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SUMMARY 

Tr.e mechanism- of formation of sulphur trioxide in combus tion 

gases has been investigated using liquid fuel firing combustor with 

laminar pre-mixed flame. 

The combustion chamber was constructed from a stainless steel 

tube for minimizing any affect of catalysis. A.temperature controlled 

evaporating chamber was designed where liquid fuel.was evaporated and 

mixed with total combustion air prior to entering the combustion zone. 

The vapour mixture then passed through a silica sintered disc and a 
; 

flat flame was produced. Six sampling ports at O.304m (1 ft) intervals 
\ 

along the combustion tube were used for sampling the gases for analysis 

and for the measurement of sulphur trioxide with respect to residence 

.time. ~. Dies'el oil, ~erosine, Cyclohexane, n-hexane, and n-Pentane were 

used in the investig?-tion: Su.lphur content of these fuels were 

raised to 3.4%·(wt.) by addition of app~o~riate amount of carbon 

disulphide (CS) in, each fuel . ., 

It "ras found that SO was only formed when there was an excess 
3 

oxygen in the combustion gases and under sub-stoichiometric conditions, 

no SO could be detected. 
3 

An increase in the quantity of combustion air in excess of 
/' 

stoichiometric requirement lead to an increase in the concentration 

of SO in the combustion gases. HO~'lever, the leve,l of SO .-content 
3 3 

in the flw:; gases reached a maximum at about 4% excess oxygen 

concentration in the flue gases. 
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It was estal:lished that ignition propE;:rties of fuels have an 

effect on the oxidation of S02. Ignition delay v temperature curves 

for the fuels employed in the research program~e were determined. This 

,,[as done \'li th the help of Igr~i tion-Delay apparatus (PART n). It was 

found that fuels having shorter ignition delay times at. temperatures. 

prevailing near flame zone produced less SO under identical 
3. 

combustion conditions. 

The results of the effect of residence time of combustion gases 

in the high temperature zone sh0l1ed that in the first instance amount 

of SO formed was in excess of those predicted from thermodynamic 
3 

considerations involving molecular oxygen. Sulphur trioxide thus 

formed began to dissociate back into sulphur dioxide and oxygen as 

the gases continued to pass along the combustion.chamber.· It was 

thought that oxygen atoms, produced in the flame, being a reactive 

oxidising species are responsible for the oxidation of 802. The theory 

proposed to expla:Ln the experimental results appear to be that of a 

consecutive reaction' by 

K 
1 

SO + O~ 
2 3 

K 
2 

--+ SO 
2 

+ 1 

"2 ° 2 

where K and K are specific .':\:~y'" reaction rate constants for 
1 2 

individual reactions (unit of K = sec-1 
) . 
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CHAPTER 

INTRODUCTION 

With the refining of crude petroleum, high grade petrol is 

obtained leaving'behind a high content of impurities in the residual 

fuel. The impurities contain substances like sulphur, vanadium, 

sodium etc., and it is basically these substances which are mostly 

responsible for fouling and corrosion in oil-fired installations. The 

sulphur content of the petroleum fuel products are generally much high~r 

than other impurities and can vary in the range of 1.5 to 4 per cent 

During normal combu~tion, in the presence of excess air the 

sulphur in the fuel is oxidised to sulphur dioxide and a small portion 

to sulphur trioxide. It is generally accepted that occurrence of sulphur 

trioxide in an industrial combustion system is a major contributory cause 

to both high and low temperature corrosion of heat exchDnge surfaces. 

High temperature corrosion occurs when metal surfaces are exposed 

o· 
to flue gases of about 650 C or over. In such conditions, even high 

grade steels are attacked and corrosion becomes a serious problem. 

Organic compounds of vanadium and sodium present in the residual fuel 

oil are considered to be worst offenders. Vanadium present in the 

fuel is converted during combustion to various oxides, the highest of 

wbich is vanadium Pentoxide. The condition can be further aggravated 

by the presence of other impurities like sodium sulphate which·at a. 

temperature of 6300 C and above gives the following reaction24
: 

Na SO + V 0 ~ 2 N VO + SO 
2 4 2 5 a " 3 3 

16 



Oxides of vanadium have rela ti vely 10vT melting point and there-

fore the ash is likely to be in a plastic state in the gases and will 

adhere to colder meta~lic surfaces. In case of super heater tubes of 

oil-fired boilers, the ash deposit will insulate the tubes and heat 

tran.sfer "\,ill be reduced. Eventually the deposits will restrict gas 

passages and fouling will occur. In the molten state, these oxides of 

vanadium will attack even stainless steel alloys and will cause severe 

corrosion. It is therefore a major problem if the operating tempera-

tures are above the sintering or softening temperatures of ash deposits 

when corrosion occurs through the fluxing action of vanadates. 

Low temperature Corrosion 

~en. flue gases containing sulphur trioxide pass through cooler 

parts of boiler, the sulphur trioxide react "l'Tith water vapour to form 

sulphuric acid and condenses on metallic pB;rts \-Thich are near or below 

acid dmi-point temperature of the combustion gases. Flue gases 

containing even traces of sulphur trioxide have high acid dew-point 

temperature, up to 17COC(3500F). The condensed liquid on the cold 

metal surfaces contain high concentration of sulphuric acid. Thus 

. low temperature corrosion is mainly a sulphuric acid corrosion and 

occurs in case of oil-fired boilers, mostly in economisers, air 

heaters and flue stacks ''lhere temperatures are relatively low and 

may fall below acid de,'l-point temperature of the flue gases ~ 

It is evident that in order to reduce low temperature corrosion, 

the formation of sulphur trioxide has to be suppressed and therefore, 

an lli~derstanding of the mechanism of formation of SO and factors 
3 

influencing it has to be studied. 

- 17 -



T:tis thesis is mainly concerned I,ri th this proble!I. and an attempt 

has been made to investigate factors affecb_ng the for;:}ation of SO 
3 

in anon-catalytic combustor I'ri th laminar pre-mixed flame vlhen only .. 

chemical aspect of reaction can be investigated vTi th the exclusion of 

other variables. 

- 18-
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2.1 ' 

CEAFTER 2 

LITERATURE SURVEY 

'l'te behaviour of oxides of sulphur during combustion 

Introduction 

It is important first to consider impurities present in 

crude oil. This 'contains a number of elements other than 

carbon and hydrogen, but the majority of then occur only in 

trace quantities1 (See Table 2.1). A minority of crudes 

contain less than 0.5 per cent sulphur, but the majority 

contain 0.5 - 3.0 per cent and in some cases it may contain 

as such as 7 per cent. Scdium, chlorine and vanadium concen­

trations in the crude oil are generally up to 100 ppm. Table 

2.2 gi ',res a comparison of the ash, sulphur ar:d asphal tene 

contents of various crude oils. The three elements present in 

greater concentration, sulphur, sodium and vanadium are mainly 

resyonsible for most of the corrosion and fouling encotmtered .,;",. 

in oil-fired installations. 

The need for the understanding of mechanisms of.corrosion 

aLd the associated r:roblems have been the subject of intensive 

research for many years and a great number of publications 

have appeared reviewing the progress 2 ,.3,4,5,23 •. Here in the 

literature survey aD attempt is made to study the behaviour' 

of sulphur present in the fuel during combustion, in the light 

of the published data. 

- 19 -



2.2 7~e formatioE of SO . --------------------3 
A number of mechaLisms have been proposed to explain the 

:o:cnation 0:;:' sulphur trio:;.:ide in the flue gases ,vhen fuel 

containing sulphur as an impurity. is burned. 

Laxton? has listed four possible theories which are as 

follOl.;s: -

a) . The reaction of sulphur dioxide with atomic oxygen in a 

r,igh temperature flame zoneS
,9 .10 . : 

b) The heterogeneous catalysis of the SO Iso reactions on 

c) 

d) 

2 3 

the boiler surfaces 11 

The homogeneous gas phase reactions behreen SO and 0 12 
2 2 

The 101-; temperature oxidation of sulphur dioxide on metal 

surfaces belovl acid dei'l-point14 • 15 

ULdoubtedly all four theories are valid but their relative 

importance varies from one plant to another. HOHever, one can 

cake one general statement that the mecha~ism (a) is the most 

ir::l"::JortaGt because if the :;:'ormation of SO in the flame is 
- 3 

reCiuced then the catalysts necessary for the mechanisms (t) 

and (d) .-rill be reduced. 

2.2.1 Atomic Oxygen theory. 

The flame or atomic oxygen theory vras firs t proposed by' 

Dooley and wr.i ttingham8 in 1946 and GBydon and \'.'hi ttingham13 

in 1947. (Fig. 201). Further work by \ihittingham using small 

diffusior. flames of carbon monoxide. hydrogen and methane, 

c .::~_ te.ining SO 
2 

shOi·red that there was a marked differer.ce in 

_ 20 _ 



: .' 

the degree of oxidation of sulphur dioxide with different flames. 

(Fig. 2.2). He observed that the increasing order of conversion 

of SO into SO was in the methane, hydrogen and then carbon 
2 3 

monoxide flame - vrhich is in the same' order as that of increasing 

atomic oxygen concentrations in these flames, as observed by 

16 Gaydon • Gaydon also described the reaction occurring in a .-

flame when nitric oxide is injected and expressed it in the 

following equation: 

NO + 0 

" ' 

,NO' + light energy 
2 

Dooley and \'fui ttingham8 argued that if atomic oxygen is 

involved in· the formation of SO in the flame, then the 
3 

introduction to the flame of a substance known to react with 

atomic oxygen will suppress the formation of SO 0 On the 
'_. , ">, -, '_ 3 

above assumption they introduced different percentages of NO 

to the flame and confirmed experimentally the suppressed 

formation of SO (Fig. 2.3). More evidence of SO formation 
3 3 

in flames was-offered by Crumbey and Fietcher17 (1956) (Fig. 

2.4 and Fig. 2.5) and by Hedley12 (1962). _ Hedl~y used <in oil 

fired laboratory furnace where the temperature and mixing history 

of the gases were known, and carried out a quantitative ,-

inves tiga tion of the oxidation of SO to' ,SO • ! The results 
, 2 3 

showed that the concentrations of SO were' in excess of those 
3 

that one might expect from normal thermodynamic considerations 

involving molecular oxygen (Fig. 2.6; 2.7). The results 'were 

in agreement with those predicted by Whittingham and Hedley 

thus proposed a mechanism in which atomic oxygen reacts with 

- 21 -



SO to form SO lv-hi er. then dissociates to give SO and molecular 
2 3 2 

oxygen. 

Levy and JvIerrYItan2Q (1965) working with H S - 0 - X 
2 2 

fla t flames ("There X N or Ar) sho~ed that Ca) SO was 
2 3 

formed about one flame length thickness past the visible 

flame zone, and (t) the formation of SO in the flame "Tas 
3 

directly related to the oxygen concentration through the 

reaction zone (Fig. 2.8 and 2.9). Fig. 2.10 shows the 

O-a tom profile for t-,.TO different' flames. 

Barrett, Hummell and ReidG1 (1966) investigated formation 

of SO in a stainless steel combustor while burning natural gas 
3 

hydrogen sulphide mixture and operating at a maximum ,mll 

temperature of 260°C (5000 F). The concentration of SO was 
3 

measured at.distancesof 3 to 24 in. (7.6 cm. to 61 cm.) from 
" .. , 

burner plate with excess air levels of 1 to 12 per cent. No 

significant variation of SO concentration was observed along 
3 

the combustol' at any excess air level. It was concluded tha t 

all of the SO was formed in the first 3 inches (7.6 cm) of 
3 

the combustor, or about within visible flame (Fig. 2.11). 

Fig.' 2.12 shm'ls their results when 15% excess air was added' 

9 inches (22.86 cm) downstream from the burner plate and SO 
3 

concentration were meausred at various positions • 

. Rals tead 23 (1 970) reviewing the progress made in this 

field agrees that most of the SO present in the flue gases 
3 

of a combustion system originates in the flame. He further 

states that on leaving the flame, the concentration-9f atomic 

- 22 -
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oxygen decreases rapidly, and the formation of additional SO 
3 

dcwnstrealL of the flame becomes increasingly dependent on 

intermolecular reactions. He adds that molecular re-oxidation 

of SO (SO +.;- 0 ~ SO ) as the temperature falls is 
222 3 

considered to be very slow5 
9, though its rate can be increased 

by catalysts, both gaseous (i.e. nitrogen oxides)25 and 

condensed phase (i.e. iron oXides)64 •. He concludes that the 

net-result is that the steady state SO concentration in the 
3 

flue gases is normally of the same order or slightly less than 

that generated in the flame. 

2.2.2 The heterogeneous catalysis of SO.'/SO 
reaction on boiler surfaces. 2 3 

The formation of sulphur trioxide in boilers by a hetero-

11 26 geneous catalysis was probably first proposed by Harlo'iT ' 

(1944). The use of ferric oxide (Fe 0 ) to promote the oxidation" 
2 3 

of SO to SO is well known and Harlow suggested that the presence 
2 3 

of SO in the boiler flue gases was due to the catalytic 
3 

oxidation of SO over hot boiler surfaces. This cannot 
2 

hO'vever explain the existence of SO found by other workers6
,9 

3 

within the combustion chamber before the gases came into contact 

with catalytic surfaces. Work done by Barrett6 does show that 

Fe
2

0
3 

- covered surfaces catalyse oxidation of, S02 to: S03 aft /. 

temperatures near (12000 F) (6500 C) (Fig. 2.13) (Fig.2.14).f 

The indications are that some SO is formed during the passage 
3 

I 
of flue gases through the boiler, especially at high· tempera-

tures and when excess oxygen is available. 
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2.2.3 The homogeneous gas phase reaction between SO and 0 • 
2 2 

Oxides of nitrogen have been used as catalysts in the 

manufacture of sulphuric acid in the lead chamber process. 

But this is essentially a 10"I'l-temperature operation and gases 

are cooled to nearly 200°F (930C) before entering the reaction 

chamber. It has been suggested8,9,1~ that the presence of 

nitrogen oxides in the flame gases is more likely to reduce 

the amount of SO formed because of the removal of oxygen atoms 
3 

from the system (Table 2.3). 

2.2.4 Tfie low temperature oxidation of sulphur dioxide on metal 
surfaces below acid dew-point. 

Low temperature oxidation of sulphur dioxide is a very 

commonly encountered phenomenon. Rylands and Jewcinson14 

(1954) proposed that economiser deposits especially ferric 

sulphates, call ca talyse the oxidation of sulphur dioxide. 

During trials at Bromborough Power Station, Alexander et. al. 15 

confirmed an increase in the conversion of SO to SO during 
2 3 

the passage of flue gases through the economiser and reported 

this as evidence for the hypothesis suggested by Rylands and 

Jenkinson. 

After examining the various mecfianisms of the formation 

of sulphur trioxide it is useful to establish the effect of 

some factors on the degree of SO formation. 
3 
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The following list gives some conditions "Thich are kno"lffi to have 

an effect on the oxidation of sulphur: 

a) The sulphur content in the fuel 

b) The excess of combustion air used 

c) The method of introducing air into the comcustion zone 

d) The nature of the fuel 

e) The flame temperature 

f) The method of atomisation 

This is by no means a .complete list of the possible fact,ors to be 

investigated but even with this short list one cannot make firm 

general statements with confidence. One can only be very positive 

about the first three points. 

a) It is gen~rally agreed that the form in which sulphur is 

present in the fuel has no effect on the production of SO 
3 

d o b to 17,27,28 ' urlng corn us lon . The work of Crumley and Fletcher17 

(Fig. 2.5) Sh01'!:;; that, with the increase of sulphur content 

in the oil, SO formation increases; the increase gradually 
3 

reducing at higher values ?f sulphur content. Other 

investigators obtained very similar results 28
,21,33 (Figs. 

2.15,2.17,2.18). 

b) The effect of air/fuel ratio has been thoroughly investigated, 

and there is ample evidence that the formation of SO will 
3 

decrease by the reduction of excess air. "The reduction of 

excess air will result in the'reduction of acid build-up 

. and direct 10"i-teruperature corrosion34
, 15,35,39 Tests at 

Marchwood Power Station showed a ,reduction in air-preheater 

corrosion and acid SlUutS emission. 
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37 Glaubitz demonstrated the elimination of bonded deposits 

on superheaters. Similar work has also been reported by 

Chaikivsky and Siegmund36
• 

LLl Roaborough- drew some 

interesting comparison between SO formation in power 
3 

p ( statln, and domestic oil-fired boilers See Fig. 2019). 

A steep ri.se in the percentage oxidation of sulphur dioxide 

to trioxide near 4% excess oxygen in the flue- gases was· 

observed by Fielder et. al. 4o (1960) (Fig. 2.20). 

Neipenberg38 (1966) reported that, by decreasing the air. 

ratio to stoichiometric, the SO content of the flue gases 
3 

was reduced to zero. Fig. 2.21 shows the results of his 

measurements. Further work showed that the sulphur content 

of the fuel oil and fuel oil quality affected the formation 

of SO , Fig. 2.22. He observed that the effect of excess 
3 

air on the SO formation in the combustion gases has the 
3 

same tendency irrespective of the size of the steam boiler 

plant (32 to 400 ton/h evaporation), but the absolute values 

varied widely, Fig. 2.23. Rees et.al. 42 also found that 

SO formation could be brought about to zero with no 
3 

injection of excess air. Results are shown in Fig. 2.24, 

2.25. Recently, hm-rever, Holland and Rosborough43 (1971) 

describing the experimental programme of high temperature 

corrosion trials at Marchwood Power Station stated tha.t they 

found no evidence from those trials to suggest that .very 

low excess air operation, 0.2 to 0.3% excess oxygen above 

stoichiometric, made any significant effect on high 

temperature superheater corrosion. Their observations 

were in some disagreement with the works of other workers 
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described earlier, but this lfaS thought to be due to 

difference in vanadium to sodium ratio of the fuels 

8l:iployed. Their argument explains hm'l source of fuel . 
used can determine whether very low excesso

l
6peration 

is likely to have any Significant effect on high tempera-

ture corrosion. They suggested that vanadium after being 

fully oxidised. forms vanadium pent oxide V 0 which has 
. 2 5 

a melting point of 675°C. This vanadium pent oxide 

combined with sodium oxides to form various low-melting 

phases, particularly sodium vanadyl-~-vanadate 

(Na O. V 0 • 5 • V 0) which has a melting point 
22425 

of 625
0
C and comparatively rare 5-Sodium-vanadyl-11-

vanada te (5'. Na o. V 0 • 11 • V 0) which has a 
22525 

o I!lel ting point of 535· c. Tr.Lus high temperature corrosion 

is a real possibility 1'ihen melting point of these 

substances are exceeied since most protective metal ,oxides . 

are soluble in molten vanadium salts. 

c) Method of injection of excess air. 

It is also generally knovm that air entrai nment into a 

combustion system effects SO formation depending upon the 
3 

temperature of the combustion gases9 ,6,44,3 7 • Glaubitz37 

noted that if the additipnal air was added in such a 

\fay that it could still participate in cOlflbustion, i.e. very 

near the flame, then the dew-point increased immediately 

and the formation of SO vTaS immediately noticed. The same 
3 

air when added + flame length beyond the end of the flame, 

no increase in dew-point vTaS noticed. Work of Barrett6
, 

et. al. reported earlier also showed that when excess air 

" ! 
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was added downstream from the flame, where the gas 

temperature was still above 1150oe, the SO concentration 
3 

inereased at the point of air-addition. It 1ms concluded 

tha t the addition of excess air further dOimstream at 

" 0 lower gas temperatures around 950 e, had little effect 

on further oxidation of SO to SO , although it was thought 
2 3 

possible that it may still 'contribute to the formation of 

SO by catalytic means. 
3 

The use of two-stage combustion where fuel is gasified in a 
, 

, first stage spray c~bustor operating with deficiency of 

air producing a hot combustible reducing gas and burning 

near stoichiometric conditions in the second stage combustor 

had been reported45
• Recently Archer and Eisenklam46 

(1970) reported their work on two-stage combustion giving 

operating data orr a pilot spray combustion chamber burning 

high vanadiu~ content'residual fuel oil. This chamber formed 

part of a two-stage system with interstage heat removal. 

In the second stage, fresh air was mixed in the combustion 

chamber with cooled products from the first stage after 

releasing its heat to water-cooled heat exchange tubes. 

In the second stage a spontaneous combustion reaction was 

initiated. The results suggested that oxidation to CO 
2 

was completed within the residence time in,the chamber 

and was further reduced by carbon formation and production 

of CO according to equation 

CO + 221 l>1J heat 'release 

2C + 

+ C + 394 MJ heat release 
2 

Under gasification conditions with air atomization, SO 
3 

was not detected in the combustion gases. 

_ 28 
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T~ey suggested that in a competiti~e situation oxygen 
, ' 

would react preferentially vri th carbon and hydrogen 

species instead of with sulphur dioxide. Another reason 

against SO formation Has considered to be the known 
3 

inhibition resulting from the presence of carbon~7 

d) Nature of fuel. 

It has been found tlwt burning of coal produced less SO 
3 

formation than oil having same sulphur content26
• It has 

also been shown that fuel oil containing different per 

centages of impurities has different affects on the 

formation of SO (Fig. 2.22). Ratio of sodium to 
3 

vanadium in fuel oils has been found to have an effect on 

high temperature corrosion43
• 

~) Flame temperature. 

Enough literature could not be traced to assess the effect 

of flame temperature on SO formation. OLe of the 
3 

difficul ty is that changes in flame tempe'ra ture are a 

result of changing other 'variables, e.g. excess air, and 

the role of flame temperature in isolated condition is ' 

difficult to ascertain. If SO formation takes place 
3' 

primarily due to intermolecular oxidation of SO , less 
2 

SO will be expected to form at higher flame temperature 
3 

since at higher temperatures oxygen moleculeS wj_"l-:l 

dissociate, , thereby decreasing its concentration in the 

gases. Crumley and Fletcher17 Shot'T8d that concentration 

of SO increased vTi th, flame temperature up to about 17500
C 

3 

and then remained, mor'e or less cons tant (Fig. 2.4). Flame 

tempera ture ,.,as varied by varying the amount of prehea t to 



the combustion air, maintaining the other variables 

constant 0 

f) Method of atomisation. 

It was reported1
? that fineness of oil atomisation 

probably had an effect on SO formation and it was found. 
3 

that a 25 per cent reduction in SO formation could be 
3 

achieved by using a burner head, giving coarser atomisation. 

A flame which favoured production of SO was blue in colour 
3 

while flames which gave less SO were slm'/ burning and 
3 

luminous. But excellent oil atomization is necessary for 

obtaining complete combustion with a minimum of air which 

is kno~n to reduce the production of SO 0 Marskel149 

3 

(1959) reported the experiences with some boilers fitted 

with steam atomizers which was found free from back-end 

corrosion and s.tearr. atomization was considered a better 

method of atomizing fuel in large burners. More ,recently 

Exley44 (1970) recommended that oil temperat~re sbould be 

maintained as high as possible for good atomization to 

allow oil particles to be very fine for intimate mixing' 

required for stoichiometric condition. He stressed the 

impo~tance of atomization and recommended very close 

periodic inspection of the burner by operators, and also, 

by other mea~s if available, such as fur~ace television, 

smoke recorders, or stack television. 

2.3 Effect of additives on the 'formation of SO • 
--------------------------------------- 3 

A vast literature is available concerning additives used 

to suppress low and high temperature corrosion and many claims 
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extraordinary performance "i thout explaining the mectanism of 

its ''TOrking. Additives introduced in the system is expected to 

act in one of the three ways to remove ill-effects of SO 

a) to physically adsorb SO " 
3 

b) to react with atomic oxygen present in the flame, 

and thereby inhibit oxidation of SO , 
2 

3 

c) to combine chemically with SO once it has already 
3 

formed, to form non-corrosive compounds. 

The effectiveness of metallic zinc and magnesiQ~ additives 

was shown by Laxton50
• The effect of zinc injection iIlto the 

combustion chamber of No. 1 boiler (60 f-m) at Tilbury Power 

Station was investigated with the idea that burning metal wHl 

react preferentially with atomic oxygen and would reduce the 

tendency of SO formation. An approximate linear relationship 
3 

was obtained between the f:iaximum-acid-deposi tion and the rate .' 

of injection of zinc at the fixed value of oxygen concentration 

(See Fig. 2.27). Similar trials were carried out with· 

magnesium and it was found that magnesium compared with zinc, 

is nearly ten times more efficient. Compounds of Mg and Ca, 

mainly their oxides, hydroxide and carbonates are considered to 

be important additives42 ,43. These additives cannot only react 

.. 
Vii th H SO condensed on cooler parts of the plant, 

2 4 

CaO' + H SO 
2 4 

Ca SO 
4 

+ H 0 
2 

but also are carable of reacting vli th V 0 to form vanadates 
2 5 

with melting point higher than 1000 C51
• 
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Ng 0 + v 
2 

o 
5 

--.. -- Mg V 
2 

o 
6 

Silica5
::, and Kaolin53 have also been reIJorted to be used 

-.. ;i ch some success. Or. laboratory scale i'[hi ttingham54 shoHed 

tr:s. t c'lrbon and silica 8[:1oke reduced the acid dew-point. 

The use of heterocyclic tertiary amines for the control 

of corrosion by flue gases was reported by BIA!'rett-Davies and 

Alexander55
, as a laboratory work on a pilot-plant scale and 

on a full scale boiler plant. It 'vas concluded that economiser, 

air heaters, flues and ancillary ferrous equipments of boiler 

installations burning fuels of high sulphur content could be 

protected by the injection into the flue gases of 0.03 -per cent 

of heterocyclic-tertiary amines by wt. of the rated fuel capacity 

of the installation. Zaczek56 also reported the use of amines 

in suppression of low-temperature corrosion. 

Lee, Friedrick and rh tchel157 reported the use of a 

Iolg Al formulation as cheIL.ically neutralizing agent of SO 
3 

l:.e considered this as preferable to using magnesia or alumina 

s8:parately since its use results in forming a porous deposit 

b"'ving more chemically active surface exposed to SO and 
3 

sulphuric acid. It Has claimed that with additive-treated oil, 

any H SO in soot Has physically and/or chemically inhibited at 
2 4 

all 0 levels up to 5%. 
2 

10vle1158 (1971) Hhile evaluating oxides of different ,f 

elenents as absorbent for the removal of SO from flue gases 
2 

ths.t oxides of vanadium and iron had strong catalytic 
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effect on SO and also the oxides of copper and titanium. 
2 

Macfarlane59 reported that experience with zinc additive in full 

scale engine tests had shown that deposited material can cause 

'intergranular corrosion of nickel-based alloys. The use of 

magnesium also introduced problems of deposit build-up on 

turbine blade surfaces, the severity of which depended largely 

on the vanadium content of the fuel and the proportion of 

magnesium to 'vanadium used. 

Barrett6 working on a laboratory scale furnace showed that 

introduction of a MgO-coated specimen reduced the concentration 

of S03 in the, flue gases frOmi~~~ginal value of 38 ppm to 

18 ppm, but after 5 hour exposur~ gradually increased to its 

original value of 38 ppm. He invest~~t~d t~ catalytic effect 
, ~' ' 

of various materials and found that Ka·Ol~~ SO. ,fly ash, . 

suipha te mixture' are not catalytic compared Wl{t Fe 0 , ': when' 
~ 2 3 

0' 
applied to clean mild steel surfaces at 660 C. He concluded 

that coating the steel with Mg 0 or' other non catalytic materials 

app~rently served mainly to slow the rate at which catalytic 

oxide ~ayers were formed on the surface of the metal, and once 

the layer was formed, the coating interfered partially with 

the rate at which SO and 0 could reach the c'atalytic layero 
2 2' 

His investigations stressed the role of SO because 'this 
, 3 

" /' 

material was involved inextricably in every case where corrosion 

occurs or harmful deposits are formed. 

I' 

2.4 Summar;y ,of Literature Survey 

Most residual fuels contain complex organic compounds of 
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vanadium, sodium and sulphur. ~1c3t 0:: the sulphur in oil ~ 

oxidised during combustion to form sulphur dioxide. UfOually 

160 ,<;<; to 5%12,61 of the SO is converted to SO under conditions 
2 3 

of high excess air. S1.l1phur trioxide (SO ) gas exists at 
3 

te[;lperatures above the acid dew-point, but sulphuric acid is 

formed by condensation at the cold end of a boiler as gases pass 

along ccoler metal surfaces. Presence of SO in the system is 
3 

considered to be a contributory cause to both high and 10v1-

temperature corrosion of heat exchange surfaces. 

A number of paths have been identified23 whereby SO may 
3 

be formed in the flue gases and a number of research workersB ,10,12 

suggested that it may be formed mainly in flames. Harlowll : 

suggested the formation of SO by the hetrogeneous catalytic 
3 

oxidation of SO on metal surfaces, basing his arguments on field' 
2 

experiences. A third mechanism was put forw3.rd by Raylands and 

Jenkinson62
, based on the earlier \vork 0:: JohnstoneG3 

suggesting that once corrosion effects the cooler parts of a 

'boiler system, the corrosi.on products can themselves act as'. 

catalysts to promote the formation of further quantities of 

acid. Although from recent works 10 12, a much clearer picture is 

emerging of the various factors responsible for ~he formation 

of sulphur trioxide, literature on non-catalysed oxidation of 

SO is scant. No literature coulQ be traced \·rhere oxidation of 
2 

SO has been studied ensuring absence 0:: any physical delay of 
2 

evapo~ation and mixing in the combustion zone under non-

catalytic conditions. 
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Ccnsidering the flame theory that oxidation of sulphur 

dioxide takes place primarily in flames at high temperatures by 

cGmbina tion, of atomic, oxygen, a very short time ,-rill be 

available for this to take place. If ;3ulphur dioxide can pass 

through this' zone unaffected by excess oxygen, or atomic oxygen 

has longer time to combine preferentially with species other 

t:tan SO , then the reduction of SO can be achieved. It is 
2 3 

then probable that treating a fuel with a chemical additive 

which changes the ignition characteristic of the fuel to ignite 

it a fraction of a 'second earlier, will suppress the oxidation 

of SO • 
2 
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TA"BLE 2.1 

ASH ELEMENTS IN CRUDE OILS (REFERENCE 1) 

Crude oils 

I 
United 

I Venezuela l I 
East_ 

Middle East 
from States Indies 

Element Parts pe+, million in Crude Oil 

AJuminium 0.1 0.3 1 .0 0.8 nil 0.3 6 1.9 7 0.3 0.6 

Celcium 12 1.2 12 1 .7 1.8 9 3 1.7 3 nil 0.4 

Cbromium 0.1 0.2 0.05 1.4 nil nil 0.2 trace 0.1 0.1 trace 

Cobalt 1.6 nil nil nil nil nil nil 1.9 nil trace nil 

Copper 0.2 0.5 1.9 0.2 7.3 7 0.4 1 5 0.1 0.7 

Iron . 3.0 4.6 5.7 30 1.2 0.4 61 15 5 1 3.7 

Lead 0.7 0.2 2.1 0.3 nil nil 0.6 0.7 nil 0.1 nil 

Magnesium 2.0 0.5 1.7 - 0.6 0.6 1.2 1.7 0.8 7 0.2 0.1 

Manganese nil nil nil nil nil nil nil trace nil trace nil 

Molybdenum 0.1 nil nil 0.3 nil nil 0.6 0.2 nil 0.2 nil 

Nickel 0.8 1 .2 6 0.3 5.5 10 0.4 1 30 6 0.4 

Potassium nil 2.9 2.1 nil trace nil nil nil nil 0.5 0.7 

Silicon 0.1 0.5 0.7 1.7 0.1 0.8 6.9 3.5 - 1 0.2 - 0.4 

Sodium 38 2.7 33 24 13 9·4 15 6 0.1 0.5 0.2 

Tin nil 0.1 0.5 nil nil 0.3 0.9 0.2 nil nil nil 

Ti tanium- 0.1 0.2 0.3 nil nil nil trace 0.3 4 0.1 nil 

Vanadium 1.9 0.7 24 nil 30 72 nil nil· 100 27 3 

Zinc 2.1 1.2 3 0.2 nil nil 0.3 0.6 2 nil nil 



I 

I Crude 

TAELE 2.2 

A ccmpE.rison of the ash, sulphur and as~)hal tene 
contents of various cn~d8 oils. (Reference 1) 

Contents of 
Oil 

Ash Sulphur Asphaltine 
(p.p.m.)a (% .. t.) 

Venezuela 

i 

ii 

iii 

iv 

v 

Trinidad 

i 

ii 

United States 

i 

ii 

iii 

iv 

Middle East 

i 

ii 

iii 

East Indies 

i 

ii 

Columbia 

Africa 

i 

ii 

Canada 

a 
p.p.m 

(% wt.) 

1130 2.59 5.8 

425 1.27 1.3 

168 0.92 " 0 0 19 

138 0.14 < 0.1 

107 ,0.55 0.97 

820 2.22 3.6 

80 0.99 0.7 

490 0.24 .0004 
' '. 

184 0.29 0.4 

85 0.26 0.1 

31 0.34 -

240 1.57 201 

60 2.5 0.8 

17 1.61 . 0.8 
.. 

183 0015 -
68 0.21 trace 

177 0.95 1.0 

50 .0.18 < 0.05 

20 0.13 < 0.08, 

30 0.16 0.05 

parts per million parts of crude oil. 
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TAlJLE 2.3 

Effect of Nitric oxide addition on oxidation of SO 
____________ ~i~n~.~f=l~~D=B~es~~Reference 8) 2 

Per cent NO 

0.0 

0.1 

0.5 

1 .0 

2.0 

SO in gases 
2 

added 

TABLE 2.4 

0.05% 

Per cent oxidation 
of SO 

2 

7.5 

7.3 

.6.0 
." 

4.5 . 

4.3 

Effect of varying·concentration of SO on % oxidation 
to SO (Reference 8)2 

3 

Per cent S02 Per cent oxi-
Dew point °c 

in exit gases dation to 803 
) 

0.02 10.0 110 

0.04 8.2 140 

0.11 4.5 165 

0.15 3 0 8 170 

0.50 1 0 8 176 .. 

1.00 1 0 0 180 
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CHATTER 3 

OBJECTIVE OF RESEARCE PROGRAfi!ME 

From the study of the works <::f varj ous research vlOrkers in this 

field, it appears that a number of factors are respons~ble for the 

formation of sulphur trioxide in a combustion system. Tr"ese factors 

are summarised in the earlier chapter. Two theories have emerged as 

possible mechanism of formation of sulphur trioxide, viz, the flame 

or the atomic-oxygen theory and the catalyst theory. Although it has 

been shown that boiler deposits can cause oxidation of SO to SO ,. 
_ 2 3 

some Iwrk on laboratory scale combustion system has also shown that 

SO can be formed in flame. Hm-lever no information is available when 
3 

investigation of SO is carried out under non-catalytic condition with 
3 

pre-mixed flame which will eliminate any physical affects of atomisation 

of fuel. Investigation of the effect of ignition properties of fuSl on 

the formation of SO in flame has never been attempted. 
3 

Therefore it is vital to verify conclusively whether SO is formed 
3 

in the high temperature zone "I.;here purely chemical effects are involved 

vri th the exclusion of all physical affects of atomisation of fuels. 

Furthermore, it has been reported that sulphur dioxide competes 

. ,-ri th 0 ther species present in the flame for combina tion wi th atomic 

oxygen. Therefore fuels tending to initiate early reactions may allow 

greater time for CO to combine with available atomic oxygen in preference 

to sulphur dioxide and its (SO) oxidation may be suppressed. This -
2 

involves the measurement of ignition delay times of the fuels 

ehcployed. 
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The present research programme describes the construction and 

use of appliances to study factors effecting formation of SO in the 
3 

,hot zone of the combustion chamber using various liquid fuels and the 

measurement of. ignition delay times of these fuels and interpretation 

of these results. 

." . 
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CHAPTER 4 

FACTORS UTFLlJENCING THE CHOTCE OF' EXPERIM"P.N'f'AL 

SYS'rEN ANn EXPERIM8N'l'AL PROGP.MiME 

4.1 Choice of Flame. 

Mixing and recirculation processes which occur in 

conventional jet flames under turbulent conditions may 

interfere with the study of chemical reaction producing 

sulphur trioxide. It was therefore decided to separate 

physical effect of evaporation and mixing from chemical 

effects, this led to the choice of pre-mixed laminar flame. 

So it \orBS possible to investigate chemical reactions involving 

sulphur dioxide oxidation. 

The basic assumptions made of the system are as follows: 

a) A pre-mixed flat flame is produced in a circular 

combustion chamber and the hot gases completely fills 

the entire length of the tube o 

b) There is no recirculation of hot gases back into the 

earlier stages of the flame. 

e) Velocity, temperature andmass concentration profiles, 

across the flame are flat. 

4.2 Choice of Fuel. 

It "ras decided' to use the follo'wing fuels w'hich could be 

easily evaporated and mixed with combustion air in the 

eva~orating chamber. 
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a) Diesel oil 

b) Kerosine 
'., 

c) Cy(;lohexane ' ~~ • > 

';. 
, 

" , , 

d) n-hexane 
,," , 

'-'::" 
.' ~:. e) n-pentane ',-

- " ,'" 

In each case, sulphur content of the fuel was raised to 

3.4%(wt.) by addition of appropriate amount of carbondi­

sulphide (CS2). Related properties of these fuels are given 

in Table 6.1. 

4.3 Method used for the determination of S02 and S03 

content of the flue gases 

It was decided to use a chemical method developed by 

68 
Gcksoyr and Ross for the determination of S02 .a~d S03. 

Accuracy and limitation of this method were investigated and 

is reported in Chapter V. The method consists of passing 

known quantity of flue gases through a glass helica~ coil' 

condenser and titrating the candensate with NaOH solution. 

The description of apparatus and detailed procedure is given 

in Chapter 5.5. 
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EXPERINENTAL PROGRAJV[!l1E (PART I & PART II) 

PART I 

1 . Design and Construction of evaporating burner. 

2. Determination of concentr·3.tion traverse curves. 

3. Determination of temperature profiles across sections of the 

combustion chamber. 

4. Determina tion of the effect of [tj_r/fuel' ra tio on the 

combustion products using two fuels. 

5. Determination of the effect of excess oxygen concentration in 

the combustion gases on the SO formation using two fuels. 
3 

6. Determination of the effect of burning various hydrocarbons 

,vi th different ignition properties on the formation of SO 
3 

at various excess oxygen concentrations. 

7. Determination of the effect of residence time of combustion 

gases on the formation of SO ~ 
3 

8. Calculation of the theoretical percentage oxidation of SO 
2· 

PART II 

to SO at several oxygen concentration under equilibrium 
3 

conditions. 

9. . Design and construction of ignition delay measurement apparatus. 

10. Determination of ignition delay curve for Kerosine droplets 

with respect to change in surface temperature. 

11. Determination of ignition delay curves of different hydrocarbons 

used in the previous progranrne of experiments 0 • 

12. Determination of minimum ignition temperature of Kerosine, 

Cyclohexane, n-hexane and n-Pentane and comparison l'Tith the 

results of other workers. 

- 60 -



CEAPTER 5 

DESCRIPTION OF APPARA'rm Arm EXPERIJViENTAL FROCEDURE 

Tile ,general arrangement of the apparatus is shown in Plate 5.1 

and the diagrammatic view is given in Fig. 5.1. ' 

5.1 

5. 1 • 1 

5.1 .2 

Burner System 

Fuel Tank. 

This consisted of a 1.75 x 10-3 m3 trapiziodal container, 

ccnstructed from a 3mm thick stainless steel plate with three 

openings at the top mounted on a Dixian stand. The openings 

are meant for pressurizing the fuel tank, for supply of fuel 

to evaporating chamber and for the observation of pressure in ' 

the fuel tank. For safety reason, the use of nitrogen cylinder 

"....as made for pressurizing fuels. 

Evaporatinf, Chamber. 

This vras constructed from stainless steel, the dimensions 

are given in Fig. 5.1.2 and Plate 5.1.2 shows its front,view. 

The chamber was heated by means of an electric heating element 

covering the outside wall of the chamber. This was of 0.5 kw 

capacity. Liquid fuel from the tank entered the heated 

evaporating chamber through a small opening directly in the 

pa th of the air stream from an air-com:pressor. Heated mixture 

of fuel vapour and air passed through a Grade 3 sintered stain-
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5.1 .3 

less steel disc, thus a pre-mixed flat flame was produced 

beyond the sintered filter disc. 

Combustion Chamber 

T~e combustion chamber was made from a stainless steel' 

tube of 32mm internal diameter and of 3mrn l'lall thickness. It 

vlas 2m long having 10mm diameter tapped holes at 304.8rrun (1ft) 

intervals for sampling of combustion gases. These holes were 

kept closed Ivhen not in operation. Six additional holes of 

3mm diameter at right angles to the sampling holes were drilled 

for the introduction of thermocouples. The combustion tube was 

- .. ·supported on four brackets mounted on a steel frame. A long 

Dixian table held the entire apparatus. The combustion tube 

was lagged vd th 'Kerlane' heat insulating blanket of total 

thickness of 51mm. 

5.2 The Fuel, air and vTater supply 

5.2.1 The Fuel Supuly 

Fig. 5.1 shows the nrrangement for the supply of fuel 

and air to the combustion chamber (see also Fig. 5.2). The 

pressure over the surface of the oil in the fuel tank was 

kept at 0.17 x 105 N/m2 (2.5 lbf/in2
). The pressurized oil 

flm-led through a filter and a needle value. A 'Rotameter' 

manufactured by G.E.C. Elliot's, 'mcde11100, range 0-19cc , 

'..ras used for the control of oil flow an.d a quick visual means 

of checking the oil flow. 
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5.2.2 

5.2.3 

i) Calibration of 'Rotameter' 

The Rotameter was calibrated for every fuel used 

"by cutting off the oil supply to the evaporating chamber 

and allowing it to collect in a measuring cylinder. The 

time taken for a specific volume of oil collected, was 

noted and flow was calculated. 

Air Supply 

A reciprocating air compressor connected with pressure 

operated relays supplied the necessary combustion air at a 

constant supply pressure of 0.68 x 105 N/m2 •. A pressure 

regulating value was used to give the constant pressure. A 

. liquid trap and a filter was also used in the air supply 

system. 

The air supply was metered by means of an 'Air Rotameter' 

manufactured and calibrated by G. 'A. PIa ton Ltd., of range 

0-50 x 10-3 m3 /min. (0-50 litres/min) at N.T.P. 

Water Supply 

Water was supplied through the mains for circulation in 

the gas cooler which was inserted in the test gas line of 

the INFRALYT GAS ANALYSER (AFpendix 4). 

5.3 Temperature Measurements 

Temperature of combustion gases was measured by means of 

Ni Cr/Ni Al thermocoupl~s placed every 1 ft. (304.8mm) along 
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the charuber. They were connected through compensating leads 

to a six point SI'Ti tch and a 'CcIllbridge' tempera ture indicator 

range. 

The investigation was concerned with comparative 

temperatures only, the accuracy, of' therrr:ocouples was therefore 

considered acceptable. 

5.4 External heating of Combustion Chamber 

In order to raise the temperature of the combustion gases 

to 950-1000oC through the whole length, it was found necessary 

to externally heat near the exit of the tube. A 3kw electric 

heating element was used and was controlled by means of,a 

variable vol Yregula tor. 

5.5 QasSa.mpling Apparatus 

CO an<l CO content of the flue gases "rere measured by 
2 

means of infra-red absorption gas analyser and oxygen content', 

was measured by means of magne hc oxygen analyser. These iiere 

standard instruments supplied by Elliot's' Automation Ltd. 

General principles of operation of these instruments are 

given in Appendix 40 

Measurement of SO and SO were made by means of. Goksyr' 
2 3 

,6e. 
and Ross Method. A schematic arrangement of the saffipling system 

is given in Fig. 5.1. Gaseous combustion products ,vere dra;·J'll 

through a quartz tube (3mm diameter bore, 3mm thick and 

140mIll long). The tube had a 'quick-fit' ground glass connection 
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a t one end "I"hich ,·ms connected to the sulphur trioxide 

collector. The tube "lms externally heated by means of 

'electrothermal' 4eating taps to maintain the gas sample at 

o a temperature not belovI 250 C, to prevent condensation of 

sulphuric acid in the tube. The residence time of combustion 

gases in the probe was calculated to be of the order of 0.02 

seconds compared with the total residence time of 0.6 seconds 

in the combustion chamber. A reeasured volume of hot flue 

gases was drawn through the glass coil and a Grade 4 glass 

disc, both enclosed in a giass jacket filled with water (SO 
3 

) 
b 0 collector, maintained at a temperature between 60 C and 90 C.~ 

, (Plate 5.1.3). This temperature range which is belov, the acid 

dew-point of the gases, ensured that all sulphuric acid condensed 

on the wall of the co~l. HO"l'Jever the temperature was high " 

enough to prevent any condensation,of water vapour. Any acid 

particles left in the gas stream were retained by the sintered 

glass filter. '['be acid was then washed out with' a mixture at 
" 

pH 4.6 of distilled water, 5% by volume of isopropanol (IPA) 

and'bromophenol blue indicator (2 drops per 50cm3 solution). 

The washed solution was then titrated with N/50 sodium 

,hydroxide solution. The exit gas from the. sulphur trioxide 

CGllector was passed through the SO absorber - and bubbled 
2 

through 100cm3 of 3% bydrogen Pf'roxide solution. 1-2 drops 

of bromophenol blue indicator was added to the solution and 

the content was titrated with standard N/10 N Oli solution a 

until the blue end-point was reached~ SO and SO contents 
;;3 3 

by volume of the flue gases were calculated by means of the 

following eqt~tion. 
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so or 
<3 

SO 
3 

T x N x 1 1 • 2 x 1 OS -
V 

p.p.m. by volume of dry gas 

where T titration value, cm3 

N normality of N OH solution 
a 

V volume sampled, crr.3 of dry flue gas 
. r· 

corrected 1;0 OVC and 760mm Hg. 

An accuracy of ± 2p.p.m. of SO was 
3 

N 
obtained when 50 

N OH solution was used for tit.ration of washed acidic a 

solution and the rate of flow of sampling gases was 

5 X 10-3 m3 /min for a period of 20 minutes. This was as 

recommended by Goksyr and ROGs. 

5.6 Velocity Measurement 

Since the q~anti ty of fuel anc'_ air, supplied for 

combustion could be me tered accurately, it Ims decided to rely 

on the calcnl."_ ted values of velocity. Effect of tempera turo 

of gases at each sampling port ,v-ere taken into account in the 

calculation of velocity at that port. Sample calculations 

-are ShOWTl in Appendix 1. 

5.7 Procedure during Run 

The burner was allowed to run for a period of 1 ~~ hours 

to warm up the apparatus before the actual commencement of the 

test. This helped to maintain the temperature constant 

throughout the length of the tube. Fue 1 flmv- rate and air 
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flow rate were then accurately set, and CO, CO and 0 
2 2 

concentration in the flue gases were measured. Thi::: '-Tas 

repeated at intervals of 5 minutes until constant readings 

were obtained. Tr,e test viaS then started for the determination 

of SO aud SO at various ports. 
2 3 
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PLATE 5 . 1 Gen e r a l v i ew of t h e A; 'pa r a t u 8 



PLATE 5.1 . 2 Front view of the evaporating chamber . 



PLATE 5. 1. 3 General view of .- a ) S03 collector 

b) Quartz sampling tube 

c) Stainless stee l s intered di sc . 



CE-1APTER 6 

EXPERIMENTAL RESUL'1'S 

s. ' :':",s.surement 0: corr.bustion conditions 
~~rough the length of the tube 

Concentra tions of CO 7 CO and 0 in the combustion gases 
2 2 

~';er9 measured at all sampling points to confirm that combustion 

~',-S.S ~completed well within the first sampling port. Temperature 

::es.surements were also, taken at each sampling port. Fuel and 

s.ir-flow "rere kept constant throughout the 

~)~ditions are given in Table 6.2. 'It can 

run. The operating 
rontent 

be seen that CO did 
2 

I:::): rise appreciably arid it was confirmed that combustion .vas 

'cc:Jl=leted almost imm8diately. Also, carbon monoxide could not 

'::;'9 detected at any sampling po:::,t and a near constant value or 

L.5% excess oxygen was observed. 

(:".2' :;'s.?-; AnaJysis at variouD air-fuel ratios 

Carbon dioxide and ,oxygen concentratior.s in the flue 

5'S.S9S \'iere measured at different air-fuel ratios. ,Fuels used 

-,',sre Diesel oil and Kerosine. The resc:l ts are graphically , 

represer:ted by Figs. 6.1 and 6.2. Gas samples were taken at 

='. distance' of approximately 1 metre from the centre of the 
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:.; ~ffec~ of excess oxygen concentration in the 
CC::l'cLl3-t:icm g2ses on the formation of SO 

3 

i_ Yl.uJIloer of runs were conducted and duplicated to find 

the !'eliability of tIle apparatus under investigation and to 

co-relate the findings of other workers. SO measurements were 
3 

rrade at different excess oxygen concentration in the flue gases 

and the results are given in tabular form in Table 6.3 and 

Table 6.4. They are also represented.graphically by Fig. 6.30 

It C2Il be seen that with no excess oxygen i. e. under 

stoichiometric condition, SO formation reduced to zero. With 
3 

the increase of excess oxygen in the combustion systeffi, SO 
:3 

form2tion began to rise. The rate of increase of SO with 
3 

incre2se in. excess oxygen concentration remained nearly 

com;tant up to a1")out 3.5% excess oxygen. 

,·.-as foll.YlrJ. at .around 4% eXcess oxyger. 

Maximum SO formation 
3 

concentration in the 

combus t:i.on gases. These results are in general <?greement 

Hith the findings of Glaubitz, Hedley and Laxton, described 

in li·terature survey (Chapter 2). 

6.4 Effect of ignition rropert~es on 
the form2tion of SO 

3 

Liqui·j hydrocarbons of different ignition properties 

'Vrere used to investigate any effect' on the formation of SO , 
3 

the results \·rere compared vTi th those of Kerosine, all fuels 

having sarre sHlphur content, and under identical combustion 

conditions. Hydrocarbon chosen for the investigation were 

cyclo~'1exane, n-hexane, and n-Pentane, some of their properties 
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6.3 Effect of excess, oxygen concentration in the 
combustion gases on the formation of SO 

3 

A number of runs were conducted and duplicated to find 

the reliability of the apparatus under investigation and to 

co-relate the findings of other workers. SO measurements were 
'3 

rrade at different excess oxygen concentra tionin the flue gases' 

6.4 

'and the results are given in "tabular form in Table 6 .. 3 and 

, ,Table 6.4'. They are also represented graphically by Fig. 6.30 

It can be seen that with' no exces,s oxygen Le. Under 

sto,ichiome,tric ;ondi ti<?n, SO formation reduced to zero. With' 
, 3 

tne,increase of excess oXY{i!;en in the combustion system, SO 
3 

'formation began to rise. The rate ,of incr~ase of SO with" 
3 

',increase in excess oxygen concentration remained' nearly 

'const'arit up t; 'about: 3~5% excess oxygen. ,', Maximum ,SO formation 
3 

'\~as found at around 4% excess oxygen', concentration in .the 

combustion gases.' These results are in general aereement 
" ' . 

wi t'h th~ findings of GIs=tubi tZ, Hedley and'Laxton, described 

in literature survey (Chapter 2). 
" .,'-

" ' ,., . 

. 
Effect of ignition properties on 
the formation of SO.' 

3 

Liquid hydroca'rbons 'of different ignition' properties 

were used to, investigate any effect,on the formation of SO, 
3 

the results were compared with those of Kerosine, all fuels 

, . ~ , 

having same, sulphur content, and 'under identical combustion",' 

condi tions., Hydrocarbon chosen for the investigation were 

cyclohexane, n-hexane, and n-Pentane, some of their properties 
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6.5 

'6.5.1 

are given in Table 6.1. SO, concentration in the 'combustion 
3 

gases was determined at various excess oxygen concentrations 

in the flue gases.' The results are represented graphically 

in Fig. 6.4., Ta bles 6.5, 6. 6 and 6.7 also shm'l these results. 
J ' 

Fig~ 6.4 also contain graph of SO concentration v. 
3 

oxygen concentration for Kerosine doped with sulphur. The 

effect of use of n-Pentane as an additive was also investigated 

although, the results are not conclusive. Table 6.8 ShOVTS the 

results with the use of ,J% n-Pentane in Kerosine doped with 

carbondisulphide. Effect of aniline as an additive ~vas also 

investigated and results are tabulated in Table 6.9 which 

shows a ,small reduction of SO formation. 
3 

Effect of residence time on 
the formation Qf SO 

3 

Introduction. 

The experimental programme consisted of five series of 

_ tests, namel;y A, B, C",D and E, which represent the different' 

'~ates of fuel combustion from 2.3 cm3 /min to 6.0 cm3 /min. 

o concentration was 'kept constant by keeping the air-fuel 
2 

ratio constant throughout the'series of experiments. It was 

found necessary to externally heat the exit of the combustion, 

tube for :the series E (Fuel flow rate,-' 6 cm3 /min) 'of the 

experiment to keep the tem,erature along the tube constant. 

Temperature measure~ents were made at each sampling port, at 

the centre of the tube for each run of tests ,to determine 
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6.5.2 

6.5.3 

tesperature history of thE: gases (Fig. 6.5). In order to 

find variation of te~perature across the section of the tube, 

Dee.Sl,relllent of tempera turos ,'rere made at distances of 5mm, 

'10;-:,..m and 25mm from the ;·rall of the tube. Measurements were' 

2e.Qe at three different ports. The results are graJ=hically 

repres'ented in Fig. 6 0 6. 

Experimental runs A, E, C and D. 

Tables 6.12 to 6.15 show the experimental data and 

analysis of combustion gases for sulphur dioxide and sulphur 

trioxide at different ports of the combustion tube. The 

dure. tion of a complete run lasted several days and te'sts were 

repeated for reliability. 

The aim of these experiments was to study the effect' of 

residence time of combustion gases on the' fo::..'mation and decay 

0: SO . 
3 

Gc.s temperatures slim·m in the tables .,;as the average gas 

t",rr:perature through the length of the combustion tube. 

Experimental results of A and E are Sh01-m graphically 

in Fig. 6.7, that of runs C and D are shown in Fig. 6.9, where 

SO is plotted against the residence time. 
3 

Experimental Run Eo 

This series of experiments was similar to the previous 

rUIlS, except tha t higher gas temperature Ivas obtained by means 
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of higher fuel rate of burning an~ external heating near the 

end of the combustion tube in order to keep constant temperature 

througbout the lengtr. of the tube. The excess air .. TaS kept 

const2.nt by keeiJing 0 concentration in the flue gases at 
:3 

4.5% (vol). There "l'TaS also no change in sulphur content of 

Kerosine used, "Thich remained at 3.4% (wt) by addition of CS 
2 

The results of these experiments are shown in Fig. 6.12. 

. / 
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TABLE 6.1. 

Properties of some liquid hydrocarbons 

I I·Ii::li2·;3 
I 

sp. 3.P. 
Igr.!i ti;)rl Name Formula Mol. wt. gravity Re.nge 
Te~~. 

~~ 

a t 15°C (95%) 
v 

(in -" ~ -r ) ---

Kerosine - - 0.79 160-290 2:4 

Cyclohexane CH (CH ) CH . 84.16 0.776 80- 82 27t, 
2 2 4 2 

n-hexane CH (CH ) CH 86.18 0.670 67- 70 248 
3 2 4 3 

n-Pentane CH (CH ) CH 72.15 0.625 35- 37 224 
3 2 3 3 

TABLE 6.2 

Gas analysis results for a test run 

I 
I 

Distallce I 
from CO2 CO (\ I Sampling .... 2 

Run No. Port burner % (vol. ) % (vol. ) ~ ( --" 1 ) 
. plate /- .-'_ . 

ft 

. 1 1 1 11.2 Nil L = ,0.., 

" 2 2 2 11.3 lUl. e ::-
· . -' 

3 3 3 11.2 Nil 4 '=i '", 

4 4 4 ,11 .4 Nil 4.4 

5 5 5 11.3 Nil L ::-· . .., 
6 6 6 11.2 1Iil · -~.J 

Fuel: Kerosine + 3.4% S(wt). 

Fuel Flovi Rate 6 cc/min. 

Air Flow Rate = 55 lit/min. 
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I 

(Xl 
o 

Run 
No. 

1 

2 

3 

4 

5 

6 

7 

8 
,9 

10 

11 

12 

13 

14 

15 

1 6 

17 

18 

, 

' . 

Fun}: Diu:1Ul oil + ).~% Li(vJl;~) 

Fuol FJow 1{1l1.(}: ?~)5 cc/min. 

n" f' 1" I ')"oOoC - 410°C J. crnp. 0" gu.:J nenI' 81) l!l P lng PO) n ; : u 

Air flow Air/Fuel I Gaseous Combustion products 
Rate Mass 

lit/min Ratio CO CO2 O2 

29.0 17.8 Nil, 11 .9 4.1 

25.0 ' 1 5. 1 Nil 13.9 1.2 

27.0 16.3 Nil 12.7 2.6 

27.0 1 6.3 Nil 12.9 2.6 

23.0 13.9 0.5 15.3 0.0 

24.6 14.8 Nil 14.2 0.7 

24.6 14.8 Nil 14.5 0.7 

32.8 19.8 Nil 11 • 1 5.5 

25.2 15.2 Nil 13.8 1.3 

26.7 1 6. 1 Nil 13.2 2.7 

26.8 1 6. 1 5 Hil' 13.0 2.8 

37.2 22.4 ; Nil .9.5 . , 7.7 

37.1 22.35 Nil 9.5 7.7 

3500 21 • 1 Nil 9.8 7.0 

26.8 16.15 Nil 13.4 ' 2.5 

26.8 1 6015 Nil 13.4 2.5 
, " 

34.0 20.5 Nil 9.8 6.5 

26.2 15.75 ' Nil 13.8 2.0 

802 803 

1610 ~O 

1723 12 
I 

1480 22 

- 23 

- 0 

1900 10 

1980 9 ' 

1970 39 

- 8 , 

1790 ,30 

- 33 

1852 18 

1670 25.5 

1610 16 

1900 22 

1630 23 

1852 27 

1700 , 20 



TAELE: 6.4 

Fuel: KGronino + 3.~% S(wt.) 

}I'uo]. l"low IV.l 1;0 : ;z .1)1) CC/IlI.i.II. 

'r t' 1 . . 1 ',:I)"OoC _ "I·;OOC amp. o· t~Il:,1():J nUll,.. : 1l)(' ::I.() n PO] n ;: 0 " -" 

A:ir Clow A:i.r/li'uel 
C:I::l(~()U:l C()IIIl.Jm~ tioIl proLiuc tt) 

Hun % volume SO;) !-;();_l, 

No. 
R:lte Muu:.\ 

_. 
lit/min Ratio CO CO 0 

p.p.m. p. p.lIl. 

-, 
1 24.8 1 601 . 0.0 13.8 0.15 - ~.3 

2 25.4 16.5 Nil 13.2 0.8 1752, 4.5 

3 26.2 17.05 Nil 12.9 1 .3 1648 12.0 

4 26.5 1702 Nil , 12.9 1 .6 - 1705 
1 .• 

5 27.3 17.5 Nil 12.7 2.4 - 25 

6 27.8 1 8~ 1 Nil 12.6 2.6 1615 26.5 

7 29.0 18.9 Nil 11 .9 3.4 1840 39 
8 33.8 22 00 Nil 9.9 5.8 1583 34 

9 36.2 '23.5 Nil , : 9.5 6.8 168:) 29 . " 

10 23.0 14.9 0.3 15.0 0.0 1731 0 

11 23.0 14.9 0.5 14.9 ~3, - 0 

12 2500 16.2 Nil 13.8 ~:?l 1656 2 
'" .,.~ 

'. 
19.6 11.6 4.2~ 1725 43 13 30.1 Nil 

14 30.0 19.45 Nil 11.7 3.75 - 44 

15' , _'_ 27.4 17.8 Nil 12.8 2.4 1670 27.5 

16 34.0 22.1 
I 

Nil 10.0 6.0 1590 33.5 



TAP-LE 6.5 

Cyclohexane + 3.4% S(wt.) 

Fu.el Flow Rate: 2.5 cc/min. 

TelLp. near suction := 40CoC 

Ru..'1.s Excess oxygen 
(% vola) 

-. 
1 5.5 

2 4.5 

3 3.4 

4 2.9 

TABLE 6.6 

FlJ.el: n-hexane + 3.4% s(wt.) 

Fuel FIo,"l Rate: 2.5 cC/min. 

Temp. of gases near suction: 

Runs Excess oxygen 
(% (vola ) 

1 4.5 

2 3.0 

3 1 .2 

4 2.0 

5 4.5 

6 7.0 

7 5.5 

8 3.4 

, - 82 -

I S03 
p.p.m. 

26.8 

39 

30 

23 

S03 I p.p.m. 

22.8 

13.5 

0.6 

5.0 

.23 
14 -

21 

20 



TAELE 6.7 

Fuel: n-Pentane + 3.4% s (,·.'t. ) 

Fuel Flow Rate: 2.5 cc/min. 

,Temp. of gases noar suction: 

r-Runs 
Excess oxygen I 

% vol. SO p.p.I:1. 
3 

1 4.3 33 

2 3.9 29 

7 5.0 20 .J J ' 

- . 4 I 4.8 30 

.. 
5 .. ~ . 4.0 7;' ,/1 
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TM:LE 6.8 

Fuel: Kerosine + 3.4% S(vrt.) + 1% n-Pentane (vol.) 

Fuel F10i': Rate: 2.5 cc/min. 

Teffiperature 0= gases near suction: 

\ 

Excess Oxygen SO p.p.m. 
Run SO p.p.m. 3 

(% vol.) 3 (Untreated) 
from graph 

1 4.25 42 .44.8 

2 4.5 41 44.5 

TABLE 6.9 

Fuel: Kerosine + 3.4% S (i'lt.) + 1 % aniline 

Fuel Flow Rate:' 2.5 cc/min. 

Temperature of gases near suction: 

I Excess Oxygen SO p.p.m. 
Run~ SO p.p.m. 3 

(~b vol.) 3 (Untreated) 
from, graph , 

1 4.4 35.7 45.0 

2 4.5 . 40 44.5 
, . 

3 2.5 10 25.0 
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I 

Run 

A 

B 

C 

D 

E 

Expt.No. I I 

1 

2 

3 

4 

5 

6 

Combustion Products Analysis 

Run B --

Ports I CO2 I CO 

1 11.5 0.02 

2 11.5 Nil 

3 11 .5 Nil 

4 11.5 ' Nil 

5 11.8 Nil 

6 11 .4 Nil 

TABLE 6.11 

02 

4.5 

4.5 

4.3 

4.5 

4.4 

4.4 

Gas temperature measurement along the length of 
the tube for Runs A, B, C, D and E 

" 

Gas temperature °c 

Port 1 Port 2 Port 3 Port 4 Port 5 

725 645 590 580 574 

740 658 610 604 600 

765 680 600 590 ' 600 

778 700 620 600 590 

1080 990 1000 1040 970 
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I 

(Xl 
CJ'\ 

so p.p.m. 
3 

--

SO p.p.m. ' , 
2 

% conversion of SO 
2 ' 

Residence time secs. 

to SO 
3 

: 

'J'ABL1~ 6. 1 2 

Run A 

Fuel: Kc'rosin(:) + 3.4% S(wt.) 

Fuel Flow Rate: 2.3 cc/min. 

Air Fuel Ratio: 18.4 

Av. Ga!J 'l'emp. up to 1ft. length; '8000 e; Rest - 600°C, 

Velocity V = 8,38ft/sBc; V = 5.98ft/oec. 
1 2 

Gus analysis:' 'CO - NIL; CO - 11.5%; 
2 

o - 4.5% 
2 

Run No. I Sampling Port 

1 2 3 4 I _. 
A 76 102 89 
B 105 92 

C 80 94 

A 1620 1661 1683 

C 1680 1603 " 
" 

A 4.49 5.78 5.00 

I C 4.54 5.54 

, .119 .334 .502 .668 

5 I 6 

65 

68 

71 

1650 

-- 1700 

3.78 

4.00 

.836 1.00 

, I 



SO p.p.m. 
3 

SO 
2 

p.p.m. 

% oxidation of SO 
2 

Residence Time sec. 

'l'ABW 6.1:5 

RUll B 

Fuel: Kerosine + 3.4% S(wt.) 

FueJ. Flow Rate: 

A:i.]' Yuu 1 Ha Li 0 : 

2.5 cc/min. 

1 b.4 

Av. C1J:J 'l'elllp. 1 ft. froIO flame 800°C; Hest - 600°C 

Guu unulyslo: CO - NIL co - 11.5%; 0 - 4.5% 
2 2 

Run No. Sampling Ports 

F 1 2 3 

A 34 80 

B 110 94 

C 32 96 

A 1743 

B 
, 1684 : 1693 

A 4.37 6.14 5.26 

B 6.14 

0.045 0.11 0.31 0.465 

F =. ,approximately 1" from flame front. 

I 
5 

-I 
6 I 

74 
I 

60 

1641 

1703 

4.31 3.4 

3.4 

0.77 0.93 



I 

co co 

I 

~-------~.----~-----:--------------------------~~~.,";:.'l'"------

SO p.p.m. 
3 

SO p~p.m. 
2 

% oxidation of SO to SO 
2 3. _. 

Residence time, sees •. 
,---. 

( 

TABLE 6.14 

Run C 

Fuel: Kerosine + 3.4% S(wt!) 

Fuel Flow Rate: 

Air Fuel Ratio: 

2.8 cc/min. 

18.4 '(mass) 

Av. gas Temp. up to 1ft. length: 850°C Rest - 600°C 

Gas analysis: CO - NIL CO - 11.5% O· - 4.5% 
2 2 

Run No. I Sampling Ports 

1 2 3 4 

A 72 106 99 

B 80 110 103 

C 76 108 . 96 

A 1830 1800 1792 

B 1810 1685 1728 

A 3.76 5.56 5.19 

B . 4.24 6.14 5.61 i 

0.1 0.28 0.42 

1 

I I 
re; 6 ,./ 

I 
89 

70 65 

1722 

1643 1683 

4.9 

4. 1 3.72 

0.7 0.84 



co 
1..0 

I' 

--.--.. _--. 

------------------------~ .. --------------------------........................ ------------~~~~'-----.-----

Run No. 

A 

SO p.p.m. B 
3 

C 

A 

SO p.p.m. B 
2 

C 

A 

% oxidation of SO' B 
.. 2 

c 

Residence time, secs. 

TABLE 6.15 

Run D 

Fuel: Kerosine + 3.4% S(wt.) 

Fuel Flow Rate: 

Air Fuel Ratio: 

3.5 cc/min. 

18.4 

'Av. gas temp. up to 1ft. length: 

GE'.S analysis: ,CC - NIL CO 
2 

850°c ; 

11 .5% ; 

Sampling Ports 

1 2 3 4 

108 106 

72 105 

61 110 

1683 
, 

1631 1603 ," 

1781 " 

3.6 6.15 
. " 

5.9" .. 

5.84 

.077 .218 .326 .435 
i 

. '~, , 

Rest - 600°C 

o - 4.5% 
2, 

5 

~ .'. 

.54 

6 

60 

' " 

1707 

3.4 

.54 

F 

33 
, 

: 

" 

-
" 

I 0.033 
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CHAPTER 7 

DISCUSSIO] AIm TNTER:?R~crA'rrOTI OF RESULTS 

7.1. Introduction 

The experiments described in the previous Chapter can 

be divided into three main classes. 

2.) Effect of oxygen content in the combustion gases on the 

formation of SO was determined and the value of oxygen 
3 

concentration for optimum SO formation was obtained. 
3 

b) Fuels I'iith different ignition properties were burnt and 

SO concentration in the combustion gases were determined 
3 

at various oxygen content of the flue gases (varying air- . 

~ 1 L") lue ra "J_O • Thus effect of ignition properties on the 

formation of SO~ was deterrninecL· ., 

c) In the third series of experiments, the measurement o"f 

SO was made at different sampling ports for a specific 
3 

fuel. The rate of fuel flow, and the excess air was 

kept constant. 

Hence, the effect· of residence· time of combustion gases 

on the formation of SO was determined. 
3 
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7.2 D~scussion 

7.2.1 

7.2.2 

~ffect of excess oxygen on SO formation 
3 

The reduction of excess oxygen concentration in the flue 

gases towards zero, causes a reduction of S03 concentration to 

zero c This has been reported by a number of workers and it is 
.. \ . 

generally reasonable to assume that under fuel rich conditions, 
\ . \ 

in the absence of excess oxygen, carbonmonoxide reaction with' 

12 oxygen will take preference over SO reaction with oxygen. 
2 

The work of Rosborough indicated that there is an oxygen 

concentration between 3% to 6% at which SO level would be 
3 

maxicum. In the present series of experiments, this value 

appears to be 4.5%. It.can be concluded that conditions most 

favourable for the production of SO is when combustion takes 
3 . 

place when oxygen concentration in the flue gases is around 

4.5% and all of the· excess air has been added prior to 

comb~stion. 

Effect of i5nition properties on the formation of SO 
3 

Processes involved in the oxidation of even the simplest 

hydrocarbon, i.e. methane has not been fully understood.69 

In the pre-mixed, high temperature (flame) combustion of 

hydrocarbons, the mechanism of combustion differs markedly 

from that responsible for low temperature slow oxidation, 

the uajority of enthalpy of reaction is released rapidly ~n a 

narrow reaction zone lead~ng to the production of high 

temperatures. It is evident that the problem of finding exact 

mechanism of combustion of hydrocarbon is extremely difficult. 
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The complex nature of the intermediate reactions during the 

short region of 'reaction zone' deters any absolute assessment 

of the mechanism of formation of SO in flames. However in -
3 

direct methods of assessment can be employed. 

In order to understand the phenomena better, three zones, 
i 

a pre-heat, a true reaction and a recOlnbina tion zone - may be 
I" . 

distinguished in the structure of a pre-mixed flame69 (Appendix 

Fig. Aal.) With the majority of hydrocarbons, in the pre-heat 

zone, degradation occurs and the fuel fragments leaving this 

zone will comprise mainly lower hydrocarbons, olefins and 

hydrogen. In the reaction zone proper, owing to the short 

time available, the radical concentration will still be very 

high and oxidation will proceed mainly to carbon monoxide 

rather than carbon dioxide, and this zone will terminate in a 

quasi-equilibrium state. In the post-flame or the recombination 

zone, carbo,n monoxide will oxidise to carbon dioxide depEmdj ng . 

on the fuel-oxygen ratio. ConcentrA.tion of radicals and atoms 

in the more extended post-flame region \vhere recombinations are 

still taking place is therefore a determining factor in the 

final concentration of stable spicies. Considering these 

assumptions, it is possible that hydrocarbons which tend to 

initiate early reactions bring forward the recombination region 

of the flame and thus allow greater time for CO to compete with 

SO for reacting with available atomic oxygen. 
2 

It is also known that standard fuel energy change for the 

carbon monoxide oxidation is much greater than that for sulphur 

dioxide oxidation. Therefore it would be expected that former 
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7.2.3 

~. 

7.2.4 

. reaction would take preference over the latter, and under the' 

circumstances oxidation of SO will be reduced. 
Cl 

Four hydrocarbons with different ignition properties 

'I'lere used in the experimental programme. It was found that 

although the production of SO reached its maximum value at 
3 \ 

\ 
around 405% excess oxygen in all four cases, the actual values 

\ 

of SO ho'W'ever, differed appreciably from each other. It may 
3 

be noted that sulphur content in the fuel was the same in all 

the four cases. Therefore it appears reasonable to assume that 

ignition properties have an effect on the formation of SO • 
3 

It was decided to find the respective ignition delay times of 

the fuels used in the present series of experiments to find 

evidence in support of the above argument. 

Effect of resi~encetime on the formation of SO 
3 

It is evident from the experimental results that the 

degree of oxidation of SO in f·lames is dependent upon. the 
Cl 

residence time of combustion gases, other variables like natuT8 

of the fuel, its sulphur content and excess air remaining 

constant. It was also found that flame gases contained SO 
3 

very much in excess of the equilibrium concentration and 

therefore a mechanism involving oxygen atoms seems likely.8,12. 

Kinetic consideration of mechanism of formation of SO in flames 
3 

Let us first consider the oxidation of carbon monoxide which 

is of major importance since carbon monoxide is one of the major 

products of the partial oxidation of hydrocarbons and their 
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derivatives. During the initial stage in the oxidation of 

o:c'.ganic compounds, carbon monoxide is formed 1-Thich is then 

further oxidised to carbon dioxide depending upon the avail-

ability of oxygen. The exact mechanism, ho\"[e7er, by which 

CO is oxidised to CO has been the subject of controversy for 
2 

many years and is still in dispute. 70,71,72. It vTaS suggested 

by Lel'Tis and Von Elbe that chain branching under some conditions 

"\'las due to the reaction3 -

0+0 +1'1, 
2 

CO + 0 
3 

o + M 
3 

CO + 20 
2 

But there were strong objections to this view particularly due to 

the inability to detect ozone by ultraviolet absorption during 

the expl~ion of a 2CO + 0 mixture. 73 

2 

'74 
The theory of Sfmenov 

Has hm'Jever, thought to, be more likely explanation. He suggested 

the reactions: 

CO + 0 -----'l>--

CO * + 0 
2 2 

CO * 
2 

CO + 20 
2 

are responsible for branching. lJ.'his view was criticized by 

Lel·ris and Von Elbe on the grounds that excited CO molecules 
2 

dissociate too rapidly to be able to act as chain carriers. 

Other evidence
75 

indicated that at least some molecules formed 

in the reaction (3) would have sufficiently long time to take 

part in the reaction (4). The results of Avramenko and 

Kolesnikova
76 

suggested strongly that the rate determining 

step in the formation of carbon dioxide was the bimolecular 
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association of CO and 0, with an activation energy of 3Kcal/mole. 

On examination of these mechanisms, it is clear that each time 

a single CO molecule burns, a surplus oxygen atom is released 

into the system. 

The principal source of oxygen atom for SO 
,_ 2 

oxidation is 

therefore either from i\hermal 
\ 

decomposition of excess oxygen. 

i 
-1 o + 117 K cal g mol. 

2 0+0 

or the dissociation of excess oxygen molecules by collision with 

excited CO * molecules which has been suggested to exist in 
2 

flames as discussed earlier. 

The presence of a third body M is knO'l'ln to be necessary 

for the combination of hvo colliding oxygen atoms to form 0 
2 

89 molecule. On the other hand, the presence of this third 

body is not-necessarily imperative \'Then an oxygen atom and a 

SO molecule collide to form a SO 
2 3 

70 
molecule • The excess 

energy is absorbed by the extra bonds in the molecule "'Thich 

\lOuld then lose energy by radiation or by later molecular 

collisions. 12 The process can be represented as -

SO + 0 --"'"" 
2 

SO * 
3 

SO * 
3 

SO * + M ___ SO '+ M 
3 3 

(6) 

This activated molecule will subsequently collide with a ,third 

body (e.g. (H ) to give normal S03. 
20 
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, l 

, 20 
The mechanism proposed by Levy and l'Ierrywan of ~r:e 

formation of SO in H S flames also involved O-atom c~cin 
3 2 

operating in the following manner: 

SO + 0 - SO + 0 (8) 
2 ----- :3 

° + H S - OH + SH (9) 
:3 -

OH + H S - H 0 + SH ( 10) 2 - 2 

SO + 0 - SO ( ll) 
2 - 3 

78 
Gaydon agreed with the views that the amount of SO 

3 

formed would depend on the composition of the flame gcses cS 

well as upon concentration of atomic oxygen.· 

The most" likely overall process cf formation of S03 tr.:.;.s 

12 appears to be ,that proposed by Hedley • Oxygen ctocs c!'e 

reacting 1'1'ith the most easily oxidisable substance aVcilcble 

which happens to be SO •. This results in the formation of 
2 

excited sulphur trioxide which subsequently collides'with a 

third body to give normal SO. This transient quantity of SO_ 
3 ~ 

is considerably in excess of the equilibrium concent~ation, 

and therefore begins to dissociate. The dissociation contir..~..;,es 

I 
until the theoritical concentration is reached which .. rill be 

I 
governed by the gas temperature. It wouid appear that if the 

gases are kept at a high temperature to allow longer time fo!' 

the S03 to be dissociated, then the S03 concentrctiO!l vIill ::6 

low. Experimental results copSirm this hypothesis. 
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The theory can be represented as: 

K 
1 

SO + 0 --> 
2 

SO 
3 

K 
2 

SO + -t 0 
2 2 

i'There K and K are h'lO specific rate constants (units of 
1 2 

_ -1' 
K = sec ). If we assume that the concentrations of atomic 

oxygen and sulphur trioxide are small compared with that of 

sulphur dioxide, we can take the kinetics of the primary 

process producing SO' as those of first order reaction. On 
3 , 

similar grounds, the dissociation of SO can also be taken as 
3 

first order reaction. Thus we have two consecutive first order 

reactions w'ith the rates dependent solely on (0) and (SO) 
3 

respectively. This case has been treated by Harcourt and 

79 
Essen • 

The situation can be represented as 

K 
2 B __ 

C 

Let (A] = initial concentration of A o 

= concentration of SO after time t 
3 

[C) concentration of reaction products after time t 

The rate of disappearance of A is given by 

\·rnich integrated to 

d [Al 
dt 

(A1 = 

= K [A] 
1 

-K t 
lAl e 1 

o 

The rate of formation of C is given by 

d le] 
dt = 

- 109 -
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vTbile the net rate of production of B, \vhich is the rate of its 

for!ll2.tic)r. from A minus that of its reaction to give C, is 

d [B1 
dt K [A]- K [B) 

1 2 

Introduction of equation (14) into equation (16) gives 

d lB] 
dt = K 

1 

-K t 
[A] e 1 

o 
K 

2 

I 
LB 1 f 

I 

(1 6) 

which contains only the variables B, and t. It integrates to 

K 

[AJ 
o 

1 

K K 
2 1 

-K't 
(e 1 

-K t 
e 2) 

substi tuting tsoJ for [B] , and let a is the inHial 
3 

concentration oY'~tomic oxygen, we get 

[ SO] = 
3 

K 
1 

a -----
K - K 

2 1 

-K t 
(e 1 

-K t 
_ e 2) 

( 18) 

(19) 

The quanti ties kn01m from the experimental results 'which 

can be substituted in equation (19) are the SO concentrations 
, 3 

at various time t alor.g the length of the combustion chamber. 

The data obviously is not enough for the direct solution of 

the equ2.tion. 

Hm'lever, mathematical method of separation of exponentials 

derived by Lonzos was used for the determination of K ,K and' 
1 2 

a. A detB,iled solution is given in Arpendix 6. 
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The values obtained for a, k1' and k2 from the experimental 

results are given below: 

FIG. 6.7 

FIG.6.9 

FIG.6.11 

-1 11 .8 Sec 
, -1 

k2 = 1.24 Sec 

a = 1 W p.p.m .. 

-1 -1 
k1 =11.52 Sec k2 = 1.5 Sec 

a 120 p.p.m. 

-1 
10.53 Sec -1 

k2 = 1.4 Sec 

a = 12($ p.p.m. 

An examination of these values show that the rate 

,of formation,of .s03 is approximately eight times the rate 

of its dissociation. 
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CEAPTER 8 

CALCULATIONS OF THE THEORETICAL PERCENTAGE 
OXIDATION OF SO TO SO U1IDER 

2 ;:, 

EQUILIBRI1J1.1 CONDITIONS 

Consider the formation of sulphur trioxide by reaction of 

sulphur dioxide and molecular oxygen represented by the equation 

SO + t 0 
2 2 

SO + 22.6 K cal/g.mol (6H) 
3 

Tnis reaction has been extensively studied and Reference (80) gives 

t~'iO equ2.tions taken from Bodenstein and Pohl19 and Kapustinsky and 

81 ' 
Samovs~J . They have related the thermodynamic equilibrium constant 

K? with absolute temperature. 

, (Reference 19) log Kp = 51~.5( + 0.611 log T - 6.7497 (1 ) 

( D"'-~"'r-ncc> 81 ) log K _ 5005 4.743 .;.L ..... ~..... t;.:.. ....... 

T l= 

p SO 
\.;:r~ere K 3 = 

l= 1 
'2 

P SO 
2 

x p 0 

T = oK 

and p = atms. 

1'facfarlane82 states that there'is little to choose between 

"tn.8se hro sets of sources for obtaining the value of K as the'4ifference 
p 

~~ tie v2.lue of K from the two sources is 2 per cent at 7000 K and 
l= 

3 D8r cent at 1500oK. 
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FrOD e~u8.tion (3), vle have 

Here the ~uotient 

1 
K • P 0' 2 

P 2 
= 

p SO 
3 

p SO 
2 

p,SO 
3 is independent of the units of measure 

p SO 
2 

since they c8.ncel from both the numerator and denomenator. Therefore 

the units might equally be parts per million instead of partial 

pressure. ~Le object first is to relate'the equilibrium conversion 

of SO to SO '\d th the availa bili ty' of oxygen and the thermodynamic 
2 3 

equilibrium cop~tant K • 
p 

rl[ultiplyin~ l.h.s. of equation (4) by 

p SO + P SO 
2 3 we have 

p SO + P SO 
"2 '3 

1 P SO + P SO P SO 
K P 0 2 2 3 3 = 

P 2 

P SO + P SO P SO 
2' 3 2 

1 

K P 0 2 P SO p SO 
P 2 2 3 

or = 
p SO + P SO pSO + P SO 

, 2 3 2 3 

(6) 

Dividing both nomenator and denominator of l.h.s. of equation 

(6) by P SO , we get 
2 

1 

K P 0 2 P SO 
I' 2 3 

(7) 
SO = 

P P SO + P SO 3 

+ 2 3 

P SO 
2 
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~ 

~ 
\ 

-

Su.bsti tuting the value of p SO from equation (4) to equation (7), 
3 

we get 

P SO 

p SO 

P SO 
3 

+ P SO 
2 

p SO 
3 

3 

2 

J... 
K . x P o 2 

P 2 

+ K p 0 
P 2 

K 
p 

1 
"2 

(c.) 

p SO 
2 

+ p SO 
3 

= ••. (9) 
K 

p + I 
p 0 2 

2 

the expression arrived at relates the conversion of SO to SO with 
2 3 

the equilibrium constant and the partial pressures. We now calculate 

quantitively the variation of the per cent conversion with partial 

pressures of oxygen and· tempe"ra hire. 

Let us consider the composition of the fuel by wt. as 

Carbon 83.5% wt. 

Hydrogen 13.1% wt. 

Sulphur 3.4% wt. 
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i • 

Basic 19. of fuel .-

Consti- vTt. I g moll 
MolO / Mols 

2 Products products/ tuent fraction g fuel g fuel 
g fuel 

C 0.835 I .0694 .0694 co .0694 
2. 

H 0.131 .0655 .0327 H 0 .0655 
2 

s 0.034 .00106 .00106 SO .00106 
2 

Total .10316 .13596 

Therefore, one 1 g. of the fuel would require .10316 g.mol. of 0 • 
2 

Composition of dry air (at sea level84
) 

oxygen 20.99 per cent vol. 

carbon dioxide 0.03 per cent vol. 

nitrogen 78.98 per cent vol. 

Hence, g mol. atmospheric nitrogen/g fuel 

== 0.103·16 x 
78.98 

20.99 

0.388 

Therefore, stoichiometric air == .10316 + .388 

Also, wt. of 0 required/g. fuel 
2 

wt. of air required/g fuel == 

0.10316 . x 

3.3 g 

100 
3.3 x--

23.1 
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== 14.3 g. 
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• 

• 

A: 2:~i:~~~~e~ric conditions, . 

c:.;..;.e.::-:."ti -ty of ccmbustion products formed by combustion 

c: '5' of fuel: 

15 , 0: fuel on combustion produced 00694 g mols of CO 
2 

15 . of fuel on combustion produced .0655 g mols of H 0 
2 

1-15· of fuel on combustion produced .00106 g mols of SO 
2 

,Therefore, the total combustion products formed, including 

rri trogen ~"2.s, 

.388 + .0694 + .0655 + .00106 

0.52396 g mols/g fuel. 

- 116 -



-J 

I 

~.xce[js 

0 
:3 

% wt. 

0.11 

1.1 

2.2 

3.3 

4.4 

5.5 

6.6 

8.8 

1~xcc8s 

Air 
% wt. 

0.476 

4.76 

9.52 

14.28 

. 19.04 

23.80 

28.56 

38.08 

Mol~; excefl::.1 Moh; exceso 
Air/ o / 

g fuel 2 

g fuel 

0.00234 0.000531 

I 0.0234 0.00531 

0.0468 0.01062 

0.0702 0.01593 

0.0936 0.02024 

0.1170 0.02655 

0.1404 0.03186 

0.1872 0.4148 

Mols total p 0 1 I 
p 0 

:;-

products <:) 

atmos. :3 

. / atllloc. 
g fuel 

0.52630 0.001029 0.0322 

0.54736 0.01029 0.1028 

0.53488 0.02058 0.1415 

0.53989 0.03087 0.1750 

0.54420 ' 0.04116 0.202 

0.55051 0.05145 0.227 

0.55582 0.06174 0.248 

0.56544 0.08232 0.287 



Terr.? oK 

700 

8CO 

900 

1000 
I 

1100 

1200 
I 

I 1300 

1400 

15cO 

1600 
I 

• 

• 

?::-:J=- e::uation 

I 

( 2 ), log K 
p 

5005 

5005 _ 4.74 
T 

log K 
p I 

T = 5005 _ 4.74 K 
T P 

7015 2.41 257.0 

6.26 1.52 33.11 

5.56 0.82 6.61 

5.01 0.27 1.86 

-
4.56 1.82 0."661 

-
4.17 1.43 0.269 

-
3.85 1. 11 0.129 

3.58 2.84 0.0692 

-.-

3.34 ',2.60 0.0398 
-

3.13 2.39 0.0246 
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1 P S03 

I 
K P 0 -;r = p 2 ---

P S02 
Temp. oK 

% wt. excess oxygen 

0.11 1 • 1 202 I 3.3 4.4 5.5 6.6 8.8 -

700 8.28 26.5 36.5 45.0 52.0 58.4 63.8 73.9 

800 1 .065 3.4q5 4.69 5.8 6.7 7.51 8.21 9.5 

900 0.213 0.679 0.937 1.16 1 .335 1.50 1.64 1.9 

1000 0.0558 0.191 0.263 0.326 0.379 0.422 0.461 0.534 

1100 0.0213 0.068 0.0935 0.1160 0.135 0.150 0.164 0.190 . 

1200 .00866 0.0277 .0381 0.0471 0.0555 0.0611 0.0667 0.0774 

1300 .00415 0.0132 0.0183 0.0226 0.0263 0.0293 0.0320 0.0370 

1400 .• 00223 .0071 0.00980 0.0121 0.0141 0.157 .0172 0.0199 

1500 .00128 .00409 0.00563 0.OC695 0.0081 0.00904 .00987 0.0114 

1600 .000792 .00253 0.00348 0.0043 0.00502 0.00559 .0061 .00706 
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0 Temp. K 

700 

800 

900 

1000 

1100 

1200 

1300 

1400 

0.11 

89.5 

51.4 

17.6 

5.29 

2.08 

0.866 

'0 ~ 415" 

0.223 

( 
1 

1.1 

96.1 

77.4 

40.4 

16.0 

6.38 

2.70 

1 • 30 

. 0.71 

'l'ABL8 U.4 

K 
~-

P S03 . P O2 
P 1. ] 100 = [ . ] x 100 

+ K . p 0;/ P S02 + P S03 . p 

. % Excess oxygen 

2.2 3.3 4.4 5.5 6.6 8.8 

97.4 97.9 98.4 98.4 98.4 98.6 

82.5 85.3 87.0 88.2 89.4 9C.5 

48.5 53.7 57.2 60.0 62.0 65.4 

20.8 24.5 . 27.5 29.6 31 .5 . 34.7 

8.54 . 10.5 . 11 .9 13.0 . 14.1 16.0 

3.68 4.5 5.2 5.75 6.25 7.2 

1.80 2020 2.56 2.85 3.10 3.58 

0.98 1.20 1.40 1.55 1.69 1.95 
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CHAPTER 9 , 

:2:j:P:2:RiT·SI:':S ON IGNI'l'ION DELAY MEASUREMENTS 

9.1 n;rROD'JCTIO:'I 

T~is chapter deals with the study of ignition delay time 

of the different fuels used in the previous experiments. The 

ignition delay time or simply the Ignition Delay is termed 

as,tne time lapse between the introduction of a fuel droplet 

into a heated atmosphere and its eventual ignition. 

The need for the measurement of ignition delays of 

individual liquid fuels has been discussed earlier. 

Tech~iques used for the measurement of ignition delay was 

, 87' 
similar in principle to that used by Satcunanathan and Zaczek. , 

9.2 Descr i n1; i on of Apparatus 

The general arrangement of the apparatus and associated 

equipments are shown in Plate 9.1. 

9.2.1 Electric furnace and heated surface 

The apparatus used in the investigation is shown in 

Fig. 9.1 '. The electric furnace consisted of a vertically 

'nlaced stainless steel cylindrical tube closed at the bottom 

ana. heated by means of an insulated electrical heating coil. 

T::-£ cylinder i'ras then placed in a cubical asbestos chamber 

filled Id tI:. asbestos wool. This was done to protect 
: ! 
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associated equipment from heat of the furnace~ Temperature 

of the furnace was controlled through a voltage regulator. 

The flat machined surface of the bottom of the chamber acted 

as a 'heated, surface' on wl1ich fuel droplets under test \-rere 

allm .. ed to fall. A cover 50mm diameter, machined from stain-

less steel fitted over the top of the cylinder and was " 

securely fixed by means of a screw. The enclosed cylinder 

served as an 'ignition space'. A stainless steel tube was 

fitted to the cover. The top end of the tube was connected 

through a stop valve to compressed air supply for purging 

combus,tion ,products after ignition. Three more holes were 

drilled in the top cover, a central one 5mm in diameter for, 

the 'introduction of ,fuel drople,ts, a second one '3mm diameter 

and10mm from the centre for the introduction of thermocouple 

and one 5mm diameter and 19mm from the centre on the other 

side for the detection of explosion. 

9.2.2 Fuel Container and Droplet formation 

Fuel container consisted" of a 50 cm3 graduated burette 

as shmm in Fig. 9.1 and the arrangement is also sholm in 

Plate 9.1. The end of the burette was surrounded by a cooling 

chamber \-ri th inlet and outlet openings for allowing cooling 

water,to flow through the chamber to maintain a constant 

temperature of the fuel. The temperature of the fuel at the 

tip of the burette would rise due to its proximity with the 

furnace. It was found that consistent results was achieved 

when droplets collected near the end of the burette were 
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discarded and fourth or fifth droplet ~vas used for test. The 

"I'it. of a single drcplet Has determined by collecting a knO"\m 

number of clroplE:ts and then .weighing them on a torsion balance. 

The fuel. height in the burette was kept constant by filling 

in more fuel under test after every successive experiment. 

9.3 7emperature Measurement 

The temperature of the surface of the bottom of the 

chamber was measured by means of Ni er/Ni Al thermocouple'attached 

to an electronic thermometer supplied by eOMARK of Type 1602 and 

of range - 1200 e to· 11000 e in 12 steps of 100oe. The thermo-

couple was so placed as to make contact with the bottom surface 

of the cylindrical chamber. 

9.4" Ignition Delay Measurement 

The ignition delay i.e. the time lapse between the' 

introduction of the fuel droplets through the central hole of 

the cover into the I combustion space I and its eventfuli[;rli b,o~ , 

viaS measured by means of a Venner Digital Trimmer triggered 

by two fhoto-transistor circuits. The circuit diagram is shown 

in Fig. 9.6. 

i;b 
A fuel droplet just before entering the furnace breaks a 

beam of light focussed on a photo-transistor and sends an 

impulse to the digital counter as a short impulse. The drop of 

fuel ignites in the hot chamber and a small explosion occurs. 

This sends a pressure s:ignal through another opening in the· 
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Iurne.CE: cover thereby deflecting a very light shutter (made of 

a thin s~eet of aluminium) pivoted in such a manner that it 

interrupts another light beam focussed on a second photo­

transistor and an impulse is relayed to the counter as a 

stop pulse. 

Hain errors involved in the measurement of ignition 

delay time could be classified as follows:-

a) response time of the electrical circuits, 

b) the time taken by the droplet to reach the surface 

after breaking the -'starting beam of light', 

c) the response time of shutter after ignition and 

explosion had occurred. " 

T'\w relays were employed in the trigger circuit. Since' 

both relays rea~ted subsequent to the breaking of the corres­

ponding light beams and asslming the reaction time for both 

relays 'irere the same, the errors "lvould cancel out. The time 

taken by the fuel droplet to reach the surface after breaking 

the 'starting beam' would be the same for every 'test and as the 

study vras concerned with the relative values of ignition delay 

times, results were not effected. The error involved in the 

res~)onse time of the pointer was difficult to evaluate but 

here again, it did not effect the relative ignition delay, 

values, assuming the response time was the same in every case. 

However to minimise this error, the pointer was made of a thin 

tin foil and was sensitive to even a minor' below of air. 
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9.5 Experimental Procedure 

Tetlperature of the combustion space was raised at a rapid 

rate initially until a liquid fuel droplet started igniting when 

allowed to fall in the space. After locating this temperature 

. approximately which was foun~ to be about 3800 C for Kerosine 

droplets, the currerit supply to the heater was reduced to lower 

the temperature of the 'heated surface'. The.temperature was 

then raised gradually and the rise in temperature was recorded. 

When steady conditions were reached and no change'in temperature 

was observed, a fuel droplet was admitted and ignition deiay 

time was noted in the digital timer. After each droplet, the 

ignition space was scavenged by means of compressed air flowing 

through the chamber. This brought down the temperature inside 

the chamber by a few degrees of centigrade~ The air supply 

was then closed and the temperature of the 'heated surface' was 

again allowed to stabilize for about 5 minutes. Fuel droplets 

collected near the tip of the burette was drained and the tip' 

now contained fresh cooler fuel from above. Another test was 

. conducted by iptroducirig another fuel' droplet into the chamber, 

and ignition delay time and the surface temperature of the 

ct.amber was noted. The above procedure was repeated until the 

temperature of the heated surface was raised to about 700°C. 

The same procedure was. carried out for decreasing surface 

temperature and the values shown are the mean of the two values. 
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~znerirnental Programme 

The follmdng experimental programme was decided: 

, I 
I '/ Determination of ignition delay curve for Kerosine 

droplets vii th respect to change in the surface telllpera ture 

of the chamber. 

2) Determination of ignition delay VI'S surface tenperature. 

of hydrocarbons used in the previous programme of 

experiments (Part r), namely Cyclohexane, n-hexane, and 

n-Pentane. 

3) Determination of minimum ignition temperature of Kerosine, 

Cyclohexane and n-Pentane and comparison with the results 

of other workers. 

, It was decided to investigate the ignition delay curve 

for Kerosine most thoroughly and to make this curve as a basis 

for comparison with the curves of other hydrocarl>oris used. 

Arpropriate amount of carbon-disulphide (CS ) was added in 
2 

s3.cn fuel under investigation to make it 3.4% S(wt). 

9.7 Exusrimental Results 

The results obtained of the ignition delays with varying 

surface temperatures are shown in Fig. 9.3. The curve of 

ignition delay for Kerosine droplets covered the whole range 

of ignition, i.e., the lo\·rest temperature at which ignition 

-,';3.S ottained to the highest tenperature possible under the 

li3it of experimentation. Fig. 9.4 ShOHS the results obtained 
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for cyclohexane, n-hexane and n-Pentane and also includes 

the curve for Kerosine obtained earlier. Table 9.1 shows 

the s:t='c:>ntar:eous ignition temperature of Kerosine, cyclohexane, 

n-hex9.ne and n-Pentane obtained experimentally and it compares 

the results of other workers. 

9.8 Discussion 

Before the results can be discussed, the behaviour of 

droplets on a hot surface is considered here. Fig. 9.2 ShovlS. 

a typical curve obtained by Tamura and Tanasawa85
, in the form 

of lifetime of droplet versus surface temperature. This has 

been discussed in detail elsewhere86
0 Three distinct regions 

are recognised; namely contact evaporation stage from 

6 to 6 , transition stage from e to e , and spheriodal 
o 1 1 2 . . 

-
evaporation stage from e to e. (These notations are 

2 3 

introduced to denote specific points on the life curves). It 

is argued that up to e evaporation takes place by physical 
1 

contact of the liquid with the hot surface. From e to e 
1 2 

boiling bkes place and e is the maximum boiling rate point, 
2 

and e is the Leidenfrost point, after vrhich the droplet 
3 

evaporates in spheroidal state and spheroidal evaporation 

stage begins. 

The data of reference85 was used by Satcunanathan to 

obtain values of e, e and e , and these values when plotted 
123 

against e (the bOiling point) gave linear relationship. 
B 
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The equations to these straight lines are given below 

e (1'.055 e + 6) °c 
1 B 

e := (1. 156 e + 27) , °c 
:3 B 

El (1.4 8 + 78) °c 
3 B 

where e := the boiling point of the liquid. 
B 

Taking the above theory as a guide line, there appears 

to be obvious resemblance between the ignition delay-temperature' 

curve shown in Fig. 9.3 and the lifetime curve sho'iffi in Fig. 

9.2. The results show that the ignition delay is critically 

dependent on the temperature of the heated surface. It,' 

decreases initially, reaching a minimum at a temperature near 

maximum boiling rate point. The ignition delay then increases 

id tll rise in temperature of the heated surface reaching a " 

maximum, and then decreases w:Lth the rise in tempera ture of the 

heated surface. This p8ttern was possible to achieve only 

with Kerosine droplets. The ignition d~lay curves ~f hyc1ro-

carbons, cyclohexane, n-hexane ar:.d n-Pentane exhibit no such 

definite characteristics. This had been earJier 

predicted86
,8

7
, and the results appear to be in complete 

agreement. 

C~reful study and comparison of the curves of the ignition 

delay v. surface temperature of light hydrocarbons with that of 

KerosinE: shO'iT that after a tenpe;ature' of say 500oC, the'rate 

of decrease of ignition delay is sloi-rer with Kerosine than with 

light hydrocarbons. This can be more clearly seen in Fig. 9.4. 
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Tr.e purpose of the vihole exercise 1',raS to determine whether fuels 

proiucing less SO compared to Kerosine have shorter ignition 
3 

delays. It can be seen that fuels, viz. cyclohexane, n-hexane, 

and n-Pentane, those that produced less SO have steeper slope 
3 

of their ignition delay curves compared with Kerosine. It is 

therefore reasonable to expect that these fuels have shorter 

ignition delays compared with those of Kerosine at temperatures 

prevailing in flames.' 

Here it may be pointed out that magnitude of ignition 

delay may differ with a change in the form of apparatus and 

other conditions. However the shape of the curves is not 

expected to vary as was proved j.n the case of Kerosine droplets. 

Tr1e measurement of ignition' de lay at higher temperatures was 

not possible due to the difficulty i~minimizing response time, 

and other techniques are ,lmder considera Cion for future research. 

The general shape of the curves of different fuels can give an 

indication of the likely values of ignition del~ys at higher 

temperatures. Thus fuels having steeper slope of ignition 

delay curve compared wi thKErosine vIill be expec ted to have 

less SO formation on combustion than KEros:!_ne. 
3 
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, <(IS & SOD. II -- » e JIlt --. 

TABLE ':1.1 

Physical and combustion properties of fuels used in the experiments 

, 

Fuels Formula Molecular Specific BOiling Point* Spontaneous ignition temperatures 
15°C 0 Weight gravity at range\":J5%f C Ref. \ 1 ) - Ref.\2) I 

. -

Kerosine - - u.79 160-290 254 -

Cyclohexane CH2 \CH2)4CH2 tS4.1 6 0.776 80-82 - 510 

n-hexane 

n-pentane 

CH3 \CH2)4CH3 86.18 0.670 67-70 248 500 

CH3.\CH~) -,CH5 
72.15 0.625 35-37 290 51 u 

Reference l.1) - Scott, G.S., Jones, G.\·l.; and Sctt, F.E, Analytical chemistry, 1948,2U ,238. 

Reference'l.2) -Townend and Maccormac, J. Inst._ Pet., 193~, £2 . 495. 

Reference \5) - Satcunanathan,S., 

(4) - Author 
.. 

* Technical Data on Fuel - Spiers, H.M. 

Ref. \3) I Ref. \4) 

295 260 

516 512 

478 482 
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APPARATUS FOR THE 

MEASUREMENT OF IGNITION DELAY 

OF LIQUID FUEL. 

DESIGNED AND CONSTRUCTED IN THE FUEl 

Y MIDDLE SE X POLY -
H LABORATOR . 

RESEARC THE PHYSICS E)(.til-
CHNIC. EXHIBITED A1 

S COURT LONDON. 
EARL' 

PLATE 9 . 1 Gener a l Arrangement of the a ppar atus . 
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PLATE 9 . 2 Enlarged vi ew of (A) (Plate 9.1 ) . 



CHAFTER 10 

The mechanism of formation of sulphur trioxide in combustion 

gases produced during c0mbustion of liquid fuels bearing sulphur 

ha$e been investigated. A laboratory combustor was designed and 

constructed when this phenomena was studied using a pre-mixed flat 

flame eliminating physical effects of evaporation and mixing in the 

cOmbtllition zone. Thus it was possible to investigate purely chemical 

effects on the formation of SO. No'results have so far been published 
3 

when formation of SO was studied under these conditions. By the use 
3, 

of a laboratory combustor, the phenomena was studied in an actual 

combustion system, and therefore the results reported can be applicable 

in the field of combustion. 

The effect o~ ignition properties of fuel on the formation of 

sulphur trioxide has also not been reported previously, and therefore 

the present work breal;::s new ground in the field of combustion. 

It was found that hydrocarbons producing less sulphu~ trioxide on 

combustion compared with burning of Kerosine (having same level of 

sulphur content and under identical combustion conditions) have steeper 

slope of their ignition delay curves and thus shorter ignition delay 

times near temperatures prevailing in flames compared'with those of 

Kerosine. It was also found thRt the hydrocarbon which produced least 

amount of sulphur trioxide on combustion has the highest slope of ,its 

ignition delay curve. ,(See Fig. 9.5). 

, ! 
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Based on the results of these studies, the following main conclusions 

can be derived :-

1 • Reduction of combustion air in excess of stoichiometric 

requirements had a marked effect on the formation of SO • 
3 

When combustion takes place under fuel rich conditions, SO 
3 

formation ceases. 

2. Level of SO content in the flue gases reaches a maximum at 
3 

about 4% excess oxyge~ concentration in the combustion gases 

after which it starts declining. 

3. It has been noticed that ignition properties of hydrocarbons 

have a considerable effect on the oxidation of sulphur 

dioxide to sulphur trioxide. It was found that hydrocarbons 

of lower ignition delay properties and having steeper slope 

of ignition· delay versus surface tempE!ra ture curve produced 

less SO on combustion. This evidence supports the view 
3 

that primarily it is the combination of atomic oxygen with 

sulphur dioxide in the flame which governs the formation 

0:: sulphur· trioxide. 

4. The results obtained of SO concentration with respe6t to 
3 

residence time supports consecutive reaction theory, i.e. 

SO· + 0 
2 3 

SO + + 0 
2 2 

where K and K are specific rate constants (unit of 
1 2 

-1 ) K = sec . 
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l 
Tbis assumes a process in which sulphur is formed as a 

result of the co;,:bination of su.lphur dioxide and atomic 

oxygen. Sulphur trioxide thus formed, dissociates into 

slAlphur dioxide and molecular oxygen.· The rate of formation 

of SO has been found to be nearly eight times that of its 
3 

dissociation. 

5. The reduction of SO in the system can be brought about by 
3 

the introduction of any substance that can mop up atomic 

oxygen near the flame zone or change the ignition 

-characteristic of the fuel used by initiating early 

reactions. 
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CHAPTER 11 

APPENDIX 1 

1. Calculation of stoichiolf1.etric air/fuel ratio 

CCJrr:bustion Reactions 

C + 0 -~ CO 
2 2 

12g C + 32g 0 -..,.. 44g CO 
2 2 

or per gram of carbon (fuel), 

1 g C + 2.67 g 0 --- 3.67 g CO 
2 2 

Similarly, for the combustion of Hydrogen and Sulphur, 

and 

H +-to ---- HO 
222 

1 g.H + 8g. 0 -- 9g 
2 2 

S + 0 ~ SO 
2 2 

H 

1 g S + 19 0 -- 2g SO 
2 

0 
2 

2 

On mass basis, the combustion equation for carbon is as follows 

considering oxygen is taken from atmosphe:r;-e, 

19 C + 2.67g 0 + 8.83g N 
2 2 

-3.67g CO 
2 

+ 8.83g N 
2 

Therefore, the theoretical amount of air required to burn 19 

of C = 2.67 + 8.83 = 11 .5g 
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"'::) -C"J.r::1 is::" ~ydrog8n, amount of air required = 34. 5g 

::.:,_i "':;C :::'ctrc. 1 s 0: Sulphur, amount of air required = 4.31g. 

(a) ?~sl - Diesel Oil. 

C- ') 0, 

~~8 chemical composition of the fuel after doping 

Hi t:!-~ 8::.:::,oon disulphide to raise sulphur content was as 

follc,';s : 

Carbon 

Hydrogen 

Sulphur 

Basis 19 0: fuel. 

83.6% 

13.0% 

3.4% 

Ccmbustion of O.836g C requires 0.836 x 11.5 = 9.63g of air. 

Como1J.stion of O.13g of H requires 0.13 x 34.5 = 4.49g of air. 
2 

Ccm-oc;.stion of 0.034g S requires 0.034 x 4.31 = .147g of air. 

T!-~srei'cre j" the combustion ail, required for stoichiometric 

b~~ng = 14.27g of air. 

Air/Fuel mass ratio for stoicr.iometric 

burning 

Fuel - Kerosine. 

Carbon 

Hydrogen 

Sulphur , 

14.27 

83.2% 

13.4% 

3.4% 

The ccsoustion air required for stoichiometric burning 

is 14.34g per g of fuel. 
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11. CElculcc tion of composition of fuel from a typical exhaust 

gas analysis 

Fuel: KerO;Jine 

Exhaust gas analysis 

CO 11 .7, 
2 

CO NIL 

0 4.6 
2 

SO 0.17 
2 

Balance N 83.54 
2 

Consider 100 moles of dry exhaust gases 'and let 100 X moles 

of air be used with the fuel. 

The combustion eqlla tion is 

a C + b H + c S + 21 X 0 + 79 X N 
222 

= 11.7 CO + 4.6 0 + 83.54 N 
2 :3 ' 2 

+ d H 0 + 0.17 SO 
2 2 

By olOlET balance, 

Carbon a 11.7 

Hydrogen b = d 
, ' 

Oxygen 21 X 11.7+4.6 d 0.17 '+ - + 2 

Nitrogen 79 X = 83.54 

Sulphur C 0.17 
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Solving these equations, we get 

x 1.06 and d == 11.66 

T!-lerefore, the mass analysis of the t'uel, . 

~. Carbon 
11. 7 x 12 

8301 a% 11.7x12+ 11 .66 x 2 + 0.17 x 32 

Hydrogen = 13.7% 

Su.lphur = 3.2% 
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Ill. Calcula tion of exhaust gas ,composition from a 

typical reading of air anc fuel supply. 

Fuel: Diesel Oil. 

Rate of fuel flow 

, ''There density of fuel 

Rate of air flow = 

2.55cc/min. 

2.14g/min. 

= 

2.55' x 0.84 

29 lit/min. at N.T.P. 

= 29 x 12.93 x 10-1 g/min = 37.5g/min. 

where density of air at N.T.P. = 12.93 ,x 10-4
, g/ cc 

Air/Fuel mass ratio = 17.5 
'- : 

X 
17.5 0.604 = 28.96 = 

where X is moles of air supplied per g of fuel. 

Composition of fuel being: 

c, 83.6% H, 13.a/o s, 3.4% 

The combustion equation is: 

~836 (C) + 0.13 (H) + 0.21 X (0 ) + 0.79 X (N )' 
12 2 2 2 2 

By molar 

C 

H 
2 

+ 0.034 (S) 
32 

a (CO) + H 0 + d (0 ) 
2 2 ' 2 

+ f (N ) + e (SO )' 
2 2 

balance, 

Balance a = 
0.836 0.0697 12 --

Balance ,b 0.13 = 0.065 2 
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% 0 in the dry flue gases = 
2 

% SO in the dry flue gases 
2 

Experimental values 

co 
2 

o 
2 

= 11 .9% 

4.1% 

SO 1610 p.p.m. 
2 

0.02324 
0.571 

.00106 
.571 = 0.185% 



IV. 

( 
I 

Sample calculation for residence time of 

combustion gases. 

Say fuel used i::'l Kerosine and the rate of flow 

= 2.14 x 103 kg/min. From 'spiers' ccmbustion gases at aOc 

and 760 mm Hg produced on burning Kerosine with stoichiometric 

are 12.13 m3 per kg of fuel. 

'Therefore, combustion gases produced at 

N.T.P. 

= 

Theoretical combustion air required for burning 1kg of Kerosine 

at N.T.P. = 11.35 m3 (spiers) 

at 20% excess air = 11.35 x 0.2 

= .2.27 m3 /kg of fuel 

Actual excess air = 

Total volume of combus bon gase~ uSing' 20% e~cess air 

= 

Volume of combustion gases at 600
0
C (say), 

1 -3 873 = 30.85 x 0 x 283 

Cross sectional area of the combustion tube .. 

= 
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.. 

velocity of combustion gases 

== 

9'2.7 x 10-3 

8 X 10-4 X 60 

2.06 mls 

Residence time at post 3, 1m from the burner 

pIa te, T 
3 

== 
1 

2.06 secons 

== 0.484 s 
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APPEI'llIX 2 

TrL8 EvapoTa ting Ctamber 

. The main criteria for thE- des::'gr. of the evapora ting ct9.s·oe~ 

- "JaS thE.t it should be able to evaporate at least 10 crr? of Kercsi;:e 

. per minute and mix it with air prior- to entering the combustior.. 

zone. -

T&king the sp gravity of Kerosine as 0.78 at 15°C, ~Jlich ~s 

assumed as room temperature; mass flo~: rate of Keros:i.ne, 

1 0 x 0.78 :=: 7.8 g/ min. 

(.q 
From 'spiers', mean sp. heat of Kerosine 

2.0 KJ/Kg K 

Say, the· final temperature of Kerosine 

Heat required to raise the temperature of Kerosine frem 15°C to 

m x sp. heat x (T 
2 

T ) 
1. 

"l'There' m = mass flow rate of Kerosine 

= final temperature of Kerosine 
2 

T initial temperature of Kerosine 
1. 

Taking latent heat of evaporation of Kerosine 

355 KJ/Kg, 

- To~al heai required by Kerosine, 

7.8 Z 10-3 (355 + 2.01 (180 - 15)) 

r 37 T/J'/"'l- n :> • J\....l..'.J.J.. 

0.0895 )~J/sec 0.0295 }(\;I 
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Stoichiometric air required for burning 

Kg of Kerosine 14.7 Kg· 

Total air required using 2CP/o excess air 

7.8 x 14.7 x 102 x 10··3 ·Kg/rnin. 

= 138 x 10-3 Kg/min. 

Taking, sp. heat dJ: constant volume of air 

= 

Beat required by air 

= 

0.714 KJ/Kg K 

0.714 x 138 x 10-3 X 165 

16.2 KJ/min. 

0027 KJ/sec. 

0.27 kW 

Therefore total heat required = 0.27 + 0089 

0.359 kW 

Therefore a 005 kW electric heater should be sufficicmt for thi::: 

purpose. 
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CB) 

APPENDIX 3 

Ce.1Cu.1E.tions.of mo.ximum combustion gas 

vsioci ty and fuel flO1" for laminar conditions 

All calculG. tions are duplicated for hw temperatures of: 

(a) 10000 e 

Cb) 600
0 e 

Ccmbustion gas density 

° 'faking the density of combus tion gases at 0 e and 760 mm H.g .: 

to be 1.257 Kg/m3
, the density of the combustion gases at the 

t'\'iO temperatures are: 

(a) at 1 ooooe , the gas density 

0) , 0.269 / 3 Kg m 

(b) at 600°C, the gas density, 

1.257 x ~273 + 0) 
0.393 Kg/m3 = 600 + 273 

Ats0lute viscosity of the combustion gases 

Assume viscosity of the combustion gases 

= viscosity of nitrogen. 

(a) Acsolute viscosity of N ·at 10000 e =·461 x 10-6 poises 
2 

(ref. 89) 

461 x 10-7 NS/m2 

(0) Atsolute viscosity of N at 600
0 e = 386, x 10-7 NS/m2 

2 
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_~_~:;-;-=--= - 2000 (for laminar flovr) 

? P JV 
E f.L 

i 

( 
~ Reynolds No. e 

p Density Kg/m3 

D Diameter m 

V = Velocity m/s 

r i-" = Abs. viscosity NS/m2 

t C-.:.: :-:si ~ = =. -::,ine of internal diameter = 32 x 10-3 m 

- ' y R . I-L 2000 461 10-7 , --- - =-,r = e .- x x 
m/fJ P.D 

0.269 x 32 x 10-3 . 

~~~~ m/s 

2000 x 368 x 10-: 
, - .- ':. V . m/s = 10-3 - -- - - : 0.393 x 32 x 

= 5082 m/s 

: -r~ I2.xi::num velocity for laminar floioi at 10000 C _.:; . 
= 10.4 m/s 

5.85 m/s 

I 
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~. 

~ .. 

(D) Combustion gas quantity flow 

Quantity per second cross sectional area m2 x 

velocity m/s 

cross sectional area 

= 

Case a) Q = 804 X 10-6 x 10044 8.35 X 10-3 m3 /s 

Case b) Q = 804 x 5.85 x 10-6 = 4.7 x 10-3 m3 /s 

(E) Calculation for the maximum quantity of diesel and Kerosine 

flow for laminar conditions. 

Diesel. ---
From spiers(89) compustion gases at N.T.P. produced on 

burning 1 Kg of Diesel fuel- with stoichiometric air are 

12.20 m3
• 

. ..... 
Theoretical air required for combustion· 

= . 11.46 m3/Kg of fuel at N.T.P. 

Assuming combustion takes place with 2Q% excess air, the 

total volume of combustion gases 

= 12.2 + 0020 x 11.46 

= 14 049 m3/Kg of fuel at NoT.P. 

Case a) o at 1000 C, 

the volume of combustion gases 

= 14.49 x 1273.15 
.273.15 

- 156-

67.4 ~3/Kg of fuel. 



maximum amount of fuel flo,,[ for lamimtr conditions, 

Taking s.g. of Diesel ,fuel as 0.84, at N.T.P. 

Qdiesel 
124 X 10-6 

= x 1000 x 60 cc/min 0.84 

= ~.8~ cc/min. 

the volume of combustion gases _ 

= 14.49 x .:;:..87"-,,3~-:-1",,,,"5 
273 15 _ 

= 46.4 m3 /Kg of fuel 

Haximum amount of fuel flow for laminar conditions 

= 

102 X 10-6 kg/s 

102 X 10-6 
X 1000 x 60 

0.84 
= 

CC-2oustion gases at N.T.P. produced on burning 

wit~ stoichiometric air (89) = 12.13 m3 

The~retical air required for combustion 

7.3 cc/min. 

Kg of Kerosine 

= 11.35 m3 /Kg pf fuel at N.T.P. 
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Ass u.ID,ing c ccr:'c us tion takes plE,ce with 2a{o excess air, the 

total '[clume of corncustion gases 

12.13 + 0.2 x 11.35- 14.40 m3 /Kg of 
fuel at N.T.P • 

. Case a) 

Total volume of combustion gases 

= 14 4 
1273.15 

• x 273.15 
) 

= 

I maximum fuel flow for laminar conditions, 

= = 124.5 X 10-6 Kg/s 

A2suming sp. gravity of K~rosine as 0.78, 

QK . ErOSlne 
Quality flow of Kerosine 

2~,§ cc/min. 

Cese b) 

Q1( . ero;;nne 
7.9 cc/min .. 
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APPENDIX 4 

Gs-neral prin.:::iple of operation of analyser used for 

the measurement of carbonmonoxide, carbon dioxide 

a~d oxyge~ concentrations in the combustion gases ,-----
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)' 

/ 

Infralyt III Gas Ar,alyser for the Analysis of CO and CO 
2 

Purnose and application: 

The Infralyt is a recording gas analyser operating on a 

Physical principle used for continuous quantitative determination of 

'gas concentrations. It can be used in principle for the evaluation of 

gases consisting of 20r more types of atoms. Excluded from the measure-

ment are gases consisting of equal atoms such as 0 , N , H , Cl , etc. 
/ 2 2 2 2 

as 1'1e11 as inert gases and metal vapours. The results of the measure-

ment in % v/v or g/m3 are recorded and indicated on a moving coil 

instrument. 

Principle of operation: 

The operation of the Infralyt analyser is based on the 

absorption of infra-red radiation. Infra-red radiation forms part of 

the electro"':magnetic spectrum; the range from 2 to 15 ~m is used in 

the infra-red analyser. Gases \'lhich consist of at least two different 

types of atoms exhibit characteristic absorption bands in the infra-red 

regions. The infra-red radiation passing through a cell filled i'li th a 

gas suffers a reduction in intensity over a wavelength range appropriate 

to the gas concerned, according to the Lambert-Beer Law 

;'ihere 

I I 
oe 

-Acd 

I represents the incident radiation, 
o 

C is the gas concentration, 

cl length of the absorption distance (cell~ngth), 

A is the extinction constanto 
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.:..:'"lc c!--_e.re.cteristic of the material "Thich is responsi'cle for the 

S~EJrDtio~ is represented solely by the extinction ccnstant A. Its 

-,-2.;..'.18 lS usue.lly dependent on the l.ravelength. If thE ccncentra tion C 

of t!--£ !J.easured component is increased or if the atsorption distance 

i is extended, the absorption and therefore measuring effect 

increases. The product Acd is often referred to as extinction. 

'I'he emerging radiation I is therefore dependent on the 

gas concentration and the cell length. 

;·Ieasuring Principle: 

The schematic diagram is shewn in Fig. (Appdx. 4. 1 ) • 

The Infralyt operates vTi thout dispersion of the infra-red' 

re.diation. The required specific indication is achieved by using a 

selective radiation receiver. The heat radiation is emitted by trTO 

o ' 
chro:rre-nickel filaments heated to red heat (70C C) and is concentrated 

iJ2 to tHO ce2ms by parabolic mirrors (1) and ('7); . the~e pc~ss through a 

:nee.suring cell (8) and a comparison cell (3) to the radiation receiver(5). 

'l'"e cOBY.J.rison cell '(3) contains a gas vThich does not absorb the infra-

l.'e::i radia ti,on. Pure ni trogen L3 wcled for this purpose.' 

The test gas mixture to be analysed passed through the 

see.suring cell (8). If the test gas exhibits the property of absorbing 

infra-red radiation the two radiation beams emerging from the two cells 

ciiffer in intensity in the appropriate wavelength range.' 

The principle of selective measurement in this instrUMent 

::: :::~sists si' meastITing the intensity difference of the infra-red 
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radiation not vith bolometers 0:;" photocells but by using as 

radiation receiver a sealed volume of the actual gas to be measured. 

The radiation receiver consists of two chambers (4)(9) which, 

are sealed off from the outside by windo~s transparent to infra-red 

radiation and which are separated by a diaphragm condenser. ,This 

diagrarE condenser' consists of ' a thin metal foil (10) mounted under 

tension at a distance of a few hundredths of a millimeter from a 

carefully insulated metal plate (6)0 

iftlen determining the CC content of a gas, for example, the 

two chambers are filled 'with a 15% mixture of COin Argon. If the 

test gas contains some of the receiver gas the resulting difference 

in the radiation produces a selective pressure and temperature 

difference between the t,'/o chambers of the receiver which give rise· 

to a change in ca paci ty. .A· rota ting chopper. (2) interrupts the two 

beams periodically in' synchronism.' The interruption takes plac;e 6.25 

times per second. Th'is measure excludes the sloV! and non-selective 

hea ting of the c,ell walls so, that only th~ temperature rise of the 

gas is measured. The resulting periodic variation in capacity /'<c is 

concerted into an a.c. voltage charge 6u which is more suitable for 

further processing than a fixed capacity corresponding to a' 

particular concentration. 

/ 

The lovl,-level a.c. voltage output now available at the 

radiation receiver is amplifi~d in a value amplifier (11), rectified 

,and then fed to indicating or recording instruments (12). 

/ 
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l 

Permolyt Oxygen Analyser for the analysis of oxygen 

concentration in the combw.::tion gases 

The Permolyt magnetic oxygen analyser is used to determine 

the oxygen content in gas mixtures and the results of the analysis 

(Vol. % 0 ) is recorded on potentiometric recorders. 
2 

Principle of Operation 

Oxygen differs from all other gases by its p~ramagnetic 

behaviour. The magnitude of the paramagnetic effect varies inversely 

. i-rith the absolute temperature, while the diamagnetic properties are 

independent of temperature. For this reason a gas containing oxygen 

placed in a magnetic field will suffer a smaller attraction at elevated 

tempera ture than a colder gas of the same composition .. The measure-

ment of the oxygen. content and· the .conversion of the result into a 

voltage corresponding to the oxygen content takes place in a ring 

chamber. 

This chamber (See }'ig. Appdx. 4.2) is made from a-non-magnetic 

material and consists of an annular gas channel conriected by a horizontal 

glass tube. This tube carries on its outside two platinum windings 

~djacent to each other which are connected together with two Rheostan 

resistance into a Whetstone bridge circuit. When hea~ed electrically, 

the tube becomes hotter in the centre than at its ends. A powerful 

magnetic field is placed at one end of the tube. If gas containing 

oxygen· passes through the ring chamber, it is 'attracted more strongly 

~t the left end of the tube than at the heated right end. A gas flow 

from left to right is produced which is proportional to the oxygen content~ 
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-.- ::;...-.......... !::; 
.-~---~- resistance changes in the two arms of the 

the bridge and give~ rise to a deflection 

- - -::::, ::':,:: ~ ::':':':'_;: ::":',2 -::::'C:':::S::l.t connected in the diagonal which is 
j 

- . - ,-
:=.-::,,~=::.. -~~:: .. .:,.: The measured value is determined 

::;.i::::cly '::y ":::-,2 0"I.j';;';'?::: cc,ntent of the test gas but .i ts remaining 

·:::::::'l=0Si. t::"CCl ;::c..2: =--'-2-: ;:'8 taken into account. The flo,-[ through the 
-~ 

is =-ffected by the coefficient Cp P/~ which therefore 

iYl-=-lu.s~css r:lee.sl~!'ed value, Cp, being specific heat, and p is the 

~s~ity of g=-s =-nd 7{ is the viscosity of the test gas. 

-i'lten c=-li'o::=- ting the Permolyt , it is necessary therefore 

-:'J use 2- g2-S cC::'::'e3:;:::;:~}ding to the actual test gas. -

l'he ccnsta::::c-t-te:::::perature measuring system (1), the transis-

-:,:)::'ise::: 20::l.s-:=-n-: v:Jl t=-ge supply with temperature controller (6) and 

-:~e cc:r~t::,ol lLli t (i 0) =-re designed as separate sub assemblies and 

=-::'9 8C::"1-:2.i::"12-::' in 2. 2::-~2et steel dust and splash-proof housing which 

'::'ne ,)Z:.'g2E ::cntent is recorded and indicated on instruments 

,,-::-_iC::-L =-::'9 iYls-::s.:::'le,:' 32parately frcm the Permolyt. 
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I APPEmHX 5 

CalculEtion for the thickness of the insulE.ting blanket 

?:-.eory. 

Consider Fig. A5-1 below "Thich shows the cross-section of the 

insulation on the pipe. The outside radius of the insulation and 

the pipe being r. and rp respectively. The corresponding temperatures 
. :L 

are t. and tp where t. > tp and the heat transfer rate Q is in the 
:L :L 

direction shovm. 

, 

I 
.~ 

FIG. A5-1 

I 
Ccnsider unit length of the tube and an elementary thickness of 

insulation dr at radius r. Let dt be the temperature fall across 

dr, then considering the heat transfer rate Q is constant through 

each successive layer of material, 
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I, 

Q. KA dt 
= - dr 

where K = thermal conductivity 

A :::; surface area (m
2

) 

For unit length of pipe, A 2 r x = 

Integrating: 

dt Q. = K 2 r dr 

(W/mK ) 

2 r . 

Heat transfer rate per unit length = Q. = . 2 K(tp ~ ti) 
in r i 

r 
p 

Now, considering he~t transfer from the outer surface of the 

lagging to the surroundings, and applying the ~quation: 

Q = hA e 

where' h - . 'surface transfer coefficient (W/m~) 

A = surface area (m
2

) " 

e = temperature ~ifference between the surface 

For unit length, 

and its surroundings 

A = 2 r. 
]. 

Q. = h 2 r. (t. - t ) 
]. ]. a. 

Transposing equation (3) and (4) we have, 

r. 
Q. ln~ r 

p = t t. 
P ]. 

2 K 
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-.. : r 

t 

Q, 

2 r. h 
~ 

Adding both sides: 

In r. 
-1:. 

~ 
r 

12 + 2 K r. 
~ 

= t. 
~ 

h = 

t 
a 

Application to the present problem: 

t t p a 

Heat lost per m~ter length of the pipe is also 

= = m x cp x dT 

vThere m = rate of mass flo\'/ of combustion gases (g/s) 

cp sp. heat of combustion gases (J/g deg.C) 

dT = temperature drop per meter length of the tube. 

o 
A gas· temperature of 1000 C-at the beginning of the combustion 

° tube and a temperature drop of 100 C. along 1 meter length of' the, 

tube are assumed. ' 

Taking sp. heat of combustion gases as that of air, the sp. heat 

of air at 1000oC, from Spiers 89 
= cp ='1.21 J/g ,deg.C, the density 

of combustion gases at 1000oC, calculated in App. 3 ~ 269 g/m 3 , 

and the rate of volumetric flow of combustion gases at 20000 C was 

calculated = 8.3 x 10- 3 ill /s. Therefore the rate of 'mass flow = m 
./ 

= 8.3 X 10- 3x 269 

= 2.23 g/s 

Therefore heat lost per meter length of the tube = Q, m cpdT 
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, 

hers, :J1. 2.23 gls 2.23 x 1.21 x 100 

c:;, 1 .21 Jig deg.e - 270 Jls 

i~' 1000 e 

./ 

T~is heat is conducted through the insulation and is also 

com-erted from the outside surface, and this value of Q. is used in 

equation (5). 

Here = ambient temperature = 

r = outside radius of the pipe = 19 x 10-3 m -
p 

K thermal conductivity of the insulating blanket 

= 

h surface transfer coefficient = 1008 J/sm2 c 

Substituting the above values in equation (5) we get, 

+ 
0.238 r. x 1.08 

l 

Q. = 
K 

h- = 
tp = 
ta -

= (10CO-20) 

270 Jls 

0.238 Jlsmoe 

1.08 J/sm2 C 

1000
0
C 

20°C 

From above, the value of T. I'Tas calculated to be 50.8 mm 
l 

(using trial and error method) i.e. a thickness of 31.8 mm of 

In practice, a~ insulcting blallket of 50.8 mm thickness 

K8.S '.1.sed. for lagging purposes. 
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the typs 

t;.(t) = A e 
1. 

APPENDIX 6 

Finite Difference Equations 

er fitting exponentia~ curves of 

A t 
1 

+ A e 
4 

A t 
2 

+ A e 
3 

A t 
3 

•. ~ + A e 
n 

A t 
n 

to ordinates (evenly spaced) supplied by experimentation. 

~ In OUT case, theoretical consideration of -the nuriJ.ber· of ',-- --

exponen-:ials i!lvolved is 2, and we also require that 

u[o) = o. 

It fc·l:;"oi·;s that 'Ire are asstJJning that the differen:e equation 

relatins cs:c...secutive equally spaced ordinates is of form 

a u(~ + 2n) + b u(t + h) + c u(t) = 0 

uC-\:) 2.S function "lfe are looking for 

t lS independent viable 

h is step behreeh successive ordinates 

a,~,c sre real constants. 

It ca~ os demonstrated that solutions of form u(t) 

of equation (1) must satisfy 

.L. 2h h 
A 

~ 

Cs b c) 0 0. Ct + Cl + o •• 

If ~'.-S DU"'.; Z 
h 

Ct ... 

then 'liS 1: :;~: f·Jr s()lutions of auxiliary equation 
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(1 ) 

(2) 

(3) 



~ Z2 + J Z + C = 0 

l~~ a = lo~ z/ 
-9 --e h 

putting et 

" .. = 

t. 
e 

Since (4) is quadratic, 'de 'dill expect two solutions for Z which must 

~oth be positive to satisfy (5). It can be shown that if 

/.. t A t 
A e 1- B e ::: are solutions of ( 1 ) then 

A t A t 
u(t) = A e 1 + B e :Cl 

is elso a solution end e general'solution if A fo A 
1. 2 

Since in tnis ~roblem we also require A = 
,~- ,.' 

B 

-:r.er:. it follo',"-5 t!-cc. tit is necessary to put u( 0) 0 

To o~t~in 2. ~J.!uque solution of the problem we require 4 

..... T'r;;.,..,"+"'~ (l'-"C1'll";i""'- u(o) J_, ..... ~.!.LC.L,,::.:::> • .l. -j ....... ---5 

2 

U 
2 

t 
3 

U 
3 

t 

u 
4 

0) (See Fig. Ap.6-1) 

Table of data required 

ot 

o 

h 

2h 

3h. 

FIG. Ap. 6-1 
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o 

U 
2 

U 
3 

U 
4 

••. (6) 

• •. (7) 



Rearrange difI~erence equation (1) 

b . u(t) + b u(t + h) + u(t + 2h) 
o 1 

o 

i're substibx~8 values of u. into (8) with 1st. case u(t) = 0 
1. 

b u + b u .+ u. 0 
0 1 1 ;;3 3 

But u = 0 
1 

b
1 

-u 
b u + u = 0 --~--

1 2 3 
U 2 

2nd. case 

u(t) = u(h) = u 
;;3 

b u + b u + u = 0 
0 2 1· 3 4 

whence b u - u 
b 1 3 4 

0 
U 

2 

2 

U U 

=( -2) ( ~ ) u U 
2 2 

With the ne'.'l notation, , equation (4) becomes 

Z2 + b Z + b = 0 (4a) 
1 0 

Substituting band b into (4a) we find necessary and sufficient 
. 0 1 

conditions for solutions of the difference equation to be 

b :> 0 ) 
0 ) 

b < 0 ) 11 
1 ) 

and b 2 4b :> 0 
) 

1 0 ) 
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')- , ' 

G-i'len se.tisfactory values of b b for solution 'Ire obtain 
0 1 

01 (49.) e.s follOi'Ts: 

u u u G 

3 

u
4 

) 

'Z 

( u
3

) 
Z Z 1 4 ( - .,I , 

2u + "2 
1 2 

2 2 2 

values of corresponding le can be obtained from (5). 

From (6) and (7), we obtain 

u(t) 

replacing le. by 
1 

a = 

k 
1. 

-k. and A by a 
1 

u (k k ) 
3 :;3 1 

-k t 
l e 

1 3 e 

k 
2 

k ~-- <-
2 

k 
1 

- k 

3 ) 
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1. 

- -
'., . 

we can evaluate 

solutions 

( 13) 

• •• (14) 

a, 

(15 ) 



~: ~a~ilitate the calculation of the results a short 

c~=~~~e~ p~:gra5 has been written by Mr. Chris Abbess of the, 

:·:i:5.:i1s3:;:·: :?:::ly-;:;echnic Computing staff, using the alg~ri thm 

T~e follol'iing pages show a listing of the FORTRAN program 

and s:;aciBsns of computer output. 
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c 

c 

I... 

C -"-

c 
c 

001 
OUL' 
003 
OO~ 

005 
OOb. 
007 

01(; 
011 
OIL 

. 013 
014 
015 
016 
017 

"- 020 
021 
022 

001 
00(' 
003 
004 
005 
JOb 
007 
o l~, 
01 1 
012 
01:; 
0l .... 

:JEPARAiES 
U(T) 

DATA: 

E ,If,PONt;N T I AL~ 1 t1n) t- JI"i"1 : 

= A -N< T x- ( E.. A P ( - ( 1 !\-T ) :.. 0, t J (- K 2 .,. T) ) / (r< i - K 1 ) 

IST CARD 
21'&0- 41:-\ 

TNTEI{V AL BETWEEN ORDINATES (= t-i) (f 10 .. j) 

C'-,-<i.J~) ITH CI~-<[) UII<.I(!t.S I/ALuc~ Ut- UI<D1f~!\TE 
U( i) LU, 1'11) HT vj,LU[~ '\Kl l"'~lCGKGL~) (3FI0.::» 
E.G. ;UW U\iU I-<ECUI\U:-,' VALUL~ ut- Ul 

PkOGKAM ATTEMPTS TO Fli'11U CU-<VtJ OF STATED TY~)E To FIT L(), HIlJ 

... -
L 1 

31 

32 

2 
3j 
1 

1 
L 

OR HT Sc~T Of or~:;'lf'JAIEj .. rJITLUKc LtJWS Tu i"ilSSf\(jf.:.: 
'cJil) i'jJJ CUfvlPUTl:. I' 

JOB NAME x[)l~<u 

DrH:::'l~ 1 :j:',j U (3,3), V '( 2 d l, A (j), U-Ib (j) 
O~T;\ LA'J/ 3HL(J , .:H-lj'.d[),Jrlr1l / 

1.)J1 ili"l = 1,2 
RE6.L>(Z,21) rI,«U(I,Jl,.)=1,3),1=1,3) 
FJ~i'lAT (f-IO.3/ (3FIO .. 3) 

WR I T E ( 3 , :3 1) r-i , { LAb ( 1 ) , (U ( J , 1 ) ,J = 1 , j) , I = 1 " 3 ) 
FORMAT ( IHl, iOX,26HSt:PAk/\ r 1011 Of EXPOi'lUH lALS/ 

1 lHi. 6HUWJT: / 
21H2.5A,3riH =,FIOo3/ 
31H2,12X, 2h02,10X, 2rlU3,lOX, 2HU4/ 3 
't ( 1. H 2, A 3 ,2 X, 3 r 1 Z • (t i) , 
X Sr1Z0UipuT: / 
::lI-i2,1~X' IrIA, llX, 2.--lKl,lOX, 2HK2 } 
00 r T ::; 1,3 . 
='~LL f-\rl.'iiED (H,U(l,ll ,UU,l) ,U(3,l) 'v (l,l) ,1'/(2'-1) ,A(l) "HiD) 
IT(I~DoEs.2) GlJ 10 2 
~~IIE(j.3~) LAb(1), All), VII,l}, VI~,I) 

::Ji</\fAi(l:-l2, ;\3, 2X, jF12o't) 
:;J iO I 
... '-<.lIE(j,jj) 

, rJ-<;';;\ I (16HiD I [) nUT CJfvitJU ru 
. :J', r I hUt.. 

STJt--' 

S J 0 '<I liT HJ E A H j'.; L l) ( ~1 ~ U 2 , U j , Uit , VI, V 2 , A , Hi D) 
p= Uj/JL 

if (,}.,q·J o0 T .. ULt/U2.AiW.J .. Gr.u.) GO IJ 1 
1· ... 0 = i 
~~TUr<", 
Vi = - P,LuG( (J-l-~LJtn(J) lIi.UJ/H 
\12_ = - ~ L u~, ( (rJ + :::> CJ f·: r ( J) ) / <: .. U ) / 1"'1 

.... ', . 

A ::; Uj*(V2 - Vl)/Vl/(lX~\-2.*Vl*--l) - EAJ-l(-2.~V2*H) 

11\10 = 1 
~tTU~N 
:: I'll;) 
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" = •. 1 » C 

u2 

LJ l<..J) .. JUOO 

ni 

A 

LJ 1313. 2 ':~~!.l 

;.: 1 C 1.:>9.7b9h 

l ~l 1 ~ 1 • 3 db;:, 

r1 = .<'()U 

U2 

1U7.JO'):) 

HID l09.JOC)f) 

rlI 

f\ 

LJ 1Lt/.J'JliJ 

HI ~, lit i:, • ~ ,: ::> 1 

r; l 
I ? i~i. l '-1 1 ~: I 

u3 

lC~.OC()O 

107.0000 

K1 

11.0015 

11 D 1669 

lL3Z-f') 

~I i3. JOUU 

100 .. 000U 

K1 

-j. -r 6 OLt 

'J o iFit!.7 

l. C' • 'j t~ 1 j 

liUoUUUU 

lic:..UUUO 

94.0UOO 

KZ 

1.17U3 

1.145& 

1. U4H 

uo.oooo 

Ki 
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1.Ll?l 
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