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ABSTRACT 

The status of "wild" brown trout(Salmo trutta, L. 1758) populations in the 

UK is increasingly giving cause for concern (Giles, 1989; Crisp; 1993). 

Declines in freshwater stocks are often associated with anthropogenic 

influences destructive to river channel structure and ecosystem function 

which are contributing to widespread loss of salmonid habitats (Crisp, 

1989; White, 2002). Chalk streams are subject to considerable habitat 

degradation such that rehabilitation requires management actions which 

better integrate habitat and ecological processes operating to influence fish 

populations. The influence of local meso-scale habitats upon brown trout 

population dynamics in two contrasting sectors of the River Piddle, Dorset, 

UK was quantified using the Physical Habitat Simulation Model 

(PHABSIM). Sectors examined represented ' typical ' semi-natural chalk­

stream conditions in the Piddle/Frome catchment area. Spatial availability 

and temporal variations in habitat quality (WUA) were modelled and tested 

for correlation against age-specific trout densities obtained from eight 

years quantitative electro-fishing data. Analyses indicated; (1) availability 

of marginal habitats associated with abundant bank-side cover was critical 

to adult over-winter survival and was a key factor determining local 

carrying capacity, (2) abundance of juvenile trout was strongly related to 

critical periods for spawning and rearing habitats, (3) low habitat durations 

during the first summer acted as a bottleneck at the juvenile life stage and 

(4) a variety of different meso-habitat types was important to juvenile 

recruitment dynamics. The implications ofthese findings are explored in 

the context of management of chalk rivers with respect to;- (i) habitat 

factors limiting trout recruitment dynamics (ii) utility of PHABSIM as a 

management tool for identifying population bottlenecks and (iii) potential 

for river rehabilitation strategies to effectively manipulate natural 

mechanisms regulating brown trout populations in chalk streams. 

- ----- - - - - - - --- - - - -
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CHAPTER 1: INTRODUCTION 

1.1. BROWN TROUT LIFE CYCLE 

Brown trout (Salmo trutta, Linnaeus 1758) is a polymorphic native European fish 

species whose range is defined by the Mediterranean and Atlantic coasts in the south 

and west and Iceland and northern Scandinavia in the north, although it' s eastern limits 

are more difficult to define (Frost and Brown, 1967). Successful introductions have 

taken place in at least twenty four countries outside Europe, from North America to 

Australia and New Zealand (Elliott, 1989). The fish communities ofthe British Isles are 

relatively "young" in geological and evolutionary terms and brown trout are believed to 

have recolonised freshwaters about 12000 years ago at the end of the Pleistocene. 

Various authors have described the trout life cycle (Frost and Brown, 1967; Maisse and 

Bagliniere, 1999). Brown trout spawn in late autumn or winter, usually between 

November and January according to stimuli of water temperature and flow. Fertilised 

eggs are buried in a nest known as a "redd" constructed in gravel substrate and develop 

at a rate dictated by ambient temperatures. When the alevins hatch they disperse through 

the gravel interstices until their yolk-sacs are exhausted at which point they emerge in 

the river as " fry" (Allan and Ritter, 1977). The fry develop the ability for station holding 

in open water approximately 10-12 days after emergence in preparation for the 

establishment of territories (Heland, 1971 a). Later they develop into trout parr but 

subsequent development is split into two separate life history strategies; anadromous 

(migratory) sea trout which mature in the sea returning to freshwater to spawn and 

resident brown trout which complete their life cycles entirely in freshwater (Elliott, 

1994). Brown trout which remain resident in streams are strongly territorial and exist 

within a social dominance hierarchy (Fausch and White, 1981). They may migrate vast 

distances within a river system or complete their life cycles entirely within the confines 

of a small stream (Elliott, 1994). Consequently, growth, maturation rates and longevity 

vary greatly depending on the life history strategies adopted. 
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1.2. BROWN TROUT HABITAT AND THE STREAM ENVIRONMENT 

The physical and biological structure of the stream environment is the product of 

interactions between a myriad of complex processes. These processes are controlled by 

catchment wide macro-scale variables, such as climate and geology which govern 

channel morphology and thus physical habitat structure (Newbury and Gaboury, 1993; 

Summers et al., 1996). Consequently, the term "habitat" covers a range of spatial scales 

which fit within a hierarchical classification (Fig. 1. 1 ) where each smaller scale habitat 

develops within the constraints set by the larger scale habitat of which it is a part 

(Frissell et al. , 1986). 

STREAM SYSTEM SEGMENT SYSTEM REACH SYSTEM 

1()lm 10'm 101 m 

Transverse 

~ ~~~r~~~~"!! 80r O'Iet Cobblu 

"POOURIFFLE" 

SYSTEM 

100m 

MICROHABIT AT 

SYSTEM 

1Q-1 m 

Fig. 1.1. Hierarchical organisation of a stream system and its habitat sub-systems 
(after Frissell et al., 1986) 

The trout zone of a stream (Huet, 1949) is typified by fast flowing, well oxygenated 

water with low annual temperatures. It is found mainly in upland head water areas of 

rain-fed rivers, but also in strongly flowing chalk streams of relatively shallow depth. 

Four physical factors distinguish the trout zone; width « 1 m to 1 OOm), slope 

(>4.5/ 1000m or 1.411000m in calcareous regions), mean monthly summer temperature 

«20-22°C) and stream order (l or 2). 

Brown trout require environments with high habitat diversity. This is because different 

life stages of brown trout require different habitats with specific characteristics suited to 

that particular life stage. Trout fry are vulnerable to predation and require habitats in 

2 
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shallow protected stream margins where velocities are relatively low. Water depth and 

cover are increasingly important habitat components for older trout which tend to 

occupy deeper water with increasing size (Bohlin, 1977). This means that the nature of 

available habitats can fundamentally influence the numbers of trout of a given age that 

can be supported within a stream. Thus habitat can determine trout population structure 

and act as a limiting factor on abundance (Armstrong et al., 2003). 

1.3. CONSERVATION STATUS OF BROWN TROUT 

Substantial declines in populations of Atlantic salmon (Salmo salar) throughout its 

natural range since the 1960s (Jonsson et al., 2003) have led to it being designated for 

protection by the European Union (EU) under the Directive on the conservation of 

natural and semi-natural habitats and of wild fauna andjlora (92143 EEC) (Habitats 

Directive 1992) (Anon., 1992a). Brown trout (Salmo trutta) have not been afforded 

similar conservation status despite similar declines in many anadromous stocks such as 

the West coast of Scotland (MacLean and Walker, 2002). Furthermore, reviews of the 

status of "wild" brown trout populations in the UK have indicated widespread concern 

about declines in freshwater stocks and considerable evidence of on-going decline 

(Giles, 1989; Crisp; 1993) . 

The presence of wild brown trout in a river is an excellent indicator of a healthy aquatic 

ecosystem (Elliott, 1994; Bagliniere and Maisse, 1999). However, high sensitivity to 

water quality and very specific habitat requirements (Crisp, 1993) make brown trout a 

potentially vulnerable species as conditions necessary for their survival are coming 

increasingly under threat (Hansen and Loeschcke, 1994). Although general water 

quality standards have undergone considerable improvements in the UK in the last 15 

year~, anthropogenic influences destructive to river channel structure and ecosystem 

function are contributing to widespread loss of salmonid habitats (Crisp, 1989; White, 

2002). 

1.4. CAUSES OF WILD BROWN TROUT DECLINE 

Habitat degradation represents a major threat to wild brown trout (Winstone et al. 1993; 

Summers et al. 1996; Fisheries Review Group, 2000). In recent decades, intensive 

3 
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development offloodplains has increased the need for "hard" river engineering to 

improve flood defence resulting in widespread habitat loss and flow regime 

modifications (Brookes and Shields, 1996). Agricultural land use practises associated 

with intensification under the EU Common Agricultural Policy (CAP) continues to 

contribute to widespread and on-going degradation oflotic environments. Large scale 

arterial drainage schemes in the 1950' sand 1960' s to bring fertile floodplain land into 

production resulted in straightening and deepening of river channels reducing habitat 

diversity and removing important spawning gravels. Soil erosion from ploughed arable 

land increases sediment supply to rivers and has led to siltation of spawning gravels. 

Eutrophication from intensive use of fertilisers has caused water quality problems and 

led to de-oxygenation. Overgrazing of riparian land by sheep and dairy cattle has caused 

accelerated bank erosion which has exacerbated siltation problems and impacted river 

channel structure. 

Population growth, particularly in the south of England, has increased pressure on 

groundwater resources. Groundwater abstraction has created problems associated with 

low flows which have been particularly marked in southern England (Johnson et ai, 

1995: Strevens, 1999). In addition to causing severe reductions in physical habitat, low 

flows also reduce dilution of pollutants exacerbating problems of eutrophication and 

siltation. 

Problems of acidification have occurred where long term acid rain combines with base 

poor geology oflow buffering capacity. Afforestation of upland catchments with 

coniferous stands has exacerbated acidification which has caused extensive damage to 

headwaters. Cumbria and north Wales are regions where upland salmonid nursery 

streams have been affected by acidic waters toxic to trout eggs and alevins. Forestry 

practices have also affected discharge regimes and overshadowing of nursery streams 

reduces primary production and temperatures thus reducing trout production (see Giles, 

1992; Crisp, 1993 for reviews). 

Furthermore, decades of increasing angling pressure, with cropping of trout exceeding 

natural replacement capacity of rivers, has led to widespread artificial stocking of 

streams with hatchery reared fish to maintain the socio - economic value of fisheries 

(Hartzler, 1988; Giles, 1992). Restocking has historically been perceived as a remedy 
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for declining salmonid stocks but has been shown to represent a significant threat to 

conservation through genetic interactions between native and hatchery-reared trout 

(Hansen and Loeschcke, 1994). Salmonids from a "foreign" stock may be less well 

adapted to the river environment and inter-breeding between these fish and native stock 

can result in modification of phenotypic characteristics of natural populations 

(Guyomard, 1989). Use of genetic tagging to monitor the influence of stocked trout in 

tributaries of Lower Lough Erne, Northern Ireland, demonstrated the genetic 

contribution of stock fish in some tributaries to be up to 90% (Ferguson and Taggart, 

1991). Consequently, there is concern that interbreeding between wild and non-native 

individuals can alter locally adapted gene pools which may confer reduced adaptiveness 

and resilience to environmental stresses upon their offspring, with potentially long term 

evolutionary consequences (Ferguson, 1989). Introductions of hatchery trout can also 

result in increased stress to wild fish and displacement from preferred feeding stations. 

These problems are exacerbated where large trout are stocked into nursery areas 

increasing predation on and displacement of native juveniles (Bachman, 1984). 

1.5. RATIONALE FOR MANAGEMENT OF WILD BROWN TROUT 

In addition to the intrinsic conservation value of wild salmonid populations, sport 

fishing for trout and salmon is a major recreational activity and the socio-economic 

value of fisheries is substantial. In Wales freshwater fisheries presently contribute 

around £35m per annum to rural economies (Fisheries Review Group, 2000). In 

England and Wales the value of trout fishing rights exceeds £500 milliqn and 

expenditure by game angling license holders is estimated to be around £300 million per 

annum (Radford et aI., 2001). Restoration of game fisheries therefore has significant 

socio - economic value. Restoring the River Eden, Cumbria has been estimated to be 

worth £1.8 m annually to local rural economies (Eden Rivers Trust, unpublished}. 

Angling tourism generates substantial transfer of resources from urban to rural areas. In 

Ireland overseas anglers are estimated to spend £80 million a year, most of which is 

spent in rural areas (Fisheries Review Group, 2000). The Irish government have 

recognised the contribution of angling to the national economy by actively promoting 

freshwater fisheries and angling tourism through the securing of EU Objective 1 Funds 

which have focused primarily on habitat improvements for salmon and sea trout 

fisheries. 
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The "Salmon and Freshwater Fisheries Review" (Fisheries Review Group, MAFF, 

2000) recommended that fisheries should be supported by urgent research into factors 

affecting long-term sustainability and "the potential for habitat restoration to restore 

salmonid populations." The National Trout and Grayling Fisheries Strategy 

(Environment Agency, 2003) resulting from the Review is grounded in the concepts of 

sustainable fisheries development and provides the conceptual framework for the 

present study. This recognises that an integrated management strategy for wild brown 

trout should conserve wild populations of high genetic diversity and protect important 

habitats but that this needs to be balanced by maintenance of an exploitable fish 

resource to meet the demand from recreational fisheries (Hansen and Loeschcke, 1994). 

Thus, fisheries habitat enhancement is placed at the core of conservation actions to 

address declines in self sustaining wild salmonid populations, while allowing 

appropriate "supportive" stocking to maximise socio - economic benefits from angling. 

In lowland rivers of southern England where there has been a long history of stocking 

trout, populations have not remained genetically isolated. Thus, for the purposes of this 

study, the definition of a "wild" trout is "an indigenous brown trout that has not been 

introduced by artificial means, and is native to a stream in which the population is 

sustained by the natural adult spawning stock." This definition is broad enough to 

encompass populations tl}at have not remained genetically pure but where in all other 

respects trout are effectively wild. Thus, the term "native " refers to stream-bred rather 

than necessarily genetically indigenous trout. 

1.6. TROUT STREAM HABITAT RESTORATION AND MANAGEMENT 

The "restoration" of rivers is a relatively new discipline predominately derived from 

North American experience (White, 2002). Habitat improvements in the UK were 

largely undertaken piece-meal prior to the 1990' s, often as adjuncts to flood protection 

or land drainage schemes (Mann and Winfield, 1992) and experience from the USA has 

been slow to filter through. Where natural ecosystems have been lost or degraded, 

restoration implies a return to a "natural" pre-disturbance condition where structure and 

function are restored as closely as possible to the conditions under which they evolved 

(Kauffman et aI., 1997). This "ecological restoration" can only be effective at a 

catchment scale and socio-political pressures make such approaches problematic in 
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practice. In lowland rivers in particular, centuries of anthropogenic influence have 

meant it is often impossible to define a pre-disturbance "reference" condition to guide 

such management interventions (Holmes, 2002) . 

Consequently, the tenn "river restoration" has fallen from favour in recent years being 

replaced by "rehabilitation." This tenn refers to measures which assist river systems to 

recover following anthropogenic disturbances to as natural a state as possible. River 

rehabilitation proliferated in the UK during the 1990' s (Petts, 1996). The River 

Restoration Project demonstration sites on the River Cole and River Skerne (River 

Restoration Project, 1993) were the first fully documented projects to undertake 

rehabilitation of ecological and geomorphic integrity, albeit on a local scale. 

The narrower concept of "enhancement" refers to any improvement of a structural or 

functional attribute for a species or habitat. In fisheries management, enhancement 

measures are often focused specifically on a single species (trout and/or salmon) and a 

specific ecosystem component (physical habitat). These have tended to be small scale in 

stream " improvements" such as pool creation but many such projects have remained 

poorly documented with limited infonnation about impacts on populations (Summers et 

al. 1996). Local enhancement of salmonid streams in the UK is increasingly being 

undertaken by Rivers and Fisheries Trusts. These environmental charities are 

successfully attracting grants and external funding for habitat improvements, such as 

those increasingly available under agri-environment and biodiversity preservation 

initiatives such as the Countryside Stewardship Scheme. 

Implementation of the Water Framework Directive for EU member states will have 

important implications for fisheries management and should facilitate a more holistic 

"catchment" approach allowing macro-scale problems to be more effectively addressed 

by river rehabilitation (Kondolf and Downs, 1996). Salmonid habitat enhancement 

initiatives such as the Conservation of Atlantic Salmon project in Scotland are already 

starting to address habitat issues at larger catchment scales as part of the EU LIFE 

programme. 
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1.7. KEY RESEARCH THEMES 

Modelling relationships between habitat and trout abundance is important to improve 

understanding of mechanisms regulating populations. The Physical Habitat Simulation 

Model (PHABSIM) (Bovee, 1982) comprises a suite of programmes that manipulate 

hydraulic and biological parameters to predict habitat gains and losses for stream 

dwelling salmonids over a range of river discharges. There has been a rapid increase in 

operational use ofPHABSIM in the UK (Dunbar et al .. 2001) and the model has 

typically been employed to evaluate impacts of abstraction and to define in-stream flow 

requirements (Petts and Bickerton, 1993; 10hnson et al. 1995; Strevens, 1999). 

However, use of the model to assess physical habitat in relation to channel 

alterations/enhancements or fish population dynamics in the UK has been limited. 

These have become important new areas of research in recent years in response to 

changing attitudes to river management, strengthened environmental legislation and the 

concomitant requirements to quantify environmental impacts on aquatic species 

(Maddock, 1999). Research by the Centre for Ecology and Hydrology (CEH) identified 

an urgent need for further validation of links between PHABSIM derived habitat 

predictions and salmonid abundance (Dunbar et al. . 200 I). This is the context within 

which the goals of the present study are set. Studies that match physical and hydraulic 

characteristics of streams with population dynamics have the potential to elucidate the 

role played by habitat limiting factors and can contribute to improving the viability of 

habitat enhancement as a management tool for maximising self-sustaining salmonid 

populations. 

1.8. AIMS AND OBJECTIVES 

This thesis seeks to address aspects of the recommendations from the CEH/EA report 

Ecologically Acceptable Flows - phase 3 (Dunbar et al. . 2001). The primary goal is to 

model relationships between habitat variability and population dynamics of brown trout 

in a small chalk-stream to address the following aims;-
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1.8.1. Aims 

1. Model seasonal fluctuations in habitat availability and quality for different brown 

trout life stages. 

2. Examine relationships between habitat and annual variations in trout abundance. 

3. Test and validate PHABSIM derived habitat predictions in relation to trout 

population dynamics and evaluate the model as a tool for fine scale habitat 

modelling in chalk streams. 

1.8.2. Objectives 

Objective 1: Analyse the dynamics of the brown trout population in the River Piddle 

Objective 2: Quantify habitat quality in contrasting reaches of the River Piddle for 

juvenile and adult brown trout during summer and winter. 

Objective 3: Examine effects of temporal changes in habitat on trout abundance and 

identify aspects of habitat that may be acting as population limiting 

factors. 

Objective 4: Assess the importance of spawning and rearing habitats in relation to 

juvenile recruitment in the River Piddle. 
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CHAPTER 2: REVIEW OF CURRENT KNOWLEDGE 

2.1. LIMITATIONS ON PRODUCTION OF SALMONID POPULA TIONS IN 

STREAMS 

Wild salmonid populations are regulated by a combination of density - dependent and 

density - independent mortality. Density - dependent causes of mortality occur when 

changes in population density affect competition for space and food (Elliott, 1985, 

1994: Kennedy and Strange, 1982; 1986a; 1986b). Density - independent mortality 

occurs as a result of abiotic factors and is mainly environmental in origin (e.g. 

temperature, discharge and habitat). These latter can have large effects on survival and 

act to determine abundance whereas underlying density - dependent mechanisms act to 

regulate abundance (Milner et ai, 2003). 

2.1.1. Density - Independent Regulating (Abiotic) Factors 

Complex interactions between abiotic factors affect trout populations and are shown in 

Figure 2.1. Water quality factors will tend to affect presence or absence of the species. 

Other factors may determine local distribution patterns or set boundary conditions 

which determine abundance. 

Water quality 

The most important water quality parameters affecting brown trout are temperature, 

dissolved oxygen (DO) and pH. Water temperature is the most important controlling 

factor affecting salmonid ecology (Haury et aI., 1999), whereas DO and pH will be 

more likely to determine presence/absence of salmonids. Preferred temperature ranges 

between 7 QC and 17 QC with optimum growth rates occurring at 13-14 QC (Crisp, 1993). 

Respiratory metabolism increases with temperature and above 19 °C feeding ceases. The 

upper thermal limit is 21-25 QC (Alabaster and Lloyd, 1987; Crisp, 1993). Egg 

development rates, embryo oxygen uptake and survival are also influenced by 

temperature. Egg survival exceeds 95% at temperatures of 0-1 0 QC but declines to less 

than 50% above 12 QC (Crisp, 1993). 
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Fig. 2.1. Interactions between abiotic factors affecting stream dwelling salmonids 

(reproduced with permission of J.D.Armstrong) 
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Water temperature is also a behavioural regulator acting as a stimulus for migration and 

spawning (Haury et al., 1999) and indirectly modifies other parameters such as 

dissolved oxygen and primary and secondary productivity (Westlake et al., 1972; Haury 

et aI., 1999), which together ultimately affect trout biomass (Mann et al., 1989). 

Minimum oxygen concentrations are 5.0-5.5 mgr' but should ideally be above 80% air 

saturation. Dissolved oxygen requirements are inversely related to water temperature 

declining with increasing temperatures. At 80% saturation oxygen concentrations 

reduce from 10.2 mgr' at 5°C to 7.3 mgr' at 20°C (Crisp, 1993). Water pH below 4.5 

or above 9.0 is lethal to salmonid eggs (Crisp, 1989). Low pH values can also lead to 

indirect toxicity due to dissolving of aluminium ions in solution or reduction of 

nitrogenous nitrogen to ammoniacal nitrogen (Crisp, 1993; Haury et aI. , 1999). 

Physical structure of the trout's environment 

The trout stream environment is conditioned by river channel morphology which is a 

product of the interrelationships between discharge, gradient and sediment supply. 

These, in turn are governed by macro-scale varia1;>les such as climate and geology 

(Frissell et aI., 1986; Newbury and Gaboury, 1993). 

The morphology of natural alluvial streams provides a greater diversity of habitat 

features for salmonids than steep, upland streams. In low gradient "alluvial" streams 

where depositional processes tend to dominate, the distribution of local bed scour and 

aggradation associated with converging and diverging flows produces characteristic 

morphological features of pools, riffles and meanders (Gregory et al., 1994). These 

features are closely interrelated as locations of riffle crests determine distribution of 

stream energy as different alignments of successive riffles disperse flow alternately to 

opposite banks reinforcing the pattern of converging and diverging flow (Gregory et al., 

1994). Where one bank is undercut more readily meander formation is initiated. Pools 

typically develop on the outside of bends with riffles located at inflection points 

between bends. The spacing between riffles and pools and thus meander wavelengths 

are correlated with channel width, which in turn is a function of stream power and 

erodibilityand cohesion of bed and bank materials (Schumm and Khan, 1972). Thus, 

variations in bed and bank materials will result in variations in stream width which will 
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affect the spacing between riffles and pools. The fonn of pool and riffle sequences are 

also influenced by sediment supply as coarse, angular gravels will lock together creating 

"ann our" against bed erosion to fonn stable riffle bars. 

These features provide the physical structure of trout habitat (Summers et al., 1996) and 

are positively correlated with high mean standing stock of trout (Kozel et al., 1989). 

Lower gradient streams tend to be correlated with higher trout abundance because they 

tend to produce a greater diversity of habitat features than upland rivers (e.g. Kennedy 

and Strange, 1982; Hennansen and Krog, 1984). In addition, lowland rivers are 

generally more fertile and riparian and in-stream vegetation has a more important 

influence on stream structure and trout habitat than in upland rivers (Bird et al. , 1995). 

In chalk-streams, vegetation plays a fundamental geomorphological role, affecting 

banklbed stability, sediment transfer and hydraulic behaviour, as well as providing 

important physical habitat in the fonn of cover for trout. 

Habitat diversity and bottlenecks 

Habitat diversity is of fundamental importance to self sustaining populations of brown 

trout in lotic environments because availability of suitable habitats detennines the 

numbers of fish that a stream can support. This is known as the carrying capacity. 

Different life stages of trout require specific habitat conditions such that amounts and 

types of different microhabitats can act to limit trout abundance and influence 

population structure (All en, 1969; Milner et al., 1978). Thus, absence of a critical 

habitat type for a particular life stage will act as a population limiting factor at that stage 

of the life cycle. This is the concept of the "habitat bottleneck" (Fig.2.2). Identifying 

where habitat bottlenecks are occurring is critical to conservation and management of 

wild trout populations but the amounts and types of habitat needed to maximise carrying 

capacity are difficult to define and poorly understood (Hunter et al., 1991). 
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Fig. 2.2. The concept of trout populations being constrained by habitat bottlenecks 

(Adapted from Garcia de Jalon, 1995). 

2.1.2. Density - Dependent Regulating (Biotic) Factors 

Early studies of salmonid population dynamics show the determining role of 

behavioural factors, notably competition for space and food, in limiting natural 

populations (Alien, 1969). This is especially marked in brown trout due to a highly 

developed sense of territoriality which develops at a very early age (Kalleberg, 1958; 

Bachman, 1984; Elliott, 1990). Heland (1971 a) showed that territorial behaviour and 

establishment of defensible territories by fry occurs between two and three weeks after 

emergence from the gravel. 

Bachman (1984) showed that brown trout territories in a Pennsylvanian spring creek 

changed little over a period of years and that trout occupied the same well defined 

locations within a home range comprising a number of holding stations where 

maximum food value could be achieved with minimum energy expenditure. Fausch 

(1984) established that trout hold positions which maximise net energy gain and that 

position choice was highly correlated with growth rates. Fish which obtain the most 

energy efficient territories become the largest and a social hierarchy develops in which 

the dominant trout defend the best territories (Fausch and White, 1981). This 

hierarchical structure results in subordinate individuals becoming marginalised and 

forced to either migrate or die (Kalleberg, 1958; Elliott, 1990). 

14 



.. 

Consequently, territorial behaviour is responsible for regulating trout densities at the 

juvenile stage effectively imposing a limit on stream carrying capacity which then 

determines the future adult population of the stream (Le Cren, 1973; Elliott, 1984, 

1994). At low spawning densities competition is limited and therefore reproduction is 

efficient and numbers of juveniles produced are closely proportional to spawning levels. 

As spawning numbers increase so does competition between fry and density -

dependent factors serve to restrict the population as carrying capacity is approached. 

Thus, survival (from eggs to older life stages) usually decreases with increasing 

spawner density, changing most rapidly as carrying capacity is approached. The curve 

that expresses the form of this population regulation was defined by Ricker (1954) as 

typically dome shaped and is known as a stock - recruitment relationship . 

Density - dependent regulation of abundance governs the general form of stock -

recruitment relationships for trout (Elliott, 1994) and there is substantial evidence to 

show that the main regulating processes act during the very early stages of the salmonid 

life cycle (Egglishaw and Shackley, 1977; Gardiner and Shackley, 1991 ; Kennedy and 

Strange, 1986). In a long term study of sea trout in Black Brows Beck, Cumbria, 

England, Elliott (1993a) showed that regulation of population size was achieved 

through density - dependent mortality operating over a short critical period (30 - 70 

days) when fry dispersed from the spawning gravels. Subsequent survival was shown to 

be proportionate and influenced by density independent factors. Gee et ai, (1978) found 

maximum salmon smolt production (equated to juveniles age 2+) in the River Wye, 

Wales was attained at a fry density of 0.75 per m2 on the I s1 June and that at densities 

above and below this level, production decreased following a similar dome shaped 

Ricker model. 

The biological productivity of a stream will put a ceiling on trout production. However, 

the energy equivalence hypothesis states that the maximum biomass does not limit trout 

numbers per se because it can be composed of many small fish or a few large ones (Le 

Cren, 1969). As individuals grow the resources they require increase such that, 

assuming food and space remain constant, the number of fish can be expected to 

decrease as mean weight increases in response to competition by a process known as 

"self - thinning." 
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2.1.3. Relationships between Habitat, Carrying Capacity and Density Dependent 

Regulation 

Habitat availability and quality have special importance as controlling factors of 

salmonid abundance in streams. As a critical resource (space) can limit populations at 

habitat bottlenecks. Carrying capacity, as determined by physical habitat, is independent 

of density but creates a bottleneck that increases competition thus stimulating density­

dependence to operate (Milner et ai, 2003). Such bottlenecks have been demonstrated to 

occur at the early post emergent fry stage and at spawning where spawning gravels are 

limited. The rate of self thinning is likely to vary depending on whether food or space is 

limiting (Grant and Kramer, 1990) and further variation would be expected to occur as 

suitability of habitats vary with fish size (Arm strong et ai, 2003). Thus, self-thinning is 

most likely to occur when trout are growing through bottlenecks (Elliott, 1990) and as 

such a self thinning gradient may effectively define carrying capacity for different sizes 

of fish within a stock (Armstrong, 2005). Therefore, trout populations are limited by 

both biotic and abiotic factors which operate simultaneously and vary spatially and 

temporally in their degree of importance. 

2.2. PHYSICAL HABIT A T USE BY BROWN TROUT IN STREAMS 

Stream resident salmonids habitually restrict their activities to localised subsets of the 

environment which best satisfy their immediate requirements (Jenkins, 1969) and 

distribution and abundance are strongly influenced by habitat especially during 

population bottlenecks (Elliott, 1994; Armstrong et ai, 2003). Several abiotic factors 

are thought to be of particular importance in setting boundary conditions affecting 

carrying capacity and hence production of trout. These include temperature and annual 

stream flow variation (Binns and Eiserman, 1979). In addition, the importance of water 

depth, flow velocity, substrate particle size and cover have been well documented 

(Heggenes (1988b; 1990) and numerous studies have shown one or more of these 

variables to be correlated with distribution and/or abundance of brown trout in a wide 

range of stream types (e.g. Boussu, 1954; Fausch and White, 1981 ; Kennedyand 

Strange, 1982; Shirvell and Dungey, 1983; Cunjak and Power, 1986). Thus, broad 

ranges of acceptable conditions for these habitat attributes have been defined according 

to their suitability for different life stages of trout and salmon (see Armstrong et ai, 
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2003 for a full review). Habitat Suitability Index (HSI) curves which express preferred 

ranges for depth, velocity, substrate and cover have been developed for use in habitat 

models (e.g. Raleigh et al., 1986) and comprise the biological component of the 

Physical Habitat Simulation Model (PHABSIM) used in this study. Consequently, the 

importance of these four habitats attributes to stream dwelling brown trout will now be 

reviewed. 

2.2.1. Water depth 

Total water depth is important in determining habitat suitability, especially in small 

streams and for larger fish. Several authors have reported that brown trout tend to show 

increasingly strong preference for deeper stream areas with increasing size and age 

(Heggenes, 1988a). Solomon and Templeton (1976) found that individually marked 

brown trout in a small English chalk stream tended to occupy water with a progressively 

greater mean depth at age 1 + than age 0+. Kennedy and Strange (1982) found that 

salmon and brown trout fry were significantly more abundant in shallow water «20cm) 

in two small Irish streams, while adults (2+ and older) were mainly present in deeper 

areas (>20cm). Bohlin (1977) reported a correlation between length of juvenile 

anadromous brown trout and depth of habitat utilised. Egglishaw and Shackley (1982) 

found a positive correlation in small Scottish streams, between densities of 0+ and 1 + 

brown trout and variations in area of water depth exceeding 10cm. This correlation 

became progressively stronger for older trout at depths greater than 15, 20 and 25cm 

respectively. Heggenes (1988b) showed that 0+ brown trout in a small Norwegian 

stream preferred a depth range of 10-20 cm while larger 1 + trout were more often found 

in deeper pools (30-40 cm). 

2.2.2. Water velocity 

Local variations in velocities create sheltering and feeding lies for all life stages of 

brown trout, the suitability of which are closely related to availability of low velocity 

niches (Bachman, 1984; Fausch, 1984). The quantity of drifting invertebrates, and 

therefore food availability, which pass a given spot is related to current speed (Elliott, 

1967). Optimum feeding stations are those where energy expenditure is lowest relative 

to energy gain (Fausch, 1984). Shirvell and Dungey (1983) reported snout velocity to 
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be the most important factor determining position choice by large brown trout in New 

Zealand streams which they attributed to energy cost-minimisation. 

Water velocity may be a limiting factor for young salmonid fry, which are susceptible to 

downstream displacement at comparatively low velocities (>0.15 ms-I) within eight 

weeks of emergence (Heggenes and Traaen, 1988a). Thus fry are unable to occupy 

habitats combining smooth substrates with even relatively low water velocities, placing 

immediate constraints on habitat availability. 

It is clear that brown trout utilise deeper areas of stream more frequently with increasing 

size/age, placing 0+ fish at a competitive disadvantage, but this is less clear in respect of 

water velocity. Brown trout preferentially select low snout velocities but there is 

considerable variation as to preferred velocity ranges (Heggenes, 1988; Heggenes and 

Saltveit, 1990). In an Ontario river, Cunjak and Power (1986) observed considerable 

differences in snout velocities selected at two different river sites by older (>age 1 +) 

brown trout (mean snout velocity 5.7 ms-I compared to 16 ms-I). These fish generally 

held positions in both faster and deeper water than 0+ trout, whereas several authors 

have reported that brown trout use slow-deep pool like areas with increasing size 

(Bohlin, 1977; Egglishaw and Shackley, 1982; Heggenes, 1988a, b). Such discrepancies 

are likely to be a result of the wide variety of streams observed but could also suggest 

that depth has greater importance in habitat selection than velocity. 

There is considerable evidence for seasonal variation in velocity preference (Cunjak and 

Power, 1986). Brown trout seek out habitats characterised by slower velocities during 

winter, probably partly as a response to reduced nutritional requirements and energy 

conservation. Traditional summer feeding stations are typically in proximity to fast 

flowing water where maximum energy efficiency can be derived from drift feeding. 

2.2.3. Stream substratum 

Substrate conditions provide shelter from high water velocities and from predators 

(Heggenes, 1988). Stream-dwelling brown trout specifically select feeding stations 

where rocks or coarse particles deflect currents creating low velocity niches (Bachman, 

1984) and concentrate currents into specific zones improving feeding niches which 
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maximise energy efficiency (Fausch, 1984). Consequently, brown trout tend to avoid 

areas of fine substrate, such as silt and sand, preferring coarse gravel and cobble 

(Bohlin, 1977; Heggenes, 1988a, b) and spend much oftheir time close to the stream 

bed rather than in mid water or at the surface (Jenkins, 1969; Shirvell and Dungey, 

1983; Heggenes and Saltveit, 1990). 

The relatively uniform nature of gravel substrates in chalk-streams may reduce its 

importance for adult trout (Gosse and Helm, 1982) but brown trout fry prefer coarse 

cobble substrates to finer pebbles and gravels (Heggenes, 1988c). Trout fry have limited 

swimming ability and are susceptible to downstream displacement (Heggenes and 

Traaen, 1988a; Heland, 1999). Interstitial spaces between substrate particles create low 

velocity niches and sheltering lies in which fry can take cover (Bachman, 1984; 

Heggenes, 1988c). In addition, substrate size can determine the degree of visual 

isolation between young fry during initial establishment of territories (Heland, 1999). 

Where visual isolation is greater, average territory size is smaller resulting in increased 

carrying capacity at this life stage (Kalleberg, 1958). 

Substrate type is also a critical factor determining quality of spawning habitat and 

choice of redd sites (Ottaway et al., 1981). Substrates are unsuitable for spawning if 

particles are too large or tightly packed. Reported particle sizes range from coarse sand 

to larger cobbles (2-1 OOmm) but medium gravel is generally considered to be preferred 

(Armstrong et ai., 2003). Shirvell and Dungey (1983) reported a mean particle size at 

spawning redds of 14mm and Crisp and Carting (1989) a median grain size of 10-

20mm. Successful egg incubation depends on intra-gravel flow which is reduced where 

substrates contain fine sediments resulting in low embryonic survival (Maret et ai., 

1993). Alexander and Hansen (1983) reported a 40% increase in numbers of young 

brown and rainbow trout when sandy bed load sediment in a stream was reduced by 

86%. 

2.2.4. Cover 

Cover is especially important for brown trout and provides sanctuary from predators, 

protection from the current and visual isolation (Heggenes, 1988b). Juvenile and adult 

brown trout normally maintain station close to a shelter (Boussu, 1954) but adult trout 
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will feed at greater distances from cover than juveniles (Lambert and Hanson, 1989) but 

tend to spend more day light hours under cover (Bachman, 1984) . 

Defining and quantifying cover presents considerable difficulties in comparison to the 

other main physical habitat variables. "Cover" can take many different forms, including 

brush, overhanging vegetation, undercut banks, boulders, water depth, turbulence and 

shade (Lewis, 1969; Fausch and White, 1981; Cunjak and Power, 1986; Wesche et aI. , 

1987). However, cover can be divided into two basic types; "overhead" cover and "in­

stream" cover. 

Overhead cover 

Bank-side and marginal river vegetation plays a direct role as shelter (Boussu, 1954; 

Egglishaw and Shackley, 1977). Summers et al. , (1997) demonstrated a six fold 

increase for brown trout in a small chalk-stream tributary of the river Piddle following 

fencing and re-establishment of riparian vegetation. Lewis (1969) reported overhead 

cover to be the single most important factor affecting brown trout distribution in a 

stream. Overhead cover provides shading which has been noted to be of importance to 

adult trout which become increasingly negatively phototropic with age and develop 

progressively stronger shelter seeking behaviour (Butler and Hawthome, 1968; 

Bagliniere and Maisse, 1999). Bachman (1984) showed that use by brown trout of 

stations with overhead cover increased with age. In two Norwegian streams, brown 

trout (> 130mm) showed a clear preference for habitats providing a high degree of 

overhead cover (Heggenes, 1988a, b). Cunjak and Power (1986) demonstrated brown 

trout to have a strong preference for positions beneath overhead cover and that 

association to cover was significantly greater in winter than summer. 

In-stream cover 

Woody debris, stumps and root wads constitute important sheltering and "velocity" 

cover within a stream (Lewis, 1969; Milner et al., 1978). Fausch and White (1981) 

showed that presence of submerged cover played important role in determining 

preferred resting positions between brook and brown trout, the latter being dominant 

competitors for positions beneath cover. Cunjak and Power (1987) tested the relative 
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importance of above-stream and submerged covers and found that brook trout and 

brown trout both utilised submerged cover significantly more frequently than above 

water cover. Hunt (1982) observed a six fold increase in abundance of brown trout 

(>254mm fork length) following the addition of half-log covers to a Wyoming stream 

where cover was scarce. 

In chalk-streams, submerged macrophytes are important both as shelter and in the 

structure of habitat by providing visual isolation (Jenkins, 1969; Bagliniere and Maisse, 

1999) and modifying flows creating velocity niches (Dawson, 1978). Hermansen and 

Krog (1984) reported that macrophyte cover together with the amount of undercut bank 

were significantly correlated with densities of brown trout (> 150mm) in a small Danish 

lowland stream. 

Cover is particularly important because by providing hiding and foraging locations 

cover availability and diversity can increase the number ofterritories that can be 

established thus increasing stream carrying capacity (Wesche, 1980). 

2.2.5. Summary 

The relative importance of the four main habitat variables is difficult to assess and 

interactions between physical habitat variables appear to be more important than the 

suitability of individual variables (Heggenes, 1988). Shirvell and Dungey (1983) 

reported that velocity appeared to be the most critical factor affecting position choice, 

but that brown trout more readily chose positions with optimum combinations of depth 

and velocity rather than positions with more preferred values of either factor alone. 

Cunjak and Power (1986) observed that larger trout (age 1+) consistently occupied 

positions in faster and deeper water than age 0+ trout. Trout also utilise shallower water 

more readily in summer where cover is present (Boussu, 1954; Bachman, 1984). 

However, competition for space and food may modify habitat use (Heggenes, 1988a; 

Heggenes and Saltveit, 1990). Strong intraspecific competition characterises brown 

trout social behaviour with smaller trout tending to be restricted to sub-optimal habitats 

(Jenkins, 1969; Bachman, 1984; Heggenes, 1988a). 
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There is considerable evidence that where resources are sufficient resident brown trout 

complete their life cycles within a relatively "local" area of stream (Jenkins, 1969; 

Solomon and Templeton, 1976; Bachman, 1984). This "home range" consists of a 

variety of specific stations used by trout at different times for different purposes. 

Habitat use tends to be activity-specific with different characteristics for feeding, refuge 

and spawning habitats. Shirvell and Dungey (1983) showed that large adult brown trout 

(mean fork length 420mm) in New Zealand rivers preferred a mean depth of 31.7 cm for 

spawning sites but 65 cm for feeding positions. Competition for stations within 

overlapping home ranges means that availability and juxtaposition of suitable micro­

habitats can regulate population size even in streams where food supply is abundant 

(Jenkins, 1969; Shirvell and Dungey, 1983; Hunter, 1991). 

Therefore, where populations are habitat limited, greater habitat diversity will increase 

the likelihood of a self sustaining population being maintained by local adult stock. 

Consequently, where anthropogenic effects on streams have led to habitat degradation 

wild trout stocks can be improved by management actions which enhance physical 

habitat diversity. The effects of some of these measures on trout populations will now be 

reviewed. 

2.3. ENHANCEMENT OF WILD TROUT HABITATS 

Kauffman et al., (1997) distinguish between two fundamental approaches to restoration; 

passive and active. Passive or natural restoration refers to the halting of activities 

causing ecosystem degradation. Active restorations are needed when the inherent 

capacity of ecosystems to recover naturally has been lost. Summers et al. (1996) 

emphasise that habitat management is fundamentally an ecological task and that 

"engineering" should adopt a "soft" approach wherever possible based on encouraging 

natural processes to create the desired in-stream habitat, rather than a "hard" approach 

which involves a degree of channel "straight-jacketing." Many studies document 

common methods used to enhance habitat diversity in salmonid streams (Gore, 1985; 

Hunt, 1988; 1993; Hunter, 1991; Summers et al. 1996). Some techniques which have 

been applied to lowland rivers in southern England are considered below. 
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2.3.1. Creation of within Channel Diversity 

The importance of habitat diversity for the carrying capacity of a trout stream has been 

well documented and consequently much in-channel enhancement work has focussed on 

improving channel diversity. Deflectors work well in low gradient streams and can 

function as point bars, narrowing the stream and re-directing flows creating deeper, 

faster water (White and Brynildson, 1967; Hunt, 1993). Deflecting currents away from 

nearside banks allows fine sediment deposition in the lee assisting bank consolidation 

and paired deflectors can narrow the channel creating deep scour pools from which 

eroded gravel is deposited downstream to provide spawning habitat. Low profile weirs 

are used to create diversity by concentrating currents. An upstream pointing "V" weir 

with a low centre steers currents towards the centre of the stream creating scour pools 

and can also assist gravel accumulations above weirs and on pool tail-outs. In an 

evaluation oftrout population response to habitat enhancement in six Colorado streams, 

Riley and Fausch (1995) showed that K-dams increased pool volume by an order of 

magnitude in two years, with adult brook trout numbers increasing in one stream by 231 

%. Uses of di fferent combinations of these in-stream structures for narrowing and 

deepening channels and increasing pool - riffle frequencies have been widespread in the 

USA. Hunt (1969, 1971, 1976, 1988) demonstrated their effectiveness for enhancing 

habitat diversity in Lawrence's Creek, Wisconsin where brook trout numbers over 15cm 

fork length were increased from 562 (pre-restoration 3 year mean) to 1638 (post­

restoration 3 year mean). 

2.3.2. Improvement of Spawning Habitat 

Chalk and limestone streams suffer particular problems of lime concretion and high fine 

sediment loadings. Solomon and Templeton (1976) showed that trout fry densities in a 

Hampshire chalk stream were highest where the bed was harrowed annually and 

concluded that harrowing alleviated gravel compaction and concretion. Summers and 

Oiles (1995) showed that riffle "cleaning" with high pressure water jetters to de-silt 

spawning gravels increased both egg survival and numbers of spawning fish in the 

Hampshire Avon where egg survival rates as low as 10 % increased up to 90 %. 
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Suitable spawning gravels are often limited in low energy chalk streams which have 

been impacted by dredging and gravel planting can be used to increase spawning areas. 

O'Grady et al. (1991) created riffles in the River Boyne, a drained lowland stream in 

Ireland, by placing rubble mats in deep slow reaches which successfully increased the 

number of salmonids. Solomon (1983) cites a study in Wyoming where pools were 

excavated and the gravel used to plant a riffle downstream of each pool. Numbers of 

spawning cutthroat trout increased from six to 250 over ten years. Where gravel 

substrate is highly mobile downstream pointing "v" gabion weirs can be used to 

dissipate the flow and acts as gravel traps (Hunter, 1991). 

2.3.3. Channel Narrowing 

Chalk streams in southern England have suffered from problems associated with low 

flows particularly since the late 1980s and channel narrowing (partial infilling of the 

channel behind an erosion resistant face oflogs, rip-rap or geotextiles) has been 

employed to prodlice deeper, faster flowing water where higher velocities scour gravels 

clean of sediments. In the River Dun, a small Berkshire chalk stream, narrowing to 40 

% to accommodate normal summer base flows induced a self cleansing regime and 

allowed flora and fauna to re-establish (RSPB, 1994). 

2.3.4. Prevention of Stream-Bank Erosion 

Livestock grazing is a major cause of erosion by trampling and vegetation removal and 

is considered the most prevalent cause of stream ecosystem degradation in the western 

USA. Cessation of grazing in riparian zones is often the single most effective approach 

to restoring salmonid habitats allowing re-establishment of riparian vegetation (Beschta 

et al., 1991 ; Kauffman et al., 1993). Dahlem (1979) found that stock exclusion 

increased the amount of stable bank by 20 % resulting in an increase of between 52 - 70 

% in spawning gravels as a result of reduced sediment inputs. Summers et al. (1997) 

demonstrated a ten fold increase in juvenile trout numbers in the two year period 

following fencing in the Devil ' s Brook, a tributary of the River Piddle, Dorset. 
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2.3.5. Creation of Marginal Cover 

Cover is an extremely important aspect of habitat for all life stages of stream dwelling 

salmonids. Boussu (1954) found a direct relationship between increases and decreases 

in trout numbers and removal and replacement of cover. Marginal cover can be divided 

into (i) above water overhead cover and (ii) submerged cover. Overhead cover is 

afforded by grasses, bushes or trees, the cover value for trout being dependent on width 

of overhang, height above the water surface and depth of water beneath. Submerged 

cover can be provided by structures designed to simulate undercut banks such as 

cantilevered "skyhook" covers which overhang into deeper water from a shallow shelf 

and are backfilled with soil material to form a new bank line. These were first used in 

Wisconsin streams for the dual purposes of narrowing over wide streams and providing 

cover in a simulated undercut (Hunt, 1993). 

2.3.6. Creation of In-Stream Cover 

Boulder placement can enhance stream carrying capacity by increasing hydraulic 

sheltering lies and visual isolation. O'Grady et al. (1991) used boulders on the River 

Boyne, Ireland to reinstate bed "roughness" which resulted in substantial increases in 

numbers of salmon and trout parr. Maughan et al. (1978) found that trout occupied lies 

in close proximity to boulders. Hunt (1988) reported increases in both wild brook trout 

and brown trout associated with boulders on the Hunting River, Wisconsin. 

Tree trunks, branches and logs provide excellent cover for fry and juvenile trout as they 

are more effective than boulders at producing low velocity niches under spate 

conditions. Such large woody debris can also act to create local scour increasing 

channel diversity. Submerged shelters such as half-log cover platforms also provide 

hydraulic shelter and visual isolation. Hunt (1982) placed 142 submerged structures in a 

750m length of a Wisconsin stream with little cover and found a 533 % increase in 

numbers of trout > 300mm fork length. 
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2.3.7. Summary 

The nature of the stream environment will govern the suitability of different habitat 

enhancement measures and their effectiveness can vary considerably (Rosgen, 1996). 

Hunt (1988) evaluated 45 trout habitat restorations carried out between 1953 and 1985 

in Wisconsin streams and concluded that current deflectors and bank-side covers were 

the most successful devices overall especially when used in combination. However, 

many studies reporting increases in trout numbers may be partly due to local re­

distribution of fish rather than increases in abundance which are more difficult to detect 

at a population level. Salmonids occupy their habitat fully only at certain times of the 

year and habitat may only be limiting during such critical periods (Milner et ai, 2003). 

To enhance habitat effectively, it is necessary to identify these critical periods and focus 

management interventions in the first instance on these stages (Armstrong et ai, 2003). 

2.4 MODELLING RELATIONSHIPS BETWEEN HABIT AT AND TROUT 

POPULATIONS 

The potential for habitat bottlenecks to stimulate density dependent mortality in juvenile 

salmonids and thus for physical habitat to act as a population limiting factor, is well 

established (Nehring and Anderson, 1993; Elliott 1994; Milner et al. , 2003). 

Measurement of in-stream habitat is therefore critical for estimating potential carrying 

capacity of streams. In addition, understanding links between habitat and population 

dynamics is essential where fisheries management interventions involving habitat 

enhancement and river rehabilitation are to successfully improve salmonid production. 

In theory, a dependence of stream salmon id abundance on habitat implies that it should 

be possible to derive predictive relationships between abundance and habitat features . 

There have been many attempts to develop empirical models as management tools to 

provide indices of habitat quality, predict fish abundance or predict consequences of 

habitat manipulation (Milner et al., 1998). A plethora of multiple regression based 

models have been developed which relate habitat measurements to observed numbers of 

trout in order that expected numbers can be predicted in similar streams. Reviews of 
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commonly used North American and European models have shown that many such 

models can account for significant proportions of variance in measured salmonid 

abundance (Fausch et al. 1988; Barnard and Wyatt, 1995). 

One of the most successful modelling systems has been HABSCORE (Milner et al., 

1993) which uses a combination of site variables measured by transect survey and map­

based variables, reflecting each sites location wi"thin the catchment. Models developed 

for four categories of salmonid: trout YOY (age 0+); trout PYOY (>0+); salmon YOY 

(age 0+) and salmon PYOY (>0+) output predictions of expected numbers per 100 m2 

(assuming that recruitment is not limited and habitat condition is pristine). A Habitat 

Quality Score (HQS) gives a measure of difference between expected and observed 

trout densities. This is not to be confused with carrying capacity which may rarely be 

reached in areas of natural recruitment because density - independent effects keep the 

population at lower levels (Milner et aI., 1998). 

2.4.1. Predictive Models: Some Limitations and the Importance of Scale 

The likelihood that many sites used in habitat modelling have population densities 

below their carrying capacity is one of the principle constraints on the performance of 

habitat models (Arm strong, 2005). Predictive models have been found to lack 

geographical transferability and rarely perform well in stream types other than those in 

which they were developed (e.g. Binns and Eiserman, 1979). 

Those models combining both local site features (e.g. width, depth, substrate, cover) 

and catchment scale variables (e.g. altitude, geology, and discharge regime) tend to 

perform best. This is because "spatial nesting" of riverine habitats means that local 

stream influences often originate at larger spatial scales (Frissell et al., 1986). The 

interdependence of stream channel structure with fluvial dynamics and geology means 

that catchment variables are both independent factors in their own right and act as 

surrogates for site specific variables such as substrate and flow type. Thus, the relative 

importance of habitat factors to fish distribution and abundance may depend upon the 

scale at which habitat is examined (Rabeni and Sowa, 1996). This is because overall 

variability in salmonid populations, when measured over time and many different sites, 

is composed of both spatial and temporal variance. Spatial variance is determined by 
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factors associated with the physical features of each site (local habitat) and is thus the 

variance component that most habitat models attempt to explain. Many habitat models 

developed on short term data sets explain up to 75% of population variance (Fausch et 

al. 1988). However, these results can be misleading because they ignore temporal 

variation which can cause spatial variance to be comparatively low (Arm strong et al. , 

2003) . 

Wiley et al. (1997) examined sources of variation in brown and brook trout abundance 

in Michigan streams to evaluate relative influence of variations in space and time. 

Variances were partitioned into catchment-scale spatial factors (soil type, geology, land 

cover, gradient), and regional and local temporal factors. These latter considered annual 

variations in abundance resulting either from factors operating simultaneously across all 

spatial scales (e.g. climatic or hydrological) or from site specific factors operating 

locally (e.g. anthropogenic disturbances or predation and competition). The relative 

magnitudes of these three components of variance were used to assess the importance of 

ecological processes operating at different scales. Regional scale temporal variance was 

found to explain 50% of variation in brook trout abundance whereas spatial variance 

accounted for 50% of variation in brown trout abundance suggesting that site-specific 

habitat requirements were more important influences on population dynamics of brown 

than brook trout. 

HABSCORE models based on data sets for the River Conwy, north Wales where time 

series were available showed that a relatively high proportion of total variation in YOY 

and PYOY trout and salmon was accounted for by spatial variance (46 - 62%) when 

considered at the river catchment scale. Temporal variance for the same age classes was 

low (4 - 12%). However, when variance was estimated at the within - tributary scale 

mean spatial variance (22 - 42%) was of a similar order of magnitude to temporal 

variance (24 - 39%) (Milner et aI., 1995). These results demonstrate the importance of 

scale in that at the smaller tributary scale of analysis, factors other than local site habitat 

were having an equally strong and synchronous influence on abundance. 

Multi-scale approaches are therefore more effective in identifying limiting mechanisms 

regulating populations. Rabeni and Sowa (1996) used a hierarchical approach 

employing three spatial scales to look at relations between habitat and smallmouth bass 
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in Missouri streams. Scale was found to be important in distinguishing habitat factors 

responsible for presence and abundance from those affecting within stream distribution. 

Habitat - fish relationships are extremely complex and dynamic and models linking 

habitat variables to production of salmonid fishes are inevitably simplifications of 

complex ecological processes. Therefore, caution should be applied when using them to 

predict effects of altering specific habitat components to guide habitat improvement 

schemes. 

2.4.2. The Physical Habitat Simulation Model 

A model which has been applied widely in North America for quantifying ecological 

effects of flow regulation and predicting habitat gains associated with stream 

enhancement) is the Physical Habitat Simulation Model (Bovee et al., 1998). 

PHABSIM is a suite of hydraulic and hydro-ecological models developed by the US 

Fish and Wildlife Service as part ofthe In-stream Flow Incremental Methodology 

(IFIM; Bovee, 1982) and is based on the assumption that species life cycles and 

distribution are responses to hydraulic conditions. 

The biological component of the model comprises habitat suitability curves which 

express target species preferences for depth, velocity and substrate/cover as a numerical 

value between 0 - I (Habitat Suitability Index or HSI). Salmonids are particularly 

suited to the methodology because they exhibit habitat preferences within a range of 

tolerable conditions that are specifically defined in terms of depth and velocity. The 

suitability of habitat as defined by these preference curves is combined with hydraulic 

data to produce an index of habitat quality expressed as Weighted Useable Area 

(WUA). Thus, the area of stream providing suitable habitat conditions for different life 

stages can be quantified as a function of discharge (Johnson et al. 1995). In common 

with other predictive models, PHABSIM makes an implicit assumption that population 

dynamics are related to habitat availability in streams but does not predict changes in 

fish communities or abundance in response to habitat. Nevertheless, numerous studies 

on salmonid streams in the Western USA have successfully demonstrated good 

correlations between PHABSIM derived habitat predictions and biomass or density of 

trout (e.g. Stalnaker, 1979; Nehring and Anderson, 1983; 1993). Nehring and Anderson 

29 



.. 
.. 
., 

(1993) found that WUA was significantly correlated with trout densities in 10 out of 11 

Colorado streams studied. 

However, other studies failed to validate links between habitat predictions and salmonid 

abundance which led some authors to question the robustness of PH AB SI M as a 

predictive tool (Mathur, et aI. , 1985; Rimmer, 1985; Irvine et al., 1987; Scott and 

Shirvell, 1987; Orth, 1987). Many of these studies lacked sufficient methodological 

rigour and ignored the fundamental assumption that physical habitat must be the 

primary population-limiting factor (Shuler and Nehring, 1994). In some earlier studies 

other factors such as food abundance were shown to have been more important 

population regulating mechanisms than physical habitat (e.g. Rimmer, 1985; Irvine et 

al., 1987). 

The most contentious aspect of PHABSIM concerns definition of habitat preference 

curves because habitat predictions (WUA) are sensitive to the types of curves used 

(Bovee et aI., 1998: Vismara et aI., 2001). Recent work has shown that curves are also 

sensitive to density (Greenberg, 1994) and vary with discharge (Holm et al., 2001). 

There is an on-going debate in the literature as to the applicability of "generalised" 

versus "site-specific" suitability curves which can result in considerable differences in 

predicted WUA (Dunbar et ai, 200]). This is because site and season can have a strong 

influence on salmonid habitat use due to habitat availability varying spatially between 

sites and temporally within sites. Thus, shapes of HSI curves can be conditioned by 

when and where the habitat use data was collected and constrained by habitat 

availability in the sampled stream. Some authors argue that site specific curves always 

represents the best choice but transferability of HSI curves to river "types" other than 

those in which they were developed has been found to be poor and has been criticised as 

scientifically unrigorous (Johnson et al., 1993; Williams et al., 1999). However, Shuler 

and Nehring (1994) compared site specific curves developed for juvenile and adult 

brown trout in the Rio Grande River with curves previously developed in. a similar river 

(South Platte) to test effects on WUA predictions. They found that both sets of curves 

accurately predicted the relative magnitude and direction of responses of brown trout to 

changes in habitat. Vismara et al., (2001) found that HSI curves developed for brown 

trout in the River Adda, Italy were highly correlated for velocity and depth suitability 

with those developed by other authors in a variety of river types. 
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2.4.3. Application of PHABSIM in Studies Linking Habitat to Fish Populations 

However, PHABSIM continues to be an evolving methodology based on a sound 

premise that population size at any given time is determined by past habitat conditions 

rather than those prevailing at the time of sampling (Bovee et ai, 1998). Despite the 

models inherent limitations, one of its great strengths for modelling dynamic systems is 

thus its ability to account for the effects of temporal as well as spatial variations in 

habitat (Capra et ai, 1995). Knowledge of critical habitat limiting periods is one of the 

primary needs in understanding fish population dynamics (Bjom and Reiser, 1991) and 

PHABSIM can be applied to elucidate bottlenecks to production. Capra et al (1995) 

found that magnitude and durations of critical periods (when WUA was below a pre­

determined threshold) were related to trout population structure in two wild brown trout 

rivers of different morphology in France. The relationship between spawning habitat 

conditions and relative density of 0+ trout the following year suggested a continuous 

duration of more than 20 days with spawning WUA below 80% of optimum acted as a 

temporal bottleneck to recruitment. This study demonstrates the efficacy of PHABSIM 

outputs for interpreting population limiting events, especially given that WUA is likely 

to be more closely correlated with fish abundance during critical periods than at other 

times (Orth, 1987; Milner et aI. , 2003). 

In a study of population dynamics of bass in the Huron River, Michigan (Bovee et al. 

1994) used PHABSIM to determine habitat - population relationships. Habitat effects 

were shown to be most critical to early life stages and timing of extreme events was as 

important as magnitude. Population related habitat limitations were found to be 

associated with high flows and lowest habitat amounts were not necessarily the most 

biologically significant events affecting population dynamics. 

Shuler and Nehring (1994) used PHABSIM to assess trout population response to 

habitat enhancement (boulder placement) on the Rio Grande River, Colorado. GIS 

maps of predicted changes in habitat quality resulting from different habitat 

enhancement demonstrated that trout showed preferences for mid-channel boulder 

groupings and wing dams at low to moderate flows, and marginal boulders and wing 

dams at high flows. Shallow areas (depth < 1 m) had higher habitat quality where 
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boulder structures were present. Overall, boulder placement led to a direct increase in 

density and biomass of trout exceeding 35cm fork length. 

PHABSIM has also been applied to assess habitat improvement schemes in the UK 

(Elliott et al., 1996). However, the main driving force behind development of 

PHABSIM in the UK has been for use in assessing effects of abstraction on salmonid 

habitat availability (Dunbar et al., 2001). A research and development project 

"Ecologically Acceptable Flows" (R&D Project 282-EAF) was established to support 

application of PH AB SI M to UK rivers (Johnson et al., 1993). Johnson et al. (1995) 

assessed impacts of groundwater abstraction on brown trout populations of the River 

Allen, Dorset in order to define a minimum ecologically acceptable flow regime as part 

of EAF phase 1. Habitat time series were developed for the period 1970-1991 for four 

life stages of brown trout based on historical flows. A groundwater model was used to 

develop a time series of "naturalised" flows with the historical effect of abstraction 

removed which allowed impacts of abstraction on habitat to be assessed. Results 

indicated that habitat was most impacted in summer and reductions were in direct 

proportion to the abstraction effect. Juvenile habitat was most significantly impacted 

and was critically limited for 50 % of the time. 

2.4.4. Summary 

PHABSIM undoubtedly has considerable application as a management tool for 

quantifying availability and quality of physical habitat in a variety of contexts. It has 

been used successfully to predict salmonid abundance based on WUA and has been 

rigorously validated by numerous studies during the last twenty years. The potential to 

identify population limiting bottlenecks either as temporal events or spatially limited 

habitat can improve understanding of factors effecting carrying capacity in salmonid 

streams. The present study attempts to explore this potential in a UK chalk stream 

where habitat appears to be the primary limiting factor, by examination and validation 

of relationships between habitat (WUA) and variations in abundance within a 

population of wild brown trout. 
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CHAPTER.3. THE RIVER PIDDLE: PHYSICAL DESCRIPTION 

AND BACKGROUND TO THE STUDY AREA 

The River Piddle, Dorset, England is renowned for its native brown trout populations 

which merit a high level of protection and consist primarily of resident trout with a 

small anadromous component (Environment Agency, 1999). The trout population in the 

area of Tolpuddle was monitored annually from 1993-2001 by the Game Conservancy 

Trust using electro-fishing and comprised the study area for this project. The physical 

characteristics of the catchment are described below. 

3.1. CATCHMENT AND GEOLOGY 

The River Piddle is a third order stream draining a catchment of approximately 183 km2 

in area. It rises at four major springs near the village of Alton Pancras and flows 

approximately 40 km south and east to form a common estuary with the River Frome, 

before discharging into the English Channel via Poole Harbour (Fig. 3.1). 
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Fig. 3.1. Map showing the River Piddle catchment and location of study area 
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The Devil ' s Brook and Cheselbourne stream join the Piddle east of Puddle town, and the 

Bere Stream meets at Warren. In the upper reaches the river is mainly a winterbourne. 

The middle reaches comprise a braided network of water meadow and flood relief 

channels. The major aquifer is Upper Cretaceous Chalk, but further south there is also 

more recent geology of Reading Bed sands and gravels. The lower part of the catchment 

comprises more acidic, sandy soils characteristic of Dorset heath land. Land use on the 

more fertile floodplain is predominantly permanent pasture and arable land. Grassland 

and arable land constitute approximately 70-80% of the land use in the Piddle and 

Frome Local Environment Area Plan (LEAP) region (Environment Agency, 1999). 

3.2. CLIMATE AND HYDROLOGICAL REGIME 

Rainfall distribution over the catchment is highest at the western (upper) end of the 

catchment and lowest in the east around Poole Harbour. Annual average rainfall totals 

(1969-1990) range from 948 mm at Puddletown to 776 mm in Poole (Environment 

Agency, 1999). The high porosity of chalk ensures that the Piddle derives the majority' 

of its flow from groundwater aquifers and relatively little from run-off. The buffering 

effect of the aquifer produces a stable flow regime with an absence of extreme low 

flows and sudden spates. Winter high flows rarely exceed bankfull stage and summer 

base flows are maintained by ground water (Mann et ai., 1989). Long term mean 

monthly flows at Tolpuddle (1965-2000) range from approximately 0.18 m3s-1 in 

August/September to 2.4 m3s-1 in February. Median flow (Q50) 1965 - 2000 is 

approximately 0.54 m3s-1 (appendix.3). 

. 3.3. ECOLOGY AND FRESHWATER FISHERIES 

The Piddle is a typical lowland chalk-stream possessing a range of distinctive 

characteristics common to this unique ecotype. Groundwater rises at a relatively 

constant 9-10 °c throughout the year maintaining stable seasonal and diel temperature 

regimes. The filtering effect of chalk screens out impurities and produces base rich 

alkaline waters containing calcium carbonate in quantities greater than 200 mgr l giving 

the water a translucent clarity (Mann et al. , 1989). Water quality throughout the majority 

of the catchment achieves a RE 1 (chemical) compliance with River Quality Objectives 

(River Ecosystem Classification) - water of very good quality suitable for all fish 
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species. Those limited areas not achieving this standard, notably the Bere Stream, are 

affected by discharges from watercress beds and fish farms. 

The Piddle supports high primary and secondary production dominated by large aquatic 

macrophytes, mainly Ranunculus spp. (Westlake et al. , 1972). The high levels of 

primary production result in high macro-invertebrate productivity (Wright et al., 1994) 

that forms the basis of trout diet (Maitland and Campbell, 1992). Dominant fish species 

are resident and anadromous brown trout (Salmo trutta) and Salmo salar (Atlantic 

salmon), Phoxinus phoxinus (minnow), Collus gobio (bullhead), Noemacheilus 

barbatulus (stone loach), Esox lucius (pike) and Anguilla anguilla (eel) (Bird et al. 

1995). Trout productivity and growth rates are high in chalk streams (Mann et al., 1989; 

Giles, 1994). Brown trout at Tolpuddle attain a modal length of 200mm at age 1 + with 

asymptotic lengths in excess of 400mm. 

The Piddle is designated a priority habitat (chalk river habitats) under the UK 

Biodiversity Action Plan (UK BAP) because of a number of important species of 

conservation concern most notably, native white-clawed crayfish (Austropotamobius 

pallipes) . 

3.4. GEOMORPHOLOGY, VEGETATION AND HABITAT 

The products of chalk weathering produce coarse flint gravel beds but soft, easily 

eroded banks (Summers et al., 1996). The dampening effect of the aquifer combined 

with a low mean gradient (2. 18mJkm) results in stable flows and relatively low stream 

powers. Thus, channel morphology tends to be less diverse than lowland streams 

flowing over mixed geology and the most common morphological features are 

relatively uniform "glides" (Raven et al. , 1998). However, in-stream and riparian 

vegetation is relatively more important than in other river types (Holmes, 2002). Fertile 

alkaline soils produce a lush littoral margin, dominated by tall herbs and emergent reeds 

such as Glyceria maxima and Phalaris arundinacea which trap sediment at the margins 

and stabilise bank materials through moisture reduction and the binding effects of roots 

(Gurnell, 1995). In stream macrophytes bind gravel substrates together reducing bed 

scour resulting in less highly developed pool - riffle sequences (Dawson and Kern-
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Hanson, 1979). Vegetation plays a fundamental geomorphological role, effecting 

banklbed stability, sediment transfers and hydraulic behaviour, as well as providing 

important physical habitat in the form of cover for trout. 

3.5. PROBLEMS OF HABITAT DEGRADATION 

The chalk streams of southern England have been historically subjected to major 

alterations especially associated with deepening and straightening to improve land 

drainage for agriculture with a consequent reduction in natural physical diversity (Petts, 

1984). Water mills and weirs transformed these streams from a sinuous pattern of 

shallow, anastomosed channels with pool and riffle sequences, often into highly 

engineered impoundments of uniform width and depth. The River Piddle has been 

subject to channelisation and dredging which has removed much of the original 

diversity and stream power has been insufficient to restore this natural habitat diversity 

(Brookes and Shields, 1996). Physical channel structure has been severely impacted by 

overgrazing oflivestock in unfenced riparian zones. The Piddle has the most severe 

bank erosion problems of all the Wessex streams with an estimated 25km of river 

exposed to cattle grazing (Game Conservancy Trust, undated). This has resulted in 

heavily trampled banks, loss of riparian vegetation and severe channel over-widening in 

some reaches. This occurs because the binding effect of bank-side vegetation is lost but 

macrophyte roots bind substrate gravels which limit bed scouring such that lateral 

displacement predominates and the banks are more easily eroded (Summers et aI., 

1996). This is a major problem leading to trout habitat loss. Over-wide streams become 

increasingly shallow as the channel spreads laterally resulting in loss of pools and 

deeper water as flow concentrates at the banks, lowering bed levels at the margins, 

while the "channel" becomes colonised by terrestrial vegetation resulting in complete 

elimination of trout habitat. 

In common with other chalk streams in southern England, the river Piddle suffers from 

problems resulting from ground water abstraction for potable supplies. A series of 

twenty-eight boreholes in the catchment take groundwater for a variety of public and 

private uses including agriculture, industry and domestic supply. Since the mid-1980s 

there has been increasing concern about the ecological effects of abstraction 

exacerbating problems of low flows. Abstractions at Alton Pancras, Briantspuddle and 
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been identified as experiencing significant impacts on ecology and fish habitats (Hill 

and Langford, 1992: Environment Agency, 1996a). The Piddle suffers particular 

problems of siltation and eutrophication. Run-off from agricultural land has caused 

siltation problems detrimental to salmonid spawning (Crisp, 1993) and elevated nitrate 

levels have led to nutrient enrichment resulting in widespread algal colonisation of 

substrates. These problems have been exacerbated by low flows which have reduced the 

magnitude and frequency of flushing flows. 

3.6. MEASURES TO ALLEVIATE HABIT AT DEGRADATION 

A programme of physical habitat restoration was initiated by the Game Conservancy 

Trust on three chalk river systems in 1994 including the river Piddle. The main aims 

were to restore channel diversity and improve spawning habitat and refugia for larger 

wild brown trout (Summers et al., 1996; Summers et al. , 1997; Giles, 1997a, b; Cowx 

and Welcomme, 1998). The most commonly used techniques on the Piddle were 

fencing in conjunction with substrate redistribution methods (Game Conservancy Trust, 

undated; Langford et al., 2001). Fencing was introduced "on a wide scale" to restrict 

cattle access to short sections or to cattle drinks. Current deflectors and weirs were used 

to re-distribute substrate by enhancing scour and'creating pools. Staked log covers and 

floating cover boards were added to some pools to provide refugia and increase 

potential cover for trout. Some limited substrate augmentation was undertaken in certain 

reaches where gravel riffles were introduced. Gravel jetting using high pressure hoses 

was also employed to de-silt gravels and increase effective spawning areas. 

Impoundments were alleviated where possible by removal of obstructions, hatches and 

sluices to allow free flow of water. To address ecological problems associated with low 

flows a stream flow augmentation scheme was introduced by the Environment Agency 

in 1998 based on a pre-determined ecologically acceptable minimum flow threshold at 

Briantspuddle (Strevens, 1999). 

3.7. THE STUDY AREA 

The River Piddle study area is shown in figure 3.2. The Upper river sector (Cobbs 

Wood) consists of approximately 0.5 km of main stem from the confluence with the 
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Devils Brook before it bifurcates, converging into a single channel again approximately 

1 km downstream. The Lower river sector (Tolpuddle) begins at this junction and flows 

for approximately 400m to a set of former hatches which marks the downstream 

boundary of the study site. 

Fig. 3.2. Map showing the locations of the Upper and Lower river sectors at Tolpuddle. 

The lower sector comprises grazed pasture on the left bank but is permanently fenced 

providing a mature riparian zone with some over shading from trees. The upper sector 

predominantly traverses an "open" riparian zone of improved pasture. This reach was 

fenced in 1994 to alleviate effects of cattle poaching which was severe in places. This 

facilitated rapid recovery of dense littoral margins in this reach. The river Piddle in this 

area is an important brown trout fishery and was selected because it has been managed 

for twenty years on a "catch and release" basis to conserve wild stocks. Therefore, the 

trout population is not subject to cropping by angler harvest and there is no stocking of 

hatchery trout. Pike (Esox lucius) were removed as part of the Game Conservancy 

project and their numbers routinely controlled during the study period to alleviate the 

effects ofpiscivorous predation. Thus, physical habitat could reasonably be assumed to 

be the most important limiting factor which provided an opportunity for the present 

study to examine wild brown trout population response to habitat effects in a chalk­

stream. 
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CHAPTER.4. FIELD METHODS AND MATERIALS 

The Physical Habitat Simulation Model (PHABSIM) quantifies stream area providing 

suitable habitat for salmonids under differing flow conditions and was used in this study 

to model the effects of habitat on the population of brown trout in the river Piddle. In 

order to calibrate the model data were collected following standard use oftransects to 

characterise stream conditions as outlined in Bovee et aI. , (1998). Fieldwork comprised 

three distinct phases; 

1. habitat mapping and selection of study reaches 

2. surveying of transects for sampling habitat within selected reaches 

3. sampling of habitat conditions at transects for input to PHABSIM 

4.1. HABITAT MAPPING 

The study area was divided into three discrete sectors for the purposes of habitat 

mapping: upper main stem, lower main stem and middle, where the river divided into 

two arms. A walk-over survey was conducted in spring 1999 to determine habitat types 

present and the relative proportions of each type in each sector. This approach consisted 

of mesohabitat typing as a basis for selection of PHABSIM reaches, and followed 

procedures outlined in Maddock (1996). Simple morphological habitat units were 

identified based on local channel geometry and the flow types classification used in the 

River Habitat Survey (Raven et aI, 1998). These were classified visually as follows; 

• Pool 

• Flat 

• Deep glide (max depth >O.Sm) 

• Shallow glide (max depth <O.Sm) 

• Riffle 

• Rapids/cascade 

A measuring tape was pegged out along the bank to form a longitudinal datum against 

which to draw an accurate sketch map of each sector. Maps were plotted on a grid 
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section data sheet at a scale of 1 :500 and were used to assess proportions of different 

meso-habitats present in each river sector. This assisted selection of representative 

reaches and placement of transects by ensuring habitats were sampled in proportion to 

their occurrence (Bovee et al., 1998). 

4.2. REACH SELECTION 

Reaches selected for application of PHABSIM were based on assessment of 

morphological diversity from habitat mapping and pre-defined electro - fishing sections 

used by the Game Conservancy Trust. Main stem river sectors comprised four 

contiguous e1ectro-fishing sections varying in length from 65m to 185m. Contrasting 

reaches of similar length with differing habitat characteristics and population dynamics 

were selected; one from the upper main stem (Cobbs Wood) and two from the lower 

main stem (Tolpuddle). The following criteria were used for selecting the study 

reaches:-

• Morphological diversity (proportion of riffles, pools and glides) 

• Sinuosity 

• Bank-side land use (e.g. grazed pasture or water meadow) 

• Overhead cover (e.g. over-shading from bank-side trees) 

• Fencing (whether this had been erected post baseline fish data) 

• Brown trout population structure 

• Locations of electro-fishing sections 

• Locations of hydraulic controls 

A simple diversity index was applied to score each reach out of 100 based on the 

proportions of different meso-habitats present in each electro-fishing section 

(appendix. 1 ). For the Upper sector a reach of above average habitat diversity was 

selected that flowed through fenced open pasture with a trout population dominated by 

adults. For the Lower sector more unifonn reaches of below average diversity, partly 

over-shaded by trees were selected which consisted principally of age 0+ and 1 + trout. 

Both reaches were coincident with e1ectro-fishing sections. The Lower sector consisted 

of two shorter electro-fishing sections adjacent to each other which were modelled as a 
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single reach for habitat purposes. This allowed for increased spatial resolution in 

examining population response to habitat. Selection of study reaches was also 

constrained by methodological requirements of PHABSIM hydraulic models insofar as 

the most downstream transect in each reach had to be located at a hydraulic control that 

governed water surface slope upstream (Elliott et al., 1996). It was also necessary for 

this to correspond with the position of the downstream stop net for the electro-fishing 

section. In both selected reaches there was close correspondence ensuring a match up 

between habitat modelling and population data. At the downstream end of the Lower 

sector an old set of hatches acted as the hydraulic control which greatly assisted 

hydraulic calibration enabling the two contiguous downstream reaches to be 

amalgamated for hydraulic modelling purposes. 

4.3. TRANSECT PLACEMENT AND SURVEYING 

PHABSIM utilises a transect based approach in order to characterise channel form. 

A paired measurement of distances and bed elevations across transects defined channel 

width and cross sectional geometry. Micro-habitat variables were point sampled over a 

channel cross section, the points defining a series of grid cells into which the river bed 

was divided. Longitudinal distances between transects defined cell dimensions 

(Fig.4.1). Transects representing particular meso-habitats were located roughly centrally 

in a cell, having due regard for presence of various micro-habitat features and different 

cover types (Bovee et al. , 1998). Transect end positions (headpins) were marked on 

both banks using either wooden stakes or fence posts as permanent headpin markers. 

Meso-habitat represented bv a transect 

Data point (depth, velocity, substrate,cover) Survey Transect 

Fig. 4.1. Matrix of habitat cells used in a PHABSIM study. 
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Transects were placed to represent all mesohabitat types present in selected reaches in 

approximate proportion to the total amount of each habitat type occurring in that river 

sector. For example, habitat mapping showed that 60-65% of the upstream sector 

consisted of shallow glide such that additional transects were located in shallow glides 

to approximate the proportion of this habitat type. A greater number of transects were 

used in reaches with high habitat diversity than those with low diversity. This approach 

ensured that both habitat availability and continuity were accurately sampled. Transects 

were placed perpendicular to the flow direction with the most downstream transect 

located at a hydraulic control. To maximise accuracy of hydraulic simulations transects 

were placed at all other hydraulic controls in a reach and a minimum of two transects 

were located in positions where a reliable discharge estimate could be obtained in 

accordance with standard practice (Elliott et al., 1996). 

Transects were surveyed using a Leica Tl 01 0 EDM total-station theodolite (Leica AG, 

Heerbrugg, Switzerland) accurate to the nearest five seconds of arc, to accurately obtain 

headpin positions, elevations and channel cross sections (Bovee, 1982; Elliott et al., 

1996). Use of a total-station had a number of advantages over other stream surveying 

methods such as dumpy level and range finder. An electronic distance measuring device 

(EDM) eliminated the need for manual measurements with a tape. These measurements 

are considerably more accurate than other methods which tend to be subject to a greater 

degree of operator bias and errors during data collection (Kellie, 1994). The use of a 

total station eliminated these problems, and was also faster than other methods capable 

of producing comparable data. Distance and location of survey points relative to station 

(EDM) position were recorded automatically to a PCIMCA data card which was 

downloaded to a spreadsheet. The use of a hand held Garmin Global Positioning 

System (GPS) to locate station position provided a reference point for geocoding survey 

points within a Geographical Information System (GIS). 

Channel cross sections were surveyed between July and November 1999 from marked 

headpins. Headpins marking transect end points were located as far as possible at or 

above bankfull discharge and used to establish a point of known elevation relative to 

adjacent headpins shot from the same station position. Shots were taken at points 

selected to coincide with breaks of slope and changes in substrate and cover conditions 

in order to accurately describe channel profile. The EDM was positioned to maximise 
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the number of head pin shots that could be made from the same location reducing the 

number of times the station had to be moved. Where visibility along a reach was good, 

it was possible to survey as many as three transects from one station position, but it was 

usually only possible to survey I or 2 transects at a time as bank-side trees interrupted 

shots and some reaches required numerous station positions. Headpin positions were 

plotted on scaled planimetric reach maps to establish relative positions and elevations of 

transects. Station re-positioning required a standard survey foresight to be taken to a 

fixed datum followed by a back sight to the same datum taken from the new position to 

establish difference in elevation (Keim et al., 1999; Elliot et aI., 1996). This enabled 

headpin elevations shot from the new position to be adjusted relative to previous 

elevations. 

Cross section horizontal distances (x- coordinates) were taken as zero at the headpin 

marker peg and measured from this datum according to standard convention (Bovee et 

al., 1998). Elevations (y-coordinates) at each point were measured relative to headpin 

datums. Sufficient survey shots were made to provide reliable estimates of discharge 

through transects such that not more than ten percent of total discharge at low flows 

passed between two adjacent points (Elliott et al., 1996). As far as possible a minimum 

of twelve cells were located in the flow at low summer stage to maximise the accuracy 

of hydraulic modelling (Bovee, 1982). This resulted in survey shots within the channel 

itself being taken at intervals between 0.3 - 0.6 m. 

4.4. SAMPLING OF HABITAT CONDITIONS 

Measurements of depth, velocity, substrate and cover were taken in order to calibrate 

seasonal differences in habitat suitability for four life stages of brown trout: spawning, 

young of year (YOY), post young of year (PYOY) and adults. Data were collected 

between summer 1999 and summer 2000 to enable habitat conditions to be modelled 

over an annual cycle. Data collection periods were determined by appropriateness to the 

life stages being modelled and the need to meet the hydraulic requirements of 

PHABSIM for a wide range of calibration flows. The timing of data collection was as 

follows;-

43 



June - September 1999 (calibration low flow - moderate macrophyte biomass) 

Summer habitat: 

YOY, PYOY and adults 

December 1999 - February 2000 (calibration high flow - low macrophyte biomass) 

Winter habitat: 

PYOY and adults 

Spawning/incubation conditions 

May 2000 (calibration spring flow for maximum macrophyte biomass) 

Spring habitat: 

Early post emergent YOY 

4.4.1. Hydraulic Measurements 

PHABSIM hydraulic models derive depths and velocities for ungauged flows from 

those measured at the calibration flows. This required a stage - discharge relationship to 

be established in each study reach. For this purpose water surface elevations were 

measured at each transect for a minimum of three different discharges according to 

standard procedures (Bovee et al., 1998). Velocities were also measured for the high 

(winter) and low (summer) calibration flows . 

Water Surface Elevations 

Water surface elevations were measured at all transects for a minimum three calibration 

flows; low summer flow (July-September), high winter flow (January-February) and 

intermediate spring flow (April-May) to determine water depth (stage). The EDM was 

used as a standard level to read elevations directly from a graduated surveying staff. 

This was easier to hold precisely on the water surface by forming a meniscus round the 

base of the staff and discrepancies between readings were immediately evident and 

could be repeated were necessary. Readings were taken to within +/ - 5 mm. 
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PHABSIM assumes the water surface across transects to be uniform, although local 

water slopes can be quite marked under certain conditions, such as bends at high flow. 

Therefore an average water surface elevation was taken at each transect. Elevations 

were taken at 2-3 points across transects and repeated twice at each point to minimise 

error and produce a mean water surface elevation in accordance with standard practice 

(Elliott et al .. 1996). Water surface elevations were measured relative to the headpin 

marker which provided a fixed datum. Subtracting bed elevations from water surface 

elevations provided an accurate measure of water depth. 

Maximising the range between highest and lowest calibration flows reduced the risk of 

prediction. errors becoming magnified for simulated flows extrapolated above the 

highest calibration flow (Elliott et al .. 1996). The highest calibration flow followed a 

winter flood event and was the largest discharge that could be safely gauged by wading. 

It was not possible to gauge bankfull discharge for safety reasons and over-bank flows 

were not modelled. Surveying of water surface elevation was always conducted on the 

same day to minimise effects of flow fluctua.tions . Where separate but contiguous 

reaches were calibrated at different times, under different flow conditions, water surface 

levels were re-surveyed at the hydraulic control marking the top and bottom of 

adjoining reaches to enable adjustment for the difference. The presence of stage boards 

at the downstream transects of both study reaches increased the accuracy of the stage­

discharge relationships and assisted the process of adjusting water surface elevations for 

different study reaches under different calibration flow conditions. 

Velocity measurements 

Mean column velocities were measured at all points on each transect for a minimum of 

two calibration discharges; summer low flow (July-September) and winter peak flow 

(Jan-Feb). Velocities were measured over as small a time interval as practical during 

which there was no rainfall to minimise effects of flow fluctuations. Velocity metering 

was carried out on the same day as water surface elevations for each reach. Where 

adjoining reaches comprised one long contiguous sector where a full velocity set had to 

be measured over a longer time interval, water surface elevations were retaken at a 

previously measured hydraulic control so that any variation over time could be 

recorded. Velocity distributions under uniform flow conditions vary depending on 
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cross-sectional channel shape (Chow, 1959). Where flow was distributed relatively 

unifonnly mean column velocity was estimated at 0.4 of the total depth in accordance 

with standard procedures. Where flow was irregular due to presence of weed beds or in 

meanders, readings were taken at 0.2x and 0.8x depth and averaged to give a more 

accurate representation of mean velocity (Newbury and Gaboury, 1993). 

A Valeport Braystoke BFM002 miniature current flow meter with 50 mm impeller was 

used to measure velocity. When a second operative was available another meter of 

identical type was employed to maximise the number of transects metered in one day. 

Group calibrations conducted by the manufacturers using a sample batch of identical 

meters indicated average perfonnance of the entire family to vary by less than 2.2% (p 

= 0.05) for flows above 0.5 ms-I. Only at very low current speeds below 0.15 ms-I was 

there likely to be significant variation in perfonnance between meters. This was 

considered acceptable for estimation of mean column velocities. 

Discharge measurements 

Discharge was measured for all calibration flows at the downstream hydraulic control 

and at least one other transect in each reach to provide the most reliable estimate (best 

estimate Q) (Bovee, 1982). These were usually located in glides with steady flow 

parallel to the banks and a fairly unifonn depth of water not less than about 0.5 m 

(Elliott et al., 1996). Discharge was estimated using the continuity equation; 

where Q is discharge ( m3s- l
) 

V is velocity ( ms-I) 

Q=VxA 

A is cross-sectional area of the flow (m2
) 

To increase accuracy discharge was calculated for individual cells, and summated to 

give total discharge across the transect (Newbury and Gaboury, 1993; Elliott et aI., 

1996). Mean column velocity was measured in each cell using a current meter as 

described above. The cross sectional area was calculated for individual cells using the 

average depth between two adjacent survey points and multiplying by cell width. 
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Plotting channel cross section profiles together with water surface elevations in a 

drawing software package enabled accuracy of the cross sectional areas to be double 

checked. 

4.4.2. Habitat Measurements 

Flow dependent habitat variables water depth and column velocities were derived from 

hydraulic data as described above. However, PHABSIM utilises at least one flow 

independent habitat variable (Channel Index) which requires measurements of substrate 

and/or cover. 

Substrate 

Mean particle size of material comprising the dominant substrate type in each cell was 

measured using nested sieves. A visual assessment was made to select a cell 

representative of dominant substrate for a particular transect and a "kick" sample was 

wet sieved on site to determine dominant size category. 

TABLE. 1. Substrate code classification scheme 

SUBSTRATETYPE PARTICLE SIZE SUBSTRA TE CODE 

Plant detritus/ organic material 0 
Silt! clay <0.0625mm 1 
Sand 0.0625 - 2.0mm 2 
Fine gravel 2.0 - 18.0mm 3 
Coarse gravel 18.0 - 40.0mm 4 
Pebble 40.0 - 64.0mm 5 
Fine cobble 64.0 - 100.Omm 6 
Coarse cobble 100.0 - 256.0mm 7 
Boulder >256 mm 8 
Bedrock 9 
Terrestrial vegetation 10 
Man made material 11 

(Plant detritus and organic material refers to dead and rotting vegetation covering the stream bed. 

Terrestrial vegetation refers to grasses, nettles or trees which may be found within cells. Man made 

material refers to concrete or other artificial materials used to modifY the channel.) 

47 



., 

A sample of materials collected during sieving was measured to determine mean 

particle size. The x, y, and z-axes of a selection of particles were measured with 

callipers and averaged. Substrate codes for use in habitat modelling were based on the 

bed material size classification adapted from White and Brynildson (1967) (Table. 1 ). In 

cases where two size categories comprised roughly equal proportions both substrate 

codes were recorded. Substrate surveys were carried out for summer and winter. 

Seasonal assessments of cover were undertaken in August / September and J anuary/ 

February. Exposed root wads, woody debris and vegetation provide complex cover 

habitats for trout (Hunter, 1991). These were di fficult to categorise due to the range and 

diversity of factors which constitute cover in a stream (Wesche, 1980). The following 

definitions were developed for categorising cover:-

• object cover -submerged or partially submerged objects (eg. branches, roots and 

logs) which deflect the flow and provide velocity shelter. 

• overhead cover - objects or terrestrial vegetation external to the stream, or 

emergent marginal vegetation, which overhang the stream either on or above the 

surface and which have "clear water" beneath of a depth not less than 0.25 m . 

• undercut bank - provide protected lies where the bank toe slope has been eroded 

such as the outside of a bend. 

• in stream vegetation - floating and submerged macrophytes which provide 

shelter for trout 

Protocols were developed for characterising commonly occurring cover types. For 

example, roots or trailing branches often provide object cover at the margins which 

collect significant quantities of drifting weed and debris. Where these form substantial 

rafts on the surface they afford a combination of object cover and overhanging cover 

providing both velocity shelter and overhead protection. Floating cover boards installed 

at the channel margins were considered to have a cover value equivalent to undercut 

banks. In-stream vegetation was categorised as submerged (1) or floating (2), and did 

not include emergent marginals, which were classified as overhanging cover where 
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appropriate. Submerged vegetation referred to aquatic macrophytes such as 

Ranunculus spp. Floating vegetation referred to vegetation growing on the bed or banks 

forming floating "mats" on the water surface (Elliott et al., 1996). The dominant 

vegetation and total percentage vegetation cover within a cell were estimated by visual 

observation . 

Surveys were carried out visually by wading across transects and assigning a cover 

value code at each vertical. A ranging pole was used to make approximate 

measurements of widths of overhanging vegetation and degree of bank undercutting 

within a 2m distance upstream and downstream of the transect. All observations were 

carried out by the author to ensure consistency. The numerical cover code assigned to 

each cell was derived from a cover classification scheme adapted from Trihey and 

Wegner (1981). This scheme groups cover types into "cover value categories" 

according to their importance to brown trout (appendix.2). Single object cover rated 

lowest in value (rating A); overhead cover rated (B) and undercut bank (C). 

Combinations of cover types were given a higher cover value (D). A score was assigned 

to each cell based on the percentage of that cell affected by a given cover category. 

EXAMPLE: a combination of object cover and overhead cover present in 60% of a cell 

rated 03 resulting in a cover index of 11 (see appendix.2). 

4.5. ASSIGNING UPSTREAM WEIGHTING FACTORS (UWF). 

Standard PHABSIM protocols required meso-habitats represented by each transect to be 

estimated as a proportion of stream to the next upstream transect (Bovee et aI. , 1998). 

Thus, a transect placed in a riffle which extends half way to the next upstream transect 

is assigned a weighting factor of 0.5. This defines a series of cells over which habitat 

values at that transect are assumed to apply. Upstream weighting factors were estimated 

by making a visual judgement as to the point at which the upstream transect became 

more representative of stream conditions than the downstream transect. This point was 

marked on the bank and a 50m tape used to measure distances to adjacent upstream and 

downstream headpins. 
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4.6. BROWN TROUT POPULATION SAMPLING 

Population estimates for brown trout were made from raw electro-fishing data collected 

by the Game Conservancy Trust between 1993 and 2000. Quantitative three pass 

electric fishing was conducted annually in spring (April) and autumn (September), 

using a 240 volt generator driven pulsed D.C machine towed behind the operators in a 

2m GRP boat. A crew of 4 workers operated two hand held anodes and two nets on the 

main river sections. Upstream and downstream limits of individual reaches were 

screened using 13-mm mesh hardware cloth stretched across the stream and supported 

by fence posts to ensure population closure. After capture, trout were held in fine mesh 

keep-nets before being anaesthetised in a solution of ethyl 4-aminobenzoate 

(benzocaine) (0.1 grl). Fork lengths were measured to the nearest millimetre and larger 

trout were weighed to the nearest 109 before being revived and returned. Population 

estimates were determined from the autumn electro-fishing data. This was more 

representative of population structure because it included young-of-the-year (trout aged 

0+) and high depletion rates were obtained during low flow conditions with high 

efficiency of capture commonly in the order of95%. 

4.7 . RECORDING OF FIELD DATA 

The EDM automatically recorded all data (distance, elevation, easting and northing) for 

each survey shot. Data were also recorded manually as a back up. Distances across 

transects were recorded in metres to define cells. Headpin heights and bed elevations 

were recorded relative to a fixed datum to the nearest millimetre. Water surface 

elevations were recorded to the nearest 5mm. Dates and times of water surface 

elevations and velocity readings were also recorded. All repeat visits to measure 

velocity, substrate and cover were recorded on audio tape using a Dictaphone which 

enabled additional descriptive information about sites to be included, such as presence 

of weed beds. 
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CHAPTER. 5. PHYSICAL HABITAT SIMULATION MODELLING 

AND ANALYSIS 

PHABSIM employs a range of modelling techniques in order to derive a functional 

relationship between habitat (expressed as Weighted Useable Area) and discharge 

which allows the area of stream providing suitable habitat conditions to be quantified. 

There are three basic stages in the modelling approach: 

I. Input of raw data to PHABSIM 

2. Hydraulic modelling to determine depths and velocities in relation to discharge 

3. Habitat modelling to derive habitat - discharge relationships 

5.1. INPUT OF RAW OAT A TO PHABSIM 

Water surface elevations were measured relative to transect headpins which were 

surveyed from different station locations. This required measured elevations of transect 

headpins and water surface levels to be standardised to ensure accuracy during 

modelling. A headpin was selected in each reach and assigned an arbitrary value of 100 

to serve as a datum. Elevations of all other headpins were then adjusted relative to +1-

lOO so that all transects were hydraulically linked and water surface elevations were 

referenced to the same datum elevation (100). Errors as small as +1- 5mm can have 

disproportionate effects on water surface slope under certain conditions (Elliott et al.. 

1996; Anon, 200 I). Reducing to a single datum minimised amplification of 

measurement errors between headpins when shot from different station positions and 

when re-measuring changes in water surface levels at a later date. Average water 

surface elevations at each cross section were input and quality checked by plotting a 

longitudinal scatter-graph to ensure that the water surface sloped in a downstream 

direction. 
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5.2. HYDRAULIC MODELLING TO DETERMINE DEPTHS IN 

RELATION TO DISCHARGE 

5.2.1 Defining the Stage - Discharge Relationship 

Hydraulic models used to establish water surface elevations at ungauged (simulation) 

discharges required calibration from stage-discharge relationships developed from 

measured (calibration) discharges at downstream hydraulic controls (appendix.3). 

Stage-discharge relationships were developed as follows. In the lower sector a sluice 

gate (T.O) provided the best discharge estimate and acted as stage of zero flow (SZF) for 

all upstream transects. Transect 1 (where a stage-board was located) produced a more 

reliable stage measurement due to the impounding effect of the sluice which controlled 

water surface slope upstream. The stage - discharge relationship at transect 1 was used 

for hydraulic calibration. This achieved the most accurate discharge, water surface level 

and SZF combinations. A similar approach was adopted for the upper sector where a 

transect was located at a stage board immediately downstream of the hydraulic control 

to provide a best estimate of discharge. 

Water surface level (WSL) elevations were used to establish depths across each transect 

by subtracting bed elevations. Different hydraulic modelling approaches (see p.155 for 

model descriptions) were used to predict water surface levels at ungauged flows 

(simulation discharges) as follows:-

1. The stage-discharge model (STGQ) performs a log-linear regression between 

observed stage and discharge for three measured (calibration) flows to determine a 

stage - discharge relationship. The resulting equation predicts stage at unmeasured 

(simulation) flows. 

2. The MANSQ model utilises Manning' s equation to define relationships between 

discharge and hydraulic parameters of each independent cross section. Slope 

represents the difference in WSL between adjacent transects and a correction 

coefficient (beta) is used to minimise differences between observed and expected 

WSL at each transect. 
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3. The Water Surface Profile (WSP) model uses a standard step-backwater technique 

to predict WSL. WSP requires all transects are hydraulically linked to a 

downstream hydraulic control where there is known stage-discharge relationship. 

An energy balance model is used to project WSL to each subsequent upstream 

transect. 

5.2.2 Water Surface Model Selection 

Different in-stream situations require different techniques to model hydraulic conditions 

accurately and appropriate model selection was necessary to avoid potentially 

problematic effects during habitat modelling. Hydraulic calibration was conducted 

using both the WSP and STGQ models independently. WSP was used for simulating 

high winter flows because it is the most reliable model for extrapolation beyond the 

highest calibration discharge (Sovee et aI. , 1998). Use of roughness modifiers to vary 

Mannings n also provided scope to compensate for the hydraulic effects of seasonal 

vegetation growth which were significant. The WSP model generally works best in 

complex situations such as chalk streams with substantial backwater effects whereas 

STGQ performs better in hydraulically "simple" applications such as high gradient 

streams (Elliott et al. 1996). However, STGQ was found to perform well at middle and 

lower parts of the flow range where effects of channel irregularities and breaks of slope 

became more marked. Therefore, final water surface calibration employed a "mixed" 

modelling approach with the model that produced the best fit between observed and 

predicted stage at a cross section being used in the final production run. 

5.2.3. Calibration of the Stage-Discharge Model (STGQ) 

Empirical data from measurements of water surface elevations at three different 

calibration flows gave the stage - discharge regression; 

Where; 

Q = discharge 

WSL = water surface level 

SZF = stage of zero flow 

Q = a (WSL - SZF) b 
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a = constant derived from measured values of discharge and stage 

b = constant derived from measured values of discharge and stage 

Stage-discharge regressions used a single best estimate discharge for all transects in a 

reach. This was because variations in channel geometry meant that cross section 

discharges often differed from best estimate discharge which was common when 

measurements were taken in habitat types that were poor in terms of obtaining good 

discharge estimates. Accuracy of water surface simulations depended on relative 

differences in regression line slopes at adjacent transects. Under some conditions cross 

section discharge provided a better fit to observed water surface elevations than best 

estimate discharge at individual transects but in general produced poor relationships. 

Determination of stage of zero flow 

The STGQ model utilises stage of zero flow (SZF) in the stage-discharge computations, 

which was determined by a longitudinal plot of thalweg elevations at each transect in an 

upstream direction. The lowest bed elevation (thalweg) at the downstream hydraulic 

control is the water surface elevation at which flow will cease (SZF). This controls 

water surface slope for a series oftransects upstream until thalweg elevation at a 

. transect exceeds that at the hydraulic control. This forms SZF for the next upstream 

series of transects. 

Assigning calibration sets and running the model 

A minimum of three (and up to four) measured discharges were used to calibrate the 

model as follows; 

• Cal I: summer base flow (lowest Q) 

• Cal 2: winter low flow 

• Cal 3: winter peak flow (highest Q) 

• Cal 4: spring flow 

This covered as wide a range of flows as possible in order to increase reliability of 

predictions. A number of model runs utilising different calibration sets were employed 
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to achieve the best fit between observed and predicted WSL at each transect. This 

maximised flexibility of model calibration making it possible to take seasonal effects 

into account. For example, for intermediate flows occurring in winter and spring, using 

Cal 2, 3 and 4 calibrated the model for the period covering minimum plant biomass to 

maximum biomass. For intermediate or low flows in summer and winter Cal I, 2 and 3 

calibrated the model for the period of declining plant biomass to minimum biomass. In 

some cases using all four calibration sets produced the best fit between observed and 

predicted WSL, but fewer calibration sets were more commonly used because effects of 

macrophyte growth in spring resulted in a higher stage and a non-linear relationship 

with discharge. As the model can only handle linear relationships, the curved nature of 

this four-point relationship meant selection of fewer calibration sets had a significant 

impact on results. For example, selecting Cal 2, 3 and 4 resulted in higher predicted 

stage at medium and low discharges than using Cal I, 2 and 3, the differences becoming 

greater with declining discharge. 

The shape of this relationship meant STOQ proved less reliable than WSP for 

calibrating spring flows. In most other cases a three-point regression (Cal. 1, 2 and 3) 

was used for calibration purposes. Model accuracy was sometimes improved, 

particularly at Iow flows, by using a two-point regression in the model. Where stage 

was over estimated using a three-point relationship, use of Cal I and 2 reduced 

predicted stage. Alternatively, selecting Cal 2 and 3 increased predicted stage where it 

was under estimated. 

5.2.4. Calibration of the Water Surface Profile Step-Backwater Model (WSP) 

The WSP model is a standard step-backwater technique which uses the concepts of 

mass balance (continuity) and energy balance to compute flows in a step-wise sequence 

upstream for adjacent pairs of transects. The continuity equation calculates a flow 

balance and velocity. The energy balance represents differences in total energy between 

adjacent transects as water moves downstream. The Benoulli equation (Chow, 1959) 

calculated total stream energy at a cross section as follows; 
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Where; 

H= total energy at a transect 

z = bed elevation 

d = depth 

H =z +d+iI2g 

v2/2g = velocity head (energy component due to velocity) 

v = mean column velocity 

g = acceleration due to gravity 

Differences in total energy divided by distance between two cross-sections gives the 

slope of the energy grade line. Thus, 

Se = H 1 -
H 2 

Dist 

This equation represents energy balance between two adjacent transects (bed slope, 

hydraulic slope and energy slope are considered to be equal under unifonn flow 

conditions So = Sh = Se). The model cross checks flow and energy balances by 

comparing this energy slope with that derived using Manning' s equation as follows ; 

Se = {Q }O.66 x A{~}2 
R 1.49 

Where, 

Q = discharge 

R = hydraulic radius 

A = cross-sectional area 

n = roughness 

Se = energy slope 
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Setting initial hydraulic conditions 

WSP required a water surface elevation at the downstream hydraulic control as a 

starting point for computing energy slope upstream. Initial water surface elevations 

were provided using the stage-discharge relationships at hydraulic controls. Where a 

mixed modelling approach (using STGQ and WSP models) was employed, initial 

conditions required re-initialising for WSP because use of a stage-discharge model at a 

particular transect broke the upstream energy balance computation. The WSP/STGQ 

option acted as a re-initialiser where the stage-discharge relationship at the next 

upstream transects provided new conditions for projection of water surface levels 

upstream. 

Standard calibration procedure for WSP was adopted using the high (winter) discharge 

to calibrate the model. This was best practise because high calibration flows provided 

more reliable water surface predictions above the highest measured discharge and 

residual errors became increasingly compressed when simulating down to lower 

discharges (Anon., 2001). The high calibration flow also provided the largest range of 

observed Manning' s n values which was critical to WSP model performance. 

Calibrating initial discharge using Manning' s n 

Before model simulations could be undertaken values for Manning' s n which achieved 

the "least error fit" between observed and predicted longitudinal water surface profiles 

needed to be derived for the high calibration discharge. A global Manning' s n was 

applied at all transects and varied by trial and error until the best agreement between 

measured and simulated water surface profiles was obtained (Bovee et aI., 1998). 

Increasing transect roughness (raising n) increased resistance to flow and reduced mean 

velocity through the cross section resulting in an increase in water surface height. 

Lowering n achieved a reduction in water surface height. Careful consideration of in­

channel conditions was necessary in making adjustments to Manning' s n because 

unrealistic variations can affect reliability of extrapolations to higher or lower 

discharges (Anon., 2001). Recommendations for alluvial streams suggest that 

variations between transects should be limited to 5% - 15% given no major topographic 

or geologic influence. Local adjustments to n were made at paired transects in a step-
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wise direction upstream because water surface height is a function of channel roughness 

at a cross section and the adjacent cross section downstream . 

Setting Manning' s n at the downstream hydraulic control determined starting height of 

the water surface upstream. Manning' s n at transect 0 was set sufficiently high that a 

low value at transect I produced the required water surface slope upstream. This is a 

commonly used practice which reduces the need for substantial changes in n at 

subsequent transects (Anon, 2001). This approach was particularly useful at the 

downstream hydraulic control in the lower sector where an offset sluice caused the flow 

to hit a blank wall before spilling over the sill at the side. The wall effectively acted as 

an impoundment (especially at higher flows) controlling water surface height upstream, 

the effect of which was simulated using a very high roughness value at Transect O. 

Applying roughness modifiers at lower calibration flows 

Following initial model calibration to the highest discharge, additional calibration flow 

data were utilised to empirically derive relationships between roughness and discharge 

for use in hydraulic simulations. In open channel hydraulics resistance to flow increases 

with decreasing discharge. This inverse relationship between roughness and discharge 

meant that n values obtained in the initial calibration had to be modified in order to 

accurately reproduce longitudinal water surface profiles at lower calibration discharges. 

A roughness modifier (rMOD) was applied to adjust the magnitude of n in relation to 

discharge. A trial and error approach was repeated to select rMOD 's that minimised 

error between observed and predicted water surface profiles at the remaining calibration 

discharges. A coefficient of 1.0 was applied at the initial (high) discharge to calibrated 

Manning's n values, which were modified by an appropriate factor greater than 1.0 to 

increase roughness at lower calibration discharges. A target "agreement" between 

observed and predicted WSL was taken as +/- 5mm because smooth flowing lowland 

chalk streams typically have few hydraulic fluctuations which allowed more accurate 

calibrations. 
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Estimating roughness modifiers for simulation discharges 

Once initial Manning's n values and roughness modifiers were established for all 

calibration flows, relationships between roughness and discharge at unmeasured 

(simulation) flows were determined empirically from the roughness values used in 

calibration of WSP. A log-linear regression was developed from which roughness 

modifiers for ungauged simulation discharges were derived. 

Accounting for seasonal effects of vegetation using WSP 

Abundant growth of submerged macrophytes (especially Ranunculus.spp) , emergent 

marginal plants and other riparian vegetation produced marked seasonal hydraulic 

effects which substantially influenced hydraulic modelling accuracy. In spring 

(April/May) peak macrophyte biomass caused large roughness increases resulting in 

high water surface levels and a non-linear stage-discharge relationship where stage 

increased as discharge fell. Stage-discharge models cannot work in situations where 

there is a reversal in normal depth - discharge relationships. Therefore, a separate 

hydraulic calibration was undertaken for the measured spring flow using WSP. This 

method is the most physically based approach available within PHABSIM (Bovee et al., 

1998) and provides the ability to include both spatial changes in roughness and temporal 

variations resulting from changes in discharge. Manning's n values from the initial 

calibration were retained and appropriate roughness modifiers established by trial and 

error. A log-linear regression using spring (Ca!.4), summer (Ca!. I) and low winter 

(Cal.2) calibration flows enabled a roughness adjuster to be empirically determined and 

applied to simulation flows in spring during the period of maximum biomass. Modelling 

for later in the year had to take account of declining macrophyte biomass but increasing 

marginal vegetation. In particular, large "rafts" of watercress (Rorippa spp.) typically 

resulted in substantial channel narrowing in summer maintaining thalweg depths. This 

altered velocity profiles as marginal roughness increased, creating a velocity "spike" as 

flow was pushed towards the channel centre. This was accounted for during calibration 

ofthe VelSIM model by adjusting Manning' s n (see 5.3.1). Water surface level 

predictions modelled using WSP were altered as a result of this change in roughness 

and required re-calibrating to enable a better fit with the observed velocity profile. 
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5.2.5. Evaluating Water Surface Model Performance 

Minor surveying errors of a few millimetres can have disproportionate effects on water 

surface level calibration. Longitudinal plots of water surface slope were used as 

diagnostic tools for evaluating agreement between predicted and observed water surface 

levels at calibration discharges (Fig.5.1). These revealed situations where hydraulic 

models broke down and produced irrational results (e.g. water surface between two 

transects sloping uphill). 
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Fig. 5.1. Longitudinal water surface slope for summer and winter calibration discharges 

This Was a common problem for stage-discharge models when the regression lines of 

two transects cut across each other, especially when extrapolating for discharges outside 

the calibrated range. For step-backwater models extrapolation was less problematic as 

simulation errors became compressed at lower discharges. These plots were useful in 

determining validity of simulations as they enabled a visual assessment to be made of 

smoothness of transition of water surface slopes between low flows with marked 

irregularities and higher flows with a more gradual slope. Cross section profiles were 

also examined to identify individual transects with disagreements between observed and 

predicted WSL. 
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5.3. HYDRAULIC MODELLING TO DETERMINE VELOCITIES 

IN RELATION TO DISCHARGE 

The second step in the hydraulic modelling process involves simulating velocity profiles 

at each cross section. VelSIM is an empirical model for determining velocity 

distributions at each transect independently. The programme uses measured velocities 

as a template for predicting velocities at un gauged (simulation) discharges and 

calculates Manning' s n for each cell based on water surface level, slope and velocity 

provided as part of the calibration data. Individual cell velocities can then be computed 

for any discharge from Manning' s equation using the initial n value derived from the 

calibration velocity set: 

where, 

nj = estimated Mannings n at cell i. 

Se = energy slope for transect 

U' {1.486} d' S r l = - -. - X 10.66 X eo.s 
ill 

dj = depth at vertical i (substituted as a surrogate for hydraulic radius) 

Vj = measured velocity at vertical i 

5.3.1. Calibration of VelSIM 

VelSIM model calibration was undertaken following standard procedure using a 

multiple velocity data-set for a minimum of two (and up to 3) measured velocity 

profiles. Closeness of fit between observed and predicted velocity patterns at calibration 

discharges was used to assess simulation accuracy and validate calibration of VelSIM 

(Fig.5.2). A number of manipulations were required to address the following problems 

and achieve satisfactory velocity simulations: 

I. errors occurred due to differences between "best estimate" discharges for a 

reach (on which predicted velocities were based) and cross section discharge 

based on measured velocities at an individual transect. In order to maintain 

mass balancing VelSIM applies a velocity adjustment factor (V AF) to predicted 

velocities which is a correction coefficient, the magnitude of which reflects the 

difference between best estimate discharge and cross section discharge. 

61 



• 

------ -------- ----------,------ -------- ----- ------- -

2. At high flows above the highest calibration discharge, cells at stream margins 

that were previously dry required predicted velocities but had no values for 

Manning' s n. VelSIM automatically applies n values from adjacent cells or 

attributes a default value of 0.06. This led to errors between observed and 

predicted velocities particularly in marginal cells where computed n was too 

low resulting in predicted velocities higher than observed velocities. 

It is a common problem for VelSIM to over-predict velocities at stream margins (Anon, 

2001). This occurred due to n being under estimated because of the high roughness 

caused by marginal vegetation. Where predicted velocities were too high this also 

caused mid channel velocities to be under estimated due to application of V AFs by the 

programme in order to maintain mass balance through a cross section. Since these 

"edge" habitats were particularly important to all life stages of trout careful examination 

of the computational process was necessary during model calibration. 

In order to improve the match between observed and predicted velocity patterns at the 

calibration discharges, estimated values of Mannings n were adjusted, either for 

individual cells or globally for all cross sections in a reach. Setting minimum n values 

(NMIN) increased roughness in mid channel where n was generally lowest which 

reduced predicted velocities but resulted in simulated velocities being almost 

universally under-predicted. Setting maximum n values (NMAX) reduced roughness at 

the highest values and increased predicted velocities but also had the effect of 

increasing marginal velocities where reductions were usually required due to high 

roughness. 

Most velocity profiles were under-predicted at the low calibration flow (summer) 

because seasonal growth in marginal vegetation resulted in substantial increases in 

roughness which had an acute effect on velocity predictions because n values at channel 

edges were too low to account for this. However, the fit between observed and predicted 

velocities was found to be generally good at the high calibration flow (winter). 

Therefore, two discreet velocity files were created within PHABSIM to model summer 

and winter profiles separately. Increased n values were input for cells at stream margins 

to compensate for increased roughness which depressed "edge" velocities but increased 

them in mid channel. Selection of n values had to take into account distribution of n at 
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the high calibration flow as selected values applied uniformly for all discharges at 

individual cross sections. However, because computed n values at the margins were 

generally much higher for winter flow, it was possible to substantially increase n for 

marginal cells in summer without adversely affecting winter velocity profiles. 

5.3.2. Selection of Calibration Velocity sets 

Selection of calibration velocity profiles can have profound effects on velocity 

simulations (Anon, 2001). Standard procedure uses velocity profiles for the lowest 

calibration flow to simulate downwards to the lowest flows and for the highest 

calibration flow to simulate upwards to higher discharges. 

The following three calibration sets were available and used for simulations as follows:-

1. CALSET 1 measured between late July and mid September and used to model 

summer velocities for the five month period from June to October. 

2. CALSET 2 a winter low flow measured in early December and used to model 

winter velocities for the five month period from November to March. 

3. CALSET 3 a winter high flow taken in late January and used to model winter 

velocities for the five month period from November to March. 

Selection of appropriate calibration sets for a given flow range was made from an 

assessment of monthly flow exceedance percentiles based on mean daily flows (1993-

2000). Median and minimum flows (Nov-Mar) were used to assess the lowest 

appropriate discharge for use in winter simulations and corresponded closely to the low 

winter calibration flow (calset 2). Median and maximum flows (June-October) were 

used to determine the highest flow to simulate using the summer flow (calset I). This 

ensured that simulations accurately modelled different hydrological conditions for 

different seasons. Where changes from use of one calibration set to another were 

necessitated the velocity regression option within VelSIM was used to apply a smooth 

transition between predicted velocity profiles based on a two point regression that 

assumed log-log linear change in velocity distribution. 

Changes in channel cross section geometry at different discharges often radically altered 

velocity profiles. Differences between high and low flow channel shapes occurred at 
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bends and in riffles at very low flows resulting in wide variations between velocity 

profiles at different calibration discharges. This produced significantly different velocity 

predictions depending on which velocity profile was used in model calibration. This 

was an important factor affecting selection of velocity calsets. Observed velocity 

distributions were examined to identify cross sections where differences between 

measured discharges were most evident and simulated water surface levels were used to 

identify changes in geometry associated with changes in depth. This allowed discharges 

at which velocity distribution patterns were likely to change to be identified and assisted 

selection of appropriate velocity calibration sets. WSL simulations were used to 

establish bankfull stage for a reach to determine the highest discharge for which 

velocity simulations were necessary (as out of channel flows were not modelled). 

At certain cross sections (e.g. bends) significant geometry change often occurred at 

discharges below the high calibration flow, making use of calset 3 for simulating down 

to lower discharges inappropriate. Where calsets 2 and 3 had similar velocity 

distribution profiles calset 2 was used to accurately simulate velocities a~ higher flows. 

,However, velocity distribution profiles often differed radically between calsets, 

especially at cross sections with substantial geometry change. Under these 

circumstances the low calset which best mirrored the velocity profile at the high 

calibration flow was selected and a velocity regression approach used for intermediate 

discharges to give a better smoothing of velocity distributions over the range of flows. 

At cross sections with a good match between velocity profiles at high and low calsets 

the regression option was routinely used to smooth the distributions at intermediate 

flows giving a more hydraulically accurate velocity representation. This worked best for 

cross sections such as glides with a relatively symmetrical shape. However, at cross 

sections with an asymmetric profile, it was found that using the low calset to simulate 

velocities for intermediate discharges up to the high calibration flow better reflected the 

likely velocity pattern rather than using a smoothing regression which produced an 

unrealistically uniform transition between flows. 

The lowest calibration flow available (calset 1) was always used for summer velocity 

simulations and to simulate down to very low discharges because these only occurred 

during summer months. However, where radical geometry change occurred at very low 

flows such as in riffles, extreme contrasts in velocity profiles between calset 1 and 
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calsets at higher flows necessitated use of a regression approach at intennediate flows to 

provide a smoother transition in the velocity distribution. 
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Fig. 5.2. Cross section showing match between measured and predicted velocity 
distributions for winter and summer calibration discharges 

5.4. HABITAT MODELLING TO PREDICT SPATIAL VARIATION IN 

TROUT HABIT AT 

Following hydraulic calibration the HABTAE model was used to produce habitat 

predictions in accordance with standard procedures (see Bovee et al., 1998). HABTAE 

integrates measured channel cross section and hydraulic parameters with biological 

infonnation to derive a numerical representation of suitable habitat for brown trout. This 

takes the fonn of a functional relationship between discharge and habitat which 

quantifies habitat availability under various conditions of flow (Fig.5.3). 
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Fig.5.3. Functional relationship between habitat (expressed as WUA) and discharge 
for adult brown trout 

Habitat is expressed as Weighted Useable Area (WUA) which is a composite measure 

that integrates both habitat availability/quality in terms of suitable area of stream bed 

per km (m2 
/ 1000m) as follows;-

WUA - n(Ai x Ci) x RL 
- 1000 

Where; 

WUA = Weighted Useable Area at specified discharge 

Ci = composite suitability of cell i, 

Ai = cell surface area 

RL = reach length in m 

n = cell number 

The composite suitability of a cell comprised the combined suitability for the measured 

microhabitat variables - depth, velocity and substrate/cover. Different life stages of 

brown trout select habitats according to well defined preferences for different ranges of 

these microhabitat variables (Armstrong et al., 2003). Habitat Suitability Index Curves 

(HSI) which represented these habitat preferences were used in the HABTAE model to 

express habitat conditions in each cell as a single Composite Suitability Index (C.S.!) as 

follows; 
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where; 

Ci = composite suitability of cell i, 

Vi = velocity suitability in cell i , 

Di = depth suitability in cell i, 

Ci = Vi x Di x Si 

Si = channel index suitability in cell i 

5.4.1. Habitat Suitability Index (HSI) Curves 

HSI curves are biological response curves which define habitat suitability as a value 

between 0.0 (unsuitable) and 1.0 (optimal). The area between the peak and curve tails 

indicates useable ranges. This fonnat expresses behavioural characteristics in that trout 

often preferentially select narrower ranges of conditions within a broadly suitable range 

(Annstrong et al. 2003). Three categories of HSI curves have been defined according to 

the means used in their development (after Bovee, 1986):-

Category 1 - derived from life history literature and developed by professional 

judgement and peer review. 

Category 2 - suitability of different microhabitat conditions detennined by direct 

observation of frequency of use by trout at different life stages. 

Category 3 - combination of category 2 curves together with additional infonnation to 

take account of the effect of habitat availability on frequency of use. 

Constraints of time and resources made development of habitat suitability curves for the 

present study impractical. However, HSI curves demonstrate considerable specificity to 

the stream in which they were developed and problems regarding transferability to other 

stream types have been well documented (see chapter 2). Category 3 curves have been 

found to introduce additional bias and be less transferable than generic curves 

developed in a range of similar stream types (Dunbar et al. . 2001). Thus, Category 2 

curves developed on the river Piddle by Bird et al. (1995) were modified for use in this 

study (appendix.4). Curve shapes were reviewed, especially for optimum habitat ranges 

in the light of recent literature (reviewed in Annstrong et al. 2003) and found to be 

broadly in accordance with observed values. However, some changes to curves were 
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made to reflect recent research regarding uncertainty in habitat preferenda (Dunbar et 

al, 2001). This significantly altered the shape of the depth curve for adults at larger 

depths together with the depth and velocity HSI for PYOY relative to YOY. 

The HABT AE programme only handles one "Channel Index" at a time such that 

simulations could not incorporate suitability data for both cover and substrate. Studies 

commonly use substrate as the flow independent channel index, partly due to HSI curve 

availability and to complexities involved in quantifying cover, which cannot be 

"measured" in the same sense as substrate particle size. Substrate condition is a critical 

habitat parameter for spawning where gravels are required for redds. Thus, for spawning 

simulations substrate was employed as channel index. A binary HSI curve was also 

developed for substrate and used in spawning habitat simulations to test the effect on 

WUAldischarge relationships relative to univariate curves covering all substrate types. 

Binary curves define a habitat variable as either suitable (1 .0) or unsuitable (0.0) and 

medium/coarse gravel was defined as optimal but all other substrates types were 

counted as unsuitable. 

In upland streams with coarse rocky bottoms substrate is also an important habitat 

component for later life stages providing sheltering cover and velocity niches. However, 

in lowland chalk streams this function is provided by in-stream and riparian vegetation. 

Smaller mean particle size of gravel means that limited cover value is provided by 

substrate. Consequently, cover was used for all simulations except those for spawning. 

A simple HSI curve for cover was developed from the numerical cover coding derived 

from observed cover in the field. This curve assigned a number to each cover type based 

on its size, function and complexity after Bovee et al, (1994). 

5.4.2. Habitat Modelling Strategies 

Within PHABSIM the composite suitability index (CS I) of a stream cell is derived from 

mUltiplication of habitat suitabilities for depth, velocity and substrate/cover. However, 

standard multiplication implies synergistic action and recognises no interaction terms 

between microhabitat variables (Anon, 2001). Thus, the geometric mean of suitability 

indices was used in the calculations which allowed for a compensation effect between 

Habitat Suitability Indices. Where two HSI curves were within an optimum range and 
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the third was low the influence of the latter on the Composite Suitability Index was 

reduced. This had the effect of increasing WUA magnitude but this was immaterial as 

relative rather than absolute changes in WUA were important and the same 

methodology was applied to all habitat calculations. However, in some spawning 

simulations the lowest limiting factor approach was used to compare habitat differences 

when cell suitability was limited to the value of the poorest habitat attribute. Although 

this reduced absolute values of predicted habitat the general shape of habitat-discharge 

functional curves remained broadly similar and no significant differences to overall 

relationships with trout densities were subsequently found. 

Separate habitat simulations were generated by HABT AE for summer and winter 

habitat. Seasonal variations in cover necessitated use of separate Channel Index files 

and altered some properties ofthe hydraulic simulations. Increased summer biomass 

increased channel roughness effecting both depth and velocity predictions. Separate 

velocity calibration sets for summer and winter undertaken within VELSIM were 

employed in the habitat modelling process to ensure a more accurate representation of 

stream conditions. 

In the Lower sector where two adjacent reaches were hydraulically modelled as one 

contiguous reach, separate simulation files were created and habitat modelling 

conducted for both reaches individually. This resulted in a small amount of overlap in 

which the same area of bed was included in both simulations. However, this approach 

facilitated a more robust analysis which allowed two sets of trout population data to be 

treated separately rather than combining these into average densities for a single 

modelled river sector. WUA calculations in the Upper sector used bank length weights 

to account for sinuosity. This allowed more accurate representation of the reach because 

HABT AE used trapezoidal rather than rectangular cells where bends were present. The 

lower sector was rectilinear and no bank weightings were necessary. 

Standard WUA computations for both reaches comprised an aggregation of total habitat 

availability which made no distinctions about variations in habitat quality. Thus, large 

amounts of low/moderate habitat quality sometimes resulted in the same aggregate 

WUA as a small amount of high quality habitat. The following modelling strategies 
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were adopted to overcome this problem and to better elucidate habitat mechanisms 

regulating trout populations: 

Minimum Effective Composite Suitability 

Parallel habitat simulations were run applying minimum values to composite suitability 

indices. Cells below a predefined CSI threshold were computed as zero and discounted 

from total WUA calculations. This prevented small composite suitabilities from 

accumulating large areas of low quality habitat and allowed only medium and high 

quality habitat to contribute to total WUA . 

Near Shore (Marginal) Habitat. 

Aggregate WUA for near shore habitat zones was computed in all reaches because 

stream margins provide important cover and shelter for trout. All cells more than 2m 

from the bank edge were eliminated from the WUA computation. The HABTAE model 

adjusts for those cells falling within the near-shore distance as the bank edge moves 

with increasing and decreasing depths and computes WUA according to the composite 

suitability indices of those cells. 

Feeding Stations Conditioned on Adjacent Velocity 

Feeding stations consist of a low energy holding station in close proximity to a high 

energy drift delivery zone (Fausch, 1984). Summer (growing season) habitat 

simulations were run for adult and fry life stages using the adjacent velocity approach to 

simulate combinations of habitat features providing high energy feeding stations for 

drift feeding fish. HABTAE computed cell suitability using a combination of an 

occupied velocity and an adjacent velocity in cells within a specified "sight distance" 

favourable for food delivery. In the absence of suitability criteria to describe adjacent 

velocity ranges and appropriate lateral search distances, judgement based on 

observation was used to define limits. Occupied velocities were set to approximate life 

stage optima and only those adjacent cells containing significantly greater velocities 

were included in WUA calculations. Sight distances were arbitrarily defined as Im 

either side for adults and 0.5m for fry. 
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Meso-habitat analysis 

HABTAE simulations were run to generate WUA output by individual cross sections to 

assess the contribution of different habitat types to overall habitat quality in a reach . 

This method generated a Weighted Useable Width (WUW) versus flow curve as a 

function independent of length which was used to evaluate relative habitat quality of 

different meso-habitats (riffle, glide, pools etc.). This approach was useful for 

evaluating the importance of particular habitat types to different life stages especially 

during critical periods of the year. WUW oftransects representing particular habitat 

types were multiplied by transect lengths and aggregated to produce a composite meso­

habitat WUA which was used to develop habitat-specific flow functional curves. This 

approach was used to assess the effect of habitat type on local trout population 

structures and to examine the role of local habitat juxtaposition. 

5.4.3. Summary 

Graphical outputs from habitat modelling were used to visually assess those parts of the 

stream providing the most "valuable" habitat for different trout life stages under 

different scenarios of discharge and season. These were useful for evaluating spatial 

changes in habitat suitabilities and for highlighting relative importance of single habitat 

parameters, such as dynamic variations in depth - velocity distributions, in relation to 

specific meso-habitat types. 

The WUA - discharge curves produced from habitat simulations formed the basis for 

development of habitat time series which represented the starting point for an analysis 

oftime dependent characteristics of habitat availability. 
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5.5. DEVELOPMENT OF HABITAT TIME SERIES TO SHOW TEMPORAL 

VARIATION IN TROUT HABIT A T 

Trout populations are limited by time dependent habitat events which act to limit 

particular life stages or act as population bottlenecks (Nehring and Anderson, 1993; 

ElIiott, 1994). Thus, temporal variations in fish abundance reflect patterns of antecedent 

habitat availability that may fundamentally affect long term population change. In order 

to examine the importance of temporal habitat variations for trout population dynamics, 

habitat time series were developed as part of the modelling process as shown in figure 

5.5. 

TIME SERIES OF HABIT AT 
A V AILABILITY 

A 

I I 

HABITAT V DISCHARGE 
[ 

HYDROLOGICAL 
RELATIONSHIPS TIME SERIES 

t t 
PHYSICAL HABIT AT Measured calibration 
SIMULATION MODEL discharges 

~ 
Site-specific channel and 

--t 
Gauged stream flow data 

hydraulic data (Briantspuddle) 

Brown trout habitat 
~ preferences 

Fig.S.S. Schematic showing component linkages used to model temporal habitat 
availability in the river Piddle. 

5.5.1. Development of Habitat Time Series 

Time series were derived as follows (see fig. 5.6.);-

1. Mean daily flow data from Briantspuddle for 1993 - 2000 were used to establish 

annual hydrographs for the study reaches based on a conversion factor derived 

from a linear regression of measured discharge at the study site against flow at 

Briantspuddle (appendix.3). 
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2. Monthly flow exceedance percentiles and seasonal flow exceedance percentiles 

for the study reaches were constructed for 1993 - 20.00. 

3. Daily flow gauge data were used to derive mean monthly time steps for 

discharge and hydrographs of mean monthly flows were constructed for both 

river sectors. 

4. WUA - discharge curves derived from habitat modelling were used to convert 

mean monthly discharge to mean monthly WUA for all trout life stages. 

STEP 1 
TIME SE~IES FOR MEAN MONTHLY FLOWS 

~ 4~--~r-------------------------~ .. 
!!' 
~ 3 
VI 

c 2llir--~Ir-------------+----+----~--H 

STEP 2 
Spawning WUA • discharge relationship 

0000 ,--------- --------

5000 

STEP 3 

500 .. -----~-~~--~~·------~--~~-----

10 11 11 U 22 25 21 11 ]. H 4' .] 40 • • 52 55 SI 81 I . 87 70 13 

Time (months) 

Fig. 5.6. Schematic showing steps in the generation of habitat time series. 
(The hollow arrow linking steps 1 and 3 shows that low mean monthly flows 
equate to high values of spawning habitat) . 

Monthly time steps were used both to reduce amounts of data to be processed and to 

ascertain whether biologically significant events could be identified at a relatively 

coarse temporal scale (Bovee et ai., 1994). Once generated habitat time series were 
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aggregated into seasonal time steps. Winter habitat durations (Nov - Mar) were 

determined for spawning/incubation and adult life stages. Summer growing season 

(June - Oct) habitat durations were produced for fry and adult life stages. Habitat 

specific time series were also generated using the same procedure to assess the 

importance of different meso-habitat types at different times of year. Time series were 

not constructed for spring (April- May) due to complexities of hydraulic calibration 

during this period and the absence ofH.S.I curves for early fry life stages. 

5.5.2 Development of Habitat Metrics 

In order to test the effects of temporal variations in habitat on different life stages of 

trout metrics were developed that described different aspects of the habitat time series 

(appendix.5). Mean WUA was used to integrate all habitat events occurring over the 

relevant portion of a time series. Maximum WUA reflected periods of high habitat 

availability. Effects of habitat shortages during a particular season were represented 

using minimum WUA for acute low habitat events and the mean of the lowest 50th 

percentile WUA was used to depict longer-term effects of habitat minima. Similar 

habitat metrics were also developed for "near-shore" zones within 2 metres of the bank 

and for specific meso-habitat types. 

5.6. BROWN TROUT POPULATION DYNAMICS 

Population age structure was determined for both river sectors from length-frequency 

histograms which allowed three age cohorts to be clearly identified corresponding to 

YOY (age 0+), PYOY (age 1 +) and adult trout (age > 1 +). Population size was estimated 

for each reach using the Zippin maximum likelihood method (Zippin, 1956) and trout 

abundance (N) in each age class was expressed in terms of density (N/m2) to take 

account of variations in area between reaches. Mean lengths of individuals in each 

cohort were calculated for each reach in each year. Length data from mark and 

recapture of tagged individuals were used in a von Bertalanffy growth model to derive 

predicted growth curves for trout in both the Upper and Lower river sectors. 
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5.7. TESTING RELATIONSHIPS BETWEEN HABITAT AND TROUT 

POPULATION STRUCTURE 

Habitat metrics were input to a statistical analysis package (SPSS Jar Windows. Version 

9). Pearsons correlation coefficient and simple linear regression were used to test for 

associations between habitat metrics and trout densities in each reach over a seven year 

period. Descriptive statistics were generated for population and habitat metrics to 

determine means, variance and skew of the data. A one-sample Kolmogorov-Smimov 

test was used to test that data were normally distributed. Some habitat metrics with a 

skewed distribution were natural log transformed in order to stabilise variance and 

approximate a normal distribution which followed procedures adopted by Nehring and 

Anderson (1993) for testing correlations between WUA and trout density. Frequency 

histograms were used to assess the fit to a normal curve and transformations were only 

used where both skew and Kolmogorov~Smimov z scores were significantly reduced 

indicating better approximation of normality. Two-tailed tests of significance were 

employed and relationships were considered significant for p < 0.05. 

Linear regressions of trout density (dependent variable) against habitat metrics were 

used to determine coefficients of variation and to plot lines of best fit and 95% 

confidence intervals on a scatter-graph. Statistical significance of regressions was tested 

using one-way analysis of variance to derive F values. Significant F values indicated a 

95% probability of a true linear relationship between habitat and trout density. 

Performance of regression models was assessed by comparison of standard deviation 

and standard error of the estimate and normalised plots of standardised residuals for 

dependant variables. Plotting standardised residuals against predicted values indicated 

linearity and variance equality. Linear plots indicated normality in the regression 

residuals and that the function used was appropriate to the data. 

This approach allowed PHABSIM derived predictions of physical habitat (WUA) to be 

validated against long term trout population data. This enabled the value ofWUA for 

predicting trout population responses over time to be evaluated and habitat effects on 

population dynamics of brown trout to be explored. 
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CHAPTER 6: RESULTS 

This chapter summarises the main outputs from the PHABSIM modelling and gives an 

overview of the trout population dynamics in each river sector. The final section 

presents the principal relationships between life stage specific densities and habitat. 

6.1. HABITAT MODELLING RESULTS 

Results from PHABSIM simulations consisted of; 

1. habitat - discharge relationships for trout life stages 

2. time series showing temporal variations in habitat 

3. reach plans showing spatial variations in local habitat 

6.1.1. Life Stage Specific WUA - Discharge Relationships 

Spawning Habitat 

Habitat-discharge relationships for the three study reaches showed broadly similar 

patterns of spawning habitat over the simulated flow range with maximum habitat 

occurring between 0.6 - 0.8 m3s-1 and declining as flows increased above 1.0 m3s- l
• 

Spawning WUA was substantially higher in the downstream reach of the lower sector 

(Tolpuddle 1) at flows between 0.2 - 2.0 m3s-1 (Fig. 6.1). 

Juvenile Trout Habitat (YOY/PYOY) 

Lower sector reaches had greater rearing habitat in summer for YOY trout than the 

upper sector where rearing habitat was limited (Fig.6.2). PYOY habitat was more 

abundant than YOY habitat in summer especially in the upper sector where it was 5 - 6 

times greater at Q >0.2 m3s- l
• 
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Fig. 6.1. WUA - discharge curves for spawning habitat 
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Fig. 6.2 . WUA - discharge curves for YOY rearing habitat in summer 

Adult Trout Habitat 

Habitat availability for adults (> 1 +) increased rapidly with discharge reaching an 

optimum at flows between 1.0 - 2.5 m3s· l
. Habitat quality in all reaches was slightly 

higher in summer than winter due to increased cover but optimum habitat was primarily 

available during winter (Oec - Mar). This was because flows > 1.0 m3s· 1 were rarely 

exceeded in summer but in winter were exceeded 70% ofthe time (Q50 = 1.7 m3s· I
). 
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Seasonal comparisons between reaches (Figs. 6.3 & 6.4) showed that YOY habitat in 

summer was high in the lower sector, where it exceeded adult habitat at summer flows 

«0.6 m3s-I
). However, in the upper sector YOY habitat during summer was very low at 

all but the lowest flows « 0.1 m3s-I
). PYOY habitat was the most abundant in summer 

and winter but was broadly similar to adult habitat in both the upper and lower river 

sectors. 
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3500 
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~ 2500 
I:) 

~ 2000 -« 1500 
~ 
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Discharge m 3 S ·1 

1.2 1A 

Fig. 6.3. Upper sector: WUA - discharge curves for trout life stages in summer 
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Fig. 6.4. Lower sector: WUA - discharge curves for trout life stages in summer 
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6.1.2. Life Stage Specific Habitat Time Series 

Habitat time series were constructed for the following three life stages: 

(i) 

(ii) 

spawmng 

YOY rearing habitat during the first summer 

(iii) adult habitat in winter and summer 

Spawning Habitat 

Spawning WUA was significantly negatively correlated with mean monthly discharge 

(r2 = 0.42; p=O.OO 1). Spawning WUA in all years was greater in the upper sector than 

the lower sector and showed less variability in relation to flow fluctuations (Fig.6.S). 

Discharges exceeding the 15th annual percentile resulted in the largest habitat reductions 

but the effects of high flows were much greater in the Lower sector reaches. 

14000 
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IItl Tolpuddle 2 • Tolpuddle 1 • Cobbs 

E 
0 
0 10000 0 .... 
;:;-
E - 8000 
<t 
::J 

6000 :: 
~ 
.r:. 4000 'E 
0 
:! 

2000 

0 

~I). 
Q) 

~'-:> 
C!l 

~ro 
~ 

~'\ 
Ql 

~~ 
Q) 

Spawning winter (Nov-Mar) 

Fig. 6.5. Times series showing monthly variations (Nov-Mar) in spawning habitat 
between reaches 1993 - 2000 

Spawning WUA during the hatching/emergence period (February/March) was 

significantly negatively correlated with mean monthly discharge (r2 = 0.64; p<O.OOI). 

During this late winter period spawning WUA was greatest in low winter flow years 

(e.g. 1996/97). Greater variability in spawning habitat in the lower sector was directly 

related to the higher winter peak discharges experienced compared to the upper sector. 
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Discharges greater than the winter Q35 (2.0 m3s- l
) substantially depressed WUA in the 

lower sector (Fig.6.6). 

I c::::::::J rrean rronthly discharge Ncw-Mar (dark bars ; Feb-Mar) ~ WUA in February/March I 
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Spawning season 

Fig. 6.6. Lower sector variations in spawning WUA relative to mean monthly 
discharge in February/March 

Young-of-the-year (YOY) summer habitat in the first growing season 

Time series showed that in the lower sector the downstream reach (Tolpuddle I) 

consistently had more summer rearing habitat than the upstream reach (Tolpuddle 2) 

which had the lowest of all study reaches (Fig.6.7). YOY habitat in summer was 

substantially reduced in all reaches by low flows such as those in 1995 and 1996 . 
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Fig.6.7. Time series showing monthly variations in YOY summer rearing habitat 
between reaches 1993 - 2000 
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Adult Trout Habitat 

Time series of adult habitat durations in winter (November - March) showed that low 

winter flows substantially reduced total WUA but that high flows had little effect. In the 

upper sector (Cobbs) marginal habitat availability (WUA <2m from bank) was 

depressed by high peak flows but contributed a high proportion of total adult habitat 

availability in moderate - low flow winters (e.g. winter 1996/97) (Fig.6.8). Seasonal 

habitat time series showed that marginal habitat for adults was greater in winter than in 

summer. Summer/winter comparisons over an equivalent five month period (June ­

October and November - March) showed that marginal WUA in winter exceeded that in 

summer approximately 80% of the time and was potentially a more limiting resource 

than total WUA in winter due to greater variations in availability (Fig.6.9). 
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Fig. 6.8. Time series showing adult winter habitat relative to discharge in the Upper 
sector 
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Fig. 6.9. Time series showing seasonal availability of marginal habitat for adults 
in the Upper sector 1993 - 2000 

6.1.3. SPATIAL VARIATIONS IN LOCAL HABITAT DISTRIBUTION 

Spatial variations in adult habitat suitability for the upper sector are shown in figures 

6.10 - 6.12. 

Fig. 6.10. 3D map showing channel morphology and habitat cells in the Upper sector 
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During high winter flows low velocity niches at stream margins provided better quality 

habitat as velocity suitability declined at discharges exceeding winter Q50. (Fig.6.11 a). 

Areas of prime cover were also heavily orientated towards the margins (Fig.6.11 b). In 

summer depth became a critical resource at flows less than the seasonal Q50. Pools 

became increasingly important as refugia and habitat connectivity was increasingly 

fragmented (Fig.6.12) . 
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Fig. 6.11.a) Spatial distribution of adult habitat in winter at high flows (Q=2.5 m3s·l
) 
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Fig.6.12. Spatial distribution of adult habitat in summer at low flows (Q=O.15 m3s- l
) in 

the Upper sector reach (red/orange areas = highest quality habitat) 
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6.2. OVERVIEW OF BROWN TROUT POPULATION DYNAMICS 

Comparison of trout population data was undertaken separately for the Upper and 

Lower river sectors . 

6.2.1. Length-Age Class Distributions 

Frequency histograms of trout lengths showed bi-modal normal distributions indicating 

3 distinct age cohorts (fig.6. I 6). A clear break was apparent at 140 - 150 mm separating 

trout age 0+ from age 1 + but divisions were less distinct for older trout. Length 

frequency histograms for the two river sectors indicated cohorts age 2+ and >2+ with 

modal lengths approximately 260mm and 31 Omm in the lower sector and 265mm and 

325mm in the Upper sector. It was not possible to identify a clear "break" between age 

classes for older than yearling trout from length - frequency plots. Age - length 

relationships derived from scale readings indicated that the division between 1 + and 

older trout approximated to a length of 250mm which was used to define a single age 

cohort (age > 1 +) to represent adult trout. Thus, in the present study the three age 

classes YOY, PYOY and adults corresponded to age 0+, 1 + and > 1 + trout. 

6.2.2. Trout Year Class Densities 

Densities of all age classes in both sectors showed on going upward trends following 

early year lows (I 993 - 1995) with total abundance greatest in the lower sector (Figs. 

6.13 - 6.15). Comparison of annual variation in autumn densities showed that YOY 

and PYOY densities were highest in the lower sector and relatively low in the upper 

sector. Age-specific mean annual densities showed the lower sector population 

structure was heavily biased towards juveniles. Adults comprised a higher relative 

proportion of the total population in the upper sector where a higher ratio of adults to 

fry was evident. Disproportionately high densities of PYOY relative YOY the previous 

year were evident in the lower sector with inverse relationships in some years (e.g. fig. 

6.14: 1998 - 1999). This was indicated by a near unitary relationship (0.84: I) in the 

ratio of 0+ to 1+ trout in Tolpuddle 2. Tolpuddle I had the highest mean density of 

YOY and the lowest mean density of adults. Adult densities were similar in both 

sectors and remained relatively stable after 1995. 
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Figs. 6.13 - 6.15. Annual autumn densities for 3 age classes of brown 
trout present in the study reaches 1993 - 2000. 

(Densities are expressed as numbers per age class (N) per 10m2 bed area. 
Numbers are derived using Zippin maximum likelihood of capture method 
for 3 pass electro-fishing. Year classes are defined from length - frequency 
data (see 6. 2. /)). 
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Figs. 6.13 - 6.15. Annual autumn densities for 3 age classes of brown 
trout present in the study reaches 1993 - 2000. 

(Densities are expressed as numbers per age class (N) per 10 m2 bed area. 
Numbers are derived using Zippin maximum likelihood of capture method 
for 3 pass electro-jishing. Year classes are defined/rom length - frequency 
data (see 6.2.1)) . 
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UPPER SECTOR: Cobbs Wood 

6.2.3. Year Class Carry-Over 

A significant positive correlation between 0+ year class strength and 1 + density the 

following year indicated strong first year carry over in both the Upper Sector (r2 = 0.59; 

p=0.003) ) (see appendix.6) and the Lower Sector (r2 = 0.50; p=0.005). A weak positive 

relationship was also indicated in the Upper Sector between year class strength and 

adult densities after two years, but this was not significant. No relationships were found 

between densities of 1 + juveniles and adults (> 1 +) the following year. 

6.2.4. Relationships between Adult Spawning Stock and Subsequent Year Class 

Strength 

In the Upper Sector a positive relationship was indicated between adult density and 

strength of the succeeding 0+ year class although this was not significant (r2 = 0.33; 

p=0.057) (see appendix.6). In the Lower Sector no indications of a relationship with 

adult spawning stock were found . 
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6.2.5. Trout Growth Rates 

Comparison of length - frequency plots for both sectors indicated that cohort modal 

lengths and maximum adult size were smaller in the lower sector where trout abundance 

was greatest. This was particularly evident for age 1 + juveniles where a modal length 

of 190mm compared to 220mm in the upper sector (Fig. 6.16). 
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Fig. 6.16. Length- frequency comparisons by river sector after 6 years 

A general downward trend in mean size of all trout >0+ was evident over the study 

period with mean lengths of all age classes smallest in Tolpuddle I. 

Table.2. Mean lengths for age classes of trout 

Age Class Lower sector Upper sector 

Tolpuddle 1 Tolpuddle 2 Cobbs 

Mean length mm 

0+ 103.37 108.94 109.17 

1+ 205.21 221.84 212.1 

>1+ 287.92 294.47 302.2 
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Non-linear von Bertalanffy growth curves derived from mean cohort lengths at age 

(Table 2) indicated similar early growth in both sectors. Ford-Walford plots predicted 

maximum adult size to be greater in the upper sector (L@infinity= 483mm) than the 

lower sector (L@infinity= 336mm.). Von Bertalanffy growth curves derived from 

individual mark and recapture data suggested slower growth in the early years but 

indicated that in the upper sector trout at age 4 attained a length equivalent to the modal 

length of the age 3+ cohort (325mm) in the lower sector (appendix.6). Overall growth 

rates were similar for both sectors (K=0.33 Cobbs and K=0.39 Tolpuddle) but trout took 

longer to reach maximum size in the upper sector where growth reached an asymptote 

around age 9+ at a length of 420mm. This was within 1 SE (95% level of confidence) of 

that predicted by Ford-Walford plots. In the lower sector asymptotic length was less at 

342mm, similar to that predicted by Ford-Walford plots. 

6.2.6. Length at Age relationships 

Mean adult lengths (Length at age 2+) were significantly negatively correlated with 1+ 

densities throughout the study area (r2 = 0.43; p=0.02) and in the lower sector (r = 0.44; 

p=0.02). In the upper sector PYOY mean lengths (length at age 1) were significantly 

negatively correlated with >0+ densities (r2 = 0.77; p=O.02) (appendix.6). 
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6.3. RELATIONSHIPS BETWEEN HABITAT METRICS AND TROUT 

POPULATIONS 

Table 3 shows the significant relationships between habitat metrics and life stage 

specific densities. Juvenile trout abundance (YOY and PYOY) was primarily related to 

spawning and first growing season habitat. Adult abundance was found to be most 

closely associated with over-wintering habitat. 

6.3.1. Adult Life Stage 

There were no significant relationships between adult densities (> 1 +) and mean WUA 

in summer or in winter. However, adult densities were significantly correlated with 

winter marginal habitat (ADWNSHAVG) which explained over 90% of variation in 

adult densities for 2 of the study reaches (Tolpuddle 2 and Cobbs). Figure 6.17 shows 

this relationship was particularly significant in the upper sector reach at Cobbs (p=O.O 1) . 

• Lower sector (Tolpuddle 2) • Upper sector (Cobbs) --Linear (Upper sector (Cobbs) ) 
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Fig. 6.17. Linear regression showing relationship between marginal habitat in winter 
and densities of adult brown trout the following summer 
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Table.3. Significant correlations (P<O.05) between trout density at age nand 

Weighted Usable Area (WUA) for metrics describing habitat parameters. 

(Blanks indicate non-significant correlations. Bold indicates correlations significant at 

p=O.OI level. Italics indicate relationships where metrics were natural log transformed. 

* indicates habitat metric applies to whole lower sector). 

UPPER 

HABITAT LIFE LOWER TOLPUDDLE TOLPUDDLE SECTOR: ALL 

METRIC STAGE SECTOR 2 COBBS REACHES 

WINTER 

ADWNSHAVG Adult 0.959 

ADWNSHL50 Adult 0.954 

SPOAVGHP PYOY 0.590 0.907 

SPOAVGHP YOY 0.745 

EFFSPOA VG HP PYOY 0.835 

EFFSPOA VGHP YOY 0.770 

SUMMER 

YSMIN YOY 0.826 0.698 

YS2AVG YOY 0.809 0.684 

YS2NSHAVG YOY 0.805 0.779 0.618 

ADSMIN PYOY 0.810 

ADSL50 PYOY 0.805 

ADSNSHM1N PYOY 0.804 

ADSNSHL50 PYOY 0.800 

SPAWNING + REARING 

SPOAVGHP PYOY 
+YSMIN 
SPOAVGHP YOY 
+YSMIN 
SPOMINHP YOY 

YOY 

92 



UPPER 

HABITAT LIFE LOWER TOLPUDDLE TOLPUDDLE SECTOR: ALL 

METRIC STAGE SECTOR 2 COBBS REACHES 

MESO-HABITAT: SPAWNING 

RIFAVGHPO YOY 0.807 

GLAVGHPO PYOY 0.858 

SPOAVGHP* PYOY 
50125150 

SPOAVGHP PYOY 
50125150+ 
RIFAVGHPO 

MESO-HABITAT: REARING 

RIFAVG2S PYOY 0.646 

RIFSL50 YOY 0.770 

GLAVG2S* PYOY 0.658 

GLDSL50 YOY 0.560 0.789 

FTAVG2S PYOY 0.640 

FTAVG2S YOY 0.538 

L50-100150 PYOY 0.663 

L50-100150 YOY 0.768** 

PYOY 0.697 
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6.3.2. Spawning Life Stage 

YOY and PYOY trout densities were not related to mean spawning habitat availability 

(SPOA VG) throughout the winter season (November - March). However, in the upper 

sector reach spawning metrics for the hatching and emergence period (February/March) 

were significantly correlated with YOY densities at the end of the first growing season 

(September/October) and with PYOY trout in the following year. Effective mean 

spawning habitat during the hatching period (EFFSPOAVGHP) accounted for 59% of 

annual variation in 0+ densities (F=7.26; p=0.043). This relationship was derived from 

"effective spawning" simulations which were not carried out in the lower sector but 

similar results were obtained from standard simulations. Relationships with PYOY 

densities the year after spawning were found to be more significant for standard 

spawning simulations and accounted for 82% of variance (F=18.64; p=0.01 2) in the 

upper sector (Fig.6.18). 
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Fig. 6.18. Spawning habitat in February/March related to density of 
1 + trout the following year 

In the lower sector (Tolpuddle I +2 combined) there were no significant relationships 

between spawning habitat metrics and YOY densities. However, a small but significant 

proportion of total variance in PYOY densities was explained by hatching period WUA 

(SPOA VGHP) (r2=0.35; p=0.043). 
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6.3.3. Young-Of-Year Summer Growing Season 

Metrics for juvenile habitat in the first growing season were significantly correlated 

with YOY densities. Minimum monthly WUA during the first growing season 

(YSMIN) was the best predictor of 0+ densities explaining 49% of variance (F= 18.1; 

p=0.002) across all reaches (Fig.6.19). Densities were also significantly correlated 

(p=O.OI) with (log) mean summer WUA (July - September). In the Lower sector 

minimum first growing season WUA (YSMIN) explained 68% of variance in 0+ 

densities (F=19.1; p=0.002). Marginal habitat during summer low flows 

(YS2NSHA VG) accounted for 61 % of variance in YOY densities (p=0.04) in the upper 

sector. There were no relationships between habitat in the first growing season and 

PYOY densities in any reaches but minimum summer adult habitat significantly 

explained 66% of variation in PYOY density (p = 0.028) in the Upper sector. 
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Fig. 6.19. Relationship between density ofYOY trout and WUA during first 
summer growth 

6.3.4. Effects of Spawning and Rearing Habitat on Abundance of Juvenile Trout 

A multiple stepwise regression model was developed using mean spawning habitat 

during the hatching period (SPOA VGHP) and minimum summer fry habitat (YSMIN) 
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as predictors to test whether combinations of spawning and rearing habitat across all 

reaches increased explanatory power for juvenile abundance. The model 

YOY = -0.12ysmin+ (-0.00029spOavghp) was the best overall predictor ofYOY density 

accounting for 68% of annual variation across all study reaches (F=19.28; p<O.Ol) 

compared to the 49% explained by summer rearing habitat (YSMIN) (Table.4). Model 

predictors were normally distributed and plots of residuals showed a good fit to the data. 

TABLE. 4. Step-wise regression of early life stage critical habitats on YOY densities 

Predictor F df rZ P< Coefficient Standardised 
Coefficient 

YOY rearing in summer 18.03 1 0.487 0.001 0.000979 0.952 

YOY rearing in summer; 19.282 2 0.682 0.001 -0.00029 -0.508 
Spawning-
hatching/emergence 

The extent to which early life stage habitats were limiting juvenile abundance in each 

sector was examined by aggregating spawning and rearing WUA into single habitat 

metrics combining spawning during the hatching/emergence period and fry rearing 

during summer. 

a} Upper Sector: Cobbs 

Combined metrics accounted for 61 % of annual variation in YOY densities (F= 7.96; P 

= 0.037) and 71 % of variation in PYOY densities the following year (F = 9.9; P = 

0.035). This did not increase the proportion of variance in YOY densities accounted for 

by summer rearing habitat (YS2NSHA VG) and reduced the proportion explained by 

spawning (hatching period) for PYOY densities (see Table.3). 
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b) Lower Sector: Tolpuddle 

Combined metrics accounted for 65 - 73% of annual variance in YOY densities in 

Tolpuddle 1 depending on the derivations ofmetrics used to represent spawning or 

rearing habitat components. Habitat metrics derived from minimum WUA rather than 

mean WUA during the hatching period (Sp64minHPYSMin) for the lower sector 

(Tolpuddle 1 + 2) accounted for 65% of variation in YOY densities in Tolpuddle 1 but 

no relationships were evident in Tolpuddle 2. The relationship in Tolpuddle 1 was 

increased to 73% when the mean of the lower 50th percentile of summer WUA values 

(SPOMinHPYSL50) was used to represent rearing habitat. 

This metric explained 74% of total variation in YOY densities for the whole Lower 

sector (Tolpuddle 1 +2 combined). However, the scatter-plot of this relationship 

(Fig.6.20) suggested a clear difference between the strength of the relationship for YOY 

densities in the downstream reach (Tolpuddle 1) compared to the upstream reach 

(Tolpuddle 2 - square points). The effect of adding a spawning component only 

marginally increased the proportion of variance in YOY densities accounted for by 

habitat minima in the first summer from 68% to 74%. 
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Fig. 6.20. Relationship between spawning and rearing habitat during critical periods 
and YOY density in the Lower sector 
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6.3.5. Meso - Habitat Relationships with Juvenile Trout 

The relative importance of different meso-scale habitat units (e.g. riffle, glide etc) for 

spawning and rearing was examined in order to determine whether local scale habitat 

distribution and type had a significant effect on densities ofYOY and PYOY trout. The 

spatial juxtaposition of meso-habitats is shown in appendix. 7. 

a) Spawning meso-habitat 

(i) Upper Sector: 

In the Upper sector three riffles (40, 70, 90) provided the largest combined spawning 

WUA during the hatching period which was significantly correlated with YOY densities 

(p=0.028). Spawning habitat suitability during the February - March period at these 

riffles accounted for 65% of annual variation in 0+ year class strength (F=9.33; 

p=0.028). This was a significant finding because riffles alone were indicated to be a 

better predictor of 0+ densities than total spawning WUA (hatching period) for the 

reach (~ = 0.59; P = 0.043). Combined spawning WUA (hatching period) for Glides 80 

and 95 - 110 also accounted for 74% of annual variation in PYOY densities (F = 11 .12, 

p=0.029). 

(ii) Lower Sector: 

The highest quality spawning habitats were located at riffle 50 and riffle/glide 120-

160. Mean WUA for the hatching period at these locations (SPOAVGHP50125150) was 

significantly correlated with PYOY densities the following year (r2 = 0.36, P = 0.04, F = 

5.5) but was not significant for YOY densities. Thus, these meso-habitats accounted for 

the same proportion of variation in PYOY densities (36%) as total sector hatching 

period WUA. 

(iii) Combined Sectors: 

No overall relationships between juvenile densities and mean spawning WUA during 

the hatching period (SPOA VGHP) were found. However, the best 3 riffle/glide 

spawning areas in each sector accounted for 43% of overall variation in PYOY densities 

the following year (r2 = 0.43, P = 0.003 , F = 12.02). 
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b) Rearing meso-habitat 

co Lower Sector: 

The Lower sector provided abundant juvenile nursery/rearing habitat. Habitat -

discharge relationships and time series for rearing meso-habitats are shown in 

appendix.8. Relationships were stronger for PYOY which showed similar strengths of 

association for mean summer WUA in flats, riffles and glides (p = 0.02 - 0.024). Glides 

accounted for the largest proportion of variation in densities for both YOY (r2 = 0.31, 

F=5.1, p=0.038) and PYOY (r2 = 0.43 , F=7.63, p=0.02) but were the most abundant 

habitat type (44%). However, flats comprised only 22% of habitat area but explained 

41 % of variation in PYOY (p=0.024) and 29% in YOY densities (p=0.05) suggesting 

these could be important juvenile rearing habitats during summer low flow conditions 

(July - September). PYOY densities were also significantly correlated with riffle (r2 = 

0.42, p=0.024). There were no overall sector relationships between riffle and YOY 

densities but YOY were found to be significantly correlated with riffle WUA (r2 = 0.59, 

P = 0.044) and glide WUA (r2 = 0.62, p = 0.038) in Tolpuddle 1. 

The highest quality rearing habitat in the lower sector comprised the glide/riffle/glide 

100 - 160 in Tolpuddle 2. This juxtaposition was significantly correlated with total 

densities ofPYOY in the lower sector (r2 = 0.44) and with YOY densities downstream 

in Tolpuddle I (r2 = 0.59). There were no relationships with YOY in Tolpuddle 2. 

Summer glide WUA combined with the highest quality spawning habitats (50 and 120 -

160) increased the proportion of variation explained in PYOY densities to 49% 

compared to 43% for glides (r2 = 0.49, P = 0.012, F = 9.43). 

6.3.6. Summary of Main Relationships between Habitat and Trout Densities 

1. adult carrying capacity is potentially constrained by the quality of habitat 

available in winter and bank-side habitats at stream margins are critical habitat 

components (Fig.6.17). 

99 



" 

2. adult population size appears not to be directly affected by reductions in habitat 

under low summer flow conditions (but may be indirectly affected by the impact 

oflow summer habitat on juvenile life stages). 

3. the quality of spawning habitat during the late incubation and early hatching 

period (February/March) is a critical bottleneck to juvenile abundance (YOY 

and PYOY) and which has more marked affect on local population size where 

recruitment is local (Upper sector) (see sections 6.2.2; 6.2.3; 6.2.4;) 

4. availability of rearing habitat during the first growing season is an important 

mechanism regulating 0+ year class strength (section 6.3.3 and Fig.6.19). Low 

habitat levels in summer appear to be a critical limiting factor to juvenile 

abundance given adequate spawning conditions (Fig.6.7 in year 1995). 

5. combinations of spawning and rearing habitat in the Lower sector account for a 

high proportion of variation in annual YOY densities. A particularly strong 

relationship is evident in the downstream reach (Tolpuddle 1) where 0+ 

abundance is highest (see section 6.3.4(b) and Fig 6.20). 

6. A multiple regression for spawning and summer rearing habitat variables 

explains significantly more variation in YOY abundance than rearing habitat 

alone (table.4). However, the relationship suggests that high densities are 

common when the spawning component of habitat is relatively low but declines 

rapidly with decreasing availability of rearing habitat (see section 6.3.4). 

7. Variability of local meso-scale habitat determines spatial and temporal 

distribution of early life stage habitats and there is some evidence this may affect 

juvenile recruitment. Significant relationships were more evident for PYOY 

although the importance of riffle habitats to YOY trout was identified for 

spawning in the upper sector (section 6.3.5a(i» . 

The implications of these findings are discussed in chapter 7. 
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CHAPTER 7. DISCUSSION OF MAIN FINDINGS 

Results from this study contribute to an understanding of the role of habitat in the 

mechanisms regulating a wild brown trout population in the river Piddle. The main 

findings focus on the following aspects of habitat in relation to adult and juvenile life 

stages. 

7.1. EFFECTS OF WINTER HABITAT ON LOCAL CARRYING 

~ CAPACITY FOR ADULT TROUT 

or ' 

• 

In both study sectors adult densities were initially low (1993 - 1994) as a consequence 

of low trout abundance in the early years. This was most likely due to a combination of 

high predation and degraded habitat. Prior to 1994 pike (Esox lucius) were present and 

were particularly abundant in the lower sector before being removed. In the Upper 

sector pike were relatively scarce but substantial habitat degradation had resulted from 

overgrazing. Fencing subsequently led to rapid recovery of the riparian zone after 1994 . 

Densities of all age classes in both sectors increased significantly after 1994. However, 

following initial increases adult densities remained stable and showed low annual 

variation post 1995. In addition, lack of any significant relationships between juvenile 

(YOY and PYOY) and adult densities suggests an adult population close to carrying 

capacity after 1995. Population growth is slowest when densities are very low or when 

approaching carrying capacity and potential for rapid growth is maximised at moderate 

densities where a population is well below carrying capacity. Under these conditions 

production of a strong year class would be likely to significantly increase population 

size. Thus, ifthe adult population were below carrying capacity it would be expected to 

decline following poor recruitment years but to rebound rapidly following a strong year 

class. However, the very strong 0+ year class in the lower sector in 1994 and the very 

poor cohort in the upper sector in 1995 both had negligible effects on adult population 

SIze. 

A major finding of this study was that local carrying capacity for adult brown trout was 

limited by availability of over wintering habitats but not by summer habitat. Seasonal 

variations in habitat use by brown trout are known to occur in response to water 
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temperature (Cunjak and Power, 1986; Vehanen et al. . 2000), habitat availability 

(Annear et al.. 2002) and net energy gain (Fausch, 1984). In summer, feeding is the 

predominant activity and trout prefer to hold stations in areas of low velocity adjacent to 

swift currents providing invertebrate drift (Bachman, 1984; Fausch, 1984). Results 

from this study indicated no relationships between any aspects of summer habitat and 

adult densities. This finding suggests that adult population size was not directly 

affected by habitat reductions associated with low flows which have been a recurring 

problem on the Piddle and other chalk-streams. Indirect effects resulting from possible 

impacts on juvenile life stages were not evident due to absence of any relationships 

between juvenile and adult abundance. 

However, in winter risk-avoidance, in terms of adverse environmental conditions and 

predators is probably the principal factor dictating habitat selection by brown trout 

(Heggenes et al .. 1993). Winter is a highly stressful period for stream dwelling 

salmonids. As water temperatures decrease « 8 0c) trout cease feeding or experience 

reduced ability to assimilate food (Cunjak and Power, 1987). Growth ceases and weight 

loss is common as energy reserves are mobilised to maintain homeostasis (Cunjak et al .. 

1987). Simpkins and Hubert (2000) showed that wild trout (fork length 200mm) in the 

Bighorn River, Wyoming lost on average 41 % of their September body weight by 

December. Such losses contribute to mortality by increasing susceptibility to secondary 

stress factors such as predation and disease (Hebdon, 1999). Consequently, over winter 

survival is often a critical determinant of adult population size. 

Although no relationships were found between overall winter habitat availability and 

adult densities, results showed that habitat at the stream margins was particularly 

important to adults in winter. The strength of the association in the upper sector (Cobbs) 

(r2= 0.92; p=O.OI) indicated that availability of winter marginal habitats associated with 

complex cover was a critically limiting resource and a key mechanism regulating adult 

population size. Habitat simulations clearly demonstrated the importance of marginal 

areas in the upper sector during winter flow conditions (Figs.6.11 a & b). High quality 

cover was almost entirely restricted to areas immediately adjacent to the bank where 

low velocity niches (ranging from 0.15 - 0.4 ms· l
) were increasingly concentrated at 

higher discharges (e.g. winter calibration flow) . Bank-side habitats are of particular 

importance to brown trout especially in small streams which have a much greater 
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proportion of bank-side habitat relative to stream width (Bagliniere and Arribe­

Moutonet, 1985; Eklov et aI., 1999). The regression equation for the relationship 

between density and winter marginal WUA (Fig.6.17) suggests a minimum critical 

habitat threshold below which reduction in over-wintering territories might become 

limiting for the adult life stage. WUA less than 70m2 (within 2m ofthe bank) in winter 

would be likely to significantly reduce adult population size. Maintenance of the 

existing population requires 100 - 120 m2 (approx. 1 m21l m bank length). 

The combination of cover and velocity explains the importance of marginal zones for 

brown trout over wintering in the upper sector. Lower water temperatures associated 

with the onset of winter trigger increased sheltering behaviour and a reduction in 

territoriality (Cunjak and Power, 1986) resulting in habitat niche shift (Smith and 

Griffiths, 1994; Armstrong et al., 2003). This requires over wintering habitats that 

provide both cover and velocity shelter from high winter flows. In chalk-streams, 

absence of boulders and coarser substrates means the natural senescence of aquatic and 

riparian vegetation plays an important role in determining amounts and types of in­

stream cover (Simpkins et aI, 2000). As a result cover availability shifts increasingly 

towards the stream margins as biomass of submerged macrophytes declines in winter 

(Annear et aI, 2002). Brown trout have been shown to make increased use of sheltering 

cover in winter, often in close proximity to banks (Cunjak and Power, 1986; Heggenes 

et al., 1993) where overhead cover, velocity shelter and visual isolation provide trade­

offs in forage, competition and predation risk (Kalleberg, 1958; Mortensen, 1977). 

Winter die-back of lush emergent marginal plants creates long tangled rafts of weed 

which snag around obstructions and woody debris creating complex cover zones of low 

overhead and submerged obstacle cover. These complex cover combinations provide 

excellent winter refugia for adult trout and a major finding of this study has been to 

demonstrate the importance of these zones in small chalk streams in winter (figs. 

6.11 (b) and 6.17). These findings are also supported by work elsewhere which has 

shown that brown trout prefer habitats providing maximum amounts of complex cover 

combinations in winter (Vehanen et al., 2000). Cunjak and Power (1987) demonstrated 

that trout utilised submerged cover more frequently than above water cover in winter. 

Velocities suitability was of critical importance to over-wintering habitat because at 

water temperatures < 10°C brown trout have a clear preference for slower velocities 
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than in summer (Heggenes and Saltveit, 1990; Heggenes and Dokk, 2001). 

Considerable area of suitable velocities <0.3 ms·1 remained available at the margins 

even at winter flows well in excess of the winter calibration discharge, particularly 

throughout the upper part of the reach between 60 - 120m. Adult preference for such 

areas in winter is a response to reduced nutritional requirements, drift availability and 

the need to conserve energy (Cunjak and Power, 1986). Simpkins et aI, (2000) noted 

that 72% of wild trout in a Wyoming stream preferentially selected maximum mean 

column velocities <0.3 ms· 1 in January when no such velocity selection had been 

apparent the previous October. 

As winter progresses and aquatic vegetation declines larger trout have been shown to 

aggregate in deeper, slow pools during the day (Heggenes et aI, 1993; Griffiths and 

Smith, 1993). However, pools did not provide significant velocity refuge at flows 

exceeding 1.0 m3s· 1 in the upper sector. Results from the present study suggest this 

behaviour may be more likely where cover is limited (Cunjak and Power, 1986) and that 

where bank-side sheltering cover remains abundant in winter relatively shallow water 

appears to be preferable to pools for adult over-wintering habitat. This is consistent with 

the findings of Heggenes and Dokk (2001) that showed brown trout used a narrower 

range of depths in winter avoiding deeper areas in favour of relatively shallow water (20 

- 45 cm) often close to banks. 

7.1.1. Conclusion 

Bank-side cover is an important microhabitat resource in winter. These findings 

indicate that habitat complexity, particularly availability and diversity of complex cover 

is a critical determinant of adult winter carrying capacity at the reach scale and may be 

more important for over-winter survival in chalk-streams than availability of pools. 

Hunt (1969) noted a 156% increase in brook trout yield after the addition of in-stream 

cover in a Wisconsin stream, most of which was attributed to increased winter survival. 

Metcalfe et al., (1999) considered that availability of shelter from predation risk, 

especially in winter was at least as important as foraging space in determining trout 

densities and growth. This has important implications for habitat enhancement which 

often seeks to increase in-stream diversity by creating deep holding pools for adult 

trout. Fishery management practises often remove dead marginal vegetation in the 
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interests of bank "maintenance." These results emphasise the importance of fencing to 

allow riparian zone recovery and other techniques such as brush bundle placement 

where natural regeneration requires assistance. 

7.2. ASPECTS OF JUVENILE TROUT POPULATION DYNAMICS 

Densities of juvenile trout (YOY and PYOY) were consistently higher in the Lower 

sector. In the upper sector where juvenile densities were lower significant positive 

relationships between YOY and PYOY densities the following year indicated strong 

first year carry over (r2 = 0.59, p = 0.003) and there was a positive relationship between 

adult spawning stock and subsequent year class strength (appendix.6). These findings 

suggest juvenile recruitment in the upper sector was derived from a resident adult stock 

spawning locally. 

Tagging experiments conducted by the Game Conservancy Trust indicated that 60 -

100% of marked YOY were recaptured in the same or an adjacent reach the following 

year such that a high proportion of age 1 + trout comprised "local" fish tagged the 

previous year (Summers, pers. corn). However, in the lower sector first year carry over 

was not indicated because PYOY densities were disproportionately high, exceeding 

YOY densities the previous year in some reaches (e.g. Tolpuddle 2). Tagging also 

indicated a high proportion of unmarked 1 + trout in the lower sector which may have 

originated from elsewhere. 

These findings suggest that migration may therefore be an important mechanism in the 

population dynamics of the lower sector reaches with significant in-migration of 

juveniles possibly occurring between the first and second summers. Juveniles have a 

natural tendency to drop downstream to establish territories especially at high densities 

and this movement can distort the age structure of a population (Euzenat and Fournel, 

1976). Euzenat and Fournel (1976) showed that spring and autumnal downstream 

migrations of age 1 + and 2+ brown trout in the river Scorff, France, resulted in major 

seasonal fluctuations in population structun: with a substantial shift towards 1 + in 

summer. 
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The absence of any relationships between juvenile densities and adult spawning stock in 

the lower sector may be due to a combination of in-migration of juveniles together wi th 

a small anadromous spawning component. Adult densities in all lower sector reaches 

plotted against YOY the following year indicated a relationship that did not pass 

through the origin but intercepted the y-axis as a positive number. Thus, anadromous 

trout may make a limited but more significant contribution to juvenile recruitment in the 

lower sector than in the upper sector which may account for the strong 0+ year class in 

1994 in the lower sector (Figs.6.13 & 6.14). 

7.3. EFFECTS OF CRITICAL HABITAT PERIODS ON JUVENILE 

ABUNDANCE 

A major finding from this study was that juvenile recruitment in the river Piddle was 

strongly influenced by two critical habitat periods (1) spawning WUA during the egg 

hatching!alevin stage (February/March) and (2) summer rearing WUA for the YOY life 

stage (July - September). 

7.3.1. Spawning Habitat during the Egg HatchinglAlevin Stage 

Spawning habitat was significantly correlated with densities during the hatching! 

emergence period (Feb/Mar) but not for other winter months. Relationships were 

strongest where juvenile densities were lowest and significantly accounted for 59% of 

variation in YOY densities in the Upper sector (p=0.02). Strong relationships between 

adult spawning stock and year class strength the following year together with high carry 

over between 0+ and 1 + year classes (p=0.003) indicated that recruitment in the Upper 

sector was "local" which probably accounted for the stronger association with local 

spawning conditions. 

Temporal variations in spawning WUA during February and March closely reflected 

stream flow variability and indicated that increased YOY mortality occurred as a result 

of high discharges at this time. Winter flow conditions may affect egg survival at any 

time from egg deposition (November - January in the Piddle) through to emergence 

(March). During high discharges sediment transport increases and accumulation of fine 

material in spawning gravels can reduce intra-gravel oxygen availability or physically 
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trap alevins in the gravel preventing emergence (Crisp, 1993). Lack of any 

relationships between density and spawning habitat between November and January 

suggested that conditions during the egg stage were relatively unimportant to 

recruitment and that availability of suitable spawning areas was not limiting. However, 

in February and March flow conditions were fundamental in determining the suitability 

of intra-gravel conditions within redds at the time of hatching and during the pre­

emergence alevin stage. Extreme floods, such as those experienced in February 1995, 

put bottom materials into motion and substrate redistribution is likely to have resulted in 

"wash out" of eggs from the gravel and high mortality of alevins. This accounts for the 

virtual absence of a 0+ year class in 1995 in the upper sector (Fig.6.15). These findings 

correspond with those of Jensen and Johnsen (1999) who showed that high spring flood 

peaks coincident with the hatching and emergence period negatively impacted survival 

of YOY brown trout and Atlantic salmon. These authors found that high discharges 

during the alevin stage and the first week after emergence significantly increased 

mortality but that floods were of minor importance at the egg stage or longer after 

emergence. 

This study shows that alevins and early post-emergent fry are particularly vulnerable to 

extremes in February and March and stable flows are critical to year class strength 

during this period. Strongest year classes were associated with low-moderate flows 

throughout the winter period with an absence of extremes (e.g. 1996 and 1997). These 

findings support those of Nehring and Anderson (1993) who found that flow stability 

from egg deposition through to hatching was critical to year class recruitment and that 

timing and magnitude of variations in fry WUA and mean monthly discharge during 

incubation were the most important factors limiting trout recruitment in 10 Colorado 

streams. The relative immobility of early life stages makes them most vulnerable to 

flow induced habitat variations. Daufresne et al., 2005 demonstrated that post emergent 

brown trout fry were highly sensitive to increased water velocity for 5 - 6 days after 

emergence from the gravel and identified a short critical period that corresponded to the 

time taken for 80% of fry to be displaced downstream from redds. Heggenes and Traaen 

(1988) demonstrated experimentally a flow sensitive period of 2 weeks for brown trout 

entering the free feeding stage. 
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Thus, habitat bottlenecks may be more likely at early life stages with potentially 

important implications for juvenile recruitment dynamics. Density dependent mortality 

is high in post emergent fry such that densities are largely independent of egg numbers 

at high density and bottlenecks tend to trigger density dependent mortality (Elliott, 

1994; Armstrong et al., 2003). In addition, high velocities experienced during flood 

events increase rates of downstream displacement of fry (Crisp and Hurley, 1991a; 

Daufresne et aI., 2005). However, Daufresne et aI., (2005) observed experimentally that 

velocity increases alone did not result in the increased YOY mortality observed in the 

wild. This may suggest that environmental conditions other than velocity associated 

with flood peaks (such as increased suspended solids) may reduce YOY survival. 

Alternatively, more rapid displacement of fry into downstream zones may have 

implications for utilisation of nursery habitats and density dependent mechanisms which 

may negatively impact survival. 

7.3.2. Rearing Habitat for YOY Trout during the First Summer 

Minimum monthly WUA significantly explained 49% of variation in YOY densities 

across all study reaches (p<O.OO 1) (Fig.6.19). Thus, low levels of nursery/rearing 

habitat in the first summer acted as a critical bottleneck for YOY trout in the river 

Piddle and was limiting to juvenile recruitment. Low flows occur naturally between 

July and September and YOY habitat was lowest in months with the lowest summer 

flows such as in 1995 and 1996. This agrees with the findings of Strevens (1999) who 

examined the effects of abstraction 2 km downstream of the present study site on 

juvenile brown trout habitat in summer. Abstraction was shown to have resulted in 

significant reductions in fry WU A between 1988 and 1992. Low summer habitat was 

also found to be spatially correlated with a zone oflow relative abundance of 0+ trout 

which was evident during the period 1991 - 1996. In the present study where YOY 

densities were highest (in the Lower sector) minimum monthly WUA significantly 

explained the greatest proportion of variation (68%) in density (p<O.OOl). Low flows 

caused a physical reduction in available habitat and therefore a reduction in carrying 

capacity which is likely to have increased competition for space and food especially at 

higher densities. These results suggest that low flows have created a bottleneck leading 

to density dependent regulation of population size at the fry life stage. Density 

dependent effects have been shown to be most pronounced during short critical periods 
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usually during the early post - emergent fry stage (Milner et al. , 2003). Elliott (1993a) 

showed that regulation of population size in anadromous brown trout was controlled by 

density dependent mortality operating for a period between 30 - 70 days following fry 

dispersal from spawning gravels. This probably occurs during April and May in the 

river Piddle and is undoubtedly an important period. However, this study has shown that 

population regulating bottlenecks occur much later in summer and are more significant 

at higher juvenile densities. Other studies have also suggested that density dependent 

regulation in brown trout may be sustained during a longer period, at least through the 

first summer (Gee et ai, 1978; Egglishaw and Shackley, 1977; Gardiner and Shackley, 

1991). N islow et al. (1999) showed that behavioural shift towards risk minimisation 

occurs later in summer. Where availability of sheltering and refuge habitats is limited by 

low flows this may result in increased juvenile predation. 

7.3.3. Summary 

These findings demonstrate that habitat modelling at fine spatial scales but relatively 

coarse temporal scales (monthly time steps) successfully identified critical habitat 

periods acting as bottlenecks to juvenile recruitment. Extraction of only three months 

from an annual time series (February/March + minimum WUA for July - September) 

was sufficient to identify such critical periods. However, juvenile recruitment dynamics 

are complex and different aspects of habitat cannot be viewed in isolation. The spatial 

and temporal inter-relationships between spawning and rearing habitat are also 

important and need to be considered in the context of trout behaviour. 

7.4. SPAWNING AND REARING HABITAT EFFECTS ON JUVENILE 

TROUT 

A diversity of habitat types is important in mitigating brown trout life history strategies 

because microhabitat availability acts as a limiting factor to trout abundance. The riffle 

- glide - pool sequence can be regarded as a functional habitat unit (FHU) important in 

meeting the habitat requirements of different trout life stages which will utilise different 

habitat types in response to changing ontogenological, seasonal and diel requirements 

(Roussel and Bardonnet, 1997). Pool-riffle sequences are regularly occurring natural 

features of alluvial river channels and can be considered meso scale habitat units (l -
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lOOm). An intermediate meso-habitat unit "glide" tends to dominate proportionally in 

the river Piddle which is typical in chalk streams (Raven, 1998). 

7.4.1. Importance of Meso-Scale Habitats for Spawning and Rearing 

Riffles and glides were important meso-habitats for spawning. In the Upper sector both 

were significantly correlated (hatching period WUA) with YOY densities and glides 

were correlated with PYOY densities. Time series showed that spawning WUA in 

riffles was typically in the order of 50% greater than in glides during the study period. 

This importance of riffles was demonstrated by the fact that a higher proportion of 

variance in YOY densities was accounted for by riffle WUA (r2 = 0.65; P = 0.014) than 

by total spawning WUA in the upper sector (r2 = 0.59; p=0.02). Local recruitment from 

a resident adult spawning stock may mean lower spawning densities in the upper sector. 

This would result in more limited competition and efficient reproduction so the numbers 

of juveniles produced would be more closely related to the spawning level than in the 

lower sector (Milner et al .. 2003). 

In the Lower sector WUA - discharge curves showed that young-of-year 

nursery/rearing habitats were most abundant and juvenile densities particularly PYOY 

were highest. Different meso-habitat types (riffle, glide, and flat) all provided rearing 

habitat in summer which was more significantly correlated with PYOY than YOY 

densities. All meso habitat types were significantly correlated with PYOY density 

suggesting that different meso-habitats were important for rearing at different times, 

probably depending on variations in abiotic conditions such as flow and temperature. 

Thus, at typical summer flows at or above (calibration) base flow, glides provided the 

most rearing WUA but at low flows (below calibration) flats constituted the largest fry 

WUA (appendix.8). Flats may have provided potentially important refugia for YOY 

trout during summer droughts given the relatively high sensitivity of 0+ year class 

strength to low summer habitat levels. 

Flats may also be important to first winter survival of young trout. Behavioural 

responses to low water temperatures « 8 QC) result in reduced tolerance to high 

velocities and increased importance of slower flowing meso-habitats in winter 

(Heggenes and Saltveit, 1990; Cunjak and Power, 1986). Heggenes and Dokk (2001) 
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demonstrated that age 0 brown trout showed a marked seasonal shift in meso habitat use 

from shallower habitats such as riffles and runs in summer towards slow flowing glides 

and flats in winter. Survival rates in the Lower sector were indicated by tagging to be 

higher than in the upper sector (Summers. pers corn). This may reflect better over 

wintering conditions for juveniles in the Lower sector. Good over-wintering conditions 

could also account for the substantial in-migration of juveniles between the first and 

second summers. Studies of juvenile salmon have shown that such movements may be 

seasonally triggered and lead to redistribution from areas favouring YOY in summer to 

areas favouring older salmon in autumn (Rimmer, 1983; 1984). However, better over 

winter survival of juveniles in the lower sector may also be indicative ofless 

competition for shelter from adult trout. Mass is an established determinant of 

successful shelter competition (Orpwood et al., 2003) and dominant trout are likely out 

competing juveniles for over wintering habitats in the upper sector. 

In summer, the high 0+ densities in the downstream reach (Tolpuddle I) were probably 

accounted for by preference ofYOY trout for shallow habitats such as riffles (Roussel 

and Bardonnet, 1997; Heggenes and Dokk, 200 I). Fry WUA was greatest in Tolpuddle 

1 which consisted almost entirely of riffle and shallow glide that provided young-of­

year nursery habitats of similar quality over the typical summer flow range. Both these 

meso habitats were significantly correlated with 0+ densities in Tolpuddle 1, accounting 

for approximately 60% of variation during low summer habitat (mean oflowest 50%). 

This is in accordance with the findings of Heggenes et ai, (2002) which showed that 0+ 

brown trout utilised glides as much as riffles under low flow conditions in summer. 

Riffles and glides were the meso-habitats most affected by low flows. Summer flow 

augmentation to reduce juvenile habitat depletion (Strevens, 1999) had the effect of 

increasing the relative amounts of fry habitat in riffles and glides available in summer 

during the later years of the study (1997 - 2000) (appendix.8). These nursery/rearing 

habitat increases may have been particularly important as they corresponded with 

continuing upward trends in YOY trout densities. 

These results suggest that a diversity of meso habitat types can be important for juvenile 

trout because habitat selection is dynamic in response to flow conditions, temperature 

and habitat availability. Riffles and glides are important for spawning and as summer 
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rearing habitats but deeper, slower flowing areas such as flats may be important over 

wintering habitats as well as providing refugia during summer low flows. 

7.4.2. Spawning and Rearing Habitat Juxtaposition in Relation to Juvenile 

Recruitment 

Results from this study have shown that temporal variation in habitat quality associated 

with critical periods for spawning and rearing were important limitations to first year 

survival in the river Piddle. The multiple regression model constructed from metrics 

representing these two critical periods (spawning WUA during hatching/emergence + 

minimum rearing WUA for fry in summer) significantly explained 68% of variance in 

YOY densities for all study reaches (TableA). Thus, quality and quantity of meso­

habitats for spawning and rearing life stages was affecting the productive capacity of 

habitat and hence juvenile abundance. 

The spatial arrangement or juxtaposition of different meso-habitat types in relation to 

fry dispersal from redds and scales of juvenile movement between habitats as fish 

develop may also be an important characteristic affecting juvenile production (Kocik 

and Ferreri, 1998; Armstrong et aI. , 2003). At larger scales this has been shown to give 

rise to markedly different population dynamics (Kennedy and Strange, 1982; 1986). 

However, the relative locations of different habitat types (juxtaposition) and the degree 

of intermixing between them (interspersion) may also be an important habitat 

characteristic affecting juvenile production at much smaller reach scales. Recruitment to 

patches of habitat from any particular spawning area can be expected to be spatially 

heterogeneous and dependent on distance and fry dispersal patterns from redds (Crisp, 

1995). Thus, downstream of spawning habitat fry abundance will remain highly 

localised, reflecting the pattern of redd distribution, even where nursery/rearing habitat 

is homogeneous. Armstrong (2005) modelled this process and showed that within lOOm 

of the dispersal point mass and density followed the thinning line as fish saturated the 

habitat but further downstream the population was below saturation. Thus, rearing 

habitat that is disconnected from spawning habitat will remain under utilised even 

where it is abundant such that spatial structuring of spawning and rearing habitats can 

act to limit local juvenile production (Kocik and Ferreri, 1998). 
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Tagging studies in the river Piddle showed high site fidelity with limited movement 

between reaches. This local residency is common in chalk streams (Solomon and 

Templeton, 1976) and is indicative of abundant and highly interspersed habitat for each 

life stage and season such that fish do not have to move to acquire requisite resources. 

The limited range of fry dispersal means that the geographic placement of redds in 

relation to nursery/rearing habitat may act to constrain local juvenile production in the 

Upper sector where juvenile rearing habitat was relatively scarce. 

In the Lower sector spatial juxtaposition of meso-habitats appeared to be contributing to 

competitive segregation ofYOY and PYOY. Minimum spawning and rearing WUA 

(SPOMinYSL50) explained 74% of total variation in YOY densities in the lower sector 

reaches (Tolpuddle 1 +2 combined) (Fig.6.20). However, PYOY trout were the 

dominant age class in the upstream reach of the lower sector (Tolpuddle 2) with YOY 

more abundant in the downstream reach (Tolpuddle 1). The scatter-plot (Fig.6.20) of the 

relationship indicates that high YOY densities in the downstream reach (Tolpuddle 1) 

were strongly associated with minimum spawning and rearing habitat availability 

throughout the lower sector but YOY densities in the upstream reach (Tolpuddle 2) 

showed no relationship. Up to 73% of annual variation in YOY densities in Tolpuddle 1 

was accounted for by metrics that described minimum spawning and rearing habitat 

availability for the lower sector as a whole. Meso-habitats providing the highest quality 

spawning and rearing habitat in the Lower sector comprised a glide-riffle-glide 

juxtaposition (lOO - 160m) located in the upstream reach (Tolpuddle 2) (appendix.7). 

WUA for this FHU was not related to YOY densities in Tolpuddle 2 but was 

significantly correlated (r2 = 0.57; p=0.05) with YOY densities in the downstream reach 

(Tolpuddle 1). 

These findings suggest that downstream dispersal of fry from areas upstream appeared 

to be in part driven by inter-cohort competition resulting in habitat use becoming 

partitioned between Tolpuddle 1 and 2. Competition and predation from older trout is a 

likely contributor to this downstream movement of 0+ trout. Age 1 + trout tend to be 

dominant and out-compete fry for preferred habitats as part of cost minimisation 

expelling 0+ fish to shallow riffles and low velocity river margins (80hlin, 1977; 

Cunjak and Power, 1986). Tolpuddle 1 has a lower mean depth and a greater relative 

area of shallow water than Tolpuddle 2. This may explain why riffle and glide meso-
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habitats in Tolpuddle 1 were not correlated with 1 + density downstream and why no 

correlations were evident between any meso-habitats in Tolpuddle 2 and 0+ densities 

upstream. Heggenes et al (2002) showed that under summer low flow conditions age 0+ 

trout used shallow fast flowing meso-habitats proportionally more whereas 1 + 

frequented slower flowing deeper habitats such as deeper glides and pools. Bardonnet 

and Heland (1994) also found that 0+ trout occupied significantly shallower water in the 

presence of older trout. These authors showed that downstream movement of newly 

emerged brown trout fry increased by 20% when emergence occurred in an area of high 

predation risk from 1 + trout and bullhead. Lower densities of 1 + and older trout in 

Tolpuddle 1 provide the fittest YOY trout competitive advantage and better opportunity 

to defend territories. 

Movements and migrations of trout have the potential to increase distribution and 

reduce local density - dependent constraints on production enabling fish to capitalise on 

spatially dispersed habitats most suitable for different life stages (Armstrong, 2005). 

The fact that the relationship between PYOY trout in Tolpuddle 1 and adult density the 

following year in Tolpuddle 2 is stronger than in Tolpuddle 1 may suggest that a 

proportion of "local" 0+ trout move back upstream as they mature to occupy areas of 

deeper water with more abundant cover available in Tolpuddle 2. 

Such movements probably contributed to the trout population in the lower sector 

saturating the available habitat over time once the cropping effect of pike predation was 

removed. This habitat saturation resulted in density dependent growth and trout attained 

a smaller maximum size than in the upper sector where densities were significantly 

lower. Strong declines in modal lengths of 1 + together with the smaller maximum size 

of adults suggested the lower sector population was becoming asymptotic and that 

biological carrying capacity was becoming progressively growth limiting. The apparent 

"stunting" of cohorts seen in later years indicated a population that was at carrying 

capacity and according to recent work by Armstrong (2005) is a result of the integration 

of density - dependent growth and self thinning at high densities. This results in a 

change in the gradient of the relationship between mass and density at habitat saturation 

such that fish mass becomes much smaller for a given density. 
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7.5. SOME COMMENTS ON THE MODELLING APPROACH 

The modelling approach used in this study contributes to the debate regarding the 

validity of outputs from PHABSIM and merits some further consideration. 

7.5.1 Habitat Suitability Index Curves 

There are a number of limitations associated with use of category 2 HSI curves which 

are implicit to any application of PHABSIM. HSI curves represent a biological response 

to habitat that inevitably involves a degree of ecological uncertainty in curve shape 

which is difficult to quantify (Orth, 1987; Bovee et al., 1998). Errors arising from these 

uncertainties can significantly influence WUAldischarge relationships under certain 

conditions (Booker and Dunbar, 2004; Dunbar et aI. , 2001). 

This study used generic curves developed over a wide range of chalk stream sites rather 

than site-specific HSI curves which are conditioned by habitat availability and increase 

bias where the range of habitat utilisation is artificially narrow (Dunbar et al. , 2001). 

This afforded greater confidence in the WUAldischarge relationships because curves 

were not conditioned by site specific habitat availability. This study also benefited from 

recent research which has indicated that habitat preferences (selection within available 

habitats) for trout and salmon in the 80 - 200mm size class are broadly consistent for 

velocities < 0.5 ms-I and for depths up to 0.6 m (Dunbar et al., 2001). The early fry 

stage « 80mm) was not modelled and depths > 0.6m were primarily confined to winter. 

Thus, the HSI curves used reflected a considerable narrowing of uncertainty with regard 

to habitat selection for YOY and PYOY in summer. 

HSI curves used for channel index affected habitat predictions. Relative magnitudes of 

WUA varied depending on whether cover or substrate was employed in the modelling 

computations. The distribution of suitable cover was spatially heterogeneous and highly 

skewed towards the margins whereas substrate was relatively homogeneous which 

resulted in a relative increase in the effect of depth/velocity suitability. Thus, 

simulations using substrate predicted significantly greater habitat availability than 

cover, even when a minimum composite suitability factor was applied (Fig.7.l). 

Therefore, cover was a more limited resource and WUA at stream margins became 
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relatively more important when cover was used. Use of different HSI curves for channel 

index in the Lower sector had negligible effects on correlations between growing season 

habitat and juvenile densities which suggested that depth and velocity were more 

important in determining YOY summer habitat than substrate or cover. 
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Fig.7.1. Variations in WUA predictions for adult trout in winter based on 
channel index 

HSI curves for cover were not readily available and none had been previously 

developed on the river Piddle. A "curve" was developed by the author for use in this 

study that assumed an approximately linear increase in suitability values depending on 

type, size and complexity of cover based on approaches used elsewhere for cover 

criteria classification (N ehring and Anderson, 1993: Bovee et al. 1994). However, this 

was not a habitat preference curve as it was not based on frequency of use data. 

7.5.2. WUA - Discharge Relationships 

Spawning simulations in the Upper sector used a binary curve to define optimal 

substrate conditions in addition to univariate suitability indices. Bovee et al. (1994) 

considered that binary curves were a more robust approach for quantifying actual 

habitat area than conventional suitability indices because they avoided problems 

associated with assigning a quality to each part of a biological response curve. Use of 

binary curves resulted in very similar WUNdischarge relationships to univariate curves 
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because most substrates consisted of medium - coarse gravel which was within the 

optimal range used for the binary curves. 

An examination of the effects of different simulation strategies on spawning habitat 

predictions in the Upper sector demonstrated no appreciable difference between mean 

WUA and "effective" WUA during the hatching period (Fig.7.2). However, greater 

relative variations in high quality habitat (minimum composite suitability factor = 0.5 

applied) were demonstrated during the hatching period than over the whole winter 

period. 
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Fig. 7.2. Effects of different simulation strategies on spawning habitat predictions in 
the Upper sector 

WUAldischarge relationships were also found to be sensitive to hydraulic 

considerations and seasonal differences. Increased hydraulic complexity magnifies 

differences in calculated physical habitat (WUA) (Booker and Dunbar, 2004). The 

sensitivity of hydraulic models to seasonal changes in biomass of submerged 

macrophytes was of particular significance because hydraulic roughness in chalk­

streams increases significantly as discharge drops in summer (Johnson et al., 1993). 

This caused particular problems in spring/early summer when Ranunculus reached 

maximum biomass resulting in a stage increase with declining discharge. Heame et al. 

(1994) demonstrated that macrophytes distorted habitat results by up to 34% where 

hydraulic models were calibrated to a non-macrophyte scenario. This was overcome by 
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undertaking separate hydraulic calibrations using different combinations of calibration 

-flow sets for different times that reflected the natural senescence of in-stream vegetation 

and using WSP to modify roughness (see chapter 5). 

Vegetation also had substantial impacts on velocity distribution through a cross section. 

Seasonal and annual variability in biomass is unpredictable and locations of individual 

macrophytes, insofar as they affect velocity at a given point, cannot be considered 

"fixed" in the same way as an obstruction such as a boulder. Velocity predictions have a 

substantial degree of uncertainty because velocity profiles are by their nature transient 

and vary chaotically. A significant finding of this study is that, in chalk-streams, 

seasonal variations in WUA predicted by PHABSIM are most sensitive to the 

calibration sets used to model velocity. Use of different velocity sets to calibrate the 

VelSIM model for summer and winter periods of the hydrological cycle had a 

substantial effect on WUA-discharge relationships (Fig.7.3). 
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Fig.7.3. Effects of season on WUA - discharge relationships for adult trout 

Unlike depth - discharge changes which were relatively linear, velocity changes were 

non-linear in both magnitude and pattern of distribution. Velocity distributions not only 

changed with spatial and temporal variations in particular plant assemblages, but the 

"mobility" of submerged macrophytes meant that subtle changes in velocity constantly 

occurred as plants waft in the current and funnelled flows creating significant habitat 

features at certain times of the year which disappeared at others. In these respects, 
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chalk-streams are more complex to model hydraulically than upland streams and the 

physical complexity of modelled reaches necessitated a considerable degree of care to 

achieve accurate model calibrations which fundamentally affected predictions of trout 

habitat. 

7.5.3. Other Methodological Considerations 

The present study has highlighted that use of relatively coarse temporal resolutions 

(monthly time steps) can be successful in identifying biologically important events but 

interpretation of results is sensitive to the time series used. A finer temporal resolution 

focussed on hatching/swim-up (February - March) and YOY first summer (July ­

September) periods would be beneficial for identifying critically limiting habitat 

durations regulating 0+ year class strength in chalk-streams. Daily time series would 

identify periods within these months when higher and lower than average habitat levels 

were occurring that could represent critical thresholds and act as bottlenecks in trout 

populations (Capra et al .. 1995). Temporal intervals should be small enough to avoid 

masking biologically significant events but sufficiently large to reduce the volume of 

data processing. An averaging period of 7 days probably represents the most practical 

compromise (Bovee et ai., 1994). 

The value of the results in this regard would be enhanced by the addition oftemperature 

time series to estimate starting dates for reproductive and early life history phases and to 

calculate degree day accumulations (Bovee et ai., 1994). Degree day accumulations are 

linked energetically to juvenile growth rates and are useful for evaluating critical habitat 

durations when temperature conditions are favourable for a particular life stage. For 

example, periods of high quality spawning habitat that occur during sUb-optimal 

temperatures will be much less important to subsequent year class strength and could be 

excluded from a critical habitat thresholds analysis. These approaches would enable 

managers to better understand the multiple linkages that exist between microhabitat, 

thermal regime, first year growth and year class strength which ultimately limit 

populations. 
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CHAPTER.8. CONCLUSION 

The aim of this thesis was to examine habitat - population relationships for a wild 

brown trout population in the river Piddle, Dorset and to model the effects of seasonal 

fluctuations in habitat availability/quality for different life stages of trout. The primary 

objectives were as follows:-

Obiective 1: 

Obiective 2: 

Analyse the dynamics of the brown trout population in the river Piddle 

Quantify habitat quality for juvenile and adult trout in 

contrasting reaches during summer and winter. 

Obiective 3: Examine effects of temporal changes in habitat on trout abundance and 

identify aspects of habitat acting as population limiting factors. 

Obiective 4: Assess the importance of spawning and rearing habitats in relation to 

juvenile recruitment 

This chapter examines the extent to which these aims and objectives have been met and 

evaluates the contribution of the main findings to an understanding of habitat limitations 

to trout production in self sustaining wild populations. The significance of these results 

is assessed in relation to habitat enhancement and the efficacy of PHABSIM for the 

management of chalk rivers. 

8.1. Objective 1: BROWN TROUT POPULATION DYNAMICS 

Main Findings: 

Population size was primarily regulated by year on year variations in 0+ recruitment and 

adult spawning stock size. However, there were considerable differences between the 

trout populations of the Upper and Lower river sectors. In the Upper sector 0+ densities 

were more closely related to adult stock size suggesting that recruitment was primarily 

derived from a resident adult population. In the Lower sector substantial increases in the 

ratio of adults to young-of-year indicated predation was a likely factor that was limiting 
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the population at the commencement of the study period. Tagging indicated limited 

movement of individuals aged 1 + and > 1 + but there was evidence of significant in­

migration of juvenile trout into the lower sector between autumn and the following 

spring. 

Trout lengths were strongly negatively correlated with density and growth rates showed 

clear density dependent effects. Trout grew more rapidly and attained larger maximum 

size in the upper sector where densities of age 0+ and 1 + were significantly lower. 

Stunting was apparent in the Lower sector following year.on year abundance increases 

which suggested that habitat saturation was occurring. 

Significance: 

The effects of reduced predation have allowed optimal use of previously under-utilised 

habitat over time. Reductions in asymptotic lengths in the Lower sector with increases 

in abundance suggest that habitat carrying capacity can be described by the slope of the 

self thinning line (Arm strong, 2005). In later years habitat saturation led to a marked 

reduction in fish mass for a given density producing a stunting effect not apparent in the 

upper sector. This suggests that at high densities biological productivity becomes a 

potentially more important limiting factor than physical habitat even in high 

productivity chalk streams. This is consistent with findings of Bagliniere and Maisse 

(1990) who developed a growth model for 0+ trout which showed that biological 

carrying capacity became progressively growth limiting. 

8.2. Objectives 2 & 3: ADULT TROUT 

Main Findings: 

1. Habitat availability in winter is more critical than in summer 

There were clear distinctions between summer and winter habitat effects on adult trout 

in the Upper sector. Summer low flows depressed WUA mainly due to associated loss 

of depth but had no effect on density. Peak flows in winter reduced WUA due to 

increased velocities. Lack of velocity shelter and cover away from the stream margins 
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probably accounted for the absence of any relationships between (aggregate) winter 

habitat and adult densities. However, marginal habitats were more abundant in winter 

than summer due to depth - dependent habitat gains at higher flows which occurred 

where the combined effects of complex cover and low velocities were concentrated. 

2. Riparian marginal zones are particularly important over wintering habitats 

for adult trout and limit local carrying capacity at the reach scale 

In the Upper sector adult trout comprised the largest proportion of the total population 

and marginal habitat in winter accounted for over 90% of variation in densities. The 

strength of this relationship and the lack of variation in adult population size after 1995 

suggest that marginal habitats associated with riparian zones were a critical determinant 

of adult carrying capacity. 

Significance: 

These findings emphasise the importance of habitat complexity which affords velocity 

shelter and overhead cover in winter. Riparian zone habitats may have a more important 

influence on over-winter survival in small streams than availability of pools and will be 

a key determinant of carrying capacity at a reach scale where complex bank-side cover 

remains present throughout the year. This highlights the importance of fencing of 

riparian zones and has important implications for the management of wild chalk-stream 

fisheries. 

8.3. Objectives 2 & 3: JUVENILE TROUT 

Main Findings: 

3. Two flow related critical periods significantly affect juvenile recruitment: 

(i) spawning habitat during the hatching/emergence period 

(ii) minimum fry habitat during the first summer. 

High peak flows reduced spawning habitat and maximum WUA occurred during low 

winter flows. Spawning WUA during the hatching period was sensitive to winter flows 
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>Q35 percentile especially during February. Spawning habitat during the critical period 

was significantly correlated with PYOY densities and explained 59% of annual 

variation in YOY densities in the Upper sector (p=O.043). 

Summer habitat for YOY during the first growing season was most impacted by low 

base flows. Minimum summer WUA accounted for 68% of variance in YOY densities 

in the Lower sector and 49% overall (p=O.002). In the Lower sector the addition of a 

spawning component only resulted in a small increase in the proportion of variance 

explained by the regression (74% compared to 68%) indicating that rearing habitat was 

more limiting to year class strength than spawning habitat. 

Significance: 

Consistent with the findings ofNehring and Anderson (1993) a stable flow regime 

during the critical period (February and March) is fundamental to spawning success. 

Summer low flows act as a bottleneck at the YOY life stage, a finding that supports the 

inference of Strevens (1999) that abstraction induced habitat losses were negatively 

impacting juvenile populations in the river Piddle. These findings have important 

implications for habitat management which requires that critical periods causing 

bottlenecks are understood so that managers avoid the risk of manipulating habitat that 

is already in excess, or increasing fish numbers at a life stage that will subsequently be 

constrained. Thus, increasing spawning habitat will not increase juvenile production if 

fry habitat is limiting in summer. 

Future climatic change has the potential to disturb the natural hydrological stability of 

chalk streams with increased frequency and magnitude of winter flood events together 

with more prolonged summer droughts. Results from this study clearly demonstrate 

that any shift towards flow regimes with higher winter peaks and longer duration of 

summer low flows would have the potential to adversely impact brown trout 

populations during these critical habitat periods. 
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8.4. Objective 4: 

Main Findings: 

SPAWNING AND REARING HABITAT EFFECTS ON 

JUVENILE RECRUITMENT 

4. Juvenile rearing habitat in summer is a critical factor limiting juvenile 

production and is more important than spawning habitat. 

A multiple regression model consisting of spawning and rearing habitat metrics for the 

two critical periods significantly explained 68% of total variation in YOY densities. 

Comparison of standardised beta coefficients for the two variables showed that 

increases in the standard deviation of summer rearing habitat (YSMIN) result in a 

proportional (almost equal) increase in YOY densities but increased spawning habitat 

appeared to negatively affect densities. 

5. Juxtaposition of spawning and rearing zones affects local distribution of 

juvenile trout and may be mechanism affecting recruitment 

In the Lower sector the downstream reach (Tolpuddle 1) had the highest YOY densities. 

Total Lower sector WUA for the critical periods accounted for up to 73% of variance in 

YOY densities in Tolpuddle 1 but was not related to YOY/PYOY densities in 

Tolpuddle 2. 

6. Riffles and glides are the most important meso habitats for spawning and 

rearing but deeper meso habitats are important refugia in summer 

Riffles provided significantly more spawning WUA than glides and where local 

recruitment was occurring accounted for a greater proportion of variance in YOY 

densities (65%) than spawning WUA for all meso-habitats combined. However, glides 

occurred more frequently and also provided good spawning habitat. Riffles and glides 

were both important summer rearing habitats and were highly correlated with YOY 

densities. Deeper, slower flowing areas such as flats provided refugia from summer low 

flows which appeared to be important for PYOY trout in the Lower sector. 

124 



.... 

., 

.. 

Significance: 

These results demonstrate that juvenile abundance in the river Piddle is related to 

temporal variations in the quality of local spawnil)g and rearing habitats. The fact that 

rearing habitat availability in summer is a more important limiting factor than spawning 

habitat supports the findings of Elliott (1994) who demonstrated that spawning success 

in a Cumbria stream had no effect on densities of surviving fry, which were regulated 

by density-dependent mortality in response to availability of nursery habitats. Thus, 

given sufficient spawners, increased amounts of spawning habitat result in increased 

density dependent mortality of fry at the swim up stage (Heland, 1999) which accounts 

for the negative influence of the spawning component in the multiple regression model. 

This study highlights the value of habitat studies at small spatial resolutions. A variety 

of meso-habitat types are important under different environmental conditions such that 

small scale habitat heterogeneity can be an important mechanism influencing juvenile 

recruitment dynamics. Riffles and glides are the most important rearing habitats and 

time series analyses show that summer low flows act as bottlenecks to juvenile 

production mainly because they cause greatest reductions in fry WUA associated with 

these meso habitats. However, flats provide refugia from low flows and may also be 

important for over winter survival. Spatial juxtaposition of different meso- habitats can 

be important at the reach scale. Competitive segregation of the 0+ and 1 + year classes in 

the Lower sector is partly a response to spatial habitat partitioning with YOY utilising 

abundant nursery habitat downstream of high quality spawning/rearing areas for which 

they are out competed by older trout. 

8.5. IMPLICATIONS FOR MANAGEMENT OF CHALK- STREAMS 

Chalk streams are a unique ecotype rich in biodiversity and which support important 

native populations of wild brown trout. In 2004 the UK Biodiversity Action Plan 

Steering group for chalk rivers produced its first report summarising the current status 

of English chalk rivers and setting out a vision for future conservation and management 

(Environment Agency, 2004). In addition, the Game Conservancy Trust and the Wild 

Trout Trust are currently funding research looking at the interactions between wild and 

hatchery reared trout in chalk rivers and the effects of different stocking densities on 
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wild trout biomass. Against this background findings from the present study have some 

important implications for management of wild brown trout populations and the chalk­

stream fisheries they support. 

8.5.1. Habitat Enhancement 

Habitat manipulations have tended to focus on reach or site scales and only limited 

efforts have been made to assess net gains in terms of increased trout standing stocks 

over time (e.g. Hunt, 1969, 1971 , 1976). Fish responses to in stream conditions at a 

population level reflect broad scale abiotic influences which provide the environmental 

setting and determine carrying capacity (Rabeni and Sowa, 1996; Armstrong et ai, 

2003). Therefore, although habitat improvements may appear beneficial at a local scale 

they may affect trout distribution rather than abundance and the success of management 

interventions should be measured in terms of increases in production (Arm strong et ai., 

2003). 

A major benefit of this study has been to show that temporal variations in meso-scale 

habitat quality can limit juvenile abundance. Thus, where habitat shortages are evident 

trout productivity can be optimised by restoring a juxtaposition of me so-habitats that 

maximises spawning WUA under moderate flows and YOY rearing habitat downstream 

under summer low flow conditions. Maintenance of habitat diversity is important for 

mitigating temporal fluctuations in flow and environmental conditions. Results from 

this work suggest that reach scale habitat enhancements have the potential to increase 

trout productivity locally with an understanding of the role of different meso-habitats 

and the links between spawning and rearing. For example, riffle placement in degraded 

chalk-streams will improve spawning habitat but will not necessarily increase YOY 

abundance due to early density dependent mortality as the multiple regression model 

suggests. However, riffles also enhance physical habitat diversity for fry life stages, 

which are out-competed for deeper habitats, thus increasing the likelihood of a self 

sustaining population being maintained by " local" adult stock. Findings from this study 

contribute to a better understanding of different meso-habitat combinations and their 

importance to early life stages of trout. This is vital to enable managers of river 

rehabilitation schemes to more effectively manipulate natural population regulating 

mechanisms. 
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8.5.2. Management of Riparian Zones 

River rehabilitation approaches focused at the channel and riparian scale remain the 

most important from a fishery management point of view (Zalewski and Frankiewicz, 

1998). In-stream enhancement structures have an important role to play, especially in 

low diversity habitats, but protection of natural stream components should precede use 

of traditional structural techniques (White and Brynildson, 1967). The current study has 

demonstrated that in chalk streams riparian vegetation provides critical over wintering 

habitats in shallow streams and as such plays a crucial role in determining carrying 

capacity at the reach scale. The importance of these riparian margins in winter indicates 

the need for a more hands-off approach to management which allows for natural 

senescence of riparian vegetation rather than clearing decaying margins in winter. 

Riparian vegetation increases habitat diversity as roots, overhanging brush and woody 

debris provide cover for trout and influence velocity, depth and substrate coarseness. In 

addition, it serves to increase invertebrate biomass and thus food availability (Harrison, 

2000) and is important for seasonal structuring of in-stream habitats which assists 

resource partitioning and spatial segregation between life stages which can stimulate 

increases in fish biomass (Zalewski and Frankiewicz, 1998). Thus, riparian zone 

recovery should be regarded as the "building block" for rehabilitation of degraded chalk 

streams (Holmes, 2002). Intensive grazing has caused this aspect of these unique 

ecosystems to be often the most impacted. This approach can achieve the dual functions 

of; (i) structuring and regulating abiotic habitat and (ii) improving trophic conditions 

and increasing fish productivity (Zalewski and Frankiewicz, 1998). Unlike more 

expensive structural techniques which are spatially limited, fencing of over-grazed 

riparian zones can lead to the regeneration of kilometres of river habitat in a relatively 

short timescale. 

8.5.3 Management of Flow Regimes in Relation to Maintenance of Habitat 

Connectivity 

This study demonstrates the efficacy of PHABSIM as a tool for the management of 

flow regimes in respect of groundwater abstraction in chalk rivers. The setting of 

ecologically acceptable flow (EAF) targets should form the basis for defining 
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sustainable water resource exploitation. The setting of EAFs should be based on 

maintaining suitable amounts of habitat for juvenile trout during the critical periods and 

in particular fry WUA using the lowest flow month between July and September. 

Connectivity between habitats under different flow scenarios can be simulated 

graphically which has potential for use in conjunction with other ecological models 

such as models of fry dispersal patterns. 

8.5.4. Habitat Modelling as an Aid to River Management 

Modelling complex biological interactions between fish populations and their physical 

environment is a daunting challenge and models are imperfect tools. Models assume a 

linear relationship between habitat and fish abundance which is over-simplistic and their 

performance varies depending on the ability of selected variables to represent complex 

functional links between habitat and standing stock ((Fausch et al. 1988; Armstrong et 

ai, 2003). The scale at which models are applied can affect the way causal mechanisms 

are attributed and stochastic habitat models typically over-emphasise the importance of 

spatial variation at the expense of temporal variation (Rabeni and Sowa (1996; Wiley et 

aI., 1997). Thus, caution should be applied when using models to predict effects of 

altering specific habitat components to guide habitat improvements . 

A particular strength of PHABSIM is that it is a dynamic model that integrates temporal 

dimensions through habitat time series and threshold analysis (Capra et aI., 1995) . 

Analysis at different temporal scales is important to understanding habitat - population 

relationships as habitat demand is dynamic according to time of year and life cycle 

requirements. One criticism of PHABSIM is that it has not yet been well validated in 

biological terms, partly due to difficulty in obtaining biological time series over a 

sufficiently long period to study population response to habitat temporal variability 

(Capra et ai" 2003). A significant contribution of the present study has been the 

application of empirical population data over a relatively long timescale (7 years) to 

demonstrate fish population response to habitat changes over time. A rigorous study 

design directed at controlling complicating factors enabled PHABSIM to accurately 

predict the magnitude and direction of brown trout population responses to temporal 

changes in habitat. 
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In recent years advances in ecological modelling have led to more sophisticated 

ecological models incorporating biological and behavioural attributes. Nislow et al.. 

(1999) demonstrated that availability of favourable foraging habitats during the early 

first summer significantly improved retention of YOY salmon in streams at the end of 

summer. Behavioural changes from maximising energy gain towards minimising 

predation risk reduced the influence of late summer habitat availability on 0+ 

performance. Such foraging-based habitat models can increase the generality of habitat 

models by incorporating biological mechanisms involved in microhabitat selection and 

help better determine the impacts of habitat modifications on population levels. Such 

factors need to be integrated into PHABSIM if HSI curves are to be developed which 

accurately reflect changing habitat preferences in response to these biological 

mechanisms. 

There is a clear need for more advanced models of the relationships between habitat and 

fish production in order to assist fishery managers understand population - limiting 

habitat durations and predict the effects of habitat management on wild populations. 

PHABSIM integrates the temporal dimension but effects of biological mechanisms 

cannot be isolated from physical habitat and this has been a criticism of the way habitat 

preference curves treat trout responses to habitat variables. Thus, more recent 

approaches which integrate population dynamics models offer a way forward. Coupling 

PHABSIM modelling with dynamic population models has been shown to be effective 

for identification of critical periods during which carrying capacity becomes limiting 

and for understanding mechanisms which interlink different cohorts of a population in 

relation to temporal changes in environmental parameters (Gouraud et al.. 2001; Capra 

et al .. 2003). Used in conjunction with models of fry dispersal this study has shown the 

potential for PHABSIM to elucidate how juxtaposition of spawning and rearing areas 

may act to regulate juvenile recruitment under different flow conditions. Such 

approaches have the potential to provide managers with tools to determine the 

conditions under which habitat is limiting and to simulate population responses to 

habitat improvements and changes in river management. 
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GLOSSARY OF TERMS 

The following tenns and their definitions are provided to help the reader understand 

some of the specialised vocabulary utilised throughout PHABSIM in the description of 

open channel hydraulics, suitability curves, and habitat modelling. 

ADULT: Sexually mature fish usually age 2+ and >2+ 

ALEVIN: Post egg life stage during yolk-sac absorption prior to emergence as swim-up 

fry 

ANADROMOUS: Salmonids which migrate to sea to mature returning to freshwater to 

spawn 

AREA, CONVEYANCE: Cross-sectional area of a stream perpendicular to the flow. 

AREA, CROSS-SECTIONAL: The area of the cross section containing water, 

perpendicular to the direction of flow. (Units: square feet or square meters). 

AREA, USABLE: The surface area of a stream that can be used by an aquatic organism. 

(Units: square feet or square meters). 

AREA, WEIGHTED USABLE (WUA): The surface area of a stream weighted by its 

suitability to an aquatic organism. (Units: square feet or square meters). 

AREA, WEIGHTED USABLE BED (WUBA): The bed area of a stream weighted by 

its suitability to an aquatic organism. (Units: square feet or square meters). 

AQUIFER: Saturated porous rock (e.g. chalk) which acts as a groundwater store 

ASYMPTOTIC LENGTH: maximum (theoretical) size likely to be attained by adult 

fish in a population under prevailing growth conditions 

BACKW A TER: (1) A region of a stream where the water surface level is governed by a 

downstream control (Hence the tenn step-backwater is applied to the WSP model, see 

below.). (2) An off-shoot from the main channel with little flow and where the water 

surface elevation is maintained by conditions in the main channel. 

BANKFULL STAGE: Discharge at maximum channel conveyance sometimes known 

as channel-fonning flow 

BASE FLOW: Discharge maintained entirely by groundwater during minimum summer 

flow levels 
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BEST ESTIMATE Q: discharge computation attained from the most rehable/accurate 

cross section in a given channel length 

BETA COEFFICIENT: (1) A coefficient used to represent the change in Manning's 

roughness with discharge or hydraulic radius. (2) Ratio of the bed shear stress to the 

resisting forces of the bed material (Shield's Parameter). 

BOTTLENECK: A point in time or space which limits survivorship at a life stage such 

that population size at subsequent life stages is reduced (see limiting factors) 

BRUSH BUNDLES: Series of branches bound together and lashed into bank at 

downstream angle to create friction. Induces deposition to help stabilise weak banks and 

provides cover/velocity shelter for juvenile fish 

CALIBRATION FLOW: empirically measured discharge used to calibrate PHABSIM 

hydraulic models by comparing measured flow with model predictions 

CARRYING CAPACITY: the number (or biomass) of fish that an environment can 

support in terms of space and resources. 

CARR Y OVER: number of individuals from an age cohort surviving to a subsequent 

year (e.g. YOY-PYOY) 

CELL: As used in PHABSIM, an increment of width ofa stream channel weighted for 

its relative importance by a length to give an area. Defined by verticals. 

CELL FACTORS: See Factors, Cell. 

CHANNEL INDEX: A suitability index to the channel characteristics, usually substrate 

or cover. 

CHANNELISATION: Section of channel artificially straightened and smoothed in 

order to maximise conveyance factor. Typically trapezoidal in cross section 

CHANNEL ROUGHNESS: A coefficient of resistance to flow caused by particle or 

vegetative friction and channel features such as bends and constrictions. 

CHANNEL WIDTH: See Width, Channel. 

COMPOSITE SUITABILITY OF USE FACTOR: See Factors, Cell. 

CONVEYANCE, FACTOR: See Factor, Conveyance. 

COVER: Areas of shelter in a stream channel that provide aquatic organisms protection 

from predators and/or a place in which to rest and conserve energy due to a reduction in 

the force of the current or visual isolation, e.g., pools, undercut banks, boulders, water 

depth, surface turbulence, etc. 

CRITICAL FLOW: See Flow, Sub-Critical and Super-Critical. 
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CRITICAL PERIODS: Biological events which are likely to limit subsequent 

population size e.g. early post emergence of fry 

CROSS SECTION: A section across a stream channel that is perpendicular to the 

direction of the flow. Sometimes called a transect. 

CROSS SECTION Q: discharge computation attained at any individual transect 

CURVES, PREFERENCE: The criteria used to weight an area as to it worth for a 

specific aquatic organism. The organism prefers certain conditions. 

CURVES, SUITABILITY-OF-USE (SI): Same as Preference Curves except the 

concept of the suitability of the conditions for a specific organism is stressed. 

CURVES, USABILITY: Same as Preference Curves except the concept of usability of 

the conditions for a specific organism is stressed. 

DATUM: An agreed standard point or plane of stated elevation, noted by permanent 

bench marks on some solid immovable structure, from which elevations are measured, 

or to which they are referred. 

DEFLECTORS: Artificial constructions protruding from the bank to channel flow and 

create scour typically towards the centre of the channel. 

DEPTH: The vertical distance from a point on the bed to the water surface. 

DEPTH, HYDRAULIC: Equivalent to mean or average depth. 

DEPTH, MEAN: The cross section area divided by the surface width. 

DEPTH, THALWEG: The vertical distance of the lowest point ofa channel cross 

section to the water surface, i.e., maximum depth of cross section. 

DISCHARGE: The rate of flow, or volume of water flowing in a given stream at a 

given place and within a given period of time, expressed as cubic meters per second 

ECOLOGICALLY ACCEPTABLE FLOWS: PHABSIM defined discharges 

determined to maintain a minimum level oflife stage specific habitat availability 

FACTOR, CELL: Also referred to as Composite Suitability of Use Factor. The function 

of velocity (v), depth (d), and the channel index (Cl) used to weight an area of stream 

for its value as habitat. The term is defined within the context of specific habitat models 

F ACTOR, CONVEY AN CE: In uniform flow situations, the area available to transport 

water is directly proportional to Q. The Conveyance Factor (K) is the relationship 

between the channel and flow characteristics. 
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FLOW: The movement of a stream of water and/or other mobile substances from place 

to place; discharge; total quantity carried by a stream. 

FLOW EXCEEDANCE PERCENTILE: Length oftime that a given discharge is 

exceeded during an annual hydrological cycle expressed as a percentage e.g. Q95 is the 

flow exceeded 95% of the time 

FLOW, STEADY and UNSTEADY: Flow in an open channel is said to be steady if the 

depth of flow does not change or can be assumed constant over a specified time interval. 

The flow is unsteady if the depth changes with time. 

FLOW, SUB-CRITICAL and SUPER-CRITICAL: In any body of moving water both 

inertial and gravity forces are acting on the water body. The effect of gravity on the 

state offlow is represented by the ratio between inertial and gravity forces, i.e., Froude 

Number. If the Froude Number is less than unity, gravity forces predominate, so the 

flow has low velocity and is described as tranquil or streaming. If the Froude Number is 

greater than unity, the effects of inertia are more pronounced, so the flow has high 

velocity and is described as shooting, rapid, or torrential. 

When the Froude Number is equal to unity, flow is defined as critical. 

Most instream flow studies are concerned primarily with the sub-critical state of flow. 

FLOW, UNIFORM and VARIED: Uniform flow means that the depth of flow is the 

same at every section of the channel. Thus, the hydraulic, energy, and bottom slopes are 

parallel. If the flow is varied, the depth of flow changes along the length of the channel. 

Varied flow is classified as either rapidly or gradually varied, depending on the distance 

within which the change in depth occurs. Rapidly varied flow is manifest in an abrupt 

change in depth, resulting in hydraulic jumps, hydraulic drops, and related phenomena. 

The criterion for uniform or varied flow is change in depth with respect to space. 

FORK LENGTH: Fish length measured from snout to fork of tail 

FROUDE NUMBER: A dimensionless number used as an index to characterise the type 

of flow in a hydraulic structure that has the force of gravity (as the only force producing 

motion) in conjunction with the resisting force of inertia. 

FRY: Young fish during their first summer post emergence (see YOY) 

GABIONS: Series of wire mesh baskets filled with stones used to armour banks 

GEOTEXTILES: Synthetic material used as a substrate for infilling of eroded banks 

GRADIENT: The rate of change of any characteristic per unit of length. See Slope. 
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.' HABITAT CONNECTIVITY: Degree of spatial interlinking or fragmentation of habitat 

types suitable for different life stages 

HABITAT DURATION: period of time that a given value of habitat is maintained or 

exceeded - similar concept to that of flow exceedance 

HABITAT JUXTAPOSITION: Interspersion of habitat types suitable for different trout 

life stages (see habitat connectivity) 

HABITAT SUITABILITY: Available habitat weighted according to its suitability for a 

given life stage. 

HATCHING/EMERGENCE PERIOD: Period between February and April from first 

hatching to initial dispersal of swim-up fry 

HEAD PIN: The terminal points in a cross section. Usually marked by something (a 

"pin") pounded into bankside 

HEIGHT OF INSTRUMENT: The elevation of the sight plane through a level. 

HYDRAULIC CALIBRA nON: Hydraulic modelling process undertaken as part of 

PHABSIM which utilises empirically measured discharges to calibrate the models prior 

to running habitat simulations 

HYDRAULIC CONTROL: downstream flow check such as a weir or natural break of 

slope which determines height of the water surface over a given distance upstream 

HYDRAULIC GEOMETRY: The dimensions of certain stream features with respect to 

both the wetted and unwetted portions of the channel. 

HYDRAULIC RADIUS: Ratio of the cross-sectional area to the wetted perimeter, R = 

NP. 

JUVENILE: Fish less than age 2 years 

K-DAMS: K shaped weir typically oflog construction pinned into bed and banks to act 

as both an upstream gravel trap and to deflect flow downstream to create scour in centre 

of the channel 

LIFE STAGE: An arbitrary classification of the age of an organism into stages related 

to body morphology and reproductive potential, e.g., "fry" for YOY 

LIMITING FACTOR: Any biotic or abiotic factor which acts to reduce population size 

LOWEST LIMITING FACTOR: Method for computation ofWUA which utilises the 

lowest composite suitability index 
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LWD: large woody debris; typically logs and tree trunks etc 

MACROHABIT A T: Habitat conditions in a reach of river controlling longitudinal 

distribution of aquatic organisms . 

MANNING'S EQUATION: An empirical formula for the calculation of velocity in a 

channel. 

MANNING'S ROUGHNESS or MANNING's n: A factor used when computing the 

average velocity of flow of water in a channel that represents the effect of roughness of 

the confining material upon the energy losses in the flowing water. Also referred to as 

"n" or roughness coefficient. 

MASS BALANCE: relationship between channel conveyance and velocity for a given 

discharge 

MEAN DEPTH: See Depth, Mean. 

MESO-HABIT AT: Intermediate scale habitat features such as pools, riffles and glides; 

typically at the 10 - lOOm scale 

MESO-HABIT AT TYPES: 

• RIFFLE: shallow, broken standing wave, fast and audible flow 

• RUN: unbroken standing wave, swift/fast flowing but not audible 

• POOL: Deep and slow flowing, smooth and unbroken surface 

• FLAT: smooth laminar flow, unbroken surface, very slow flowing with 

insufficient velocity to create ripple when obstruction is placed in flow 

• GLIDE: smooth laminar flow, unbroken surface, sufficient velocity to create 

ripple when obstruction is placed in flow 

• CASCADE: steep gradient with white, broken water typically in a "stepped" 

sequence 

METRICS: numerical expression representing the value of a particular component of 

habitat to a given life stage 

MICROHABIT AT: Habitat small area (cell) of a river controlling specific locations or 

home ranges. 

OVER-WIDENING: Channel section where lateral erosion of both banks has resulted 

in wide, shallow reaches with associated loss of habitat heterogeneity 
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PHABSIM: the Physical Habitat Simulation System. Computes a relationship between 

streamflow and physical habitat for various life stages of an aquatic organism 

PHABSIM is a component of IFIM. 

PHYSICAL HABIT AT: The place where a population lives and its surroundings as 

defined by physical conditions, most commonly depth, velocity, and channel conditions 

such as substrate and cover objects. 

POACHING: Banks grazed and trampled by cattle resulting in collapse and severe 

erosion. Typically leads to over-widening of channel 

POINT BAR: Sloping crescent shaped deposit of fine material on inner bank of 

meanders 

PROFILE or PROFILE, LONGITUDINAL: (1) In open channel hydraulics, it is a plot 

of water surface elevation against channel distance and/or bottom elevation. (2) A line 

of elevations along a river usually following the thalweg. Most often includes the bed 

and water surface elevations. 

PROFILE, TRANSVERSE: Same as a cross section. 

PYOY: Post-young-of-the year; juvenile fish (parr) in their second year after hatching 

(age I +) sometimes called yearlings 

RA TING CURVE: A curve that expresses graphically the relation between mutually 

dependent quantities, e.g. curve showing the relation between gauge height (stage) and 

discharge of a stream. 

REACH: A comparatively short length of a stream. The actual length is defined by the 

purpose of the study. 

REACH LENGTH: The length of a section or piece of a river. 

RECRUITMENT: Level of survivorship from one life stage to a subsequent life stage 

REVETMENT: Artificial reinforcement of bank face to increase resistance to erosion 

RIFFLE: Shallow rapids in an open stream where the water surface is broken into 

waves by obstructions wholly or partly submerged. 

RIP-RAP: Coarse angular boulders used to form an erosion resistant face to stabilise 

banks 

ROOT WADS: Exposed roots of bank-side trees 

ROUGHNESS: Amount of resistance to flow resulting from friction with channel bed, 

banks and vegetation 

ROUGHNESS COEFFICIENT: See Manning's Roughness. 
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ROUGHNESS MODIFIERS: weighting factor applied to values of Mannings n to 

adjust for relative changes in n with increases or decreases in discharge . 

SEGMENT: Relatively homogeneous section of a stream composed of two or more 

reaches. 

SELF THINNING: Process by which numberslbiomass of fish in a given area decline 

with time due to increasing demand for resources (space and food) as fish grow. 

SHEAR STRESS, BED: The stress on the river bed caused by the flowing water. 

SIMULATION FLOW: PHABSIM model predictions at discharges not measured in the 

field 

SLOPE: The inclination or gradient from the horizontal of a line or surface. The degree 

of inclination can be expressed as a ratio, such as 1:25. 

SLOPE, BOTTOM: The change in the average elevations of the bed between two cross 

sections, divided by the distance between them. 

SLOPE, ENERGY: Change in total energy (potential and kinetic) available at a point. 

Usually approximated as the change between the cross section divided by the distance 

between cross sections. 

SLOPE, HYDRAULIC: The change in elevation of the water surface between two cross 

sections, divided by the distance between the cross sections . 

SLOPE, THALWEG: The change in the elevation of the bed, measured at the points of 

maximum depth, divided by the distance between cross sections. 

SLOPE, WATER SURF ACE: The slope of the water surface at a point and is usually 

approximated as the difference in water surface elevations at two points divided by the 

distance along the flow path between the points. 

SP AWNING STOCK: Number of spawning adult fish 

STAGE: The elevation, or vertical distance ofthe water surface above a datum (a plane 

of known or arbitrary elevation). 

STAGE-DISCHARGE RELATIONSHIP: Log-linear regression for the relationship 

between discharge and the height of the water surface; sometimes called depth­

discharge relationship 

ST AGE OF ZERO FLOW (SZF): The water surface elevation at a cross section when 

the flow reaches zero. This is either the lowest point of the bed or the pool water surface 

when no flow occurs (i.e., a downstream low bed point acts as the pool water surface 

control). 
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STEADY FLOW: See Flow, Steady and Unsteady. 

STREAMBED: The bottom of the stream channel; may be wet or dry . 

STREAM WIDTH: See Width, Stream. 

SUB-CRITICAL FLOW: See Flow, Sub-Critical and Super-Critical. 

SUBSTRATE: The material on the bottom of the stream channel, e.g., rocks, 

vegetation, etc. 

SUPER-CRITICAL FLOW: See Flow, Sub-Critical and Super-Critical. 

THALWEG: The longitudinal line connecting points of minimum bed elevation along 

the stream course. 

THREE PASS DEPLETION METHOD: standard multi-pass electrofishing technique 

for population estimate based on rate of decline in captures between passes for an 

enclosed population over a fixed area 

TOE WIDTH: See Width, Toe 

TOP WIDTH: See Width, Top. 

TRANSECT: Same as cross section. 

UNIF9RM FLOW: See Flow, Uniform and Varied . 

UNSTEADY FLOW: See Flow, Steady and Unsteady. 

UPSTREAM WEIGHTING FACTOR: value between 0 - 1 assigned to a surface area 

of stream to indicate its worth as a particular meso- habitat type. 

USABLE AREA: See Area, Usable. 

VARIED FLOW: See Flow, Uniform and Varied. 

VELOCITY: The time rate of motion; the distance travelled divided by the time 

required to travel that distance. 

VELOCITY, ADJACENT: A velocity in a cell near the cell being considered. 

VELOCITY, MEAN: The mean velocity may represent either a cell or a cross section. 

It is calculated as: V=QxA 

VELOCITY, MEAN COLUMN: The velocity averaged from the top to the bottom ofa 

stream. Usually measured at 6/ 10 depth or an average of values measured at 2110 and 

811 0 of the depth 

VELOCITY, NOSE: The velocity at the point where a fish is located. This is the point 

velocity expressed in terms of an organism. 
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VELOCITY, POINT: The velocity at a depth in the stream. 

VELOCITY ADJUSTMENT FACTOR (VAF): The ratio of the discharge for which 

velocities are being simulated to the sum of simulating cell velocities times cell areas: 

VERTICAL: As used in PHABSIM, sample locations across a cross section. 

WATER SURFACE ELEVA nON (WSL): The elevation of the water's surface in 

relation to an arbitrary datum. 

WEIGHTED USABLE AREA (WUA): See Area, Weighted Usable. 

WEIGHTED USABLE BED AREA (WUBA): See Area, Weighted Usable Bed. 

WEIGHTED USABLE VOLUME (WUV): The volume of a stream weighted for its 

worth as habitat. 

WETTED PERIMETER: The distance along the bottom and sides of a channel cross 

section in contact with water. Roughly equal to the width plus two times the mean 

depth. 

WETTED WIDTH: See Width, Wetted. 

WIDTH: The distance across a channel at the water surface measured normal to flow. 

WIDTH, BANKFUL: The width of the stream just before the flow overtops the 

channel. 

WIDTH, CHANNEL: An arbitrary width based on what the observer sees as a channel. 

WIDTH, STREAM: Either the same as the channel width or the width of the wetted 

stream. 

WIDTH, TOE: The width of the base ofa trapezoidal channel. 

WIDTH, TOP: The width of the wetted area of flow across a stream channel. 

WIDTH, WETTED: The width of the stream with water in it. 

YEAR CLASS: Age cohort of fish hatched at same time 

YOY: Young-of-the year; juvenile fish in their first year after hatching (age 0+) 
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APPENDIX. I. 

HABITAT CHARACTERISTICS OF RIVER PIDDLE STUDY REACHES 

RIVER SECTOR Lower sector Upper sector 

STUDY REACH Tolpuddle 1 Tolpuddle 2 Cobbs 

Tolpuddle - Tolpuddle - Cobbs Wood -

LOCATION upstream Affpuddle upstream of and upstream of Blue 

weir contiguous with bridge 

Tolpuddle 1 reach 

REACH LENGTH 65m 85m 125m 

MORPHOLOGICAL 

DIVERSITY INDEX 62.1 76.7 95.6 

(% ofmax) 

RIFFLE I RUN (%) 30.8 5.9 40 

GLIDE (%) 69.2 35.3 40 

FLATS (%) 0 58.8 0 

POOLS - MEANDER (%) 0 0 14.4 

POOLS - OTHER (%) 0 0 5.6 

Relative habitat diversity for study reaches based on proportions of different 
meso-habitat types present in each reach. 

E 
::l 
E 
')( 

"' E -o 
"#. 

100 

9 

8 

7 

6 

5 

4 

3 

2 

0 

0 

0 

O · 

0 

C 

0 

0 

0 

Study reaches: I 
Tolpuddle 1+2 I 

Lower sector 
reaches 1 - 4 with mean 

I I 

I Study reach: --
Cobbs 

- - -

- - --

- - -

- - -

f---- - - -

f---- - - - -

Reach diversity index Upper sector 
reaches I - 4 with mean 



. " 

.... 

... 
r 

... \ 

,. . 
.. < 

.. , 

.,. 
• 

The Upper and Lower river sectors both comprised four contiguous electrofishing 

reaches of which one was selected from the upper sector (Cobbs) and two from the 

lower sector (Tolpuddle 1 and 2) for application ofPHABSIM. Habitat walk-over 

mapping determined the proportions of different meso-habitat types present in each 

reach. A simple diversity index was used to calculate morphological diversity in each 

reach based on these proportions. The graph represents this morphological diversity 

for each reach as a percentage of the reach with the highest diversity score (Upper 

sector: reach 4) taken as 100%. Selected reaches were coterminous with 

electrofishing sections and were chosen to represent the contrasting habitat 

characteristics present throughout both sectors . 



APPENDIX.2. 
COVER CLASSIFICATION SCHEME (adapted from Trihey and Wegner, 1981). 
Cover Description (A) 

No cover present OBJECT COVER 

o -25 % of cell affected 

25 - 50 % of cell affected 

50 - 75 % of cell affected 

(B) 

OVERHEAD COVER 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

75 - 100 % of cell affected 0 - 25 % of cell affected 

(D) OBJECT+ 

OVERHEAD COVER 

0- 25 % of cell affected 

25 - 50 % of cell affected 

50 - 75 % of cell affected 

(E) OBJECT+ 

UNDERCUT BANK 

0- 25 % of cell affected 

75 - 100 % of cell affected 25 - 50 % of cell affected 

50 - 75 % of cell affected 

75 - 100 % of cell affected 

. ) ~ 1;. ) "t-", 

i 
. 
1 

. . ~ 
t t 

25 - 50 % of cell affected 

50 - 75 % of cell affected 

75 - 100 % of cell affected 

(F) OVERHEAD COVER 

+ UNDERCUT BANK 

0- 25 % of cell affected 

25 - 50 % of cell affected 

50 - 75 % of cell affected 

75 - 100 % of cell affected 

t 

(C) 

UNDERCUT BANK 

o - 25 % of cell affected 

25 - 50 % of cell affected 

50- 75 % of cell affected 

75 - 100 % of cell affected 

(G) OBJECT+OVERHEAD 

COVER + 

UNDERCUT BANK 

o - 25 % of cell affected 

25 - 50 % of cell affected 

50 - 75 % of cell affected 

75 - 100 % of cell affected 
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APPENDIX.3 

HYDROLOGICAL REGIMES AND CALIBRATION DATA 

Long tenn discharge data indicated median flows (Q50) were 0.54 m3s· 1 with Q > 1.0 

m3s·1 exceeded 33% of the time. During the study period (1993 - 2000) median 

discharge (Q50) in the Lower river sector (Tolpuddle) was 0.62 m3s·1 with flows> 1.0 

m3s·1 exceeded almost 40% of the time. In the Upper river sector (Cobbs) median 

discharge (Q50) was 0.50 m3s·1 for the same period. 

Mean monthly flows (1993 - 2000) for the Upper and Lower river sectors 
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Mean monthly flows 1993-2000 
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Seasonal flow exceedance curves (based on mean monthly discharge) at 
Affpuddle weir (downstream end of study area) for period 1965 - 2000 

Seasonal exceedance percentiles 1965-2000 
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Flow exceedance curves (based on mean monthly discharge) for upper and 
lower river sectors during study period 1993- 2000 
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Relationship between discharge at Briantspuddle and at the Tolpuddle study site 
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Relationship between measured discharges and gauged flows at 
Briantspuddle 

0 2 3 

y = 0.7071x - 0.048 
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Briantspuddle discharge (m3s-1) 
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Stage Stage-discharge relationship : Lower sector 
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APPENDIX.4 

SELECTED HABITAT SUITABILITY CURVES 

BROWN TROUT SPAWNING 
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APPENDIX.S. 

DESCRIPTION OF HABITAT METRICS GENERATED FROM TIME 
SERIES 

Habitat Metric Description 
(all habitat durations are monthly intervals) 

SPAWNING 

SPOAVG Average spawningO habitat, all spawning whole season (Nov-Mar) 
SPOMIN SpawningO minimum habitat 
SPOMAX SpawningO maximum habitat 
SPOL50 Mean oflowest 50% of spawningO habitat 
SPOAVGHP Average spawningO habitat during egg hatching period (Feb - Mar) 
SPOMINHP SpawningO minimum habitat during egg hatching period 
SPOMAXHP SpawningO maximum habitat during egg hatching period 

SPCFAVG Average high quality spawningCfhabitat, whole season (No v-Mar) 
SPCFMIN SpawningCf minimum high quality habitat 
SPCFMAX SpawningCf maximum high quality habitat 
SPCFL50 Mean oflowest 50% of spawningCfhigh quality habitat 
SPCFAVGHP A verage high quality spawningCf habitat during egg hatching period 
SPCFMINHP SpawningCf maximum high quality habitat during egg hatching period 
SPCFMAXHP SpawningCf maximum high quality habitat during egg hatching period 

SPEFFAVG A verage Effective Spawning habitat, whole season (Nov-Mar) 
SPEFFMIN SpawningEFF minimum effective habitat 
SPEFFMAX SpawningEFF maximum effective habitat 
SPEFFL50 Mean of lowest 50% of SpawningEFF effective habitat 
SPEFFAVGHP A verage Effective Spawning habitat during egg hatching period 
SPEFFMINHP SpawningEFF minimum during egg hatching period 
SPEFFMAXHP SpawningEFF maximum during egg hatching period 

YOYTROUT 

YGSAVG Young-of-year average growing season habitat, summer (June - Oct) 
YS2AVG Young-of-year habitat, summer mean (July - Sept) 
YSMIN Young-of-year habitat, summer minimum 
YSMAX Young-of-year habitat, summer maximum 
YSL50 Young-of-year habitat, mean of lowest 50% summer habitat 

YGSNSHAVG Young-of-year average growing season nearshore habitat, summer 
YS2NSHAVG Young-of-year nearshore habitat, summer mean 
YSNSHMIN Young-of-year nearshore habitat, summer minimum 
YSNSHMAX Young-of-year nearshore habitat, summer maximum 
YSNSHL50 Young-of-year nearshore habitat, mean of lowest 50% summer habitat 

YGSAJVAVG Young-of-year average growing season, feeding stations (June - Oct) 
YS2AJVAVG Young-of-year summer feeding stations, mean (July - Sept) 
YSAJVMIN Young-of-year summer feeding stations, minimum 
YSAJVMAX Young-of-year summer feeding stations, maximum 
YSAJVL50 Young-of-year summer feeding stations, mean of lowest 50% 



Habitat Metric Description 
(all habitat durations are monthly intervals) 

PYOYTROUT 

JWAVG A verage I st winter parr/juvenile habitat (Nov - Mar) 
JWMIN Parr/juvenile habitat, winter minimum 
JWMAX Parr/juvenile habitat, winter maximum 
JWLSO Parr/juvenile habitat, mean of lowest 50% winter habitat 
JWNSHAVG Average winter season nearshore parr/juvenile habitat (Nov - Mar) 
JWNSHMIN Parr/juvenile nearshore habitat, winter minimum 
JWNSHMAX Parr/juvenile nearshore habitat, winter maximum 
JWNSHLSO Parr/juvenile nearshore habitat, mean oflowest 50% winter habitat 

ADULTS 

ADWAVG Average winter season adult and juvenile habitat (Nov - Mar) 
ADWMIN Adult and juvenile habitat, winter minimum 
ADWMAX Adult and juvenile habitat, winter maximum 
ADWLSO Adult and juvenile habitat, mean of lowest 50% winter habitat 
ADWNSHAVG Average winter season nearshore adult and juvenile habitat 
ADWNSHMIN Adult and juvenile nearshore habitat, winter minimum 
ADWNSHMAX Adult and juvenile nearshore habitat, winter maximum 
ADWNSHLSO Adult and juvenile nearshore habitat, mean of lowest 50% winter habitat 

ADSAVG Average growing season adult habitat, summer (June - Oct) 
ADSMIN Adult habitat, summer minimum 
ADSMAX Adult habitat, summer maximum 
ADSLSO Adult habitat, mean of lowest 50% summer habitat 
ADSNSHAVG Average growing season nearshore adult habitat, summer (June - Oct) 
ADSNSHMIN Adult nearshore habitat, summer minimum 
ADSNSHMAX Adult nearshore habitat, summer maximum 
ADSNSHLSO Adult nearshore habitat, mean of lowest 50% summer habitat 

Definitions 

spawningCf: refers to spawning simulations with composite suitability factor Cf applied to 
remove habitat of low quality 

SpawningEFF: refers to spawning simulations utilising effective spawning habitat option within 
HABT AE programme 

nearshore habitat: habitat simulations limited to area <2m of bank edge (ie marginal habitat) 

feeding stations: refers to habitat simulations utilising adjacent velocity option within HABT AE 



YOYTROUT 

RIFAVGS 
RIFAVG2S 
RIFMINS 
RIFMAXS 
RIFL50S 

GLAVGS 
GLAVG2S 
GLMINS 
GLMAXS 
GLL50S 

FTAVGS 
FTAVG2S 
FTMINS 
FTMAXS 
FTL50S 

SPAWNING 

RIFAVGSPO 
RIFMINSPO 
RIFMAXSPO 
RIFL50SPO 
RIFAVGHPO 
RIFMINHPO 
RIFMAXHPO 
RIFAVGEF 
RIFMINEF 
RIFMAXEF 
RIFL50EF 
RIFAVGHPEF 
RIFMINHPEF 
RIFMAXHPEF 

GLAVGSPO 
GLMINSPO 
GLMAXSPO 
GLL50SPO 
GLAVGHPO 
GLMINHPO 
GLMAXHPO 
GLAVGEF 
GLMINEF 
GLMAXEF 
GLL50EF 
GLAVGHPEF 
GLMINHPEF 
GLMAXHPEF 

ME SO-HABIT AT 

average rime habitat, growing season (June - Oct) 
average rime habitat, summer mean (July - Sept) 
minimum rime habitat, growing season 
maximum rime habitat, growing season 
mean of lowest 50% rime habitat, growing season 

average glide habitat, growing season (June - Oct) 
average glide habitat, summer mean (July - Sept) 
minimum glide habitat, growing season 
maximum glide habitat, growing season 
mean of lowest 50% glide habitat, growing season 

average flat habitat, growing season (June - Oct) 
average flat habitat, summer mean (July - Sept) 
minimum flat habitat, growing season 
maximum flat habitat, growing season 
mean oflowest 50% flat habitat, growing season 

MESO-HABIT AT 

Average rime habitat, spawning season (Nov-Mar) 
minimum rime habitat, spawning season 
maximum rime habitat, spawning season 
mean of lowest 50% rime habitat, spawning season 
Average rime habitat during egg hatching period (Feb - Mar) 
minimum riffle habitat during egg hatching period 
maximum rime habitat during egg hatching period 
Average rime habitat, effective spawning (Nov-Mar) 
minimum riffle habitat, effective spawning 
maximum rime habitat, effective spawning 
mean of lowest 50% rime habitat, effective spawning 
Average rime habitat during effective egg hatching period (Feb - Mar) 
minimum rime habitat during effective egg hatching period 
maximum rime habitat during effective egg hatching period 

A verage glide habitat, spawning season (Nov-Mar) 
minimum glide habitat, spawning season 
maximum glide habitat, spawning season 
mean of lowest 50% glide habitat, spawning season 
Average glide habitat during egg hatching period (Feb - Mar) 
minimum glide habitat during egg hatching period 
maximum glide habitat during egg hatching period 
Average glide habitat, effective spawning (Nov-Mar) 
minimum glide habitat, effective spawning 
maximum glide habitat, effective spawning 
mean oflowest 50% glide habitat, effective spawning 
Average glide habitat during effective egg hatching period (Feb - Mar) 
minimum glide habitat during effective egg hatching period 
maximum glide habitat during effective egg hatching period 



APPENDIX.6. 

TROUT POPULATION DYNAMICS 



A) Relationship between adult spawning stock and densities of 0+ fry in 
the following year in the Upper sector (Cobbs) 
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B) Relationship between densities of 0+ fry and age 1+ juveniles the 
following year in the Upper sector (Cobbs) 
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C) Self thinning line for age 1+ trout showing reduction in mean size with 
density in the Upper sector (Cobbs) 
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Von bertalanffy growth curve from 33 tagged trout marked and recaptured at Cobbs. 

Lengths (mm) Predicted Growth Curve 

400 

350 

300 

200 

150 

! : : : ; : : : : : : - ' : 
: ....... .. .. .. -- -~ .................. ~ -- ............... ~ ........ -- ...... ~- ................ ...! .................. -~ .. _ ....... _ ...... ~ ......... _ ........ 1 ........... _ ..... -Ill .. -............ .. :- ...... !II! ....... -~ -.............. -~ ................... ! ~ ....... .. 
: : j . I I , I , : : I : : I : 

I . , I 
, , I 

• , I J I I 
I .,' I I t I • I I I I 

~---- - - - --~- -- ------~---------~- .. -------~----------~---------~-------- .. ~---------I---------~------ ... ---:----------~---------~--- - -----;-----
I I I I I I I I I • 

: I I I • { : I : : , , , , , , , , 
:_ ................ _~ .................. ~ .................. ~ ................... ~ ..................... ~_ ................... ~ .................... ~ ............. '" .... ! .................. J .... ~ ............ ..! .................. _~ ................ :. ~ ....... _ .......... ! .. _ ..... .. 
I I I I I ~ , I I I I I I I 
I I I I I I I • \ 

I . ' ': 

156.32 
1198.1 
1284.6 
1337.5 
1369.7 
1389.4 
1401 .5 
1408.8 
1413.3 
1416 

, , , , , 
" I I I I • I I 

,----------r---------r---------,---------~----------~ .. --------,..---- .. -..... r--.-- ..... --,.-----.---,-- ...... -----~---- -----r------ .. · .. ~ .. --- .. ·-

Predicted Lengths 
(mm) at aee n 

I : : t I I I I '-__ :-;,--_______ ---,-' 

, 
I , , , , 

I I I I , I I 1 I I It' I :- .................. ~ ........ -...... ~ ................... ~ .................. ~ ................... -:- .................. r .................. ~ ................... ~ .................. ~- .................. -:- .................. ~ ................ ., ~ ................... t .- ....... .. 
I I I I I I I • , , I I I I 
I I I I I I I I I I j I 

I I I I , , , , , , , . , , 
I , , I I I I I I I 

.................. -,. ................................ ---,- ................. .,- .............. --,- ...... -- ...... -r" -- .... -- .... r" -_ .. -- .... - -,. -- .... --- .. -.,---- .. --- --,- -- ...... ...... -,.. .... --- .. -_ .. r"" --- .. --- T -- .. --
I I I I I t I .I • 

I I I I , 

, , , , 
100 :-.- •. -.---~ ...••.... ~ .. - •.•• L @ infinity = 420mm +/- 65.6 @ 95% level of confidence. 

K=O.33. 

_____ L ______ .. __ ~ ____ _ 

, \ 

o 2 3 4 5 6 7 B 9 10 11 12 13 

Age (years) 

- .. - • - . 



Von Bertalanffy growth curve from 30 tagged trout marked and recaptured at Tolpuddle. 
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APPENDIX. 7. 

LONG PROFILE PLOTS SHOWING MESO-HABITAT JUXTAPOSITIONS 
FOR UPPER AND LOWER RIVER SECTORS 
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Distribution of meso-habitat types (relative to thalweg depths) in the lower sector at Tolpuddle 
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APPENDIX.8. 

MESO HABITAT RELATIONSHIPS 

WUA - discharge relationships for meso-habitat types in the Lower sector: 
summer habitat for YOY brown trout 
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Time series (1994 - 2000) showing summer habitat durations (WUA) for three 
meso- habitat types for YOY brown trout in the Lower sector 

Young-of-year summer growing season time series 
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APPENDIX.9. 

SUMMARY OF PROGRAMME NAMES WITHIN PHABSIM 

REFERRED TO IN TEXT 

STGQ: The STGQ model uses a stage-discharge relationship (rating curve) to 

calculate water surface elevations at each cross section. In the stage-discharge 

relationship and its simulation, each cross section is independent of all others 

in the data set. The basic computational procedure is conducted by performing 

a log-log regression between observed stage and discharge pairs at each cross 

section. The resulting regression equation is then used to estimate water 

surface elevations at all flows of interest. 

MANSQ: The MANSQ program utilises Manning's equation to calculate 

water surface elevations on a cross section by cross section basis and therefore 

treats each cross section as independent. Model calibration is accomplished by 

a trial and error procedure to select a b coefficient that minimises error 

between observed and simulated water surface elevations at all measured 

discharges. 

WSP: The Water Surface Profile (WSP) program uses a standard step­

backwater method to determine water surface elevations on a cross section by 

cross section basis. The WSP program requires that all cross sections being 

analysed in a given model run be related to each other in terms of survey 

controls and sequence upstream i.e. each cross section' s hydraulic 

characteristics in terms of bed geometry and water surface elevations are 

measured from a common datum. The model is initially calibrated to a 

measured longitudinal profile of water surface elevations by adjusting 

Manning's roughness, first for the entire study site and then at each cross 

section. Manning' s roughness is then adjusted for subsequent measured 

longitudinal water surface profiles at other discharges by setting the roughness 

modifiers used within the model. This approach requires all hydraulic controls 

within the modelled study site are represented by cross sections. 
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VELSIM: The VELSIM program is the principal tool used to simulate the 

velocity distributions within a cross section over the required range of 

discharges (i.e., the mean column velocity in each wetted cell in a study cross 

section at each simulation discharge). The technique relies on an empirical set 

of velocity observations that act as a template to distribute velocities across a 

channel by solving for the ' n' in Manning's equation (in this context 'n' acts as 

a roughness distribution factor across the channel). The channel is divided into 

cells and the velocity calculated for each of these cells. The usual practice is to 

use one set of velocities as a template for simulating velocities for a particular 

range of discharges. When more than one set of empirical velocity 

measurements is available, a commensurate number of flow ranges can be 

simulated with different velocity templates. The program can be used when no 

velocity measurements are available. In this situation, velocity will be 

distributed across the cross section as a function of flow depth. 

HABT AE: The primary habitat simulation program in PHABSIM. Options 

within HABT AE allow the user to select habitat calculation assuming the 

condition within a cell establishes the worth of the habitat in the cell. Adjacent 

cell conditions (for example a "feeding station") are also included in 

HABT AE. The HABT AE program also allows habitat to be determined in 

terms of volume (instead of the surface area), and provides a method for 

determining the habitat conditions at each cross section as well as the 

aggregate for a study site. 

HABEF: Effective habitat analysis in PHABSIM is used to determine 

availability of physical habitat considering two flows ; in other words, the 

HABitat that remains EFfective when two flows are of importance. This 

situation often arises, for example, in the evaluation of reducing flows during 

the spawning period and subsequent incubation period or in hydro-peaking 

operations that have a daily minimum and maximum flow. In the case of 

spawning and incubation analyses, the spawning area at a cross section is not 

' effective' unless the incubation period flow regime maintains the habitat in a 

suitable condition for the eggs to hatch. 
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HABT AM: The second effective habitat model is the HABT AM program. In 

HABT AM the species can move from cell to cell cross each transect over a 

range of starting and ending discharges. In this model, effective habitat is 

defined as the habitat that remains usable when the species is forced to move 

due to flow fluctuations. 

AVDEPTWAVPERM: The average parameter model, AVDEPTH 

/ A VPERM, calculates a variety of hydraulic characteristics for each cross 

section in addition to a study site average view. These include wetted width, 

wetted perimeter, and wetted surface area, cross sectional area, mean channel 

velocity, and average depths. They can also be utilised to determine the width 

of a stream with water that is over some arbitrary depth(s) specified by the 

user. 

CALCF4: This utility program calculates a water transport (or conveyance) 

parameter (WTP) for each cross section. The program uses Manning' s 

equation at each cross section to calculate the WTP for each water surface 

elevation, develops power relationships between WTP' s, area and maximum 

depth, discharge and width, velocity, and average depth. The exponent (B) in 

the WTP regression equation between discharge and the channel conveyance 

factor or WTP for each cross section is an excellent initial estimate for the b 

coefficient for each transect in the MANSQ program . 


