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Abstract

Electroencephalogram (EEG) signal presents a great potential for highly se-
cure biometric systems due to its characteristics of universality, uniqueness,
and natural robustness to spoofing attacks. EEG signals are measured by
sensors placed in various positions of a person’s head (channels). In this
work, we address the problem of reducing the number of required sensors
while maintaining a comparable performance. We evaluated a binary ver-
sion of the Flower Pollination Algorithm under different transfer functions
to select the best subset of channels that maximizes the accuracy, which is
measured by means of the Optimum-Path Forest classifier. The experimental
results show the proposed approach can make use of less than a half of the
number of sensors while maintaining recognition rates up to 87%, which is
crucial towards the effective use of EEG in biometric applications.

Keywords: Meta-heuristic, Pattern classification, Biometrics,
Electroencephalogram, Optimum-Path Forest

1. Introduction

In modern life, we constantly make use of passwords to access our bank
accounts, e-mail boxes, and social networks, just to name a few. As passwords
can be easily circumvented, the use of biometrics has been proposed for
safe person identification (Jain et al., 2011). Over the years, the use of
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biometric systems has increased, and systems based on several biometric
modalities such as fingerprint, face and iris, have been successfully deployed.
This successful and widespread deployment of biometric systems brings on
a new challenge: spoofing. Spoofing methods are developed to breach the
security of biometric systems so that unauthorized users can gain access
to places and/or information (e.g., an artificial finger made from silicone is
placed on the fingerprint scanner).

In this scenario, the EEG (electroencephalogram) signal presents a great
potential for highly secure biometric-based person identification, due to its
characteristics of universality, uniqueness, and robustness to spoofing at-
tacks (Beijsterveldt and Boomsma, 1994). It is well-known the importance
of EEG signals in several areas, since one can find a number of works that
deal with such a source of data (Subasi, 2007; Guo et al., 2011; Ocak, 2009;
Nunes et al., 2014). In high security environments, EEG sensors can be inte-
grated in order to contribute to the robustness of the system, and the person
can be continuously authenticated. Although the idea of using EEG as a
biometric trait is not new, there are a few works that address such kind of
signal only. One possible explanation for that is the difficulty in obtaining
such signals, and also because the biometric characteristics of the EEG signal
may be held only for short periods of time Pollock et al. (1991).

With the emergence of new mobile devices that capture brain signals
driven by the most keenly studies in the brain computer interface, the EEG
as a biometric trait can now be used in some other scenarios, such as: (i)
distance-based education environments, in which the continuous authentica-
tion of a student becomes increasingly necessary; (ii) with the increase in
life expectancy worldwide, health monitoring systems may become popular
along with home automation and smart homes, thus making the EEG-based
identification very useful in this scenario; (iii) with the popularization of
biometric systems for the validation of financial transactions, mobile EEG
sensors become a viable alternative in the future.

Basically, an EEG-based biometric approach aims at placing a set of sen-
sors in the person’s head in order to capture the output signals for further
feature extraction and analysis using signal processing techniques. The signal
acquisition session is then repeated over time to make the system more dis-
criminative and robust to errors. In a recent paper, Campisi and La Rocca
(2014) presented a review on the state-of-the-art of EEG-based automatic
recognition systems, as well as an overview of the neurophysiological basis
that constitutes the foundations on which EEG biometric systems can be
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built. The authors also discussed about the major obstacles towards the
deployment of EEG based biometric systems in everyday life.

One of the main problems of EEG-based person identification is the ac-
quisition, which may be too invasive to the user. The process of putting a
considerable amount of sensors up on a person’s head might be a bit uncom-
fortable, and it also requires a previous knowledge by the person in charge
of the sensors placement in order to put them in their correct positions. In
light of this context, some questions may rise: “Is it really necessary to put
all these sensors on a persons’ head? If not, can we identify the most relevant
channels for person identification and then use a smaller number of sensors
in order to measure them?”.

These questions motivated our work in modelling the task of channel
selection as an evolutionary-based optimization problem. The idea is to
propose a wrapper approach composed by an optimization technique and a
pattern classifier, in which the accuracy of the latter is used to guide the
evolutionary agents in the search space looking for the best solutions, i.e.,
the subset of channels that maximize the accuracy of the classifier in the
validation set. Any optimization technique and classifier could be used.

In our work, we propose an optimum channel selection by means of a
binary constrained version of the recently proposed optimization technique
Flower Pollination Algorithm (BFPA) (Yang, 2012), and the Optimum-Path
Forest (OPF) (Papa et al., 2012, 2009) classifier, which is a supervised pattern
recognition technique that has the advantage of providing a faster training
phase compared to other state-of-the-art classifiers. This characteristic of
fast training is very important in the context of this paper, since a training
procedure followed by a classification of a validation set need to be performed
for each evolutionary agent (sometimes we may have several of them). Ad-
ditionally, this version of OPF is parameterless, which is another advantage
over other classifiers.

The main contributions of this paper are three-fold: (i) to evaluate a re-
cent binary version of the Flower Pollination Algorithm (BFPA) proposed
by Rodrigues et al. (2015) under different transfer functions1; (ii) to model
the problem of EEG channel selection as an evolutionary-based optimization
task; and (iii) to introduce the OPF classifier for EEG-based biometric per-

1A transfer function, in this context, aims at mapping a real-valued solution to a
binary-valued one.
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son identification. The use of evolutionary optimization algorithms for the
EEG channel selection is due to their elegant and simple solutions to solve
optimization problems, similar to the way nature does.

This paper is organized as follows: Section 2 presents a brief theoreti-
cal background about EEG, and Section 3 discusses previous works related
to this paper. Section 4 presents the proposed approach for person identi-
fication using a reduced number of EEG channels, and Section 5 presents
a description of the dataset and the experimental setup. Sections 6 and 7
discuss the experiments and conclusions, respectively.

2. The EEG Signal

The human central nervous system consists of the encephalous (brain),
which is inside the cranium, and the spinal cord contained in the spine.
The nerve tissue is a complex network formed mostly by millions of nerve
cells (glial cells and neurons), whose primary function is the transmission of
electrical impulses that run through this intrinsic and huge network, thus
propagating information among cells (Sanei and Chambers, 2007; Tau and
Peterson, 2009). These small electrical impulses emitted by the huge amount
of neurons create an electric field that can be measured on the surface of the
human skull, with the help of sensors or electrodes. The measurement of
this complex electrical signal from our nervous system is what is known as
electroencephalogram (EEG). In the literature, it is common among authors
to directly refer to those brain waves as EEG.

The neural activity of the human being begins between the 17th and 23rd
week of gestation. It is believed that, since this stage, and throughout the
life, the signals from the brain activity represent not only the functioning
of the brain, but also of the whole body. Published studies also show that
even if a variation in amplitude of EEG signals during the development of
a normal person exists, over the years, their functional connections remain
largely unchanged (Gasser et al., 1988; Tau and Peterson, 2009).

Figure 1 shows an example of a map of sensors located at a person’s
head. This map describes the head surface locations via relational distances,
also called as International 10-10 System (Jurcak et al., 2007; Nuwer et al.,
1998). The nomenclature of the electrodes is associated to the human brain
areas as follows: Frontal (F), Central (C), Temporal (T), Parietal (P) and
Occipital (O) lobes. Electrodes named with two letters refer to a location
between areas, for example: CP electrode is in a position between central
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and parietal lobes. The sub-index indicates the side of the brain hemisphere
(odd numbers are located on the left side and even numbers on the right
side), and the sub-index “z” indicates that the electrode is located in the
main vertical axis.

Figure 1: International 10-10 System standards for sensor positioning. Just for the sake
of clarification, sensor T9 is placed close to the left ear, as well as sensor #23 is placed
close to the nose.

3. Related Work

One of the first studies regarding EEG as a biometric trait was conducted
by Poulos et al. (1999b), which described the EEG signal by means of an
autoregressive (AR) model as the basis for a person identification method. In
their work, the correct classification rates reached 91% in experiments using
data obtained from 45 EEG recordings of 75 subjects, who were at rest and
with the eyes closed during the test. Another study by Poulos et al. (1999a)
employed spectral features extracted from the EEG signals followed by the
use of neural networks as classifiers to identify a person. The authors have
achieved correct classification rates ranging from 80% to 100%, reaffirming
the great potential of using EEG as a biometric feature. Abdullah et al. (2010)
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implemented a practical system that uses four (sometimes fewer) channels
and two types of EEG signals (one with the eyes open and another one with
the eyes closed), which were used in ten male subjects at rest in five different
sessions conducted over the course of two weeks. The feature extraction was
performed using AR models, and the classification was performed using a
multilayer neural network. The authors observed classification rates from
70% to 97%, depending on the amount of channels and EEG type.

Palaniappan (2004) used the gamma-band spectral power ratio as features
and a Multilayer Perceptron Neural Network to recognize a person based on
the EEG signal. Later on, Palaniappan and Mandic (2007) proposed to
use 61 channels for feature extraction followed by classification using Elman
Neural Network. Kost́ılek and Št’astný (2012) focused on the importance
of the repeatability and the influence of movements during the EEG signal
acquisition session. In their work, an autoregressive model and a Mahalanobis
distance-based classifier for person identification were applied to evaluate
the robustness of the proposed approach. Safont et al. (2012) used a set of
classifiers and multiple features to perform EEG-based person identification.
In their work, all possible combinations of features and classifiers have been
addressed in order to improve the person recognition results.

More recently, La Rocca et al. (2014) proposed a novel approach that
fuses spectral coherence-based connectivity between different brain regions
as a possibly viable biometric feature. The proposed approach was tested on
a dataset of 108 subjects with eyes-closed (EC) and eyes-open (EO) resting
state conditions. Their results show that using brain connectivity leads to
higher distinctiveness when compared with the traditional power-spectrum
measurements, reaching 100% of recognition accuracy in EC and EO condi-
tions when integrating functional connectivity between regions in the frontal
lobe.

4. Proposed Method

In this section, we present our proposed method for person identification
based on features from EEG signals, as well as we briefly review some of the
main concepts regarding the techniques employed in this paper.
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4.1. Autoregressive Model

An Autoregressive Model can be described by a linear difference equation
in the time domain as follows:

x(k) = P +

p∑

i=1

a(i)x(t− i) + e(t), (1)

where P is a constant, p stands for the number of parameters of the model
and e(t) denotes a white noise input (Jain and Deshpande, 2004). Notice In
this work, we used the Yule-Walker method to estimate the coefficients of
the AR model by employing the least square method criterion.

4.2. EEG Channel Selection

In order to select the best subset of channels, we evaluate a recent pro-
posed binary version of the Flower Pollination Algorithm (Rodrigues et al.,
2015) under different transfer functions, and we also show we can obtain
distinct results for each one. Firstly, we present the theoretical basis about
FPA, and then its binary version.

4.2.1. Flower Pollination Algorithm

The Flower Pollination Algorithm proposed by Yang (2012) is inspired
by the flow pollination process of flowering plants. The FPA is governed by
four basic rules:

1. Biotic cross-pollination can be considered as a process of global polli-
nation, and pollen-carrying pollinators move in a way that obeys Lévy
flights;

2. For local pollination, abiotic pollination and self-pollination are used;

3. Pollinators such as insects can develop flower constancy, which is equiv-
alent to a reproduction probability that is proportional to the similarity
of two flowers involved; and

4. The interaction or switching of local pollination and global pollination
can be controlled by a switch probability p ∈ [0, 1], slightly biased
towards local pollination.

In order to model the updating formulas, the above rules have to be
converted into proper updating equations. For example, in the global polli-
nation step, flower pollen gametes are carried by pollinators such as insects,
and pollen can travel over a long distance because insects can often fly and

7



move over a much longer range. Therefore, Rules 1 and 3 can be represented
mathematically as follows:

x
(t+1)
i = xt

i + αL(λ)(g∗ − xt
i), (2)

where

L(λ) =
λ · Γ(λ) · sin(λ)

π
·

1

s1+λ
, s≫ s0 > 0 (3)

where xt
i is the pollen i (solution vector) at iteration t, g∗ is the current best

solution among all solutions at the current generation, and α is a scaling
factor to control the step size. L(λ) is the Lévy-flights step size, that corre-
sponds to the strength of the pollination, Γ(λ) stands for the gamma function
and s is the step size. Since insects may move over a long distance with var-
ious distance steps, a Lévy flight can be used to mimic this characteristic
efficiently.

For local pollination, both Rules 2 and 3 can be represented as:

x
(t+1)
i = xt

i + ǫ(xt
j − xt

k), (4)

where xt
j and xt

k are pollen from different flowers j and k of the same plant
species at time step t. This mimics flower constancy in a limited neigh-
bourhood. Mathematically, if xt

j and xt
k come from the same species or are

selected from the same population, it equivalently becomes a local random
walk if ǫ is drawn from a uniform distribution in [0,1]. In order to mimic the
local and global flower pollination, a switch probability (Rule 4) or proximity
probability p is used.

4.2.2. Binary Flower Pollination Algorithm

In the standard FPA, the solutions are updated in the search space to-
wards continuous-valued positions. However, in the proposed Binary Flower
Pollination Algorithm the search space is modelled as an n-dimensional
boolean lattice, in which the solutions are updated across the corners of
a hypercube. In addition, as the problem is to select or not a given feature,
a solution binary vector is employed, where 1 corresponds to a feature being
selected to compose the new set, and 0 otherwise. In order to build this
binary vector, Rodrigues et al. (2015) employed Equations 5 and 6, which
can restrict the new solutions to only binary values:

S(xj
i (t)) =

1

1 + e−x
j

i
(t)
, (5)
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x
j
i (t) =

{
1 if S(xj

i (t)) > σ,
0 otherwise

(6)

in which σ ∼ U(0, 1). Algorithm 1 presents the proposed approach that
employs BFPA for EEG-channel selection using the OPF classifier as the
objective function and Equation 5 and 6 as the transfer function. Note that
the proposed approach can be used with any other supervised classification
technique.

Lines 1− 4 initialize each pollen’s position as being a binary string with
random values, as well as the fitness value fi of each individual i. The main
loop in Lines 6 − 27 is the core of the proposed algorithm, in which the
inner loop in Lines 7− 13 is responsible for creating the new training Z ′

1 and
evaluating sets Z ′

2, and then OPF is trained over Z ′
1 and it is used to classify

Z ′
2. The recognition accuracy over Z ′

2 is stored in acc and then compared
with the fitness value fi (accuracy) of individual i: if the later is worse than
acc, the old fitness value is kept; in the opposite case, the fitness value is then
updated. Lines 12− 13 update the best local position of the current pollen.
Lines 14− 18 update the global optimum, and the last loop (Lines 19− 27)
moves each pollen to a new binary position restricted by Equations 5 and 6
(Lines 25− 27).

4.3. Optimum-Path Forest Classifier

We used the Optimum-Path Forest Classifier (Papa et al., 2009, 2012) ap-
plied to the features learned from the AR model to classify a person based on
the EEG signal. The OPF works by modelling the samples as graph nodes,
whose arcs are defined by an adjacency relation and weighted by a distance
function. Further, a role competition process between some key nodes (pro-
totypes) is carried out in order to partition the graph into optimum-path
trees (OPTs) according to a path-cost function. In fact, each OPT is rooted
at one prototype, which means a sample that belongs to a given tree is more
strongly connected to its root than to any other in the forest.

5. Methodology

In this section, we present the proposed approach for channel selection
in EEG-based signal acquisition, as well as we briefly describe the employed
dataset, the nature-inspired meta-heuristic algorithms, and the experimental
setup.

9



Algorithm 1: BFPA - Binary Flower Pollination Algorithm

input : Training set Z1 and evaluating set Z2, α, number of
flowers m, dimension d and iterations T .

output : Global best position ĝ.
auxiliaries: Fitness vector f with size m and variables acc, maxfit,

globalfit← −∞ and maxindex.
1 for each flower i (∀i = 1, . . . , m) do
2 for each dimension j (∀j = 1, . . . , d) do

3 x
j
i (0)← Random{0, 1};

4 fi ← −∞;

5 for each iteration t (t = 1, . . . , T ) do
6 for each flower i (∀i = 1, . . . , m) do
7 Create Z ′

1 and Z ′
2 from Z1 and Z2, respectively, such that both

contains only features such that xj
i (t) 6= 0, ∀j = 1, . . . , d;

8 Train OPF over Z ′
1, evaluate its over Z ′

2 and stores the
accuracy in acc;

9 if (acc > fi) then
10 fi ← acc;
11 for each dimension j (∀j = 1, . . . , d) do

12 x̂
j
i ← x

j
i (t);

13 [maxfit,maxindex] ← max(f);
14 if (maxfit > globalfit) then
15 globalfit← maxfit;
16 for each dimension j (∀j = 1, . . . , d) do

17 ĝj ← x
j

maxindex(t);

18 for each flower i (∀i = 1, . . . , m) do
19 for each dimension j (∀j = 1, . . . , d) do
20 rand← Random{0, 1};
21 if rand < p then

22 x
j
i (t)← x

j
i (t− 1) + α⊕ Lévy(λ); else

23 x
j
i (t)← x

j
i (t− 1) + ǫ(xj

i (t− 1)− xk
i (t− 1));

24 if (σ < 1

1+e
x
j
i
(t)
) then

25 x
j
i (t)← 1; else

26 x
j
i (t)← 0;
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5.1. Dataset

The EEG signals used in this work were obtained from the EEG Mo-
tor Movement/Imagery dataset2 (Goldberger et al., 2000). The data was
collected from 109 healthy volunteers using the BCI2000 System (Schalk
et al., 2004), which makes use of 64 channels (sensors) and provides a sep-
arated EDF (European Data Format) file for each of them. The subjects
performed different motor/imagery tasks: such tasks are mainly used in BCI
(Brain-Computer Interface) applications and neurological rehabilitation, and
consists of imagining or simulating a given action, like open and close the
eyes, for example.

Each subject performed four tasks according to the position of a target
that appears on the screen placed in front of the volunteers (if the target ap-
pears on the right or left side, the subject opens and closes the corresponding
fist; if the target appears on the top or bottom side, the subject opens and
closes both fists or both feets, respectively). In short, the four experimental
tasks were:

1. To open and close left or right fist;

2. To imagine opening and closing left or right fist;

3. To open and close both fists or both feet; and

4. To imagine opening and closing both fists or both feet.

Each of these tasks were performed three times, thus generating 12 recordings
for each subject of a two-minutes run, and the 64 channels were sampled at
160 samples per second.

The features of the twelve recordings are extracted by means of an AR
model with three output configurations for each EEG-channel: 5, 10 and 20
features. Further, the average of each configuration is then been computed
in order to obtain just one feature per EEG-channel (sensor). In short, for
each sensor, we have extracted three different numbers of AR-based features,
being the output of each sensor the average of their values. Henceforth, we
have adopted the following notation for each of the dataset configurations:
AR5 for 5 autoregression coefficients extracted, and AR10 and AR20 for 10
and 20 autoregression coefficients, respectively.

2http://physionet.org/pn4/eegmmidb
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5.2. Nature-Inspired Meta-heuristic Algorithms

In this work, we have compared our proposed method with other meta-
heuristic-based optimization methods described below:

Genetic Algorithm (GA): The Genetic Algorithm was proposed by Hol-
land (1975), and its main concept is to emulate the biological evolution
to solve optimization problems. It is composed of an initial population
(or a set of unique elements) and a set of operators inspired by the
nature. These operators can change the elements, and according to
the evolutionary theory, only the most capable individuals are able to
survive and transmit their biological heredity to the next generations.

Particle Swarm Optimization (PSO): This method is inspired on the
social behaviour of a bird flocking or a fish schooling (Kennedy and
Eberhart, 2001). The fundamental idea is that each particle represents
a potential solution which is updated according to its own experience
and from its neighbours’ knowledge. The motion of an individual par-
ticle for the optimal solution is governed through its position and ve-
locity interactions, and also by its own previous best performance and
the best performance of their neighbours.

Firefly Algorithm (FA): This method was proposed by Yang (2010), be-
ing derived from the flash attractiveness of fireflies for mating partners
(communication) and attracting potential preys. The brightness of a
firefly at a given position is determined by the value of the objective
function in that position. Each firefly is attracted by a brighter firefly
through the attraction factor.

Harmony Search (HS): This method is a meta-heuristic algorithm in-
spired in the improvisation process of music players (Geem, 2009).
Musicians often improvise the pitches of their instruments searching
for a perfect state of harmony. The main idea is to use the same pro-
cess adopted by musicians to create new songs to obtain a near-optimal
solution according to some fitness function. Each possible solution is
modelled as a harmony, and each musical note corresponds to one de-
cision variable.

Charged System Search (CSS): This method, based on the governing
Coulomb’s law (a physics law used to describe the interactions between
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electrically charged particles), was proposed by Kaveh and Talatahari
(2010). In this method, named CSS, each Charged Particle (CP) in
the system is affected by the electrical fields of the others, generating a
resultant force over each CP, which is determined by using the electro-
static laws. The CP interaction movement is determined by Newtonian
mechanics laws.

We have used the binary optimization version of each aforementioned
method, as proposed in: Binary GA (BGA) (Holland, 1975), Binary PSO
(BPSO) (Firpi and Goodman, 2004), Binary HS (BHS) (Ramos et al., 2011),
Binary Firefly (BFA) (Falcon et al., 2011; Palit et al., 2011), and Binary
CSS (Rodrigues et al., 2013). The optimization algorithms were implemented
in C language following the guidelines provided by their references. Notice
the transfer function defined by Equations 5 and 6 were the very same for
all techniques compared in this work.

5.3. Experimental Setup

We partitioned our fully labeled dataset into Z = Z1∪Z2∪Z3 subsets, in
which Z1, Z2 and Z3 stand for training, validation, and test sets, respectively.
The training dataset contains 50% of the original dataset, followed by 30%
and 20% concerning the validation and test sets, respectively. The idea is to
employ Z1 and Z2 to find the subset of features that maximize the accuracy
over Z2, with the accuracy being the fitness function.

Each agent is initialized with random binary positions and the original
dataset is mapped to a new one that contains the features that were selected
in this first sampling. In addition, the fitness function of each agent is set
to the OPF recognition rate over Z2 after training in Z1. The final subset
will be the one that maximizes the curve over the range of values, i.e., the
features that maximize the accuracy over Z2. The accuracy over the test
set Z3 is then assessed by using the final subset of the selected features.
Notice the fitness function employed in this paper is the accuracy measure
proposed by Papa et al. (2009), which is capable of handling unbalanced
classes. Figure 2 presents the methodology used to evaluate the proposed
approach.

Table 1 shows the parameters used for each optimization technique em-
ployed in this work3. The c1 and c2 parameters of PSO control the pace dur-

3We have used the same variable notation for different methods because we believe it
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1Training on Z

2Learning on Z

3
Classification on Z

3
selected channels

3
final accuracy

Figure 2: Block diagram of the proposed approach.

Technique Parameters

BGA mutation = 0.1
BPSO c1 = c2 = 2
BFA γ = 0.8, β0 = 1.0, α = 0.01
BCSS –
BHS HMCR= 0.9
BFPA α = 1.0, p = 0.8

Table 1: Parameters used for each meta-heuristic optimization technique. Notice the
inertia weight w for PSO was linearly decreased from 0.9 to 0.4.

ing the particles movement, and the “Harmony Memory Considering Rate”
(HMCR) of BHS stands for the amount of information that will be used
from the artist’s memory (songs that have been already composed) in order
to compose a new harmony. In regard to BFA, α and β0 are related to the
step size of a firefly, and γ stands for the light absorption coefficient.

makes it easier to understand since it is the same notation used in the respective original
papers.
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6. Experimental Results

The experimental results stand for the mean accuracy and standard devi-
ation over 25 rounds using the methodology presented in Section 5.3. Since
the meta-heuristic algorithms are non-deterministic, we adopt this protocol
to avoid biased results. The experiments were executed in a computer with a
Pentium Intel Core i7 R© 1.73Ghz processor, 6 GB of RAM and Linux Ubuntu
Desktop LTS 13.04 as the operational system.

Figures 3 and 4 present the mean OPF accuracy over the three different
feature sets (AR5, AR10 and AR20), as well as the average number of selected
channels, respectively. Notice the “yellow” bar stands for the standard OPF,
i.e., without channel selection. From Figure 3, one can observe there is not a
relevant difference in terms of accuracy considering the different number of
autoregression coefficients. As the coefficients are averaged at the output of
each channel, such non-linear operation may have alleviated the influence of
each approach. However, this operation seems to work well, since a recogni-
tion rate of around 86% is very competitive when compared to other works
in the literature (Section 3).

Table 2 presents the percentage of selected EEG-channels. From the
data, it is possible to observe three important points: (i) BGA and BHS
have selected the lowest number of channels for all dataset configurations;
(ii) considering the accuracy results shown in Figure 3, we can conclude
that we can achieve similar performance of that obtained using all the 64
channels by using less than a half of them; and (iii) the proposed BFPA
has been very competitive in terms of binary-constrained optimization tasks
when compared to the techniques addressed in this work.
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Figure 3: Average OPF accuracy over (a) AR5, (b) AR10 and (c) AR20 configurations.
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Figure 4: Average number of selected channels of all techniques over (a) AR5, (b) AR10

and (c) AR20 configurations. These values have been truncated for sake of simplicity.

Dataset BGA BPSO BFA BHS BCSS BFPA

AR5 36% 38% 45% 38% 44% 46%
AR10 36% 39% 44% 36% 45% 45%
AR20 37% 40% 44% 36% 44% 45%

Table 2: Percentual of selected EEG-channels.

Figure 5 depicts the mean computational load (in seconds) for all opti-
mization techniques regarding the learning step (dark gray module in Fig-
ure 2.). As we did not consider the feature extraction procedure, i.e., the
autoregression coefficients computation, the execution time over all dataset
configurations are quite similar for each specific optimization technique. It is
possible to observe BHS has been the fastest technique in all situations, since
it only updates one agent per iteration. Although it may be a drawback in
terms of convergence, it is still the fastest approach.

Finally, we performed the Wilcoxon signed-rank statistical test Wilcoxon
(1945) to verify whether there is a significant difference between BFPA and
the other techniques used in this work (considering the OPF recognition rate).
Table 3 displays a pair-wise comparison against all techniques and BFPA,
showing whether two techniques are considered similar (‘=’) or not (‘6=’) to
each other. The only technique that has been considered similar to BFPA in
all situations is BFA, followed by BPSO. An interesting point is related to
the number of parameters, since BFPA requires only two, meanwhile BFA
needs three parameters.

Since the nature of the proposed task in the EEG recording session has a
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Figure 5: Mean execution times of all techniques over (a) AR5, (b) AR10 and (c) AR20

configurations.

Dataset BGA BPSO BFA BHS BCSS

AR5 6= = = 6= =
AR10 6= = = 6= =
AR20 6= = = 6= =

Table 3: Wilcoxon signed-rank test evaluation.

close relation with different brain areas, like the movements of the hands and
feet that mainly activates the central region of the brain (Wang et al., 2005;
Yang et al., 2013), it is important to figure out whether the expected channels
are actually included in the subset selected by the optimization techniques.
Therefore, since we executed a cross-validation procedure with 25 runnings,
and due to the stochastic behaviour of the meta-heuristic techniques, this
means a certain feature may not be selected at a given execution, and may
be at another. In order to cope with this challenge, we opted to display the
frequency of occurrence concerning each sensor, as displayed in Figure 6. In
this case, we considered BFPA with feature extraction by model AR5.

Some interesting conclusions can be drawn if we consider the different
range of frequencies modelled by distinct colours. It seems the frontal sen-
sors are slightly more important than the back ones, since we can find more
“yellow” and “blue” sensors right below the horizontal line (i.e., the one that
goes from the left ear to the right one) than above that line. Another obser-
vation is that the “yellow” sensors are place everywhere, i.e., they correspond
to the sensors that have been selected in between the range [85%, 89%], which
is a considerable frequency. This means BFPA tried to select sensors placed
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Figure 6: Frequency of selected sensors during the experimental evaluation using AR5 and
BFPA.

at different positions of the brain in order to capture different information.

6.1. Transfer Function Analisys

In order to map the possible solutions (i.e., a position in the search space)
from a continuous-valued space to a binary one, a transfer function needs
to be employed (Rashedi et al., 2010; Mirjalili and Mohd Hashim, 2011). A
transfer function defines the probability of changing the position of a possible
solution from 0 to 1 and vice-versa forcing the agents to move onto a binary
space. Mirjalili and Lewis (2013) introduced a study of two families of transfer
functions on binary-based PSO. Since the binary version of FPA makes use
of a transfer function either, we also investigated these two different families
of transfer functions (S-shaped and V-shaped) on Binary FPA. In short, we
evaluated 8 transfer functions, as follows:

• S-shaped: S1, S2, S3 and S4; and

• V-shaped: V1, V2, V3 and V4.

Notice the transfer function S2 is the same one used in the experiments
conducted in the previous section (Equations 5 and 6). In this section, we

18



just reproduced the results obtained with S2. For a more detailed explanation
about the functions employed in this section, the reader can refer to the work
by Rashedi et al. (2010); Mirjalili and Mohd Hashim (2011).

First of all, we evaluated the convergence of all tranfer functions consid-
ering the AR models used in this work. Figure 7 displays this experiment,
in which transfer function S1 obtained the best results in all AR models,
followed by S2 and V1. According to Mirjalili and Lewis (2013), the larger
the velocity of a given particle, the highest it should be the probability to
change its position from 1 to 0 and vice-versa, since this particle probably is
far away from the best global solution. In this context, the “most abrupt”
transfer functions are S1 and V1, i.e., they are more prone to switch the
binary values.
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Figure 7: Convergence evaluation of the transfer functions considering all AR models.

Following a similar behaviour to the ones obtained in the convergence-
driven experiment, functions S1 and V1 provided very good recognition rates
over the test set, as displayed in Figure 8. Such behaviour can be observed for
all AR models. Additionally, the number of selected features can influence
the recognition rates, as one can observe in Figure 9. Although transfer
function V3 has selected less features, it obtained the lowest recognition rates
(Figure 8), which is somehow expected. In regard to the computational load,
Figure 10 presents the mean execution time to learn the most representative
subset of features. Since transfer function S1 has selected more features, it
is expected a higher computational burden when compared to the others.

Table 4 displays the Wilcoxon signed-rank test considering the experiment
with different transfer functions. Considering model AR5, the most accurate
techniques were S1, S2 and S4, and with respect to AR10 we can highlight
S1, S4 and V2 as the top-3 techniques. Finally, S1 and S4 obtained the best
results considering the model AR20.
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Figure 8: Average OPF accuracy over (a) AR5, (b) AR10 and (c) AR20 configurations
considering different transfer functions

.

S1 S2 S3 S4 V1 V2 V3 V40

10

20

30

40

50

60

Av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
se

ns
or

s 49
44

41 39 39
36

28
32

S1 S2 S3 S4 V1 V2 V3 V40

10

20

30

40

50

60

Av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
se

ns
or

s 51

45
41 40 38 39

27
32

S1 S2 S3 S4 V1 V2 V3 V40

10

20

30

40

50

60

Av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
se

ns
or

s 52

46
42

40 39 39

28
34

(a) (b) (c)

Figure 9: Average number of selected channels of all techniques over (a) AR5, (b) AR10

and (c) AR20 configurations considering different transfer functions. These values have
been truncated for sake of simplicity.
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Figure 10: Mean execution times of all techniques considering different transfer functions
over (a) AR5, (b) AR10 and (c) AR20 configurations.
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Table 4: Wilcoxon signed-rank test computed between the transfer functions.

AR5 S1 S2 S3 S4 V1 V2 V3 V4

S1 — = 6= = 6= 6= 6= 6=
S2 = — 6= = = 6= 6= 6=
S3 6= 6= — = = = 6= =
S4 = = = — = = 6= 6=
V1 6= = = = — = 6= 6=
V2 6= 6= = = = — 6= =
V3 6= 6= 6= 6= 6= 6= — =
V4 6= 6= = 6= 6= = = —

AR10 S1 S2 S3 S4 V1 V2 V3 V4
S1 — = = = 6= = 6= 6=
S2 = — 6= = 6= = 6= 6=
S3 = 6= — = = = = 6=
S4 = = = — = = = 6=
V1 6= 6= = = — = = =
V2 = = = = = — 6= 6=
V3 6= 6= = = = 6= — =
V4 6= 6= 6= 6= = 6= = —

AR20 S1 S2 S3 S4 V1 V2 V3 V4
S1 — = 6= = 6= 6= 6= 6=
S2 = — = = = 6= 6= =
S3 6= = — = = = = =
S4 = = = — = = 6= =
V1 6= = = = — = = =
V2 6= 6= = = = — 6= =
V3 6= 6= = 6= = 6= — =
V4 6= = = = = = = —

6.2. Discussion

Roughly speaking, all techniques achieved similar recognition rates con-
sidering all AR models, with an advantage to BFPA and BFA, which are
swarm-oriented. It is important to highlight one might obtain better recog-
nition rates using a different feature extraction, but the main goal of this
work is to evaluate BFPA in the context of sensor selection, as well as to
show the importance of selecting sensors in order to make such approach less
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prone to errors and probably cheaper.
Using AR models with different number of coefficients seemed to does not

provide different recognition rates, since the output of each AR model is given
by the average of the coefficients. This could be a plausible explanation for
that case. Such assumption can be applied to all meta-heuristic techniques
used in this paper.

Another important point concerns with the sensors selected by BFPA.
A more detailed study showed the most frequent sensors are located in the
front of the head, tough they are also spread along the head. That is an
interesting observation, which means BFPA tried to select sensors that are
not so close to each other in order to capture relevant information from all
places of the head.

Finally, an additional study with different transfer functions showed we
can obtain different results, being the number of selected features strongly
related to the final recognition rates. It seems the more features one has, the
most accurate the transfer function. However, we still need to deal with a
trade-off between the number of features and the computational efficiency.
Using all sensors does not give us too much different results, which supports
the idea of this work, that is to emphasize one can find out the subset of
sensors that can obtain reasonable results.

7. Conclusions and Future Work

We have addressed the problem of channel selection in EEG-based bio-
metric person identification. The goal of this work to highlight we may not
need to employ all EEG channels available in order to obtain high identifica-
tion rates. Therefore, we proposed to model the problem of channel selection
as a meta-heuristic-based optimization task, in which the subset of channels
that maximize the recognition rate over a validation set is used as the fitness
function.

For the identification (classification) task, we have used the Optimum-
Path Forest classifier, which has demonstrated to be similar to the state-
of-the-art supervised pattern recognition techniques, but faster for training.
In regard to the meta-heuristics, we have introduced a binary-constrained
optimization version of the recently proposed Flower Pollination Algorithm,
which seemed to be very competitive to other state-of-the-art optimization
techniques employed in this paper: Binary Genetic Algorithm, Binary Parti-
cle Swarm Optimization, Binary Firefly Algorithm, Binary Harmony Search,
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and Binary Charged System Search.
The experimental results showed the BFPA outperformed many of the

other methods, obtaining very good person identification rates using much
less channels. It is important to emphasize that reducing EEG channels while
keeping high identification rates is crucial towards the effective use of EEG in
biometric applications. In addition, the selected sensors seemed to cover all
the person’s head, mainly in the front. Moreover, the number of coefficients
in the AR model does not seem to impact in the final results, although we are
taking the average of the coefficients as the final feature. Finally, different
transfer functions were also analyzed, which allowed slightly better results.

Although using EEG data for biometric purposes seems to be a little bit
far from reality in non-controlled environments, we would like to shed light
over the importance in keep going with such studies, since good recognition
rates can be obtained, being such sort of biometric approaches much less
prone to spoofing attacks. Probably, in the future when mobile devices can be
used to easily capture EEG signals, such techniques can be widely employed
for biometric purposes as well.

Our future work will involve using modified versions of FPA to perform
channel selection aiming at improving the overall identification performance
while selecting fewer channels.
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