
1

Work-In-Progress Papers Presented at
The 28th International Conference on

Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX 2019)

Editors: Serenella Cerrito and Andrei Popescu

Technical Report
Department of Computer Science
Faculty of Science and Technology
Middlesex University, London
ISBN: 9781911371786

Tableau-based translation from first-order logic
to modal logic?

Tin Perkov

Chair of Mathematics and Statistics, Faculty of Teacher Education, University of
Zagreb, Savska c. 77, HR-10000 Zagreb, Croatia

Abstract. We define a procedure for translation of a given first-order
formula to an equivalent modal formula, if such exists, by using tableau-
based bisimulation invariance test. Previously developed tableau pro-
cedure tests bisimulation invariance of a given first-order formula, and
therefore tests whether that formula is equivalent to the standard transla-
tion of some modal formula. Using a closed tableau as the starting point,
we show how an equivalent modal formula can be effectively obtained.

Keywords: Modal logic, Bisimulation invariance, Tableaux.

1 Introduction

Kripke semantics makes modal logic a fragment of first-order logic, namely the
bisimulation invariant fragment. Unfortunately, this is an undecidable fragment
of first-order logic (see [1]). Truth clauses of modal formulas have the obvious
translation to first-order logic. This is the basis of standard translation from
modal logic to first-order logic. Of course, the set of these translations is de-
cidable, but the set of all first-order formulas (over the appropriate signature)
equivalent to the standard translation of some modal formula is not decidable.
By the Van Benthem Characterization Theorem, this is exactly the set of all for-
mulas invariant under bisimulation, which makes the latter the basic equivalence
between Kripke models.

In [5] we developed a tableau-based procedure to test whether a given first-
order formula is bisimulation invariant. Using reduction to the standard first-
order tableau (see e.g. [6] for the reference), we proved soundness and complete-
ness. The latter implies semi-decidability of the problem, since it means that
each bisimulation invariant formula has a closed tableau. In other words, in case
of the affirmative answer, the procedure does terminate and gives the correct
answer, i.e. the test is positive.

The aim of the present work is to use a given closed tableau of a bisimulation
invariant formula not only as the answer that this formula is equivalent to the
? This work has been supported by Croatian Science Foundation (HRZZ) under the
projects UIP-05-2017-9219 and IP-01-2018-7459.

Tableau-based translation from first-order logic to modal logic 3

standard translation of some modal formula, but to obtain this modal formula
using the tableau as the starting point.

In Section 2 we briefly overview basic notions and results from [5], for the sake
of self-containment of the present paper. In Section 3 we present the procedure
of obtaining a modal correspondent of a given bisimulation invariant first-order
formula. We conclude with a brief further work note.

2 Preliminaries

We assume familiarity with modal logic (see e.g. [2] for further details if needed),
so the following several paragraphs are here just in order to fix notation, ter-
minology and a convenient choice of primitive symbols. We will only consider
the basic modal language, the alphabet of which extends that of classical propo-
sitional logic with mutually dual modalities ♦ and �. The syntax of modal
formulas is given by

ϕ ::= p | ⊥ |> | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2 |♦ϕ |�ϕ,

where p ranges over the set of propositional variables. We often write ϕ → ψ
instead of ¬ϕ ∨ ψ.

A Kripke model is M = (W,R, V), where W 6= ∅, R ⊆W ×W , and V is the
valuation, a function that maps each propositional variable p to some V (p) ⊆W .

Let σ be the first-order signature consisting of a binary relational symbol
R and a unary relational symbol P for each propositional variable p. A Kripke
model can be regarded as a σ-structure, with |M| = W ,RM = R and PM = V (p)
for each p. The standard translation is defined as follows:

STx(p) = Px, for each propositional letter p
STx(⊥) = ⊥
STx(>) = >
STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ1 ∨ ϕ2) = STx(ϕ1) ∨ STx(ϕ2)
STx(ϕ1 ∧ ϕ2) = STx(ϕ1) ∧ STx(ϕ2)

STx(♦ϕ) = ∃y(Rxy ∧ STy(ϕ))
STx(�ϕ) = ∀y(Rxy → STy(ϕ)),

where y in the last two clauses is a fresh variable. A modal formula ϕ is true in
w ∈W , which is denoted by M, w ϕ, if and only if M |= STx(ϕ)[w], i.e. if and
only if the standard translation of ϕ is true in M under assignment of w to the
variable x.

A bisimulation between models M = (W,R, V) and M′ = (W ′, R′, V ′) is a
non-empty relation Z ⊆W ×W ′ such that:

(at) if wZw′, then for every p we have w ∈ V (p) if and only if w′ ∈ V ′(p);
(forth) if wZw′ and Rwv, then there is v′ such that vZv′ and R′w′v′;
(back) if wZw′ and R′w′v′, then there is v such that vZv′ and Rwv.

4 Tin Perkov

We say that a σ-formula F (x) is bisimulation invariant if the following holds:
if there is a bisimulation Z between M and M′ such that wZw′, then we have
M |= F (x)[w] if and only if M′ |= F (x)[w′].

By the Van Benthem Characterization Theorem, a σ-formula F (x) is bisimu-
lation invariant if and only if it is equivalent to the standard translation of some
modal formula.

Generally, a tableau is a systematic search for a model that satisfies a given
formula, so we test the validity of a formula by a tableau for its negation. The
idea of bisimulation invariance testing is also to search for a counterexample, in
this case to construct two models and a bisimulation between them that does
not preserve the truth of a given formula F (x).

Let us briefly introduce the rules of bisimulation invariance tableau or BI-
tableau. Let F (x) be a σ-formula in which only variable x is free. Each node of
a BI-tableau is a triple (A,B,C), which we write as A · B · C where A and C
can be the empty word or a formula over σ expanded with constant symbols
introduced in the tableau, while B is of the form cZc′, or the empty word. We
do not denote the empty word in the tableau, so for example a node such that
B and C are empty is denoted A · ·.

Let A be a first-order formula. Denote by A(c/x) a formula obtained from A
by substituting every free occurrence of a variable x with a constant symbol c.

The root of a BI-tableau for F (x) is

F (w/x) · wZw′ · ¬F (w′/x).

To reduce the number of rules and to simplify proofs, we assume that both
F (w/x) and ¬F (w′/x) are in the negation normal form (NNF), i.e. only atomic
subformulas can be in the scope of negation. Note that this makes writing simply
¬F (w′/x) an abuse of notation, but hopefully without any danger of confusion.

The form of the root suggests that by applying some rules we try to satisfy
F at w and ¬F at w′ by building M and M′ starting from these initial elements,
together with a bisimulation Z between them such that wZw′. So, formulas on
the left-hand side of any node are about M, on the right-hand side about M′,
and formulas in the middle are about a relation, possibly a bisimulation, between
them.

These are the rules:

– ∨-rule
A1 ∨A2 ·B · C

A1 · · A2 · ·

A ·B · C1 ∨ C2

· · C1 · · C2

– ∧-rule
A1 ∧A2 ·B · C

A1 · ·
A2 · ·

A ·B · C1 ∧ C2
· · C1
· · C2

– ∃-rule
∃xA ·B · C
A(a/x) · ·

A ·B · ∃xC
· · C(a′/x),

Tableau-based translation from first-order logic to modal logic 5

where a (resp. a′) is a new constant symbol, i.e. it does not occur at any
ancestor node.

– ∀-rule
∀xA ·B · C
A(a/x) · ·

A ·B · ∀xC
· · C(a′/x),

where a (resp. a′) is any constant symbol that occurs on the left (resp. right)
side of any ancestor or descendant node.

Each of the rules above is applied only once to each appropriate node, except
for the ∀-rule, which is applied once for each constant symbol that occurs on the
appropriate side of any node in a tableau.

The second group of rules have two premises each. Distinct applications of
each of them may share one premise, but not both.

– (forth)-rule
Rab · ·
A · aZa′ · C
· bZb′ · Ra′b′

(where b′ is new)

– (back)-rule
· ·Ra′b′

A · aZa′ · C
Rab · bZb′·
(where b is new)

– (at)-rule
Pa · ·
A · aZa′ · C

· · Pa′

· · Pa′

A · aZa′ · C
Pa · ·

Atomic formulas appended by all of these rules are depicted boxed. These
rules do not make further use of nodes with boxed formulas as premises.

We use usual notions for tableaux. Since the present paper focuses on closed
tableaux, let us emphasize only that we say that a branch of a BI-tableau is closed
if some formula and its negation occur at some of its nodes, while a BI-tableau
is closed if all of its branches are closed.

Theorem 1 ([5]). The bisimulation invariance tableau calculus is sound and
complete: a σ-formula F (x) is bisimulation invariant if and only if there is a
closed BI-tableau for F (x).

The procedure terminates in case of a bisimulation invariant formula. Oth-
erwise it might not terminate, since in some cases the only counterexamples are
infinite. With an adjustment known from first-order logic tableaux (see [3]), it
will always terminate if there exists a finite example. A counterexample can be
read off an open branch. In this paper we will not use this adjustment, since we
focus on bisimulation invariant formulas and closed tableaux.

6 Tin Perkov

3 Obtaining a formula from a closed tableau

The procedure has three stages: first the interim first-order formula is read off the
tableau, then it is normalized in a way that enables the final stage – translation
to a modal formula.

Suppose we have a closed BI-tableau for F (x). Let a0 = w and let a1, a2, . . .
be the other constant symbols that occur in the left-side formulas. We read
the tableau starting from the root until one of the following cases occurs and
construct an interim first-order formula F ′ as follows.

– The branch closes. If this is due to an occurence of a boxed formula of the
form Pai and ¬Pai on the left side, put F ′ = ¬Pxi. If such contradiction
occurs on the right side, put F ′ = Pxi.
Similarly, if we have Raiaj and ¬Raiaj on the left, put F ′ = ¬Rxixj , and
if we have such contradiction on the right side, put F ′ = Rxixj .
If the branch closes due to a contradiction of some formulas that are not
boxed, put F ′ = ⊥ if this contradiction occurs on the left side, but if it
occurs on the right side, put F ′ = >.

– A branching occurs. If this is caused by an application of ∨-rule on the left
side of the tableau, then put F ′ = F ′

1 ∨ F ′
2, or else if it is caused by an

application of ∨-rule on the right side, then put F ′ = F ′
1 ∧F ′

2, where F ′
1 and

F ′
2 are obtained from the respective branches. Proceed inductively.

– An application of (forth)-rule occurs, involving a formula of the form Rajak

on the left-hand side. In this case put F ′ = ∃xkF
′
1 and obtain F ′

1 from the
rest of the current branch inductively.

– An application of (back)-rule occurs, which appends a formula of the form
Rajak on the left-hand side. Put F ′ = ∀xkF

′
1 and obtain F ′

1 from the rest
of the current branch inductively.

In examples with only few constant symbols, to simplify notation, we use
constant symbols w, a, b and variables x, y, z.

Consider some examples.

Tableau-based translation from first-order logic to modal logic 7

Example 1. Let F (x) = ∃y∀z(Rxy ∧ (¬Ryz ∨ Pz ∨Qz)).

∃y∀z(Rwy∧(¬Ryz∨Pz∨Qz))·wZw′ ·∀y∃z(¬Rw′y∨(Ryz∧¬Pz∧¬Qz))
∀z(Rwa ∧ (¬Raz ∨ Pz ∨Qz)) · ·
Rwa ∧ (¬Raw ∨ Pw ∨Qw) · ·

Rwa · ·
¬Raw ∨ Pw ∨Qw · ·

·aZa′ · Rw′a′

· · ∃z(¬Rw′a′ ∨ (Ra′z ∧ ¬Pz ∧ ¬Qz))
· · ¬Rw′a′ ∨ (Ra′b′ ∧ ¬Pb′ ∧ ¬Qb′)

· · ¬Rw′a′

X
· ·Ra′b′ ∧ ¬Pb′ ∧ ¬Qb′

· ·Ra′b′

· · ¬Pb′

· · ¬Qb′

Rab · bZb′·
Rwa ∧ (¬Rab ∨ Pb ∨Qb) · ·

Rwa · ·
¬Rab ∨ Pb ∨Qb · ·

¬Rab · ·
X

Pb · ·
· · Pb′

X

Qb · ·
· · Qb′

X

We have F ′ = ∃y(Rxy ∧ ∀z(¬Ryz ∨ Pz ∨Qz)), which is the standard trans-
lation of a modal formula ♦�(p ∨ q). Clearly, F ′ is equivalent to F .

Interim formula enables easier translation to a modal formula. In the previous
example it is in fact a direct translation. This is not always the case.

8 Tin Perkov

Example 2. Let F (x) = ∃y(Rxy ∧ (Px ∨ Py)).

∃y(Rwy ∧ (Pw ∨ Py)) · wZw′ · ∀y(¬Rw′y ∨ (¬Pw′ ∧ ¬Py))
Rwa ∧ (Pw ∨ Pa) · ·

Rwa · ·
Pw ∨ Pa · ·

·aZa′ · Rw′a′

· · ¬Rw′a′ ∨ (¬Pw′ ∧ ¬Pa′)

· · ¬Rw′a′

X
· · ¬Pw′ ∧ ¬Pa′

· · ¬Pw′

· · ¬Pa′

Pw · ·
· · Pw′

X

Pa · ·
· · Pa′

X

We have F ′ = ∃y(Rxy ∧ (Px ∨ Py)), which is actually equal to F . This is
not exactly the standard translation of some modal formula. But, we have the
following sequence of formulas clearly equivalent to F ′:

∃y((Rxy ∧ Px) ∨ (Rxy ∧ Py))
∃y(Rxy ∧ Px) ∨ ∃y(Rxy ∧ Py)
(∃yRxy ∧ Px) ∨ ∃y(Rxy ∧ Py)

Now, the latter formula is the standard translation of (♦>∧p)∨♦p. The key
to obtain this was to remove Px from the scope of ∃y.

As in the previous example, we can allways use basic equivalences of first-
order formulas (cf. [6], p. 117) to obtain the standard translation of some modal
formula from an interim formula.

Consider another example, which illustrates how interim formula can be sig-
nificantly simpler then the initial formula, which was not the case in previous
examples.

Tableau-based translation from first-order logic to modal logic 9

Example 3. Let F (x) = ∀y(¬Rxy ∨ (∃z¬Ryz ∧ ∀zRyz)).

∀y(¬Rwy ∨ (∃z¬Ryz ∧ ∀zRyz)) · wZw′ · ∃y(Rw′y ∧ (∀zRyz ∨ ∃z¬Ryz))
· ·Rw′a′ ∧ (∀zRa′z ∨ ∃z¬Ra′z)
· ·Rw′a′

· · ∀zRa′z ∨ ∃z¬Ra′z

Rwa · aZa′·
¬Rwa ∨ (∃z¬Raz ∧ ∀zRaz) · ·

¬Rwa · ·
X

∃z¬Raz ∧ ∀zRaz · ·
∃z¬Raz · ·
∀zRaz · ·
¬Rab · ·
Rab · ·
X

We have F ′ = ∀y(¬Rxy ∨ ⊥) = STx(�⊥).

Theorem 2. Assume we have a closed BI-tableau for F (x). Then the interim
formula F ′ is equivalent to F . Furthermore, F ′ can be effectively rewriten to an
equivalent formula that is the standard translation of some modal formula.

Proof. Consider any node of the given BI-tableau. Let G′ be the subformula of
F ′ obtained by the procedure starting from that node. In what follows, we will
treat two conclusions of ∧-rule as one node (so, this is the only case in which we
have more than one formula on left or right side). We claim that G′ is equivalent
to one of the following:

(1) Q1xi+1Q2xi+2 . . . G(x/w, x1/a1, x2/a2, . . .), where G is a formula or the con-
junction of all formulas which occur on the left side or boxed on the right side
of some nodes, with at least one of these nodes being between the previous
branching and the current node, including the latter

(2) Q1xi+1Q2xi+2 . . .¬G(x/w′, x1/a
′
1, x2/a

′
2, . . .), with an analogous condition

as in (1), just with left and right side switched,

where each of Q1, Q2, . . . is ∀ or ∃ and xi+1, xi+2, . . . are variables corresponding
to constant symbols ai+1, ai+1, . . . or a′

i+1, a
′
i+1, . . . occuring in G such that

ai+1Za
′
i+1, ai+2Za

′
i+2, . . . do not occur in the tableau prior to the current node.

Note that, applied to the root, this claim becomes the desired claim that F ′

is equivalent to F .
We prove the claim by induction on the distance of the current node to the

farthest leaf.
In the base case, the current node is a leaf, so G′ may be of the form Rxixj ,

¬Rxixj , Pxi, ¬Pxi, > or ⊥.

10 Tin Perkov

– G′ = Rxixj . This case occurs only if we have a contradiction between Ra′
ia

′
j

and ¬Ra′
ia

′
j on the right side. So, G = Ra′

ia
′
j occurs boxed on the right side,

while G(xi/a
′
i, xj/a

′
j) = Rxixj is equivalent (in fact, equal) to G′.

– G′ = ¬Rxixj results from the occurrence of Raiaj and G = ¬Raiaj on the
left side, so G(xi/ai, xj/aj) is equivalent to (in fact, equals) ¬Rxixj = G′.

– G′ = Pxi implies Pa′
i and ¬Pa′

i occur on the right side, so for G = Pa′
i

we have that G occurs boxed on the right side and G(xi/a
′
i) = Pxi = G′.

– G′ = ¬Pxi implies Pai and G = ¬Pai occur on the left side, so we have
G(xi/ai) = ¬Pxi = G′.

– G′ = > implies that some G and ¬G occur on the right side on the path.
Clearly, ¬(G ∧ ¬G) ≡ ¬G ∨ G is equivalent to G′. This remains to be the
case if we prefix ¬G ∨G with quantifiers as stated in (1) and (2).

– G′ = ⊥ implies that some G and ¬G occur on the left side. Clearly, G∧¬G is
equivalent to G′ = ⊥. Again, this holds regardless of any quantifiers prefixed
to G ∧ ¬G.

Note that in all of the base cases, one of the nodes containing the involved
formulas indeed occurs under the previous branching, since the branch is imme-
diately closed after a contradiction occurs.

Inductive step has several cases, depending on the next rule applied in the
tableau, starting from the current node.

– If the next rule applied in the tableau is ∀ or ∃-rule, which both have no
immediate effect on F ′, the subformula of F ′ obtained starting after the
application of this rule is again G′. By induction hypothesis, (1) or (2) applies
on G′, with G (or one of its conjuncts) occuring either prior to the current
node, in which case the claim is proved, or exactly at the node succeding the
application of ∀-rule. In the latter case, the claim clearly also holds, since
(this conjunct of) G should be prefixed by Qjxj , where xj is the variable
involved in this application of ∀ or ∃-rule, and this prefixed formula occurs
at the current node.

– As in the previous case, an application of ∧-rule also has no immediate effect
on F ′, i.e. the subformula of F ′ obtained starting after the application of ∧-
rule is still G′. By induction hypothesis, G′ is implied by a formula of the
form described in (1) or (2), where G or one of its conjuncts occur either
above the current node, in which case the claim holds, or immediately after
the application of ∧-rule. But, since we treat conclusions of ∧-rule as one
node, taking the conjunction of formulas from that node is the same as taking
the formula on which ∧-rule was applied.

– In the case of the left ∨-rule, the current node is of the form G1∨G2 · ·, while
G′ = G′

1 ∨G′
2, where G′

1 and G′
2 are subformulas obtained starting from the

roots of two branches. By induction hypothesis, (1) applies to G′
1 and to G′

2,
where G or one of its conjuncts is G1 and G2, respectively, since these are
the only nodes after the previous branching. So clearly, G1 ∨ G2 will work
as G (or instead of a conjunct of G) for G′.

Tableau-based translation from first-order logic to modal logic 11

– In the case of the right ∨-rule, the current node is of the form · · G1 ∨ G2
and G′ = G′

1 ∧ G′
2, where G′

1 and G′
2 are obtained starting from the roots

of branches. By induction hypothesis, (2) applies to G′
1 and to G′

2, where G
or one of its conjuncts is G1 and G2, respectively, as in the previous case. It
is easy to see that G1 ∨ G2 will work as G (or instead of a conjunct of G)
for G′. For example, if G′

1 is equivalent to ¬G1 and G′
2 is equivalent to ¬G2,

then G′ is equivalent to ¬(G1 ∨ G2). It is easy to see that this still works
with additional conjuncts or quantifiers which may occur as described in (1)
and (2).

– (at)-rule does not change the subformula obtained thereafter, so it is G′.
Also, the new node contains only one formula which is a boxed version
of a formula which already occured above on the other side, so induction
hypothesis implies the claim.

– (forth)-rule has the same property as (at)-rule concerning the content of the
new node, but the subformula obtained after its application is G′

1, where
G′ = ∃xkG

′
1. We apply the induction hypothesis to G1. Then the same G

from (1) and (2) which corresponds to G′
1 can be used for G′, prefixed by

the additional quantifier ∃xk. The case of (back)-rule is proved analogously.

It remains to show that a modal correspondent is effectively obtainable from
F ′. Clearly, if F ′ is already the standard translation of some modal formula (or if
F is, in which case we do not need to use BI-tableau in the first place), it is easy to
reverse standard translation to obtain this modal formula. If not, it can be proved
inductively that using basic equivalences of first-order logic we can effectively
obtain (by anti-prenexing or miniscoping – see e.g. [4]) an equivalent formula
that is the standard translation of some modal formula. The only problem is
that F ′

1 that appears in case of an application of (forth) or (back)-rule should
contain only xj and its successors to be translatable directly to modal formula.
If it, however, contains some other variables, atomic subformulas in which these
occur can always be removed from the scope of the quantifier, since it binds only
xj . We omit further details due to limited space.

4 Further work and acknowledgments

Further work should include all the technical details omitted in this report. Fur-
thermore, we aim to implement the procedure in collaboration with associates
participating in the project Formal Reasoning and Semantics (FORMALS), in-
cluding Luka Mikec, to whom I am grateful for useful feedback during the prepa-
ration of this report.

References

1. J. van Benthem, Exploring Logical Dynamics, Studies in Logic, Language and In-
formation, CSLI Publications & FoLLI, Stanford, 1996.

2. P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press,
2001.

12 Tin Perkov

3. G. Boolos, Trees and Finite Satisfiability: Proof of a Conjecture of Burgess, Notre
Dame Journal of Formal Logic, 25 (1984) 193-197.

4. J. Harrison, Handbook of Practical Logic and Automated Reasoning, Cambridge Uni-
versity Press, 2009.

5. T. Perkov, Tableau-based bisimulation invariance testing, Reports on Mathematical
Logic 48 (2013) 101–115.

6. R. M. Smullyan, First-Order Logic, Springer-Verlag, 1968.

