
Implementing Rules with Artificial Neurons

Christian Huyck1 and Dainius Kreivenas1

Middlesex University, London NW4 4BT UK c.huyck@mdx.ac.uk

http://www.cwa.mdx.ac.uk/chris/chrisroot.html

Abstract. Rule based systems are an important class of computer lan-
guages. The brain, and more recently neuromorphic systems, is based on
neurons. This paper describes a mechanism that converts a rule based
system, specified by a user, to spiking neurons. The system can then be
run in simulated neurons, producing the same output. The conversion
is done making use of binary cell assemblies, and finite state automata.
The binary cell assemblies, eventually implemented in neurons, imple-
ment the states. The rules are converted to a dictionary of facts, and
simple finite state automata. This is then cached out to neurons. The
neurons can be simulated on standard simulators, like NEST, or on neu-
romorphic hardware. Parallelism is a benefit of neural system, and rule
based systems can take advantage of this parallelism. It is hoped that this
work will support further exploration of parallel neural and rule based
systems, and support further work in cognitive modelling and cognitive
architecture.

Keywords: Rule Based System · Simulated Neurons · Cognitive Archi-
tecture · Compilation To Neurons

1 Introduction

Simulated and emulated neural systems can be used for practical applications,
have massive parallelism, and can be used for exploring human and other animal
neural processing. Rule based systems are a standard programming paradigm
that has been widely used for expert systems and for cognitive modelling. Con-
sequently, the ability to easily translate a rule based system into a neural system
that can execute the same system has many potential uses in modern AI and
cognitive science. This paper describes such a translation mechanism, and the
neural execution of two particular rule bases (Monkeys and Bananas section 4.1,
and the Tower of Hanoi section 4.2).

The idea is based around finite state automata (FSAs) as each rule is a simple
FSA moving from one set of facts to another. Facts are implemented neurally as
binary cell assemblies (CAs) (see section 2.2).

This translation ability expands the potential easy use of large neural sys-
tems, as large rule based systems can be directly translated to them. This sup-
ports the exploration of large, parallel rule based systems, and the exploration
of neural cognitive architectures.

2 C. Huyck and D. Kreivenas

2 Literature Review

Rule based systems are powerful, have a long history, and are widely used in
modern cognitive science (see section 2.1). FSAs are an important standard
computational theoretical construct that can be readily implemented in neurons
using binary CAs; CAs more broadly are important standard neuropsychologi-
cal constructs that form the neural basis of concepts (see section 2.2). Biological
neurons can be accurately simulated and emulated in modern computers; more-
over, standard mechanisms are available to increase the reusability of neural
systems (see sections 2.3 and 3.2).

2.1 Rule Based Systems

Rule based systems have been in use since at least the 1940s [17], and are Tur-
ing complete. They were important in early AI systems (e.g. [16]). Many expert
systems in the 1970s and since have been implemented in rule based systems,
in part because experts can explain their reasoning in rules, and thus it is rel-
atively simple for a programmer to translate this expertise into a rule based
program. Rules are also the most common mechanism for procedural knowledge
in cognitive architectures, including ACT-R [2], Soar [13], and EPIC [12].

As the name suggests, rule based systems are built around if then rules. For
example if Banana at A, and Monkey at A then Monkey has Banana. Facts,
like Banana at A are boolean. Rule based systems are readily implemented on
standard computers. While developing the system described in this paper, CLIPS
[18] was used to develop particular systems, and as a test that the same results
were produced. Rule based systems are often easier for people to learn to program
than standard programming languages like Java.

In most rule based systems, one rule is applied in each time step. However,
it is also possible to apply all supported rules in parallel. For example, the rule
based component of EPIC [12] applies many rules in each cycle. This parallel
application may be useful in cognitive modelling, but it is also useful as parallel
processing. It is possible to have a parallel rule based system that fires thousands
or even millions of rules in parallel, allowing a rapid processing speed increase.

While rules are simple, an FSA is perhaps simpler.

2.2 Finite State Automata and Cell Assemblies

Finite state automata are standard computational theoretical models based
around states [14]. They can be used to recognise that an input is valid, so
starting from a state, they will move to another state depending on the next in-
put. They are powerful and widely used mechanisms, in for example compilers.
They are, however, not Turing complete.

A long standing theory of neuropsychology is that concepts are represented
by reverberating circuits of neurons called cell assemblies (CAs) [10]. These
neurons have a large number of synapses to each other, and the weights of these
synapses are large. So, if enough of the neurons start to fire, the neurons will

Implementing Rules with Artificial Neurons 3

continue to fire causing a reverberating circuit. Once the CA starts to fire, it is
said to be ignited. An ignited CA is a psychological short-term memory. When
the neurons in the CA stop firing at an elevated rate, the CA is no longer in
short-term memory.

While the topology of biological CAs is complex and poorly understood, it is
relatively simple to develop binary CAs in simulated neurons. These binary CAs
are either firing, or not. They persist indefinitely, unless inhibited by neurons
outside the CA, which can switch the CA off.

These binary CAs can act as states in a finite state automata. Once a state
is active (firing persistently), it will persist indefinitely. A second state can be
activated by a combination of the current state, and input. The second state can
inhibit the first, and the neural implementation of the automata has transitioned
to the second state. Any FSA can be implemented in this fashion [6].

The attentive reader will note that while rule based systems are Turing com-
plete, FSAs are not. How then can FSAs be used to implement rule based sys-
tems. The answer is in the neural facts. An FSA can be combined with an infinite
tape to make a Turing machine, which is, as the name suggests, Turing complete.
In this case, an infinite number of neurons to implement facts replaces the tape.
Do note that any finite calculation can be done with a finite sized tape, and sim-
ilarly with a finite number of neurons. This should not be particularly surprising
as it has been shown that a system based on neurons is Turing complete [4].

2.3 Artificial Neurons

There a many artificial neural models with complexities varying from simple
integrate-and-fire neurons [15], to compartmental models [11] and beyond. There
is a trade-off between biological accuracy and computational efficiency. This
work makes use of leaky-integrate-and-fire (LIF) models [3]. These point models
are widely used in biological neural modelling, and are available on neuromor-
phic hardware [8]. Unlike standard Von Neumann architectures, neuromorphic
hardware is not general purpose, but instead emulates neurons; this hardware
supports a large degree of parallelism.

A simple description of LIF models is that they collect activation from other
neurons. If a neuron collects enough activation to surpass its threshold, it fires,
and sends activation to the neurons it is connected to. These can be modelled
continuously, but the systems typical run in discrete time steps. If a neuron does
not fire in a time step, some if its activation leaks away. The time step used in
the simulations described below is 1 ms.

The connections between neurons are weighted uni-directional synapses. These
weights may be positive (excitatory) or negative (inhibitory).

3 System

The system described in this paper translates rules to a neural implementation
of those same rules. These rules are run in simulated neurons, but could easily be

4 C. Huyck and D. Kreivenas

run on neuromorphic hardware. In the simulations below, execution of the neural
rule based system is done by externally stimulating the neural implementation
of the initial facts, causing them to become persistently active (putting them
into memory). The firing neurons in the fact spreads activation to the rules they
support, causing the rules to be applied, putting new facts into memory, and
removing old facts.

3.1 Translating Rules To Neurons

The translation system takes as input the rules defined as python structures,
and the initial facts. It stores the rules internally as a dictionary of definitions,
which determine what facts activate or deactivate other facts. It then takes each
rule and translates it to one or more FSAs.

The translation engine uses the rules to create new facts by scanning the
existing facts. In essence, these are the facts that may become true during ex-
ecution. As new facts and rules are added to the system a recursive mapping
process ensures that all new facts that are needed are created.

Through the system’s recursive translation engine, the facts are mapped to
rules. Every time a new fact or rule is added to the system, new facts may be
added. For example, equation 1 is a simple rule approximating CLIPS syntax.

(MonkeyCanReach ?x) ⇒(MonkeyGrab ?x)

(remove (MonkeyCanReach ?x))
(1)

In the rule 1, the ?x is a variable. When it is defined, the system has
no facts. If a fact (MonkeyCanReach Banana) is defined, the system will
put the fact into the dictionary. It will also add the (MonkeyGrab Banana)
fact to the dictionary because of rule 1. If the rule had a constant fact (e.g.
(MonkeyCanReachBanana)) as the antecedent, it would have added that fact
to the dictionary while reading the rule. The consequent of sets up an FSA that
both adds new facts and removes the old ones.

With this rule and the associated two facts, the system will create an FSA
that links the two facts so that if the (MonkeyCanReachBanana) fact becomes
active, it will turn on the (MonkeyGrab Banana) fact, and in turn be turned
off.

If a new fact is added, say MonkeyCanReach Apple, the corresponding
MonkeyGrab Apple fact will be created and another linking FSA for the rule
will be created.

Note that in this context the fact is true if its associated state is on, and is
made false by turning that state off. Of course, there is no turning on or off at
this stage. The structure is just set up in an internal python dictionary. This
structure relates to a Rete net[7] typically used in rule based engines.

Once all of the rules and initial facts are read, the system caches out the fact
and rule structures to neurons and synapses. This involves translating each state
into a CA, implemented in neurons and synapses. These CAs are linked so that

Implementing Rules with Artificial Neurons 5

they implement the FSAs underlying the rules; this is done by adding synapses
to turn fact states on and turn them off. There are extra assertion neurons, for
turning the fact CAs on, and retraction neurons for turning them off (see figure
1).

If the rule has more than two if clauses, the system makes use of intermediate
states. So, the if portion A&B&C, would be represented by an FSA with A and
B turning on the intermediate state AB. The if clause is true if AB and C are
both on.

The translation engine needs to make sure that every possibility is exhausted.
One way the engine is made more efficient is to find the matching facts for a rule
using fact groups. Each fact group is a named item that is stored in a key valued
dictionary. Each dictionary value is a list of facts that belong to this group. This
concept separates the facts into groups allowing rule conditions to be found and
attributes matched faster.

Finally, the translation engine needs to set up external activation for the
initial facts. This is done with PyNN spike source generators.

MCRB Assert

Retract

MGB

Monkey Grab (banana) Rule Architecture

Fig. 1. Neural Architecture for the rule MonkeyGrab when a fact
MonkeyCanReach Banana is added. Where each state is a CA. Arrows repre-
sent excitatory connections, and blocks represent inhibitory connecitons; so the
MCRB CA turns on the retract CA, which in turn extinguishes MCRB and itself.

Figure 1 illustrates the neural CA structure of the rule from equation 1 along
with the fact (MonkeyCanReach Banana). This shows that, when ignited, the
CA for (MonkeyCanReach Banana) starts a spread of neural activation that
leaves the (MonkeyGrab Banana) CA ignited, while the reach is extinguished.

6 C. Huyck and D. Kreivenas

This system is a simple rule based system translation engine. It converts rules
and initial facts to simple FSAs. It then converts these to neurons, synapses, and
spike sources. The neural system can then be run in a simulator or emulator (see
section 4.1.

3.2 Simulating Neurons

The simulations described in this paper make use of the NEST [9] neuron sim-
ulator, and uses PyNN [5] as middleware. That is PyNN, python classes for
managing neural net simulations, is used to specify the neural topology, and
manages starting the simulation, initial inputs to the neurons, and recording
the resulting firing. Once PyNN specifies the topology and initial inputs, it calls
NEST to simulate the neurons.

The neurons that are used are adaptive exponential integrate and fire neurons
[3]. These are leaky integrate and fire neurons, and the default parameters are
used with three exceptions. The refractory period is increased from 1ms. to 2ms;
the firing threshold is decreased from -50.0 to -53.0 mV; and the reset after firing
is decreased from -65.0 to -70.0 mV. These neurons are a standard set used in
the authors’ neural FSA work to assure consistent firing behaviour.

Each state consists of 10 neurons, with the first eight being excitatory, and
the last two inhibitory. The excitatory neurons connect to the other neurons in
the state with the same weight, and the inhibitory neurons connect to the other
neurons with the same weight. The supports regular firing speeds (every 5ms),
once the state is ignited.

The time step used in these simulations is 1ms. This is to conform with
SpiNNaker behaviour, which is closely tied to this 1ms. step. Consequently it
should be relatively easy to translate this work to run on SpiNNaker. All code
can be found at http://www.cwa.mdx.ac.uk/NEAL/NEAL.html.

3.3 Executing the Rules and Facts in Neurons

Fig. 2 displays the neural structure and the spike times for the monkey grab

banana rule (equation 1). The vertical axis refers to neuron numbers, and the
horizontal axis to time in ms. Each dot represents a neuron firing.

Fig. 2 shows that the initial fact MonkeyCanReach Banana fires at 9ms.
With no rule, it would repeatedly fire indefinitely. However, the rule is applied,
and the assertion CA fires at 15ms and that ignites the MonkeyGrab Banana

fact CA at 21ms. The fact MonkeyCanReachBanana is also retracted at 15ms
by being inhibited by the retraction neurons. The whole simulation took only
28ms to progress from initial state to the end state. It will persist in this state
indefinitely, unless other rules are available.

Implementing Rules with Artificial Neurons 7

0 10 20 30
MonkeyCanReach Banana assertion 0

MonkeyCanReach Banana retraction 10

MonkeyCanReach Banana fact 20

MonkeyGrab Banana fact 30

time (ms)

Monkey Grab Banana Rule Rastergram

Fig. 2. Spike times for rule MonkeyGrabBanana. Neuron numbers represent: 0-9 -
MonkeyGrabBanana assertion neurons; 10-19 - MonkeyCanReachBanana retraction
neurons; 20-29 - MonkeyCanReach Banana fact; 30-39 - MonkeyGrab Banana fact

4 Examples

Two examples of complete systems are provided. The first is a simple monkeys
and Bananas problem. The second shows the more complex Tower of Hanoi
problem.

4.1 Monkeys and Bananas

The monkey and banana problems is a good old fashioned artificial intelligence
problem. The problem involves a monkey and bananas suspended from the ceil-
ing. There is also a chair in the room and the only way to reach the fruit is to
move the chair, and stand on it to reach the bananas.

The following scenario describes rules and facts in a format approximating
CLIPS syntax. There are three initial facts: (ChairAt 2), (Fruit banana 0),
(Fruitapple1). The ChairAt fact represents the position of the chair. The Fruit

facts represent the type of fruits and their position. As long as the chair position
is the same of that of a fruit, it is considered that the fruit can be reached.
The scenario also consists of four rules: MonkeyGrab equation 1 defined earlier,
EatFruit equation 2, MonkeyHasFruit equation 3 and PushChair equation
4.

(MonkeyHas ?type) ⇒

(assert (MonkeyAte ?type))

(remove (MonkeyHas ?type))

(2)

(ChairAt ?position)&(Fruit ?type ?position) ⇒

(assert (MonkeyHas ?type))

(remove (Fruit ?type ?position))

(3)

8 C. Huyck and D. Kreivenas

(Fruit ?type ?position)&(not ChairAt ?position) ⇒

(assert (ChairAt ?position))

(remove (not ChairAt ?position))

(4)

Note that the PushChair rule has the not operator, meaning the ChairAt

fact is not in the same position as the Fruit fact. This is done by a dictionary
process that links facts where the variable ?position differs between the two
antecedent clauses.

The system converts the rules and facts to neurons. When it is run, it com-
pletes the task. The spike times are shown in figure 3.

0 20 40 60 80 100 120
Fruit Facts 0

Monkey Ate Facts 20

Monkey Has Facts 40
Chair At Facts 60

Assertions 90

Retractions 170

time (ms)

Monkey and Bananas Rastergram

Fig. 3. Spikes of the neurons that implement the Monkeys and Bananas Problem.

The bottom 20 neurons represent the initial Fruit facts. As figure 3 shows,
the fruit is grabbed at 90 ms. Neurons 21-40 represent MonkeyAte facts and
41-60 represent MonkeyHas facts. Neurons 61-90 are the ChairAt facts. At
58ms, the rule is applied changing the facts. Neurons 230-249 fire and retract
the (ChairAt 2) fact. Neurons 150-169 fire and assert the (ChairAt 0) and
(ChairAt 2) facts.

The parallel nature of the execution of the rules leads to an unanticipated,
and probably unwanted, effect. The system does not understand that the ChairAt

fact is a single object Therefore, the 61-70 neurons of (ChairAt2) fact, after 58ms

Implementing Rules with Artificial Neurons 9

are replaced by two facts (ChairAt1) and (ChairAt0) represented by 71-90 neu-
rons to match both the initial Fruit facts. This triggers the MonkeyHasFruit

rule for both apple and banana. From this point on the conflict carries through
to the end of the simulation, which takes around 110ms to rest at the end state.

The rest of the spikes belong to retractions and assertions. The 91-170 neu-
rons are the assertions and 171-250 are the retractions, which get activated to
transition the simulation through different states. The final state, which will
persist indefinitely, is (MonkeyAte apple) and (MonkeyAte banana).

4.2 Tower of Hanoi

The Tower of Hanoi is a widely known problem and widely used problem involv-
ing three towers and a number of discs of increasing size. Each disc can fit on
the base of a tower, or on a larger disc already on a tower, but not on a smaller
disc. Only the top disc of a tower can be moved to another tower. Fig. 4 shows
an example starting state of the problem with four discs.

.

..........

.......

......
..

..

..

..

.

..

..

..

..

..

Tower 1

.

..........

.......

......
..

..

..

..

.

..

..

..

..

..

Tower 2

.

..........

.......

......
..

..

..

..

.

..

..

..

..

..

Tower 3

.

.............

...........

..........

.........

.

...
...
...

..
..
..
..
..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

..
..
..
..
..
..
..
.

...
...
...
...
.

......
......

............

.............

...............

.................

.

........

......

....

.... .

..

..

..

..

..

..

..

..

.

..

..

.

.

..

..

..
..
..
..
..
.

..
..
..
..
..
..
..

...
...
...
...
.

........
....

.............

..............

...............

.

..

..

..

..

..

..

.

..

.

.

.

.

..

..

..

..

..

..

..

..

.

.

...
..
..
.

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

.

.

..
..
..
..

..

..

..

.

..

..

..

.

.

.

.

.

.

..

..

..

.

..

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

..

..

..

..

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

.

..
..
..
..
..

..

..

..

.

..

..

..

.

.

.

.

.

.

..

..

..

.

..

..

..

..

.

.

..
..
.

..

..

..

..

.

..

..

..

.

..
..
.

..

..

..

..

.

..

..

...

..
..
..
..
..
..
..
..
..
.

...
...
...
...
...
...

....
....
....
....
.

................
................

.................

..................

...................

.

..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..

...
...
...
...
...
..

........
........

................

.................

..................

...................

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

..

..

..

..

..

..

..

.
.

...
..
..
.

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

.

.

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

..

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

.

.

....

.......

.

...
...
.

..

..
.

..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
.

...
...
...
...
...
...

....
....
....
....
.

...........
.....

.................

..................

...................

...................

.

..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
.

...
...
...
...
...
...

....
....
....
....
.

...........
.....

.................

..................

...................

...................

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

.

.......

......

......

......

......

.......
.

....

....
.

..

..

..
..

.

..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..

...
...
...
...
...
...
...

....
....
....
....
....

..........
.........

....................

.....................

......................

.......................

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.......

......

......

......

......

.......

Fig. 4. The Tower of Hanoi four disc start state.

To solve the Tower of Hanoi, a goal stack is used. The system uses a series of
facts to represent the stack. This paper presents facts as tuples in parenthesis,
like CLIPS. So, the fact (StackTop 3) says that the stack has three elements
in it. The stack contains two types of items: goals, and moves. A move fact
is of the form (Stack ?stackLevel Move ?disc ?from ?to). Again, as in rules,
variables are prefixed with a question mark. So, the stack at the stackLevel,
moves, the disc disc from tower from to tower to. So if the fact were instantiated

10 C. Huyck and D. Kreivenas

as (Stack 3Move C 1 3), the disc C would move from tower 1 to tower 3 when
the third stack item was popped.

The stack can also contain goals. They are of the form (Stack?stackLevelGoal

?topDisc ?bottomDisc ?from ?to). So there is goal to move the discs between
topDisc and bottomDisc from tower from to tower to. The first goal that is
added to the stack for one three disc problem is (Stack 1 Goal A C 1 3), which
states move the discs A to C from tower 1 to tower 3.

The system consists of five rules: addDisc, addFinalDisc, makeMove, goals To-
Goals, and goalsToMoves. The first two rules are used to initialize the facts with
the initial positions of the discs. Typically this has discs A to N on tower 1. The
initial fact that says how large N is must be specified.

The makeMove rule accounts for the primitive disc moves, and is described
by equation 5. It is relatively complex, but even very complex rules can be cached
out to neurons. The rule only works on the item that is on top of the stack. If
this item is a Move, it removes it by popping the stack (the bottom two lines),
and moves the disc (the first two clauses after the arrow).

(StackTop ?x)&(Stack ?xMove ?disc ?from ?to)&

(Disc?disc ?from) ⇒ (assert(Disc?disc ?to))

(remove(Disc ?disc ?from))

(remove(StackTop ?x))(assert(StackTop (−?x 1)))

(remove(Stack ?xMove ?disc ?from ?to))

(5)

Note that these rules make use of addition (+) and subtraction (−), and
they have to be handled in the code. This is done by mapping out the structure
so that the assertion creates the appropriate new fact. So, this is a dictionary
process that calculates the range of possible integers, and makes assertions and
retractions appropriately. In this code it works for addition and subtrction, but
could readily be done for other operations such as multiplication and division.

The remaining two rules, goalsToGoals and goalsToMoves, handle subgoal-
ing. The goalsToGoals rules accounts for moving large amounts of discs. If the
current top of the stack has the goal to move more than two discs from one place
to another, the goal is replaced with two subgoals and a move. For instance, if
the goal is (stack ?topGoalAC 1 3), it is replaced with (stack ?topGoalAB 2 3),
(stack (+?top 1)Move C 1 3), and (stack (+?top 2)Goal A B 1 2). The goalsTo-
Moves rule accounts for moving two discs. It replaces a goal with two discs
with three moves. For instance, if the goal is (stack ?top Goal A B 1 3), it
is replaced with (stack ?top Move A 2 3), (stack (+?top 1) Move B 1 3), and
(stack (+?top 2)Move A 1 2). These five rules can solve any problems with any
number of discs by using the minimum amount of moves required.

Figure 5 displays the rastergram of the neuron spike times of the Tower of
Hanoi problem with three discs implemented using the rules described above
converted to neurons. As the neurons are binary CAs, and all the neurons in the
CA behave the same, only one neuron per CA is shown in the rastergram. The
neurons represented in the figure shows the full system of neurons.

Implementing Rules with Artificial Neurons 11

The bottom 80 neurons represent the discAt facts, so the movement of the
largest disc from tower 1 to tower 3 can be seen at 600 ms. The neurons from
590-909 are the internal neurons used for combining multiple if clauses. Neurons
450-589 are retraction neurons. Neurons 310-449 are assertion neurons; 210-
309 are the goal and move facts; and 180-209 are the towers, which stay on
throughout the simulation. Neurons 120-179 are the stackTop neurons; 110-119
are the neurons for the initial fact saying there are three discs; and neurons
80-109 are the neurons for adding the discs at the start of the simulation.

0 200 400 600 800 1,000 1,200
Disk At Facts 0

StackTop Facts 110

Goal and Move Facts 210

Assertions 310

Retractions 450

Internal Facts 590

time (ms)

Tower of Hanoi 3 Disc Rastergram

Fig. 5. Tower of Hanoi 3 disc problem neuron spikes. Neuron number on the horizontal
axis with many labels omitted.

Figure 6 shows the simulated times between moves on the five disc Tower of
Hanoi problem. This closely echoes the human times and cognitive model times
reported by Altmann and Trafton [1]. The difference is that times of the neural
system are about 20 times faster.

5 Conclusion

This paper has briefly discussed the importance of rule based systems. It has
shown how they can be automatically translated into neural systems.

Though this paper shows that rule based systems can be readily implemented
in neurons, and indeed can be directly translated, a number of improvements
can be made to the system. There are relatively straight forward issues about

12 C. Huyck and D. Kreivenas

0

200

400

600

800

1000

0 5 10 15 20 25 30 35

Time Between
Moves in ms.

Move Number

Fig. 6. Latencies for Moves in the 5 Disc Tower of Hanoi Problem

usability, and more complex issues. Relatively straight forward improvements
include a parser for the rule based system, a closer link to, for instance, CLIPS,
and tools for recognition of issues like the forking of multiple facts as shown in
section 4.1.

More complex issues include parallelism, number of neurons, expansion to
other types of memory, and cognitive improvements. For instance a large number
of neurons might be needed for certain systems; if a rule based system were to
use real numbers, it would need an uncountably infinite number of CAs to cope
with this. The actual number could be determined at translation time, but it
is possible that that number could be very large. The translation system might
also note when this number is large, and warn the user. The translation process
assumes that possible values are known before hand. Dynamically interacting
with a virtual environment via neural facts and neural outputs can lead to the
introduction of new facts. In this case, the system would have to specify a range
of possible values.

One of the benefits of neural systems is that time emerges naturally. Biolog-
ical neurons have a time course, and the artificial versions make explicit use of
this time. This translation system will support further exploration of large par-
allel rule based systems, and provide communication with research in standard
cognitive architectures.

Implementing Rules with Artificial Neurons 13

Acknowledgment

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 720270 (the Human Brain
Project).

References

1. Altmann, G., Trafton, J.: Memory for goals: An activation-based model. Cognitive
Science 25(1), 39–83 (2002)

2. Anderson, J., Lebiere, C.: The Atomic Components of Thought. Lawrence Erlbaum
(1998)

3. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an ef-
fective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

4. Byrne, E., Huyck, C.: Processing with cell assemblies. Neurocomputing 74, 76–83
(2010)

5. Davison, A., Brüderle, D., Eppler, J., Muller, E., Pecevski, D., Perrinet, L., Yqer,
P.: PyNN: a common interface for neuronal network simulators. Frontiers in neu-
roinformatics 2 (2008)

6. Fan, Y., Huyck, C.: Implementation of finite state automata using flif neurons. In:
IEEE Systems, Man and Cybernetics Society. pp. 74–78 (2008)

7. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. In: Readings in Artificial Intelligence and Databases, pp. 547–559 (1988)

8. Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S., Brown, A.:
Overview of the spinnaker system architecture. IEEE Transactions on Computers
62(12), 2454–2467 (2013)

9. Gewaltig, M., Diesmann, M.: NEST (neural simulation tool). Scholarpedia 2(4),
1430 (2007)

10. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. J. Wiley
& Sons (1949)

11. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology 117, 500–
544 (1952)

12. Kieras, D., Wood, S., Meyer, D.: Predictive engineering models based on the epic
architecture for a multimodal high-performance human-computer interaction task.
ACM Transactions on Computer-Human Interaction 4:3, 230–275 (1997)

13. Laird, J., Newell, A., Rosenbloom, P.: Soar: An architecture for general cognition.
Artificial Intelligence 33,1, 1–64 (1987)

14. Lewis, H., Papadimitriou, C.: Elements of the Theory of Computation. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey (1981)

15. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 5, 115–133 (1943)

16. Newell, A., Simon, H.: The logic theory machine–a complex information processing
system. IRE Transactions on information theory 2(3), 61–79 (1956)

17. Post, E.: Formal reductions of the general combinatorial decision problem. Amer-
ican journal of mathematics 65:2, 197–215 (1943)

18. Riley, G., Culbert, C., Lopez, F.: C language integrated production system. Tech.
rep., NASA (1989)

