
A Domain Speci�c Language for Interactive

Applications

Tony Clark

Xactium

tony.clark@xactium.com

June 5, 2007

Abstract

This paper describes an architecture that separates the processing logic
from the rendering engine in an interactive application such as a television
quiz running on a set-top box. Such applications are ideally suited to
implementation by domain-speci�c languages (DSLs) that abstract away
from implementation details and thereby be accessible to developers whose
primary expertise is in areas other than computer software. The approach
also enforces a standard look and feel. The paper uses the textual language
de�nition facilities of the XMF tool to implement the DSL.

1 Introduction

An increasing number of interactive applications can be downloaded onto de-
vices such as mobile phones, PDAs, web-browsers and TV set-top boxes. The
applications involve presenting the user with information, options, menus and
buttons. The user typically enters information by typing text and choosing
amongst alternatives. An event is generated by the user clicking a button or
selecting from a menu. Once an event is generated an engine that services the
interactive application processes the event, updates its internal state and then
produces a new dialog to present to the user.

The dialogs required by the interactive applications tend to be fairly sim-
ple and are often used in conjunction with other applications such as being
broadcast together with TV video and audio content. The technology used to
construct the interactive application should be accessible to as broad a spectrum
of users as possible, including users whose primary skill is not in developing in-
teractive software applications.

Technologies used for interactive displays include Java-based technologies
such as the Multimedia Home Platform (MHP)[1] , HTML and JavaScript.
These technologies are very platform speci�c. They include a great deal of tech-
nical detail and are certainly not approachable by a non-specialist. Furthermore,
the general low-level nature of the technologies does not enforce any standard

1

look-and-feel to interactive applications. The applications developed for a given
client (for example a single TV company) should have a common look and feel
that is di�cult to enforce at such a low-level.

A common way to abstract from technical detail and to enforce a common
look-and-feel for a suite of applications it to develop a domain-speci�c language

(DSL) whose concepts match the expectations and skill-levels of the intended
users. A DSL for interactive applications will include constructs for expressing
textual content, buttons and choices. The DSL leaves the rendering of the
display features and the event generation to a display engine that enforces a
given look-and-feel. The display engine can be replaced, changing the look-and-
feel without changing the DSL.

In addition to the DSL supporting high-level features for expressing dis-
play content, it must provide some means for describing what the application
does. Normally, application processing algorithms are expressed at a low-level in
program-code. If the DSL is designed with an execution engine then the same
approach to abstraction from rendering detail can be applied to abstraction
from the operational detail.

An executable DSL is a language for expressing complete applications with-
out detailed knowledge of implementation technologies. The xDSL is a mod-
elling language, instances of which are expressed as data. An execution engine
processes the data and runs the application. The xDSL engine can be embedded
within devices and other software applications in order to run the models.

This paper describes the design of an xDSL for interactive applications. The
xDSL has a textual syntax and is implemented in the tool XMF [2]. XMF is
a platform for developing DSL-based applications. It provides an extensive
high-level language called XOCL for developing applications and XOCL can be
extended with new language constructs. The design of XMF has been based on
Common Lisp [6], Smalltalk, Scheme [7] and ObjVLisp [8]. The DSL for inter-
active applications described in this paper can be developed on any platform,
but XMF is ideally suited to the task. XMF will be available in the near future
as an open source edition from Xactium Ltd.

The rest of this paper is structured as follows: section 2 describes an ar-
chitecture for interactive applications based on an xDSL; section 3 describes
the xDSL from the point of view of the application developer, it outlines the
language features in terms of a simple application involving a quiz; section 4
describes how the xDSL is implemented on XMF; section 5 shows how the ren-
dering engine can be simulated and connected to the xDSL engine to simulate
the execution of an interactive application; section 6 shows how the applica-
tion models can be serialized as XML; section 7 concludes by reviewing the key
features of the approach and the technology used to develop the xDSL engine.

2 Interactive Application Architecture

Figure 1 shows an overview of the architecture for an interactive application
xDSL. XMF is used as the DSL implementation engine. XMF provides facilities

2

Figure 1: Application Architecture

3

for developing text-based modelling languages and their associated execution
engines. The xDSL is written as a model in XMF, the applications are then
loaded onto the xDSL engine and executed.

The application generates display information in a general-purpose format;
in this case XML. The XML display information is sent to a rendering en-
gine. The engine understands the display features of the DSL and interprets
them in terms of the rendering technology. This achieves a separation of con-
cerns whereby the DSL can focus on the information content and execution
logic whereas the rendering engine can focus on a standard way of displaying
the information without necessarily having to understand anything about the
application that is being rendered.

The rendering engine controls the hardware that interacts with the user.
The user generates events that are sent back to the xDSL engine. In principle
the events can be very detailed and can be encoded in a suitable DSL. The
example presented in this paper uses a very simple encoding of events.

When the xDSL receives an event, it must process the data in an appro-
priate way to produce more display information for the rendering engine. The
processing information is expressed in the application model running on the
xDSL engine. The display/event loop continues until the application is termi-
nated.

The architecture shown in �gure 1 has been used a number of times based
on the XMF processing engine. The development environment XMF-Mosaic is
completely based upon a number of rendering engines based on various features
of Eclipse: browsers, property editors and diagram editors. The architecture
has also been successfully used where XMF is deployed as a web-application and
the rendering engine is a standard web-browser (using various combinations of
HTML and the Google Web Toolkit).

3 A DSL for Interactive Applications

This section presents a simple interactive application expressed using the xDSL
and then shows it running. The following section shows how the xDSL is im-
plemented in XMF.

Textual languages are developed in XMF by extending the basic language
with new language features. XMF has a small basic language; the rest is de-
veloped by extension. Each new language feature starts with an '@' character;
the feature may be used wherever any normal language construct is expected.
In this way, the XMF engine can be developed into any special purpose DSL
engine.

4

The following fragment shows the start of an interactive application:

@Model Quiz

// The Quiz model describes an interactive application

// for a TV quiz. Viewers are presented with a sequence

// of questions and get a final score...

score : Integer;

// Screen definitions...

end

Each model consists of a collection of screens. Each screen describes how
it is to be rendered and how it responds to events. For example, the following
screen starts the application. It places some text above a button named Start.
When the engine receives a Start event then the application makes a transition
to the screen named Question1:

screen START()

vertical

text Welcome to the Quiz. Click the button to Start end

button Start

go Question1()

end

end

end

Options are o�ered using a construct that lists the options (how they are
displayed is up to the rendering engine). The option group is named; the name
is used to refer to the particular option value that the user selects when the
event returns to the xDSL engine. This is a typical way of encoding variable
information during dialogs: http does this and can be used to determine the
values of �elds and choices on HTML screens. The �rst part of the Question1
screen uses options as shown below:

screen Question1()

vertical

text What is the capital of England? end

options Choice

option London;

option Paris;

option Madrid;

end

// Question1 continues...

Layout can be handled using many sophisticated schemes. A useful, simple
way to specify layout is to use horizontal and vertical �ow, where these can be
nested. The options are displayed below the text in the fragment given above.
In the fragment below, the buttons for Next and Quit are displayed next to each
other (but below the options):

5

// ... Question1 continues...

horizontal

button Next

// Next action continues...

end

button Quit

go Quit()

end

end

end

end

The Next event is received after the user has chosen an option. If the option
is correct then the user is congratulated and the score is incremented, otherwise
the user is told the correct answer. In both cases the dialog continues with the
next question.

Actions may be conditional, the conditional expression may refer to choice
variables, values of variables passed to screens and the current state of the
model instance. Actions may also produce displays (without having to go to a
new screen) which allows variables to be scoped locally within an action 1. In
the following, the Next action has two local displays that are used to respond
to the choice:

// ...Next action continues...

if Choice = "London"

then

display

text Well Done end

button Next

score := score + 1;

go Question2()

end

end

else

display

text Wrong! Answer is London. end

button Next

go Question2()

end

end

end

The DSL is simple and closely matches the concepts required to de�ne an
interactive application. It could be extended in a variety of ways, for example

1We really should have a let-construct and some local variables here to show that the
nested display has access to locally-scoped variables over a user-transaction.

6

pattern matching event data and further display concepts. It includes execution
by encoding event handlers. It deals with complexity by being simple and
supporting nesting with local scope and modularity. A non-expert in interactive
software applications should have no problems writing an application in this
DSL.

The following shows a partial execution of this application. Since there is
no rendering engine attached, the XML is printed and the responses encoded
by hand:

<Screen>

<Vertical>

<Text text=' Welcome to the Quiz. Click the button to Start '/>

<Button name='Start'/>

</Vertical>

</Screen>

Start <-- Event from rendering engine

<Screen>

<Vertical>

<Text text=' What is the capital of England? '/>

<Options name='Choice'>

<Option name='London'/>

<Option name='Paris'/>

<Option name='Madrid'/>

</Options>

<Horizontal>

<Button name='Next'/>

<Button name='Quit'/>

</Horizontal>

</Vertical>

</Screen>

Next Choice=London <-- Event from rendering engine

<Screen>

<Text text=' Well Done '/>

<Button name='Next'/>

</Screen>

Next <-- Event from rendering engine

4 Implementation

The implementation of the xDSL has two main components: a syntax model
and a grammar that transforms text to instances of the syntax model, and a
semantics model that de�nes an execution engine. The syntax model de�nes
a modeling language that de�nes an application type; an instance of the type
is de�ned by the semantics model. This is a typical way to de�ne a language:
models represent things that can be performed in some sense. Performing the

7

Figure 2: Interactive Models

Figure 3: Properties

models produces instances whose behaviour is expressed by the model. Another
way to think about this is that we aim to produce libraries of reusable interac-
tive applications (instances of the syntax model). A run-time occurrence of an
application is described by the semantic model.

XMF provides facilities for working with text including grammars, XML
parsers and XML formatters. The models have been developed using the XMF
development engine XMF-Mosaic and then run on the basic engine.

4.1 Syntax

The syntax for the DSL has two parts: the abstract syntax and the concrete
syntax. The abstract syntax consists of a collection of models that are described
below. The concrete syntax is de�ned by a collection of grammars that are
de�ned at the end of this section.

Figure 2 shows the top-level model for the interactive application language.
A model consists of a collection of properties and a collection of screens. Each
property is de�ned by the model in �gure 3; it has a name and a classi�er. XMF
has a meta-model that provides features such as Class and Object. A type is
called a Classi�er in XMF; Integer, String, Set(Object) are all XMF classi�ers.

8

Figure 4: Screens

Screens are shown in �gure 4. A screen has a collection of arguments. An
action may cause the application to make a transition to a screen in which
case the transition can supply argument values to be used when calculating the
display for the screen. Figure 5 shows the model for displays. Each element of
the display model can produce XML output that is understood by the rendering
engine. In addition, some of the display elements are associated with actions
that will be performed when the appropriate event is received by the xDSL
engine.

The display elements of an application model refer to an XOCL class called
Exp. This is used wherever an executable fragment of code is required. It
allows features of the displays to be computed dynamically. For example when
a transition to a screen is made, the names of the buttons may depend on the
values of the arguments that are passed to the screen. This is the reason why a
button has an exp: it is used to calculate the label on the button in terms of the
variables that are in scope at the time2. The Exp class is a way of importing
the models for XMF expressions into the displays model.

Menus are shown in �gure 6. Each menu has a label that is computed (again
depending on the context) and an action. Actions are de�ned in �gure 7. An
action is either a transition to a new screen (Go), a conditional action (If), an
update to a variable currently in scope (Update) or a local display.

The developer of an interactive application does not directly create instances
of the abstract syntax model. The idea is that they write in a text language
that is parsed to synthesize instances of the syntax model3.

XMF allows any class to be extended with a grammar. The class then de�nes
a new syntax construct that is completely integrated into the base language of

2Unfortunately no examples of this feature are given in the document. However, imagine
a list of voting options that will depend on the current state of the system.

3Another way of doing this is to use some form of graphical notation. XMF is designed to
interface to EMF [4]and GMF [5]and therefore provide execution engines for EMF models.

9

Figure 5: Displays

10

Figure 6: Menus

XMF. Any number of classes can be added in this way and new syntax classes
can build on existing syntax classes. The following is a simple example of a class
de�nition that implements a simple guarded expression:

@NotNull [e1].m(e2,e3,e4)

else e5

end

where e1 evaluates to produce an object to which we want to send the mes-
sage m with args e2,e3 and e4. However, e1 might produce null in which case
we don't want to send the message, we want to do e5 instead. This language
construct is implemented as follows in XMF:

11

Figure 7: Actions

12

@Class NotNull extends Sugar

@Attribute exp : String end

@Attribute name : String end

@Attribute isMessage : Boolean end

@Attribute args : Seq(Performable) end

@Attribute error : Performable end

@Constructor(exp,name,error) end

@Constructor(exp,name,args,error)

self.isMessage := true

end

@Grammar extends OCL.grammar

NotNull ::=

'[' e = Exp ']' '.' n = Name NotNullTail^(e,n) 'end'.

NotNullTail(e,n) ::=

'(' as = NotNullArgs ')' x = NotNullElse { NotNull(e,n,as,x) }

| x = NotNullElse { NotNull(e,n,x) }.

NotNullArgs ::=

e = Exp es = (',' Exp)* { Seq{e|es} }

| { Seq{} }.

NotNullElse ::=

'else' Exp

| { [| null |] }.

end

@Operation desugar():Performable

[| let notNullValue = <exp>

in if notNullValue = null

then <error>

else <if isMessage

then Send([| notNullValue |],name,args)

else [| notNullValue.<name> |]

end>

end

end

|]

end

end

13

The key features of the NotNull class are as follows:

• The class extends Sugar which means that it is de�ning a new syntax
construct by providing an operation called 'desugar' whose responsibility
is to turn an instance of NotNull into program code.

• The grammar de�nition extends the OCL grammar and thereby imports
all of the basic grammar-rule de�nitions. This provides the rule for Exp
which is the top-level grammar-rule for all language constructs.

• Each grammar-rule consists of a name and a body. The rule may option-
ally have arguments. The body consists of terminals (in ' and'), builtins
such as Name, rule-calls (possibly with arguments) and actions (inside {
and }). The rule actions are any program expression, in most cases they
use class-constructors to create an instance of a named class.

• The desugar operation uses lifting-quotes ([| and |]) to create an instance
of syntax-classes. The opposite of lifting is dropping (< and >) used to
calculate syntax by evaluating a program expression.

The rest of this section describes how the grammar feature of XMF can be used
to de�ne the interaction language. A model consists of a name followed by
properties and screen de�nitions:

context Model

@Grammar extends Property.grammar, Screen.grammar

Model ::= n = Name ps = Property* ss = Screen* 'end' {

Model(n,ps,ss)

}.

end

A property is a name and a simple expression (that cannot include the ';'
operator). The property-rule action uses an interesting feature of syntax classes
that allows the expression to be dropped into the syntax element and is thereby
evaluated to produce a classi�er for the property type:

context Property extends OCL::OCL.grammar

@Grammar extends OCL.grammar

Property ::= n = Name ':' e = SimpleExp ';' {

Property(n,Drop(e))

}.

end

A screen has a name, arguments, menus and display elements. The rule for
screen arguments shows how optional elements are processed: it returns either
a non-empty sequence of names Seq{a|as} (head followed by tail) or the empty
sequence Seq{}:

14

context Screen

@Grammar extends Menu.grammar, Display.grammar

Screen ::=

'screen' n = Name '(' as = ScreenArgs ')'

ms = Menu*

ds = Display*

'end' { Screen(n,as,DisplayScreen(ms,ds)) }.

ScreenArgs ::=

a = Name as = (',' Name)* { Seq{a|as} }

| { Seq{} }.

end

A menu is shown below. This shows how expressions are captured in data.
The rule for a menu item name returns an instance of the class Exp that is used
in data to wrap an evaluable expression. There are two forms of construction
for Exp: Exp(e) and Exp(e,V,null). In both cases e is an instance of a syntax
class. In the second case V is a collection of variable names that occur freely in
e. The values of variables in V can be supplied when the expression is evaluated
(via keyApply as shown below).

Another interesting feature of the menu item name rule is the use of 'lift'
to transform a data element (in this case a string n) into an expression whose
evaluation produces the original data element:

context Menu

@Grammar extends OCL.grammar

Menu ::= 'menu' n = MenuItemName is = MenuItem* 'end' {

Menu(n,is)

}.

MenuItemName ::=

n = Name { Exp(n.lift()) }

| e = SimpleExp { Exp(e,e.FV(),null) }.

MenuItem ::=

Menu

| 'item' n = MenuItemName a = Action 'end' { MenuItem(n,a) }.

end

15

Since Display is an abstract class, the grammar-rule for Display is a list of
concrete alternatives:

context Display

@Grammar extends Action.grammar, OCL.grammar

Display ::=

Text

| Button

| Options

| Horizontal

| Vertical.

Text ::= 'text' t = Char* 'end' {

Text(Exp(t.asString().lift()))

}.

Button ::=

'button' n = ComputedName

as = Action*

'end' { Button(n,as) }.

ComputedName ::=

n = Name { Exp(n.lift()) }

| e = SimpleExp { Exp(e,e.FV(),null) }.

Options ::=

'options' n = ComputedName

os = Option*

'end' { Options(n,os) }.

Option ::=

'option' n = Name ';' { n }.

Horizontal ::=

'horizontal'

ds = Display*

'end' { Horizontal(ds) }.

Vertical ::=

'vertical'

ds = Display*

'end' { Vertical(ds) }.

end

16

Action is another example of an abstract class:

contxt Action

@Grammar extends OCL.grammar

Action ::=

UpdateProperty

| IfAction

| Go

| DisplayScreen.

DisplayScreen ::=

'display'

ms = Menu*

ds = Display*

'end' { DisplayScreen(ms,ds) }.

UpdateProperty ::=

n = Name ':=' e = SimpleExp ';' {

Update(n,Exp(e,e.FV(),null))

}.

Go ::= 'go' n = Name '(' as = GoArgs ')' { Go(n,as) }.

GoArgs ::=

e = GoArg es = (',' GoArg)* { Seq{e|es} }

| { Seq{} }.

GoArg ::= e = SimpleExp { Exp(e) }.

IfAction ::=

'if' e = SimpleExp

'then' d = Action

IfActionTail^(e,d).

IfActionTail(e,d1) ::=

'else' d2 = Action 'end' { If(Exp(e,e.FV(),null),d1,d2) }

| 'end' { If(Exp(e,e.FV(),null),d1,null) }.

end

4.2 Semantics

The semantics of the interactive application modelling language de�nes an in-
stance model for the syntax and also de�nes an execution engine for the in-
stances. The instance model is shown in �gure 8. An instance of a Model is
de�ned by the class Instance. It should have a slot for each property of the
model. The value of each slot should have a type that is de�ned by the classi�er
of the corresponding property.

The class Engine de�nes the execution engine. An engine controls an in-
stance and maintains an id-table that maps event ids to handlers as shown
below. The idea is that each time an event occurs, a handler from the id-table
is used to produce a new XML display that is sent to the rendering engine. The
XML data is calculated from the information in the model and the current state
of the instance slots.

17

Figure 8: Semantics Model

The rest of this section de�nes the engine execution semantics. The following
section shows how the engine is connected to a rendering engine. The engine
processes a screen-transition using the 'go' operation de�ned below. XMF sup-
ports many types of input and output channel. The 'go' operation shows an
example of a string output channel used to capture and then return the XML
output data as a string:

context Engine

@Operation go(screen:String,args:Seq(Element))

let sout = StringOutputChannel()

in instance.go(screen,args,self,sout);

sout.getString()

end

end

An instance handles a screen-transition by looking up the screen in its model.
If the screen exists then it is requested to display itself with the supplied argu-
ment values:

context Instance

@Operation go(screen:String,args:Seq(Element),engine:Engine,out:OutputChannel)

@NotNull [model.indexScreensByName(screen,null)].display(self,args,engine,out)

else self.error("No screen called " + screen)

end

end

18

A screen delegates the 'display' message to its underlying display component.
The screen argument names are bound to the argument values to produce an
environment of bindings using the 'env' operation:

context Screen

@Operation display(instance,args,engine,out)

display.display(instance,self.env(instance,args),engine,out)

end

context Screen

@Operation env(instance,values)

let env = args.zip(values)

in instance.slots()->iterate(slot env = env |

env.bind(slot.property().name(),slot.value()))

end

end

Each display element type : Button; Text; Horizontal; Vertical; and, Options
implements a 'display' operation that writes XML data to the supplied output
channel. As a side e�ect, if any of the elements have event handling actions
then the engine is updated with an appropriate handler for the event when it is
received from the rendering engine.

Each 'display' operation shows the use of an XMF language feature @XML
... end that is used to write XML output to a channel. The construct has the
form:

@XML(out)

<TAG ATTS>

.. program code ...

</TAG>

end

where the literal XML data is written to the supplied output channel. In-
between writing the starting tag and ending tag, an arbitrary program is pro-
cessed.

context DisplayScreen

@Operation display(instance,env,engine,out)

@XML(out)

<Screen>

@For menu in menus do

menu.display(instance,env,engine,out)

end

@For display in displays do

display.display(instance,env,engine,out)

end

</Screen>

end

end

19

The 'display' operation for text shows an example of the shortened form of
the XML construct with no body, and also the use of the 'keyApply' operation
of the Exp class. The 'env' argument supplied to 'display' contains bindings for
all variables in scope. The 'keyApply' operation performs the expression in the
context of these variables:

context Text

@Operation display(instance,env,engine,out)

@XML(out)

<"Text" text=exp.keyApply(env)/>

end

end

A button contains an action that is used to handle the event arising from
the user pressing the button in the rendering engine. The 'display' operation for
Button shows how an event handler is registered in the engine. The arguments
passed to 'registerActions' are the context required to perform the actions when
the event associated with 'id' is received:

context Button

@Operation display(instance,env,engine,out)

let id = exp.keyApply(env)

in engine.registerActions(id,instance,env,actions);

@XML(out)

<Button name=id/>

end

end

end

Horizontal and Vertical are similar:

context Horizontal

@Operation display(instance,env,engine,out)

@XML(out)

<Horizontal>

@For display in displays do

display.display(instance,env,engine,out)

end

</Horizontal>

end

end

20

The 'display' operation for Options shows an example of interleaving of XML
and program code:

context Options

@Operation display(instance,env,engine,out)

@XML(out)

<Options name=exp.keyApply(env)>

@For option in options do

@XML(out)

<Option name=option/>

end

end

</Options>

end

end

The 'registerActions' operation of Engine must de�ne a handler for an event.
The de�nition associates the event identi�er 'id' with an operation in the id-
table of the engine. Actions are performed using their 'perform' operation which
expects to receive arguments that include the current environment of variable
bindings. The variables available to an action include all those bound by select-
ing options on the display. These display-bound variables are supplied to the
handler (in the same way that http works) as an environment 'env2':

contxt Engine

@Operation registerActions(id,instance,env1,actions)

idTable.put(id,

@Operation(env2)

let value = null

in @For action in actions do

value := action.perform(instance,env2 + env1,self)

end;

value

end

end)

end

There are four types of action: If; Update; Go; and, Display. Each action
produces a result and the last action performed should return an XML string
to be sent to the rendering engine. If performs one of two actions (or nothing)
depending on the outcome of a test:

context If

@Operation perform(instance,env,engine)

if exp.keyApply(env + instance.env())

then thenAction.perform(instance,env,engine)

else @NotNull [elseAction].perform(instance,env,engine) end

21

end

end

An update changes the value of a variable currently in scope. The variables
in scope are: the slots of the instance; the current screen arguments. The
following operation checks whether the named variable is a slot and updates the
instance appropriately, or updates the current environment:

context Update

@Operation perform(instance,env,engine)

@NotNull [instance.getSlot(name)].setValue(exp.keyApply(env + instance.env()))

else env.set(name,exp.keyApply(env + instance.env()))

end

end

Go makes a transition to a new screen. The screen will produce the XML
output. Notice that the current 'env' is not supplied to the 'go' operation;
therefore any variables currently in scope are not available to the target screen
unless their values are passed as arguments:

context Go

@Operation perform(instance,env,engine)

engine.go(name,exps->collect(exp | exp.keyApply(env)))

end

Display is a way of locally displaying a screen without losing the variables
that are currently in scope:

context Display

@Operation perform(instance,env,engine)

let sout = StringOutputChannel()

in display.perform(instance,env,engine,sout);

sout.getString()

end

end

4.3 Handling Events

Events occur when the user interacts with the rendering engine, for example by
pressing a button. When the event occurs, the current screen may contain any
number of option groups. Each option group is named and o�ers a number of
alternative values. The selected option may a�ect the behaviour of the engine
in terms of variable updates and screen transitions. Therefore, the event sent
from the rendering engine to the xDSL engine must encode the value of any
option variables currently displayed.

In addition there may be any number of ways an event can be raised: menu
selection or button press. Each must be uniquely identi�ed and the event must
supply the identi�er of the event that occurred.

22

An event is de�ned to have a format that starts with the event id and is
followed by any number of option variable/value pairs:

<ID> <VAR>=<VALUE> ... <VAR>=<VALUE>

The event is encoded as a string and must be decoded by the engine. This
is easily done by de�ning an event as a grammar-rule:

context Engine

@Grammar

Event ::= n = Name e = Binding* { Seq{n|e} }.

Binding ::= n = Name '=' v = Name { Seq{n|v} }.

end

When an event is received by the engine it is supplied to 'getDisplay' which
calculates a new XML display string for the rendering engine. The operation
uses the grammar de�ned above to synthesize a pair Seq{id|env} containing
the event id and an environment of option-group variable bindings. If the id is
bound in the id-table then the handler is supplied with the environment:

context Engine

@Operation getDisplay(event:String)

let pair = Engine.grammar.parseString(event,"Event",Seq{}) then

id = pair->head;

env = pair->tail

in @TableGet handler = idTable[id] do

idTable.clear();

handler(env)

else self.error("No handler for " + name)

end

end

end

5 Simulation

Figure 1 shows the architecture of an interactive application. The rendering
engine is external to the design of an xDSL; the relationship between the two
is de�ned by the XML schema for the display language and the format of event
strings. However, it is useful to be able to simulate the rendering engine in order
to test the xDSL engine. This can be done by setting up a simple test harness for
a pair of data consumers and linking the xDSL engine with a rendering engine
simulation that reads events strings in from the terminal.

23

The following class implements a data producer-consumer pair:

@Class Consumer

@Attribute filter : Operation end

@Attribute other : Consumer (!) end

@Constructor(filter) ! end

@Operation consume(data)

other.consume(filter(data))

end

end

The �lter operation is used to generate data that is supplied to the other
consumer. If a pair of Consumer instances are linked together then the data
will bounce back and forth as required. The following operation creates a �lter
for the xDSL engine:

@Operation mk_xDSL_filter(model:Model)

let engine = Engine(model.new())

in @Operation(event)

engine.getDisplay(event)

end

end

end

The following �lter operation simulates the rendering engine. It does so by
pretty-printing the XML to the standard-output. An XML string can be trans-
formed into an XML tree using the 'asXML' operation de�ned for String. The
standard-input is �ushed and a line containing the event is read and returned:

@Operation renderFilter(xml:String)

xml.asXML().pprint(stdout);

"".println();

stdin.skipWhiteSpace();

stdin.readLine().stripTrailingWhiteSpace()

end

Given a model 'model', the following code produces, and starts, a simulation:

@Operation simulate(model:Model)

let eConsumer = Consumer(mk_xDSL_filter(model));

dConsumer = Consumer(renderFilter)

in eConsumer.setOther(dConsumer);

dConsumer.setOther(eConsumer);

eConsumer.consume("START")

end

end

24

6 XML Representation for Applications

A requirement for interactive applications is to be able to dynamically update
the content and to be able to transfer the content from remote locations in a
standard format. The application describes in this paper is completely repre-
sented in data. This means that, although the application is executable, it can
easily be serialized, sent over a communications link, and then uploaded onto
the device that is running the xDSL engine.

XMF provides support for encoding any data elements as XML. There is a
basic markup provided for all XMF data; the mechanisms for which can easily
be extended to provide bespoke XML encoding. Using the basic mechanisms, a
model can be encoded as follows:

@WithOpenFile(fout -> "c:/model.xml")

let xout = XMLOutputChannel(fout,NameSpaceXMLFormatter())

in xout.writeValue(model)

end

end

The resulting output is produced in an XML �le that is shown in �gure
9. The XML markup shown in the �gure is the default vanilla-�avour markup
provided by XMF. It is possible to add adapters to an XML output channel
that �lter the data as it is processed and thereby use domain-speci�c markup.
So instead of seeing Object and Slot as element tags, we might use Screen and
Button.

The XML can be read back in using the following code:

@WithOpenFile(fin <- ModelFile)

let xin = XMLInputChannel(fin,NameSpaceXMLInflater())

in xin.parse()

end

end

7 Conclusion

This paper has described an approach to modelling systems whereby an engine
for an executable domain-speci�c language (xDSL) is used to develop and run
the applications. The xDSL is designed to use concepts that are suited to the
application domain which allows the language to abstract away from imple-
mentation details; the language is then executable, can be used with di�erent
implementation platform technologies, and is suitable for use by people whose
primary skill lies in the application domain rather than the implementation
technology.

A method for developing xDSLs has been shown that involves a separation of
concerns between syntax elements that describe type-level features of a model,

25

Figure 9: A Serialized Model

26

and semantics elements that de�ne run-time features of an application. Expe-
rience has shown that this separation is natural and allows the xDSL developer
to e�ectively manage the process.

We have shown how a textual syntax can be added to an xDSL. In practice,
most xDSLs will require a concrete syntax. The precise form of this will depend
on the nature of the application and who the intended users are. Sometimes,
a purely graphical syntax is appropriate (for example UML class-diagrams).
Other times a purely textual syntax works best, especially where executable
features are involved and when complexity can be controlled e�ectively using
textual nesting. Often there is scope for a mixture of the two where di�erent
aspects of the models are constructed using graphical or textual syntax.

Modelling all features of a language has a number of bene�ts that arise
because everything is rei�ed. Rei�cation involves representing everything as
data as opposed to program code or transient non-tangible artifacts such as
system events. Once everything is rei�ed, many types of analysis are possible
including well-formedness checking, type checking, application of style rules. It
becomes easy to capture and apply patterns and to perform refactoring. All
features of an application can be transformed to a target technology.

Modelling actions is particularly important here; often actions are left as
unprocessed strings of program code which makes it very di�cult to analyze
and run as part of an xDSL engine. The application given in this paper has
shown that it is straightforward to model actions and to integrate them into
the execution engine for an xDSL. By following a few basic guidelines in terms
of variable scope and control �ow, actions are easy to implement and are com-
pletely integrated into the xDSL, its analysis and transformation.

The approach models the xDSL and executes it directly using an engine (in
this case XMF). This is attractive because it provides a high degree of control
over the language. It should be contrasted with a translational approach to im-
plementing a DSL whereby the model is translated to the source code of a target
language (such as Java or C++) for which there is an implementation plat-
form. This is an approach taken by Swul [3] and GMF [5]for GUI applications.
Translational approaches have some advantages: notably open architectures;
e�ciency; arbitrary extensibility. However, there are some signi�cant disadvan-
tages relating to the complexity of the generated code including maintainability
and understandability. It should be noted that an xDSL engine-based approach
does not preclude a translational approach.

We have given a complete implementation of an interactive application xDSL
using the features of XMF. XMF is an engine that is speci�cally designed to
support this kind of application development. It has very high-level language
features that support modelling concepts, it is executable, and is designed to
support textual language extension through the use of extensible grammars.
XMF directly supports textual xDSLs and provides native interfaces to Java
and EMF/GMF for use with other concrete syntaxes.

XMF may be used to develop an xDSL and then deploy the language as a
stand-alone engine as shown in �gure 1. XMF runs its own virtual machine
and has a number of interface features that allow it to connect to external

27

applications. XMF may also be used to develop an executable design of an
application which is then exported on to another implementation platform.

XMF has been used extensively by Xactium as the basis for many model-
driven applications. It has been used to run many 100KLOC's of model code.
XMF is based on a Java virtual machine which runs a language called XOCL.
Apart from the VM, all of XMF is written in XOCL. Xactium plans to make
XMF available as open source later this year, both as a stand-alone system and
as a contribution to the Eclipse project as a component that allows execution
engines to be combined with EMF and GMF.

References

[1] MHP Organization Web Site. http://www.mhp.org.

[2] Xactium Web Site. http://www.xactium.com.

[3] Stratego/Swul http://www.program-transformation.org/Stratego/JavaSwulExamples

[4] Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/

[5] Graphical Modelling Framework. http://www.eclipse.org/gmf/.

[6] ANSI Common Lisp http://clisp.cons.org/.

[7] R5RS Revised Report on the Algorithmic Language Scheme available at
http://www.schemers.org/Documents/Standards/R5RS/

[8] Metaclasses are First Class: The ObjVlisp Model, P. Cointe, SIGPLAN
Notices 22(121):156-167 (Dec 1987) (OOPSLA '87).

28

