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Abstract 

CdTe solar cells are the most successful second-generation solar technology and 

produce the lowest-cost electricity in the solar industry. The overarching aim of this 

project is to apply natural language processing (NLP) technologies to accelerate 

research in the field of CdTe photovoltaic devices by automatically discovering new 

material applications. The NLP technologies use various language models to extract 

most similar words. Consequently, a knowledge diagram is established by connecting 

these relevant similar words. The Language models include word2vec, GloVe, 

fastText and BERT, which are trained on a dataset of more than 22,500 paper 

abstracts. The performance of these language models is evaluated using a custom 

test dataset. The test dataset consists of 62-word pairs, which are conceptually related 

in the field of CdTe solar cells. The more similar the first word is to the second word in 

a word pair, the higher the trained language model scores. The goal of evaluating the 

trained language model is to find the related concepts in more similar words. The 

GloVe model achieves the highest score with the custom test dataset. The knowledge 

diagram established in this work shows the relationships between materials and 

concepts of interest. In addition, the language model trained on consecutive periods 

is used to track the timeline of material applications. The top 500 most similar words 

to “defect” are tracked with timeline and “selenium” is observed to appear in the GloVe 

model trained on paper abstracts between 2010 and 2020. This corresponds to a 

journal paper abstract published in 2019, which discussed the selenium passivation 

effect on the bulk defects of CdTe. Therefore, the knowledge diagram and timeline of 

material applications provide useful insights for future research and will accelerate 

material discoveries in the field of CdTe solar cells.  
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Chapter 1 Introduction 

Climate change is the most urgent global problem facing mankind and one which 

requires urgent action.  Replacing electricity generation by burning fossil fuels with 

energy from renewable sources such as wind and solar is essential.  The photovoltaic 

(PV) market could contribute £25 billion to the UK economy by 2030, supporting 

50,000 full time jobs across the British solar supply chain [1]. By 2050 PV generated 

electricity could represent 20% of the UK energy mix, contributing greatly to the UK’s 

legally binding CO2 emission targets as well as energy security. The cost of solar 

generated electricity has reduced dramatically over the past decade and is now as low 

as £45/MWh in the UK and, as a result, the industry is again booming. However, much 

more can be achieved.  Reducing costs by increasing module efficiency, will increase 

demand causing faster substitution of fossil fuels and lower consumer cost of 

electricity. Thin film solar PV cell/module accounted for about 5% of global shipments 

in 2020. First Solar, the world largest CdTe solar cell/module manufacturer, accounted 

for 4% of total shipments (i.e., about 80% of thin film shipments) [2]. As the most 

successful second generation solar technology, polycrystalline CdTe thin film solar 

cells have demonstrated > 22% device efficiency and are fully commercialised 

products [3]. CdTe photovoltaics produces the lowest-cost electricity in the solar 

industry and undercuts fossil fuel-based sources in many regions of the world [4]. 

Further efficiency improvement can lead to even lower costs for solar-generated 

electricity. However, searching ideal semiconductor compounds and optimising their 

properties to improve the CdTe device performance is a challenging and time-

consuming process [5].  

Machine learning is most suitable for processing and analysing text from million 

research papers and learn science from these resources. Therefore, natural language 

processing, one of the machine learning technologies, is proposed to uncover 

underlying patterns in the large text corpus. The most fundamental technique in NLP 

is to discover syntactic and semantic relationships between words using language 

models to assign high-dimensional embeddings to words. The distributed 

representations of words in a vector space encode linguistic patterns. These patterns 

can simply be represented as linear translations [6]. For example, the vector analogy 

calculation vec(“China”) – vec(“Beijing”) + vec(“Tokyo”) results in a vector closer to 

vec(“Japan”) than any other word vector.  In this work, the non-contextual language 
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models of word2vec, GloVe and fastText and the contextual language model of BERT 

are used to explore these relationships.  

1.1 Research Objective and Motivation 

The overarching aim of this research project is to apply various language models of  

word2vec, GloVe, fastText and BERT in NLP to discover the syntactic and semantic 

relationships between materials and concepts in the field of CdTe solar cells. From 

these relationships, a knowledge diagram is constructed by connecting the related 

most similar material and concepts in the vector space.  Exploring the knowledge 

diagram provides new insights for promising new material applications and 

consequently improve the performance of CdTe photovoltaics. The machine learning 

model developed in photovoltaic materials, i.e., CdTe solar cells, can be extended to 

other material domains and provide a toolkit of data-driven material discovery for the 

community at large.  

The static language model, such as word2vec, has been used to extract the 

relatedness of materials and concepts [7]. However, the contextual language model 

including BERT has not been investigated for this specific application. In this work, the 

word embeddings in different layers of a BERT model are applied to construct this 

relationship. In addition, GloVe and fastText language models are also exploited in 

this work and the model performance of word2vec, GloVe, fastText and BERT is 

compared.  

1.2 Outline 

Chapter 2 reviews the application of machine learning methods in the material 

discovery and synthesis. The principles of word2vec, GloVe, fastText and BERT 

algorithms are also discussed. 

In Chapter 3, the language model training methods including text pre-processing and 

model training hyperparameters are introduced.  A test dataset is set up to evaluate 

the performance of word2vec, GloVe, fastText and BERT models. The training 

hyperparameters of epoch, initial learning rate and minimum word occurrence are 

introduced for the non-contextual language models, i.e., word2vec, GloVe and 

fastText. In the training of BERT, the contextual language model, the pooling and layer 
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choice strategy, the contextual word embedding representation with the first principal 

component are discussed. 

The trained models are evaluated using the test dataset. The model performance is 

shown in Chapter 4. The effects of window size, vector dimension size and negative 

sampling of word2vec, GloVe and fastText models are discussed. The effect of layer 

choice and learning rate on the BERT model performance is demonstrated.  

Chapter 5 shows the applications of the trained language model. The GloVe model is 

used to construct a knowledge diagram from the relatedness between materials and 

concepts. The material applications are tracked using the timeline when the material 

appears in the most similar words of a target material and concept. Finally, the 

conclusions and future work are summarised in Chapter 6. 

.  
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Chapter 2 Literature Review 

2.1 Introduction 

Despite the rapid development of modern material science, it currently takes an 

average of 15 to 20 years for a successful material to transfer from laboratory to 

practical applications [5]. The laborious and painful slow process demonstrates the 

fundamental difficulties of traditional material discovery and property characterisation. 

Machine learning is poised to change the conventional approach and accelerate 

material discovery. As a subfield of artificial intelligence, machine learning explores 

big data to find underlying patterns and provide new insights into material discovery. 

The innovative application of machine learning is to process and analyse text from 

million research papers and learn science from these resources [8]. The recent deep-

neural-network machine learning has been widely used in natural language processing, 

which shows a flurry of state-of-the-art results in many natural language tasks. The 

natural language processing techniques including word embeddings, recurrent neural 

network and long short-term memory (LSTM), analyse text to extract metadata from 

content such as entities, keyworks, relations and semantic roles. These deep neural 

networks have become a new paradigm for end-to-end learning of a high-level task, 

for example question answering and machine translation that directly learn sequence-

to-sequence transformations. 

Machine learning has been explored in material discovery and produced some exciting 

results. Ceder et al applied text mining by training a neural network on three million 

abstracts of journal articles published before 2005 [8]. This model successfully predicts 

that a photovoltaic material with suitable band gap has potential applications for 

thermoelectric material. The prediction is verified by later thermoelectric application of 

this photovoltaic compound after 2005.  

Other researchers have used machine learning to analyse material synthesis 

conditions from journal articles and extract material recipes of new compounds [8] [9]. 

Olivetti et al have applied natural language processing techniques to automatically 

compile material synthesis parameters and trends across tens of thousands of 

research papers [10]. This framework is then used to correlate the synthesis conditions 

and resulting topology and produce incredible results. Researchers at Haverford 
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College digitised their lab notebooks and recorded worked and unsuccessful reaction 

conditions for the crystallisation of vanadium selenites. A neural network has been 

trained on these data and achieved 89% accuracy for predicting the success of a new 

set of reaction parameters [8]. Researchers previously adopted an approach of 

manually reading through journal papers and extracting useful information. Machine 

learning provides an efficient pipeline for identifying and analysing research articles in 

an automated fashion.  

Tshitoyan el al. applied word2vec to analyse massive body of scientific literature and 

predict new functional materials [7]. The word2vec model creates linguistic contexts 

of words from a large corpus of text and produces word embeddings in several 

hundred dimensions. The words with similar meanings will accordingly have similar 

word embeddings. The authors encoded the materials science knowledge in the 

published literature as information-dense word embeddings without manual labelling 

and supervision. It has been demonstrated that materials with similar properties cluster 

together in the word embedding space. The similarity between materials is calculated 

by projecting the normalized word embeddings (dot product). The approach also 

supports domain-specific material analogies, such as ferromagnetic-

NiFe+IrMn≈antiferromagnetic. The analogies are expressed as the nearest word to 

the result of subtraction and addition operations between the embeddings (Figure 

2.1a). The main novelty of the word embeddings is to predict new functional materials. 

For example, the model predicts 7,663 compounds similar to the “thermoelectric” word 

embedding. These materials are not reported explicitly in the text corpus. However, 

density functional theory (DFT) predicts these thermoelectric compounds. The 

word2vec model is also tested to predict thermoelectric materials reported later in the 

literature from the model trained at various points in the past. The results indicate the 

top 50 similar word embedding-based predictions are more likely to have been 

investigated as thermoelectrics within the next five years. The series of connections 

between word embeddings is examined to lead to new material predictions. If material 

A is relevant to B and B relates to C, the material A will be connected to C. 

CsAgGa2Se4 appears next to “chalcogenide”, “band gap”, “optoelectronic” and 

“photovoltaic applications” word embeddings, which are largely overlapped by 

thermoelectric. The embedding correlations consequently predict CsAgGa2Se4 is a 

thermoelectric material (Figure 2.1b). The reported word2vec model extracts 
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knowledge and relationship from massive scientific literature and recommends 

functional materials several years before their discovery. The findings pave a pathway 

towards mining scientific literature and discovering new materials. 

 

 

Figure 2.1 a, Principal component analysis of word embeddings for Zr, Cr and Ni with 

their principal oxides and crystal symmetries. The relative positioning of the word 

embeddings encodes material relationships, such as “oxide of” and “structure of”. b, 

Prediction of new thermoelectric material CsAgGa2Se4 using series of connections 

between materials and concepts in a knowledge diagram. Reprinted with permission 

from [7]. 

2.2 Language Models 

In this work, the language models of word2vec, GloVe, fastText and BERT are trained 

on tens of thousands published paper abstracts. Word2vec generates distributed 

embeddings in a vector space, which is one of the most popular representations of a 

specific word in a document vocabulary. The word embeddings in a word2vec 

language model can grab semantic and syntactic similarity of words in the context of 

a document and establish a relationship between words. 

As a shallow window-based method, word2vec relies on the local window context and 

fails to exploit the large amount of repletion in the data corpus. The window-based 

method suffers from the disadvantage that it does not use the global co-occurrence 

statistics of the corpus. On the other hand, Global Vectors for Word Representation 
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(GloVe) combines the advantages of global matrix factorisation and local context 

window approaches [11]. Unlike word2vec, GloVe uses not only local statistics (i.e. 

local context windows) but also global statistics (i.e. word co-occurrence matrix) to 

generate word vectors. 

The word2vec word embedding ignores the internal structures of words and generates 

a unique word vector for every individual word. This method becomes a significant 

limitation for morphologically rich languages, such as German or Finnish. These 

morphologically rich languages include many word forms that occur rarely (or not at 

all) in the training corpus, making it difficult to learn good word representations [12]. 

FastText addresses these limitations by representing each word as an aggregation of 

its subwords, i.e., character n-grams. FastText extends the continuous skip-gram 

model in word2vec by considering morphology of words and representing a rare word 

in a large vocabulary as the sum of its character n-gram vectors. 

Word2vec represents a word with a single word vector regardless of context. 

Therefore, these word embeddings are static. On the other hand, BERT (Bidirectional 

Encoder Representations from Transformers) creates contextualised word 

embeddings, which are sensitive to the context incorporated from both directions. For 

example, given two sentences [13]: “The man was accused of robbing a bank.” “The 

man went fishing by the bank of the river.” Word2vec would create the same word 

vector for the word “bank” in both sentences. However, BERT produces different word 

embeddings for the word “bank” regarding its context. These context-informed word 

embeddings represent more accurate features of the words, leading to better model 

performance in the down-stream tasks.  

2.2.1 Word2vec 

There is a long history to represent words as continuous vectors. Some popular 

language models, such as neural network language model (NNLM) [14] and recurrent 

neural net language model (RNNLM) [15], were previously proposed. However, a non-

linear hidden layer in these models adds computational complexity. Therefore, 

word2vec was proposed to address this complexity by removing the non-linear hidden 

layer and sharing the projection layer for all words [6]. The most significant feature of 

the word2vec model is that the words with similar context will occupy close spatial 
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positions. The word similarity is mathematically measured using the cosine of the 

angle between the word embeddings. 

There are two approaches in a word2vec model to construct word embeddings: 

Continuous Bag-of-Words (CBOW) Model and Continuous Skip-gram Model (Figure 

2.2).  

 

Figure 2.2 CBOW and Skip-gram model architectures. Reprinted with permission from 

[16]. 

The CBOW model uses the context words as the input and predict the target word 

corresponding to the context. The Skip-gram model uses the target word as the input 

and outputs the context words [6]. The hidden layer neurons in the CBOW and Skip-

gram models do not have activation functions (e.g., sigmoid, tanh and ReLU) and just 

project the weighted sum of inputs. The only non-linearity of these models is the 

softmax function in the output layer. 

Stochastic gradient descent and back-propagation are applied to train the word2vec 

language model. However, learning the output vectors is expensive without computing 

optimisation. To avoid over-fitting, a large amount of training data is needed to tune 

many weights. For each training sample, a great number of weights in the weight 

matrix are needed to be updated. Therefore, these weights times the training data 

result in a very slow training process. To improve the computing efficiency, hierarchical 
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softmax and negative sampling are proposed to limit the number of output vectors that 

must be updated per training sample [6]. Hierarchical softmax reduces the 

computational complexity from O(V) to O(log(V)) per training instance per context word 

[17]. Negative sampling only updates the weights associated with a small number of 

randomly selected “negative” words and the “positive” word. Therefore, this 

significantly reduces the computing cost.  

2.2.2 GloVe 

The GloVe model has a fasted training speed than word2vec. It optimises one count 

at a time. However, word2vec optimise one window at a time. The window-based 

approach might train over the same co-occurrence multiple times. The global word co-

occurrence matrix provides a primary source of information for learning word vectors. 

The efficient use of global statistics make the GloVe model perform well even on small 

corpus and small vector sizes.  

Let 𝑃𝑖𝑗 = 𝑃(𝑗/𝑖) be the probability that word j appears in the context of word i. Table 

3.1 tabulates the co-occurrence probabilities and ratio of these probabilities for target 

words ice and steam with selected context words from a 6 billion token corpus [11]. 

Table 2.1 Co-occurrence probabilities for target words ice and steam with selected 

context words. Reprinted with permission from [11]. 

  

The ratio of the two probabilities is better able to derive the semantic relationships 

between words in contrast to the raw probability. For example, taking the two target 

words i=ice and j=steam, the ratio of the two co-occurrence probabilities is either large 

or small for the context words of solid and gas because these context words are 

relevant to either of the two target words. However, for the context words of water and 

fashion, the ratio is close to one because these two context words are either related 

to both the two target words, or to neither.  
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Leveraging a new weighted least squares regression model and a weighting function 

𝑓(𝑋𝑖𝑗), the cost function is [11] 

𝐽 = ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − 𝑙𝑜𝑔𝑋𝑖𝑗)

2
𝑉

𝑖,𝑗=1

 

Where 𝑉 is the size of the vocabulary, 𝑤𝑖 and 𝑤𝑗 are word vectors of the target and 

context word, 𝑋𝑖𝑗 is the number of times word j occurs in the context of word i. The 

weighting function 𝑓(𝑋𝑖𝑗) should be non-decreasing for the rare co-occurrences and 

relatively small for the frequent co-occurrences. Therefore, the rare co-occurrences 

and frequent co-occurrences are not overweighted. The GloVe model uses one class 

of functions as the weighting function (Figure 2.3), 

𝑓(𝑥) = {
(𝑥/𝑥𝑚𝑎𝑥)𝛼, 𝑥 < 𝑥𝑚𝑎𝑥

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Figure 2.3 Weighting function f(x) with а = ¾. Reprinted with permission from [11].  

2.2.3 fastText 

FastText represents each word as a bag of character n-grams. For example, taking 

the word “where” and 𝑛 − 𝑔𝑟𝑎𝑚𝑠 = 3, the word “where” will be represented by the 

character n-grams: <wh, whe, her, ere, re> and the special sequence <where> [12]. 

The special boundary symbols < and > indicate the beginning and end of words.  

A skipgram model aims to maximise the following log-likelihood [12]: 

∑ ∑ 𝑙𝑜𝑔𝑝(𝑤𝑐|𝑤𝑡)

𝑐∈𝐶𝑡

𝑇

𝑡=1
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Where 𝑝(𝑤𝑐|𝑤𝑡) is the probability of a context word wc occurring given a target word 

wt. Ct is the set of words surrounding the word wt. 

Considering negative sampling, the log-likelihood function becomes [12]: 

∑ [∑ ℓ(𝑠(𝑤𝑡, 𝑤𝑐 )) + ∑ ℓ(−𝑠(𝑤𝑡, 𝑛))

𝑛∈𝒩𝑡,𝑐𝑐∈𝐶𝑡

]

𝑇

𝑡=1

 

Where ℓ(𝑥)  denotes the logistic loss function 𝑙𝑜𝑔(1 + 𝑒−𝑥) . 𝑆(𝑥)  is the scoring 

function. The score is calculated as the scalar product between target and context 

word vectors. In the fastText model, a word is represented by the sum of the vectors 

of its n-grams. Therefore, the scoring function is obtained as follows [12]: 

𝑠(𝑤, 𝑐) = ∑ 𝑧𝑔
𝑇𝑉𝑐

𝑔∈𝒢𝑤

 

Where 𝒢𝑤 is the set of n-grams appearing in the word w. 𝑍𝑔 is the vector of a n-gram 

g. Vc is the word embedding of the context word c. 

The optimal length of n-grams should cover a wide range of word information. 

Although the optimal choice of n-gram length depends on specific tasks and languages, 

the length ranges from 3 to 6 provide a reasonable amount of subword information in 

practice [12].  

2.2.4 BERT 

Transformer 

BERT uses a Transformer model architecture, which relies entirely on a self-attention 

mechanism to build a relationship between input and output. This Transformer model 

architecture significantly improves computational efficiency through parallelisation. In 

contrast to its counterpart, the recurrent neural network factors computation along the 

symbol positions of input and output sequences. Therefore, this inherently sequential 

nature precludes parallelisation within training samples and deteriorates 

computational performance.   

BERT have an encoder-decoder structure, using stacked self-attention and pointwise, 

fully connected layers (Figure 2.4). The encoder consists of a stack of 6 identical layers 

[18]. Each layer has two sub-layers, which apply a multi-head self-attention 

mechanism and a simple, position-wise fully connected feed-forward network. The 
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decoder is also composed of a stack of 6 identical layers. Each decoder layer adds an 

additional multi-head attention sub-layer over the output of the encoder stack. The 

encoder maps an input sequence to a sequence of continuous representations. The 

decoder then outputs a sequence of symbols one element at a time.  

Attention 

The Attention mechanism learns the mapping between different parts of the input 

sequence and corresponding parts of the output sequence [18]. While predicting an 

output element, it will pay more attention to a corresponding element in the input 

sequence. Therefore, the Attention mechanism utilises the intermediate encoder 

states to construct context vectors, which the decoder uses to produce the output 

sequence. The self-Attention mechanism exploits the interaction between the 

elements in the input sequence (“self”) and decides which element comes into more 

focus. The output of the self-Attention function accumulates these interaction and 

attention scores.  

 

Figure 2.4 The transformer model architecture. Reprinted with permission from [18].  
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The Attention function maps a set of vectors, i.e., query, key, value to an output. The 

Attention output is calculated as [18]:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

Q, K and V are the matrices of query, key and value vectors. 
1

√𝑑𝑘
 is the scaling factor, 

where dk is the dimension of the key vector.  

Multi-headed Attention mechanism continues to improve the performance of the 

Attention layer. The queries, keys and values are linearly projected h times with 

different, learned linear projections to dq, dk and dv dimensions, respectively. It 

provides the attention layer multiple “representation subspaces” and gives the model’s 

ability to attend to different positions in the input sequence.  

2.3 Summary 

Various language models have been reviewed. Word2vec uses the local context to 

generate word embeddings. It has been exploited to extract relationship among 

materials from scientific literature. However, the word2vec model has some limitations. 

To address these disadvantages, other non-contextual language models, such as 

GloVe and fastText, and the contextual language model of BERT will be applied, and 

their performance will be compared in this work. The GloVe language model uses both 

local context windows and word co-occurrence matrix to generate word vectors. The 

fastText model considers morphology of words and represents a word as the sum of 

its character n-gram vectors. Therefore, it can obtain vectors even for out-of-

vocabulary words. The contextual language model of BERT produces contextualised 

word embeddings given its context. These language models will be trained and 

evaluated using a customised test dataset in this work. The best performing language 

model will be used to construct a knowledge diagram in the vector space and track 

material application timeline.  
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Chapter 3 Language Model Training 

3.1 Dataset and Text Pre-processing 

The language models are trained on more than 22,500 paper abstracts about the 

CdTe material. These papers are published between 1909 and Jan 2020 and collected 

from the Scopus database. Scopus maintains a database of abstracts and citations 

from approximately +11,000 publishers. The keyword “CdTe” is used to retrieve these 

abstracts, which are in the excel format with bibliographic metadata. These abstracts 

summarise the discoveries in the scientific journal articles and reduce the data volume 

in later stages of data processing.  

The text pre-processing framework in this work consists of tokenisation and 

normalisation [19]. Tokenisation splits longer stings into tokens, exclusively in words. 

The white space is used as a segmentation boundary of the word tokens. 

Normalisation process includes converting all text to lower case, removing punctuation, 

removing stop words and lemmatisation. Stop words are the most common words in 

a language, such as “the”, “and” and “a”. They do not greatly contribute to the meaning 

of a text. Therefore, the stop words are generally removed before further processing. 

Lemmatisation captures canonical forms based on a word’s lemma. For example, 

lemmatisation of “better” returns “good”. A programming snippet of the text pre-

processing is shown in Appendix A.1. Python is used as the programming language 

in this work. NLTK provides industrial-leading NLP libraries for processing human 

language data. The libraries for tokenisation, stop words and lemmatisation are utilised 

in the text pre-processing.  

3.2 Evaluation dataset 

An evaluation dataset is constructed with 62-word pairs of materials and concepts 

(Appendix B.1). These materials and concepts of interest indicate the current research 

challenges and future prospects of CdTe photovoltaics.  In this work, the trained 

language models are tested to examine the cosine similarity between the word pair. 

The similarity is scored on a scale ranging from 0 to 5 (Table 3.1). Taking as an 

example the word pair (first word: “Se”, second word: “passivate”), if “passivate” 

appears in the top 100 most similar words to “Se”, the language model scores 5. If 

“passivate” falls in a range of 101 to 200 of the most similar words to “Se”, the model 
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will score 4 and so on. The more similar the two words are, the higher the score is. 

The total score of the 62-word pairs is finally calculated for evaluating the language 

model performance. The higher the total score is, the better the language model 

performs. The goal of training the language models is to assign the related materials 

and concepts of interest to much closer positions in the vector space.  

Table 3.1 Similarity score of word pairs.  

Similarity Range Score 

1 to 100 5 

101 to 200 4 

201 to 300 3 

301 to 400 2 

401 to 500 1 

> 500 0 

3.3 Non-contextual language model training ‒ word2vec, GloVe and 

fastText 

The word2vec, GloVe and fastText models are trained to detect the relationship 

between materials and concepts in the field of CdTe solar cells. The fastText model is 

trained in a Google Colab notebook due to a relatively large computing resource 

requirement of Random-Access Memory (RAM). The effects of window size, vector 

dimension size and negative sampling on model performance are investigated. The 

training hyperparameters for word2vec, GloVe and fastText models are listed in Table 

3.2. 

Table 3.2 Training hyperparameters of the word2vec, GloVe and fastText models. 

Hyperparameter Value 

Epoch 20 

Initial learning rate 0.03 

Minimum word occurrence 2 
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3.4 Contextual language model training ‒ BERT  

3.4.1 Training BERT 

Different layers in the BERT model encode different kinds of information. The word 

embeddings in different layers and appropriate pooling strategy are investigated to 

achieve the best results for this specific application. 

A BERT language model can be trained using two methods: pre-training and fine-

tuning [20]. The pre-training approach trains a BERT model on unlabelled data over 

different pre-training tasks. During fine-tuning, a BERT model is initialised with the pre-

trained parameters, and all the model parameters are fine-tuned using labelled data 

from the downstream tasks.  

In this work, the language model is fine-tuned on a pre-trained SciBERT model from 

the Allen Institute for Artificial Intelligence. The fine-tuning approach is relatively 

inexpensive in contrast to pre-training. The SciBERT model is trained on a random 

sample of 1.14M papers from Semantic Scholar. Leveraging the unsupervised pre-

training on a large corpus of scientific publications, SciBERT improves performance 

on downstream scientific NLP tasks.  

The SciBERT model is fine-tuned with a Masked Language Model task using the CdTe 

dataset in a Google Colab notebook. The WordPiece vocabulary size of the CdTe 

dataset is 6769. The special tokens of [CLS] and [SEP] are added at the beginning 

and end of the sequence. 15% of the token positions in the training dataset is randomly 

masked for prediction. The SciBERT model is fine-tuned for 5 epochs with a learning 

rate of 2e-5 and a batch size of 8.  

3.4.2 First Principal Component Representation of Contextualised Word 

Embeddings 

In a BERT language model, word embeddings are sensitive to their context. In each 

of the 12 layers of the SciBERT model, a word has various representations in different 

context. The distribution of these word vectors is anisotropic, occupying a narrow cone 

in the vector space [21]. The same word has non-identical word embeddings in 

different contexts. The cosine similarity becomes more dissimilar in the upper layer 
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vector representation. This implied that the word embeddings in the upper layers of a 

BERT model are more task specific.  

The word-sense representations of the same word in a layer of the BERT model is 

assigned in a proportion of variance rather than a finite number of vectors. The first 

principal component is applied to represent the contextualised vectors of a single word.  

Principal Component Analysis (PCA) is used to calculate the first principal component. 

PCA is a dimensionality reduction technique with a goal to maximise the variance of a 

dataset projected onto a set of orthogonal axes (Figure 3.2) [22].  For a given matrix 

A, the kth principal component is the eigenvector of the covariance matrix of A 

corresponding to the kth largest eigenvalue. Singular value decomposition is a stable 

and precise method to calculate the eigenvector and eigenvalues of the covariance 

matrix.   

 

Figure 3.2 Directions of first and second principal components along which the 2D 

data have the largest spread. Reprinted with permission from [22].  
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Chapter 4 Results and Discussions 

4.1 Non-contextual language models ‒ word2vec, GloVe and fastText 

The language models of word2vec, GloVe and fastText are trained on the collected 

paper abstracts from Scopus. The training time of word2vec, GloVe and fastText 

including text pre-processing is approximately 2.9, 5.26 and 4.22 minutes, respectively. 

These language models are optimised by adjusting the training hyperparameters of 

window size and word embedding size.  The window size means the number of words 

behind and ahead of the target word. The word embedding size is the number of 

dimensions of a word embedding in the vector space.  

The effect of window size (i.e., 2, 5, 8, 10, 15, 20 and 30) on scores of the test dataset 

is investigated. The word embedding size of 300 is used during the training. Figure 4.1 

shows the scores of word2vec, GloVe and fastText models with different window sizes.   

 

Figure 4.1 Scores of the trained word2vec, GloVe and fastText models with a window 

size of 5, 8, 10, 15, 20 and 30. 

The window size significantly increases the scores of the GloVe language model. In 

general, a large window size serves better for the extraction of word relatedness, 

which complies with the design of the test dataset for this specific application. However, 

the improvement of the word2vec and fastText models is not dramatic. The word2vec 

and GloVe models are observed to perform much better than fastText. FastText treats 

each word as composed of character n-grams in the training process. The word vector 
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consists of the sum of these character n-grams [12]. For example, where n-gram = 3, 

the word “aquarius” can be represented as 3-gram characters: 

<aq, aqu, qua, uar, ari, riu, ius, us> and <aquarius>.  

The character n-grams are used to produce embeddings for previously unseen words. 

Taking the word “aquarius” as an example, word2vec and GloVe models cannot create 

a word vector if “aquarius” did not appear in the training corpus. The reason is 

word2vec and GloVe models treat each word as the smallest entity to train on. 

However, the fastText model can produce a vector for “aquarius” by comparing the 

sharing character n-grams between “aquarius” and a known word “aquarium” in the 

vocabulary. This approach results in close word embeddings between “aquarius” and 

“aquarium”. Although fastText can represent Out-of-Vocabulary (OOV) words, it 

performs poorly for the test dataset in this specific application.  

The effect of word embedding dimension size (i.e., 50, 100, 200, 300 and 600) is 

investigated. The window size of 30 is applied during the training of word2vec, GloVe 

and fastText models. These trained language models are evaluated on the test dataset 

for 5 times at each word embedding dimension size. The score does not change at 

each testing process.  

Figure 4.2 shows that the performance improvement of the GloVe model diminishes 

for word embeddings larger than the dimension size of 200. There is an outlier at the 

dimension size of 50 for the word2vec language model. The fastText model exhibits 

slightly decreased scores with increasing vector size. The dimension size has a minor 

effect on the performance of the fastText model. The training of the fastText language 

model with a dimension size of 600 is not successful due to the limitation of Random-

Access Memory (RAM). Training a fastText model consumes more computing 

resources than word2vec and GloVe because it uses sub-word information at each 

training step. A word vector in a fastText model is learned from its character n-grams 

and the complete word. The mean of the target word vector and its component n-

grams are used in the training. At each training point, each of the component vectors 

that were combined to from the target word is uniformly adjusted to minimise the error. 

The word vectors in a fastText model contain embedded sub-word information. 

However, training a fastText model needs larger computing resources in contrast to 

word2vec and GloVe models.  
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Figure 4.2 Scores of the trained word2vec, GloVe and fastText models with a vector 

dimension size of 50, 100, 200, 300 and 600. 

Negative sampling is a critical hyperparameter in the word2vec and fastText model 

training. Training a neural network with gradient descent is a slow process. A huge 

training dataset is normally used to train a neural network to avoid over-fitting. All the 

neuron weights need to be slightly adjusted to predict each training sample more 

accurately. Therefore, millions of weights times billions of training samples means the 

training process is time-consuming. With negative sampling, only a small percentage 

of the weights ae modified, rather than all of them. Therefore, the negative sampling 

algorithm significantly simplifies the training process and reduces the training time [6]. 

Negative sampling also results in more accurate representations of frequent words. 

The effect of negative sampling (i.e., 2, 5, 10 and 20) is investigated for the language 

models of word2vec and fastText. The window size of 30 and vector dimension of 300 

are used in the training process. The scores are shown in Figure 4.3. 
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Figure 4.3 Scores of the trained word2vec and fastText models with negative sampling 

of 2, 5, 10 and 20.  

Mikolov et al. has reported in their original paper that the number of negative samples 

in the range 5-20 is useful for small training datasets, while selecting 2-5 negative 

words works well for large training datasets [6]. Figure 4.3 shows that the increased 

negative sampling significantly improves the word2vec model performance and 

achieves higher scores. On the other hand, it slightly increases the scores of the 

fastText model. The effect of increased negative sampling on the fastText model 

performance is minor.  

4.2 Contextual language model ‒ BERT 

The BERT language model is fine-tuned on a pre-trained SciBERT model with the 

collected paper abstracts from Scopus. The model training time is 56.22 mins. 

Different layers of a BERT model encode very different kinds of information [23]. The 

strategy of feeding word embeddings in different layers depends on the specific 

application. Therefore, it is advisable to test performance of different pooling methods 

and choose the appropriate one.  

The word embeddings in different layers of the BERT model are used to evaluate the 

model performance. The model performance is scored using the test dataset 

discussed in Chapter 3. The results are shown in Figure 4.4. 
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Figure 4.4 Scores of the word embeddings in different layers of the BERT language 

model.  

The word embeddings of a BERT model do not show contextual information in the first 

layer. More and more contextual information is collected with each layer when the 

word embeddings move deeper into the network. However, the word embeddings in 

the final layer pick up task-specific information. For example, the word vectors in the 

final layer of this fined-tuned BERT model encode information used to determine a 

missing word. The reason is that a Masked Language Model head is applied while 

fine-tuning the BERT model. For the specific application in this work, the word 

embeddings in the Layer 8 exhibit the best result. Therefore, they will be used in the 

subsequent model optimisation process.  

4.2.1 BERT Model Optimisation 

The BERT model is optimised with various learning rates, i.e., 2e-5, 3e-5, 4e-5 and 

5e-5. The batch size of 8 and epochs of 5 are used in the optimisation process. The 

effect of learning rate on the model performance for this specific application is shown 

in Figure 4.5. The initial learning rate of 2E-5 achieves the highest score in this specific 

application. 

0 2 4 6 8 10 12
10

20

30

40

50

60

70

80

90
S

c
o
re

Layer

 Score



27 
 

 

Figure 4.5 Effect of learning rate on the testing scores of the BERT model.  
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Chapter 5 Application 

5.1 Knowledge Diagram 

The word vector space is visually explored using Principal component analysis (PCA). 

Visual exploration is a crucial technique in data-driven applications. However, the 

trained word vector has a high dimension distribution, e.g., 100, 200, 300 etc, which 

makes it challenging to visualise the word vector distribution in a high dimension space. 

PCA is a dimension reduction technique whilst retaining most information. This is 

achieved using eigenvalues and eigenvectors of a data-matrix to provide less 

variables to represent maximum amount of distribution variation of the original data. 

Therefore, PCA makes feasible the important task of data visualisation. Figure 5.1 

shows a 3D PCA plot of some selected concepts and materials in the GloVe language 

model (vector dimension size of 300, window size 30).  

 

Figure 5.1 3D PCA plot of selected word vectors in the GloVe model. 
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From the 3D PCA plot, the interchangeable materials and concepts, such as 

“copper” and “Cu”, “selenium” and “Se”, “voltage” and “Voc”, stay close in the vector 

space. These interchangeable materials and concepts are among the topmost 

similar words of each other. The trained word embeddings also capture analogies 

between words. For example, “Cd − CdTe +ZnTe = ?”, the calculated results are: 

[('zn', 0.5797739028930664), 

('te', 0.5100134611129761),  

('m45', 0.49154233932495117),  

('selfdiffusion', 0.48819923400878906),  

('hg084zn016', 0.47685644030570984),  

('featureless', 0.4641359746456146)] 

“zn” is the first most similar word in the list. The accuracy is quite good.  

The trained GloVe model outputs information-dense word embeddings, which contain 

valuable knowledge about the materials and relationships between them. A knowledge 

diagram is constructed in the vector space by connecting the most similar entities, i.e., 

materials and concept. Figure 5.2 shows the relationship between selected materials 

and concepts. The cosine distance is used to calculate the similarity between materials 

and concepts. The similarity can be ranked to indicate the likelihood that the materials 

will co-occur within a similar context. When a word appears in the topmost 50 similar 

words of another word, a solid line is used to connect these two words in the 

knowledge diagram. The relationship between materials and concepts can be 

deduced from the knowledge diagram. For example, concentration ‒ lifetime ‒ Voc, 

carrier concentration is related to carrier lifetime because the activation ratio of 

dopants determines the carrier concentration and affects carrier lifetime. Carrier 

lifetime is a significant property to determine the open circuit voltage (Voc) of CdTe 

solar cells. Therefore, adjusting the carrier concentration influences Voc.  

The similar materials, which are not explicitly reported in the literature, are potentially 

the predicted material candidates and need further experimental investigation. In 

conclusion, the trained embedding model effectively assimilates existing knowledge 

and the series of connections between materials and concepts can provide new 
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insights to choose the most promising way forward to accelerate research of CdTe 

photovoltaics. 

 

Figure 5.2 Knowledge diagram of selected concepts and materials. 

5.2 Material Application Timeline 

The language models are capable of tracking material applications. The CdTe dataset 

is split into three periods, i.e. 1909~1990, 1991~2010, 2010~2020. The choice of 

these three periods depends on the achieved conversion efficiency milestones of 

CdTe photovoltaic devices [24]. The respective GloVe language models are trained 

on the three CdTe datasets with a window size of 30 and a vector dimension size of 

300. The top 500 most similar words are used to tack materials relevant to “defect”. 

The selected relevant materials to “defect” are shown Figure 5.3. 
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Figure 5.3 Timeline of the selected most similar materials to “defect”.  

Oxygen is observed to appear in these three periods. Between 1909 and 1990, oxygen 

was reported to passivate defect-induced surface states on the valence band side of 

CdTe [25]. Between 1991 and 2010, oxygen was reported to induce isoelectronic 

oxygen-cadmium vacancy pair (OTe‒VCd)-/2- during single crystalline CdTe growth [26]. 

Between 2011 and 2020, it was reported that careful control of oxygen in CdTe 

reduces intrinsic defects associated with cadmium and tellurium vacancies, interstitials, 

anti-sites in the bulk as well as within the grain boundary regions [27, 28]. Selenium is 

also shown in the top 500 most similar words to “defect” between 2011 and 2020. 

Selenium was demonstrated to passivate critical defects in the CdTe bulk to fabricate 

highly efficient CdTe solar cells [4]. A density functional theory calculation also showed 

that selenium passivates non-radiative recombination centres in CdTe [29]. Tracking 

materials in the most similar words provides a useful tool to discover promising new 

material applications. The appearance of “selenium” in the top 500 most similar words 

to “defect” corresponds to a published paper, which explicitly discussed the selenium 

passivation effect in CdTe [4]. The new materials in the most similar words potentially 

indicate new applications and need further comprehensive literature review.   

1909 

1990 

2010 

2020 

[Cd, CdTe, Zn, Te, indium, phosphorus, Cl, Hg, oxygen, ZnTe, 

Sb, …] 

[Tei, Cd, CdTeGe, Te, Cl, Cu, CdSn3Te4, CdTeIn, Zn, CdTeSi, 

CdZnTe, oxygen, CdCl2, Ga, HgCdTe, CdTeV, ZnTe, Sn, 

hydrogen, ZnSe, …] 

] 

[Tei, Cu, CuZn, CuZnTe, Cd, Te, lead, Cl, oxygen, CdCl2, 

selenium, V2O5, Si, …] 
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Chapter 6 Conclusions and Future work 

In this work, the application of natural language processing technologies on the 

research of CdTe solar cells is discussed. The language models of word2vec, GloVe, 

fastText and BERT are trained and evaluated using a custom test dataset. The training 

dataset includes more than 22,500 paper abstracts collected from the Scopus 

database. Before training the language models, the training dataset is pre-processed 

using tokenisation, converting all text to lower case, removing punctuation, removing 

stop words and lemmatisation. The custom test dataset consists of relevant material 

and concept word pairs in the field of CdTe solar cells.  

The word vector dimension size, context window size and negative sampling are 

investigated in the training of word2vec, GloVe and fastText models. The BERT model 

is optimised with the learning rate. The word embeddings in each layer of the BERT 

model are used to test the model performance. After optimisation, the GloVe model 

achieves the highest score with the custom test dataset. 

The word embeddings in the optimised GloVe model are exploited to construct a 

knowledge diagram and track the material application timeline. From the connections 

across the materials and concepts, we can obtain useful insights for future 

investigations.  

The application of machine learning technologies on the material discoveries has just 

begun to be explored. The space of potential new applications is quite large. 

Substantial further improvements are necessary to accelerate the research of material 

science. The future research can be conducted using interdisciplinary approach. A 

training dataset will cover the research fields of solar cells, optoelectronics and 

photocatalysts. The interactions of relevant materials in these research fields will 

identify new pathways to highly efficient solar cells in future research.  
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Appendix A 

A.1 Programming snippet of text pre-processing 
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Appendix B 

B.1 Similarity Test Dataset 

Word 1 Word 2  

Se passivate 

Se selenium 

Cu p-type 

Cu p-cdte 

Cu dopant 

Cu defect 

Cu instability 

Cu degradation 

arsenic defect 

passivate recombine 

defect disorder 

defect vacancy 

defect trap 

defect midgap 

defect subgrain 

defect antisite 

defect void 

mobility resistivity 

mobility conductivity 

shunt fill-factor 

shunt rollover 

barrier contact 

barrier crossover 

barrier cu 

concentration dopant 

alignment interfaces 

alignment photovoltage 

rollover ideality 

rollover fill-factor 

recombination trap 

recombination passivation 

recombination defect 

recombination barrier 

recombination midgap 

recombination dlts 

recombination grain-boundaries 

recombination photogeneration 
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recombination vbo 

recombination jo 

growth nucleation 

growth crystallization 

growth epitaxy 

growth morphology 

growth roughness 

growth anneal 

cdcl2 boundaries 

cdcl2 anneal 

dopant cu 

morphology sem 

morphology texture 

transmission  spectrophotometer 

roughness afm 

crystallinity texture 

crystallinity xrd 

bandgap se 

trap midgap 

trap defect 

trap recombination 

trap fermi 

trap activation 

trap mobility 

trap jo 

 


