayer  = 75;                 %  number of (bi)LSTM 
units in the third  layer 
opt.NumOfUnitsInFourthlayer = 75;                 %  number of (bi)LSTM 
units in the fourth  layer 
  
opt.isUseBiLSTMLayer  = true;                    % if it is true the layer 
turn to the Bidirectional-LSTM and if it is false it will turn the units 
to the simple LSTM 
opt.isUseDropoutLayer = true;                    % dropout layer avoid of 
bieng overfit 
opt.DropoutValue      = 0.5; 
  
opt.maxEpochs     = 200;                         % maximum number of 
training Epoch in bi-LSTM. 
opt.miniBatchSize = 64;                          % minimum batch size in 
bi-LSTM . 
opt.executionEnvironment = 'cpu';                % 'cpu' 'gpu' 'auto' 
opt.LR                   = 'adam';               % 'sgdm' 'rmsprop' 'adam' 
opt.trainingProgress     = 'training-progress';  % 'training-progress' 
'none'. 
  
% MLP parameters 
opt.NumOfFeedForwardLeyars = 2; 
  
opt.NumOfNeuronsInFirstlayer  = 15;         %  number of neurons in the 
first  layer 
opt.NumOfNeuronsInSecondlayer = 15;         %  number of neurons in the 
second layer 
opt.NumOfNeuronsInThirdlayer  = 10;         %  number of neurons in the 
third  layer 
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opt.trainFcn = 'trainbr';                   % 'trainlm' 'trainscg' 'traincgf' 
'trainbr' 
opt.maxItrations = 100;                     % maximum number of training 
itration. 
opt.showWindow             = true;          % display training window. 
opt.showCommandLine        = true;          % display training process on 
workspace. 
  
opt.isSavePredictedData    = true;         %  save output prediction on an 
excel file 
  
%% --------------- load Data 
data = loadData(opt); 
if ~data.isDataRead 
    return; 
end 
%% --------------- Train Network 
[opt,data] = TrainData(opt,data); 
  
%% --------------- Evaluate Data  
[opt,data] = EvaluationData(opt,data); 
  
  
%% ---------------------------- Local Functions -------------------------
-- 
function data = loadData(opt) 
 [chosenfile,chosendirectory] = uigetfile({'*.xlsx';'*.csv'},... 
                       'Select Excel time series Data sets','data.xlsx'); 
   filePath = [chosendirectory chosenfile]; 
    if filePath ~= 0  
        data.DataFileName = chosenfile; 
        data.CompleteData = readtable(filePath);  
        if size(data.CompleteData,2)>1 
             warning('Input data should be an excel file with only one 
column!');  
             disp('Operation Failed... '); pause(.9); 
             disp('Reloading data. ');     pause(.9); 
             data.x = []; 
             data.isDataRead = false; 
             return; 
        end 
        data.seriesdataHeder = 
data.CompleteData.Properties.VariableNames(1,:); 
        data.seriesdata = table2array(data.CompleteData(:,:)); 
        disp('Input data successfully read.'); 
        data.isDataRead = true; 
        data.seriesdata = PreInput(data.seriesdata); 
         
%         figure('Name','InputData','NumberTitle','off'); 
%         plot(data.seriesdata); 
%         title({['Mean = ' num2str(mean(data.seriesdata)) ', STD = ' 
num2str(std(data.seriesdata)) ];}); 
        if strcmpi(opt.dataPreprocessMode,'None') 
            data.x = data.seriesdata; 
        elseif strcmpi(opt.dataPreprocessMode,'Data Normalization') 
            data.x = DataNormalization(data.seriesdata); 
%             figure('Name','NormilizedInputData','NumberTitle','off'); 
%             plot(data.x); grid minor; 
%             title({['Mean = ' num2str(mean(data.x)) ', STD = ' 
num2str(std(data.x)) ];}); 
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        elseif strcmpi(opt.dataPreprocessMode,'Data Standardization') 
            data.x = DataStandardization(data.seriesdata); 
%             figure('Name','NormilizedInputData','NumberTitle','off'); 
%             plot(data.x); grid minor; 
%             title({['Mean = ' num2str(mean(data.x)) ', STD = ' 
num2str(std(data.x)) ];}); 
        end 
         
    else  
        warning(['In order to train network, please load data.' ... 
        'Input data should be an excel file with only one column!']);     
        disp('Operation Cancel.');  
        data.isDataRead = false; 
    end 
end 
function data = PreInput(data) 
    if iscell(data) 
        for i=1:size(data,1) 
            for j=1:size(data,2) 
                if strcmpi(data{i,j},'#NULL!') 
                    tempVars(i,j) = NaN; %#ok 
                else 
                    tempVars(i,j) = str2num(data{i,j});   %#ok 
                end 
            end 
        end 
        data = tempVars; 
    end 
  
end 
function  vars = DataStandardization(data) 
    for i=1:size(data,2) 
        x.mu(1,i)   = mean(data(:,i),'omitnan'); 
        x.sig(1,i)  = std (data(:,i),'omitnan'); 
        vars(:,i) = (data(:,i) - x.mu(1,i))./ x.sig(1,i); 
    end 
end 
function vars = DataNormalization(data) 
    for i=1:size(data,2) 
        vars(:,i) = (data(:,i) -min(data(:,i)))./ (max(data(:,i))-
min(data(:,i))); 
    end 
end 
% --------------- Train Network --------------- 
% --------------------------------------------- 
function [opt,data] = TrainData(opt,data) 
% Bi-LSTM parameters 
if opt.NumOfHiddenLayers ==1 
    opt.numHiddenUnits1 = opt.NumOfUnitsInFirstlayer;    
elseif opt.NumOfHiddenLayers ==2 
    opt.numHiddenUnits1 = opt.NumOfUnitsInFirstlayer;  
    opt.numHiddenUnits2 = opt.NumOfUnitsInSecondlayer;     
elseif opt.NumOfHiddenLayers ==3 
    opt.numHiddenUnits1 = opt.NumOfUnitsInFirstlayer;  
    opt.numHiddenUnits2 = opt.NumOfUnitsInSecondlayer;   
    opt.numHiddenUnits3 = opt.NumOfUnitsInThirdlayer;  
elseif opt.NumOfHiddenLayers ==4 
    opt.numHiddenUnits1 = opt.NumOfUnitsInFirstlayer;  
    opt.numHiddenUnits2 = opt.NumOfUnitsInSecondlayer;   
    opt.numHiddenUnits3 = opt.NumOfUnitsInThirdlayer;  
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    opt.numHiddenUnits4 = opt.NumOfUnitsInFourthlayer;  
end 
% MLP parameters 
if opt.NumOfFeedForwardLeyars ==1 
    opt.ShallowhiddenLayerSize = [opt.NumOfNeuronsInFirstlayer];                                       
% number of Hidden layers in MLP network. 
elseif opt.NumOfFeedForwardLeyars ==2 
    opt.ShallowhiddenLayerSize = [opt.NumOfNeuronsInFirstlayer 
opt.NumOfNeuronsInSecondlayer];          % number of Hidden layers in MLP 
network.  
elseif opt.NumOfFeedForwardLeyars ==3 
    opt.ShallowhiddenLayerSize = [opt.NumOfNeuronsInFirstlayer 
opt.NumOfNeuronsInSecondlayer opt.NumOfNeuronsInThirdlayer];% number of 
Hidden layers in MLP network. 
end 
  
  
  
% prepare delays for time serie network 
data = CreateTimeSeriesData(opt,data); 
  
% divide data into test and train data 
data = dataPartitioning(opt,data); 
  
if strcmpi(opt.learningMethod,'LSTM') 
    % LSTM data form 
    data = LSTMInput(data); 
    %  Define LSTM  architect  
    opt = LSTMArchitect(opt,data); 
elseif strcmpi(opt.learningMethod,'MLP') 
    % Prepare input data for MLP network. 
    FeedForwardInput(); 
    %  Define MLP architect  
    opt  = FeedForwardArchitect(opt);     
end 
  
% Train LSTM, MLP  
data = TrainNet(opt,data); 
  
end 
% make some delays on input filed 
function data = CreateTimeSeriesData(opt,data) 
    Delays = opt.Delays; 
  
    x = data.x'; 
    T = size(x,2); 
     
    MaxDelay = max(Delays); 
     
    Range = MaxDelay+1:T; 
     
    X= []; 
    for d = Delays 
        X=[X; x(:,Range-d)]; 
    end 
     
    Y = x(:,Range); 
    data.X  = X; 
    data.Y  = Y; 
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end 
% partitioning input data  
function data = dataPartitioning(opt,data) 
data.XTr   = []; 
data.YTr   = []; 
data.XTs   = []; 
data.YTs   = []; 
  
numTrSample = round(opt.trPercentage*size(data.X,2)); 
  
data.XTr   = data.X(:,1:numTrSample); 
data.YTr   = data.Y(:,1:numTrSample); 
  
data.XTs   = data.X(:,numTrSample+1:end); 
data.YTs   = data.Y(:,numTrSample+1:end); 
  
disp(['Time Series data divided to ' num2str(opt.trPercentage*100) '% Train 
data and ' num2str((1-opt.trPercentage)*100) '% Test data']); 
end 
% Prepare input data for MLP network. 
function FeedForwardInput() 
    disp('Time Series data prepared as suitable MLP Input data.'); 
end 
% Prepare input data for LSTM network. 
function data = LSTMInput(data) 
  
for i=1:size(data.XTr,2) 
    XTr{i,1} = data.XTr(:,i);   
    YTr(i,1) = data.YTr(:,i);   
end 
  
for i=1:size(data.XTs,2) 
    XTs{i,1} =  data.XTs(:,i);   
    YTs(i,1) =  data.YTs(:,i);  
end 
data.XTr   = XTr; 
data.YTr   = YTr; 
data.XTs   = XTs; 
data.YTs   = YTs; 
  
disp('Time Series data prepared as suitable LSTM Input data.'); 
end 
  
% ---- network structure ---- 
% bi-LSTM Deeplearning Architect 
function opt = LSTMArchitect(opt,data) 
  
miniBatchSize   = opt.miniBatchSize; 
maxEpochs       = opt.maxEpochs; 
trainingProgress = opt.trainingProgress; 
executionEnvironment = opt.executionEnvironment; 
  
inputSize = size(data.X,1); 
outputMode = 'last'; 
numResponses   = 1; 
dropoutVal = opt.DropoutValue; 
if opt.isUseDropoutLayer % if dropout layer is true 
    if opt.NumOfHiddenLayers ==1 
        if opt.isUseBiLSTMLayer == 1 
            opt.layers = [ ... 
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                sequenceInputLayer(inputSize) 
                bilstmLayer(opt.numHiddenUnits1,'OutputMode',outputMode) 
                dropoutLayer(dropoutVal) 
                fullyConnectedLayer(numResponses) 
                regressionLayer]; 
        else 
            opt.layers = [ ... 
                sequenceInputLayer(inputSize) 
                lstmLayer(opt.numHiddenUnits1,'OutputMode',outputMode) 
                dropoutLayer(dropoutVal) 
                fullyConnectedLayer(numResponses) 
                regressionLayer]; 
        end 
    elseif opt.NumOfHiddenLayers ==2 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode',outputMode) 
            dropoutLayer(dropoutVal) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        else 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            lstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            lstmLayer(opt.numHiddenUnits2,'OutputMode',outputMode) 
            dropoutLayer(dropoutVal) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        end 
    elseif opt.NumOfHiddenLayers ==3 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode',outputMode) 
            dropoutLayer(dropoutVal) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        else 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode',outputMode) 
            dropoutLayer(dropoutVal) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        end 
    elseif opt.NumOfHiddenLayers ==4 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
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            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits4,'OutputMode',outputMode) 
            dropoutLayer(dropoutVal) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        else 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode','sequence') 
            dropoutLayer(dropoutVal) 
            bilstmLayer(opt.numHiddenUnits4,'OutputMode',outputMode) 
            dropoutLayer(dropoutVal) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        end 
    end 
else % if dropout layer is false 
    if opt.NumOfHiddenLayers ==1 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
                sequenceInputLayer(inputSize) 
                bilstmLayer(opt.numHiddenUnits1,'OutputMode',outputMode) 
                fullyConnectedLayer(numResponses) 
                regressionLayer]; 
        else 
            opt.layers = [ ... 
                sequenceInputLayer(inputSize) 
                lstmLayer(opt.numHiddenUnits1,'OutputMode',outputMode) 
                fullyConnectedLayer(numResponses) 
                regressionLayer]; 
        end 
    elseif opt.NumOfHiddenLayers ==2 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode',outputMode) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        else 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            lstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            lstmLayer(opt.numHiddenUnits2,'OutputMode',outputMode) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        end 
    elseif opt.NumOfHiddenLayers ==3 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
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            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode',outputMode) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        else 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode',outputMode) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        end 
    elseif opt.NumOfHiddenLayers ==4 
        if opt.isUseBiLSTMLayer 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits4,'OutputMode',outputMode) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        else 
            opt.layers = [ ... 
            sequenceInputLayer(inputSize) 
            bilstmLayer(opt.numHiddenUnits1,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits2,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits3,'OutputMode','sequence') 
            bilstmLayer(opt.numHiddenUnits4,'OutputMode',outputMode) 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        end 
    end 
end 
% Training Network Options 
% 'sgdm'  
% 'rmsprop' 
% 'adam' 
  
opt.opts = trainingOptions(opt.LR, ... 
    'MaxEpochs',maxEpochs, ... 
    'GradientThreshold',1, ... 
    'InitialLearnRate',0.005, ... 
    'LearnRateSchedule','piecewise', ... 
    'LearnRateDropPeriod',125, ... 
    'LearnRateDropFactor',0.2, ... 
    'Verbose',1, ... 
    'MiniBatchSize',miniBatchSize,... 
    'ExecutionEnvironment',executionEnvironment,... 
    'Plots',trainingProgress); 
    disp('LSTM architect successfully created.'); 
end 
% MLP Shallowlearning Architect 
function opt = FeedForwardArchitect(opt) 
opt.Net = feedforwardnet(opt.ShallowhiddenLayerSize,opt.trainFcn); 
opt.Net.divideParam.trainRatio = 80/100; 
opt.Net.divideParam.valRatio  = 10/100; 
opt.Net.divideParam.testRatio = 10/100; 
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opt.Net.trainParam.epochs          = opt.maxItrations; 
opt.Net.trainParam.showWindow      = opt.showWindow; 
opt.Net.trainParam.showCommandLine = opt.showCommandLine; 
disp('MLP architect successfully created.'); 
  
end 
% Train  Network 
function data = TrainNet(opt,data) 
  
if strcmpi(opt.learningMethod,'LSTM') 
    try 
        data.BiLSTM.Net = 
trainNetwork(data.XTr,data.YTr,opt.layers,opt.opts); 
        disp('LSTM Netwwork successfully trained.'); 
        data.IsNetTrainSuccess =true; 
    catch me 
        disp('Error on Training LSTM Network'); 
        data.IsNetTrainSuccess = false; 
        return; 
    end 
elseif strcmpi(opt.learningMethod,'MLP') 
    try 
        [data.FF.Net,~] = train(opt.Net,data.XTr,data.YTr); 
        disp('Feed Forward Netwwork successfully trained.'); 
        data.IsNetTrainSuccess = true; 
    catch me 
        disp('Error on Training FF Network'); 
        data.IsNetTrainSuccess =false; 
        return; 
    end 
end 
  
end 
  
  
% --------------- Evaluate Data --------------- 
% --------------------------------------------- 
function [opt,data] = EvaluationData(opt,data) 
if strcmpi(opt.learningMethod,'LSTM') 
     
    data.BiLSTM.TrainOutputs = 
deNorm(data.seriesdata,predict(data.BiLSTM.Net,data.XTr,'MiniBatchSize',o
pt.miniBatchSize),opt.dataPreprocessMode); 
    data.BiLSTM.TrainTargets = 
deNorm(data.seriesdata,data.YTr,opt.dataPreprocessMode); 
    data.BiLSTM.TestOutputs  = 
deNorm(data.seriesdata,predict(data.BiLSTM.Net,data.XTs,'MiniBatchSize',o
pt.miniBatchSize),opt.dataPreprocessMode); 
    data.BiLSTM.TestTargets  = 
deNorm(data.seriesdata,data.YTs,opt.dataPreprocessMode); 
    data.BiLSTM.AllDataTargets = [data.BiLSTM.TrainTargets 
data.BiLSTM.TestTargets]; 
    data.BiLSTM.AllDataOutputs = [data.BiLSTM.TrainOutputs 
data.BiLSTM.TestOutputs]; 
    
%     data = PlotResults(data,'Tr',... 
%         data.BiLSTM.TrainOutputs, ... 
%         data.BiLSTM.TrainTargets); 
%     data = 
plotReg(data,'Tr',data.BiLSTM.TrainTargets,data.BiLSTM.TrainOutputs); 
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%  
%     data = PlotResults(data,'Ts',.... 
%         data.BiLSTM.TestOutputs, ... 
%         data.BiLSTM.TestTargets); 
%     data = 
plotReg(data,'Ts',data.BiLSTM.TestTargets,data.BiLSTM.TestOutputs); 
%  
%     data = PlotResults(data,'All',... 
%         data.BiLSTM.AllDataOutputs, ... 
%         data.BiLSTM.AllDataTargets); 
%     data = 
plotReg(data,'All',data.BiLSTM.AllDataTargets,data.BiLSTM.AllDataOutputs)
; 
%      
    disp('Bi-LSTM network performance evaluated.'); 
     
elseif strcmpi(opt.learningMethod,'MLP') 
     
        data.FF.TrainOutputs = 
deNorm(data.seriesdata,data.FF.Net(data.XTr)',opt.dataPreprocessMode); 
        data.FF.TrainTargets = 
deNorm(data.seriesdata,(data.YTr)',opt.dataPreprocessMode); 
        data.FF.TestOutputs  = 
deNorm(data.seriesdata,data.FF.Net(data.XTs)',opt.dataPreprocessMode); 
        data.FF.TestTargets  = 
deNorm(data.seriesdata,(data.YTs)',opt.dataPreprocessMode); 
  
    data.FF.AllDataTargets = [data.FF.TrainTargets data.FF.TestTargets]; 
    data.FF.AllDataOutputs = [data.FF.TrainOutputs data.FF.TestOutputs]; 
  
    DispVal = 1; 
    for i= DispVal 
%         data = PlotResults(data,'Tr',... 
%             data.FF.TrainOutputs(i,:), ... 
%             data.FF.TrainTargets(i,:)); 
%         data = 
plotReg(data,'Tr',data.FF.TrainTargets(i,:),data.FF.TrainOutputs(i,:)); 
%         data = PlotResults(data,'Ts',.... 
%             data.FF.TestOutputs(i,:), ... 
%             data.FF.TestTargets(i,:)); 
%         data = 
plotReg(data,'Ts',data.FF.TestTargets(i,:),data.FF.TestOutputs(i,:)); 
%         data = PlotResults(data,'All',... 
%             data.FF.AllDataOutputs(i,:), ... 
%             data.FF.AllDataTargets(i,:)); 
%         data = 
plotReg(data,'All',data.FF.AllDataTargets(i,:),data.FF.AllDataOutputs(i,:
)); 
        disp('MLP network performance evaluated.'); 
    end 
  
end 
end 
function vars = deNorm(data,stdData,deNormMode) 
if iscell(stdData(1,1)) 
        for i=1:size(stdData,1) 
            tmp(i,:) = stdData{i,1}'; 
        end 
        stdData = tmp; 
end 



  

198 

 

if strcmpi(deNormMode,'Data Normalization') 
    for i=1:size(data,2) 
        vars(:,i) = (stdData(:,i).*(max(data(:,i))-min(data(:,i)))) + 
min(data(:,i)); 
    end 
    vars = vars'; 
     
elseif strcmpi(deNormMode,'Data Standardization') 
    for i=1:size(data,2) 
        x.mu(1,i)   = mean(data(:,i),'omitnan'); 
        x.sig(1,i)  = std (data(:,i),'omitnan'); 
        vars(:,i) = ((stdData(:,i).* x.sig(1,i))+ x.mu(1,i)); 
    end 
    vars = vars'; 
     
else 
    vars = stdData'; 
    return; 
end 
end 
% plot the output of networks and real output on test and train data 
function data = PlotResults(data,firstTitle,Outputs,Targets)   
Errors = Targets - Outputs; 
    MSE   = mean(Errors.^2); 
    RMSE  = sqrt(MSE); 
    NRMSE = RMSE/mean(Targets); 
    ErrorMean = mean(Errors); 
    ErrorStd  = std(Errors); 
    rankCorre = RankCorre(Targets,Outputs); 
  
    if strcmpi(firstTitle,'tr') 
         Disp1Name = 'OutputGraphEvaluation_TrainData'; 
         Disp2Name = 'ErrorEvaluation_TrainData'; 
         Disp3Name = 'ErrorHistogram_TrainData'; 
    elseif strcmpi(firstTitle,'ts') 
        Disp1Name = 'OutputGraphEvaluation_TestData'; 
        Disp2Name = 'ErrorEvaluation_TestData'; 
        Disp3Name = 'ErrorHistogram_TestData'; 
    elseif strcmpi(firstTitle,'all') 
        Disp1Name = 'OutputGraphEvaluation_ALLData'; 
        Disp2Name = 'ErrorEvaluation_ALLData'; 
        Disp3Name = 'ErrorHistogram_AllData'; 
    end 
     
    figure('Name',Disp1Name,'NumberTitle','off'); 
    plot(1:length(Targets),Targets,... 
        1:length(Outputs),Outputs);grid minor 
    legend('Targets','Outputs','Location','best') ; 
    title(['Rank Correlation = ' num2str(rankCorre)]); 
    
    figure('Name',Disp2Name,'NumberTitle','off'); 
    plot(Errors);grid minor 
    title({['MSE = ' num2str(MSE) ', RMSE = ' num2str(RMSE)... 
        ' NRMSE = ' num2str(NRMSE)] ;}); 
    xlabel(['Error Per Sample']); 
  
    figure('Name',Disp3Name,'NumberTitle','off'); 
    histogram(Errors);grid minor 
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    title(['Error Mean = ' num2str(ErrorMean) ', Error StD = ' 
num2str(ErrorStd)]); 
    xlabel(['Error Histogram']); 
     
    if strcmpi(firstTitle,'tr') 
        data.Err.MSETr = MSE; 
        data.Err.STDTr = ErrorStd; 
        data.Err.NRMSETr     = NRMSE; 
        data.Err.rankCorreTr = rankCorre; 
    elseif strcmpi(firstTitle,'ts') 
        data.Err.MSETs = MSE; 
        data.Err.STDTs = ErrorStd; 
        data.Err.NRMSETs     = NRMSE; 
        data.Err.rankCorreTs = rankCorre; 
    elseif strcmpi(firstTitle,'all') 
        data.Err.MSEAll = MSE; 
        data.Err.STDAll = ErrorStd; 
        data.Err.NRMSEAll     = NRMSE; 
        data.Err.rankCorreAll = rankCorre; 
    end 
end 
% find rank correlation between network output and real data 
function [r]=RankCorre(x,y) 
x=x'; 
y=y'; 
% Find the data length 
N = length(x); 
% Get the ranks of x 
R = crank(x)'; 
for i=1:size(y,2) 
    % Get the ranks of y 
    S = crank(y(:,i))'; 
    % Calculate the correlation coefficient 
    r(i) = 1-6*sum((R-S).^2)/N/(N^2-1); %#ok 
end 
end 
function r=crank(x) 
u = unique(x); 
[~,z1] = sort(x); 
[~,z2] = sort(z1); 
r = (1:length(x))'; 
r=r(z2); 
for i=1:length(u) 
    s=find(u(i)==x); 
    r(s,1) = mean(r(s)); 
end 
end 
% plot the regression line of output and real value 
function data = plotReg(data,Title,Targets,Outputs) 
  
 if strcmpi(Title,'tr') 
     DispName = 'RegressionGraphEvaluation_TrainData'; 
elseif strcmpi(Title,'ts') 
    DispName = 'RegressionGraphEvaluation_TestData'; 
elseif strcmpi(Title,'all') 
    DispName = 'RegressionGraphEvaluation_ALLData'; 
end 
figure('Name',DispName,'NumberTitle','off'); 
x = Targets'; 
y = Outputs'; 
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format long 
b1 = x\y; 
yCalc1 = b1*x; 
scatter(x,y,'MarkerEdgeColor',[0 0.4470 0.7410],'LineWidth',.7); 
hold('on'); 
plot(x,yCalc1,'Color',[0.8500 0.3250 0.0980]); 
xlabel('Prediction'); 
ylabel('Target'); 
grid minor 
% xgrid = 'on'; 
% disp.YGrid = 'on'; 
X = [ones(length(x),1) x]; 
b = X\y; 
yCalc2 = X*b; 
plot(x,yCalc2,'-.','MarkerSize',4,"LineWidth",.1,'Color',[0.9290 0.6940 
0.1250]) 
legend('Data','Fit','Y=T','Location','best'); 
% 
Rsq2 = 1 -  sum((y - yCalc1).^2)/sum((y - mean(y)).^2); 
  
if strcmpi(Title,'tr') 
    data.Err.RSqur_Tr = Rsq2; 
    title(['Train Data, R^2 = ' num2str(Rsq2)]); 
elseif strcmpi(Title,'ts') 
    data.Err.RSqur_Ts = Rsq2; 
    title(['Test Data, R^2 = ' num2str(Rsq2)]); 
elseif strcmpi(Title,'all') 
    data.Err.RSqur_All = Rsq2; 
    title(['All Data, R^2 = ' num2str(Rsq2)]); 
end 
  
end 
end 

 


