Acute Effects of a Fatiguing Protocol on Peak Force and Rate of Force Development of the Hamstring Muscles in Soccer Players

Authors:

Francesco Bettariga^{abcd}, Chris Bishop^d, Luca Martorelli^e, Anthony Turner^d, Stefano Giuseppe Lazzarini^f, Cristiano Algeri^e, Luca Maestroni^{de}

^a Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Australia

^b School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia

^c StudioErre, Via della Badia, 18, 25127 Brescia (BS), Italy

^d London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, United Kingdom

^e ReAct, Via Madonna della Neve 24, 24121, Bergamo (BG), Italy

^fIRCCS Fondazione Don Carlo Gnocchi, Milan, Italy

Corresponding author:

Francesco Bettariga

Exercise Medicine Research Institute

Edith Cowan University

270 Joondalup Drive, Joondalup, WA 6027

Australia

Orcid: 0000-0002-4977-5494

All authors have reviewed and approved the final version of this manuscript

Francesco Bettariga mail: francescobettariga@gmail.com

Chris Bishop mail: <u>C.Bishop@mdx.ac.uk</u>

Luca Martorelli mail: <u>luca11m@yahoo.it</u>

Anthony Turner mail: <u>a.n.turner@mdx.ac.uk</u>

Stefano Giuseppe Lazzarini mail: slazzarini@dongnocchi.it

Cristiano Algeri mail: algericristiano@gmail.com

Luca Maestroni mail: lucamae@hotmail.it

1 ABSTRACT

2 Hamstring strain injuries (HSI) represents a significant burden in soccer. High speed running is one of the 3 most common HSI mechanism, in particular during match congested periods. Peak force and rate of force 4 development (RFD) of the hamstring muscles tested at long muscle length have shown reductions following 5 fatiguing tasks. However, no study has used a meticulous fatiguing protocol nor reliability scores have been provided. Hamstring peak force, RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ were assessed at long muscle length in 19 soccer 6 7 players (26.0 \pm 4.1 years) before and after the repeated sprint ability (RSA) test. We aimed to calculate 8 reliability scores for both limbs before and after the fatiguing task, and to compare peak force, RFD₅₀₋₁₀₀ and 9 RFD₁₀₀₋₁₅₀ following the RSA test to baseline values. Peak force displayed "excellent" reliability scores before 10 and after the RSA test, whereas RFD ICC showed "good" values in both time points, but CV scores were not 11 acceptable (i.e., > 10%). Significant moderate to large decreases were found in peak force (q = -1.11 to -0.90), 12 RFD_{50-100} (g = -1.37 to -1.11) and $RFD_{100-150}$ (g = -0.84 to -0.69) in both dominant and non-dominant limbs. 13 Maximal isometric peak force, RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ of the hamstrings tested at long muscle length reduced following the RSA test. However, only peak force displayed "excellent" reliability scores, whereas RFD 14 15 measures could not be considered acceptable owing to their lower reliability scores. Thus, practitioners can 16 be confident about peak force changes, whilst caution should be used when examining such changes in RFD.

17 Keywords: Football, posterior chain, rapid muscle contraction, strength

18 INTRODUCTION

19 Hamstring strain injuries (HSI) represent a significant burden in soccer, typically resulting in approximately 17 days lost from training and competition per season [1, 2]. These account for 37% of all muscular injuries 20 21 in soccer [2], and it has been reported that 70% of HSI among soccer players occur during high-speed running 22 [3, 4]. HSI mechanisms likely involve high muscle-tendon unit forces and rapid elongation during the terminal swing-phase of sprinting [5], and, despite preventative strategies often being implemented (e.g., Nordics) [6, 23 24 7], HSI rates have not decreased in recent years [8-13]. It is worth noting that high-intensity running distance, 25 actions and number of sprints increased by approximately 30%, 50% and 85% in men's professional soccer in 26 recent observations across multiple seasons [14]. In addition, being unavailable to play due to HSI has been 27 shown to have a detrimental effect on individual [15] and team performance [16], squad match physical 28 outputs [17], and overall team success [18]. Thus, it seems logical that all staff involved in injury prevention 29 and performance enhancement should strive to examine and explore variables associated with HSI.

30 During competitive matches, soccer players are required to perform repeated actions such as sprinting, 31 jumping and change of directions, which require both high forces and high velocities over short periods of time, while concurrently covering large total running distances [19]. As a consequence, a decline in 32 33 performance during competition occurs as result of fatigue [20]. A common method of assessment to 34 determine an athlete's neuromuscular fatigue is the countermovement jump (CMJ), where a range of metrics 35 are available if practitioners have access to force platforms (e.g., jump height, force, impulse, etc.). However, 36 for those who do not have access to this equipment, smartphone apps such as My Jump 2 are able to 37 accurately determine how high an athlete can jump, enabling some method of assessing jump performance 38 to virtually the same degree of accuracy as a force platform (ICC = 0.997, 95% CI: 0.996-0.998, p < 0.001) [21, 39 22]. Although jump height represents only the performance measure of a CMJ, previous research has 40 highlighted it is sensitive to change after competition in soccer players [23]. Also, the rate of torque 41 development (RTD) of the hamstrings tested at long muscle lengths (i.e., 30° of knee flexion) between 0-50 42 ms and 0-200 ms, rather than maximal strength, has been shown to be negatively affected by a soccer match 43 (~16% decrease in RTD₀₋₅₀ [95% CI: 3.15–50.4] *p* = 0.029, and ~11% RTD₀₋₂₀₀ [95% CI: 2.64–17.2] *p* = 0.011)

4

[19]. However, rate of force development (RFD) measures during the early phase of contraction commonly
display lower reliability scores than peak force values [24, 25]. Therefore, to detect if "real" changes in RFD
occur following fatigue, these need to be greater than the subsequent test variability (coefficient of variation
[CV]). Naturally, this highlights the importance of including reliability data in research studies so practitioners
can distinguish between 'the signal and the noise' [26].

49 Undertaking an in-depth analysis of sprinting (beyond measures such as time and velocity) on the field is 50 challenging owing to the time needed to analyse videos and methods needed to gather detailed 51 biomechanical variables (e.g., ground reaction forces, ground contact time, and limb stiffness, for example). 52 For this reason, surrogate measures associated with sprinting biomechanics appear imperative when dealing 53 with the prevention and management of HSI. For instance, strength (especially peak force) represents a key 54 foundational quality of velocity [27], and it is one of the most recommended physical qualities to be included in HSI prevention and rehabilitation programmes [28, 29]. Similarly, RFD, which represents the rate of force 55 56 expressed in a pre-defined time period, can be useful when examining rapid muscle contractions. Indeed, 57 significant strain and rapid eccentric overloading on the hamstring muscles occur at long lengths and in less 58 than 250ms [30]. In addition, most HSI occur at the end of each half, when athletes are in a fatigued state 59 [31, 32]. Owing to the aetiology of HSI, investigating how both peak force and RFD respond to fatigue seems 60 of utmost importance for practitioners.

61 Isokinetic dynamometry (IKD) has the potential to isolate the hamstring muscles and examine both 62 concentric and eccentric values at different range of movements and velocities [33]. Similarly, the Nordbord 63 has shown high test-retest reliability (ICC = 0.91 [0.76 to 0.96]) and good validity (ICC = 0.82 [0.58 to 0.93]) 64 compared with peak forces shown during IKD [34]. However, IKD testing is time-consuming and only suitable 65 to a laboratory setting, whereas the Nordbord provides information on hamstring strength at shorter muscle 66 lengths. Therefore, when considering the angles at which HSI most commonly occur during sprinting (i.e., 30° 67 of knee flexion), it seems logical to assess hamstring muscle peak force and RFD in such a position. 68 Furthermore, such information is currently unavailable in the literature, especially after competition or 69 repeated high-intensity exercise. However, due to the different playing positions and match demands, not

all soccer players will be exposed to the same amount of external load during competition. Therefore, a
fatiguing protocol which pre-defines the distance each player has to run, may help in mitigating such issues
by ensuring each athlete is exposed to the same volumes of running. In this regard, a repeated sprint ability
(RSA) test may represent a useful protocol for practitioners to expose their athletes to [35].

Therefore, this study aimed to 1) calculate reliability scores of maximal isometric peak force and RFD between
50-100 ms and 100-150 ms (RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀) of the hamstrings tested at long muscle length before
and after the RSA test; and 2) examine the fatigue-induced changes in maximal isometric peak force and in
RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ following the RSA test.

78

79 METHODS

80 Experimental approach to the problem

81 An experimental trial design was used to determine the effects of an RSA test on maximal isometric peak 82 force and RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ in semi-professional soccer players. After a standardized warm-up, subjects 83 performed 3 maximal CMJ and 3 maximal isometric contractions, followed by 6 x 40-meter sprints (i.e., RSA) 84 on a soccer pitch. Immediately after, subjects were required to repeat the tests in the same order (i.e., CMJ 85 and maximal isometric contraction) in a fatigued state. To ascertain the degree of fatigue, an objective 86 measure (i.e., jump height during a CMJ) was collected (Figure 1). This protocol provided the ability to 87 evaluate isometric peak force and RFD before and after a fatiguing test (i.e., RSA). Such results were used to 88 run a reliability analysis and to detect if "real" changes occurred following the RSA test.

89

90 Subjects

91 Nineteen semi-professional male adult soccer players from a soccer club (competing at regional and national
92 level, regularly training 4 times per week [identifiable as Tier 2 [36]) volunteered to participate in this before-

93 and-after study on the same day (subject characteristics are in Table 1). A minimum of 18 subjects was 94 established from a priori power analysis using G*Power (Version 3.1, University of Dusseldorf, Germany) 95 implementing statistical power of 0.8 and a type 1 alpha level of 0.05, which has been used in comparable 96 literature [37]. Subjects were included if they fulfilled the following inclusion criteria: 1) older than 18 years 97 of age, 2) no muscle injuries occurred in the last 6 months, 3) no absence from competition > 28 days over 98 the last 12 months and, 4) no orthopaedic surgery in the last 12 months (e.g., anterior cruciate ligament 99 reconstruction). The dominant limb was established asking the subjects which limb they prefer to perform a 100 unilateral vertical jump [38]. All subjects were informed about the purpose of the study and the informed 101 consent was given before the start of the experimental study according to the Declaration of Helsinki 2013. 102 Ethical approval was granted by the London Sport Institute research and ethics committee, Middlesex 103 University, UK.

104

105 Procedures

All procedures and analysis were conducted by the authors (with > 5 years of experience in the relevant test procedures). A standardized dynamic warm up was performed before the testing protocol, consisting of 2 sets of 10 repetitions of overhead squats, forward lunges, crab walks, glute bridges, and pogo jumps. Subsequently, 5 trials of CMJs and 5 incremental 20-meter linear sprint and 180° change of direction (COD) speed tests at 60, 80 and 100% of their maximal perceived effort were completed [37].

Then, subjects were required to perform 3 trials of CMJ, with the average value used for the subsequent analysis. A sixty-second rest period was provided between trials during the CMJ test. A 3-minute rest period was given between the CMJ test and maximal isometric contractions. For the maximal isometric contraction, subjects completed 3 unilateral maximal isometric contractions on each leg. They laid on the floor with one heel on the force plate and the heel of the non-working leg resting on the floor below the plinth, with the average value used for subsequent analysis (Figure 2). A sixty-second rest period was provided between trials during the same maximal isometric contraction [25]. All subjects were required to start the test with the rightleg first.

119 Subsequently subjects were required to complete 6 rounds of 40-meter sprints (i.e., RSA test), consisting of 120 20 meters sprint, 180° change of direction and 20 meters sprint. Twenty-second rest period was given 121 between each trial. For the RSA test, the starting leg was arbitrarily chosen by the subjects. However, subjects were asked to alternate both the right and left leg during the 180° COD. Three CMJs were also executed 122 123 immediately after the RSA and CMJ height measures were collected [39, 40]. After that, subjects performed 124 3 trials of maximal isometric contractions with each leg, as previously described, but in a fatigued state. 125 Maximal isometric contractions and jump testing were conducted in the gym with trainer shoes, whilst RSA 126 test was completed on the grass football pitch with football boots. Assessments were conducted in the 127 morning (i.e., 10 am, 24° degrees and sunny) and subjects were asked to refrain from any strenuous physical 128 activity at least 48 -hours before the testing protocol.

129

130 Countermovement Jump. Subjects were instructed to jump bilaterally and place their hands on their hips for 131 the duration of the test. The jump was performed executing a countermovement immediately followed by 132 an explosive vertical jump, with an aggressive extension at the ankle, knee, and hip. Subjects were instructed 133 to jump whenever they wanted after the signal "go". Examiners' verbal instruction was to "jump as high as possible". During the jump, the limbs had to remain completely extended during the flight phase before 134 135 landing on the floor. Subjects were required to maintain the position described after the landing for 3 136 seconds. Jump height in centimetres was recorded using the validated and reliable "My Jump 2" smartphone 137 app [41].

138

Maximal isometric contraction. Subjects were instructed to lie on the floor, with 30° flexion at knee joint (measured with a goniometer), the heel of the working leg on the force plate, the heel of the non-working leg resting on the floor below the plinth, and arms across their chest (Figure 2). The test was performed on

142 each leg executing an explosive downward contraction with the heel stable on the force plate and without 143 lifting their buttocks [25]. Subjects were instructed to push whenever they wanted after the signal "go". 144 Examiners' verbal instruction was to "push as hard and fast as possible". Subjects were required to push for 145 5 seconds. All data were recorded at a sampling rate of 1000 Hz using 2 PASCO (PS-2142, PASCO, Pass-port 146 PS-2142, Roseville, USA) force platforms [42]. The force-time curve was obtained using Spark software. 147 Maximal isometric peak force was defined as the highest force value produced (N). RFD was calculated as the 148 average slope of the force-time curve (N/s⁻¹) over time intervals of 50-100 ms and 100-150 ms relative to the 149 onset of contraction.

150

6 *x* 40-meter Repeated Sprint Ability Protocol. Subjects were instructed to stand behind the starting line with both feet in a crouching position. They were allowed to choose independently the preferred leg to start the test. Vertical poles were placed at 0 and 20 meters. Subjects were instructed to sprint, whenever they wanted after the signal "go", 20 meters through the poles and then perform a 180° turn off, with both the right and the left leg, and sprint for other 20 meters. Examiners' verbal instruction was "sprint and turn off as fast as possible" [35].

157

158 Statistical Analyses

All data were initially recorded as mean and standard deviation (SD) in Microsoft Excel and later transferred to SPSS (version 25.0; SPSS, Inc., Armonk, NY). Normality was analysed using the Shapiro-Wilk test, with *p* value > 0.05 meaning that data were normally distributed. An average-measures two-way random intraclass correlation coefficient (ICC) with absolute agreement and 95% confidence intervals, and coefficient of variation (CV) were used to assess the within session reliability of tests. ICC values were interpreted as follows: > 0.9 = excellent, 0.75–0.9 = good, 0.5–0.75 = moderate, and < 0.5 poor [43]. The CV was calculated using the formula: (SD [trials 1–3] / average [trials 1–3] x 100), with values < 10% deemed acceptable [44]. Paired samples *t*-tests were used to calculate changes in CMJ jump height, peak force, RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ from pre- to post-RSA test, with statistical significance set at p < 0.05. Bonferroni correction was applied to reduce the risk of type I error with multiple statistical tests. Percentage changes (% change) from pre- to post-RSA test were also calculated for each player, using the formula: [(final value - initial value) / initial value] and then averaged. Hedges' *g* effect sizes with 95% confidence intervals, were also determined to showcase practical significance from pre- to post-RSA [45]. Hedges' *g* was classified as follows: 0.0-0.25 = trivial, 0.25–0.50 = small, 0.50–1.00 = moderate, > 1.00 = large [46].

173 Kappa coefficients were used to determine levels of agreement for how consistently limb dominance 174 favoured the same limb from pre- to post-RSA test, and values were interpreted as: $\leq 0 = \text{poor}, 0.01-0.20 =$ 175 slight, 0.21-0.40 = fair, 0.41-0.60 = moderate, 0.61-0.80 = substantial, 0.81-0.99 = nearly perfect [47].

176

177

Table 1 and 2, and Figure 1 and 2 here

178

179 **RESULTS**

All subjects were included in the analysis. Data were normally distributed (p > 0.05). Table 2 shows withinsession reliability data. Relative reliability (ICC) of all metrics ranged from "good" to "excellent". Absolute reliability (CV) showed acceptable values (i.e., CV < 10%) in both pre- and post-RSA scores in CMJ and peak force values, apart from RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ (i.e., CV > 10%).

Table 3 reports raw scores and percentage change from pre- to post-RSA. Results showed a significant large decrease in CMJ (jump height) (p < 0.05; g = -1.26; % change = -16%). Similarly, significant moderate to large decreases were found in peak force (p < 0.05, g = -1.11 to -0.90; % change = -24% to -16%) and RFD₅₀₋₁₀₀ (p < 0.05, g = -1.37 to -1.11; % change = -58% to -51%) in both dominant and non-dominant limbs. RFD₁₀₀₋₁₅₀ reported a significant moderate decrease from pre- to post-RSA in both limbs (p < 0.05; g = -0.84 to -0.69; % change = -51% to - 26%). Kappa coefficients ranged from poor (i.e., peak force and RFD ₁₀₀₋₁₅₀) to slight (i.e., 190 RFD₅₀₋₁₀₀ (Kappa = -0.41 to 0.16). Finally, mean and individual CMJ, peak force and RFD values are reported
191 in Figures 3-6.

192

193

Table 3 and Figures 3-6 here

194

195 DISCUSSION

196 The aims of this study were to: 1) calculate reliability scores of maximal isometric peak force and RFD₅₀₋₁₀₀ 197 and RFD₁₀₀₋₁₅₀ of the hamstrings tested at long muscle length before and after the RSA test; and 2) examine 198 the fatigue-induced changes in maximal isometric peak force and in RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ following the RSA 199 test. The results showed that isometric peak force of the hamstrings at long muscle length displayed 200 "excellent" reliability scores (ICC > 0.91 and CV < 10%) before and after the RSA test. In contrast, RFD₅₀₋₁₀₀ 201 and RFD₁₀₀₋₁₅₀ ICC showed "good" values in both time points, but CV scores were not acceptable (i.e., CV > 202 10%). With regard to the fatigue-induced changes from pre- to post-RSA test, our results showed that 203 significant moderate to large decreases were found in CMJ (g = -1.26), peak force (g = -1.11 to -0.90), RFD₅₀-204 $_{100}$ (g = -1.37 to -1.11) and RFD₁₀₀₋₁₅₀ (g = -0.84 to -0.69) in both dominant and non-dominant limbs.

205 Isometric peak force of the hamstrings at long muscle lengths can be confidently used in the assessment of 206 soccer players before and after a competitive match. Our study corroborates previous findings [25], which 207 demonstrated "excellent" reliability scores using our identical testing position. In contrast, despite our strict 208 methodological procedures, RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ displayed CV values which could not be considered 209 acceptable. RFD reliability scores have consistently been found to be worse during the early phase of 210 contraction than peak force [24, 48], and thus, changes or variations over time need to be carefully 211 interpreted before concluding that meaningful differences have occurred. For example, reductions in 212 hamstrings muscle rapid force capacity at long muscle length have been recently found in professional soccer 213 players following a match, but no reliability data was provided [19]. This further strengthens the importance

of including reliability data in primary research studies, given it can be used to determine whether change is inside or outside of the variance of the test [26]. In addition, a somewhat overlooked aspect of RFD is that it is a ratio number (i.e., made up of two component parts – force and time). Previous literature has outlined that ratio data is often 'noisier' than individual metrics [49], as each component will exhibit error and this is then exacerbated when two metrics are combined to create one single value – in this instance, RFD. Whilst the rate at which an athlete produces force is undoubtedly important, practitioners are advised to be cautious of using RFD for any kind of monitoring purposes, owing to its inherent noise.

221 CMJ height showed a significant large decrement (g = -1.26) after the RSA test. Numerous CMJ kinetic and performance variables (e.g., peak and mean power, peak and mean force, flight time, total impulse) derived 222 223 from CMJ analysis can be sensitive to fatigue-induced changes in neuromuscular function [50, 51]. Among 224 these, CMJ height reductions following repeated sprints have been previously reported [52, 53]. Given that 225 take-off velocity underpins how high an athlete can jump [44], it stands to reason that reduced rapid muscle 226 contraction capabilities occurred following our RSA protocol. Although CMJ performance is determined by 227 other muscle groups not including hamstrings (e.g., quadriceps, glutes, and plantar flexors), it may be 228 assumed the fatigue have contributed to reductions in jump performance. This reinforces the notion that 229 CMJ height is a simple and useful metric that can be used to indicate neuromuscular fatigue post intense 230 exercise, which is actually not in agreement with some previous studies [50, 54]. The underlying reasons are 231 not fully understood and, to the best of our knowledge, further research is necessary to clearly elucidate 232 whether or not reductions in jump performance may represent an individual response to fatigue.

With regard to maximal isometric peak force from pre- to post-RSA test, our study indicated that peak force showed significant large decreases (g = -1.11 to -0.90) in both dominant and non-dominant limbs during the hamstring test at long muscle length. Importantly, when interpreting changes in test scores, this is best done by determining whether the difference is greater than the associated noise (CV) in the test [55, 56]. In this instance, changes in peak force can be considered "real", given that CV values were \leq 8.61% and the percentage change in raw scores ranged from 16-24%. Whilst the same can be said for RFD (i.e., percentage change was greater than the baseline CV), the absolute reliability values were unacceptable prior to the

fatigue protocol. As such, we do not advocate their implementation for practitioners whose aim is to assess
hamstring rapid muscle contraction capacity.

242 Interestingly, as an additional form of analysis in the present study, we examined Kappa coefficients which 243 establish the consistency of limb dominance from pre- to post-RSA test, and our findings showed poor to 244 slight levels of agreement (Kappa = -0.41 to 0.16) across metrics. This shows that from pre- to post-fatigue, the superior performing limb often shifted, which is synonymous with recent research investigating the 245 246 direction of asymmetry (or limb dominance characteristics) [35]. Again, this supports the notion that 247 examination should be performed in both conditions (i.e., in rested and fatigued states) in order to fully 248 understand if the stronger limb continues to be superior in both scenarios. Consequently, this may inform practitioners about whether existing strength deficits are consistent between time points or whether they 249 250 are fluctuations in natural performance variability.

251 Overall, these observations suggest that force production capacity can be reduced at long hamstrings muscle 252 lengths in fatigued states, thus increasing the vulnerability to muscular strain in high speed actions [57]. 253 Considering the utilization of elastic energy during sprinting occur within 100 ms [58], reductions in rapid 254 force production (i.e., RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀) alter hamstring muscles force-time characteristics in fatigued 255 states, thus theoretically increasing load and elongation on the contractile muscle units [57]. In conclusion, 256 our study demonstrated that only peak force scores were reliable when examining a maximal isometric 257 strength test of the hamstring tested at long muscle length before and after a fatiguing protocol. Additionally, 258 the fatigue-induced by the RSA test negatively affected peak force, RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀.

The present study is not without limitations, which we must acknowledge. Firstly, our data were limited to adult male football players. Therefore, generalisation of these results to paediatric, adolescent and female athletes should not be done. Our strength assessment was conducted at only one time point following a rigorous repeated sprint protocol, and included hamstring muscle testing in a specific isometric position. Future work is needed to examine if different testing methods can improve RFD reliability scores, and if the

14

264 magnitude of variation in hamstring peak force and rapid muscle contraction capacity following a fatiguing
265 task, can discriminate subjects at higher risk of injury or those who have sustained a previous HSI.

266

267 PRACTICAL APPLICATIONS

268 The findings of the current study indicate that maximal isometric peak force, RFD₅₀₋₁₀₀ and RFD₁₀₀₋₁₅₀ of the 269 hamstrings tested at long muscle length, reduced following the RSA test in male soccer players. However, 270 only peak force displayed "excellent" reliability scores, whereas RFD measures could not be considered 271 acceptable owing to their lower reliability scores. Our findings suggest a shift in force-time characteristics of 272 the hamstrings at long muscle length in response to a controlled fatiguing task, and strongly recommend the 273 inclusion of reliability scores to ascertain if such changes can be confidently considered meaningful. 274 Therefore, practitioners can use hamstrings assessment at long muscle length in both rested and fatigued 275 states (e.g., following the RSA protocol). This can be adopted, together with other performance tests (e.g., 276 CMJ), to examine the effects of a fatiguing session in soccer players. However, although peak force is reliable 277 and does show "real" changes following fatiguing tasks, particular caution should be used when examining 278 such changes in RFD.

279

280 **DECLARATIONS**

Conflict of interest Francesco Bettariga, Chris Bishop, Luca Martorelli, Anthony Turner, Stefano Giuseppe
 Lazzarini, Cristiano Algeri, and Luca Maestroni declare that they have no conflicts of interest relevant to the
 content of this review.

284 **Funding** No funding was received for this project.

- 285 Authorship Contributions FB: conceptualization, methodology, formal analysis, investigation, data curation
- and writing. LMae: conceptualization, methodology, formal analysis, investigation and supervision. CB, LMar,
- 287 AT, CA, and SGL: edited and revised the manuscript.
- 288 Data availability statement The data that support the findings of this study are available from the
- 289 corresponding author upon reasonable request.

References

- 1. Bourne, M.N., et al., *An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury.* Sports Medicine, 2017.
- 2. van der Horst, N., et al., *The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial.* Am J Sports Med, 2015. **43**(6): p. 1316-23.
- 3. Ekstrand, J., et al., *Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play.* Br J Sports Med, 2012. **46**(2): p. 112-7.
- 4. Danielsson, A., et al., *The mechanism of hamstring injuries–a systematic review*. BMC musculoskeletal disorders, 2020. **21**(1): p. 1-21.
- 5. Hickey, J.T., et al., *Current clinical concepts: hamstring strain injury rehabilitation*. J Athl Train, 2021.
- 6. Impellizzeri, F.M., A. McCall, and M. van Smeden, *Why methods matter in a meta-analysis: a reappraisal showed inconclusive injury preventive effect of Nordic hamstring exercise.* Journal of Clinical Epidemiology, 2021. **140**: p. 111-124.
- 7. Fanchini, M. and I.B. Steendahl, *Exercise-Based Strategies to Prevent Muscle Injury in Elite Footballers: A Systematic Review and Best Evidence Synthesis.* 2020. **50**(9): p. 1653-1666.
- 8. Ekstrand, J., M. Waldén, and M. Hägglund, *Hamstring injuries have increased by 4% annually in men's professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study.* 2016. **50**(12): p. 731-7.
- 9. Ekstrand, J., et al., Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men's professional football: the UEFA Elite Club Injury Study from 2001/02 to 2021/22. British Journal of Sports Medicine, 2022.
- 10. Biz, C., et al., *Hamstring Strain Injury (HSI) Prevention in Professional and Semi-Professional Football Teams: A Systematic Review and Meta-Analysis.* International Journal of Environmental Research and Public Health, 2021. **18**(16): p. 8272.
- 11. Medeiros, D.M., C. Marchiori, and B.M. Baroni, *Effect of nordic hamstring exercise training on knee flexors eccentric strength and fascicle length: a systematic review and meta-analysis.* Journal of Sport Rehabilitation, 2020. **30**(3): p. 482-491.
- 12. Ripley, N.J., et al., *The effect of exercise compliance on risk reduction for hamstring strain injury: a systematic review and meta-analyses.* International Journal of Environmental Research and Public Health, 2021. **18**(21): p. 11260.
- 13. Opar, D.A., et al., *Is pre-season eccentric strength testing during the Nordic hamstring exercise associated with future hamstring strain injury? A systematic review and meta-analysis.* Sports Medicine, 2021. **51**(9): p. 1935-1945.
- 14. Barnes, C., et al., *The evolution of physical and technical performance parameters in the English Premier League*. International journal of sports medicine, 2014. **35**(13): p. 1095-1100.
- 15. Drew, M.K., B.P. Raysmith, and P.C. Charlton, *Injuries impair the chance of successful performance by sportspeople: a systematic review.* Br J Sports Med, 2017. **51**(16): p. 1209-1214.
- 16. Hagglund, M., et al., *Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study.* Br J Sports Med, 2013. **47**(12): p. 738-42.
- 17. Windt, J., et al., *Does player unavailability affect football teams' match physical outputs? A two*season study of the UEFA champions league. J Sci Med Sport, 2018. **21**(5): p. 525-532.
- 18. Williams, S., et al., *Time loss injuries compromise team success in Elite Rugby Union: a 7-year prospective study.* British Journal of Sports Medicine, 2016. **50**(11): p. 651.
- 19. Grazioli, R., et al., *Hamstring rate of torque development is more affected than maximal voluntary contraction after a professional soccer match.* Eur J Sport Sci, 2019. **19**(10): p. 1336-1341.
- 20. Knicker, A., et al., *Interactive Processes Link the Multiple Symptoms of Fatigue in Sport Competition*. Sports medicine (Auckland, N.Z.), 2011. **41**: p. 307-28.
- 21. Balsalobre-Fernández, C., M. Glaister, and R.A. Lockey, *The validity and reliability of an iPhone app for measuring vertical jump performance.* Journal of sports sciences, 2015. **33**(15): p. 1574-1579.

- 22. Gallardo-Fuentes, F., et al., *Intersession and intrasession reliability and validity of the My Jump app for measuring different jump actions in trained male and female athletes.* Journal of strength and conditioning research, 2016. **30**(7): p. 2049-2056.
- 23. Bishop, C., et al., *Effects of Soccer Match-Play on Unilateral Jumping and Interlimb Asymmetry: A Repeated-Measures Design.* Journal of strength and conditioning research, 2020.
- 24. Maffiuletti, N.A., et al., *Rate of force development: physiological and methodological considerations*. Eur J Appl Physiol, 2016. **116**(6): p. 1091-116.
- 25. McCall, A., et al., *Reliability and sensitivity of a simple isometric posterior lower limb muscle test in professional football players*. Journal of Sports Sciences, 2015. **33**(12): p. 1298-1304.
- 26. Turner, A.N., et al., Assessing Group-Based Changes in High-Performance Sport. Part 2: Effect Sizes and Embracing Uncertainty Through Confidence Intervals. Strength & Conditioning Journal, 9000. Publish Ahead of Print.
- 27. Suchomel, T.J., S. Nimphius, and M.H. Stone, *The Importance of Muscular Strength in Athletic Performance*. Sports Med, 2016. **46**(10): p. 1419-49.
- 28. Tyler, T.F., et al., *Rehabilitation After Hamstring-Strain Injury Emphasizing Eccentric Strengthening at Long Muscle Lengths: Results of Long-Term Follow-Up.* J Sport Rehabil, 2017. **26**(2): p. 131-140.
- 29. Hickey, J.T., et al., *Hamstring Strain Injury Rehabilitation*. J Athl Train, 2022. **57**(2): p. 125-135.
- 30. Rodriguez-Rosell, D., et al., *Physiological and methodological aspects of rate of force development assessment in human skeletal muscle*. Clin Physiol Funct Imaging, 2018. **38**(5): p. 743-762.
- 31. Bisciotti, G.N., et al., *Hamstring Injuries Prevention in Soccer: A Narrative Review of Current Literature*. Joints, 2019. **7**(3): p. 115-126.
- 32. Hawkins, R.D., et al., *The association football medical research programme: an audit of injuries in professional football.* British Journal of Sports Medicine, 2001. **35**(1): p. 43.
- Burigo, R.L., et al., Concentric and eccentric isokinetic hamstring injury risk among 582 professional elite soccer players: a 10-years retrospective cohort study. BMJ Open Sport Exerc Med, 2020. 6(1): p. e000868.
- 34. Lodge, C., et al., *Reliability and Validity of a New Eccentric Hamstring Strength Measurement Device.* Arch Rehabil Res Clin Transl, 2020. **2**(1): p. 100034.
- 35. Bishop, C., et al., *Acute Effect of Repeated Sprints on Interlimb Asymmetries During Unilateral Jumping.* Journal of strength and conditioning research, 2019.
- 36. McKay, A.K., et al., *Defining training and performance caliber: a participant classification framework*. International journal of sports physiology and performance, 2022. **17**(2): p. 317-331.
- 37. Bettariga, F., et al., *The Effects of a Unilateral Strength and Power Training Intervention on Inter-Limb Asymmetry and Physical Performance in Male Amateur Soccer Players.* Journal of Science in Sport and Exercise, 2022.
- 38. Virgile, A. and C. Bishop, A Narrative Review of Limb Dominance: Task- Specificity and the Importance of Fitness Testing. The Journal of Strength and Conditioning Research, 2020. Publish Ahead of Print.
- 39. Sánchez-Medina, L. and J.J. González-Badillo, *Velocity loss as an indicator of neuromuscular fatigue during resistance training.* Med Sci Sports Exerc, 2011. **43**(9): p. 1725-34.
- 40. González-Hernández, J.M., et al., *Mechanical, Metabolic, and Perceptual Acute Responses to Different Set Configurations in Full Squat.* J Strength Cond Res, 2020. **34**(6): p. 1581-1590.
- 41. Balsalobre-Fernández, C., M. Glaister, and R.A. Lockey, *The validity and reliability of an iPhone app for measuring vertical jump performance.* J Sports Sci, 2015. **33**(15): p. 1574-9.
- 42. Peterson Silveira, R., et al., *Validity of a portable force platform for assessing biomechanical parameters in three different tasks.* Sports Biomechanics, 2017. **16**(2): p. 177-186.
- 43. Koo, T.K. and M.Y. Li, *A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.* Journal of chiropractic medicine, 2016. **15**(2): p. 155-163.
- 44. Cormack, S.J., et al., *Reliability of measures obtained during single and repeated countermovement jumps*. Int J Sports Physiol Perform, 2008. **3**(2): p. 131-44.

- 45. Dasborough, M., Book Review: Grissom, R. J., & Kim, J. J. (2005). Effect Sizes for Research: A Broad Practical Approach. Mahwah, NJ: Lawrence Erlbaum. Organizational Research Methods, 2007.
 10(3): p. 542-545.
- 46. RHEA, M.R., *DETERMINING THE MAGNITUDE OF TREATMENT EFFECTS IN STRENGTH TRAINING RESEARCH THROUGH THE USE OF THE EFFECT SIZE*. The Journal of Strength & Conditioning Research, 2004. **18**(4): p. 918-920.
- 47. Viera, A.J. and J.M. Garrett, *Understanding interobserver agreement: the kappa statistic.* Fam Med, 2005. **37**(5): p. 360-3.
- 48. Buckthorpe, M.W., et al., *Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques.* Muscle Nerve, 2012. **46**(4): p. 566-76.
- 49. Bishop, C., et al., *A Framework to Guide Practitioners for Selecting Metrics During the Countermovement and Drop Jump Tests.* Strength & Conditioning Journal, 2022. **44**(4).
- 50. Gathercole, R.J., et al., *Comparison of the Capacity of Different Jump and Sprint Field Tests to Detect Neuromuscular Fatigue.* J Strength Cond Res, 2015. **29**(9): p. 2522-31.
- 51. Gathercole, R., et al., *Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue*. Int J Sports Physiol Perform, 2015. **10**(1): p. 84-92.
- 52. Gorostiaga, E.M., et al., *Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners.* J Strength Cond Res, 2010. **24**(4): p. 1138-49.
- 53. Armada-Cortés, E., et al., *Evaluation of Neuromuscular Fatigue According to Injury History in a Repeat Sprint Ability Test, Countermovement Jump, and Hamstring Test in Elite Female Soccer Players.* Applied Sciences, 2022. **12**(6): p. 2970.
- 54. Gathercole, R., et al., *Alternative Countermovement-Jump Analysis to Quantify Acute Neuromuscular Fatigue.* International Journal of Sports Physiology and Performance, 2015. **10**(1): p. 84-92.
- 55. Bishop, C., *Interlimb Asymmetries: Are Thresholds a Usable Concept?* Strength & Conditioning Journal, 2021. **43**(1): p. 32-36.
- 56. Turner, A.N., et al., Assessing Group-Based Changes in High-Performance Sport. Part 2: Effect Sizes and Embracing Uncertainty Through Confidence Intervals. Strength & Conditioning Journal, 2021.
 43(4).
- 57. Huygaerts, S., et al., *Mechanisms of Hamstring Strain Injury: Interactions between Fatigue, Muscle Activation and Function.* Sports (Basel, Switzerland), 2020. **8**(5): p. 65.
- 58. Taylor, M.J. and R. Beneke, *Spring mass characteristics of the fastest men on Earth.* Int J Sports Med, 2012. **33**(8): p. 667-70.

Table 1. Subject characteristics with data shown as mean ± standard deviations (SD).

Age (Y)	Body Mass (Kg)	Height (cm)	Dominant Limb
26 ± 4.1	74 ± 5.3	179.7 ± 3.8	R = 13; L = 6

Legend. y = year; kg = kilogram; cm = centimetre; R = right; L = left.

Table 2. Within session reliability for each test measures at pre- and post-RSA.

Metrics	Pre		Post	
	CV	ICC	CV	ICC
CMJ (jump height)	2.19	0.98(0.92, 0.99)	1.41	0.99(0.98, 0.99)
Peak force D	8.61	0.91(0.62, 0.93)	7.41	0.94(0.86, 0.98)
Peak force ND	6.73	0.93(0.85, 0.96)	6.49	0.96(0.90, 0.97)
RFD 50-100 D	27.44	0.77(0.60, 0.87)	23.12	0.78(0.68, 0.87)
RFD 50-100 ND	28.77	0.76(0.63, 0.84)	22.29	0.79(0.69, 0.87)
RFD 100-150 D	18.42	0.83(0.66, 0.90)	21.81	0.78(0.68, 0.83)
RFD 100-150 ND	19.91	0.81(0.69, 0.88)	20.72	0.79(0.65, 0.85)

Legend. CV = coefficient of variation; ICC = intraclass coefficient of variation; D = dominant; ND = nondominant; CMJ = countermovement jump; RFD = rate of force development; Peak force measured in Newton; RFD measured in Newton / seconds.

Pre	Post	Hedges g	% change	Kappa coefficients
37.92 ± 5.33	31.60 ± 4.40 *	-1.26 (-1.99, -0.54)	-16%	Pre to Post
1245.46 ± 223.89	1004.77 ± 198.34 *	-1.11 (-1.82, -0.40)	-24%	0.41
1233.89 ± 218.17	1039.88 ± 201.65 *	-0.90 (-1.60, -0.21)	-16%	
1708.44 ± 1180.73	720.82 ± 331.61 *	-1.11 (-1.82, -0.41)	-51%	

-1.37 (-2.11, -0.64)

-0.84 (-1.53, -0.15)

-0.69 (-1.37, -0.01)

-58%

-26%

-51%

Table 3. Mean test scores ± SDs for pre- and post-RSA, Hedges' *g* effect sizes and percentage change.

610.96 ± 290.58 *

261.17 ± 347.88 *

254.82 ± 391.29 *

1605.95 ± 960.52

1170.23 ± 1451.69

1093.85 ± 1631.11

Legend. D = dominant; ND = non-dominant; CMJ = countermovement jump; RFD = rate of force development; * = *p*-value < 0.05; Peak force measured in Newton;

RFD measured in Newton / second.

Metrics CMJ (jump height) Peak force D Peak force ND RFD 50-100 D

RFD 50-100 ND

RFD 100-150 D

RFD 100-150 ND

0.16

-0.34

Figure 1. Pre- and post-RSA procedure.

Legend. CMJ = countermovement jump; RSA = repeated sprint ability.

Figure 2. Hamstring testing position.

Figure 3. Mean and individual CMJ changes from pre- to post-RSA test.

Figure 4. Mean and individual peak force changes from pre- to post-RSA test in dominant (left side) and non-dominant limbs (right side).

Figure 5. Mean and individual RFD₅₀₋₁₀₀ changes from pre- to post-RSA test in dominant (left side) and nondominant limbs (right side).

Figure 6. Mean and individual RFD₁₀₀₋₁₅₀ changes from pre- to post-RSA test in dominant (left side) and nondominant limbs (right side).