
Cyclic Abduction of Inductively Defined Safety
and Termination Preconditions

James Brotherston1 and Nikos Gorogiannis2

1 Dept. of Computer Science, University College London
2 Dept. of Computer Science, Middlesex University London

Abstract. We introduce cyclic abduction: a new method for automati-
cally inferring safety and termination preconditions of heap-manipulating
while programs, expressed as inductive definitions in separation logic.
Cyclic abduction essentially works by searching for a cyclic proof of the
desired property, abducing definitional clauses of the precondition as
necessary in order to advance the proof search process.
We provide an implementation, Caber, of our cyclic abduction method,
based on a suite of heuristically guided tactics. It is often able to auto-
matically infer preconditions describing lists, trees, cyclic and composite
structures which, in other tools, previously had to be supplied by hand.

1 Introduction

Whether a given pointer program is memory-safe, or eventually terminates, un-
der a given precondition, are well-known (and undecidable) problems in program
analysis. In this paper, we consider the even more difficult problem of inferring
reasonable safety / termination preconditions, in separation logic [21] with in-
ductive definitions, for such heap-aware programs.

Analyses of heap-manipulating programs based upon separation logic now
extend, in some cases, to substantial code bases (see e.g. [22,20]), and rely on
the use of inductive predicates to specify the shape of data structures stored
in memory. However, such predicates are typically hard-coded into these anal-
yses, which must therefore either give up or ask the user for advice when they
encounter a data structure not described by the hard-coded predicates. For ex-
ample, the well known SpaceInvader [22] and SLAyer [5] analysers perform
accurately on programs using combinations of linked lists, but report a false bug
if they encounter a tree. Thus automatically inferring, or abducing, the inductive
predicates needed to analyse individual procedures has the potential to greatly
boost the automation of such verifiers.

The abduction of safety or termination preconditions is a highly non-trivial
problem. At one end of the scale, the weakest (liberal) precondition (cf. Dijk-
stra [14]) can straightforwardly be extracted from a program P , but is useless
for analysis: Deciding which program states satisfy this precondition is as hard
as deciding from which states P runs safely / terminates! At the other end,
many correct preconditions are too strong in that they rule out the execution

of some or all of the program. Thus we are required to perform a fine balancing
act: find the weakest precondition that is at least somewhat “natural”. Unfortu-
nately, for fundamental computability reasons, we cannot hope to obtain such a
precondition in general, so we must instead look for reasonable approximating
heuristics.

Our main contribution is a new method, cyclic abduction, for inferring safety
and/or termination preconditions, expressed as inductive definitions in separa-
tion logic, for heap-manipulating while programs. Our approach is based upon
heuristic search in a formal system of cyclic proofs, adapted from the cyclic
termination proofs in [8]. A cyclic proof is a derivation tree possibly containing
back-links, which identify leaves of the tree with arbitrary interior nodes. This can
create potentially unsound cycles in the reasoning, and so a (decidable) global
soundness condition must be imposed upon these derivations to qualify them
as genuine proofs. In fact, we can consider cyclic proofs of memory safety or of
termination as desired, simply by imposing two different soundness conditions.

Given a program, cyclic abduction aims to simultaneously construct an in-
ductively defined precondition in separation logic and a cyclic proof of safety
or termination for the program under this precondition. Broadly speaking, we
search for a cyclic proof that the program has the desired property, and when
the proof search gets stuck, we abduce (i.e., guess) part of the precondition in
order to proceed. Approximately, the main abduction principles are:

– symbolically executing branching commands in the derivation leads to con-
ditional disjunction in the definitions;

– symbolically executing dereferencing commands in the derivation forces us
to include pointer formulas in the definitions;

– forming back-links in the derivation leads to the instantiation of recursion
in the definitions; and

– encountering a loop in the program alerts us to the possibility that we may
need to generalise the precondition.

We have implemented our abduction procedure as an automatic tool, Caber,
that builds on the generic cyclic theorem prover Cyclist [11]. Caber is able to
automatically abduce safety and/or termination preconditions for a fairly wide
variety of common small programs, including the majority of those tested in the
Mutant tool, where the (list-based) preconditions previously had to be supplied
by hand [2]. Caber can abduce definitions of a range of data structures such as
lists, trees, cyclic structures, or composites such as trees-of-lists.

The remainder of this paper is structured as follows. Section 2 introduces
the programming language and our language of logical preconditions. Section 3
presents our formal system of cyclic safety/termination proofs on which our ab-
duction technique is based. In Section 4 we present our cyclic abduction strategy
in detail, and Section 5 describes the implementation of Caber and its experi-
mental evaluation. Section 6 examines related work and Section 7 concludes.

Due to space limitations, we have had to omit quite a few details. These can
be found in an earlier technical report [10].

2 Programs and preconditions

In this section we present a basic language of while programs with heap pointers,
and the fragment of separation logic we use to express program preconditions.
We often use vector notation to abbreviate tuples or lists, e.g. x for (x1, . . . , xk),
and we write xi for the ith element of the tuple x.

Syntax of programs. We assume infinite sets Var of variables and Fld of
field names. An expression is either a variable or the constant nil. Branching
conditions B and command sequences C are defined as follows, where x, y range
over Var, f over Fld and E over expressions:

B ::= ? | E = E | E 6= E
C ::= ε | x := E; C | y := x.f ; C | x.f := E; C |

free(x); C | x := new(); C |
ifB thenC elseC fi; C | whileB doC od; C

where y := x.f and x.f := E′ respectively read from and write to field f of
the heap cell with address x, and ? represents a non-deterministic condition.
A program is simply a list of field names followed by a command sequence:
fields f1, . . . , fk; C.

Program semantics. We use a RAM model employing heaps of records. We
fix a set Val of values and an infinite subset Loc ⊂ Val of locations, i.e., addresses
of heap cells. The “nullary” value nil ∈ Val \ Loc will not be the address of any
heap cell. A stack is a function s : Var→ Val. The semantics [[E]]s of expression
E in stack s is defined by [[x]]s =def s(x) for x ∈ Var, and [[nil]]s =def nil .

A heap is a partial function h : Loc ⇀fin (Val List) mapping finitely many
locations to tuples of values (i.e. records); we write dom(h) for the domain of
heap h, i.e. the set of locations on which h is defined, and e for the empty heap
that is undefined everywhere. If h1 and h2 are heaps with dom(h1)∩dom(h2) = ∅,
we define h1 ◦ h2 to be the union of h1 and h2; otherwise, h1 ◦ h2 is undefined.

We write s[x 7→ v] to denote the stack defined exactly as s except that
(s[x 7→ v])(x) = v, and adopt a similar update notation for heaps.

We employ a standard small-step operational semantics of our programs. A
(program) state is either a triple (C, s, h) where C is a command sequence, s a
stack and h a heap, or the special state fault , used to catch memory errors. Given
a program fields f1, . . . , fk; C, we map the field names f1, . . . , fk onto elements
of heap records by fj =def j. The semantics of programs is then standard, given
by a relation on states (omitted here for space reasons, but see [10]). We write
 n for the n-step variant of , and ∗ for its reflexive-transitive closure. A state
(C, s, h) is safe if there is no computation (C, s, h) ∗ fault , and terminating if
it is safe and there is no infinite -computation starting from (C, s, h).

As in [23,8], extending the heap memory cannot lead to new memory faults
under our semantics, and so the following proposition holds:

Proposition 1. If (C, s, h) is safe (resp. terminating) and h◦h′ is defined then
(C, s, h ◦ h′) is also safe (terminating).

Syntax of preconditions. We express preconditions using the symbolic heap
fragment of separation logic [3] extended with inductive definitions. We assume
an infinite set of predicate symbols, each with associated arity.

Definition 1. Formulas are given by the following grammar:

F ::= > | ⊥ | E = E | E 6= E | emp | x 7→ E | P (E) | F ∗ F
where x ∈ Var, E ranges over expressions, P over predicate symbols and E over
tuples of expressions (matching the arity of P in P (E)). We write F [E/x] for the
result of replacing all occurrences of variable x by the expression E in formula
F . Substitution is extended pointwise to tuples; but when we write F [E/xi], we
mean that E should be substituted for the ith component of x only.

We define ≡ to be the least equivalence on formulas closed under associativity
and commutativity of ∗ and F ∗ emp ≡ F .

Definition 2. An inductive rule set is a finite set of inductive rules each of the
form F

z⇒ P (E), where F and P (E) are formulas and z (often suppressed) is a
tuple listing the set of all variables appearing in F and E. If Φ is an inductive
rule set we define ΦP to be the set of all inductive rules for P in Φ, i.e. those of
the form F ⇒ P (E). We say P is undefined if ΦP is empty.

Semantics of preconditions. Satisfaction s, h |=Φ F of the formula F by stack
s and heap h under inductive rule set Φ is defined by structural induction:

s, h |=Φ > ⇔ always
s, h |=Φ ⊥ ⇔ never
s, h |=Φ E1 = E2 ⇔ [[E1]]s = [[E2]]s and h = e
s, h |=Φ E1 6= E2 ⇔ [[E1]]s 6= [[E2]]s and h = e
s, h |=Φ emp ⇔ h = e
s, h |=Φ E 7→ E ⇔ dom(h) = {[[E]]s} and h([[E]]s) = [[E]]s
s, h |=Φ P (E) ⇔ (h, [[E]]s) ∈ [[P]]Φ

s, h |=Φ F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |=Φ F1 and s, h2 |=Φ F2

Note that we interpret (dis)equalities as holding in the empty heap. The seman-
tics [[P]]Φ of the predicate P under Φ is defined as follows:

Definition 3. Assume that Φ defines predicates P1, . . . , Pn with respective ari-
ties a1, . . . , an. We let each ΦPi be indexed by j, and for an inductive rule ΦPi,j

of the form F ⇒ Pix, we define an operator ϕi,j by:

ϕi,j(X) =def {(s(x), h) | s, h |=X F}
where X = (X1, . . . , Xn) and each Xi ⊆ Valai×Heaps, and |=X is the satisfaction
relation above, except that [[Pi]]

X =def Xi. We then define

[[P]]Φ =def µX. (
⋃
j ϕ1,j(X), . . . ,

⋃
j ϕn,j(X))

We write [[Pi]]
Φ for the ith component of [[P]]Φ.

For any inductive rule set, the satisfiability of a formula in our fragment is
decidable [9], which is very helpful in evaluating abduced preconditions. On the
other hand, entailment between formulas in the fragment is undecidable [1].

3 Formal cyclic safety/termination proofs

Here we present our formal cyclic proof system, adapted from the cyclic termi-
nation proofs in [8], for proving memory safety and/or termination of programs.
We can consider memory safety rather than termination simply by imposing an
alternative soundness condition on proofs.

A proof judgement is given by F ` C, where C is a command sequence and F
is a formula. The proof rules for judgements are given in Fig. 1. By convention,
the primed variables x′, x′′ etc. appearing in the premises of rules are chosen
fresh, and we write B to mean E 6= E′ if B is E = E′, and vice versa. The rule
(Frame) can be seen as a special case of the general frame rule of separation
logic (cf. [23]), where the postcondition is omitted; its soundness depends on
Proposition 1. We also include a rule for unfolding a formula of the form P (E)
according to the definition of P in a given inductive rule set Φ. (Predicate folding
is a special case of lemma application, handled by the (Cut) rule.)

Definition 4. The judgement F ` C is valid (resp. termination-valid) w.r.t.
inductive rule set Φ if s, h |=Φ F implies (C, s, h) is safe (resp. terminating).

Lemma 1. Suppose the conclusion F ` C of an instance of a rule R from
Figure 1 is invalid w.r.t. Φ, i.e. s, h |=Φ F but (C, s, h) n fault for some stack
s, heap h and n ∈ N. Then there is a premise F ′ ` C ′ of this rule instance and
stack s′, heap h′ and m ∈ N such that s′, h′ |=Φ F

′, but (C ′, s′, h′) m fault.
Moreover, m ≤ n, and if R is a symbolic execution rule then m < n.

Definition 5. A pre-proof of F ` C is a pair (D,L), where D is a finite deriva-
tion tree with F ` C at its root, and L is a “back-link” function assigning to
every open leaf ` of D a node L(`) of D such that the judgements at ` and L(`)
are identical. A pre-proof (D,L) can be seen as a graph by identifying each open
leaf ` of D with L(`); a path in P is then understood as usual.

Definition 6. A pre-proof P is a cyclic (safety) proof if there are infinitely
many symbolic execution rule applications along every infinite path in P.

We can treat termination rather than safety by replacing the soundness con-
dition of Defn. 6 with the condition in [8], which essentially demands that some
inductive predicate is unfolded infinitely often along every infinite path in the
pre-proof. Thus, by a simple adaptation of the soundness result in [8]:

Theorem 7. For any inductive rule set Φ, if there is a cyclic safety (resp. ter-
mination) proof of F ` C, then F ` C is valid (resp. termination-valid) w.r.t. Φ.

Proof. We just consider safety here, and refer to [8] for the termination case.
Suppose F ` C has a cyclic safety proof P but is invalid. By Lemma 1, there is
an infinite path (Fk ` Ck)k≥0 in P, and an infinite sequence (nk)k≥0 of natural
numbers such that nk+1 < nk whenever Fk ` Ck is the conclusion of a symbolic
execution rule instance, and nk+1 = nk otherwise. Since P is a cyclic safety
proof, there are infinitely many symbolic executions along (Fk ` Ck)k≥0. Thus
(nk)k≥0 is an infinite descending chain of natural numbers, contradiction. ut

Symbolic execution rules:

x = E[x′/x] ∗ F [x′/x] ` C

F ` x := E; C F ` ε

x = Ef [x′/x] ∗ (y 7→ E ∗ F)[x′/x] ` C
|E| ≥ f

y 7→ E ∗ F ` x := y.f ; C

x 7→ E[E/Ef] ∗ F ` C
|E| ≥ f

x 7→ E ∗ F ` x.f := E; C

x 7→ (x′1, . . . , x
′
k) ∗ F [x′/x] ` C

F ` x := new(); C

F ` C

x 7→ E ∗ F ` free(x); C

B ∗ F ` C; C′′

B ∗ F ` ifB thenC elseC′ fi; C′′

B ∗ F ` C; whileB doC od; C′

B ∗ F ` whileB doC od; C′

B ∗ F ` C′; C′′

B ∗ F ` ifB thenC elseC′ fi; C′′

B ∗ F ` C′

B ∗ F ` whileB doC od; C′

F ` C; C′′ F ` C′; C′′

F ` if ? thenC elseC′ fi; C′′

F ` C; whileB doC od; C′ F ` C′

F ` while ? doC od; C′

Logical rules:

F ` C
(Frame)

F ∗G ` C

F ` C
x not in C (Subst)

F [E/x] ` C

F ′ ` C
F ≡ F ′ (Equiv)

F ` C

(t1 = t2 ∗ F)[t2/x, t1/y] ` C
(=)

(t1 = t2 ∗ F)[t1/x, t2/y] ` C

G′ ∗ F ` C
G ` G′ (Cut)

G ∗ F ` C

(6=)
t1 = t2 ∗ t1 6= t2 ∗ F ` C

(7→)
x 7→ E ∗ x 7→ E′ ∗ F ` C

Predicate unfolding rule:

(E = Ej[xj/zj] ∗ Fj [xj/zj] ∗ F ` C)1≤j≤k ΦP = {F1
z1⇒ P (E1), . . . , Fk

zk⇒ P (Ek)}
∀xj ∈ {xj}. xj is fresh

(P)
P (E) ∗ F ` C

Fig. 1. Hoare logic rules for proof judgements.

4 Cyclic abduction: basic strategy & tactics

We now turn to the main contribution of this paper: our cyclic abduction method
for inferring inductive safety and/or termination preconditions of programs.
Here, we first explain the high-level strategy for abducing such preconditions,
and then develop a number of automatic tactics implementing this strategy.

4.1 Overview of abduction strategy. The typical initial problem we are
faced with is: given a program with code C and input variables x, find an induc-
tive definition set Φ such that the judgement P (x) ` C is (termination-)valid
wrt. Φ, where P is a predicate symbol.

Our strategy for finding such a Φ is to search for a cyclic proof of the judge-
ment P (x) ` C, abducing inductive rules as necessary to enable the search to
progress. We now set out informally the main principles governing this process.

Principle 1. The first priority of the search procedure is to close the current
branch of the derivation tree, preferably by applying an axiom, or else by forming
a back-link to some other node. (The formation of back-links must respect the
relevant soundness condition on cyclic proofs.)

If closing the branch is not possible, the second priority is to apply the sym-
bolic execution rule for the (foremost) command appearing at the current subgoal.

Principle 2. We may abduce inductive rules and/or deploy the logical rules as
“helper functions” to serve the priorities laid out in Principle 1, i.e., in order to
form a back-link or to apply the symbolic execution rule for a command.

We may abduce inductive rules only for predicate symbols that are in the
current subgoal, and currently undefined. When we abduce inductive rules for a
predicate, we always immediately unfold that predicate in the current subgoal.

Principle 3. Before symbolically executing a while loop, one can attempt to
generalise the precondition F appearing at the subgoal in question. That is to
say, we can try to find a formula F ′ such that F ′ ` F is a valid entailment,
and, by applying (Cut), proceed with the proof search using the precondition F ′

in place of F . If necessary, we may abduce inductive rules in order to obtain F ′.

4.2 Tactics. A tactic in our setting, as is standard in automated theorem
proving, is simply a transformer on proof states. However, since we employ cyclic
proofs with back-links joining leaves to arbitrary proof nodes, our proof state
must reflect the entire pre-proof rather than just the current subgoal. Further-
more, since we are allowed to abduce new inductive rules in the proof search,
the current inductive rule set must also form part of the proof state. Thus our
proof states are comprised of the following elements:

P: A partial pre-proof, representing the portion of proof constructed so far.
Some of the leaves of P may be open; we call these the open subgoals of P.

Φ: The set of inductive rules abduced so far in the proof search.
`: The open subgoal of P on which to operate next.

Example 1. Figure 2 shows an abductive cyclic proof of a program that non-
deterministically traverses l and r fields of pointer x until it reaches nil; as
expected, the abduced predicate defines binary trees. We will often refer to this
proof, which satisfies both the safety and the termination soundness condition,
as a running example in order to illustrate our abductive tactics.

4.3 Abductive tactic for branching commands. Our proof rules for de-
terministic if and while commands (Fig. 1) require the precondition to deter-
mine the status of the branching condition. We introduce an abductive tactic,
abduce branch, that fires whenever the symbolic execution of such a rule fails.

Suppose abduce branch is applied to the proof state (P, Φ, `) where the
command sequence C in the judgement appearing at the current subgoal ` is
of the form whileB doC od;C ′ or ifB thenC elseC ′ fi;C ′′ (where B 6= ?).
For simplicity we assume B is an equality or disequality between two program
variables x, y (the case where one of the two terms is nil is very similar). First,
abduce branch selects a subformula of the form P (E) appearing in ` such that
P is undefined in Φ, and x and y occur in the tuple E. Thus, we may write the
judgement appearing at ` as F ∗ P (E) ` C where x = Ek and y = Ej (and
k 6= j). Then, abduce branch adds the following inductive rules for P to Φ:

B[zk/x, z`/y] ∗ P ′(z)⇒ P (z)

B[zk/x, z`/y] ∗ P ′′(z)⇒ P (z)

where P ′, P ′′ are fresh predicate symbols and z is a tuple of appropriately many
arbitrary variables. abduce branch then unfolds the indicated occurrence of
P (E) in `, and applies the appropriate symbolic execution rule for C to each
of the new subgoals (this step is now guaranteed to succeed).

The proof in Figure 2 begins by applying abduce branch in order to symboli-
cally execute the while command, abducing a suitable definition of predicate P0.

4.4 Abductive tactic for dereferencing assignments. The symbolic exe-
cution rules for commands that dereference a memory address (Fig. 1) require
the precondition to guarantee that this address is indeed allocated. The tactic
abduce deref enables the symbolic execution of such commands by abducing
the allocation of the appropriate address.

Formally, suppose abduce deref is applied to the proof state (P, Φ, `), where
the first command C in the judgement at ` is of the form free(x) or x.f := E or
y := x.f . First, abduce deref selects a subformula of the form P (E) appearing
at `, where P is undefined in Φ, and x occurs in the tuple E at position k (i.e.,
x = Ek). Then, the inductive rule below is added to Φ:

P ′(x t y) ∗ xk 7→ y⇒ P (x)

where t is tuple concatenation, P ′ is a fresh predicate symbol, and x and y
are tuples of distinct, fresh variables such that |x| = |E|, and |y| is the number
of fields in the program. abduce deref then unfolds the selected occurrence of

ε
x
=

n
il
∗P

1
(x
)
`
ε
w
h
i
l
e
x
6=

n
il

x
=

n
il
∗P

1
(x
)
`
0

P
0
(x
)
`
0

(F
ra
m
e)

x
′
6=

n
il
∗

x
′
7→

(x
,z
)
∗P

0
(x
)
∗P

4
(x

′ ,
x
,z
)
`
0

A
(P

3
)

x
′
6=

n
il
∗

x
′
7→

(x
,z
)
∗P

3
(x

′ ,
x
,z
)
`
0

x
:=

x
.l

x
6=

n
il
∗

x
7→

(y
,z
)
∗P

3
(x
,y
,z
)
`
2

A
(P

2
)

x
6=

n
il
∗P

2
(x
)
`
2

P
0
(x
)
`
0

(F
ra
m
e)

x
′
6=

n
il
∗

x
′
7→

(y
,x

)
∗P

0
(y
)
∗P

0
(x
)
∗P

5
(x

′ ,
y
,x

)
`
0

A
(P

4
)

x
′
6=

n
il
∗

x
′
7→

(y
,x

)
∗P

0
(y
)
∗P

4
(x

′ ,
y
,x

)
`
0

(P
3
)

x
′
6=

n
il
∗

x
′
7→

(y
,x

)
∗P

3
(x

′ ,
y
,x

)
`
0

x
:=

x
.r

x
6=

n
il
∗

x
7→

(y
,z
)
∗P

3
(x
,y
,z
)
`
3

(P
2
)

x
6=

n
il
∗P

2
(x
)
`
3
i
f
?
..
.

x
6=

n
il
∗P

2
(x
)
`
1

w
h
i
l
e
x
6=

n
il

x
6=

n
il
∗P

2
(x
)
`
0
A
(P

0
)

P
0
(x
)
`
0

a
b
d
u
c
e
b
r
a
n
c
h

a
b
d
u
c
e
d
e
r
e
f

a
b
d
u
c
e
b
a
c
k
l
i
n
k

f
i
e
l
d
s
l,
r;

0
:

w
h
i
l
e
x
6=

n
il
d
o

1
:

i
f
?
t
h
e
n

2
:

x
:=

x
.l

e
l
s
e

3
:

x
:=

x
.r

f
i

o
d

x
=

n
il
∗P

1
(x
)
⇒
P
0
(x
)

x
6=

n
il
∗P

2
(x
)
⇒
P
0
(x
)

x
7→

(y
,z
)
∗P

3
(x
,y
,z
)
⇒
P
2
(x
)

P
0
(y
)
∗P

4
(x
,y
,z
)
⇒
P
3
(x
,y
,z
)

P
0
(z
)
∗P

5
(x
,y
,z
)
⇒
P
4
(x
,y
,z
)

x
=

n
il
∗e

m
p
⇒
P
0
(x
)

x
6=

n
il
∗x
7→

(y
,z
)
∗P

0
(y
)
∗P

0
(z
)
⇒
P
0
(x
)

F
ig
.
2
.

T
o
p
:

a
b

d
u
ct

iv
e

p
ro

o
f

fo
r

a
b
in

a
ry

tr
ee

se
a
rc

h
p
ro

g
ra

m
(s

h
ow

n
b

o
tt

o
m

le
ft

).
N

o
te

th
a
t

ju
d
g
em

en
ts

re
fe

r
to

th
e

in
d
ic

es
a
tt

a
ch

ed
to

p
ro

g
ra

m
co

m
m

a
n
d
s;

a
n
d

w
e

w
ri

te
A

(P
)

to
in

d
ic

a
te

a
co

m
b
in

ed
a
b

d
u
ct

io
n
-a

n
d
-u

n
fo

ld
in

g
p
ro

o
f

st
ep

.
B

o
tt

o
m

ce
n
tr

e:
in

d
u
ct

iv
e

ru
le

s
a
b

d
u
ce

d
d
u
ri

n
g

th
e

p
ro

o
f.

B
o
tt

o
m

ri
g
h
t:

si
m

p
li
fi
ed

in
d
u
ct

iv
e

ru
le

s.

P (E) in ` (introducing fresh variables as appropriate), and applies the symbolic
execution rule for C to the resulting subgoal (which will now succeed).

In the case of the proof in Figure 2, we apply abduce deref when attempting
to symbolically execute the command x := x.l on the middle branch at line 2,
abducing a suitable definition for P2 in the process. A similar situation arises
when we attempt to symbolically execute the command x := x.r on the right
hand branch, with the crucial difference that here the only predicate in the
precondition, P2, has already been defined. In this case, abduce deref is able
to succeed by unfolding P2(x) according to its existing definition.

4.5 Abductive tactic for forming back-links. In principle, we may attempt
to form a back-link from an open subgoal labelled by F ` C to any other proof
node labelled by F ′ ` C, provided that: (a) F ` F ′ is a valid entailment; and
(b) the addition of this back-link does not violate the soundness condition on
cyclic proofs. Here we present a tactic, abduce backlink, that attempts to form
such back-links automatically during the proof search.

Formally, suppose that abduce backlink is applied to proof state (P, Φ, `).
First, the tactic non-deterministically selects a node `′ of P, distinct from `, such
that the command sequences at `′ and ` are identical. Then it tries to manipulate
` using logical rules so as to obtain a precondition identical to the one at `′. More
precisely, for any predicate P in ` that is undefined in Φ, abduce backlink

attempts to abduce inductive rules for P such that after unfolding P , the logical
rules (Frame) and (Subst) can be used to obtain an identical copy of `′.

We write ` as F1 ∗ P (E) ` C, where P is undefined in Φ, and `′ as F2 ` C.
Then abduce backlink abduces an inductive rule of the form F ′ ∗P ′(z)⇒ P (z)
where P ′ is a fresh predicate, and F ′ is chosen so as to satisfy

F2[θ] ⊆multiset F1 ∗ F ′[E/z]

for some substitution θ of expressions for non-program variables only (here we
view formulas as ∗-separated multisets). Providing we can find suitable F ′ (which
is essentially a unification problem), abduce backlink transforms P by applying
rules to ` and inserting a new back-link to `′ as follows:

...

F2 ` C
...

F2 ` C
(Subst)

F2[θ] ` C
(Frame)

F1 ∗ F ′[E/z] ∗ P ′(E) ` C
(P)

F1 ∗ P (E) ` C

As with our other tactics, abduce backlink is also allowed to try unfolding
a defined predicate in the subgoal ` if no undefined predicates are available.
Finally, abduce backlink ensures that the proposed back-link does not violate
the relevant soundness condition on cyclic proofs by calling a model checker.

In the middle branch of the proof in Figure 2, we call abduce backlink after
symbolically executing x := x.l. The tactic proceeds by abducing a suitable
definition for P3 and applying (Frame), allowing a back-link to the root of the

proof. For the similar goal on the rightmost branch, abduce backlink instead
unfolds P3 and then abduces a suitable inductive rule for the undefined P4.

We observe that abduce backlink is “forgetful” in that it uses (Frame) to
discard parts of the precondition. An alternative would be to use (Cut) with an
entailment theorem prover to establish the required logical entailment F ` F ′
(such steps are needed for some proofs). We did implement such a tactic, calling
on the separation logic entailment prover in Cyclist [11], but found the costs to
be prohibitive in the absence of a sophisticated lemma speculation mechanism.

4.6 Tactic for existential generalisation. Symbolically executing while

loops creates a potentially infinite branch of the proof search, unless it can be
closed either by an axiom or, more commonly, by forming a back-link. However,
naive attempts to back-link to a target judgement often fail because the judge-
ment specifies a too-precise relationship between program variables which is not
preserved by the loop body. One solution, typical of inductive theorem proving
in general, is to generalise the precondition of a while loop so as to “forget”
such variable relationships. The tactic ex gen implements this principle.

Formally, suppose ex gen is applied to the proof state (P, Φ, `), where the
judgement labelling current subgoal ` is of the form F ` while B do C od; C ′.
Then for every program variable x modified by the loop body C, ex gen replaces
every occurrence of x in a subformula of F of the form E = E′, E 6= E′ or
y 7→ E by a fresh (existentially quantified) variable w. (This step uses (Cut),
and is easily seen to be sound.) This tactic may generalise over any subset of
variables modified by the loop body and present in F .

Example 2. Figure 3 shows the proof of a program with two nested while loops;
the outer loop traverses next pointers while the inner loop traverses down point-
ers. Here, the abduced precondition defines a list of lists.

Consider the goal x 6= nil ∗ x 7→ (y, z) ∗ P3(x, y, z) ` 2 in Figure 3. Since z is
modified by the inner loop body, and the precondition contains x 7→ (y, z), we
call ex gen, which replaces x 7→ (y, z) by x 7→ (y, w), where w is a fresh variable.
This generalisation will be needed later in order to form a backlink (as x 7→ (y, z)
does not hold after executing the loop body, but ∃w. x 7→ (y, w) does).

Other, more complex types of generalisation are also possible (and are needed
for some proofs), but are outside the scope of what we can cover in a single paper.

4.7 Simplification of inductive rule sets. When an abductive proof search
succeeds, the returned set of abduced inductive rules will typically be too com-
plex for human consumption. We apply some fairly straightforward simplifica-
tions to improve readability (as shown in Figures 2 and 3).

First, all undefined predicates are interpreted as the empty memory emp
(this being a safe and spatially minimal interpretation). Second, we in-line the
definitions of predicates defined by a single inductive rule; to ensure this process
terminates, the definition of Q may only be in-lined into the body of P when Q
was abduced later in the search than P . Finally, we eliminate any parameters
from a predicate that are unused by its definition and therefore redundant.

ε

x
=

n
il∗

P
1
(x

)`
ε

w
h
i
l
e
x
6=

n
il

x
=

n
il∗

P
1
(x

)`
0

P
0
(x

)`
0

(F
ra

m
e
)

x
′6=

n
il∗

z
=

n
il∗

x
′7→

(x
,
w
)∗

P
0
(x

)∗
P

6
(x

′,
x
,
z
)`

0
A
(P

4
)

x
′6=

n
il∗

z
=

n
il∗

x
′7→

(x
,
w
)∗

P
4
(x

′,
x
,
z
)`

0
x

:=
x
.n
e
x
t

x
6=

n
il∗

z
=

n
il∗

x
7→

(y
,
w
)∗

P
4
(x
,
y
,
z
)`

4
w
h
i
l
e
z
6=

n
il

x
6=

n
il∗

z
=

n
il∗

x
7→

(y
,
w
)∗

P
4
(x
,
y
,
z
)`

2

x
6=

n
il∗

x
7→

(y
,
w
)∗

P
3
(x
,
y
,
z
)`

2
(F

ra
m
e
)

x
6=

n
il∗

z
′6=

n
il∗

x
7→

(y
,
w
)∗

z
′7→

(v
,
z
)∗

P
3
(x
,
y
,
z
)∗

P
8
(x
,
y
,
z
′,
v
,
z
)`

2
A
(P

7
)

6=
n
il∗

z
′6=

n
il∗

x
7→

(y
,
w
)∗

z
′7→

(v
,
z
)∗

P
7
(x
,
y
,
z
′,
v
,
z
)`

2
z

:=
z
.d
o
w
n

x
6=

n
il∗

z
6=

n
il∗

x
7→

(y
,
w
)∗

z
7→

(v
,
v
′)∗

P
7
(x
,
y
,
z
,
v
,
v
′)`

3
A
(P

5
)

x
6=

n
il∗

z
6=

n
il∗

x
7→

(y
,
w
)∗

P
5
(x
,
y
,
z
)`

3
w
h
i
l
e
z
6=

n
il

x
6=

n
il∗

z
6=

n
il∗

x
7→

(y
,
w
)∗

P
5
(x
,
y
,
z
)`

2
A
(P

3
)

x
6=

n
il∗

x
7→

(y
,
w
)∗

P
3
(x
,
y
,
z
)`

2
E
X
-G

E
N

x
6=

n
il∗

x
7→

(y
,
z
)∗

P
3
(x
,
y
,
z
)`

2
z

:=
x
.d
o
w
n

x
6=

n
il∗

x
7→

(y
,
y
′)∗

P
3
(x
,
y
,
y
′)`

1
A
(P

2
)

x
6=

n
il∗

P
2
(x

)`
1

w
h
i
l
e
x
6=

n
il

x
6=

n
il∗

P
2
(x

)`
0
A
(P

0
)

P
0
(x

)`
0

f
i
e
l
d
s
n
e
x
t,
d
o
w
n
;

0
:
w
h
i
l
e
x
6=

n
il
d
o

1
:

z
:=

x
.d
o
w
n
;

2
:

w
h
i
l
e
z
6=

n
il
d
o

3
:

z
:=

z
.d
o
w
n

o
d
;

4
:

x
:=

x
.n
e
x
t

o
d

x
=

n
il∗

P
1
(x

)⇒
P

0
(x

)

x
6=

n
il∗

P
2
(x

)⇒
P

0
(x

)

x
7→

(y
,
y
′)∗

P
3
(x
,
y
,
y
′)⇒

P
2
(x

)

z
=

n
il∗

P
4
(x
,
y
,
z
)⇒

P
3
(x
,
y
,
z
)

z
6=

n
il∗

P
5
(x
,
y
,
z
)⇒

P
3
(x
,
y
,
z
)

P
0
(y

)∗
P

6
(x
,
y
,
z
)⇒

P
4
(x
,
y
,
z
)

z
7→

(v
,
v
′)∗

P
7
(x
,
y
,
z
,
v
,
v
′)⇒

P
5
(x
,
y
,
z
)

P
3
(x
,
y
,
w
)∗

P
8
(x
,
y
,
z
,
v
,
w
)⇒

P
7
(x
,
y
,
z
,
v
,
w
)

x
=

n
il⇒

P
0
(x

)

x
6=

n
il∗

x
7→

(y
,
y
′)∗

P
3
(y
,
y
′)⇒

P
0
(x

)

z
=

n
il∗

P
0
(y

)⇒
P

3
(y
,
z
)

z
6=

n
il∗

z
7→

(v
,
v
′)∗

P
3
(y
,
v
′)⇒

P
3
(y
,
z
)

F
ig
.
3
.

T
o
p
:

a
b

d
u
ctiv

e
p
ro

o
f

fo
r

list-o
f-lists

trav
ersa

l.
B

o
tto

m
,

left
to

rig
h
t:

p
ro

g
ra

m
;

p
red

ica
tes

fo
u
n
d
;

sim
p
lifi

ed
p
red

ica
tes.

5 Implementation and evaluation

We have implemented our cyclic abduction strategy as an experimental tool,
Caber (from “Cyclic ABducER”). Caber is built on top of the open-source
theorem prover Cyclist, a generic framework for constructing cyclic theorem
provers [11]. It essentially provides an instantiation of the proof system in Sec-
tion 3 (based on an earlier version in [11]), and an abductive proof search algo-
rithm implementing the tactics in Section 4. Safety versus termination is handled
via a prover switch. When a proof is found, we check that the abduced predicates
are satisfiable, using the method in [9]. The implementation of Caber amounts
to about 3000 lines of OCaml code, excluding minor changes to Cyclist.

Program LOC Time Search Defs. Term.
(ms) Depth Class Proved

1 List traverse 3 20 3 A X
2 List insert 14 8 7 B X
3 List copy 12 0 8 B X
4 List append 10 12 5 B X
5 Delete last from list 16 12 9 B X
6 Filter list 21 48 11 C X
7 Dispose list 5 4 5 A X
8 Reverse list 7 8 7 A X
9 Cyclic list traverse 5 4 5 A X

10 Binary tree search 7 8 4 A X
11 Binary tree insert 18 4 7 B X
12 List of lists traverse 7 8 5 B X
13 Traverse even-length list 4 8 4 A X
14 Traverse odd-length list 4 4 4 A X
15 Ternary tree search 10 8 5 A X
16 Conditional diverge 3 4 3 B ×
17 Traverse list of trees 11 12 6 B X
18 Traverse tree of lists 17 68 7 A X
19 Traverse list twice 8 64 9 B X

Program LOC Time Search Defs. Term.
(ms) Depth Class Proved

1 Mutant test #1 4 4 3 A X
2 Mutant test #2 6 8 5 A X
3 Mutant test #3 6 8 7 A X
4 Mutant test #4 11 52 8 C X
5 Mutant test #5 16 16 12 B X
6 Mutant test #6 6 4 5 A X
7 Mutant test #7 8 4 7 A X
8 Mutant test #8 30 × × × ×
9 Mutant test #9 13 16 13 B X

10 Mutant test #10 21 4 13 C X
11 Mutant test #11 17 292 13 C T/O

Fig. 4. Experimental results for the Caber tool. T/O indicates timeout (30s). See
below for explanation of “Defs. Class” column.

Our experimental evaluation of Caber is summarised in Fig. 4. The test suite
includes programs manipulating lists, trees, cyclic structures and higher-order
structures like lists-of-lists and trees-of-lists. We also obtained under permission
the programs used to test the Mutant termination checker [4]. These are loops
extracted from the Windows kernel that manipulate list-like structures of varying
complexity. Our tests were performed on a x64 Linux system with an Intel i5
CPU at 3.4GHz and 4Gb of RAM. Run-times were generally very low, with no
test taking more than 300 ms, apart from Mutant test #11 whose termination
proof times out. The definitions abduced by the safety- and termination-proving
runs on each program were identical, except on test #16 and Mutant test #11.

Evaluating the quality of abduced definitions is not trivial. In principle, def-
initions could be partially ordered by entailment (cf. [12]) but for our language
this is known to be undecidable [1]. Instead, we manually classify solutions into
three categories. A solution is rated “A” if it is syntactically equal to the standard
precondition for that example, “B” if it is at least provably equal to the standard
precondition, and “C” if it is strictly stronger than the standard precondition.

Out of 30 tests in total, 14 tests (47%) produce predicates rated “A”, 11 tests
(37%) produce predicates rated “B”, and 4 tests (13%) produce predicates rated
“C”, with one test (3%) failing entirely. Categories A and B include cyclic list
traversal (program 9 in Fig. 4), list of lists traversal (12), searching binary and
ternary search trees (10, 15) and traversal of even- and odd-length lists (13, 14).
The last four programs typically cannot be handled by (safety-checking) tools
such as SpaceInvader and SLAyer. Test #6 and Mutant tests #4, #10, #11
produce C-rated definitions, and Mutant test #8 fails altogether. The common
cause behind these (partial) failures is essentially the need for better abstraction
and lemma speculation techniques, as discussed briefly in Section 4.

6 Related work

Our approach to the abduction of inductive definitions is close in spirit, if not so
much in execution, to inductive recursion synthesis in AI (for a survey see [16]).
The main novelties of our approach, compared to this technique, are: (a) that
we abduce Hoare-style preconditions for imperative programs in separation logic,
rather than inputs to functional programs in first-order logic; and (b) that we
employ a cyclic proof search to abduce induction schemas.

Our abductive tactics for symbolic execution are similar to the approach
taken in [12], which performs abduction for separation logic over a fixed signa-
ture of (higher-order) lists. In a different setting, Dillig et al. [15] abduce loop
invariants as Boolean combinations of integer inequalities. In contrast, we di-
rectly abduce the inductive definitions of arbitrary data structures on-the-fly, by
refining the meaning of predicate symbols during proof search.

There have also been a number of previous efforts to synthesise inductive
predicates of separation logic for use in program analysis. Lee et al. present a
shape analysis using an abstract domain of shape graphs based on a grammar of
heaps [19]. The main limitation of the technique is the restriction of the inferred
predicates to at most two parameters. Later, Berdine et al. developed a shape
analysis employing a higher-order list predicate, from which various list-like data
structures can be synthesised [2]. Again, the choice of abstract domain limits the
class of predicates that can be discovered; for example, predicates defining trees
cannot be expressed in this domain. Guo et al. leverage inductive recursion syn-
thesis to infer inductive loop invariants in a shape analysis based on separation
logic [17]. Chang and Rival propose a shape analysis whose abstract domain is
parameterised by “invariant checkers”, which are essentially inductive definitions
provided by the user [13]. Finally, He et al. build on the bi-abductive techniques
proposed in [12] to infer procedure specifications based on user-defined predi-
cates [18]. The main differences between these works and our own is that they
only consider safety and not termination; and they are generally based upon
pre-defined recursion schemas or abstract domains, rather than inferring predi-
cate definitions directly as we do. Guo et al. [17], based on inductive recursion
synthesis techniques, is a notable exception to the latter rule.

Recently, Brockschmidt et al. developed a termination prover for Java pro-
grams based on term rewriting [7] that also performs some inference of heap pred-
icates during analysis. In contrast to our work, their analysis assumes memory
safety, while we guarantee it. Several authors have also considered the problem
of inferring termination preconditions for integer programs (e.g., [6]). The heap
is not usually considered, and the abduced preconditions are generally linear
combinations of inequalities between integer expressions.

7 Conclusions and future work

In this paper we lay the foundations of a new technique, cyclic abduction, for in-
ferring the inductive definitions of data structures manipulated by while pointer
programs. This problem is far more challenging than the already difficult one of
inferring pre/postconditions based on fixed predicates. Presently, our prototype
tool Caber infers correct preconditions for small programs manipulating data
structures such as lists, trees, cyclic lists and compositions of these. In particu-
lar, Caber abduces the correct termination preconditions, previously supplied
by hand, for over 90% of the tests reported for Mutant in [4].

We note that cyclic abduction is subject to the same fundamental limitation
as most static analyses: For computability reasons, there is no general solution
to the abduction problem, and thus we cannot do better than a heuristic search.

The main avenue for future work is to improve the abduction heuristics in
order to cover larger and more difficult examples than Caber is currently able
to handle automatically. In particular, the while language in this paper does not
feature procedure calls. There is no difficulty in extending the proof system in
Section 3 to programs with procedures, adding postconditions to judgements to
capture the effect of procedure calls. However, the abduction problem becomes
much more difficult, as preconditions and postconditions must be abduced si-
multaneously. We know how to achieve this for some simple examples, but have
not yet implemented it. For more complicated examples, we need to establish in-
ductive entailments between formulas at procedure call sites, again highlighting
the need for good lemma speculation techniques.

Current limitations of the implementation, which are however not funda-
mental, include: search space explosion in the presence of too many record fields
and/or temporary variables in the program; the absence of heuristics for ab-
ducing information not explicitly manipulated by the program (e.g. numerical
information [20]) and difficulty in abducing suitably segmented structures when
several pointers traverse the same data structure.

Our approach is very “pure” in that the only source of information for ab-
duction is the text of the program itself. Thus the recursion in the abduced
predicates will typically reflect the manipulation of data structures by the pro-
gram. In principle, one could compare abduced predicates to a “library” of known
structures using a suitable inductive theorem prover for separation logic.

Although by no means a silver bullet, we believe that cyclic abduction offers
a promising and natural approach to automatic specification inference.

References

1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine. Foun-
dations for decision problems in separation logic with general inductive predicates.
In Proc. FoSSaCS 2014. Springer, 2014.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, and H. Yang.
Shape analysis for composite data structures. In Proc. CAV-19. Springer, 2007.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In Proc. APLAS-3. Springer, 2005.

4. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In Proc. CAV-18. Springer, 2006.

5. J. Berdine, B. Cook, and S. Ishtiaq. Slayer: memory safety for systems-level code.
In Proc. CAV-23. Springer, 2011.

6. M. Bozga, R. Iosif, and F. Konec̆ný. Deciding conditional termination. In Proc.
TACAS-18. Springer, 2012.

7. M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs
for Java programs with cyclic data. In Proc. CAV-24. Springer, 2012.

8. J. Brotherston, R. Bornat, and C. Calcagno. Cyclic proofs of program termination
in separation logic. In Proc. POPL-35. ACM, 2008.

9. J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Pérez. A decision proce-
dure for satisfiability in separation logic with inductive predicates. In Proceedings
of CSL-LICS. ACM, 2014. To appear.

10. J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively defined safety
and termination preconditions. Technical Report RN/13/14, University College
London, 2013.

11. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem
prover. In Proc. APLAS-10. Springer, 2012.

12. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. Journal of the ACM, 58(6), December 2011.

13. B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In Proc. POPL-
35. ACM, 2008.

14. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
15. I. Dillig, T. Dillig, B. Li, and K. McMillan. Inductive invariant generation via

abductive inference. In Proceedings of OOPSLA. ACM, 2013.
16. P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: achieve-

ments and prospects. The Journal of Logic Programming, 41(2-3), 1999.
17. B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recursion

synthesis. In Proc. PLDI-28, June 2007.
18. G. He, S. Qin, W.-N. Chin, and F. Craciun. Automated specification discovery via

user-defined predicates. In Proc. ICFEM-15. Springer, 2013.
19. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using

grammar-based shape analysis. In Proc. ESOP-14. Springer, 2005.
20. S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. Automatic numeric abstractions for

heap-manipulating programs. In Proc. POPL-37. ACM, 2010.
21. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proc. LICS-17. IEEE Computer Society, 2002.
22. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.

Scalable shape analysis for systems code. In Proc. CAV-20. Springer, 2008.
23. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In Proc. FOSSACS-

5. Springer, 2002.

	Cyclic Abduction of Inductively Defined Safety and Termination Preconditions

