
Towards Improving the Security of Low-Interaction

Honeypots: Insights from a Comparative Analysis

Abubakar Zakari*1, Abdulmalik Ahmad Lawan*2, Girish Bekaroo3

1,2Department of Computer Science, Kano University of Science and Technology

Wudil, Kano Nigeria
3 School of Science and Technology, Middlesex University (Mauritius Branch Campus),

Vacoas, Mauritius

{*1 abubakar.zakari@yahoo.com; *2 aaltofa2000@gmail.com; 3g.bekaroo@mdx.ac.mu}

Abstract. The recent increase in the number of security attacks by cyber-

criminals on small businesses meant that security remained a concern for such

organizations. In many such cases, detecting the attackers remained a challenge.

A common tool to augment existing attack detection mechanisms within

networks involves the use of honeypot systems. A fundamental feature of low-

interaction honeypots is to be able to lure intruders, but the effectiveness of

such systems has nevertheless been affected by various constraints. To be able

to secure honeypots systems, it is important to firstly determine its

requirements, before taking appropriate actions to ensure that the identified

requirements have been achieved. This paper critically examines how existing

low-interaction honeypot systems abide to major requirements before

recommending how their security could be improved.

Keywords: Low-Interaction Honeypots, Deception in Depth (DID),

Deceptiveness, Intelligence, Robustness.

1 Introduction

Even though the massive growth of the internet over the past years provided

various benefits to end users and businesses, security remained a concern [1, 2]. It has

recently been reported that there has been a huge rise in attacks as cyber-criminals

have been targeting small businesses [3]. In many such attacks, detection of the

attackers remained a challenge. Although security systems like intrusion detection

systems (IDS), firewalls, intrusion prevention systems (IPS) have been existent since

many years to enhance the security of networks; various issues were raised with

regards to detection of new attacks [4]. A common tool to augment existing attack

detection mechanisms within networks is honeypot and by using such systems, new

attacks could be uncovered, assault patterns might be revealed, and the precise

thought processes of the intruder could be studied [5].

A key purpose of a honeypot is to serve as a decoy used to lure intruders in order to

accumulate important information about the intruder and technique of attack that was

used to compromise the system. The gathered information could then be used by the

mailto:abubakar.zakari@yahoo.com

organization to trace back the attacker and to also improve its internal defense

mechanisms. Honeypot systems can be developed for two reasons purposes, namely,

production and research, and can either be of low-interaction or high-interaction [6].

Low-interaction honeypots simulate some portion of the operating system for instance

the network stack, while focusing on services that cannot be utilized by the intruder to

adventure the real system. This type of honeypot normally implements only the

Internet protocols to permit interaction with intruder while making the latter believe

the real system is being compromised [7]. On the other hand, high interaction

honeypots are complete production similar systems that have a full set of services and

permit an intruder a great deal of scope throughout the intrusion. Generally, high

interaction honeypots are challenging to recognize and are costly to maintain [8]. The

costs of high interaction honeypots is a barrier to their adoption by small businesses

and also most firms do not need high-interaction honeypots that captures massive

amounts of data [9].

A fundamental feature of low-interaction honeypots is to be able to lure intruders,

but the effectiveness of such systems has nevertheless been affected by various

constraints. In the past, attackers have been using OS fingerprint techniques such as

NMAP, Xprove to remotely attack and distinguish honeypot from a real system [10].

Moreover, data security experts have been increasing focus on defensive strategies

while neglecting offensive strategies [6] thereby increasing its vulnerability to

intruders. If a honeypot is discovered by an intruder, its purpose is defeated and no

advantage is provided to the organization adopting it. As such, improvement of

existing honeypot systems is needed. To be able to secure network systems in

general, it is important to firstly determine its requirements, before taking appropriate

actions to ensure that the identified requirements have been achieved [11].

In terms of related work, although various studies focused on improving honeypot

systems against newly identified vulnerabilities and attacks, limited published

literature is available on the comparison related to how existing low-interaction

honeypots adhere to their security requirements. As such, this paper critically

examines how existing low-interaction honeypot systems abide to key identified

requirements before recommending how their security could be improved. The

analysis and recommendations provided in this paper could be used by researchers

and experts in their endeavor to improve the security of low-interaction honeypot

systems to eventually benefit businesses. The paper is structured in the following

manner: In section 2, the security requirements of honeypots are investigated before

reviewing the existing honeypot systems in section 3. Results from a comparative

analysis is provided in section 4 followed by recommendations on how the security of

low-interaction honeypots could be improved in section 5. Finally, the work is

concluded in section 6.

2 Key Requirements of Honeypots

A major security requirement of honeypot systems is its deceptiveness [12, 13].

Deceptiveness involves obscuring valuable data in bland-looking files, and set up

honeypots that divert attackers from the real assets whereby leading them to false

intellectual property, or causing them to trip alarms [14, 15]. In short, deception

involves misleading attacker into believing something that is false. Among the

deceptive techniques, camouflage involves disguising the network infrastructure by

making it a moving target, changing addresses, infrastructure topologies, and

available resources daily. In other words, camouflaging take steps to prevent attackers

from seeing the same infrastructure twice [16]. Disinformation is another process

which involves diverting or confusing attackers with false information [15]. In this

process as well the hacker is supplied with fake successes, responses, files, and assets

to exploit. Also, disinformation poised that any false information given must not be

easily disprovable. Moreover, work has also been done to categorize the

sophistication of deceptive discipline into different levels, namely, static, dynamic

and adaptive deception [17]. Static deception has been referred as constant execution

of an often uncontrollable trait whereas dynamic deception is implemented upon

activated response to some stimuli. Adaptive deception in turn adjusts and reacts to a

situation while also and employing cognitive assessment before, during and after the

fact.

Another essential requirement of honeypots systems are their robustness and fault

tolerance [7, 18]. A system is said to be fault-tolerant if it is able to automatically

recover from errors or faults while also being able to eradicate faults without suffering

from an externally perceivable failure [19]. This essential ability ensures that

honeypots are able to recuperate while at the same time guarantees robustness as the

system is able to also cope with errors during execution [7].

Furthermore, intelligence of honeypot systems is also important. Intelligence

enables honeypots to gain actionable insights by gathering threat intelligence feeds

and adversary indicators that define and describe trends, tendencies, methods, and

actions taken by attackers [20]. Intelligent honeypot pretend to surrender to one form

of attack in order to suppress a second, less-obvious defense. With series of attacks

on different levels of relevance and context, intelligent honeypot continue to ramp up

their threat intelligence capabilities while increasing their effectiveness with regards

to intelligence-led deceptions.

3 Low-Interaction Honeypot Systems

Different low-interaction honeypot systems have been proposed and this section

reviews the common ones.

3.1 Honeyahole

Principally designed and developed to escape from honeypot hunting, honeyahole

implements three phases, namely, collection, redirection and deception in order to

gather four types of attacking information to build up the blacklist [6]. The honeypot

has two redirection techniques embedded to dynamically send incoming traffic to a

production or a deception server in the same redirection phase.

3.2 Honeywall

Honeywall is a honeypot that helps in deploying honeynet with ease by automating

the process of deployment [2]. This honeypot can also capture and analyze traffic

(both inbound and outbound) of honeynet activity. An identified vulnerability of this

honeypot involves construction of a traffic stream that consists of strings matching

snort_inline's rewriting database before verifying whether all packets are received

unmodified [21].

3.3 Honeyd

Honeyd is a low-interaction, open source honeypot, and can be deployed in various

platforms (Windows, UNIX) [22]. It can emulate operating systems at TCP/IP stack

level and also monitor all UDP and TCP based ports (as shown in Fig. 1). A few

vulnerabilities of this type of honeypot were also found. Studies showed that Honeyd

can be detected remotely using fingerprint attacks [23, 24] and using timing analysis

of ICMP ECHO request [5]. In an attempt to improve the identified limitations, work

has been done to create a new camouflaged Honeyd by modifying the original

honeypot in addition to the underlying operating system support in order to permit

high-fidelity emulation of events [25].

Fig. 1 Honeyd infrastructure [25]

3.4 Honeytrap

Being a low-interaction honeypot that operates by observing attacks against

network services, honeytrap aims at collecting malware in an automated manner [14].

It permits the collection of traffic information for pre-closed ports by opening them in

which an access is observed. As a limitation, this honeypot is not able to capture

details pertaining to the activities of an attacker unless a second attempt is made to the

same honeypot [26].

3.5 Nepenthes

As a honeypot used for malware collection, Nepenthes inherits the scalability of

low-interaction honeypots and its flexibility enables it to emulate vulnerabilities of

different operating systems on a single machine during a single attack [27]. In terms

of limitations, Nepenthes is only capable to collect autonomously propagating

malware and that malicious software which spread using hitlist to find vulnerable

systems are hard to detect [28]. Furthermore, since Nepenthes emulates huge number

of vulnerabilities, it makes it easy to detect by attacker, because many TCP ports are

open in the process [28].

4 Comparative Analysis

Literature analysis reveals that the focus of the different reviewed low-interaction

honeypots vary in terms of characteristics and abilities. For Honeyd, detection using

OS fingerprinting attacks reduces its deceptiveness, camouflaging and robustness

capabilities [23, 24], although it has the ability to emulate sensitive features of

operating system and gather vital information of attacker as well, thus illustrating

intelligence [24]. On the other hand, Honeywall depicts robustness and intelligence

due to its ability to capture and analyze traffic (both inbound and out bound) of

honeynet activity [20]. Moreover, this honeypot has also been portrayed as intelligent

as it is able to deceive and link the attacker to the honeypot system [21]. Honeytrap, in

turn, does not collect details of attacker on the first attempt the attack is made but

rather relies on further attack attempts to be able to correctly detect the attacker which

is a big disadvantage in terms of intelligence [26]. Honeyahole is basically designed

to escape honeypot hunting with focus on camouflaging, deceptiveness and

robustness [6]. Finally, although Nepenthes is portrayed as a highly deceptive

honeypot, it has different vulnerabilities thus making it easy to detect by an attacker

[28]. Moreover, due to its inability to detect malwares that propagates using a hitlist

makes its intelligence and robustness undermined [28]. Comparisons are summarized

in Table 1 to show how existing low-interaction honeypot systems have been

portrayed by literature.

Table 1. Comparative Analysis

Item Deceptiveness Robustness Intelligence

Honeyd √ × √

Honeywall √ √ √

Honeytrap √ √ ×

Honeyanole √ √ ×

Nepenthes √ × ×

From Table 1, it could be seen that deceptiveness has been the major focus of the

reviewed low-interaction honeypots towards misleading attackers. The five honeypots

showed to have this capability although a few vulnerabilities have been highlighted

especially relating to the use of Honeyd and Nepenthes. Robustness, which relates to

coping with errors during execution, was identified as an important requirement of

honeypots. However, literature showed that this requirement has not been a major

focus of a few honeypots. Among the three requirements, intelligence seems to be the

least focused aspect of low-interaction honeypots. Among the 5 honeypots that were

compared, 3 of them did not portray intelligence abilities, which is important to better

deceive attackers while also accurately obtaining their details.

5 Recommendations

Results showed that the key requirements needing attention are robustness and

intelligence of low-interaction honeypot systems. Robustness can be improved using

redundancy or collaborative honeypot systems such that in case one of them fails,

others remain operational. Faults within existing honeypots could also be isolated by

further testing such systems. On the other hand, different works have been conducted

to improve the intelligence of low-interaction honeypots. First of all, honeypot

systems can embed intelligence by learning the moves of attacker in addition to tools

used to compromise systems [29]. Also, honeypots systems can be made dynamic

whereby having the capability to learn about network environments and

infrastructures before autonomously deploying individual honeypots based on current

layout [20]. Furthermore, after deployment, such systems should be able to repeatedly

monitor network changes and update configurations accordingly [20]. Additionally,

the Deception-in-Depth (DiD) concept of operation could be utilized [30]. DiD

utilizes the layering approach with three different layers in the proposed model aimed

at strengthening the defense of honeypot systems [31]. Within the model, the

honeypot asset is represented in the innermost layer whereas the honeypot is

positioned in the middle layer of the model. The purpose of the outermost layer is to

improve deception using techniques including fake access points.

6 Conclusions

This paper examined how existing low-interaction honeypot systems abide to their

requirements before recommending how their security could be improved. Three

important requirements of honeypot systems were identified namely deceptiveness,

robustness and intelligence. Among these requirements, existing low-interaction

honeypots seem to focus on deceptiveness with reduced attention given to their

robustness and intelligence. As such, more work is needed towards improving

robustness and intelligence of low-interaction honeypot systems so as to improve their

overall effectiveness. As future work, the proposed recommendations could be

practically evaluated to assess their effectiveness. Moreover, a framework could be

proposed focusing on the three requirements investigated in this study to help

businesses in their endeavor to prevent attackers from detecting, exploiting, and

deceiving honeypot systems and assets.

7 References

1. Chakrabarti, A., Manimaran, G.: Internet infrastructure security: A taxonomy. IEEE
network. vol. 16. no. 6 (2002) pp. 13-21.

2. Tiwari, R., Jain, A.: Design and analysis of distributed honeypot system. International
Journal of Computer Applications. vol. 55. no. 13 (2012) pp. 20-23.

3. Smith, M.: Huge rise in hack attacks as cyber-criminals target small businesses. [Online]
(2016) Available at: https://www.theguardian.com/small-business-
network/2016/feb/08/huge-rise-hack-attacks-cyber-criminals-target-small-businesses
[Accessed 20 Aug 2016].

4. Yang, Y., Yang, H., Mi, J.: Design of distributed honeypot system based on intrusion
tracking. In IEEE 3rd International Conference on Communication Software and
Networks (ICCSN), pp. 196-198, IEEE (2011).

5. Mukkamala, S., Yendrapalli, K., Basnet, R., Shankarapani, M.K., Sung, A.H.: Detection
of virtual environments and low interaction honeypots. In Information Assurance and
Security Workshop, 2007. IAW'07. IEEE SMC, pp. 92-98. IEEE (2007).

6. Shiue, L., Kao, S.: Countermeasure for detection of honeypot deployment. In IEEE
International Conference on Computer and Communication Engineering 2008. ICCCE
2008. pp. 595-599. IEEE (2008).

7. Mohammadi, S., Nikkhahan, B.: A fault tolerance honeypots network for securing E-
government. In IEEE International e-Conference on Advanced Science and Technology,
2009. AST'09. pp. 13-17. IEEE (2009).

8. Defibaugh-Chavez, P., Veeraghattam, R., Kannappa, M., Mukkamala, S., Sung, A.H.:
Network based detection of virtual environments and low interaction honeypots. In 2006
IEEE Information Assurance Workshop, pp. 283-289. IEEE (2006).

9. Brown, B.: How to make a honeypot network security system pay off. [Online] (2007)
Available at: http://www.networkworld.com/article/2296754/lan-wan/how-to-make-a-
honeypot-network-security-system-pay-off.html [Accessed 10 Aug 2016].

10. Valli, C.: Honeyd-A OS Fingerprinting Artifice. In Proceedings of 1st Australian
Computer Network and Information Forensics Conference (2003).

11. Bishop, M.: What is computer security?. IEEE Security & Privacy. vol. 1. no. 1 (2003)
pp. 67-69.

12. Cohen, F.: The use of deception techniques: Honeypots and decoys. Handbook of
Information Security. vol. 3. no. 1 (2006) pp. 646-655.

13. Zhang, F., Zhou, S., Qin, Z., Liu, J.: Honeypot: a supplemented active defense system for
network security. In Proceedings of the Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies 2003. PDCAT'2003. pp. 231-235.
(2003).

14. Provos, N.: A Virtual Honeypot Framework. USENIX Security Symposium, vol. 173
(2004) pp. 1-14.

15. Rowe, N.: Deception in Defense of Computer Systems from Cyber Attack. Cyber
Warfare and Cyber Terrorism (2008).

16. Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., Graham, S.: On recognizing virtual
honeypots and countermeasures. In 2nd IEEE International Symposium on Dependable,
Autonomic and Secure Computing 2006. pp. 211-218. IEEE (2006).

17. Yek, S., Australia, W.: Measuring the Effectiveness of Deception in a Wireless Honeypot.
In Australian Computer, Network & Information Forensics Conference (2003).

18. Nikkhahan, B., Aghdam, A., Sohrabi, S.: E-government security: A honeynet approach.
International Journal of Advanced Science and Technology. vol. 5. (2009).

19. Avizienis, A., Kelly, J.: Fault tolerance by design diversity: Concepts and experiments.
Computer. vol. 17, no. 8 (1984) pp. 67-80.

20. Zakaria, W., Kiah, M.: A review on artificial intelligence techniques for developing
intelligent honeypot. In 2012 8th International Conference on Computing Technology and
Information Management (ICCM), pp. 696-701. IEEE (2012).

21. Provos, N., Holz, T.: Virtual honeypots: from botnet tracking to intrusion detection.
Pearson Education (2007).

22. Krutz, R., Vines, R.: The CEH Prep Guide: The Comprehensive Guide To Certified
Ethical Hacking (With CD), John Wiley & Sons (2007).

23. NOSTROMO: Techniques in OS-Fingerprinting. Hagenberg (2005).
24. Boyle, A.: A Remote OS Identification Primer. SANS (2001).
25. Fu, X., Graham, B., Cheng, D., Bettati, R. Zhao, W.: Camouflaging virtual honeypots.

Texas A&M University (2005).
26. Song, J., Takakura, H., Okabe, Y.: Cooperation of intelligent honeypots to detect

unknown malicious codes. In IEEE WOMBAT Workshop on Information Security
Threats Data Collection and Sharing, 2008. WISTDCS'08. IEEE (2008).

27. Kumar, S., Sehgal, R., Singh, P., Chaudhary, A.: Nepenthes Honeypots based Botnet
Detection. Journal of Advances in Information Technology. vol. 3. no. 4. (2012) pp. 215-
221.

28. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.: The nepenthes platform: An
efficient approach to collect malware. In International Workshop on Recent Advances in
Intrusion Detection (2006).

29. Gupta, N.: Improving the effectiveness of deceptive honeynets through an empirical
learning approach. In 3rd Australian Information Warfare & Security Conference (2002).

30. Yek, S.: Implementing network defence using deception in a wireless honeypot. In
Australian Computer, Network & Information Forensics Conference (2004).

31. Gerwehr, S., Anderson, R.: Employing deception in INFOSEC. [Online] (2000).
Available: http://www.cert.org/research/isw/isw2000/papers/26.pdf. [Accessed 10 Aug
2016].

