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Abstract

This work addresses the coordination problem of multiple robots with the goal of finding specific hazardous
targets in an unknown area and dealing with them cooperatively. The desired behaviour for the robotic
system entails multiple requirements, which may also be conflicting. The paper presents the problem as
a constrained bi-objective optimization problem in which mobile robots must perform two specific tasks
of exploration and at same time cooperation and coordination for disarming the hazardous targets. These
objectives are opposed goals, in which one may be favored, but only at the expense of the other. Therefore, a
good trade-off must be found. For this purpose, a nature-inspired approach and an analytical mathematical
model to solve this problem considering a single equivalent weighted objective function are presented. The
results of proposed coordination model, simulated in a two dimensional terrain, are showed in order to assess
the behaviour of the proposed solution to tackle this problem. We have analyzed the performance of the
approach and the influence of the weights of the objective function under different conditions: static and
dynamic. In this latter situation, the robots may fail under the stringent limited budget of energy or for
hazardous events. The paper concludes with a critical discussion of the experimental results.

Keywords: Multi-Robot Systems, Bi-criteria Optimization Model, Nature-Inspired Algorithms,
Self-Coordination of Multiple Robots, Hazardous Environment.

1. Introduction

Search for unknown targets and then manage-
ment of the found targets can have great impor-
tance to many applications related to disaster sit-
uations like earthquakes, counter terrorist attacks,
clean-up of minefield and handling of lost hazardous
objects. Over the last decade, many researchers
have been studying groups of robots that act as
a team to accomplish certain difficult tasks in dy-
namic, unknown and hazardous environments. A
team of robots can be assigned to a task that is
too heavy and/or harmful to humans and such
robots can accomplish the assigned task in a faster,
cheaper, more efficient way, providing a better ro-
bustness and adaptability [1, 2].
This paper studies the coordination of multiple

robots that need to explore an unknown area, in
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order to detect and disarm cooperatively danger-
ous sources (e.g., land mines, hazardous chemicals),
since it is either impossible or too expensive for
only one robot to carry out the task individually.
In these applications, robots must have the abil-
ity to distribute themselves among various locations
of the area and also redistribute them at the tar-
get’s locations, in order to handle them in parallel.
Furthermore, the team is designed to complete the
overall task in a cost-saving way, with an aim of
the minimization of the mission time. This issue is
similar to a task allocation problem, but the main
difference is that the locations of targets are not
known a priori and the assignment can be dynamic
as the number of targets found can be one or more
at any time.

The most common approach is instantaneous
task allocation, which means that the robots are
instantaneously assigned to the targets that could
give the maximum benefit at the moment and hence
the task allocation is achieved according a greedy
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strategy. However the instantaneous task alloca-
tion does not take into account any future events
and it may degrade the performance. A desirable
feature of task allocation scheme, especially in a
dynamic uncertain environment, is that the robots
can be well-prepared to react to new events that
can occur.
Therefore, the main aim of this work is to pro-

pose an approach which attempts to simultaneously
minimize the exploration time and the coordina-
tion/recruitment time. The goal is to assign each
robot to the best task from its point of view, bal-
ancing exploration and recruitment and at the same
time reacting in an efficient manner to the events
that can occur anytime. In our proposed approach,
the formulation of the problem is considered as a
bi-objective model with constraints and the use
of nature-inspired approaches. Then, a weighted
objective function is proposed to balance the two
goals, and specific values of the weights are investi-
gated in order to analyze different scenarios in the
proposed solution. It is worth pointing out that we
did not focus on the detailed mechanism of detec-
tion and disarmament of the targets such as the
exact procedure of handling a hazardous target.
Rather, we suppose that the target can be detected
by proper sensors and dealing with through certain
actions that can be modelled as a fixed time de-
lay. Consequently, we are more interested in how
to provide the coordinated motions in a distributed
and decentralized decision mechanism when the in-
formation about the environment for each robot is
only partially available or altogether absent.
However, two major problems exist: how to ex-

plore the area and make the decision on where to
move effectively at a reasonable computational cost,
and how to avoid deadlock; that is, the situation
where robots are waiting for a long time for the
others to proceed to disarming process. These is-
sues are particularly relevant in strictly collabo-
rative tasks since the robots need to work collec-
tively and adaptively for the disarmament of the
hazardous targets, and each robot has only locally
and partially information about the environment.
The paper presents a new swarm intelligence

(SI)-based approach that is strongly inspired by
the biological behaviour of social insects. Biology-
inspired metaheuristic algorithms have recently be-
come the forefront of the current research as an ef-
ficient way to deal with many NP-hard combina-
torial optimization problems and non-linear opti-
mization constrained problems in general [3]. These

algorithms are based on some particular successful
mechanisms of biological phenomena of mother na-
ture in order to achieve the survival of the fittest in
a dynamically changing environment. Examples of
collective behaviours in nature are numerous. They
are based, mainly, on direct or indirect exchange
of information about the environment between the
members of the swarm. Although the rules govern-
ing the interactions at the local level are usually
easy to describe, the result of such behaviour is dif-
ficult to predict. However, through collaboration,
swarms in nature are able to solve complex prob-
lems that are crucial for their survival.
More specifically in this paper, our work com-

bines two bio-inspired algorithms using only local
interactions between the members of the swarm
and with the environment. Therefore, in our ap-
proach, each robot is able to self-organize and
uses only simple information. Using this informa-
tion, it assesses the task opportunities individu-
ally, and makes movements through a incremental
phase. The action mechanism relies on two types of
communication: indirect communication and direct
communication.
First, we introduce an algorithm for the explo-

ration of the area based on a repulsive pheromone
mechanism where no Wi-Fi communication is possi-
ble. An indirect communication through depositing
and sensing chemical pheromone on the grid cells is
available as an exploration mechanism for the de-
ployment of the robots in the environment. This
form of communication is embedded in the environ-
ment and it is inspired by ants that lay pheromone
as marking to be sensed later by others (includ-
ing possibly themselves). The environment allows
the aggregation of the local interactions of numer-
ous robots in order to achieve a certain aim. The
environment becomes a shared memory on which
information can be stored and removed (according
to certain natural mechanisms). The algorithm is
inspired by the cooperative behaviour in nature, as
the colonies of social insects [4].
On the other hand, when a robot detects a tar-

get, in order to handle it cooperatively and more
quickly, it manages and drives the coordination pro-
cess using direct communication. For this purpose,
a modified Firefly-based algorithm is proposed as a
decision and recruitment mechanism [5].
The above mentioned theoretic approach has

been tested in our Java-based simulator, and it has
been analyzed in terms of different values of the
weights of the objective function, in order to eval-
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uate their influence on balancing recruitment and
exploration tasks and how they affect the behaviour
of the swarm to stick together and/or move accord-
ing a common goal. The experiments have been
repeated under different conditions such as the vari-
ations of the number of targets, the number of re-
quired robots to disarm a target, the dimension of
the area. In addition, the paper also has explored
how the coefficient may influence the performance
both in static and dynamic scenarios.
Therefore, the remainder of the paper is orga-

nized as follows. Section 2 provides a review of the
related work. The descriptions of the problem and
the mathematical model are the focus of Section
3 and Section 4. Section 5 describes the proposed
bio-inspired approach. Section 6 shows the simula-
tion results obtained from a set of experiments and
finally Section 7 outlines the main research conclu-
sions.

2. Related work

2.1. Multi-robot Allocation and Coordination

The applications of multi-objective optimization
to evolutionary robotics are diverse with increasing
attention. Some common applications for multi-
robot teams include foraging [6], path planning [7],
search [8], distributed surveillance and security [9],
search and rescue [10][11], and emergency service
[12, 13, 14]. However, many of these formulations
have attempted to solve multiple objectives at the
same time and researchers often model these com-
mon capabilities by defining them as optimization
problems. Typically, these problems can be for-
mulated as combinatorial optimization or as con-
vex optimization problems in special cases so as
to take advantage of the many tools available for
these type of optimization. However, such formu-
lations were often simplified and were not treated
as global optimization problems for multi-robot ap-
plications, though the full combinatorial problems
related to robot exploration and coordinations can
be NP-hard. Since most robotic applications re-
quire real-time robot responses, there is insufficient
time to calculate globally optimal solutions for most
applications; such solutions are generally possible
for very small-scale problems. Instead, typical so-
lutions use distributed methods that incorporate
only local cost/utility metrics. Although such ap-
proaches can only achieve approximations to the
global solution, they often can be sufficient for prac-
tical applications [15].

On the other hand, a diverse range of studies has
been done by imitating ideas from nature for de-
signing control algorithms for multi-robot systems,
since the nature presents excellent examples of dis-
tributed self-organizing systems. The aim is to de-
velop self adaptive distributed coordination algo-
rithms to deal with the problems. In nature, we
often see complex group behaviors arisen from bio-
logical systems composed by large numbers of ani-
mals that individually lack either the communica-
tion and computational capabilities, but they may
self-organize, leading to some emerging collective
behavior that enable to achieve a common (swarm
level) goal [16].
Regarding the exploration task, the main goal

is to cover the whole area in the minimum possi-
ble time. Therefore, it is essential that the robots
are deployed in different regions of the area, at the
same time. Most researches have investigated the
use of indirect communication as a mechanism to
guide the swarm of the robots. Stigmergy is a kind
of mechanism that mediates animal-animal inter-
actions through artifacts or via indirect communi-
cation, providing a kind of environmental synergy,
information gathered from work in progress, dis-
tributed incremental learning and memory among
the society. Furthermore, pheromone provides a
stigmergic medium of communication, which influ-
ences the future actions of a single or a group of
individuals via the changes made to the environ-
ment. Stigmergy allows to record the history of an
agents actions without memorizing the information
and saving resources [17].
In the exploration task, researchers use the con-

cept of anti-pheromone so as to try to maximize the
distance between the robots and to enforce a dis-
persion mechanism in different sites of the region of
interest, with the aim to accomplish the mission as
quickly as possible. Some examples of this approach
can be found in [18, 19] for surveillance mission,
in [20] for guiding the robots in search and rescue
in a disaster site, in [21, 22] in multi-robot cover-
age. Ravankar et al. [23] used a hybrid commu-
nication framework that incorporates the repelling
behaviour of the anti-pheromone and attractive be-
haviour of pheromone for efficient map exploration.
Regarding the coordination of the robot for task

assignment or allocation, many approaches have
been proposed for solving the multi-robot coordi-
nation problem. One of the most commonly used
swarm-based approaches is the response threshold,
where each robot has a stimulus associated with
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each task it has to execute. Some response thresh-
old systems use such stimuli and the threshold value
for calculating the probability of executing a task
[24, 25]. In recent years, market-based approaches
have become popular to coordinate multi-robot sys-
tems. These methods have attempted to present a
distributed solution for the task allocation problem
[26]. Jones et al. [27] described a market based ap-
proach to task allocation for the fire fighting in a
disaster response domain.
Recently, bio-inspired algorithms inspired by a

variety of biological systems, have been proposed
for self-organized robots. A well known bio-
inspired approach takes inspiration from the be-
haviour of the birds, called Particle Swarm Opti-
mization (PSO). PSO-inspired methods and their
extended versions have received much attention and
have been applied for the coordination of mobile
robots. Some examples of its application can be
found for guiding robots for targets searching in
complex and noisy environment as presented in [28].
Modified versions of the PSO are proposed to bal-
ance searching and selecting in a collective clean-up
task [29] for path planning in a clutter environment
[30] and for mimicking natural selection emulated
using the principles of social exclusion and inclusion
[31].
Other studies took inspiration from the bees and

ants that mimic the food foraging behaviour of
swarms of honey bees and ants in nature. These
algorithms have also been applied to robotic sys-
tems such as task allocation [32], finding targets
and avoiding obstacles [33], for solving on line path
planning [34] [35], decision-making to aggregate
robots around a zone [13] [16] [36]. A Hybrid ap-
proach can be found in [37]. However, extensive
reviews of research related to the bio-inspired tech-
niques and the most behaviour of the robots can be
found in [38] [39].

2.2. Overview of the Present Paper

As discussed above, the problem of multi-robot
coordination has received significant attention.
However, the proper coordination for exploration
and management of found targets have not been
studied extensively. Therefore, the research we re-
port here makes some new contributions in this
area:

• The exploration and handling problem is de-
scribed using an optimization model. Both the
search and handling of the hazard targets are

considered together, allowing the trade-off be-
tween two aims in terms of a weighted objective
function.

• A repulsive mechanism based on ant colony op-
timization is applied as an indirect coordina-
tion mechanism for the exploration task.

• The recruitment task that allows the disarm-
ing of a hazardous target cooperatively is mod-
elled using a new bio-inspired Firefly Algo-
rithm based approach to recruit and then co-
ordinate robots movements as a decision mech-
anism of the robots.

• The environment is highly uncertain where
no prior information is available and dynamic
events such as robots failures under a limited
amount of battery power and unpredictably
events in the area can occur.

• The robots react to events that occur in
the environment, so unlike other common ap-
proaches, they could change, at each time step,
the previous decisions taken earlier.

With these more realistic considerations, we
present a hybrid bio-inspired approach that allows
robots to potentially balance the needs of search
and task response in an adaptive way to complete
the mission, obtaining full benefits in terms of re-
ducing wastage of resources of the system such as
time, energy and mobile alive robots.

3. Scenario and Model Formulation

In this paper we address challenges in twofold:
the ability to explore the area to find unknown
targets and the ability to efficiently balance mul-
tiple (often conflicting) goals. More specifically, a
team of robots operate in an unknown environment
searching for unknown hazardous targets in order to
disarm them cooperatively. The locations of these
unknown targets are detected gradually through
searching by the robots. A target must be handled
by a coalition of robots; therefore, the recruitment
task starts in real time as the targets are found.
Once some of these targets are detected, a fixed

number of the robots is needed to disarm the tar-
get through a predefined procedure of actions, while
the remaining robots continue to explore the envi-
ronment for searching other targets. Assuming that
the robots make their decisions independently and
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that each of them, in a restricted region of the area,
owns the same amount of information, each robot
will decide in an autonomous manner which of the
two tasks to perform (explore or help the others
in disarming process) and in what direction it may
move. However, the search and coordination tasks
are not entirely decoupled; it is possible for a robot
to perform both simultaneously (for example when
it moves towards the target, it also implicitly ex-
plores the area).
More specifically, the basic structure of our ap-

proach is divided into two steps:

1. Detection, evaluation and selection of the cells,
while moving during the exploration of the
area.

2. Selection among different targets found so far
in the area and navigation towards the chosen
target.

However the strategy is highly flexible allowing to
reconsider, at each time step, the previous decisions
taken at an earlier step to react to any new events
that may occur.

3.1. Environment modeling

Let A be the 2-D working field or grid, where
A ⊂ R

2. As a symbolic representation, the pro-
posed method uses a grid map with m and n cells.
Let us establish a Cartesian coordinate system tak-
ing the upper left corner of A as the origin, each cell
c ∈ A of the area has its own definite coordinates
(x, y), with x ∈ {1, 2, . . . ,m} and y ∈ {1, 2, . . . , n}
elements. The universal set C contains all possi-
ble states of a cell on the grid map. The subsets
C1, C2, C3, C4 ⊂ C (where Ci ∩ Cj = ∅, i 6= j) rep-
resent possible states as follows:

• C1:{explored by the robots},

• C2:{accessible and not explored by the robots},

• C3:{occupied by an obstacle},

• C4:{not explored and inaccessible after haz-
ardous events (e.g., the mine’s explosion) }.

Obstacle cells are inaccessible to the robots and
impenetrable to the sensors. A cell occupied, at
time step t, by any of the robots is considered as
an obstacle, thus no other robot can take the place
(see Fig. 1).
The state C4 is used in the dynamic scenario,

as descried below, where the found targets such as

Figure 1: A representation of the simulation environment.

(a)(b)

Figure 2: (a) Possible directions of a robot’s move (b) Pos-
sible angles of a robot’s turn.

mines could explode or dangerous chemicals may
leak at any time, making the nearby cells inacces-
sible.
While the robots explore the area, the cells tran-

sit to subset C1. Each cell c = (x, y) has a
maximum of eight adjacent neighbors N(c), if all
cells are accessible: (x − 1, y − 1), (x − 1, y), (x +
1, y), (x, y + 1), (x, y − 1)(x + 1, y + 1), (x − 1, y +
1), and(x+ 1, y − 1) as shown in Fig. 2.

3.2. Assumptions

A set R of homogeneous robots can be deployed
in the area, where R = { k | k ∈ {1, 2, . . . , NR}}.
At each step t, the current state of a robot k can be
represented by its coordinates (xtk, y

t
k). The robots

are modeled as rational collaborative autonomous
agents that move autonomously in the environment.
We assume that these robots are identical (execut-
ing the same algorithms) and follow simple local
rules to communicate with neighbors and with the
environment in order to provide a scalable strategy.
However, for the sake of the simplicity, the robots
are equipped with advanced devices such as sensors,
global positioning capabilities (for instance they are
equipped with a Wi-fi module) camera, radar, and
an onboard automatic target recognition system,
with which the robots identify the targets such as
mines and obstacles or other robots in proximity.
Sensor’s information is assumed to be perfect, and
we assume that the robots have perfect knowledge
of their locations expressed in terms of their coor-
dinates.
They are able to communicate with others us-

ing wireless communication and the communication
range Rt is limited, compared to the size of area, so
two robots can exchange information only if they
are close enough; i.e., the distance between them is
smaller than Rt. We define a local neighborhood of
robot k at time t, denoted by LN t

k , as the set of
robots that are within the Rt of the robot k (Fig. 3).
In addition, it is also assumed that the com-

munication network is perfect (no packets loss, no
transmission time or delay), so robots within the
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Figure 3: The robots in the cells with coordinates (4,5) and
(11,9) have detected a target. They start a recruitment pro-
cess by sending packets that will be received by the robots
within their wireless range Rt.

Figure 4: Local coalition of robots formed through the re-
cruitment process

same wireless range have identical information at
the same time. For the ease of presentation, the
robots start the search simultaneously at the same
time. These assumptions, that can easily be re-
moved in the future, but for the moment this is to
simplify the model since we are more interested in
analyzing the trade-off in the proposed model.

The robots must explore the area for searching
and dealing with a set T of NT targets such as
mines disseminated in the area, i.e., T = { z | z
∈ {1, 2, . . . , NT }}. It is assumed that there is
no prior knowledge about these targets such as the
total number and locations. Thus the targets can
be located in any position of the area with the same
probability. Therefore the only way to ensure the
detection of all targets (mines) is to do a complete
search of the area.

Each target, is represented by its coordinates
(xz , yz). A target z is detected by a robot k when
the target’s coordinates coincides with the robot’s
coordinates. Once a robot finds a target, it starts a
recruitment process since a target requires a fixed
number of robots to be handled. We define Rmin

a non-negative integer represents the number of
robots needed to treat safely a target. For this
purpose, it exchanges wireless messages locally by
sending out help requests through packets (that
contains mainly the coordinates of the found tar-
get) to the robots within its wireless range Rt. We
denote RRk as a set that keeps track of the help
requests that the robot k receives from the others,
expressed in terms of found targets, thus RRk ⊂ T .

Figure 4 shows an example of local coalitions
that are formed through the recruitment’s pro-
cesses. Since the robot’s decisions can dynamically
be changed in terms of robot’s movements, new re-
quests, failures, etc. the final configurations in the
target’s locations can change.

3.2.1. The actions of robots

The actions of robots belong to three main
classes:

I. Sensing actions that affect changes in a robot’s
knowledge of the environment.

II. Moving actions in the cells which imply rota-
tion to choose the right directions and obsta-
cles avoidance.

III. Communication actions when targets are
found.

Each robot adapts its position in three differ-
ent ways. The first is in the direction of minimum
amount of pheromone (to indicate good feasible re-
gions unexplored). The second is to move away
from other robots or obstacles (to avoid collision).
The third is in the direction of the detected tar-
gets (to perform an disarming task cooperatively).
The first two are based on interactions accumulated
over time between the robots and the environment.
The third is a reactive behavior triggered by help
requests from other robots. In the following, these
behavior characteristics are described.
To behave as a collective robotic organism, the

robots need to be able to achieve different behav-
ioral states. They are able to reconfigure themselves
so as to achieve a transition between the states.
More specifically, at the beginning, when no target
is detected, each robot collects information from
its immediate surrounding cells perceiving chemi-
cal substance (pheromone) by on-board sensors and
uses this information to identify the direction where
to move. Each robot calculates its best move as the
next position locally according to an Ant Colony
approach as explained below. The goal is that the
robots should explore the undetected sub-area as
much as possible in order to speed up the task. This
state is named the Forager State and it is the initial
state for each robot.
Once a robot discovers a target by itself, it will

switch to a Coordinator State. Each coordinator
robot is responsible for handling the disarmament
process of the discovered target and for the recruit-
ment of the others. The recruiting process starts
by broadcasting packets to the robots in its wireless
range (see Fig. 3), and it ends when the predefined
number of necessary robots (Rmin) arrived to the
target’s location to form a coalition team. Then,
the accumulated robots work together as a group,
performing the disarmament task. Essentially a co-
ordinator robot performs the following steps:

1. Check if there are a sufficient number of robots
to form a coalition to handle a target.
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(a)(b)

Figure 5: (a) The robot in the cell (6,11) that is recruited by
the robot in cell (6,8) moves into a cell that is too far from
the target, thus it changes its state by becoming an explorer.
(b) The robot in cell (9,9) that is recruited by two robots in
both cells (6,8) and (10,6), respectively. After, it moves into
the cell that is too far from both targets, thus it changes its
state by becoming a forager.

2. If there is no coalition that satisfies the con-
straint, then continue to send packets.

3. Repeat step 2 until all necessary robots are ar-
rived.

4. Otherwise, stop the communication and start
to disarm the target properly.

Once the target is disarmed, the involved robots
return to continue to explore the area.

When a robot k receives one or more request
packets by coordinator robots, it will make the de-
cision whether to continue to explore or to help in
a disarming process. If it decides to help a coor-
dinator robot, it forms a list RRk of the received
packets in terms of targets; otherwise, the task is
rejected and the robot continues to explore indi-
vidually. If there is only one request, it has to de-
cide whether it should move to remove the target or
continue to explore the area. If more requests have
been received, it not only needs to decide whether
it should remove, but also it has to decide towards
which target it could move. This happens because
a robot has to balance the two tasks according to
a weighted objective function express below. This
state is named the Recruited State.

A key aspect of this state is that the robots react
to events that occur. Unlike common approaches,
they could change the decisions taken previously
during the iterations. For example, for a certain
type of mission, it is possible to meet a target or
receive different requests, while reaching another
target in response to a recruitment process, thus
reconsidering the choice of the target to be han-
dled. Moreover, the decision can be to restart to
explore the area since the movements are too far
from the target’s location see Fig. 5.

When a recruited robot, once it reaches the tar-
get’s location, it will wait until the other needed
robots to arrive and thus enter into the waiting
mode. This state is called the Waiting State.

Figure 6: State transition logic for robots at each time step.
WithinRange() is a function returning True when the robot
is within the communication range of a coordinator robot.
Confirm Recruiting() is a function returning True if the robot
decides to get involved in the disarmament process of a tar-
get. ArrivedToMineLocation() and ReceivedIstructionsCo-
ordinator() are two functions returning True if the robot is
arrived to a target’s location and received the command to
start the disarmament process by the coordinator, respec-
tively. NecessaryRobot() returns True if all needed robots
(Rmin) have arrived at the target’s location.

Finally, once the number of needed robots reach
the target’s location, the group as a whole is in-
volved in the disarming process and they will per-
form, for a fixed amount of time, some actions to
deal with the targets properly. This state is the
Execution State.
To summarize the above actions and states, Fig. 6

shows the state transition logic of robots at each
time step.

4. Multi-Objective Optimization Formula-

tion

Multiple conflicting objectives may arise natu-
rally in most real-world robotic optimization prob-
lems. Several principles and strategies have been
developed and proposed for over the last decades in
order to solve such problems. In multi-objective op-
timization, as its name implies, there are multiple
objective functions with a possibility of conflicting
with each other. The aim is to find a set of vec-
tors of decision variables that can satisfy constraints
and optimize (minimizes or maximizes) these func-
tions. Such solution vectors are not a unique vector,
there are many such solutions vectors forming a so-
called Pareto front. Each point or non-dominated
solution on the Pareto front provides a preference
and choice between different objectives. When the
Pareto front becomes convex, weighted sum meth-
ods can aggregate different objectives into a single
objective.
In general, a multi-objective optimization prob-

lem can be written mathematically as

To find vectors X = (x1, x2, . . . , xL)
T ∈ Ω

which optimize f(x) = (f1(x), f2(x), . . . , fp(x))

subject to gj(x) ≤ 0 j = 1, . . . , s,

hr(x) = 0, r = 1, ..., d, (1)

where f1(x), f2(x), . . . , fp(x) denote the objec-
tive functions to be optimized simultaneously, X
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is the vector of the decision variables in the
search/decision space. Ω is the set of feasible solu-
tions and gj(x) denotes the inequality constraints,
while hr(x) are equality constraints. All these func-
tions can be linear or nonlinear [40].
As it is very difficult to effective handle with all

the conflicting objective functions, several meth-
ods have been developed for this purpose. One of
these methods is that the multi-objective problem
is transformed into a single-objective problem by a
weighted sum. In this paper, in order to solve our
bi-objective problem, the weighted sum method is
used to deal with conflicting goals and the solutions
can be obtained as a trade-off of the specific prob-
lem. The total cost of the fitness function is ob-
tained by a linear combination of the weighted sum
of two objectives in which each objective function
based on its importance or preference [41].
The problem is transformed into a single-

objective optimization problem by using scalar
weighting factors associated with each objective
function as follows:

Fweighted sum =

p
∑

i=1

wifi(x) (2)

where wi

w1 + w2+, . . . wp = 1, wi ≥ 0. (3)

The weighted sum method changes weights sys-
tematically, and each different single objective op-
timization determines a different optimal solution.
This approach gives an idea about the shape of the
Pareto front and allows information to be obtained
about the trade-off among the various objectives to
accumulate gradually [42].

4.1. Formulation as a Bi-objective Problem

In order to define the problem as a bi-objective
optimization model, there are different decisions to
be made by a robot. Given the position, expressed
by the coordinates, where each robot (e.g., robot
k) is located at each time step, and given a found
target z ∈ RRk, then the robot k has to decide if
it will get involved in the recruiting process or will
continue to explore the area.

4.1.1. First Objective

Firstly, the first decision can mathematically be
represented as the following decision variable:

vkxy =

{

1 if the robot k visits the cell (x, y),

0 otherwise.

(4)

We assume that the time to visit a cell is denoted
by Te and it is supposed to be the same for all
robots. Then the goal of an exploration task is to
cover the whole area in the minimum amount of
time, and thus the first objective becomes

minimize

NR

∑

k=1

m
∑

x=1

n
∑

y=1

Te v
k
xy. (5)

4.1.2. Second Objective

Similarly, the following decision variable allows
us to model if a robot k is involved in the disarma-
ment process of a found target z:

ukz =

{

1 if robot k is involved with target z,

0 otherwise.

(6)

When a robot has eventually detected a target,
it should act as an attractor, trying to recruit the
required number of robots so as to disarm the dis-
covered target safely and properly. As mentioned
above, it is necessary to form a coalition to handle
a target. We define the number of robots that can
deal with a target as Rmin. Therefore, it sends help
requests using wireless communication via packets
that are received by the other robots in the wireless
range. It should be noted that the received packets
are not forwarded, since we are focused on one hop
communication. Then, the decision is taken by the
recruited robots. The quality of the recruitment
process is measured in terms of time.
Let T kStart,z be the time step at which the robot

k receive a help request for disarming the target z
and T kEnd,z the time step at which the robot k has

reached the target z, then (T kEnd,z - T kStart,z) is the
time taken for coordination, namely, the coordina-
tion time. Thus, the objective is the minimization
of the coordination time for each found target, in
order to speed up the disarming process and con-
tinue the mission effectively. Therefore, the second
objective is

minimize
NR

∑

k=1

NT

∑

z=1

(T kEnd,z − T kStart,z) u
k
z . (7)

4.1.3. The Bi-Objective Optimization Problem

The considered objective function is thus related
to the minimization of the time needed to perform
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the overall mission. The problem of selecting the
best solutions for the problem (in the Pareto sense),
accounting both the exploration time and the co-
ordination time, can be mathematically stated as
follows:

minimize

NR

∑

k=1

m
∑

x=1

n
∑

y=1

Te v
k
xy, and

minimize

NR

∑

k=1

NT

∑

z=1

(T kEnd,z − T kStart,z) u
k
z , (8)

subject to

NR

∑

k=1

vkxy ≥ 1, ∀ (x, y) ∈ A, (9)

NR

∑

k=1

ukz = Rmin, ∀ z ∈ T, (10)

vkxy ∈ {0, 1}, ∀ (x, y) ∈ A, k ∈ R, (11)

ukz ∈ {0, 1}, ∀ z ∈ A, k ∈ R, (12)

Te, T
k
End,z, T

k
Start,z ∈ R, ∀ z ∈ A, k ∈ R. (13)

The objective functions in (8) to be minimized
represent the total time consumed by the swarm of
robots. They depend on both the time for the ex-
ploration of the area and the time for coordinating
the robots involved in the disarming process of the
targets. Constraint (9) ensures that each cell is vis-
ited at least once. Constraint (10) defines that each
target z must be disarmed safely by Rmin robots.
The constraints (11)-(13) specify the domain of the
decision variables.

The problem was formulated as a bi-criteria
model which turns out to be very challenging to
solve. Indeed, the number of efficient solutions
may be exponential in terms of the problem size,
thus prohibiting any efficient method to determine
all efficient solutions. For these reasons, following
the popular approaches used to deal with multi-
objective optimization problems, the model has
been transformed into a single objective optimiza-
tion problem using arbitrary importance factors for
each criteria ( i.e. w1 and w2) and combining the
objectives as a single function to be minimized.

The resulting single objective problem with non-
negative weights can be represented as follows:

minimize

NR

∑

k=1

m
∑

x=1

n
∑

y=1

w1(Te v
k
xy)

+

NR

∑

k=1

NT

∑

z=1

w2[(T
k
End,z − T kStart,z)] u

k
z , (14)

subject to constraints (9)-(13).
Parameters w1 and w2 are chosen such that the

condition w1 +w2 = 1 is satisfied. In this case, the
combined function is Pareto optimal [42]. The user
can choose appropriate values for the parametersw1

and w2, depending on the preference or priority of
the objectives. Indeed, by minimizing the weighted
sum objective with various settings, it is possible
to determine various points in the Pareto set. This
approach can approximate and describe the shape
of the Pareto front effectively, allowing the accu-
mulation of information to be obtained about the
trade-off among various objectives.
The proposed single objective optimization

model can be solved and be relevant to many ap-
plications for robot exploration and coordination.
For applications in which more relevance is given
to the exploration task, more importance could be
given to exploration time (thus higher value of w1),
whereas for applications where it is more impor-
tant to reduce the disarming time, more importance
could be given to w2.
By minimizing the overall fitness function in re-

gard to the assigned weights of each criterion, a
suitable decision mechanism that may balance the
two objectives can be obtained. The weights have
been tuned through a set of simulations in order to
try to find the best values.

4.2. Energy Model

For each activity executed by a robot k, a certain
amount of energy is consumed. In our study, the en-
ergy model reflects mostly two activities: energy for
communication and energy for mobility. The mobil-
ity energy depends on several factors. For simplic-
ity, the mobility cost for a robot k in our model can
be calculated by considering the distance traversed
in terms of the number of cells and it is expressed
as follows:

Ekmob =

m
∑

x=1

n
∑

y=1

Cmob v
k
xy, (15)
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where
∑m

x=1

∑n

y=1 v
k
xy is the total number of vis-

ited cells for each robot k while moving in the ex-
ploration phase and recruiting phase; Cmob is the
energy cost given to move from one cell to another
and takes into account both the costs for moving
and turning [43].
When a target is detected, the energy consumed

is instead related to the communication and to the
cost for performing the planned task on the target.
Since we use a wireless communication system in
this phase, the energy consumed depends on the
transmission and reception of the packets to com-
municate the position of the targets. In this case,
we assume that the energy consumed by robot k to
transmit Ektx and receive Ekrx a packet [44] is related
to the maximum transmission range Rt and to the
packet size (l) as follows:

Ektx = l (Rψt etx + ecct), (16)

where etx is the energy required by the power ampli-
fier of transceiver to transmit one bit data over the
distance of one meter, and ecct is the energy con-
sumed in the electronic circuits of the transceiver
to transmit or receive one bit. Here, ψ is called
the path loss exponent of the transmission medium
where ψ ∈ [2, 6].
On the other hand, the energy consumption for

receiving a packet is independent of the distance
between communication nodes and it is defined as:

Ekrx = l erc, (17)

The energy consumed to deal with a target is:

Ekd = Cd, (18)

where Cd is the cost given to the working task for
handling a target properly, and it is the same for
each robot and it is related, for simplicity, to the
mechanical movements. Essentially, we model the
energy consumed for the coordination task by the
robot k that is involved in the targets issue as:

Ekcoord =

NT

∑

z=1

(Ektx + Ekrx + Ekd ) u
k
z . (19)

Based on the previous considerations and mod-
els, we now introduce a performance index, called
Total-Energy-Swarm-Consumption (TESC), as:

TESC =

NR

∑

k=1

Ekmob +

NR

∑

k=1

Ekcoord. (20)

That is, the total energy consumed by the swarm
of robots and it is the sum of two contributions:
energy consumption for moving into the area and
energy consumption for the wireless communication
when they are involved in the performing of the
targets.

4.3. Robot in dynamic scenarios

The above considerations provide a unified ap-
proach to consider both the complete discovery of
the area and the measure of the time needed to
accomplish both exploration and disarming of the
targets. Thus, it is a useful metric, but it requires
that the task is completely finished, and cannot be
used to evaluate partial execution of the tasks. In
many cases a complete exploration of the environ-
ment may not be feasible in practice, due to the
time or resource constraints in large and hazardous
environments.

In this section, we consider a dynamic environ-
ment in the sense that the targets can explode at
any time and in an unpredictable manner, mimick-
ing the destruction of some robots and the dam-
age of the nearby zones. Moreover, we regard the
robots with a limited quantity of energy without
the possibility of recharge or replacement. In such
scenarios, the team works under more demanding
time constraints.

In order to use a performance metric that is ap-
plicable to the robotic system in a dynamic sce-
nario, we have considered several functions; one for
each feature that must be discovered and measured
from the environments. More specifically, the per-
formance metrics are given by each function mea-
suring the percentage/ratio of information related
to the two tasks. In the case of exploration task, it
is the percentage of the environment explored not
covered by impassable obstacles, while in the case
of the disarmament task, it is the percentage of tar-
gets successfully identified and disarmed.

The following equations summarize the region of
an emergency scene as follows:

AE =

m
∑

x=1

n
∑

y=1

c(xy) cxy ∈ C1, (21)

AUN =

m
∑

x=1

n
∑

y=1

c(xy) cxy ∈ C2, C4. (22)
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Concerning the above regions of interest, we de-
fine the following terms:

F1 =
AE

∑m
x=1

∑n
y=1 c(xy)

, cxy ∈ C1, C2, C4 (23)

where F1 is a regularized term that indicates the
percentage of explored cells in the emergency scene.
Thus, F1 will be equal to one only in the case all
cells of the area have been explored, except for the
cells with obstacles (c ∈ C3).
Now we define the number F2 of handled targets

as follows:

F2 =
NT

∑

z=1

f(z)

=

{

1 if target z is disarmed properly,

0 otherwise.
(24)

In this case, the objectives essentially become the
maximization of the percentage of explored area
and the number of disarmed targets. In this case,
the robots have a limited amount of energy and at
each time step, a fixed quantity of energy is con-
sumed (see Section 4.2) depending on what action
the robot may perform and if the mines can ex-
plode. The mission can terminate for multiple rea-
sons, including the case that all robots have used
up the energy, or are damaged due to explosion.

5. Proposed Bio-Inspired Approaches

Our proposed approach to solve the problem is a
hybrid strategy which combines both indirect and
direct communication mechanisms. We study how
robots can accomplish the mission in a distributed
and self-organized way through a stigmergic pro-
cess in the exploration task, and simple informa-
tion locally sent by the robots in the recruitment
task. Our system has unique features such as the
minimal information exchange, and local interac-
tions between simple homogeneous robots, achiev-
ing complex collective behaviour. Such solutions
are in line with the general approaches used in
swarm robotics, and support the desired system
properties of robustness, adaptivity and scalability.

5.1. Repulse Pheromone-Based Strategy for Explo-
ration

The mobile, autonomous robots, performing the
exploration search task, must be able to decide the
sequence of movements needed to explore the whole

environment. In this work, we address the explo-
ration problem in the context of search and rescue
operations. Exploration strategies that drive the
robots around an unknown environment on the ba-
sis of the available knowledge are fundamental for
an effective search. The mainstream approaches for
developing exploration strategies are mostly based
on the idea of incrementally exploring environment
by evaluating a number of candidate observation
locations, in our cases neighbor cells, according to
a criterion and by selecting, at each step the next
best location. However, we do not address the prob-
lem to build a map of the environment, since we
are more interested in locating the largest number
of targets in the minimum amount of time. Differ-
ently from map building, search and rescue settings
are strongly constrained by both time and battery
limitations and generally require the amount of ex-
plored area over the map quality. Since the robots
should be required to be capable of various func-
tionalities other than area exploration, it is desir-
able that both the integration to a swarm and the
ability to explore are seamless and these actions
should not consume a large amount of the robots
resources.
To be effective, a search strategy must attract

robots towards unobserved areas so as to avoid
the undesirable scenario where some areas are fre-
quently revisited while others remain unexplored.
Therefore, some swarm control is needed. The
swarm control algorithm used here is a pheromone-
inspired mechanism in which the environment is as-
sumed to handle the storing and diffusion of chem-
ical substance; thus, the robot controllers do not
store any chemical information, except the sampled
concentrations within the immediate vicinity of the
robot. Utilizing a stigmergic communication would
be an efficient method of achieving such emergent
behaviour with low overhead.
Essentially, when the robots are exploring the

area, they lay pheromone on the traversed cells and
each robot uses the distribution of pheromone in its
immediate vicinity to decide where to move. Like in
nature, the pheromone trails change in both space
and time. The pheromone deposited by a robot
on a cell diffuses outwards cell-by-cell until a cer-
tain distance Rs such that Rs ⊂ A ⊂ R

2 and the
amount of the pheromone decreases as the distance
from the robot increases (see Figure 7).
Mathematically, the pheromone diffusion is de-

fined as follows: consider that robot k at iteration t
is located in a cell of coordinates (xtk, y

t
k) ∈ A, then
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Figure 7: Example of pheromone diffusion. When a robot
moves into new cell, it spreads the pheromone within a cer-
tain distance Rs. The intensity of pheromone decays accord-
ing to the distance from the cell.

the amount of pheromone that the robot deposits
at the cell c of coordinates (x, y) is given by:

∆τk,tc =

{

∆τ0 e
−rkc
a1 − ε

a2
if rkc ≤ Rs,

0 otherwise,
(25)

where rkc is the distance between the robot k and
the cell c and it is defined as:

rkc =
√

(xtk − x)2 + (ytk − y)2. (26)

This means that pheromone spreads up to a certain
distance, as in the real world, after which it is no
perceivable by other robots. In addition, ∆τo is the
quantity of pheromone sprayed in the cell where the
robot k is placed and it is the maximum amount of
pheromone, ε is an heuristic value (noise) and ε ∈
(0, 1). Furthermore, a1 and a2 are two constants
to reduce or increase the effect of the noise and
pheromone. It should be noted that multiple robots
can deposit pheromone in the environment at same
time, then the total amount of pheromone that can
be sensed in a cell c depends on the contribution of
many robots.
Furthermore, the deposited pheromone concen-

tration is not fixed and evaporates with the time.
The rate of evaporation of pheromone is given by ρ
(0 ≤ ρ ≤ 1 ), and the total amount of pheromone
evaporated in the cell c at step t is given by the
following function:

ξtc = ρ τ tc , (27)

where τ tc is the total amount of the pheromone on
the cell c at iteration t.
Considering the evaporation of the pheromone

and the diffusion according to the distance, the to-
tal amount of pheromone in the cell c at iteration t
is given by

τ tc = τ (t−1)
c − ξ(t−1)

c +

NR

∑

k=1

∆τk,tc . (28)

5.2. Cells Selection

At each time step, the algorithm selects the most
appropriate cell for each robot, among a set of

neighbor cells without the knowledge of the entire
area. This happens because the robots have not got
global information about the environment. The aim
is to avoid any overlapping and redundancy efforts,
therefore, the robots must be highly dispersed in
the area in order to complete the mission as quickly
as possible, avoiding at the same time any wastage
of the robot’s resources such as energy.
Each robot k, at each time step t, is placed on

a particular cell ctk that is surrounded by a set of
accessible neighbor cells N(ctk). Essentially, each
robot perceives the pheromone deposited into the
nearby cells, and then it chooses which cell to move
to at the next step. The probability at each step
t for a robot k of moving from cell ctk to cell c ∈
N(ctk) can be calculated by

p(c|ctk) =
(τ tc)

ϕ (ηtc)
λ

∑

b∈N(ct
k
)(τ

t
b )
ϕ (ηtb)

λ
, ∀ c ∈ N(ctk),

(29)

where (τ tc)
ϕ is the quantity of pheromone in the cell

c at iteration t, and (ηtc)
λ is the heuristic variable to

avoid the robots being trapped in a local minimum.
In addition, ϕ and λ are two constant parameters
which balance the weight to be given to pheromone
values and heuristic values, respectively. The robot
k moves into the cell that satisfies the following con-
dition:

c = argmin[p(c|ctk)]. (30)

In this way, the robots will prefer less frequently
visited regions and it is more likely that it will di-
rect towards an unexplored region. The exploration
strategy is detailed in Algorithm 1 and it was pre-
viously validated [45]. At the first iteration of Al-
gorithm 1, all cells are initialized with the same
value of the pheromone trail, set to be zero that
represents that the cells have not yet been visited
by any of the robots, so that the initial probabili-
ties that a cell would be chosen is almost random.
Then the robots move from a cell to another based
on the cell transition rule in Eq.(29). Unvisited cells
become more attractive to the robots in the subse-
quent iterations. Using this approach, the robots
explore the area by following the flow of the min-
imum pheromone. Then the pheromone trails on
the visited cells by ants are updated as in Eq. (28).
Algorithm 1 stops executing for a robot when it

becomes a coordinator or it is recruited or if the
mission is completed (that is all cells have been
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Figure 8: The flow chart of Exploration task for a robot

visited at least once and all targets are found and
disarmed), therefore the frequency of its execution
depends on the state of the robots during the mis-
sion. Fig. 8 illustrates a simplified flowchart of the
ACO-based strategy applied by each robot agent in
exploration states.

5.3. Recruitment task

This task aims to design a low-cost coordination
mechanism that is able to form groups of robots
at given sites where the targets are found. Once
a robot detects a target (mine), since it does not
have sufficient resource capabilities to handle it, it
acts as a strong attractor to the other robots within
the wireless range to form a coalition that cooper-
atively works for the disarmament process of the
target. The detection of a target may happen at
any time during the exploration of the area, so the
recruitment process can take place in different re-
gions of the area.
For this purpose, wireless communication is used

to share the information about the found targets,
since direct communication may be beneficial when
a fast reaction is expected and countermeasures
must be taken. In this case, each robot is assumed
to have transmitters and receivers, using which it
can send packets to other robots within its wireless
range Rt and there is no propagation of the pack-
ets (one hop communication) as shown in Fig. 3.
The packets contain mostly the coordinates of the
detected targets. Therefore, the volume of infor-
mation that is communicated among the robots is
small, but it implies the robots still lack global
knowledge of the environment.
The most common approach is in a greedy fash-

ion in which the target is instantaneously assigned
to the robots without taking into account future
events. Here, we propose a flexible strategy in
which the robots not only balance the two tasks
such as exploration and manipulation of the targets
(mine), but can react to future new events chang-
ing, eventually, the taken decisions. However, each
robot must take individual decisions that could lead
to retract itself from help requests. For example, for
such kind of mission, it is possible to detect a tar-
get, while reaching another, or to receive another
request, and thus may change decisions to move in
a more convenient way from the robot’s point of

Algorithm 1: Exploration algorithm inspired
by ant colony optimization.

begin
Step 1: Initialization.

Set t: {t is the time step}.
Define ϕ, λ, a1, a2, ǫ, ∆τ0,
ρ, Rs

Step 2: Generation coordination

system.

For the whole swarm, set the
initial locations in terms of
coordinates in x and y directions.

Step 3: Procedure

while the stop criteria are not satisfied do

foreach robot k in Forager State do

evaluate the current position ctk;
evaluate neighboorhood N(ctk);
compute c according Eq. (30);
if (c.hasObstacle() or
c.isOccupated() or
c.isInaccessible()) then

choose a random cell c∗ ∈ N(ctk);
move robot k towards c∗;

else
move robot k towards c;
deposit pheromone according to
Eq. 25;

end if

end foreach

foreach cell c ∈ A do
update pheromone according
Eq.(28);

end foreach

update t;
end while

end

view. So at each time step, the robots will make
the best selfish decision based on their positions, in
response to the received help requests, trying at the
same time to balance the two tasks.

It is worth mentioning that the decisions to be
made by the robots are independent, and the other
robots and the coordinators do not know the taken
decisions; therefore, the coordinators robots will
continue to send packets until the needed robots
have actually arrived.
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5.3.1. Firefly-based Decision Mechanism for the
Cooperation Task

Firefly Algorithm (FA) is a nature-inspired
stochastic global optimization method that was de-
veloped by Yang [5]. It tries to mimic the flash-
ing behaviour of a swarm of fireflies. A firefly in
the search space communicates with the neighbor-
ing fireflies through its brightness which influences
the selection.
Fireflies swarm in nature exhibit social behaviour

that use collective intelligence to perform their es-
sential activities like species recognition, foraging,
defensive mechanism and mating. A firefly has a
special mode of communication with its light inten-
sity that signals to the swarm about its information
concerning its species, location, attractiveness and
so on. The two important properties of the firefly’s
flashing light are defined as follows:

• brightness of the firefly is proportional to its
attractiveness, and

• brightness and attractiveness of pair of fire-
flies is inversely proportional to the distance
between two.

These properties are responsible for the visibility of
fireflies which pave way to communicate with each
other.
In the proposed approach concerning our robot

problem, each coordinator robot that has found a
targets starts to behave like a firefly. At each time
step, the probability of selection of a firefly is higher
when the intensity value of the flashes is high. The
intensity value depends on the distance. So the
recruited robot moves towards the most attractive-
ness firefly/robot in the range. Attractiveness de-
creases as the distance increases. The distance rij
between any two fireflies i and j, at positions xi and
xj , respectively, can be defined as the Euclidean
distance as follows:

rij = ||xi − xj || =

√

√

√

√

D
∑

d=1

(xi,d − xj,d)2, (31)

where xi,d is the dth component of the spatial co-
ordinate xi of the ith firefly and D is the number
of dimensions. In 2-D case, r(i, j) : R2 → R

rij =
√

(xi − xj)2 + (yi − yj)2. (32)

In the firefly algorithm, as the attractiveness
function of a firefly j varies with distance, one

should select any monotonically decreasing function
of the distance to the chosen firefly. For example,
we can use the following exponential function:

β = β0 e
−γr2ij , (33)

where rij is the distance defined as in Eq. (31),
β0 is the initial attractiveness at the distance rij
= 0, and γ is an absorption coefficient at the source
which controls the decrease of the light intensity.
The movement of a firefly i which is attracted by a
more attractive (i.e., brighter) firefly j is governed
by the following evolution equation:

xt+1
i = xti + β0 e

−γr2ij(xtj −xti) +α(σ−
1

2
), (34)

where the first term on the right-hand side is the
current position of the firefly i, the second term is
used for modelling the attractiveness of the firefly
as the light intensity seen by adjacent fireflies, and
the third term is randomization with α being the
randomization parameter and it is determined by
the problem of interest. Though σ was originally a
random variable, we use it here as a scaling factor
that controls the distance of visibility and in most
case we can use σ ∈ [0, 1].
Broadly speaking, when a robot k detects a tar-

get, it switches to a Coordinator State, and it acts
as a firefly, sending out help requests to its neigh-
borhood LN t

k. When a robot receives this request
and it decides to contribute in the disarming pro-
cess, it stores the request in its list RRK . If the list
contains more requests, it must choose which target
it will disarm. Using the relative position informa-
tion of the found targets, the robot derives the dis-
tance between it and the coordinators and then uses
this metric to choose the best target, that is usu-
ally the closer. The same information also allows to
derive the next movement of the robots. The ap-
proach provides a flexible way to decide when it is
necessary to reconsider decisions and how to choose
among different targets.
It should be noticed that the recruited robots do

not respond to the received requests, since they can
change their decision at any time, so the coordina-
tors robots do not know which robots are recruiting
and continue to broadcast packets until the needed
robots have arrived. This has some implications.
First, not all recruited robots will go towards the
target’s locations balancing the two task. Second,
the order on which the requests are received is not
as important as the allocation is not instantaneous.
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Figure 9: Example of an overlap region in which some robots
are in the wireless ranges of different coordinator robots and
thus they must decide towards which target to move, accord-
ing to the Firefly-based strategy.

This allows an effective approach to reach solutions
that the greedy strategy would miss. Third, the re-
duction of the impact on communications, so that
bandwidth used will increase slowly with the team
size.
Then the robots move towards target’s location

according to a modified version of the firefly algo-
rithm. The aim of this strategy is to increase the
flexibility of the system that let the robots be able
to form groups effectively and efficiently in order
to enhance the parallelism of the handling of the
found targets, and at the same time move towards
the target location’s avoiding overlapping regions
and any redundancy (Fig. 9).
Moreover, the algorithm allows to dynamically

adjust the coordination task since it allows for each
robot to make the best choice from its own point of
view.

5.3.2. Implementation of Robot Decision Mecha-
nism

The original version of FA is applied in the con-
tinuous space, and cannot be applied directly to
tackle discrete problems, so we have modified the
algorithm in order to solve our problem. In our
case, a robot can move in a 2-D discrete space and
it can go just to the adjacent cells. This means
that when a robot k, at iteration t, in the cell ctk
with coordinates (xtk, y

t
k) receives a packet by a co-

ordinator robot that has found a target, this robot
will move in the next step (t+1) to a new position
(xt+1
k , yt+1

k ), according to the FA attraction rules
such as expressed below:











xt+1
k = xtk + β0 e

−γr2kz(xz − xtk) + α(σ − 1
2 ),

yt+1
k = ytk + β0 e

−γr2kz(yz − ytk) + α(σ − 1
2 ),

(35)

where xz and yz represent the coordinates of the se-
lected target translated in terms of row and column
of the matrix area, rkz is the Euclidean distance
between the target z and the recruited robot. It
should be noticed that the targets are static and a
robot can receive more than one request. In the lat-
ter case, it will choose to move towards the brighter

target within the minimum distance from the tar-
get as expressed in Eq. (33). A robot’s movement is
conditioned by the target’s position and by a ran-
dom component that it is useful to avoid the sit-
uation that more recruited robots go towards the
same target if more targets have found. This last
condition enables to the algorithm to potentially
jump out of any local optimum (Fig. 9).
A key aspect occurs when robot k, moves too far

from the target’s position. Given a robot k located
at the step t in the cell of coordinates (xtk, y

t
k) and

the target z with coordinates (xz , yz), we define the
distance between the robot k and the target z as the
Euclidean distance

rkz =
√

(xtk − xz)2 + (ytk − yz)2.

If rkz ≥ (Rt +∆) ∀ z ∈ RRk means that the robot
k moves too far from the target’s locations and in
this case, if it has not got other requests, it switches
its role into Forager State (see Fig. 5).
Fig. 10 summarizes the main idea of the FA-based

decision mechanism.
In order to modify the FA to a discrete version,

the robot movements have been modelled by three
kinds of possible value updates for coordinates { -1,
0, 1 }, according to the following conditions:































xt+1
k = xtk + 1 if [β0e

−γr2kz(xz − xtk) + α(σ − 1
2 ) > 0 ],

xt+1
k = xtk − 1 if [β0e

−γr2kz(xz − xtk) + α(σ − 1
2 ) < 0 ],

xt+1
k = xtk if [β0e

−γr2kz(xz − xtk) + α(σ − 1
2 ) = 0 ],

(36)

and































yt+1
k = ytk + 1 if [β0e

−γr2kz(yz − ytk) + α(σ − 1
2 ) > 0 ],

yt+1
k = ytk − 1 if [β0e

−γr2kz(yz − ytk) + α(σ − 1
2 ) < 0 ],

yt+1
k = ytk if [β0e

−γr2kz(yz − ytk) + α(σ − 1
2 ) = 0 ].

(37)

A robot (e.g., robot k) that is in the cell with co-
ordinates (xtk, y

t
k) as depicted in Fig. 11 can move

into eight possible cells according to the three pos-
sible values attributed to xk and yk. For example,
if the result of Eqs. (36)-(37) is (-1, 1), the robot
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Algorithm 2: Firefly based strategy.

begin
Step 1: Initialization. Set t {t is the

time step};
Set the detected targets;
Set the roboto in Recruited State;
Define the light absorption
coefficient γ;
Set the randomization parameter
α;
Set the random number σ;
Set the attractiveness β0;

Step 2: Generation coordination

system.

For the detected targets and the
recruited robots, set the initial
locations in terms of coordinates
in x and y directions;

Step 3: Procedure.

while The stop criteria are not satisfied do

foreach robot k in Recruited State do

set RRk;
evaluate the current position ctk;
foreach target z ∈ RRk do

evaluate β according to Eq.
(33);
choose the best target z ;

end foreach

evaluate N(ctk);

compute the cell ct+1
k according to

Eqs.(36)-(37);

if (ct+1
k .hasObstacle() or

ct+1
k .isOccupated() or
ct+1
k .isInaccessible()) then

choose a random cell c∗ ∈ N(ctk);
move robot k towards c∗;

else

move robot k towards ct+1
k ;

end if

end foreach

update t;
end while

end

will move into the cell (xtk − 1, ytk + 1). In the de-
scribed problem, the algorithm for the Firefly based
strategy is shown in Algorithm 2.
The Algorithm 2 is executed when one or more

targets are found and some robots are recruited by
others. If no target are detected or all targets are

Figure 10: The flow chart of the Firefly Algorithm executed
by a robot. At each step, the robots make decisions on the
basis of events that can occur.

Figure 11: A possible selected cell after the application of a
bio-inspired strategy.

removed or handled, the robots perform the explo-
ration task according to Algorithm 1. More specif-
ically, each recruited robot has the list of the re-
quests in terms of target’s locations and evaluates
the brightness of each of them encoded as fireflies
taking into account their distances. At each step,
the robots select the best from their list which has
the maximum brightness. Next they move to the
target’s location according to Firefly-based rules.
The proposed firefly-based approach is computa-

tionally simple. It requires only few simple calcu-
lations (e.g., additions/subtractions) to update the
positions of the robots. Moreover, the volume of in-
formation that is communicated among the robots
is small, since only the position of the targets’s is
sent. For this reason, FTS-RR has the benefit of
the scalability. In addition, the algorithm tries to
form a coalition with the minimum size of involved
robots, so the remaining robots are able to conduct
other search or disarmament tasks, allowing multi-
ple actions at a time.

5.4. Advantages

A detailed analysis of the above proposed ap-
proach, we can highlight that this hybrid approach
combining indirect and direct communication has
the following advantages:

• It allows to dynamically adjust the importance
of the various objectives used in order to get
the best taken decision during each algorithm
iteration.

• It introduces the concept of the importance
of the task in terms of the weighted objective
function, enabling robots to balance the two
objectives when necessary.

• One of the most significant advantages of the
approach is the flexibility of change decision at
any time.

• It has a low computation cost since it is not
required to know the decisions of the other
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robots, but each robot acts selfishly taking the
best decision from its own point of view.

• Since the algorithm for the coordination is not
constructed for the specific target type, all of
them are treated in the exact same manner:
the same variable types are used, regardless
of what the target is and what the robot is
performing. Therefore, the approach is gen-
eralized and can be used for a wide range of
applications with minor modifications.

• Although each independent task is executed in-
dividually, the whole system can attempt to
globally optimize the process.

• The system can adapt to changes in the envi-
ronment, and thus the algorithm is scalable.

6. Computational Experiments

A set of experiments has been performed in order
to show and analyze the effects of the weights on
the performance of the swarm of robots. Simula-
tion results have been summarized using different
values of w1 and w2 in order to find the best con-
figurations to balance the two tasks. More specif-
ically, we have evaluated the values of the weights
under different conditions and by varying the pa-
rameters of the system. A simulator has been im-
plemented in Java and for each set of experiments,
the simulations have been repeated 50 times, thus
the presented results are the mean values of those
iterations. Each experiment starts with a random
configuration of robots and targets.

6.1. Test Parameters and Metrics

An important aspect in evaluating search and res-
cue tasks is the definition of effective metrics for
measuring the performance of the swarm. The per-
formance metrics, in this paper, can be divided into
two groups: measure of the time or energy needed
to acquire all the information of the environments
and the measure of information acquired with lim-
ited resources in terms of time, energy or other con-
straints.
The first case considers a static scenario where it

is supposed that the robots have enough resources
to explore the area and disarm all disseminated tar-
gets. To measure the performance, we have used
two metrics that are the total time steps to com-
plete the mission and the total energy consumed

Table 1: Parameters used in the exploration algorithm.

Parameters Value

Sensing range Rs 4
ρ 0.1

∆τ0 2
ϕ 1
λ 1
η 0.9
a1 0.5
a2 0.5
ε Uniform [0 1]

Table 2: Parameters used in the Firefly Algorithm.

Parameters Value

α 0.2
β0 0.5
γ 1

L
(L=max{m,n})

σ Uniform [0,1]

by the robots. For the purposes of calculating this
cost metric, some the parameters and values are
summarized in Tables 1-3-2 (see [43],[46]).

In the model, ecc, etx and erc have been recalcu-
lated to express them in terms of the unit of energy.

At each step of the simulation, a robot will con-
sume an amount of energy varying its state since the
robots employ different actions in different states.
For example, a robot will consume more energy
when handling a target than when wandering in the
search area. A robot consumes 1 unit of energy for
traveling from one cell to another. One stop takes
an extra energy of 0.5 units. A turn of 45◦ takes 0.4
units of energy. Turns of 90◦, 135◦, 180◦, take 0.6,
0.8 and 1 units of energy, respectively. These num-

Table 3: Cost related to the wireless communication.

Parameters Value

Bit Rate (B) 3
Energy Consumed by a transceiver circuit to
transmit or receive a bit, ecc (Joule) 10−7

Energy Consumed by a transceiver amplifier to
transmit 1 bit data per meter, etx (Joule) 10−12

Energy to receive a bit, erc (Joule) 10−7

Path loss Exponent, ψ [2,6]
Wireless Range Rt 6, 15
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bers are approximately derived from energy mea-
surements for Pioneer 3-DX robot [47]. We esti-
mate the energy for performing a planned task for
removing or dismantling a target is about 5 units
of energy for each robot involved in the task.
The second case considers a dynamic scenario,

where a complete discovery of the information from
the environment could be not feasible, due to re-
source constraints and unpredictable events. In this
case, the performance metric is given by a set of
functions that measure the percentage of informa-
tion related to particular objectives. For the ex-
ploration task, the metric of interested is related to
the amount of unexplored map in terms of unvis-
ited cells. While, for the case of disarmament task,
the metric takes into account the percentage of de-
tected and disarmed targets/mines. Moreover, it is
considered the number of alive robots at the end of
the simulations that are the robots that have not
finished their budget of energy and not exploded
for external events.
Regarding the simulations, there are several test-

related parameters that may influence the perfor-
mance and the results and they are listed as follows:

• Area size: We study both scenarios with and
without obstacles. In this study, we use square
areas for their symmetry and simplicity. In the
future, we may experiment with nonsquare ar-
eas, or areas with no boundaries at all. (The
presence of boundaries makes the problem sim-
pler by focusing the robots on the area of inter-
est; in a world with no boundaries, the robots
could get permanently lost.)

• Robot density: This is the total number of
robots in the swarm |NR|.

• The number of targets |NT |.

• The number of coalitions that is the minimum
number of robots that can handle properly a
target Rmin.

• The transmission range Rt, which can have an
effect on the recruiting task

6.2. Evaluation of the Weights under Static Condi-
tions

In this section it is assumed that the robots have
sufficient resources in terms of energy to execute
the mission and the targets are static without pos-
sibility of explosion.

6.2.1. Case study 1

In the first set of experiments, the influence of the
weights on the dimension of the area is taken into
account. We have considered 50x50 square cells,
100x100 square cells, varying the team size (25, 40,
50 robots) and the number of dispersed targets. All
experiments were carried out using 3 robots needed
to handle a target properly.

Figures 12 and 13 show the influence of the w1

considering different swarm size and dimension of
the area evaluating respectively the total time steps
to complete a mission and the total energy con-
sumed by the swarm. It can be observed that the
time steps increase as the value w1 increases when
the size of the swarm is small. This behaviour can
be explained, by observing the nature of the mis-
sion that implies the collaboration of more robots
in target’s locations. When w1 increases, the robots
are highly motivated to explore the area. Since, the
mission is completed if all target are found, motivat-
ing the robots to explore the area than disarming
targets, which can lead to a temporary deadlock,
especially when the swarm size is small compared
to the dimension of the area and the complexity of
the mission in terms of the targets. This implies the
decrease of the performance of the entire system.
On the other hand, a team with a larger number
of robots generally increases the performance im-
provements. The curves do not fluctuate a lot and
the total time steps is almost similar for different
w1 values. This implies that the influence of w1 on
the performance in general decreases, considering
an adequate swarm size.

Regarding the energy consumption, it can be seen
a high wastage of energy resource, considering the
same total time steps, when 0.7 ≤ w1 ≤ 0.9. This
difference is higher in teams with a low number of
robots, compared to the number of disseminated

targets NR

Rmin∗NT ≪ 1 , and in a big grid area (e.g.,
30 robots operating in 100x100 cells for treating 20
targets). Considering both the total time steps and
the total energy consumption, for almost all cases
the best range is 0.3 ≤ w1 ≤ 0.5.

6.2.2. Case study 2

The second set of simulations compares the per-
formance by varying the transmission range Rt (6,
15 units of cells) considering a grid area 50x50 ,
a team with 40 robots and by varying the num-
ber of disseminated targets (15, 20, 35). This can
play an important role in recruiting tasks, since for
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Figure 12: Evaluation of the Total Time Steps to complete
the mission and 3 robots needed to handle a target. (a)
50x50 grid area, 10 targets to disarm (b) 100x100 grid area,
20 targets to be disarmed.

a higher transmission range, the probability that
more robots are recruited increases. Figure 14
shows the total time steps under different condi-
tions in terms of dispersed targets and the same
swarm size (40 robots operating in the area).

It can be observed that an increase of the trans-
mission range does not always imply the increase
in performance in terms of time steps. The rea-
son could be explained that if resources are enough
in terms of robots as shown in Fig. 14 (a)-(b), an
increase of the transmission range can cause some
redundancy with the wastage of time to complete
the mission. For example, considering a small team
compared to the targets (40 robots and 35 targets),
Fig. 14 (c) shows that a high transmission range
with a small w2 may imply a better performance.
By increasing w2, more robots may be involved in
the recruitment task and there is no significant dif-
ference between the two ranges. As expected, if
the number of the targets to be handled is small,
a high transmission range deteriorates the perfor-
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Figure 13: Evaluation of the Total-Energy-System- Con-
sumed (TESC) (a) 50x50 grid area, 10 mines to disarm and
3 robots needed to handle a target. (b) 100x100 grid area,
20 targets to disarm and 3 robots needed to handle a target.

mance since unnecessary robots could be involved
in the disarmament process, depleting resources for
exploration task and eventually to other targets.
Although the total time steps are somewhat better,
the performance in terms of energy consumed by
the system strongly degrades, using a high trans-
mission range.
Regarding the impact of w2 on the performance,

the effect of increasing the transmission range can
be quantitatively notated by looking at Fig. 15.
The results confirm that, especially for complex

missions with NR

Rmin∗NT ≪ 1, more importance
should be emphasized to the recruiting weight, thus
w2 ≥ 0.3.

6.2.3. Case study 3

The third set of simulations investigates the ef-
fect of the weights in relation to the number of
disseminated targets. The performance measures
have been evaluated by varying the dimension of
the area, the swarm size and the number of robots
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Figure 14: Evaluation of the total time steps to execute the
mission in 50x50 squares and 40 robots and 3 robots to han-
dle a target. (a) 15 targets to be handled. (b) 20 targets to
be handled. (c) 35 targets to be handled.

that can deal with a target (2, 3, 4, 5).

The importance of choosing the w2 weight prop-
erly increases as the number of the dispersed targets
increases and it depends mostly on the dimension

of the swarm. More specifically, if NR

Rmin∗NT ≪ 1

means the task is complex in terms of disarmament,
more importance can be attributed to w2 than w1

as shown in Figures (16)- (17).

On the other hand, if NR

Rmin∗NT ≈ 1, no signif-
icant influence in terms of total time steps is ob-
served. Obviously, more robots are introduced, less
wastage of time can be observed and w2 becomes
less relevant.
In another set of experiments, we have introduced

an additional parameter to control the task com-
plexity; that is, the number of robots Rmin required
for treating a target. In this way, we can vary the
task complexity and observe its influence on the im-
pact of w2. Fig. 18 shows the impact of Rmin and
w2 on the performance in terms of total time steps.
It can be noticed that a high number of robots nec-
essary to handle a target (5 robots to disarm) can
cause severe resources consumption in terms of to-
tal time steps, if a small value is assigned to w2.
This leads to weakening the ability of the robots to
distribute into a target’s position. As a result, the
robots wondering in the area increase the time to
complete the mission and the coordinators can be
trapped in target’s location for a long time. Thus,
increasing Rmin, the w2 weight should be increased
in order to speed up the formation of the coalition.
So in this case, w2 can greatly influence the perfor-
mance and a proper value should be chosen (w2 ≥
0.5). On the other hand, if the disarmament task
is not particularly complex, the influence of the w2

decreases.

6.3. Evaluation of weights under dynamic condi-
tions

This section investigates the effect of the weights
operating in a dynamic scenario where unpre-
dictable events can occur (such as explosion of the
mines and energy constraints). It is assumed that a
robot has 1000 energy units [48], without possibility
of recharging during the mission, which means that
if a robot consumes its energy, it will stop to per-
form the task at any time. In this case, to achieve
good coordination and exploration is more challeng-
ing since it is required that the robot team has to
respond quickly, robustly, reliably and adaptively
to unexpected events.
To measure the performance of such a robot team

in practice, we consider a number of metrics appli-
cable to the performance of the individual robots
and the team as a whole. More specifically, we con-
sider the percentage of unexplored cells, the num-
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Figure 15: Evaluation of the total energy consumed by the
system in 50x50 squares and 40 robots and 3 robots to treat
a target. (a) 15 targets (b) 20 targets (c) 35 targets .

ber of disarmed targets and the percentage of alive
robots.

Fig. 19 shows the impact of w1 on the unexplored
cells, varying both the dimension of the swarm
and the number of dispersed targets, while keep-
ing Rmin as a constant. It can be noticed that for a

small robot team and a hight number of targets, the
performance degrades as w1 increases. This hap-
pens because the targets, for example mines, can
explode at any time, causing not only the sudden
stop of some robots in nearby regions, but also the
damage of possible unexplored cells that become
inaccessible. In these situations, the best value is
about w1 ≤ 0.5, which allows to balance the two
tasks.
Regarding the disarmed targets, Fig. 20 high-

lights the impact of w2 on the number of disarmed
targets. It can be noticed that the value is partic-
ularly important for small robot teams (15 robots
and 20 targets to be disarmed) and more impor-
tance can be attributed to the recruitment process
(w2 ≥ 0.3). One possible explanation is that a robot
team with higher movitation to be involved in the
disarming process, can form a coalition more easily
to handle a target so as to decrease the probability
that it can explode.
The percentages of alive robots, evaluated con-

sidering different sizes of areas, swarm size and dis-
persed targets, are summarized in Fig. 21. The fig-
ure illustrates that for a small robots team, if a
greater importance is given to the exploration task,
some reduction of the alive robots is obtained. This
behaviour seems to be influenced by the number of
dispersed targets. However, increasing the swarm
size leads to no significant differences. This can be
justified by previous motivations; if w1 is high, the
robots may be less likely to respond to the help re-
quests, thus leading to the coordinator robots be
trapped into targets’s locations waiting for others
to arrive and consequently increasing the probabil-
ity of some explosions. Therefore, unbalanced re-
sources can cause severe resource wastage, lead to
the potential failure of the robots due to both the
energy limitation and potential explosion risks.
In almost all experiments, the performance fluc-

tuates according to the number of disseminated tar-
gets. This may indicate that the solution, would be
greatly influenced by the recruiting weight value.
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Figure 16: Evaluation of the total time steps in a grid area
50x50. (a) 15 targets. (b) 20 targets.

7. Conclusions

In this paper, we have investigated a bi-objective
optimization problem for robot coordination and
exploration tasks. We have considered the explo-
ration and manipulation of hazardous targets such
as mines by a swarm of robots in search and rescue
mission. Specifically, we have modeled the prob-
lem as a bi-objective model and the weighted sum
method is used to find a trade-off between the two
tasks by varying different weighted values. The pro-
posed strategy is bio-inspired and proves to be ro-
bust, effective with the use of limited resources in
a balanced way.
In order to test the validity of our proposed

model and the influence of the weight values, a
Java-based simulator has been developed and im-
plemented. Different experimental scenarios have
been considered to suitably evaluate the impact of
the weight values on the critical parameters of the
problem such as the dimension of the area, num-
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Figure 17: Evaluation of the total time steps in a 100x100
grid area, varying the dimension of the swarm with (a) 20
targets and (b) 30 targets.
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Figure 18: Evaluation of the total time steps varying Rmin

in an area with 50x50 squares, 40 robots and 20 targets.

ber of disseminated targets and number of robots
to coordinate. The results have demonstrated that
the choice of the right compromise between the two
tasks is not straightforward. Generally speaking,
the proper values depend on the application con-
text. In most cases, the trade-off between the two
objectives is highly correlated with the number of

22



Exploration Weight w1
0 0.1 0.3 0.5 0.7 0.9

P
er

ce
nt

ag
e 

of
 U

ne
xp

lo
re

d 
C

el
ls

 [%
]

0

2

4

6

8

10
Swarm Size 15 Swarm Size 25 Swarm Size 40

(a)

Exploration Weight w1
0 0.1 0.3 0.5 0.7 0.9

P
er

ce
nt

ag
e 

of
 U

ne
xp

lo
re

d 
C

el
ls

 [%
]

 0 

2 

4 

6 

8 

10 

12 

14 
Swarm Size 15 Swarm Size 25 Swarm Size 40

(b)

Recruiting Weight w2
0 0,1 0,3 0,5 0.7 0.9

P
er

ce
nt

ag
e 

of
 U

ne
xp

lo
re

d 
C

el
ls

 [%
]

0

2

4

6

8

10

12

14

16

18

20
Swarm Size 15 Swarm Size 25 Swarm Size 40

(c)

Figure 19: Percentage of unexplored cells in a 50x50 grid
area, varying the dimension of the swarm of robots and 3
robots needed to handle a target. (a) 10 targets (b) 15 tar-
gets (c) 20 targets

targets dispersed in the area, compared to the di-
mension of robot swarm. In these cases, more im-
portance should be attributed to w2 so that (w2 ≥
0.5). However, in general case, balanced weights w1

and w2 (around 0.5) can offer a better trade-off.
Possible future works include the extension of

methods to dynamically adjust the weights during
the mission so as to be adaptive to the resource
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Figure 20: Percentage of disarmed targets in a 50x50 grid
area, varying the dimension of the swarm of robots and 3
robots needed to handle a target. (a) 10 targets (b) 15 tar-
gets (c) 20 targets

of the robots or other constraints. Furthermore, it
will be useful to consider more realistic models and
practical issues that robots may face in real-world
scenario such as sensing and communication failure.
In addition, the proposed method can be modified
to potentially deal with the unknown but mobile
targets in an unknown area, which will be explored
further in future work.

23



Exploration Weight w1
0 0.1 0.3 0.5 0.7 0.9

P
er

ce
nt

ag
e 

of
 A

liv
e 

R
ob

ot
s 

[%
]

0 

20 

 40 

60 

80 

100 
Swarm Size 15 Swarm Size 25 Swarm Size 40

(a)

Exploration Weight w1
0 0.1 0.3 0.5 0.7 0.9

P
er

ce
nt

ag
e 

of
 A

liv
e 

R
ob

ot
s 

[%
]

 0 

20

40 

60 

80 

100 
Swarm Size 15 Swarm Size 25 Swarm Size 40

(b)

Exploration Weight w1
0 0.1 0.3 0.5 0.7 0.9

P
er

ce
nt

ag
e 

of
 A

liv
e 

R
ob

ot
s 

[%
]

 0 

20 

40 

60 

80 

100 
Swar Size 15 Swarm Size 25 Swarm Size 40

(c)

Figure 21: Percentage of alive robots in a 50x50 grid area,
varying the dimension of the swarm of robots and 3 robots
needed to handle a target. (a) 10 targets (b) 15 targets (c)
20 targets
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