
Self-Tuning Flowcharts: A Priority-Based Approach
to Optimize Diagnostic Flowcharts

Girish Bekaroo
Middlesex University (Mauritius Branch Campus)

Bonne Terre, Vacoas, Mauritius.
g.bekaroo@mdx.ac.mu

Paul Warren
Independent Researcher,
neuralwarp@gmail.com

Abstract— Flowcharts have been used in problem diagnosis
for a long time because of their effectiveness during process
representation. However, with time, diagnostic flowcharts can
become unmanageably complex and incomprehensible, thus
leading to longer decision paths. A lengthy decision path also
implies a time consuming diagnosis process while at the same
time being boring to end users utilizing systems containing
diagnostic flowcharts. This study investigates the extent to which
diagnostic flowcharts can be made dynamic so as to optimize the
decision making process without reducing the number of nodes.
In this endeavor, the Dynamic Flowchart Parser Algorithm has
been proposed using a priority-based approach to optimize
diagnostic flowcharts within a diagnostic tool named Self Tuning
Flowcharts.

Keywords— Flowchart Optimization, Diagnostic Flowchart,
Dynamic Flowchart Parser Algorithm, Problem Diagnosis.

I. INTRODUCTION
Problem diagnosis, which refers to identifying the nature of a
problem by examining its symptoms, is often considered as a
challenging task because it traditionally requires the
knowledge of an expert in the relevant field (e.g. medicine,
engineering, etc.) [1]. In the process of traditional problem
diagnosis, an initial description of the problem occurred is
needed, which an expert uses so as to analyze and identify the
cause of the problem and finally apply a remedy to solve the
problem [2]. One common approach to help problem diagnosis
in a faulty system is via the use of diagnostic flowcharts [3].
Due to its simplicity while also being a good way to document
knowledge developed over time, this approach has been
commonly used for diagnostic decision making of medical
related problems [4] and computer and electronic problems
[5], among others. Even though diagnostic flowcharts have
been widely adopted, a major problem observed is related to
their maintenance. For every discovery of a new fault in the
same problem domain, nodes need to be added within the
same diagnostic flowchart. As such, the flowchart can become
unmanageably complex and incomprehensible with time thus
leading to lengthy decision paths [3]. In other words, users are
confronted with many questions before reaching the solution.

Taking cognizance of this problem, Beygelzimer et al
proposed an algorithm called GREEDY, which attempts to
optimize diagnostic flowcharts based on a generated

dependency matrix using the Bayesian network representation
of such flowcharts [3]. Although the proposed approach
showed to optimize diagnostic flowcharts, reduction in the
number of decision nodes was observed and this might result
in loss of important information. Hence, there is a need for
another optimization approach during which important
information is not lost from node elimination. Such approach
can to optimize decision making process within diagnostic
systems and robots [6]. As such, this paper investigates the
extent to which diagnostic flowcharts can be made dynamic so
as to optimize the decision making process without
eliminating nodes from the original flowchart.

II. DIAGNOSTICS FLOWCHARTS
A flowchart can be defined as “a diagram that shows the
connections between different stages of a process or parts of a
system” [7]. It consists of a set of symbols and connecting
lines that shows stepwise progression through a procedure, a
process or a system. Unlike other types of flowcharts
including system and program flowcharts, diagnostic
flowcharts tend to begin directly with a decision node or
sometimes, the start node may even be present but it has to be
followed by a decision node. Furthermore, diagnostic
flowcharts normally have more than one ending point as
compared to system or program flowcharts. Moreover, in most
diagnostic flowcharts, it can be observed that the upper level
questions in the flowchart tend to be more general so as to
identify symptoms of a problem from a broader view. While
going deeper into the structure, the questions become narrower
in order to eliminate less general symptoms whereby paving
the way to the most appropriate solution. An example of a
diagnostic flowchart used in computer repair is given in Fig. 1.

In the diagnostic flowchart given in Fig. 1., 3 types of nodes
could be found, namely, a start node, 5 decisions nodes which
are represented by the diamond shape and 6 solution nodes
which are in turn represented by the rectangular shape.
Furthermore, a decision path is referred to as any path taken
from the start to a particular solution node.

III. OPTIMIZATION OF DIAGNOSTIC FLOWCHARTS
An optimized flowchart is one that has a reduced average cost
of diagnosis. Via the use of optimized diagnostic flowcharts,
end users are expected to experience minimal average number
of questions, thus also reducing the decision path length. To
address this issue, a new algorithm named the Dynamic
Flowchart Parser Algorithm (DFPA) was designed. The
proposed algorithm is based on dynamic Huffman codes
approach towards minimum redundancy tree [7]. DFPA aims
to shorten diagnostic decision path by making the flowchart
self-tuning itself, to fulfill the following requirements:

R1. Change the flowchart structure dynamically without
elimination of nodes from the original structure,

R2. Make diagnostic flowcharts intelligent by learning
from previous diagnostic paths,

R3. Reduce the mean cost of traversing the flowchart
until reaching the solution while ensuring the
accuracy of solution reached remains unaffected.

R1 addresses 2 essential points. Firstly, the flowchart structure
should change dynamically, meaning that the decision path to
reach a particular solution might vary during different parses
of the flowchart. Secondly, no nodes should be eliminated
from the original structure. Here, a node is said to be
eliminated if and only if the node can never be part of the
decision path whenever the flowchart is being parsed. R2
attempts to embed a learning process within such structures so
as to be able to keep track of previous diagnostic paths.
Finally, R3 is a major objective of DFPA towards diagnostic
flowchart optimization while ensuring that accuracy of any
particular solution is not compromised.

In order to meet its requirements, DFPA utilizes a priority
based approach in addition to a learning algorithm based on
path history. Every mode in the diagnostic flowchart is
associated with a priority value where 0 means lowest priority
and the highest number (n) meaning the highest priority.

Every time the flowchart is parsed by a user, the priority of the
decision nodes are affected based on the decision path adopted
by that user. Based on these two approaches, every time the
flowchart is parsed during diagnostic decision making, DFPA
re-structures the flowchart based on the priority values of the
nodes such that the flowchart appears to be self-tuning, while
at the same time bringing the user closer to the decision. To
achieve its purpose, the DFPA operates using 3 functions,
described as follows:

A. Initial Assignment of Priorities
This function is conducted only once for every diagnostic
flowchart and takes place the first time that the flowchart is
used for diagnostic decision making. In this endeavor, DFPA
assigns an initial priority value to every decision node present
in the structure. For this, DFPA uses a formula based on the
different levels along with the total number of nodes present in
the flowchart. The idea here is to initially preserve the original
flowchart structure before use for diagnosis. DFPA searches
for the first decision node just after the start node of the
flowchart and assigns it a maximum priority. DFPA then
iteratively continues to parse the original flowchart while at
the same time assigning the next level decision nodes with a
slightly lower priority value than that of the previous level(s).
As such, all the decision nodes on the same level are assigned
the same priority. The formula used by DFPA is as follows:

Priority value= (total number of decision nodes in flowchart *

2) – ((depth level of node-1) * 2)
 (1)

As an example, the initial priorities assigned by DFPA to
the flowchart from Fig. 1. are shown in the numbered circles.
The levels of the decision nodes are also included in the
diagram, shown by dotted lines, which are part of the
calculation process. As shown in Fig. 1, the initial priority of
the nodes remain such a way that the highest level in the
flowchart takes the maximum priority in the flowchart whilst
the lowest level taking the lowest priority thus preserving the
initial structure of the original flowchart.

Fig. 1. Example of Diagnostic Flowchart used in Computer Repair.

B. Learning Process
Once decision nodes have been assigned priority values, the

structure can be used for diagnostic decision making by users.
For this function, system behavior information via event traces
[2] was adopted and adapted since such approach showed to
be successful in problem diagnosis. In the learning process by
DFPA, every time a user answers a particular question in the
flowchart, the route taken by the same user is memorized. In
this process, the priority values of nodes within the decision
path are increased by 2 and that the remaining nodes outside
the decision path is decreased by 2 by DFPA. It should be
noted that the decision node just after the start node (i.e. Level
1 decision node in Fig. 1) is never affected in terms of priority
value throughout the learning process by DFPA. For example,
the priority value of the node “Computer turns on?” in Fig. 1
will always remain 10 throughout the learning process. Also,
another rule is that the priority value of a lower level node can
never exceed the priority of the node one level above it. By
using this logic, lower level flowcharts cannot become higher
than its upper level nodes so as to prevent the flowchart from
becoming too dynamic which could affect the accuracy of the
solution reached.

To illustrate how DFPA handles its flowchart learning
function, consider the case where the user takes the
highlighted route in Fig. 1 once. The priority values for the
nodes “Screen display content?” and “Image displayed
flickers?” will both increase to become 10 and 8 respectively.
In contrast, the decision nodes outside the decision path, that
is, “Good power source?” and “Hear any beeps when
computer is switched on?” will have a decrease in their
priority values to become 6 and 4 respectively. Also, as
mentioned earlier, the priority value of the decision node after
the start node remains 10.

C. Dynamic Flowchart Parsing
The third and most important function of DFPA is to
dynamically parse the priority-based flowcharts in order to
fulfill R3 and is triggered before jumping to the next node
during problem diagnosis. Unlike traditional flowchart
parsing, DFPA parses the flowchart based on currently
assigned node priority values and during this process, the
algorithm has to first decide on one of the following:

1. Has problem diagnosis just started and whether the
first decision node to be answered is being searched?

2. Has a decision node already been parsed and whether
the next node in the structure (either decision or an
action) is being sought?

For the first case, DFPA searches for the decision node with
the highest priority for display to the user. In case there are
two or more such nodes with the same priority, the node from
the deepest level is chosen. However for the second case,
every time DFPA searches for the next node, it ensures that
the following criteria are met:

• A solution node has not been encountered
If a solution node is encountered as next one, it
means that a solution has been reached and that the
diagnosis process is complete.

• Node found on logical path
Two nodes are said to be on a valid logical path if
and only if a direct link exists between them. For
example, nodes “Image displayed flickers?” and
“Computer turns on?” are on the same logical path in
Fig. 1. while nodes “Image displayed flickers?” and
“Good power source?” are not on the same logical
path.

Fig. 2. Illustration of Dynamic Flowchart Parsing function.

As long as these criteria are met, DFPA can iteratively search
for the next node based on the historical trail, until a solution
is reached. To illustrate how this function works, consider the
flowchart in Fig. 2. to diagnose Internet connectivity problem.
This flowchart has already been parsed several times and the
updated priority values of the nodes are encircled in the
diagram. The most visited path is also shown by the thick line
in the figure. Considering the current structure of the
flowchart in Fig. 2., if the same path shown by the thick line
was adopted by the next user, the order of the nodes parsed by
DFPA along with simulated answers of a user would be as
follows:

Node 1: Image displayed flickers?
User Answer: No

Node 2: Computer turns on?
User answer: Yes

Node 3: Operating system boots on start?
User answer: Yes

Node 4: Computer connects to Internet?
User answer: No

Node 5: Proceed to the modem failure
diagnostics  (solution)

Since the first node generated during the diagnosis is the one
with highest priority but with deepest level, “Image displayed
flickers?” is displayed as first node. The answer input by the
user for this node is stored temporarily in memory. After the
first node, for every 3 nodes parsed, DFPA jumps back to the
originally skipped questions with the highest level first so as
to cater for rare paths visited by users, thus preventing the rare
paths from becoming too long. The number 3 here is a
threshold variable for iteratively jumping to skipped nodes and
throughout this study, the value 3 was maintained as threshold
test value. As the second node, the skipped question,
“Computer turns on?” is displayed and its answer input by the
user is stored in memory. The two answers stored are then
evaluated to get the next node by Dynamic Flowchart Parsing
function of DFPA. Here, if the answer for the “Image
displayed flickers?” node is “No” and the answer for the
“Computer turns on?” is “Yes”, the next node returned by
DFPA is “Operating System boots on start?” since both the
first and second node answered are on the same logical path in
the flowchart. Alternatively, if the answer for the “Image
displayed flickers?” node is “Yes” and the answer for the
“Computer turns on?” is “No”, the next node returned by
DFPA is “Good power source?” since the logical path criteria
is not met in this case. Here, an increase in path length by 1
node would be observed. This is also called a rare path and to
cater for this, DFPA jumps back to skipped nodes after every
3 nodes, preset by the threshold value.

Continuing with the most visited path in Fig. 2., DFPA keeps
on generating the next nodes while considering the defined
criteria validated by the answer(s) from the user. Hence, in
this case, a solution is reached after the fourth node generated
by DFPA. This shows a reduction in the path length (4 nodes
parsed instead of 5 in the original version) since one skipped
question has not been parsed by DFPA. In other words, the
node “Screen displays content?” was not considered and this

node did not affect the accuracy of the solution as well. This is
because, this node is found on an upper level, meaning that at
the start of the diagnosis process, the elimination of symptoms
starts from a wider area (more general questions) and
converges to a solution. As such, skipping general questions
do not affect the accuracy of the solution.

IV. EVALUATION
The proposed DFPA algorithm was evaluated so as to validate
whether the algorithm has met its requirements (R1 to R3).
For the identification of metrics needed to validate each
requirement, the Goal Question Metric (GQM) approach was
used [8] where different questions regarding the objectives of
the algorithm were asked so as to obtain the correct metrics.

For R1, two important points need to be validated. Firstly, the
dynamic change of flowchart structure should be verified and
secondly, there should be no elimination of nodes from the
original structure. For the first point, every DFPA parsed
flowchart need to be checked so as to verify whether the
decision paths are identical to the original flowchart. Within
any parse, if the decision path of the DFPA parsed flowchart is
different as compared to the original flowchart, the DFPA
parsed flowchart can be considered to be dynamic. For
validating the second point, a check for every DFPA parsed
flowchart is needed so as to verify whether nodes from the
original structure have been eliminated, based on the
definition of elimination of node given earlier. As such,
validating both points necessitate a comparison between the
DFPA parsed flowchart and the original flowchart. Hereafter
in this paper, the DFPA parsed flowchart will be called
dynamic flowchart and the original flowchart will be termed
static flowchart.

As discussed earlier, R2 attempts to embed a learning process
within diagnostic flowcharts so as to be able to keep track of
previous diagnostic paths. As such, assessing whether R2 has
been successfully met needs a comparison against priority
values between two successive flowchart parses.

To validate R3, the path length needs to be measured and
compared against the original path length leading to the same
solution. Since a solution path is equal to the number of
decision nodes in that path, the metric for the evaluation of the
dynamic flowchart approach is a count of the number of
decision nodes needed to reach a solution in both static and
dynamic flowcharts. This metric will be in the form of a
numeric value ranging between 0 and the total number of
decision nodes for the deepest path in the diagnostic
flowchart. Another metric that could be used for this
evaluation is the time taken to reach a solution. However,
different users might take different amount of time within the
same decision path due to various factors including computer
literacy and experience with diagnostic flowcharts, among
others. As such, this metric would not be as accurate as the
node count.

Although assessment of R1 to R3 could be manually
conducted, a diagnostic tool containing an implemented

version of the DFPA was developed using Java and the tool
was named Self Tuning Flowcharts (STF). A software
approach was preferred to the manual approach in order to
benefit from the various advantages for its use in evaluation
namely, accuracy of results, reliability and accountability,
among others [9]. STF contained downloaded diagnostic
flowcharts related to computer repair [10] and although the
flowcharts were manually stored with-in the database used by
the prototype, techniques to visually recognize flowcharts
nodes are presently available [11]. Such visual recognition
techniques could be used in larger scale deployment of DFPA.

V. EXPERIMENTATION PROCEDURES
In the preparatory phase of the experiment, a randomly chosen
diagnostic flowchart as in Fig. 3 was used, with the initial
priority values assigned by DFPA. As the application area of
STF was computer repair, the experiment targeted computer
literate users who would be able to diagnose a simulated
computer problem with the use of developed prototype.
University students who utilize computers daily were targeted.
Moreover, it was preferred that the participants were
Computer Science students due to their knowledge in
computer troubleshooting. Such profile would be able to
effectively make use of the developed diagnostic tool to repair
the simulated faulty computer by using their own knowledge
and experience in solving the problem. Furthermore, the
experiment needed several iterations so as to allow DFPA to
gain enough path histories while contributing to its learning
process. For the experiment, 16 users meeting the participant
profile requirements agreed to participate and this number was
enough to test the flowchart in Fig. 3. which contains 14
decision nodes.

To begin the experiment, every participant was introduced
to the research and approval was sought via an Ethical
Approval Form. Then, by making use of STF, the participant
had to diagnose a simulated faulty computer without any other
support. During this process, the participant had to check the
faulty computer so as to find the answers to the questions
generated by STF. While the participant was diagnosing the
faulty computer, details on the behavior of the participant and
any remarks made were observed and noted. When a solution
to the problem was found by the diagnostic tool, the solution
path from STF was noted, along with the path on the original
flowchart. Then, with the support of the research team, the
participant was made to fix the problem manually. The same
process was repeated with the 16 participants with randomly
simulated faults.

VI. RESULTS AND DISCUSSION
The main metric used for assessing R3 was path length, which
is shown in Table I for both the dynamic flowchart parsed by

DFPA and the original static flowchart for the different runs
recorded during the experiment.

TABLE I. RESULTS
Run Dynamic Flowchart

Path Length
Static Flowchart
Path Length

1 4 4
2 3 3
3 4 4
4 4 3
5 3 3
6 4 4
7 2 3
8 3 4
9 2 3
10 4 3
11 4 4
12 2 4
13 4 3
14 3 3
15 3 4
16 2 3

When the experiment started, it was observed that the number
of nodes for both the static flowchart and DFPA were the
same until the fourth run. This is because DFPA needed a few
runs for learning path histories from previous participants. The
first change in the structure of the flowchart was observed
during the third instance of the test. A node from Level 2 was
displayed first because it reached the same priority as the only
Level 1 node in the flowchart. Hence, the Level 2 node had
preference over the Level 1 node since it was at a deeper level.
However, even though there was a change in the structure, the
total number of nodes parsed was still the same in both
approaches. This was because the skipped question was
treated just after the Level 2 node. As mentioned earlier, the
first difference in path length between the two approaches was
noted on the fourth instance of the test and this was because
the fourth participant visited a rare path. Consequently, one
more question had to be answered by the user, thus making the
dynamic flowchart longer than the original flowchart. The
change in priority values of the nodes within the different runs
also implies that the flowchart was affected by the answers
given by the end user, thus contributing to the flowchart
learning process. This also implies R2 was met.

For further comparison of both parsing methods, the node
difference from each run was calculated by subtracting the
total number of nodes parsed in the dynamic flowchart from
the total number of nodes parsed in the static flowchart for
reaching the same solution. A positive node difference in the
graph means that the DFPA parsed lesser nodes than that
needed in the static flowchart approach whilst a negative value
means the reverse. The node difference for each run is
depicted in the line graph in Fig. 4.

Fig.4. Node Difference.

In Fig. 4, it can be seen that the decision path after Participant
6 was starting to favor the dynamic flowchart approach. This
is because DFPA had to learn from enough path histories. The
most common difference in nodes was 1 (approximately 25%

reduction) because of frequent visits of rare paths by users
which also meant that the flowchart needed more parses to
learn and get back to the path of frequently visited nodes. At
most, 2 nodes were skipped by DFPA, but this did not affect
the accuracy of the answer since the skipped nodes were of
upper levels whilst the decision was on a deeper level.
Overall, the total number of experiment instances where the
dynamic flowchart gave a positive node difference was 6
(37.5%) as compared to 3 instances (18.8%) where the same
type of flowchart gave a negative node difference. There was
also the case where no difference in nodes was registered and
this occurred 7 times (43.7%).

Results showed that dynamic flowcharts were better than its
static counterparts since for 81.2% of the runs, the path length
for dynamic flowcharts shorter than or equal to the path for the
same solution in static flowcharts. This also confirms meeting
the third requirement of DFPA for most cases. However, there
were also some cases where rare paths were adopted by users
which increased the overall path length. But, these cases
happened to 18.8% of the cases and the number of were only
increased by 1. Also, to cater for this problem, it was observed
that DFPA re-structured flowchart towards the original during
the diagnostic decision making session. This acts as a
confirmation thus giving the chance for the rare node to gain

-2
-1
-1
0
1
1
2
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No.
nodes

Flowchart Run

Node difference

Fig. 3. Diagnostic flowchart used in experiment

some priority. The likelihood of the occurrence of rare paths
also implies that any node could be parsed thus negating the
likelihood for the elimination of nodes. The self-tuning nature
of the dynamic flowchart in addition to no elimination of
nodes from the original structure implies the second
requirement of DFPA was also met.

Overall, all requirements of DFPA were met and the
experiment also helped to identify various strengths of using
the priority-based approach in the optimization of diagnostic
flowcharts. Firstly, higher occurrence of shortened decision
paths led to lesser time taken during problem diagnosis.
Shortened decision path could facilitate the adoption of
diagnostic flowcharts among practitioners. Also, embedding
intelligence within dynamic flowcharts gave indications on the
frequency of path adoption. This information could also be
practically used for statistical analysis. Another notable
advantage of DFPA was flowchart optimization without
elimination of nodes from the original structure, thus avoiding
loss of important information during the optimization process.
On the other hand, the major weaknesses of DFPA were that
rare decision paths can make the diagnosis longer and
historical trails are needed for the learning function of DFPA.

VII. CONCLUDING REMARKS
This paper investigated the extent to which diagnostic
flowcharts can be made dynamic so as to optimize the
decision path without node elimination, by proposing an
algorithm called Dynamic Flowchart Parser Algorithm. DFPA
utilizes a priority-based approach for flowchart optimization
and operates in three phases, namely, initial assignment of
priorities, learning and dynamic flowchart parsing. An
experiment was conducted so as to evaluate whether the
proposed diagnostic flowchart optimization approach met its
requirements. Out of the 16 participants of the experiment,
81% of the instances showed that the decision path was equal
or shorter than the same path on the original static flowchart.
As such, dynamic flowcharts parsed by DFPA were found to
be better more optimized than their static versions for the most
frequently visited path by users. This implies that in most
cases, the dynamic flowchart self-tuned itself so as to bring the
user closer to the solution of the computer problem. As future
work, further investigation is needed to optimize the length of
rare paths. Also, DFPA could be further tested with different
sizes of diagnostic flowcharts, with varying depth and number
of decision nodes, in addition to varying threshold values to
cater for rare paths.

VIII. REFERENCES

[1] D. Waterman, A Guide to Expert Systems, Addison-Wesley Publishing
Company, 1986, p. 390.

[2] C. Yuan, N. Lao, J. R. Wen, J. Li, Z. Zhang, Y. M. Wang and W. Y.
Ma, "Automated known problem diagnosis with event traces," ACM
SIGOPS Operating Systems Review, vol. 40, no. 4, pp. 375-388,
2006.

[3] A. Beygelzimer, M. Brodie, J. Lenchner and I. Rish, "Automated
Knowledge Elicitation and Flowchart Optimization for Problem
Diagnosis," in 4th Bayesian Modeling Applications Workshop, UAI

(Uncertainty in Artificial Intelligence), 2006.

[4] D. Kasper, A. Fauci, S. Hauser, D. Longo, J. Jameson and J. Loscalzo,
Harrison's Principles of Internal Medicine 19/E, McGraw Hill
Professional, 2015.

[5] J. M. Lee, "A Diagnostic Database System for PC Maintenance and
Repair," Journal of Digital Contents Society, vol. 9, no. 4, pp. 717-
723, 2008.

[6] P. Chen, T. Toyota and Y. Sasaki, "Fuzzy diagnosis and fuzzy
navigation for plant inspection and diagnosis robot," in Proceedings
of 1995 IEEE International Joint Conference of the Fourth IEEE
International Conference on Fuzzy Systems and The Second
International Fuzzy Engineering Symposium, 1995.

[7] Oxford Advanced Learner's Dictionary, "Flow Chart," 2016. [Online].
Available:
http://www.oxforddictionaries.com/definition/learner/flow-chart.
[Accessed 15 Mar 2016].

[8] J. S. Vitter, "Design and analysis of dynamic Huffman codes," Journal
of the ACM (JACM), vol. 34, no. 4, pp. 825-845, 1987.

[9] R. Solingen, V. Basili, G. Caldiera and H. D. Rombach, "Goal question
metric (gqm) approach," Encyclopedia of Software Engineering,
2002.

[10] N. K. Denzin and Y. S. Lincoln, Qualitative research, Denzin: NK y
Lincoln YS, 2005.

[11] FixingMyComputer, "Computer Repair," FixingMyComputer, 2013.
[Online]. Available: http://fixingmycomputer.com/. [Accessed 25
May 2015].

[12] W. Szwoch, "Recognition, understanding and aestheticization of
freehand drawing flowcharts," in IEEE Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007),
2007.

