Proving Properties About Programs Which Share

Tony Clark
Formal Methods Group
Phoenix Building
University of Bradford
West Yorkshire
BD7 1DP
UK

a.n.clark@comp.brad.ac.uk

September 30, 1997

Keywords: alias analysis, abstract interpretation, operational semantics, verification.

Abstract

The analysis of program properties is essential to the production of
high quality systems. Unfortunately, the analysis of imperative programs
is difficult because they are not referentially transparent. This paper
makes a contribution to the analysis of imperative programs by proposing
a general semantic model for expressing programs which involve aliasing
and using this to develop a deductive system for establishing program
properties. The approach is not limited to first order languages since
a A-calculus is used as a universal model of imperative programming.
The approach is parameterised with respect to the semantics of aliasing
and can therefore be instantiated with respect to the semantics of any
particular imperative language.

1 Introduction

The analysis of program properties is essential to the production of high quality
systems. The category of programming languages which are referentially trans-
parent (for example the so-called pure functional languages) are amenable to
analysis techniques mainly because they are free from side-effects. However the
majority of languages which are used today are imperative, for example the C
family. Such languages permit values to be modified by side-effect and are much
more difficult to analyse.

In order to facilitate the analysis of imperative programs we require a general
model of the sharing (or aliasing) and update which occurs during program
execution. Such a model must be highly flexible since nearly all imperative
programming languages exhibit varying sharing and update characteristics.

The A-calculus is a universal model of programming languages. Its simplicity
makes it highly appealing as an analysis tool. The calculus is higher-order
which enables it to elegantly model both data and control abstractions. This
paper addresses the problem of using a A-calculus to perform alias analysis.
Given the hypothesis that A-calculi represent a universal model of (sequential)
computation then the result is a general framework for performing alias analysis
with respect to any (sequential) programming language.

The initial point of departure is Landin’s sharing machine [5] which enriches
a A-calculus with sharing and update features and presents a semantics in terms
of a state transition machine. Although the sharing machine is suitable as
a general model of imperative computation, it is unwieldy when used to prove
program properties. We show that a transformation can be applied which results
in programs whose imperative semantics can be expressed as a deductive system
and then give examples of how this system can be used to prove some properties
of imperative programs. We conclude with an analysis of the work and compare
it with related research.

2 Definitions

The sharing machine is defined as a state transition system. The states are
defined as terms in addition to information which describes the sharing of sub-
structures within terms. This section gives the definitions which are necessary
to define the sharing machine.

2.1 Terms

Let V be a set of variables and disjointly let F' be a set of function symbols.
Each function symbol has an arity which is a positive integer or zero. A term
is either a variable v € V or a function symbol f € F applied to a sequence of
terms (t1,...,t,) where n is the arity of f. If a term contains no variables then
it is called a ground term and if n = 0 then the term is called an atom. The set
of variables in a term is vars(t).

A wariable substitution 6 is a partial function from variables to ground terms.
A variable substitution can be uniquely extended to a homomorphism which
may be applied to any term:

Given a term f(t1,...,t,) each of the sub-terms t; is at position i. A term
accessor is a function which is applied to a term to yield one of its sub-terms.
There is a distinct accessor for each possible sub-term position. For example:

L(f(ti,t2,t3)) =t
2(f(ty,t2,13)) =12
3(f(tr,ta,t3)) = t3

A path p is one of the following;:
e the identity path ¢ for which «(¢) = ¢.
e a term accessor.

e the composition of two paths: p; o po whose application is defined as
follows:

(p1 o p2)(t) = p1(p=2(?))

Given a term %, a location in t is a set of paths L such that there is a single
term t' such that for each path p € L: p(t) = t'. Intuitively, a location contains
a single data item which is accessible via different paths through the term.

It will be useful to develop a method for graphically displaying a term.
A term may be represented as a directed graph whose vertices are labelled
with function symbols. A term f(t1,...,t,) is represented as a directed graph
containing a root vertex v labelled with f and edges e; leading from v to the
root vertices of the graph of each sub-term ¢;. Such a graph is easily drawn on
paper or a computer screen.

2.2 Sharing

A sharing S on a term t is a set of locations in ¢. Let T be the complete set
of sub-terms in ¢ then a sharing on ¢ contains a path p if and only if p(t) € T
A sharing S on a term ¢ is well formed when for each pair of paths p o p; and
popsin t, if p; shares with p, in S then p o p; shares with po ps in S.

A sharing is to be used to describe the operational semantics of an imper-
ative language and to prove sharing properties of programs. The operational
semantics is defined as a state transition system given as a collection of rules.
The system states are ground terms and the rules define how the states are
transformed as the program evaluates.

A sharing in the display of a term allows two or more edges to be incident on
the same vertex. A special case occurs when an entire term shares with itself.
This is to be drawn as a cycle leading to the root vertex of the term.

2.3 Rules

A rule is t; —— to with a possible side condition defining how the rule affects
the current sharing. The term ¢; is called the antecedent and to is called the
consequent.

A rule is used to rewrite ground terms. A ground term ¢ matches a term ¢’
if there is a variable substitution € such that 6(¢') = ¢. A rule t; — t» matches
a ground term ¢ if its antecedent matches ¢. The rule then rewrites ¢ to the
ground term 6(t2).

A rule also affects a sharing on a ground term as follows. Let S; be a well
formed sharing on a ground term ¢ and let t; —> t5 be a matching rule given
the variable substitution . For each variable v € vars(t;) there is a unique path
Py such that p,(¢1) = v. For each variable v € wvars(t1) there is a set of paths
P, such that for each path p € P,: p(t2) = v. Let So be a well formed sharing
on #(t2). Two paths p; and py share in Sy if and only if:

e the side condition does not explicitly prevent it; and

1. p1 = pop)] and ps = po p) such that p|(t2) = p)(t2) = v for some
variable v; or

2. pr =pop, opy and p» = po p, o py such that there exist paths p,,
and p,, in t; where p, € P,, and py € P,, and the paths po p, o p,,
and p o p, o p,, share in Si; or

3. the side condition explicitly demands it.

Consider the rule f(vy,vs) > g(v1,v2,v1). When this rule is used to rewrite
any ground term which matches the antecedent the resulting sharing will contain
the following location {1,3} due to the repeated use of the variable v; in the
consequent.

Consider the rule f(vi,vs) — g(va,v1). When this rule is used to rewrite
the following ground term: f(h(ki,k2),i(ks, k1)) and the sharing:

{{1,2},{201,202},{201},{102}}

then the resulting term is g(i(ks, k1), h(k1, k2)) with the following sharing:

{{1},{2},{201,102},{102},{202}}

Rules describe modifications to the display of a term. In such cases it is conve-
nient to think of the display as being achieved using pegs labelled with function
symbols (vertices) and elastic string, coloured at the target end, tied between
the pegs (edges).

A rule modifies a display in place by introducing new pegs and string and by
untying the coloured end of existing strings and re-tying the string to a different
peg.

The application of a rule to a display d is as follows. FEach variable in the an-
tecedent identifies a distinct peg. The display of the consequent is constructed,
starting at the root of d and the root of the consequent term. Where the pegs

match they are left unaltered and construction proceeds with the corresponding
sub-terms. Where the consequent introduces a new function symbol, the display
is modified to add a new appropriately labelled peg and the edge leading from
the parent peg is untied and re-tied to the new peg. Where the consequent
refers to a variable, the display string is untied and re-tied to the peg associated
with the variable. When the application of a rule to a display is complete, any
pegs and string which are unreachable from the root are removed.

2.4 Update

Given a term and two locations in the term we can wupdate the first location
with the value in the second by replacing all occurrences of the value in the
first location with the value in the second location and arrange so that the two
locations are left sharing.

Consider the display of a term. Locations in the term are pegs. Given two
locations, if the first is to be updated to contain the value in the second then
all strings tied to the first peg are untied and then re-tied to the second peg.

3 A Sharing SECD Machine

The SECD machine is a flexible system for providing an operational semantics
for a A-calculus. The machine is defined in terms of a collection of states and
rules which perform calculations by rewriting the states.

In order to provide a model for an imperative language, an SECD machine
must support sharing and update. This section describes such an SECD ma-
chine.

3.1 Machine States

The SECD machine consists of a set of states and a collection of rules. The
states are terms which are constructed from the following term classes:

e a dit is an integer, a boolean, a tuple, or a closure.
e integers which are treated as term constants.
e booleans which are treated as term constants.

e tuples. Tuples of arity n are constructed using a function symbol tuple-n
where each sub-term is a dit. When writing tuples we drop the function
symbol, for example tuple-3(1,2,3) becomes (1,2, 3).

e sequences which are either the constant nil(), written [], or a term cons(¢,1)
where ¢ is a dit and [is a sequence. When writing non empty sequences
we use infix notation, for example 1 : 2 : [] instead of cons(1, cons(2,[])),
and [t] instead of 1:[]. A sequence t; :t2:...: 1, :[] can also be written
[t1,ta, ..., tnl.

e environments which are sequences of tuples of arity 2 where the first com-
ponent of each tuple is an identifier and the second is a dit.

e program expressions which are drawn from the following syntax definition:
E:=1|M.E|EE|E—-E;E|(E,....,E) | (E)

where [is the syntactic category of program identifiers, AI.E is the
syntactic category of functions, EFE is the syntactic category of appli-
cations, £ — FE; FE is the syntactic category of conditional expressions,
and (F,...,E) is the syntactic category of tuples. Each non-atomic
syntactic category has its own term constructor. For example the term
lambda(i, apply(f,i)) is written \i.f(i).

e machine instructions which are: @; choose(e;,e2) where e; and ey are
program expressions, written e; — ea; constuple(n) where n is an integer,
written [n]; and, update() written :=.

e closures which are terms closure(i, p,e) where i is an identifier, p is an
environment and e is a program expression. A closure is written <i, p, e>.

e machine states which are either the constant tuple () or a tuple of arity 4:
(s,€e,c,d) where s is a sequence of dits called the stack, e is an environment,
¢ is a sequence of program expressions and machine instructions called the
control and d is a machine state called the dump.

3.2 Transition Rules

The transition rules for the SECD machine with sharing are defined in figure
1. Each time a rule is used to transform the current machine state, the current
sharing is modified using the definition given in §2.3.

Side conditions are required in order to define sharing issues which differ from
the default mechanisms which are defined in §2.3. The following side conditions
apply to the rules in figure 1:

e rule 2 must arrange for the location which contains the value of the iden-
tifier 4 in the environment to share with the top of the stack.

e rule 5 must arrange for the value of the identifier 7 in the consequent to
share with the argument v in the antecedent!

e rule 13 must arrange for the dit v; to be updated with the dit vo. The
rule shows that all machine components can potentially be affected by the
update; otherwise this rule behaves as normal.

!Note that in practice the degree of sharing depends upon the particular imperative lan-
guage which we are modelling. For example we may have call-by-value or call-by-reference
parameter passing.

(s,e,k:c,d) — (k:s,ec,d) (1)
(s,e,i:¢,d) —> (e(i) : s,e,c,d) (2)

(s,e, (Ai.D) : c,d) — (<i,e,b>:s,e,¢,d) (3)
(s,e,(e1€2) 1 ¢,d) — (s,e,eq €1 : @ :¢,d) (4)
(<i,e1,b>:v:s8,e0,@:¢,d) —> ([], (i,v) : e1,[b], (s, e,c,d)) (5)
(v:,], (s e c,d)) — (v:s,ecd) (6)
(s,e,(er;ea > e3) rc,d) —> (s,e,er : (e2 = e3) 1 ¢, d) (7)
(true: s,e, (e = e3) 1 e,d) — (s, e,e1 1 ¢, d) (8)
(false : s,e,(e1r — e2) : ¢,d) — (s,e,e9: ¢,d) (9)
(s,e,(er,...,en) 1 c,d) —> (s,e et ... €1 :[n] : ¢, d) (10)
(01 1. top 8,6, [n] s e, d) = ((v1,...,0,) 1 8,€,c,d) (11)
(s,e,(er :=e2) i c,d) — (s,e,e1 :e2: (:=) : ¢,d) (12)
(va:v1:8,e,(:=) 1 ¢c,d) — (vy: 8',¢e',c,d") (13)

Figure 1: SECD Transition Rules

Given a program expression z and an environment e, an initial machine state for
program execution is ([], e, [z], (). By repeatedly applying the sharing machine
transition rules (assuming no coding errors in z), the result will be a terminal
state ([v],e,][], () where v is the outcome delivered by performing program z. If
o1 — o, are the intermediate states then a calculation describes all the steps:

(e [2],0) = o= v on r= (0], 6,1, ()

or equivalently ([], e, [z],()) —* ([v],e,[], (). The following example shows a
calculation which performs an update:

(s,(i,1) : e,(:=0) : ¢,d) —>
(s,(i,1):€,0:4:(:=) : ¢,d) —*
(1:0:8,(i,1) 1 e,(:=) : ¢,
(0:s,(i,0) : e,c,d)

when the value of the identifier 7 is pushed, the head of the stack shares with the
value in the environment. When the value at the head of the stack is updated
then all sharing values must be updated to produce a consistent state. The
calculation shows that the update will modify the value of 7 in the environment.

4 A Simplified Semantics

We claim that the SECD machine with sharing is a universal tool in the analysis
of imperative programming languages. However, it can prove unwieldy if used
to prove program properties. In particular, the machine has a number of compo-
nents each of which may share with any of the other components. A consequence
is that program proofs potentially involve a large amount of book-keeping due
to the number of machine components which can share.

In order to facilitate the proof of imperative program properties, we would
like the proofs to be as simple as possible. This section describes the key features
which complicate the sharing machine and the restrictions which can be imposed
in order to define a simple deductive system for program proof.

4.1 Program Transformation

The SECD machine uses a stack in order to hold the results from intermediate
calculations. For example, in order to construct a tuple, each tuple component
is produced by performing an expression and leaving the result on the stack.
When all components have been pushed on the stack then they are popped and
the tuple is pushed.

A consequence of using a stack for intermediate results is that the stack may
be modified by an update to a data item while it shares with a stack component.
The following expression gives a simple example:

(z,1(x) := 3)

where the value of z (a tuple) is pushed onto the stack and then modified as a
side effect of evaluating 1(z) := 3.

The use of a stack to hold intermediate calculations can be avoided if we force
all values to be named. This has the effect of transferring sharing which would
otherwise occur through the stack to occur through the environment. If we also
define that control items are not shared (i.e. we cannot update code during
execution) then the result is that all sharing occurs through the environment
and the dump. Since the stack and the control are not used for sharing then
the dump (with respect to sharing) becomes a stack of environments.

In order to ensure that all data items are named, an arbitrary A-calculus
expression must, be transformed. The transformation ensures that an expression
is evaluated as a single thread and that each dit produced by a sub-expression
is named. A function which performs the transformation is defined in figure
2. Note that we assume that all program constants are named and occur at
particular environment locations.

Given a A-calculus expression e, the transformed expression is trans(e,I),
where I is the identity function. The first argument to trans is a A-calculus
expression and the second is a continuation mapping identifiers to expressions.

Consider the following A-calculus expression (f((1,2), \z.z + 3),4) which

trans(i,s) = s(i)

trans([Ai.e]], s) = [let v(i) = e; in es]
where
e1 = trans(ey, I)
v = newvar
es = s(v)

trans(Jere2], s) = trans(er, A f.trans(es, Av.[let v’ = f(v) in e]))

where
v' = newvar
e=s(v')

trans(er — ea;es], s) = trans(er, Av.Jv — eq;e5])
where
es = trans(ea, s)
es = trans(es, s)

trans([(e1, ..., en)],s) = trans(er, Avy. ... trans(e,, A\v,,.[let v = (vy,...,v,) ine])...)
where
v = newvar

e = s(v)

trans(Jer := es], s) = trans(er, Avy.trans(es, Ava.Jlet v = vy := vy in €]))

where
v = newvar
e =s(v)

trans(Jer; ea], s) = trans(er, A_.trans(es, s))

Figure 2: Single Threading Transformation

produces the following single threaded expression:

let v; = (1,2) in
let v2(z) =2+ 3 in
let v3 = (v1,v2) In
let vy = f(v3) in
let v5 = (v4,4) in vs

Given an expression produced by trans, its evaluation on the sharing machine
will only use the head stack location. Furthermore, immediately after a value is
constructed at the head of the stack it is popped and added to the environment.
As a result, we can dispense with the machine stack and need only pay attention
to the environment during program execution.

4.2 A Natural Semantics with Sharing

The operational semantics of program execution can be simplified by dropping
the stack. There is still a requirement for serialising certain aspects of program
evaluation, but rather than define the semantics in terms of a machine, it is
given as a deductive system which defines a relation:

p,Ste=uv L, S

where e is a transformed A-expression which is performed relative to a stack of
identifier binding environments p and the sharing S to produce the data item
v whose program location is .. The environment p’ and sharing S’ are derived
from p and S after any updates in e have been performed.

The deductive system is given as a collection of rules which use the following
definitions. Let S be a sharing, p be a sequence of environments, p be a path
and L be a location.

Def 1 The sharing S represents pushing a new location onto S. All paths p in
S become po?2 in S. The new location may have structure and the context of S
will determine any new paths which must be present. For example, if the pair
(i,2) is pushed then paths 1, 101 and 201 are present in S.

Def 2 The sharing S represent popping the head location in S. All paths po 1
are removed from S and all paths po 2 in S become p in S.

Def 3 The expression S(p,i) is the location of the value of the identifier i in
the environment sequence p.

Def 4 The expression S[p1 = ps] is a sharing which is the same as S except
that the path p1 has been modified to share with the path ps. Note that the path
p1 1S added to the sharing if it is not already present. In order to produce a well
formed sharing, for any path ps o py in S the expression S[py = pa] implies that
S[p3z o p1 = p3 o pa].

10

Def 5 Sle,...,e,] = ((Slen]) - - -)]en)
Def 6 The expression S[p = L] is defined as follows:

[Sp=p1,....p=pn] whenL#0DBAp;€L
Slp=1]= { SuU{{p}} otherwise

Def 7 The expression p(i) produces the data item which is bound to the identi-
fier i in the first environment in the sequence p. The expression p(S(p,i1), p(iz))
18 a new environment sequence which is the same as p except that all paths in
the location S(p,i1) contain the data item p(is).

Def 8 The expression S[Ly = Ls] is a sharing which is defined as follows:

_ [Slpr=Ls,...,pn=1Ls] when L1 0 Ap; € Ly
S[Ly = L] = { S otherwise

Def 9 L = v such that v € {L}

Def 10 L = v such that v € {Z}
Def 11 The path to the data item at the head of the environment is h = 2o0101.

The deduction rules for performing transformed M\-expressions are defined in
figure 3. In addition to providing a means to perform a program, these rules
may also be used to test theorems about programs which share. The ability to
define the context of expression evaluation via the environment p and the sharing
S allows the same program expression to be tested in a variety of contexts. The
rest of this section shows some examples of how the rules are used to prove
sharing theorems about imperative programs.

5 Examples of Program Proof

The natural semantics can be used as a deductive system for proving properties
about programs which share. This section gives a number of examples of such
proofs. Note that some of the proofs omit the program transformation when it is
not required. For example, the expression: let i = f(z) in i is equivalent to the
expression f(z). Note also that locations which are unimportant to the proof,
for example which do not share, are omitted. Since the calculus is intended to
be the target of a program transformation from an imperative language, each
example is given as a program fragment in a C-like language.

Theorem 1 The result of performing the following program is to print the value
20:

{ int i = 20;
print(i);
}

11

p, S+ i=p(i),S(p,i), p, S

[(i1, <is,p,e1>)] :p,S[2oh=2]Fey = v,L,_:p', S
2)

p,SFletii(iz) =€ in ey =>v,i,p’,5:”

[(Zl,p(ZZ))] 2p75[201 :S(P,Zl)OQ] Fe$=U=L=—1P17S’
p, St let iy =iy ine:>7),li,p’,§’

[, (p(ir), - . p(in)]) : p, STk 0 h = S(p,in) 02 F e = v, L,-: 4, '

p,Stleti=(i1,...,i0n) ine:>1),i,p’,§’

B p1(ia) = <ia, pa,€2>
54 = 51[2 [e] 1 [e] 1 = 2 o (Sl(pl,ig)) o 2,20]. = 51(/)1,7?) o 2]
((ia,p1(i3)) = p2) : p1,Sa b= es = v1, L1, 1 p3, Sy
[(i1,v1)] : p3,S2[h = L1 02] ey = va, Lo, _: ps, S3

p]7S] Flet i] = 22(23) in e = U2,527p4,5:3

. pliz) =p
[(i,p(p(i3)))] : p,S[h =po(S(p,is)) 02 Fe=v,L,_:p, S

p,SFlet i; =iy(i3) ine = 7),Ii,p’,§’

p(i) = true
p,Ste =uv L,p, S

p,Ski—eea=>uv,L,p,S

p(i) = false
p,Stey=uv L,p, S5

p,Ski—eea=>uv,Lp,S

S" = S[h = S(p,is) ©2,5(p,iz) 0 2 = S(p,i3) 0 2]
[(i1, p(is))] = (p(S(p,in), pli3))),S" Fe=v,L,_:p',S"

p,SElet i =iy :=i3 ineév,i,pﬂsz”

Figure 3: Natural Semantics of Transformed Expressions

12

(20)

or equivalently:

[10)]] {{R}} i =20 = 20, {{h}}, [[(Z, 20)]], {{h}}

The proof of this theorem is a single application of rule 22, QED.

The following theorem shows how sharing is introduced between components
of the environment and the result of updating an environment component which
shares.

Theorem 2 The result of performing this program is 20:

{ int i1 = 10;
int *i2 = &i1l;
*12=20;
print(il);

}

or equivalently:

(i1, 1)), {{h}} - let io = iy in i == 20 = 20, {{A}}, [(ir, 20)]}, {{A}}

To prove this theorem we apply rule 16 and then prove the following;:

[(i2,10)] = [[(i1,10)]], {{h, ho 2}} F
in = 20 = 20,

{h, ho 23, (i, 20)] [[(i1, 20)]], {{h, hro 2}}

which is true by rule 22, QED.
The following theorem shows how sharing arises in structures and how ac-
cessor functions can be used to side effect a structure component.

Theorem 3 The result of performing the following theorem is 20:

{ int i1 = 10;
struct {
int *xfst;
int *snd;
}i2 = { &i1, &i1l };
int *i3 = i2.fst;
*i3 = 20;
print(il);
}

or equivalently:

0.0+
let iy = 10 in
let ig == (i],i]) in
let ig = 1(22) in
let _ = i3 := 20 in iy = (20,20)

01,0

13

To prove this theorem we firstly apply rule 16 to produce the following theorem:

(G4, 10)]], {{h}} F
let ig == (i],i]) in
let _ =3 := 20 in iy = (20,20)
0. [(i1, 20)]], {h}

then apply the rule 17 to produce the following theorem:

3

[(i2, (10,10))] = [[(¢1,10)]], {{10h,h0 2,20 h}}
let i3 = 1(i2) in let _ = i3 := 20 in iy = (20, 20),
{1 [l (20.20))] [[(r, 20)]]. {1 o .20 h. ho 2]}

then apply rule 19 to produce the following theorem:

[[(i5, 10)], (42, (10, 10))], [(i1, 10)]], {{h,20ho 2,10 ho2,ho202}}
let - =3 := 20 in i» = (20, 20),
{h o 2}, [[(i3, 20)], [(i2, (20, 20))], [(i1, 20)]], {{h,20 ho 2,10 ho 2, ho 20 2}}

which is true by an application of rule 22 and then rule 14, QED.

The following theorem shows how induction can be used to prove an invariant
which involves sharing within a structure. Consider a table represented as a pair
(I1,12). Both I; and Iy are sequences of pairs. Each pair in both sequences is of
the form (k,v) where k is a key and v is an entry.

An invariant on a table is that every entry in the list I shares with some
entry in the list ;. We require an operation which inserts a new pair into /; given
the key of the Il entry which is to share. The implementation shown in figure 4
is proposed. This is equivalent to the following functional implementation using
the proposed calculus:

let insert(ki, ko, t) =
letrec find(k,1) = null(l) = € (10 1(l) = k — 20 1(1); find(k, 2(1)))
let v = find(ka, 1(t))
in 2(t) := (k1,v) : 2(t);t

Theorem 4 Given a table vy for which the invariant condition is true then
after insert(vy,ve,t) the condition is still true. This theorem can be stated in
terms of the performance relation as:

[(t,v1), (k1,v2), (k2,v3)] : p, S F
e = (1(v1), ((v2, 2) : 2(v1))),
{201020h,2010poloh},

[(t7 (1(7)1): ((U27Z) : 2(7)1))))7 (k1=v2)7 (k2=v3)] 2P
S[201020h=20lopoloh]

where e is the body of the function insert, z is the entry in the first component
of the table vy associated with key v3, and p is an accessor.

14

struct Rec { Key k; Entry *e };
struct List { Rec hd; List *tl; };
struct Table { List *11; List *12; };

Entry *find(Key k, List *1)
{
if (1 == NULL)
error("cannot find key.");
else if(1->hd.k == k)
return 1->hd.e;
else
return find(k,1->t1);
}

Table insert(Key k1, Key k2, Table t)
{
Entry *v = find(k2,t.11);
t.12 = new List(Rec(kl,v),t.12);
return t;

}

Figure 4: A Program for Inserting an Entry in a Table

The following lemma is used to prove this theorem:

Lemma 1 Given a key vi and a list of pairs va which contains vy as a key then
the following theorem is true:

[(k,v1), (I, 02)] : p, Sk
null(l) = € (1o 1(l) = k — 20 1(1); find(k, 2(1))) = =,
{201l0po20l1020l},[(k,v1),(,0v2)],S

The proof is by induction on the length of the list I. Since we know that list

vy contains key v; then the list is not empty; by applying rule 21 we get the
following theorem:
[(k77)1): (l, UZ)] e S+
1o1(l) =k — 20 1(1); find(k,2(1)) = z,
{2 ol opo 201020 1}7 [(kavl): (la’U?)]: S

Now since either 10 1(vy) = v1 or 10 1(v1) # v; we proceed by case analysis:

e if 10 1(vy) = v1 then by applying rule 20 we get the following theorem:
[(k,v1), (I, 02)] : p, S+
201(l) = =z,
{201l0po20l0201},[(k,v1),(l,0v2)],S

3

where z =20 1(vy) and p = «.

15

e if 10 1(vy) # v1 then by applying rule 21 we get the following theorem:

[(k,'l)])7(l7’l)2)] : p7S F
find(F,2(1)) = .
{201l0po2010201},[(k,v1),(,0v2)],S

3

and then by rule 19 we get the following theorem:

[(k,v1),(1,2(02))] = [(k,v1), (I,v2)] : p,S[2010201=201020102]F
null(l) = € (1o 1(I) = k — 20 1(1); find(k, 2(1))) = =z,
{2010po2010201,201l0po201020102},

[(k, 1), (1, 2(02))] : [(k,01), (1, v2)], S[20 10201 = 201020102
which is true by induction for some p and z, QED.

The proof of theorem 4 is as follows. We ignore the binding of the function find
in the body of insert since the function is closed and does affect the sharing in
the table. By applying 19 and using lemma 1 we get the following theorem:

[(’U,Z)] : [(tnvl):(khv?):(k?:’uf‘?)] p,S[h =201 opo loho 2] H
let - =2(t) := (k1,v) : 2(¢) in t = 1(v1) : ((v2,2) : 2(v1)),
{1oh,201020ho02,20lopoloho?2},

(Sloh=201lopoloho?2])[20l1020ho2=20lopoloho?2]

Since the expression binds the identifier _ and then ignores it, we can use rule 22
without adding a binding to the environment, producing the following theorem:

[(v, 2)] = [(£, (L(v1), (02, 2) 2 2(01)))), (K1, 02), (k2,v3)] : p, S[h=2010poloho2]t
t= 1(v1) : ((ve,2):2(mn)),
{loh,201020ho02,20lopoloho?2},

(S[loh=20lopoloho?2])20l020ho2=20lopoloho?2]

which is true by rule 14, QED.

The theorems in this section show that the use of a A-calculus defined using
natural semantics with sharing is a flexible way of analysing imperative pro-
grams. In particular we have shown that the approach can handle both open
and closed programs (i.e. with and without the concrete dits).

The approach is flexible with respect to the semantics of sharing. In order
to tailor the calculus to a particular programming language, the definition of
parameter passing, identifier binding and builtin function calling are readily
modified.

6 Conclusion
This paper has proposed a general model for the analysis of imperative pro-

grams in terms of a A-calculus. Since A-calculi are claimed to be a universal
model of computation we claim that the model is suitable for analysing any

16

concrete imperative programming language given a suitable transformation to
the calculus.

The operational semantics of a sharing A-calculus expression is conveniently
expressed using a sharing SECD machine and we have shown that the seman-
tics can be greatly simplified (with respect to a collection of assumptions) by
performing a source-to-source transformation on the expression.

The resulting semantics can be used as a deductive system in order to prove
sharing theorems about programs. A number of examples of proof have been
given including both open and closed programs. The final example has shown
how induction can be used with respect to arbitrary sized data items.

This work is closely related to the abstract interpretation of programs in
order to analyse aliasing properties, for example see [2] for a general overview
of this area. The semantic models used to analyse programs are essentially
first order, for example see [8] and [3]. Higher-order languages, such as A-
calculi, can be used to encode a wide variety of data and control abstractions
without requiring extra programming constructs. In this sense we claim that the
model presented in this paper is a universal framework for analysing imperative
programs.

One of the main reasons for performing alias analysis is to establish may-
alias and must-alias properties. We have given an example of establishing a
must-alias property (theorem 4). See [7] and [4] for more details.

Another approach to modelling programming languages with sharing is de-
notational semantics. Here a program is viewed as a function over a semantic
domain. The domain includes a store which associates memory addresses with
dits. We believe the approach adopted here is more amenable to program proof.
See [9] and [1] for more details about denotational semantics.

We have used a natural semantics approach which is derived from a transition
machine approach. ML is a higher-order language with sharing which uses a
natural semantics, see [6] for more details.

References

[1] Allison, L. 1986 A Practical Introduction to Denotational Semantics. Cam-
bridge Computer Science Texts, 23.

[2] Deutsch, A. 1994 Interprocedural May-Alias Analysis for Pointers: Beyond
k-Limiting. ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, Orlando FL, June 20 24, pp 230 241.

[3] Deutch, A. 1992 A Storeless Model of Aliasing using Finite Representations
of Right Regular Equivalence Relations. Proceedings of the IEEE 1992 In-
ternational Conference on Computer Languages, Oakland California, pp 2
- 13.

[4] Landi, W. 1992 Undecidability of Static Analysis. Letters on Programming
Languages and Systems, 1(4).

17

[5]

Landin, P. J. 1965 A Correspondence Between Algol 60 and Church’s
Lambda-Notation. Communications of the ACM, 8, pp 89 — 101.

Milner, R., Tofte, M., Harper, R. 1990 The Definition of Standard ML.
The MIT Press.

Ramalingam G. 1994 The Undecidability of Aliasing. ACM Transactions
on Programming Languages and Systems, 16(5), pp 1467 1471.

Ruf, E. 1995 Context Insensitive Alias Analysis Reconsidered. ACM SIG-
PLAN 1995 Conference on Programming Language Design and Implemen-
tation, La Jolla CA, June 18 — 21, pp 13 — 22.

Stoy, J. 1977 Denotational Semantics: The Scott-Stratchey Approach to
Programming Language Theory. The MIT Press.

18

