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A B S T R A C T 

Produce associated gastroenteritis in recent years has become more associated with 

fruits and vegetables rather than raw meat and dairy, with thousands of deaths per year 

recorded. Outbreaks of Salmonella have been reported from a multitude of vegetables 

such as lettuce, spinach and tomatoes. Many of these outbreaks are the result of infection 

via non-typhoid Salmonella species such as Salmonella enterica sv. Typhimurium. The 

ecology of Salmonella as a human pathogen via vegetable hosts is increasingly being 

studied, however much is still unknown. Studies have shown that Salmonella may 

proliferate in both the rhizosphere and phyllosphere of the tomato plant Solanum 

lycopersiscum. In tomatoes, Salmonella has varying levels of proliferation success 

depending on the variety of tomato in question. Previous studies had shown that tomatoes 

of the cherry variety were significantly more resistant to Salmonella proliferation than 

larger varieties. S. lycopersicum var. cerasiforme and var. alicante were inoculated with 

Salmonella enterica (LT2) sv. Typhimurium and allowed to incubate for 72 hours. 

Following this, tomatoes were homogenised and samples plated on XLD. This study found 

that Salmonella ability to proliferate in var. cerasiforme was significantly different (α=0.05) 

when compared to var. alicante. With Salmonella proliferating up to a 1 log more in var. 

alicante than in var. cerasiforme. This study suggested that this difference was due to an 

innate difference in immune response efficacy between var. cerasiforme and var. alicante. 

Studies regarding plant immune responses have shown that production of hydrogen 

peroxide is a common response to microbial attack. Using a novel methodology, this study 

extracted the intercellular fluid from the tomato fruit in both var. alicante and var. 

cerasiforme. Analysis via fluorometric quantification found that var. cerasiforme contained 

significantly higher amounts of hydrogen peroxide in its intercellular fluid than var. 

alicante. These data suggest that the inherent and increased resistance to Salmonella 

proliferation in var. cerasiforme compared to var. alicante is at least in part due to its 

increased levels of hydrogen peroxide in its intercellular fluid.  
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1. I N T R O D U C T I O N 

 

1.1  F o o d b o r n e   I l l n e s s   a n d   V e g e t a b l e   P r o d u c e 

Foodborne illness and disease has been a continuing and persisting issue for many years. 

Each year, food borne pathogens cause thousands of deaths and many more illnesses in 

the USA alone (Lutter, 1999). As the populace grows so does the demand for food. 

Projections from The Food and Agriculture Organisation (FAO) say that by 2050 the 

global demand for food will have doubled due to economic and population growth 

(Population Action International, 2012). There is an ever more important need to feed 

populations and communities, but to also ensure that the food grown and cultivated is safe 

and do not cause disease.  

Salmonellosis (the disease causes by infection of Salmonella enterica sv. Typhimurium.) 

is often associated with the meat industry, specifically from poultry meat and eggs. In 

many cases Salmonella spp. has been isolated from raw chicken as well as egg shells. In 

addition, case incidents of salmonellosis have been noted across the globe from China to 

Australia (Fearnley et al., 2011; Qiao et al., 2017; Sukumaran et al., 2015). 

However, the public are often less familiar with the association between salmonellosis and 

fresh vegetables, despite the fact consumers are more likely to encounter pathogenic 

enteric bacteria through fresh vegetable produce than meats or other previously noted 

sources (Centers for Disease Control and Prevention, 2019). Outbreaks of salmonellosis 

has been associated with produce such as lettuce, spinach, cantaloupe and tomatoes 

(Barak et al., 2008; Centers for Disease Control and Prevention (CDC), 2007, 2005; 

Cooley et al., 2007). Of note, was an outbreak of salmonellosis from Roma tomatoes in 

2006 that had a reported 183 cases, 12% of which resulted in hospitalisations (Centers for 

Disease Control and Prevention, 2007). This particular outbreak showed cases of 

salmonellosis in sixteen different states within the United States, however the infected 

tomatoes had originated from a single source in Florida. As with many infection diseases, 

modern travel and distribution means that a single source infection may affect individuals 

over a large distance. More worrying is the vast range of sources to which salmonellosis 

has been linked.  

In addition to the clear risk to public health, Salmonella infections within fresh vegetable 

produce poses a financial and economic problem causing huge loses to the food-crop 

industry (Batz et al., 2012; Population Action International, 2012)  



  Gabriel Sutton M00384509 

8 
 

1.2   S a l m o n e l l a   a n d   C r o p   P l a n t   E c o l o g y 

The relationship between human pathogens and food has been studied comprehensively 

for some years. More recently the relationships and mechanisms between human 

pathogens, fresh vegetable produce and animal hosts/vectors has been explored. 

According to one report, there have been over 1900 illness’s related to consumption of 

raw tomatoes between 1990 and 2010 (Bennett et al., 2015). When considering plants like 

tomatoes as vectors for human pathogens, there are number of points to note between 

initial germination of a seed and being eaten by consumer. These can be split broadly into 

pre-harvest and post-harvest. Salmonella may infect tomatoes at any stage of the 

production cycle although it is more common in the post-harvest phase (Devleesschauwer 

et al., 2017).  

Crop contamination can occur in a number of ways, namely via the soil, water or 

potentially seeds and natural fertilisers (Barak and Schroeder, 2012), however the 

majority of these avenues originate from animal reservoirs, specifically faeces.  

Water is essential for crop growing from use in irrigation to as a fertiliser diluent. Crops 

may easily be contaminated with pathogens if the water source used for irrigation is itself 

contaminated. Often the contaminated faeces can be moved from initial animal grazing 

sites via natural weathering and rain runoff. The contaminated faeces may often then 

reach reservoirs of surface water where the pathogens can persist (Cooley et al., 2007; 

Lewis et al., 2005; Luo et al., 2015). Surface water is often used to irrigate vegetable 

crops, with a reported 57% of vegetable farmers in the US doing so  (Bihn et al., 2013). To 

further this issue many tomatoes growers now opt for drip hydroponic systems. The water 

source for these systems may vary, however some growers recollect field runoff to 

reapply to other crops, thus adding another avenue of potential contamination (Richard et 

al., 2006). In addition, it has been shown that irrigation regimes and water content of 

resulting fruit in themselves can have great effect on the ability of pathogens like 

Salmonella to proliferate in tomatoes. For example, it was reported in laboratory tests that 

Salmonella may proliferate at a 10-fold increase in water congested tomatoes (Marvasi et 

al., 2013). 

It has also been reported that soil may play a part in the contamination of vegetable crops. 

Manure is a major source of fertiliser for many vegetable farmers (Elder et al., 2000). For 

the most part, it recycles essential nutrients into the soil needed for growing crops and 

increases microbial diversity at the same time. This however, is problematic if the faeces 

used in the manure is contaminated with human enteric pathogens. A survey found that of 
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29 cattle farms tested, 72% of them contained a faecal sample positive for E. coli 

OH157:H7 (Elder et al., 2000). The ability of a contaminated manure sample to effectively 

contaminate a crop is of course dependent on factors such as how long and what kind of 

conditions the manure may be stored in. However, Salmonella may persist in soil for some 

time, this can vary greatly depending on the composition of the soil as well as normal 

environmental pressures such as pH and temperature. In addition, the use of manures as 

fertiliser has been shown to increase the length of time that Salmonella may survive and 

persist in soils (Holley et al., 2006). Recent studies suggest that even dust particles 

carried via wind can contaminate tomato blossoms causing the resulting fruit and the 

calyx to be infected with Salmonella (Kumar et al., 2017).  

Whilst Salmonella has the ability to infect the whole phyllosphere of the tomato plant, for 

the most part only the carpospohere is sold and consumed as product. This however, is of 

little consequence as Salmonella may persist as attachments on the fruiting body, the 

rhizophere or the entire phyllosphere. Results have shown that seeds sown in Salmonella 

contaminated soil have resulted in a the presence of Salmonella in the rhizosphere and 

resulting phyllosphere (Barak et al., 2008).  

It is also important to note that these methods of infection may all be exacerbated if the 

phyllosphere and indeed the rhizosphere of the tomato plant has open wounds. Enteric 

bacteria such as Salmonella do not have the ability to penetrate the epidermis of the plant 

and so direct entry and infection may occur via open wounds in the plant, open stomata, 

root systems or flowering blossoms (Barak and Schroeder, 2012; Guo et al., 2001; Lopez-

Velasco et al., 2012). 

 

1.3   S o l a n u m   l y c o p e r s i c u m     A n a t o m y 

As previously mentioned, Salmonella may persist in tomatoes at any stage of the 

production process, be it pre-harvest or post-harvest. However, Salmonella may also 

persist in many different parts of the tomato plant. This study focussed on the 

carpospohere of the tomato plant . Whilst most studies (including this one) represent 

Salmonella proliferation in tomatoes as a relative increase per tomato, it is important to 

note the internal anatomy of the tomato carpospohere and the difference in the tissue 

types.  
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Fig. 1 Diagrammatic Internal anatomy of tomato (longitudinal cross section). 1-Pericarp 2-

Placental tissue 3-Seed 4-Septa 5-Colmella 6-Locular Cavity.  

Although it has been reported that Salmonella can grow in the seedlings, roots and leaves 

of the tomato plant, it is not currently known where exactly Salmonella may persist when 

inside the fruit of a tomato plant (Barak and Liang, 2008; Barak and Schroeder, 2012; 

Hintz et al., 2010). However as this study will demonstrate, Salmonella may be recovered 

from tomatoes when only the pericarp is inoculated. Tomatoes may be either bilocular or 

multilocular. Most varieties of tomato are multilocular apart from the smaller cherry 

varieties, including var. cerasiforme described in this study. These cavities contain the 

seeds of the plant and are filled with the fluid or juice of the fruit.  

 

1.4   P l a n t   I m m u n e   R e s p o n s e s 

Plants immune systems employ a variety of different strategies to tackle both abiotic and 

biotic invaders. These are complex systems that allow the plant to recognise pathogen 

associated molecular patterns (PAMPs). In turn, the pathogens exhibit a host of strategies 

to allow them to persist within the plant and/or use as a host. Plant cells are able to 

recognise PAMPs via receptors on their cells called pattern recognition receptors (PRRs) 

(Río and Puppo, 2009). Depending on the PAMP recognised by the plant, it may begin to 
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transcribe particular defence proteins or release accumulated reactive oxygen species 

(ROS) into the intercellular space. The proteins produced by pathogens may also act 

directly to suppress the immunity of the plant (Río and Puppo, 2009). This results in a 

dynamic and complex set of interactions between plant and pathogen. 

 

1.5   R e a c t i v e   O x y g e n   S p e c i e s   I n   P l a n t s   -  

 H y d r o g e n   P e r o x i d e   a n d   T o m a t o e s 

One of the major and most reactive ROS found in plants is hydrogen peroxide (H2O2) and 

it has multiple functions. It has been reported that H2O2 produced by NADPH oxidases 

can regulate cell growth by controlling the activation of Ca2+ channels in plants (Foreman 

et al., 2003). Not only this but H2O2 produced as a response to pathogen infection acts to 

stiffen, lignify and alter the composition of cell walls in plants to act as a barrier to invading 

pathogens (Cosgrove, 2005; Río and Puppo, 2009). Whilst the roles of H2O2 are plentiful 

in plants, the concern of this study is the role of H2O2 as a pathogen responses. Fruiting 

plants are no exception when H2O2 production is concerned, hydrogen peroxide has been 

found to be produced in apples, tomatoes and even detected in a variety of fruit juices (Lu 

et al., 2009; Nasirizadeh et al., 2016).  

There is sufficient evidence to suggest plants like tomatoes exhibit microbursts of H2O2 

when faced particular stressors, including invading pathogens (Río and Puppo, 2009). 

However, hydrogen peroxide may be produced as a by-product from photosynthesis as 

well as a secondary metabolite of reactions catalysed by enzymes such as amino acid 

oxidases and glucose oxidases (Asada, 1999). This means that even in the absence of a 

pathogen and/or immune response, plants may exhibit certain concentrations of hydrogen 

peroxide in the fruiting body. The particular concentration of hydrogen peroxide in plants 

may well vary between species and most importantly vary between varieties and cultivars, 

as this study will describe.  

The genes which regulate hydrogen peroxide production vary in plants and some have 

been well described in tomatoes. For example, RBOH1 codes for NADPH oxidase in 

Solanum lycopersicum. It has been shown that under stressors such as low temperature 

and drought, RBHO1 is upregulated in tomato species (Mei et al., 2017).  RBOH1 is one 

such example of genes regulating H2O2 production in tomatoes, however, how this gene is 

regulated and the relative levels of expression in different varieties of tomatoes in not yet 

known.  
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1.6   P a t h o g e n   O x i d a t i v e   S t r e s s   R e s p o n s e 

Pathogens like Salmonella are far from defenceless even when faced with a multitude of 

plant defence mechanisms. Considering the number of ways Salmonella may enter and 

persist in a tomato plant, there are also a number of key metabolic and physiological 

characteristics that Salmonella has to ensure its proliferation. Attachment to plant surface 

can often be key to the colonisation of Salmonella in tomatoes. This is controlled by agfD 

which regulates the extracellular matrix of Salmonella (Barak et al., 2007). Identification of 

yihT gene in S. enterica sv. Tyhphimurium showed that this gene involved O-antigen 

capsule formation contributed to the proliferation success of Salmonella in tomatoes, yihT 

deletion mutants proliferated up to 3 logs less in green tomatoes (Marvasi et al., 2013).  

Salmonella also has a number of ways of combatting hydrogen peroxide induced 

oxidative stress. These enzymes can broadly be split into two classes. There are the 

catalases that are able to degrease hydrogen peroxide into molecular water and oxygen. 

There is also the peroxiredoxin-type peroxidases (peroxiredoxins), which with the use of 

NADH or NADPH can reduce hydrogen peroxide to water (Horst et al., 2010).  

The most well described catalases in Salmonella are KatE, KatG and KatN. KatE is 

controlled by the RpoS regulon whereas KatG is part of the OxyR regulon (Ibanez-Ruiz et 

al., 2000; Morgan et al., 1986). All of these contribute to the overall virulence and ability of 

Salmonella to proliferate. These catalases are an important first defence when faced with 

oxidative stress, as they require no reductant unlike the peroxiredoxins (Hebrard et al., 

2009). Plant immune responses may well include microbursts of H2O2 and so producing 

reductants in such quick succession could prove problematic (Hebrard et al., 2009). 

However, studies have shown that single and double deletion mutants of KatG and KatE 

seemed to show no increased susceptibility to H2O2 producing macrophages in mice 

(Buchmeier et al., 1995). The role of these catalases in Salmonella proliferation within 

tomatoes has yet to be studied, and so their function and importance may well differ 

compared to when confronted with animal immune systems.  

Salmonella also contains peroxiredoxin proteins AhpC and AhpF. These alkalyl hydrogen 

peroxide reductases are regulated by the OxyR regulon. Homologous genes of AhpC in E. 

coli were found to be more effective at scavenging H2O2 in trace amounts than the 

catalases such as KatE and Kat G, which respond at higher concentrations of H2O2. Thus 

it was suggested that peroxiredoxins form the primary oxidative stress response. In 
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addition, double deletion mutants of the Ahp and Kat genes in E. coli showed no ability to 

scavenge endogenous H2O2 (Seaver and Imlay, 2001).  

 

1.7   T o m a to   C u l t i I v a r   S u s c e p t i b i l i t y 

The ecology between Salmonella and tomato plants is complex and dynamic and both 

organisms have a varied set of mechanisms which allow them to defend themselves. As 

previously mentioned, tomatoes have been cited in a number of Salmonella outbreaks 

and the ability of Salmonella to persist in all parts of the tomato plant is clear. However, 

the ability of Salmonella to proliferate in tomatoes is not uniform across varieties and 

cultivars. This is seen in other host plants of enteric pathogens.  The ability of E. coli 

O157:H7 to colonise lettuce plants was found to differ significantly across a variety of 

cultivars (Quilliam et al., 2012). There is also evidence to suggest that this is the case with 

Salmonella and a variety of tomato cultivars (Barak et al., 2011). A recent study screened 

31 different cultivars of tomatoes, some known to be resistant to Salmonella and others of 

unknown susceptibility. The range in ability of Salmonella to proliferate in these cultivars 

varied greatly. In fact, there was found to be a range of 10 – 100 fold increase in 

Salmonella proliferation across the 31 varieties of tomato that were tested. However, of 

note was that the cherry varieties (such as var. cerasiforme described in this study) were 

generally more resistant to Salmonella than other larger cultivars such as Roma (Marvasi 

et al., 2014). This study however, chose not to explore this trend at the time.  

There is good understanding of the mechanisms that govern plant-pathogen responses as 

well as the pathogen response itself. However, there is not yet a comprehensive 

understanding of what and how these mechanisms relate to the cultivar dependant ability 

of Salmonella proliferation.  

 

The aim of this study is therefore to relate the cultivar dependent proliferation of 

Salmonella in Solanum lycopersicum var. careasiforme and var. alicante to the plant-

pathogen response of H2O2 production. This will be done through a novel methodology of 

tomato intercellular fluid extraction and analysis.  
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2. M E T H O D O L O G Y 

 

2.1   S a l m o n e l l a   P r o l i f e r a t i o n   T e s t 

 
2.1.1 Salmonella enterica (LT2) sv. Typhimurium Preparation 

Salmonella enterica (LT2) sv. Typhimurium ATCC 14028 was obtained in stock from 

Middlesex University. This stock was then inoculated into 10ml of lysogeny broth (LB) and 

incubated for 24 hours at 37°C in 100rpm shaking incubator.  

LB was washed from the inoculant using centrifugation. One ml of inoculant was placed in 

a 1.5ml Eppendorf tube and centrifuged at 8000rpm for 1 minute. The resulting 

supernatant was discarded and the pelleted cells kept. Cells were washed in this fashion 

three times over. The final pelleted cells were resuspended in 1ml of phosphate buffer 

saline (PBS).  

Following this, 100μl of Salmonella suspension was pipetted into 900μl of PBS to make a 

10-1 dilution. This was serially diluted until a Salmonella suspension of 10-5 was achieved. 

This dilution contains approximately 3x105 cell/ml. Salmonella dilution 10-5 was used as 

inoculum for all tests in this study.  

 

2.1.2 Tomato Preparation and Infection 

Tomatoes of variety cerasiforme and alicante were bought on the morning of the 

experiment day. All tomatoes were washed thoroughly with deionised (dH2O) prior to 

infection. For each proliferation test six tomatoes of var. cerasiforme were used and six 

tomatoes of var. alicante were used. The following methods were applied to all six 

biological replicates. 

Using a sterile pipette tip, three shallow wounds were made in the pericarp of each 

tomato. This was done to ensure that the wound only punctured the pericarp and did not 

enter the locular cavities. Each wound was inoculated with 3μl of 10-5 Salmonella. All 

tomatoes were then placed into an empty plastic box that had previously been disinfected. 

The tomatoes were left to incubate at room temperature for 72 hours.  

Following this,10μl of the initial 10-5 diluted inoculum was plated out on Xylose Lysine 

Deoxycholate (XLD) and incubated at 37°C for 24 hours. Colonies were counted after 24 

hours and recorded as initial CFU inoculum count.  
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2.1.3 Tomato Harvest 

After 72 hours of incubation, each tomato’s weight was recorded and then placed in their 

own stomacher bag. If the tomato weighed 50g or less, 50ml of PBS was added to the 

stomacher bag. If the tomato weighed 50g or more, 100ml of PBS was added. Each 

tomato was then placed into a stomacher bag and stomached for 1 minute at 225rpm to 

homogenise the sample.  

Following this, 20μl of each tomato sample was plated on XLD in duplicate. All plates 

were then incubated at 37°C for 24 hours.  

Plates were then counted and recorded for black colonies of Salmonella. The increase of 

Salmonella (log) proliferation was calculated using the below formula 

 

𝐿𝐿𝐿𝐿𝐿𝐿(
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 + 𝑃𝑃𝑃𝑃𝑃𝑃)

𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  )  

 
Where: Ninitial = Initial inoculum 10-5 S. Typhimurium on XLD counted as CFU 

Nfinal = Final CFU count on XLD 

 

 

2.2   Q u a n t i f i ca t i o n   o f   I n t e r c e l l u l a r    

H y d r o g e n   P e r o x i d e 

 

2.2.1 Intercellular Fluid Extraction 

Using a sterile scalpel,  1cm x 1cm (approximately) sections of the tomato pericarp were 

cut. Tomato var. cerasiforme and var. alicante have varying pericarp thicknesses and so 

enough sections were cut so each sample equalled 1.5g ± 0.1g. The samples of tomato 

were cut carefully to ensure that as little of the locular cavity was taken as possible. The 

pericarp sections were submerged in 50mls of distilled water (or so all sections were 

submerged). Separate vessels are used for the cherry and Alicante cultivars respectively. 

The vessels are placed into separate vacuum pump bell jars and were subjected to a 
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vacuum for 15 mins (where vacuum pressure = 50kPa). The sections of pericarp were 

then removed and blotted gently with a paper towel to remove any excess water. The 

samples were then placed into 1.5ml Eppendorf tubes (approximately two pieces per 

tube). The samples were then centrifuged at 6000xg for 5 mins. The samples were then 

carefully removed from the Eppendorf tubes with sterile forceps and discarded. The 

remaining effluent was then transferred to a fresh Eppendorf tube and the sample’ total 

yield was recorded in μl/g.  

Samples were then subjected to deproteinisation using Abcam 10kD spin columns. To do 

so, 500μl of intercellular fluid was placed in the spin column and centrifuged at 11000xg 

for 3 mins. The effluent was then recollected and transferred to a fresh Eppendorf tube. 

 

2.2.2 Hydrogen Peroxide Fluorometric Assay 

The intercellular fluid extracted from each cultivar of tomato were then tested for the level 

of hydrogen peroxide using the Abcam Hydrogen Peroxide Assay Kit 

(Colorimetric/Fluorometric) (ab102500). Both deproteinised and non-deproteinised 

samples of both cultivars were tested. 

Firstly, standards of hydrogen peroxide were set up. To do so, 10mM of hydrogen 

peroxide standard was made by diluting 10μl of 0.88M hydrogen peroxide into 870μl of 

dH2O. Following this a 0.1mM standard was made by diluting 10μl of 10mM hydrogen 

peroxide into 990μl of dH2O. Finally a 10μM standard was made by diluting 100μl of 

0.1mM hydrogen peroxide into 900μl of dH20. Six standards were made using this 

concentration ranging from 0nmol/well to 0.5nmol/well.  

A clear bottom and topped 96 well plate was used for this assay. A reaction mix was then 

made for each well. This contained 48μl of assay buffer, 1μl of OxiRed Probe and 1μl of 

horseradish peroxidase (HRP). Following this, 1μl of either standard or sample was also 

added to its designated well. Both the standards and samples were measured in triplicate.  

To ensure accurate results, the OxiRed Probe was added last to all wells to ensure all 

reactions started at a similar time.  

The 96 well plate was then incubated at room temperature for 10 mins in a dark place. 

Following this the results were read in a 96 well plate-reader where Ex/Em = 535/587nm.  

Readings from samples were compared against standard curve to find concentration of 

hydrogen peroxide in pmol.  
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2. 3   Q u a n t i f i ca t i o n   o f   I n t e r c e l l u l a r   H y d r o g e n   

P e r o x i d e   P o s t   I n f e c t i o n   T o m a t o e s  

 

Tomato var. ceriasiforme and var. alicante were inoculated with 10-5 dilution of Salmonella 

as described in section 2.1.2. The tomatoes were incubated at room temperature for 72 

hours.  

Following incubation, sections of the pericarp where initial inoculation occurred, were cut 

and removed using a sterile scalpel. These sections were subjected to the intercellular 

fluid extraction method as described in section 2.2.1 The resulting samples were then 

quantified for hydrogen peroxide concentration as described in previous section.  

 

2.4   S a l m o n e l l a   P r o l i f e r a t i o n   S c a v e n g e r   T e s t 

Preparation of Salmonella inoculum was carried as described in section no 2.1.1 

Salmonella proliferation tests were carried out as described in section 2.1. with the 

variations in this method being described below. 

Six tomatoes of var. cerasiforme and six of var. alicante were each inoculated with 3x 3μl 

10-5 Salmonella dilution and incubated at room temperature for 72 hours. After initial 

inoculation of the tomato, 3μl of 1XPBS was pipetted into the same wound from which 

Salmonella was first inoculated. This was done three times for each tomato. The tomato 

was treated with PBS in this fashion at 24 hours and 48 hours of incubation.  

Six tomatoes of each variety were inoculated with 3x 3μl of 10-5 Salmonella dilution in the 

same fashion. After initial inoculation of the tomato, 3μl of 0.5mM sodium pyruvate was 

pipetted into the same wound from which Salmonella was first inoculated. This was done 

three times for each tomato. The tomato was treated with sodium pyruvate in this fashion 

at 24 hours and 48 hours of incubation.  

Six tomatoes of each variety were inoculated with 3x 3μl of 10-5 Salmonella dilution in the 

same fashion. After initial inoculation of the tomato, 3μl of 0.5mM mannitol was pipetted 

into the same wound from which Salmonella was first inoculated. This was done three 

times for each tomato. The tomato was treated with mannitol in this fashion at 24 hours 

and 48 hours of incubation.  
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After the full 72 hours incubation, all tomatoes were weighed and recorded. They were 

then placed into stomacher bags and homogenised as described in section 2.1.3 

Following this, 20μl of resulting homogenised samples were plated on XLD in duplicates 

and incubated at 37°C for 24 hours. Colonies were counted and recorded on all plates.  

 

2.5   H y d r o g e n   P e r o x i d e   S c a v e n g e r  S a l m o n e l l a   

G r o w t h  C u r v e 

2.5.1 M9 Growth Medium Preparation 

A stock solution of M9 was prepared to be used as growth medium in the Salmonella 

growth curves. 25ml of 2xM9 was added to 2ml of D-Glucose. Following this 0.2ml of 1M 

MgSO4, 10μl of 1M CaCl2, and 22.8ml of dH2O was added. This resulted in 50ml of stock 

M9. Where more M9 was needed, the formula was adjusted accordingly.  

2.5.2 Preparation of Reaction Mix and Plate 

Initially, stocks of each sample were made. This was done by pipetting 1ml of M9 stock 

into a 1.5ml Eppendorf tube. To this, 1μl of 0.5mM sodium pyruvate was added as well as 

1μl of undiluted Salmonella. (Salmonella was prepared and washed as described in 

section 2.1.1 with the addition of 0.5mM sodium pyruvate added to washing solution. 

However, no serial dilutions were made for this test). This was done in triplicate to ensure 

there were three biological replicates.  

This same process was repeated twice, substituting 0.5mM sodium pyruvate for 0.5mM 

mannitol and then again substituting for 1XPBS. A tabulated version of this can be seen in 

Table. 1 

Table. 1 Reaction mix for each scavenger treatment in Salmonella growth curve. 

 x 3 x 3 x 3 

COMPOSITE SODIUM PYRUVATE 
TREATMENT 

MANNITOL 
TREATMENT 

PBS TREATMENT 
(CONTROL) 

M9 1ml 1ml 1ml 

0.5MM SODIUM 
PYRUVATE 1μl n/a n/a 

0.5MM MANNITOL n/a 1μl n/a 

1X PBS n/a n/a 1μl 

SALMONELLA 
(UNDILUTED) 1μl 1μl 1μl 
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Following this, 200μl of each sample was pipetted into a clear bottomed 96 well plate. 

Each biological replicate from all treatments was plated so four technical replicates of 

each sample existed. A  blank containing 200μl of 1xPBS was also plated. An example of 

how this was plated can be seen in Fig. 2 

 

Fig. 2 Example of 96 plate used for hydrogen peroxide scavenger growth curve. M1, M2 and M3 represent 
the biological replicates of the mannitol treatment. P1, P2 and P3 represent the biological PBS (control) 
treatments and S1, S2 and S3 represent the three sodium pyruvate treatments.  

 

The plate was the incubated at 37°C for three hours before placing in the 96 well plate 

reader. The growth of Salmonella was measured every 30 mins for 14.5 hours. This was 

represented by absorbance values at 590nm.  

 

2.6   R N A   E X T R A C T I O N 

Three shallow wounds in the pericarp of var. cerasiforme and var. alicante tomatoes were 

made, spaced equally apart. Into each of these wounds 3μl of 10-5 Salmonella dilution 

was pipetted. This was done in triplicate for each cultivar of tomato. The tomatoes were 
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then left for 72 hours in a sterilised Perspex box,  left at room temperature and out of 

direct sunlight.  

2.6.1 Harvest and Sample Preparation 

After the 72 hour incubation period the tomatoes were removed from the box for harvest 

of biological material. Using a sterile scalpel, sections of the pericarp surrounding the 

original wound made were cut and removed from the tomato, (after 72 hours, Salmonella 

will only proliferate in immediately surrounding areas). This was done for all three wounds 

on each of the six tomatoes (three var. cerasiforme and three var. alicante). Each 

removed section of pericarp was placed in its own sterile stomacher bag, along with 50ml 

of 1XPBS. Each sample was then placed into the stomacher for one minute at 225rpm. 

After all samples are fully homogenised, a sub sample of 1ml was taken from each and 

pipetted into a sterile 1.5ml micro centrifuge tube. Each sub sample was then spun at 

100xg for 1 min, this ensured any large parts of biological material left from the 

homogenisation of the tomato are forced to the bottom of the tube. The liquid sample 

remaining in the tube was then transferred to a new sterile 1.5ml micro centrifuge tube, 

this was done for all samples. All samples were then spun at 11000xg for 3 mins to 

ensure cells were pelleted. The remaining effluent was discarded.  

 

2.6.2 RNA Extraction  
All reagents used in this step were supplied by the illustra RNAspin Mini RNA Isolation Kit 

(GE Healthcare) 

Firstly, the pelleted cells from each sample were resuspended in 100μl of TE buffer than 

contained 0.2mg/ml of lysozyme. Each sample was vortexed and the incubated at 37°C 

for 10 mins. Following this, 350μl of Lysis solution and 3.5μl of β-Mercaptoethanol was 

added and mixed by vortexing. The viscosity of the sample was reduced by filtering 

through a RNAspin Mini Filter. Following this, the RNAspin Mini Filter was placed inside a 

collection tube, and then the samples were loaded into the mini filter. One filter was used 

per sample. All samples were then centrifuged at 11000xg for 1 min. The filter was 

discarded and the collection tube containing the lysate was kept. For each sample, 350μl 

of 80% ethanol was loaded directly into the aforementioned collection tube. 

For each sample a RNAspin Mini Column + collection tube complex was set up. Each 

sample lysate was then loaded directly into its own mini column. The samples were then 

centrifuged at 8000xg for 30 seconds. The mini column was then transferred to a new 

sterile collection tube. The previous collection tube was discarded. Following this 350μl of 
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desalting buffer was added to each mini column. All samples were then spun in a 

centrifuge at 11000xg for 1 min. For each sample, the flowthrough effluent  was discarded 

but the collection tube kept and returned to the mini column.  

The DNase reaction mixture was prepared according to the given protocol and in enough 

volume appropriate for this experiment. This was done by mixing 10μl of reconstituted 

DNase I with 90μl of DNase Reaction Buffer per reaction or sample. Following this, 90μl of 

this reaction mixture was loaded directly in the middle of the membrane at the bottom of 

the mini column. This was carried out for all samples and incubated at room temperature 

for 15 mins. For each sample, 200μl of wash buffer 1 was added to the mini column. They 

were then spun in a centrifuge for 1 min at 11000xg. Each mini column was then placed 

into a fresh collection tube and the old collection tubes were discarded. Each sample was 

then loaded with 600μl of wash buffer 2 and spun in a centrifuge for 1 min at 11000xg. 

The flowthrough effluent was discarded and the mini column was placed back in the 

collection tube. A third wash was carried out again with wash buffer 2 by adding 250μl to 

each sample and spinning in a centrifuge for 2 mins at 11000xg. The mini column was 

then placed into a nuclease free 1.5ml micro centrifuge tube, and all collection tubes from 

the previous step were discarded.  

Finally, the RNA was eluted from the mini column. This was done by loading the mini 

column 100ul of RNase free water and then centrifuging at 11000xg for 1 min.  

RNA quality and concentration was analysed using Nanodrop® Lite.  

 

2.7 Statistical Analysis  

All statistical analysis in this work was carried out using Minitab® v.17.2.1. Normality tests, 

tests for two variance were used to determine whether data were parametric or non-

parametric. 2-sample t-tests were used to test for significance difference in parametric 

data and Mann-Whitney tests were used to test for significant difference in non-parametric 

data. 

All statistical tests carried out in this work was done so with a significance of α = 0.05, 

unless specifically stated.  
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3. R E S U L T S 

 
3.1   S a l m o n e l l a   P r o l i f e r a t i o n   T e s t s 

Solanum lycopersicum var. alicante (Hessayon, 1997) and var. cerasiforme (Nesbit, 2002) 

were infected with Salmonella enterica serovar Typhimurium (14208). The increase in S. 

Typhimurium proliferation was measured in log (cfu/fruit). All proliferation tests were 

carried out according to methodology described in section 2.1  

In this section, var. cerasiforme is denoted with its common name ‘cherry’ for ease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Increase in S. Typhimurium (14028) Proliferation (log) in S. lycopersicum var. alicante and var. 
cerasiforme. SE of var. alicante = 0.099623. SE of var. cerasiforme = 0.213772 

 

Fig. 3 Shows the increase in Salmonella proliferation in var. cerasiforme and alicante of 

Solanum lycopersicum. Tomatoes were infected with 10-5 dilution of S. Typhimurium 

(14028) and incubated for three days as described in section 2.1. To ensure that the size, 

weight and overall growth area is accounted for in the difference between the two tomato 

varieties, growth is represented as a log increase in proliferation, this was done by using 

the formula described in section 2.1.3.  

 

CFU count across biological replicas in both var. cerasiforme and alicante tomatoes 

initially indicates large variation. However tests for normality indicate that the average 
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CFU across biological replicates follow a normal distribution for cherry (p = 0.301) and 

Alicante (p = 0.077) (see appendix 1.6) 

Further analysis of this data indicates that when comparing the average increase in 

Salmonella proliferation (CFU) both data (cerasiforme and alicante) have equal variances 

(Levene’s p = 0.098).  

Each tomato variety’s susceptibility to Salmonella proliferation is interpreted based on 

comparative increase in log. Analysis of the data in Fig. 3 shows the standard deviation of 

average CFU across all biological replicas in var. alicante and var. cerasiforme to be 

111.4 and 54.9 respectively. However standard deviation of log increase in Salmonella 

proliferation in var. alicante and var. cerasiforme varieties was shown to be 0.267 and 

0.574 respectively. In addition to this, the increase in Salmonella proliferation across all 

biological replicas showed normal distribution for both var. alicante (p = 0.327) and var. 

cerasiforme (p = 0.779) as well as equal variances (Levene’s p = 0.08). 

Further analysis via 2-sample t-test shows that there is a significant difference in the 

increase in Salmonella proliferation between var. alicante and var. cerasiforme (p = 0.004, 

Confidence Interval -1.534, -0.384). The above results and analysis indicates that var. 

cerasiforme has an inherent biological resistance to S. Typhimurium or potentially a higher 

amount of said resistance when compared with var. alicante.  

 

3.2   H y d r o g e n  P e r o x i d e  Q u a n t i f i c a t i o n  A n a l y s i s 

As indicated in section 1.5 production of reaction oxygen species (like hydrogen peroxide) 

in plants is a primary form of defence against invading pathogens. It is possible that 

differences in the production amount of these reactive oxygen species between tomato 

varieties may help the explain the observed innate susceptibility and/or resistance of 

certain varieties for S. Typhimurium proliferation.  

Solanum lycopersicum var. alicante and var. cerasiforme were analysed for concentration 

of hydrogen peroxide within their intercellular fluid respectively. The Fluorometric assay 

used standards of H2O2 ranging from 0 – 500pmol. Standard absorbance values were 

corrected using blank sample. Samples were checked against the standard curve. 

In order to obtain the best and most representative data, sample preparations were 

optimised. All intercellular fluid was extracted using the method as described in section 

2.2.1. After intercellular fluid extraction samples were deproteinised using Abcam® 10kD 

mini-spin columns and compared with samples that were not deproteinised. This 
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deproteinisation step was carried out to ensure that extraction of the intercellular fluid was 

not contaminated with proteins that may interfere with the sensitive Fluorometric 

quantification assay.  

 

Fig. 4 Hydrogen peroxide concentration (pmol) of deproteinised samples vs. untreated in var. alicante and 
var. cerasiforme. SE of var. alicante (deproteinised) = 1.8, SE of var. alicante (untreated) = 1.675, SE of var. 
cerasiforme (deproteinised) = 0.94, SE of var. cerasiforme (untreated) = 2.1.  

 

The above figure shows the concentration of hydrogen peroxide in intercellular fluid 

samples taken from S. lycopersicum var. alicante. A 2-Sample t test indicated that there is 

no significant difference in hydrogen peroxide concentration between samples that were 

deproteinised and untreated samples. (p = 0.17, 95% Confidence interval -1.27, 5.72). 

These results indicate that intercellular fluid extraction was successful.  

 

Intercellular fluid samples from S. lycopersicum var. cerasiforme were also subjected to 

deproteinisation and non-deproteinisation. These samples were analysed and 

concentration of hydrogen peroxide in pmol was quantified. A 2-sample t-test indicates 

that there is no significant difference in concentration of hydrogen peroxide between 

samples that are deproteinised compared with those that are not (p = 0.233, 95% 

confidence interval, -3.28, 11.36). It is important to note that the intercellular fluid used in 

the deproteinised and untreated samples came from a single tomato. This intended to 

remove any biological variation so the effect of deproteinisation could be properly 

observed.  
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Fig. 5 Intercellular concentration of H2O2 in S. lycopersicum var. alicante and var. cerasiforme post infection 
of S. Typhimurium vs. no infection. SE of var. alicante (post-infection) = 1.22, SE of var. alicante (no infection) 
= 1.675, SE of var. cerasiforme (post-infection) = 0.11, SE of var. cerasiforme (untreated) = 2.1. 

 

The above figure shows the concentration of H2O2 in the intercellular fluid of S. 

lycopersicum var. Alicante and var. cerasiforme after infection of 10-5 S. Typhimurium and 

incubation for 1 day vs the intercellular concentration of hydrogen peroxide with no 

infection. Fluorescence readings from this test run yielded results that were close to or 

below the standard curve. However, statistical analysis shown a non-normal distribution (p 

= <0.005) in the H2O2 concentration in var. cerasiforme post infection and a normal 

distribution for var. Alicante (p = 0.287).  

Further analysis via Mann-Whitney shows that there is a significant difference (p = 0.0114 

adjusted for ties, 95% Confidence Interval -4.62 -0.091) between the H2O2 concentration 

in var. cerasiforme post infection (Fig. 5) compared against untreated (no infection). The 

strength of this difference is however weak. Similarly, a 2-sample t-test shows a significant 

differences (p = 0.001, 95% Confidence Interval 1.788, 5.331) between var. alicante post 

infection (Fig. 4) and untreated.   

Analysis of these post infection results (Fig. 5) however are limited in reliability due to 

falling below standardised range for reference curve.  
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Fig. 6 Intercellular concentration of H2O2 (pmol) in S. lycopersicum var. alicante and var. 
cerasiforme. SE of var. alicante = 3.4, SE of var. cerasiforme = 32.2. 

 

The above figure shows the concentration in the intercellular fluid of S. lycopersicum var. 

alicante and var. cerasiforme. For this test, a new standard curve was run and 

concentrations were calculated against this. Var. cerasiforme was shown to have normal 

distribution (p = 0.08) as was var. alicante (p = 0.79). Further analysis via Mann-Whitney 

shows there to be a significant difference in the concentration of hydrogen peroxide 

between the two varieties of tomato (p = 0.0304, 97% Confidence Interval 9.7, 162.7). 
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3.3   P r o l i f e r a t i o n   S c a v e n g e r  T e s t  -  M a n n i t o l 

With intercellular concentrations of hydrogen peroxide in both tomato varieties already 

established, it was important to confirm that the difference in Salmonella proliferation was 

due to the difference in hydrogen peroxide concentrations and no other variables. For this 

reason proliferation tests were carried out using hydrogen peroxide scavengers and was 

compared against controls. Salmonella proliferation tests were carried out on S. 

lycopersicum var. alicante and var. cerasiforme as dictated in section 2.1. Mannitol acted 

as a scavenger of H2O2 

The data in Fig. 7 (full data available in appendix 1.1) shows the proliferation of 

Salmonella in var. cerasiforme and var. alicante when treated with mannitol vs. a control. 

Var. alicante (mannitol treatment), var. alicante (control) and var. cerasiforme (mannitol 

treatment) were shown to have normal distribution (p = 0.55, p = 0.896, p = 0.835) 

however var. cerasiforme (control) was shown to have non-normal distribution (p = 0.017). 

Further analysis via 2-sample t-test showed that there was no significant difference in the 

increase in proliferation in var. alicante tomatoes between the control and mannitol 

treatment (p = 0.182, Confidence interval -0.097, 0.445). However, analysis via Mann-

Whitney showed there was a significant difference in the increase in proliferation in var. 

cerasiforme tomatoes between the control and mannitol treatment (p = 0.013, Confidence 

interval -0.842, -0.096). 

 
Fig. 7 Increase in Salmonella proliferation (log) in S. lycopersicum var. alicante and var. cerasiforme when 
treated with Mannitol vs. control. Standard error of Cherry (control) shown as 0.130, standard error of cherry 
(mannitol) shown as 0.063, standard error of Alicante (control) shown as 0.077 and standard error of Alicante 
(mannitol) shown as 0.0791303 

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

alicante cerasiforme

In
cr

ea
se

 in
 S

al
m

on
el

la
 P

ro
lif

er
at

io
n 

(lo
g)

Increase in Salmonella Proliferation (log) in mannitol 
treated tomato vs. control

Control Mannitol



  Gabriel Sutton M00384509 

28 
 

Further analysis via Mann-Whitney shows that there lies a significant difference between 

proliferation in var. cerasiforme and var. alicante in the control tomatoes (p = 0.0082, 

Confidence interval -0.94, -0.195). These results are in keeping with and compliment the 

analysis of data from Table 2. And Fig. 3. However, 2-sample t-test analysis shows there 

also to be a significance difference between proliferation in var. cerasiforme and var. 

alicante varieties in the Mannitol treatment (p = 0.016, Confidence interval, -0.570, -

0.075).  

Analysis of the data shown in Fig. 7 was carried out identify if significance difference lies 

between the estimated difference in the two treatments of both tomatoes. Estimates for 

difference from summarised t-tests were used as sample means and pooled standard 

deviations from original t-test used as standard deviation (shown in Table. 2).  

 

Table. 2 Summarised statistical data used to test significant difference in estimated 
difference in var. cerasiforme and var. alicante proliferation (control) and var. cerasiforme 
and var. alicante proliferation (mannitol) 

 TEST 

 
SUMMARISED T-TEST OF CHERRY 
PROLIFERATION (CONTROL) AND 

ALICANTE PROLIFERATION (CONTROL) 

SUMMARISED T-TEST OF CHERRY 
PROLIFERATION (MANNITOL) AND ALICANTE 

PROLIFERATION (MANNITOL) 
ESTIMATE FOR 

DIFFERENCE -0.323 -0.541 

POOLED STDEV 0.1756 0.1756 
 

Summarised t-test between showed there was no significance difference (p = 0.057, 

Confidence interval -0.008, 0.444) between the estimated differences of tests described in 

Table. 2 with an estimate for difference at 0.288.  
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3.4   P r o l i f e r a t i o n  S c a v e n g e r  T e s t  –  S o d i u m  P y r u v a t e 

Salmonella proliferation tests were carried out on S. lycopersicum var. alicante and var. 

cerasiforme as dictated in section 2.4. Sodium Pyruvate acted as a scavenger of H2O2 

 

The data in Fig. 8 shows the proliferation of Salmonella in var. cerasiforme and var. 

alicante when treated with sodium pyruvate vs. a control. Var. alicante (sodium pyruvate 

treatment), var. alicante (control) and var. cerasiforme (sodium pyruvate treatment)  and 

var. cerasiforme (control) were shown to have normal distribution (p = 0.284, p = 0.866, p 

= 0.633, p = 0.532 respectively). Further analysis via 2 samples t-test showed that there 

was no significant difference in the increase in proliferation in var. alicante between the 

control and sodium pyruvate treatment (p = 0.720, Confidence interval -0.290, 0.208). 

Similarly, analysis via 2-sample t-test showed there was no significant difference increase 

in proliferation in var. cerasiforme between the control and sodium pyruvate treatment (p = 

0.193, Confidence interval -0.0649, -0.282). 

 

Fig. 8 Increase in Salmonella proliferation (log) in S. lycopersicum var. alicante and var. cerasiforme when 
treated with sodium pyruvate vs. control. Standard error of Cherry (control) shown as 0.105, standard error of 
cherry (sodium pyruvate) shown as 0.138, standard error of Alicante (control) shown as 0.073 and standard 
error of alicante (sodium pyruvate) shown as 0.071. 

 

Analysis via 2-sample t-test shows that there lies a significant difference in the increase in 

proliferation between var. cerasiforme and var. alicante (control) (p = <0.000, Confidence 

Interval 0.5646, 0.981). This analysis shares the same outcome with the data described in 
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Fig. 3 Fig. 7 and Fig. 8. Furthermore, there also lies a significant difference between the 

increase in proliferation between var. cerasiforme and var. alicante (sodium pyruvate 

treatment) (p <0.000, Confidence Interval -0.843, -0.402). The estimate for difference is 

smaller however between the treated tomatoes (0.6299) and the control tomatoes 

(0.7726).  

Further analysis was carried out to test for significance between the estimated differences 

in var. cerasiforme and var. alicante (control) and var. cerasiforme and var. alicante 

(sodium pyruvate). Estimates for difference from summarised t-tests were used as sample 

means and pooled standard deviations from original t-tests used as standard deviation 

(shown in Table. 3).  

 

Table. 3 Summarised statistical data used to test significant difference in estimated 
difference in var. cerasiforme and var. alicante proliferation (control) and var. cerasiforme 
and var. alicante proliferation (sodium pyruvate) 

 TEST 

 
SUMMARISED T-TEST OF CHERRY 
PROLIFERATION (CONTROL) AND 

ALICANTE PROLIFERATION (CONTROL) 

SUMMARISED T-TEST OF CHERRY PROLIFERATION 
(SODIUM PYRUVATE) AND ALICANTE 
PROLIFERATION (SODIUM PYRUVATE) 

ESTIMATE FOR 
DIFFERENCE -0.7726 -0.6299 

POOLED STDEV 0.1617 0.1717 
 

Summarised t-test showed there was no significance difference (p = 0.169, Confidence 

interval -0.0718, 0.3572) between the estimated differences of proliferation in sodium 

pyruvate treated tomatoes (var. cerasiforme and alicante) and sodium pyruvate treated 

tomatoes (var. cerasiforme and alicante) with an estimate for difference at -0.1497.  
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3.5  H y d r o g e n   P e r o x i d e   S c a v e n g e r  S a l m o n e l l a  G r o w t h  C u r v e 

It was important to ensure that results observed in scavenger proliferation tests were 

accurate and not confounded by other variables. To ensure that mannitol and sodium 

pyruvate did not positively contribute to the overall growth of S. Typhimurium, a number of 

growth curves were carried out.  

Growth curves of Salmonella were carried out according to the protocol dictated in section 

2.5. Three biological and four technical replicas were measures for growth over a 14.5 

hour period. Three treatments were used; mannitol, sodium pyruvate and control (PBS).  

Fig. 9. Growth of S. Typhimurium (as indicated by OD: 590nm) over time when treated with mannitol, 
sodium pyruvate and control (PBS).  

Clear and distinct phases of microbial growth are seen in Fig. 9, the lag phase and the 

exponential. Outliers are present at or near to time 0 and are not included in statistical 

analysis. Smooth curves have been drawn to represent a more exact record of growth 

over time. The stationary phase and death phase cannot be seen in Fig. 9. However, for 

the purpose of these tests, the exponential phase (logarithmic phase) is of primary 

interest. The growth curve shown in Fig. 9 also shows higher than normal OD values for 

all three treatments at Time 0. This is likely due to reading error and does not accurately 

depict growth over the first 30 minutes.  

In order to compare the growth of Salmonella over time between the three treatments, the 

exponential phase of each growth curve was isolated and then linearised.  

0.05

0.5

0 2 4 6 8 10 12 14 16

O
D 

59
0n

m

Time (hours)

Salmonella Growth vs. Time
Mannitol PBS Sodium Pyruvate



  Gabriel Sutton M00384509 

32 
 

 

Fig. 10 Linearised exponential phase of Salmonella growth when treated with Mannitol, Sodium pyruvate 
and control (PBS)  

 

Table. 4 Summarised Slopes and r2 values for linear trend lines of growth (treatments and 
control) 

 TREATMENT 
 CONTROL (PBS) MANNITOL SODIUM PYRUVATE 

SLOPE y= -0.0345x -0.1734 y= -0.0381x -0.2052 y= -0.0327x -0.1791 
r 2 0.9924 0.9933 0.9841 

 

In order to test for significant difference between the linearised exponential phases of 

each treatment, linear regression was carried out. Linear regression allowed generation of 

coefficients and the standard error of these coefficients. Mannitol treatment was found to 

have coefficient of 0.0395 (p <0.000), sodium pyruvate was found to have a coefficient of 

0.0351 (p <0.000) and control (PBS) was found to have a coefficient of 0.0353 (p <0.000). 

Standard deviation was calculated by  ‘Standard Error of Coefficient x √n=12’. Coefficient 

of the linear regression was used as sample mean for a summarised 2-sample t-test.  

Results of the 2-sample t-test showed that there lies a significant difference between the 

growth of Salmonella  when treated with Mannitol compared against a control (p = 0.003, 

Confidence Interval 0.00158, 0.0066). The estimate for this difference was found to be 

0.00413.  

Further analysis via 2-sample t-test showed that there is no significant difference between 

the growth of Salmonella when treated with sodium pyruvate compared against a control 

0.05

0.5

8 9 10 11 12 13 14 15

O
D5

90
nm

Time 

Salmonella Growth vs. Time

Mannitol PBS Sodium Pyruvate



  Gabriel Sutton M00384509 

33 
 

(p = 0.884, Confidence Interval, -0.00267, 0.00231). The estimate for this difference was 

found to be -0.00018.  

Whilst these tests reveal significant and no significant differences between treatments and 

control, in both cases the estimate for those differences is negligible. The sensitivity in 

these tests in determining the significance can be explained by the extreme linear 

relationship. Table. 4 shows the r2 value from each linear trend line, all of which show an 

almost exact relationship with the relevant data set. Additionally, the slopes of each of 

these trend lines as described in Table. 4 are very similar. Therefore, any deviation (albeit 

negligible) may be statistically significant. 

 

3.6   R N A  E x t r a c t i o n  a n d  Q u a n t i f i c a t i o n 

The initial aim of this study included the analysis of specific genes, KatG and KatE that 

are involved in Salmonella immune responses.  RT-PCR was then to be carried out to 

compare the relative expression of these two genes after inoculation within the two 

varieties of tomatoes (var. alicante and var. cerasiforme). The first step of this process 

involved RNA extraction, results of which can be seen below. However, time constraints 

and low concentrations of RNA did not allow for continuation of this method.  

RNA was extracted from Salmonella after 72 hour incubation var. cerasiforme and var. 

alicante using the illustra RNAspin Mini RNA Isolation Kit.  

 

 

Table. 5 RNA quantification of S. Typhimurium after 72 hour incubation in var. alicante 
and var. cerasiforme including purity ratios 

 BIOLOGICAL 
REPLICAS 

RNA 
CONCENTRATION 

(ng/ μL) 
A260(ABS) A280(ABS) 260/280 260/230 

AL
IC

AN
TE

 1 5.6 0.141 0.059 2.39 0.47 

2 3.6 0.089 0.038 2.34 0.1 

3 5 0.126 0.058 2.18 0.55 

       

C
H

ER
R

Y 1 2.7 0.068 0.035 1.96 0.09 

2 4.2 0.105 0.051 2.08 0.62 

3 3 0.074 0.036 2.04 0.07 
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RNA extraction as shown in Table. 5 was found to have low yields, with an average yield 

of 4.7ng/μl for var. Alicante and an average of 3.3ng/μl for var. cerasiforme. In addition 

absorbance ratios of A260/A230 indicate that most extractions were considered impure 

with an average A260/A230 ratio of 0.37 for var. Alicante and an average of 0.26 for var. 

cherry. Samples considered pure normally show a A1260/A230 ratio of 2.0-2.2 A second 

indication of purity is represented by A260/A280 ratio, pure samples are considered to 

have a A260/A280 ratio of 1.8-2.0 (NanoDrop Technologies™, 2007). Samples extracted 

from var. cherry indicate on average an above normal ratio (2.02). Biological replicate 1 

shows a ‘pure’ sample ratio of 1.96, however the yield is low at 2.7ng/μl.  

However, subsequent gel electrophoresis of these samples showed entirely negative 

(absent) results, bar the reference ladder.  
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4. D I S C U S S I O N 

 

4.1   S a l m o n e l l a   P r o l i f e r a t i o n 

The rationale for this study as explained in section 1.7 is based in part from Marvasi et al. 

(2014). This study found in a secondary aim that there existed a significant difference in 

the ability of Salmonella to proliferate in different varieties of tomato. This study tested 31 

different varieties, but found most interestingly that the largest and most significant 

difference in Salmonella proliferation was between tomatoes of the cherry variety (of 

which there are multiple) and large tomatoes. For this study, two specific varieties were 

chosen to test; a cherry variety described as cerasiforme (Nesbitt and Tanksley, 2002) 

and a large variety describes as alicante (Hessayon and Hessayon, 1997).  

Base line data had to be obtained in order to confirm findings from Marvasi et al. (2014). 

These results can be seen in Fig. 3. Analysis of these results found that there was a 

significant difference between the proliferation of Salmonella in var. cerasiforme and var. 

alicante (p = 0.004). With Salmonella proliferating up to 3.5 logs on average in var. 

alicante and 2.5 logs in var. cerasiforme. These results show the same trends seen in 

Marvasi et al. (2014). It is important to note that the varieties of tomatoes used in this 

study are not represented in the aforementioned paper. However, this further points to the 

assertion that cherry variety tomatoes do indeed show an increased resistance to 

Salmonella proliferation than varieties of larger size. If this inherent resistance to 

Salmonella proliferation is due to particular physical properties of the tomato, then it would 

follow that similar cherry varieties such as Large Red Cherry (Marvasi et al., 2014) and 

var. cerasiforme would share such properties.  

It should be stated that the results presented in Marvasi et al. (2014) and this study are 

directly comparable in both methodology for proliferation tests as well as subsequent 

results. Both results are presented as an increase in Salmonella proliferation rather than a 

total number. The reason for this is that total growth of Salmonella does not accurately 

represent the ability of Salmonella to proliferate in the tomato. This increase is compared 

against a CFU count from the original inoculum (described in section 3.1). The equation 

used to calculate said increase in proliferation also accounts for the wet weight of the 

tomato which is imperative when comparing two varieties of tomato with varying sizes and 

weights.  
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4.2   H y d r o g e n   P e r o x i d e   Q u a n t i f I c a t i o n   a n d    

I n t e r c e l l u l a r   F l u i d   E x t r a c t I o n 

Through data analysed in Fig. 3 as well as the data presented in Marvasi et al. (2014) it 

was clear there was an inherent biological disposition for tomatoes of the smaller cherry 

variety to possess a higher resistance to Salmonella proliferation than varieties of larger 

size such as var. alicante described in this study. The reason for these observed 

differences have yet to be described. It is likely however that the complexities of plant 

immune systems are responsible.  

One of the common plant defence mechanisms is the production of reactive oxygen 

species (ROS), of which hydrogen peroxide is most common (Foreman et al., 2003). 

Hydrogen peroxide has multiple functions in plants such as regulation of cell growth and 

cell wall lignification (Cosgrove, 2005). However ROS such hydrogen peroxide are also an 

important part of the plant immune response. The rationale of this study therefore followed 

that the inherent difference in susceptibility to Salmonella proliferation between tomato 

varieties could be due to differences in efficacy of plant immune responses, specifically 

the concentration and/or production of hydrogen peroxide. In order to test this hydrogen 

peroxide was quantified in tomato var. cerasiforme and var. alicante.  

Salmonella may persist in all parts of phyllosphere and rhizophere, with there being 

reports of growth on seedlings and roots (Barak and Schroeder, 2012; Guo et al., 2001). 

Due to Salmonella ability to produce complex extracellular matrices, it can also form 

attachments to the surface of the fruiting body and even the flowering plant (Lopez-

Velasco et al., 2012). There is currently no evidence to suggest exactly where Salmonella 

may persist inside of the carpospohere. However, it is likely that Salmonella would 

normally persist within the pericarp of the fruiting body, most likely within the intercellular 

space, especially if its method of entry is via wounds in said pericarp.  

 

Additionally there is evidence to suggest that plants recognise pathogen associated 

molecular patterns (PAMPs) which can cause the transcription and subsequent release of 

defence proteins or ROS like hydrogen peroxide into the intercellular space (Río and 

Puppo, 2009). If these PAMPs are recognised by the cells in the pericarp it stands to 

reason this is where pathogens may persist. Furthermore, it has been shown that 

Pseudomonas solanacearum (a common wilting pathogen in tomato and tobacco plants) 

will persist in the intercellular space in tobacco plants (Rathmell and Sequeira, 1975).  
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4.2.1   I n t e r c e l l u l a r   F l u I d   E x t r a c t i o n 

Hydrogen peroxide was quantified using samples of the pericarp rather than the whole 

fruiting body including locular cavities. This way an accurate representation of the cellular 

environment could be analysed. In addition to this, the methodology for measuring 

Salmonella proliferation in tomatoes involves inoculating the pericarp and so it was 

important to also measure this part of the carprophere for hydrogen peroxide.  There 

exists within the literature, methodologies and protocols for extracting intercellular fluid 

from plants such as the methods described in Rathmell and Sequeira (1975). However, 

due to vast variation in morphology of plants and their fruiting bodies, there exists no 

standard protocol, and each example in the literature varies due to purpose of the study 

and the plant/fruit involved. In addition there exists no specific examples within the 

literature for extraction of intercellular fluid in tomato fruits whatsoever and so the 

methodology described in section 2.2.1 is novel. The methodology described in section 

2.2.1 is based in part on vacuum infiltration, a method of inducing gene expression in 

plants via Agrobacterium tumefaciens.  

 

4.2.2   H y d r o g e n   P e r o x I d e   Q u a n t i f i c a t i o n 

Fig. 4 shows the concentrations of hydrogen peroxide in var. alicante and var. cerasiforme 

respectively. These initial tests also included samples that were deproteinised using 10kD 

spin columns. Samples were deproteinised in this way to ensure that the resulting 

samples from the method of intercellular fluid extraction contained as a little protein 

content as possible. This ensured that the fluorometric assay that quantifies hydrogen 

peroxide was not affected by large amounts of protein in the samples. As previously 

stated, plant cells may release proteins into the intercellular space (Río and Puppo, 2009). 

For example, taste modifying proteins are reported to be released into the intercellular 

space in Richadella dulcifica (Hirai et al., 2010). However the protein content within plant 

cells (specifically in cell walls) is much higher than in the intercellular space. Thus, if the 

novel methodology of intercellular fluid extraction works as intended, then there should be 

little difference in samples that are deproteinised compared to those untreated. The 

samples labelled deproteinised and untreated in Fig. 4 came from the same tomato (var. 

alicante) and same intercellular fluid. This was the same for var. cerasiforme.  

Analysis showed that there was no significant difference in the hydrogen peroxide 

concentration when the same sample was deproteinised vs. untreated. This trend was 

seen for var. alicante and var. cerasiforme (Fig. 4). These results indicate that method of 
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intercellular fluid extraction does indeed extract majority intercellular fluid with little protein 

content, and not cell wall or cytoplasmic fluid.  

 

4.3   P o s t   I n f e c t i o n   H y d r o g e n   P e r o x i d e    

Q u a n t i f i c a t i o n 

Hydrogen peroxide and other ROS are produced in plants as a by-product of 

photosynthesis and cellular respiration (Chakraborty et al., 2016). They also have multiple 

roles in controlling plant hormones like auxin (Río and Puppo, 2009). Because of the 

abundance of roles ROS like hydrogen peroxide play, its presence in plants both 

intracellularly and intercellularly is plenty. This means there is likely ROS like hydrogen 

peroxide present (albeit in unknown concentrations) in plants and their fruiting bodies 

without necessarily being produced via a stress response. Because of this, the literature 

describes plant defence systems as being pre-existing or activated defences. Pre-existing 

defences are those that are present with or without microbial infection and activated 

defences are those that are produced/triggered only in response to microbial attack and/or 

abiotic stress such as wounding (He et al., 2007; Jones and Dangl, 2006; Nurnberger et 

al., 2004).  

It was therefore necessary determine if the level of hydrogen peroxide in var. alicante and 

var. cerasiforme changed after inoculation with Salmonella. Proliferation tests and 

hydrogen peroxide quantification were carried out as described in sections 2.1 and 2.2 

respectively, the results for which can be seen in Fig. 4. Analysis showed that there lies a 

significant difference (p = 0.001) in the concentration of hydrogen peroxide between post 

infection and no infection in var. alicante, with the concentration of hydrogen peroxide 

actually decreasing in the post infection measured tomatoes. The trend is also observed 

for var. cerasiforme where a significant difference (p = 0.0114) was found between 

hydrogen peroxide concentration post infection vs no infection.  In both cases however, 

concentration of hydrogen peroxide seemed to decrease in the post infection tomatoes.  

The trend observed was an unexpected outcome. It would follow that in the presence of 

microbial attack, activated plant defences and immune responses would trigger further 

action in the tomato fruit. Plants plasma membranes contain pattern-recognition receptors 

(PRRs) which can recognise PAMPs and respond accordingly. An example is the cell 

surface receptor FLS2 in Arabidopsis spp.. This receptor can recognise the specific 

flagella protein flg22, which is present in multiple bacterial species (Gómez-Gómez and 

Boller, 2000). The recognition of flg22 by FLS2 elicits multiple defence responses such as 
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cell wall lignification but also micro-bursts of hydrogen peroxide. Flg22 is also a potent 

elicitor of defence responses in varying plant species, not just Arabidopsis (Felix et al., 

1999; Gómez-Gómez and Boller, 2000; Zipfel et al., 2004). In addition to this, there have 

been many reported ‘R’ (plant resistant proteins) genes in tomatoes that are produced as 

a response to microbial attack. Often these responses are specific to a particular microbial 

species or genus (Hammond-Kosack and Parker, 2003). In some cases these genes can 

code for resistance such as the Ve gene in Lycopersicon esculentum that gives resistance 

to Verticillium dahliae (Kawchuk et al., 2001).  

It may be fair to assume therefore that the level of hydrogen peroxide in the intercellular 

space of tomatoes would be higher post infection of Salmonella compared to not. It is 

possible that the reason this trend is not observed in the results is due to methodological 

issues. As described in section 2.2.2, the fluorometric assay that quantifies hydrogen 

peroxide in biological samples, does so by comparing against a standard curve of known 

concentrations. When measured samples fall below this standard curve, accurately 

converting absorbance values to concentrations becomes difficult. Whilst Fluorometric 

assays are generally considered a sensitive means of detection, it is clear in this instance 

the level of hydrogen peroxide in the post infection tomato samples was too low to be 

accurately measured.  

 

4.4   T o m a t o   R  i p e n e s s   a n d   P o s t – H a r v e s t    

M e a s u r e m e n t  o f   H y d r o g e n   P e r o x I d e  

4.4.1  T o m a t o   R i p e n e s s  

It is important to note that both the proliferation tests and hydrogen peroxide quantification 

carried out var. alicante and var. cerasiforme were done so on the fruiting body post-

harvest. Tomato fruits post-harvest are still ‘biologically active’ parts of the plant as a 

whole. As such they are subject to ripening from ethylene production and other similar 

biological activities (Zhong et al., 2008). However, the normal immune responses 

(activated or pre-existing) in the tomato fruit are compromised when they are post-harvest 

(Shi et al., 2007). In addition, it has been reported that there are great differences in 

different Salmonella serovars and their ability to persist in tomatoes pre and post-harvest. 

Shi et al., (2007) reported on testing five different serovars of Salmonella Typhimurium, 

that all were able to proliferate to high numbers in post-harvest ripe tomatoes. However, 

these same serovars had differing success when inoculated on the surface or in the tissue 

of pre-harvest tomatoes.  
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It must be stated that all tomatoes used in this study were purchased and not grown in 

controlled laboratory conditions. Whilst the particular variety of tomato was able to remain 

consistent for all experiments in this study, the stage of ripeness was not. The stage of 

ripeness of the tomato at point of inoculation can have great effects on the susceptibility of 

the tomato to Salmonella proliferation. The ability of Salmonella to be able to proliferate 

and persist in tomatoes increases with ripeness. It has been reported that in 31 different 

tomato varieties tested, Salmonella proliferation was consistently increased in ripe 

versions of these tomatoes compared to unripe, albeit with varying statistical significance 

(Marvasi et al., 2014).  

There is little in the literature surrounding the immune responses of fruiting plants post-

harvest. The level to which the tomato fruit’s innate immunity to microbial infiltration is 

compromised post-harvest is not known. However, this provides some insight to the 

unusual (or lack thereof) trends seen in Fig. 5.  

Due to the fact tomatoes were bought in post-harvest state for testing, it is entirely 

possible that some of the fruits tested were at different stages of ripeness, or had been 

harvested at different times. This could be the case between var. alicante and var. 

cerasiforme, or even between biological replicates of the same tomato variety. This may 

mean that a tomato that is one week from harvest date may be more susceptible to 

Salmonella proliferation and have less defensive abilities that a tomato one day from 

harvest.  

Tomato maturity can be estimated in part by observing the pigmentation of the tomato as 

well as firmness of the fruit. Whilst pigmentation does not actually affect the ability of 

Salmonella to proliferate in tomatoes (Marvasi et al., 2014), this estimation is useful for 

estimating whether tomatoes are at a similar stage of maturity, however not for accurately 

estimating a date. For future study, it would be advisable to grow the tomatoes from 

seedlings in controlled laboratory conditions. It would also be wise to measure 

proliferation of Salmonella but most importantly hydrogen peroxide concentration in pre 

and post-harvest tomatoes. This would provide better insight into the response to 

microbial invasion that tomato fruits have, post-harvest.  
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4.4.2   H y d r o g e n   P e r o x i d e   Q u a n t i f i c a t i o n   M e t h o d s 

Following the measurement and comparison of hydrogen peroxide concentrations in var. 

alicante and var. cerasiforme in both normal and post-infection tomatoes. It was clear 

some disparities arose. A further quantification of hydrogen peroxide concentrations in 

both varieties of tomato was carried out, the results of which was be seen in Fig. 6. The 

results seen share the same trends observed in the initial hydrogen peroxide 

quantification tests. There was found to be a significant difference (p = 0.0304) in the 

concentration of hydrogen peroxide between var. alicante and var. cerasiforme. On 

average var. cerasiforme was found to have more than double the concentration of 

hydrogen peroxide in the intercellular fluid than var. alicante. For this second round of 

testing, samples were still deproteinised using 10kD spin columns. However, it was 

deemed unnecessary to further compare these results to samples that were not 

deproteinised. This is because data and analysis prior showed there to be no significant 

difference between samples that were and were not deproteinised.  

This second quantification of hydrogen peroxide in both tomato varieties, whilst showing 

the same trends, showed much higher concentrations overall. Tomato var. cerasiforme 

showed on average 100.32pmol of hydrogen peroxide (Fig. 6) compared against 

23.6pmol in the initial tests (Fig. 4). The standard error however shown in Fig. 5 for var. 

cerasiforme is high. This is due to the large variation found within the biological replicates 

for this tomato variety (See Appendix 1.5). The hydrogen peroxide concentration in var. 

alicante is similarly higher in the second measurement, showing 40.71pmol (Fig. 6) 

compared against 22.7pmol initially (Fig. 4). It must be stated that for this run, a new 

standard curve of known hydrogen peroxide concentrations was set up.  

Whilst the large variation in hydrogen peroxide quantification between test runs in both 

var. alicante and var. cerasiforme does pose some questions, the overall trends are in 

keeping with the hypothesis. It seems that in all instances Salmonella’s ability to 

proliferate in var. cerasiforme is reduced when compared with var. alicante. In addition, all 

instances show that the concentration of hydrogen peroxide is consistently higher in var. 

cerasiforme than in var. alicante.  

However, these variations in hydrogen peroxide concentrations between test runs, may be 

as previously mentioned, based on current stage of ripeness of the tomato itself, or 

possibly due to the post-harvest nature of the test tomatoes. However it may also be due 

to the method of hydrogen peroxide quantification itself and the nature of the sample. It 

has been reported that accurate and repeatable methods of ROS quantification from plant 

tissues is difficult to achieve (Chakraborty et al., 2016). There are number of methods for 
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quantifying ROS in plant and animal tissues. The most reliable of which is fluorescence 

based methods, specifically fluorescence enhancement rather than fluorescence 

quenching (Chakraborty et al., 2016; Zhou et al., 1997). The quantitation kit used in this 

study was a fluorescence enhancing kit from Abcam®. The probe is listed as OxiRed, 

however this may also be described as AmplexRed in the literature depending on the 

supplier. Both are denoted as 10-acetyl-3,7-dihydroxyphenoxazine. In the assay, this 

probe undergoes a single electron oxidation which releases the fluorescent chemical 

resorufin. However, the concentration of horseradish peroxidase (the peroxidase that 

catalyses the oxidation), light and pH all play important roles in this reaction (Towne et al., 

2004; Zhao et al., 2012). It has been reported that the fluorescent resorufin can decay into 

less or non-fluorescent products in particular pH ranges, most prominently in ranges 6.2-

7.7. This decay is reportedly due to either the polymerisation of resorufin and de-N-

acetylation (Towne et al., 2004).  

It has also been reported that buffers in sample preparations may affect the outcome of 

the assay due some buffers containing soluble proteins or other substances that may 

interfere with fluorescence detection (Chakraborty et al., 2016). This however was 

discounted as a potential error in this study as distilled, deionised water was used as a 

buffer in sample preparation. There is also evidence that suggests resorufin may be 

produced not necessarily by the catylisation of OxiRed probe, but rather in its exposure to 

light (Zhao et al., 2012). This too however, was discounted as a source of a potential 

errors in the assay, as every care was taken to incubate the reaction in places with no 

light.   

Whilst the unknown stage of maturity/ripeness of the tomatoes tested and unknown pH 

levels of resulting samples from said tomato, may have affected some of the 

measurements of hydrogen peroxide concentration, trends are clearly seen. In all 

instances, the concentration of hydrogen peroxide was higher in var. cerasiforme than in 

var. alicante. In addition, all instances show that var. cerasiforme showed an increased 

resistance to Salmonella proliferation when compared with var. alicante.  
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4.5   H y d r o g e n   P e r o x i d e   S c a v e n g e r   &   

S a l m o n e l l a   P r o l i f e r a t i o n   T e s t s 

 

The data trends shown in both the Salmonella proliferation tests as well as hydrogen 

peroxide quantification has shown some insight into the reasoning behind some tomato 

varieties ability to resist Salmonella proliferation more than others. However, in order to 

confirm it is indeed increased levels and production of hydrogen peroxide in var. 

cerasiforme that gives it increased resistance to Salmonella over var. alicante, further 

tests were carried out. If hydrogen peroxide could be removed from the tomato (or at least 

at the site of inoculation) then Salmonella would theoretically be able to proliferate to a 

higher degree than it would do in normally. Hydrogen peroxide is bacetericidal to 

Salmonella with some studies reporting 99% kill rate with 0.5% and 1% hydrogen 

peroxide (Unlütürk and Turantaş, 1987). Not only this, but the levels of Salmonella 

proliferation between both varieties would be of similar values. Fig. 7 and Fig. 8 Show the 

results from a further Salmonella proliferation test. These tests however, were carried out 

using a hydrogen peroxide scavenger and compared against a standard proliferation test. 

This was done for both var. cerasiforme and var. alicante.  

For this test, two different scavengers were chosen to test; sodium pyruvate and mannitol. 

Sodium pyruvate is a well-known scavenger of free radicals from ROS like hydrogen 

peroxide and has even been used as protective agent against in animal disorders caused 

by ROS like hydrogen peroxide (Jagtap et al., 2003; Salahudeen et al., 1991; Shostak et 

al., 2000). It has also been reported that mannitol acts as a strong free radical scavenger 

(Silvestre et al., 2008).  

 

4.5.1   M a n n i t o l 

Analysis shows that there lies no significant difference (p = 0.182) between the level of 

Salmonella proliferation between control and mannitol treatments in var. alicante. These 

results are however, unexpected. Whilst the level of hydrogen peroxide in var. alicante 

has been established as consistently lower than that of var. cerasiforme, it would still be 

expected that with the scavenging ability of mannitol would allow Salmonella to proliferate 

to a higher degree. The expectation of this difference to be statistically significant was not 

known, however it should be stated that whilst not statistically significant, the increase in 

Salmonella proliferation was higher in the mannitol treatment than the control for var. 

alicante.  
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The trend observed for var. cerasiforme was however, somewhat different. It was found 

that a significant difference (p = 0.013) lied in the increase in Salmonella proliferation 

between control and mannitol treatments in var. cerasiforme, with the greater of the two 

being seen in the mannitol treatment. This particular trend was in keeping with the 

aforementioned hypothesis. It would be expected that providing mannitol is scavenging 

hydrogen peroxide at the site of inoculation then the barriers for increased Salmonella 

proliferation would be (at least in part) removed.  

It would also stand to reason that the greatest difference seen would be between control 

and mannitol treatments in var. cerasiforme rather than var. alicante. If the greatest barrier 

to microbial infiltration and Salmonella proliferation in the tomatoes is the concentration of 

hydrogen peroxide, then there should be an increase in Salmonella proliferation when this 

barrier is removed. If it is also conceded that var. cerasiforme contains the highest 

amount/largest production of hydrogen peroxide, then it would follow that the largest 

difference in Salmonella proliferation between control and mannitol treatments would be 

seen in var. cerasiforme. The data presented in Fig. 7 supports this conclusion.  

As can be seen in Fig. 6 in the control data, there lies a significant difference (p = 0.0082) 

in the ability of Salmonella to proliferate in var. cerasiforme compared with var. alicante, 

with Salmonella proliferating less in var. cerasiforme. This trend is in keeping with all other 

previous proliferation tests in this study, as well as the ones reported in Marvasi et al. 

(2014). However, there also lies a significant difference (p = 0.016) in Salmonella 

proliferation between var. cerasiforme and var. alicante in the mannitol treatments. It 

should be noted however that the strength of the significance is weaker in mannitol 

treatment, and the estimated difference is also smaller (see Table. 2).  

Further analysis was carried to test if the estimated difference in Salmonella proliferation 

between var. cerasiforme and var. alicante in the control was significantly different from 

the estimated difference in Salmonella proliferation between var. cerasiforme and var. 

alicante in the mannitol treatment (Table. 2). For this 2-sample t-test, the estimated 

differences were used as means and the pooled standard deviation from the original t-

tests used as the standard deviation. The result found that there was no significant 

difference (p = 0.057) between the estimated differences of either test. Whilst this overall 

was an unexpected result, it is in keeping with the previous statistical tests. Whilst the 

difference between estimated differences is not significant, the estimated difference in the 

mannitol treatment is smaller than in the control group (Table. 2). This does suggest in 

part that the scavenging ability of mannitol produces levels of Salmonella proliferation 

closer to one another between tomato varieties, than would be seen in the control group.  
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4.5.2   S o d i u m   P y r u v a t e 

In order to further confirm the hypothesis that hydrogen peroxide is one of the major 

sources of difference in Salmonella resistance between var. cerasiforme and var. alicante, 

a second scavenger was tested.  

The trends seen in the results for the sodium pyruvate scavenger tests are different to 

those seen in the mannitol tests. Analysis showed that there existed no significant 

difference in Salmonella proliferation between control and sodium pyruvate treatment, for 

both tomato varieties (var. alicante – p = 0.720, var. cerasiforme – p = 0.193). These data 

are not representative of the original hypothesis. Whilst the increase in Salmonella 

proliferation in var. cerasiforme does increase with the sodium pyruvate treatment, the 

difference is not significant.  

However, when analysing the increase in Salmonella proliferation between var. 

cerasiforme and var. alicante in the control group, there lies a significant difference (p = 

<0.000). This result is again, in keeping with the original hypothesis. Var. cerasiforme is 

consistently more resistant to Salmonella proliferation than var. alicante. However, 

unusually, there also lies a significant difference (p = <0.000) in Salmonella proliferation 

between var. cerasiforme and var. alicante in the sodium pyruvate treatment. This trend 

was also seen in the mannitol treated tomatoes, and is unexpected.  

Similarly with the mannitol treated tomatoes, further analysis was carried out with the 

sodium pyruvate treated tomatoes to see if the estimated difference in Salmonella 

proliferation between var. cerasiforme and var. alicante in the control was significantly 

different from the estimated difference in Salmonella proliferation between var. 

cerasiforme and var. alicante in the mannitol treatment (Table. 3). Analysis showed there 

was no significance difference (p = 0.169) between the estimated differences of 

Salmonella proliferation in sodium pyruvate treated tomatoes (var. cerasiforme and var. 

alicante) and sodium pyruvate treated tomatoes (var. cerasiforme and var. alicante). 

The aforementioned results and subsequent analysis however, does pose some 

questions regarding the efficacy of mannitol and sodium pyruvate as a scavengers. There 

are currently no reports regarding the use of mannitol or sodium pyruvate as a free radical 

scavenger in tomato tissues, however there are mixed reports from animal based studies. 

It has been reported that mannitol acts as an effective free radical scavenger when 

attenuating gentamicin toxicity (Song and Schacht, 1996). However, other papers have 

suggested that mannitol is not as effective as other free radical scavengers (Mayo et al., 

2003). These reports however are based from mammalian models and may not be directly 

comparable to plant tissues. In addition to this sodium pyruvate has been reported to be 
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an efficient scavenger of hydrogen peroxide (Ramakrishnan et al., 2016). Although this 

example is also based of mammalian cellular environments. 

Nevertheless, it may not be possible to remove 100% of hydrogen peroxide from the site 

of inoculation especially if mannitol is not a consistently effective scavenger. This means 

that creating an environment in the tomato free of hydrogen peroxide for Salmonella to 

grow is difficult. The tomatoes were treated with mannitol at the site of inoculation (see 

section 2.4), however the site of inoculation is not necessarily representative of the tomato 

as a whole. Hydrogen peroxide, as well as providing important immune capabilities in 

tomatoes, also plays an important role as a messenger molecule (Río and Puppo, 2009). 

It has been reported that hydrogen peroxide can act as a local signalling molecule and 

even act as a diffusible signal for cells close the site of wounding or a microbial attack, 

inducing immune responses described previously such as micro-bursts of hydrogen 

peroxide or transcription of defensive genes (Alvarez et al., 1998; Orozco-Cárdenas et al., 

2001). This means that whilst the tomatoes were periodically treated with mannitol and 

sodium pyruvate, and Salmonella continued to proliferate in the tomato, cell signalling 

may have caused production of hydrogen peroxide at neighbouring cells. This becomes 

especially important when considering the methodology of measuring increase in 

Salmonella proliferation, as the whole tomato is homogenised before plating on XLD (see 

section 2.1).   

In addition to this the concentration of both scavengers should be considered. Finding an 

appropriate concentration of scavenger to use in the aforementioned scavenger tests, can 

be difficult and depend entirely on the context of use. For example, some studies have 

used mannitol in concentrations of 20mmol/L when using it in cardioplegia treatments 

(Larsen et al., 2002). Whereas some studies regarding the pharmaceutical uses of 

mannitol have used concentrations such as 1M (Silvestre et al., 2008). This is further 

complicated by two factors. Firstly, the concentrations of hydrogen peroxide within var. 

cerasiforme and var. alicante can vary. This means the availability of mannitol and sodium 

pyruvate to scavenge all hydrogen peroxide will be different. Secondly is varying efficacy 

of both mannitol and sodium pyruvate that has been previously mentioned. For future 

study, it would be ideal to first test the efficacy of each scavenger. This may be done by 

measuring the concentration of hydrogen peroxide dissolved in water before and after 

treatment with varying concentrations of mannitol and sodium pyruvate.  
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4.6   H y d r o g e n   P e r o x i d e   S c a v e n g e r    

G r o w t h   C u r v e 

 

Whilst the trends present in the scavenger proliferation tests were not always consistent, 

there was indication that when hydrogen peroxide is removed from the tomato though the 

scavenging properties of mannitol or sodium pyruvate, there was an increase in overall 

proliferation of Salmonella. However, in order to confirm this conclusion further variables 

had to be considered. To ensure that the results presented in Fig. 7 + 8 were accurately 

portraying the increase in growth of Salmonella in a hydrogen peroxide free environment, 

there had to be confirmation that the addition of the hydrogen peroxide scavengers, 

mannitol and sodium pyruvate, were not affecting the growth of Salmonella in any way.  

Mannitol is a sugar alcohol which has multiple uses across different disciplines. It is used 

as sweetener in foods but also in the medical industry as treatment for brain injuries 

(VARZAKAS, 2016; Wakai et al., 2013). In microbiology, it is one of the main composites 

of Mannitol Salt Agar (MSA), a common selective and differential agar medium often used 

in clinical settings to distinguish pathogenic microorganisms (Willey et al., 2011). Its 

purpose in MSA is to distinguish microorganisms that can ferment mannitol. However, it is 

also a sugar and has the potential to act as a source of energy for certain 

microorganisms. There have even been reports that mannitol may enhance biofilm 

formation in Salmonella (Ngwai et al., 2006).  

Sodium pyruvate also has the potential to affect the viability of Salmonella to proliferate in 

the tomato. There have been a number of studies that show that sodium pyruvate can act 

as a growth inducer for microorganisms (Morishige et al., 2013). Hydrogen peroxide in 

some instances has been used an antimicrobial and can cause enteric bacteria like 

Salmonella to enter ‘viable but non-culturable’ state (VBNC) where the cells are 

metabolically active but not necessarily culturable on media (Xu et al., 1982). It has 

subsequently been shown that addition of sodium pyruvate can ‘resurrect’ Salmonella 

from a hydrogen peroxide treated VBNC state (Morishige et al., 2013).  

Due to the effects both mannitol and sodium pyruvate have been shown to have on 

microorganisms, it was necessarily to perform 14.5 hour growth curves, treated with both 

mannitol and sodium pyruvate respectively. The data for this can be seen in Fig. 9. This 

data shows the growth of Salmonella over a 14.5 hour period. Salmonella was treated 

with mannitol, sodium pyruvate and PBS (control) respectively. Clear and distinct phases 

of microbial growth can be seen in Fig. 9. The most prominent of which being the lag and 
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exponential phase. In a model image of microbial growth the lag, exponential, stationary 

and death phase would be seen. However, this standard four phase growth curve of any 

bacteria is not entirely represented here. This is of little consequence however as for the 

purpose of this experiment the exponential phase was the most important and would be 

the most telling. It can be seen in Fig. 9, that the growth lines representing mannitol and 

control are almost identical throughout the 14.5 hour growth period. Sodium pyruvate is 

also similar to the mannitol treatment and control.  

Statistically testing for significance between three curvilinear sets of data over multiple 

data points is difficult and so the data presented in Fig. 9 was altered to allow for statistical 

testing. The data shown in Fig. 10 is a linearised version of the data in Fig. 9. To achieve 

this data points from hour 8 to hour 14 were isolated and plotted into a scatter plot. This 

was done for mannitol and sodium pyruvate treated as well as control. Linear regression 

allowed for the generation of coefficients, standard error as well as equations describing 

the slope of each trend line. These data was then used to test for significant difference 

between each treatment and the control.  

Analysis showed that there was no significant difference (p = 0.884) in the growth of 

Salmonella over time in the sodium pyruvate treatment and the control. This data 

therefore indicates that the addition of sodium pyruvate in the scavenger proliferation tests 

had no significant effect, be it positive or negative, on the ability of Salmonella to 

proliferate in either tomato variety. However, analysis showed that there was a significant 

difference (p = 0.003) in the growth of Salmonella over time between the mannitol 

treatment and the control. This analysis suggests that mannitol did have an effect of the 

ability of Salmonella to proliferate in either tomato variety.  

However, the level of significance and subsequent p values resulting from this analysis 

may be of less importance when considering the estimates for difference and r2 values in 

these linear regressions. Table. 3 shows the line equations and r2 values for each 

treatment. Each of the r2 values indicates that the exponential phase of Salmonella growth 

in mannitol, sodium pyruvate treatment and control fit a straight line almost exactly. This 

means that any variation between mannitol, sodium pyruvate treatment or control, will 

likely be statistically significant. The importance of the statistical significance lessens 

further when considering the estimates for difference in each test. The estimated 

difference between the mannitol treatment and the control was 0.00413, and the 

estimated difference between the sodium pyruvate treatment and the control was -

0.00018. These estimates are small enough to conclude that (statistically significant or 
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not) the addition of mannitol or sodium pyruvate to the scavenger proliferation tests, did 

not help nor hinder Salmonella growth to a degree worthy of note.    

 

4.7   R N A   E x t r a c t i o n 

The data and subsequent analysis in this study has established that on average, var. 

cerasiforme is consistently more resistant to Salmonella proliferation than var. alicante. In 

addition, var. cerasiforme consistently shows a higher concentration of hydrogen peroxide 

in its intercellular space than var. alicante.  

As mentioned in section 1.6, Salmonella also contains a number of genes that are 

involved in combating hydrogen peroxide induced oxidative stress. However the 

regulation and expression of these genes in proliferation in tomatoes has not been 

studied. The initial aim of this experiment was to use qPCR to quantify the relative 

expression of these genes after inoculation and incubation in var. cerasiforme and var. 

alicante. The first step was to extract RNA from Salmonella.  

RNA extraction has become increasingly more viable with the advent of RNA extraction 

kits. However, whilst this is relatively simple to do on bacteria grown in laboratory media, it 

is a harder task to do so from biological environments. Obtaining accurate representations 

of bacterial transcriptomes can be difficult if extraction of high yield RNA with low DNA 

and protein content is also a challenge (Heera et al., 2015). It was important that 

Salmonella RNA was extracted after incubation within the tomato, so that the gene 

response to hydrogen peroxide induced oxidative stress could be measured.  

The results from the RNA extraction can be seen in Table. 5. What is immediately 

noticeable is that for all extractions of Salmonella RNA from incubation in var. cerasiforme 

or var. alicante, is very low. The highest concentration of RNA extracted from Salmonella 

was 5.6ng/μl. Expected yield of RNA via extraction kits can vary greatly depending on the 

cell type and medium in which the cell resides (Heera et al., 2015; Schwochow et al., 

2012). RNA extractions from saliva samples for example have reported yields as high as 

0.89 – 7.1μg (Pandit et al., 2013). It has also been reported that whole blood can be an 

appropriate source of RNA, which papers noting RNA extraction yields of 1.4 - 18μg 

(Schwochow et al., 2012).  

Most examples in the literature report much higher yields from RNA extraction than is 

present in Table. 5. This initially posed problems when considering moving forward with 

qPCR. As well as overall yield, purity of extractions had to be considered. Samples 
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considered pure normally show a A1260/A230 ratio of 2.0-2.2 A second indication of 

purity is represented by A260/A280 ratio, pure samples are considered to have a 

A260/A280 ratio of 1.8-2.0 (NanoDrop Technologies™, 2007). All samples (bar one) 

showed extractions to be impure.  

There are many potential reasons why extractions such as those represented in Table. 5 

should show such low yields and impurity. One common reason is the contamination of 

DNA. Often RNA extraction kits utilise DNase activity along with spin columns to ensure 

that as little DNA as possible ends up in the final product. However, many reports indicate 

that accidental extraction of DNA in the final extraction product is sometimes unavoidable 

(Heera et al., 2015; Schwochow et al., 2012).   

It is also possible that the environment in which the cells were extracted from affected the 

resulting extraction products. The methodology used to extract Salmonella from the 

tomato (see section 2.6) did not entirely account for the removal of all tomato cells and/or 

tissue. The pelleted cells that were used for extraction may have potentially contained 

some plant tissue. If this were the case then the use of a standard RNA extraction kit 

would not be effective on plant tissue. Not only does plant tissue require specialised RNA 

extraction kits, it is also notoriously difficult to extract high yield RNA (Ouyang et al., 

2014). It is also possible that in addition to potential leftover plant tissue/cells, the resulting 

cells prepared for extraction also contained RNase’s. It has been shown that wild tomato 

species often produce particular glycoproteins extracellularly. These glycoproteins often 

have RNase activity (McClure et al., 1989; Parry et al., 1998). If these glycoproteins were 

not fully removed prior to extraction, they could have broken down any RNA present in the 

samples, potentially resulting in low yields.  

Due to time constraints, troubleshooting of the RNA extractions described here, nor the 

subsequent qPCR, did not take place. However, suggestions for future research and the 

limitations of this current study are described in section 4.8. 

 

4.8   L i m i t a t i o n s   &   F u t u r e   R e s e a r c h 

 

Following analysis of the results presented in this study, it is clear that whilst some of the 

data shows clear support for the overarching aims, others will require further research. In 

this section, the limitations of some experiments as well as potential for further research is 

discussed.  
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4.8.1   P r e   –   H a r v e s t   H y d r o g e n   P e r o x i d e   Q u a n t i f i c a t i o n 

As mentioned previously, all tomatoes used and tested in this study were bought and not 

growth from seedlings in the laboratory. This posed questions regarding the ability of 

tomatoes to respond effectively to biotic stressors such as Salmonella infection. Plants 

immune responses are compromised in a post-harvest state (Shi et al., 2007). It would 

therefore follow that the tomatoes ability to respond to infection by producing hydrogen 

peroxide may also be hindered. In order to confirm this, further tests could be carried out. 

The data in Fig. 4 indicated that there was limited difference between the concentrations 

of hydrogen peroxide in var. cerasiforme and var. alicante post infection compared to no 

infection. This however, may not be the case in tomatoes that are pre-harvest. Here we 

suggest repeating experiments laid out in section 2.3 however on pre-harvest tomatoes. 

This may show the differences in immune responses in var. cerasiforme and var. alicante 

between pre and post-harvest states.  

 

4.8.2   T o m a t o   R i p e n e s s 

As previously mentioned the cellular environment of a tomato differs greatly depending on 

the stage of ripeness. For example unripe tomatoes are significantly more acidic than ripe 

tomatoes (Arias et al., 2000; Asplund and Nurmi, 1991). Not only this, but studies show 

that ripe tomatoes are on average more conducive to Salmonella proliferation than unripe 

tomatoes (Marvasi et al., 2014). These are some suggestions for the variation in 

Salmonella proliferation seen in the various tests in this study. To remedy this, we suggest 

growing all tomato varieties from seedlings in controlled laboratory conditions. Stage of 

maturity and ripeness can be kept constant by harvesting all tomatoes at a given time.  

 

4.8.3   S c a v e n g e r   E f f i c a c y 

One of the potential issued mentioned in section 4.5 was regarding the efficacy of 

mannitol and sodium pyruvate as hydrogen peroxide scavengers. It also meant choosing 

appropriate concentrations to use of said scavengers was difficult. To remedy this, we 

suggest carrying out a further test to measure the efficacy of each scavenger. This may 

be done by treating known concentrations of hydrogen peroxide with varying 

concentrations of scavenger and measuring the levels of hydrogen peroxide before and 

after treatment.  
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4.7.4   q P C R   a n d   G e n e t i c   A n a i y s I s 

Time constraints regrettably meant that genetic analysis of genes present in Salmonella 

and S. lycopersicum was unable to be carried out. There are however genes reported in 

both organisms responsible for immune responses. The RBOH1 codes for NADPH 

oxidase in S. lycopersicum. This gene is able to regulate the production of hydrogen 

peroxide in tomatoes, and certain stressors have been shown to cause upregulation of 

this gene in tomatoes (Mei et al., 2017). However, the relative level of expression of this 

gene in different varieties of tomatoes is not yet known. This study has established that 

some varieties of tomato consistently produce higher amounts of hydrogen peroxide, 

specifically var. cerasiforme over var. alicante. It would therefore follow that RBOH1 may 

be expressed to a higher degree in a tomato such as var. cerasiforme. Therefore, we 

suggest qPCR analysis of the RBOH1 gene in var. cerasiforme and var. alicante.  

In addition to this, Salmonella has multiple genes involved in combatting oxidative stress. 

These genes code for enzymes that are either catalases. These catalases are coded for 

by the KatE, KatN (part of Rpos regulon) and KatG (part of OxyR regulon) genes (Ibanez-

Ruiz et al., 2000; Morgan et al., 1986). In addition, Salmonella also contains peroxiredoxin 

proteins, which are able to scavenge hydrogen peroxide with the use of a NADH or 

NADPH catalytic substrate (Horst et al., 2010). These peroxiredoxins are coded for by 

AhpC and AhpF (part of the OxyR regulon). Studies have shown that both types of protein 

are responsible for the primary response to oxidative stress in Salmonella, with deletion 

mutants of Ahp and Kat genes showing greatly reduced ability of scavenge endogenous 

hydrogen peroxide (Seaver and Imlay, 2001). This demonstrates that the plant – pathogen 

response is a complex and dynamic system.  

As a continuation of the results shown in Table. 5, we suggest qPCR analysis of the 

genes KatE, KatN, KatG, AhpC and AhpF in Salmonella. We suggest this be done from 

cells extracted from a tomato inoculation as well as in laboratory media.  
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5. C O N C L U S I O N S 

 

The data in this study suggests that there lies an inherent biological susceptibility to 

Salmonella proliferation in tomatoes, but more importantly that this susceptibility varies 

between varieties of tomato. This study has demonstrated specifically that Solanum 

lycopersicum var. cerasiforme is consistently more resistant to Salmonella proliferation 

than var. alicante. This difference is echoed in other varieties studied in the literature, 

suggesting that cherry varieties are more resistant to Salmonella proliferation than other, 

larger varieties. This study has shown strong indication that this difference is due to the 

amount of hydrogen peroxide produced by these tomato varieties. Tomato variety 

cerasiforme was consistently shown to produce significantly more hydrogen peroxide into 

the intercellular space than var. alicante. This finding was enabled by a novel method of 

intercellular fluid extraction in tomato fruits. Unusual trends were observed when 

measuring the concentration of hydrogen peroxide in both tomato varieties post infection 

of Salmonella. No significant increase in the immune response of either tomato variety 

was observed when being analysed after Salmonella infection. This study suggests 

however, this trend is due to methodological errors and that further research should be 

carried out to confirm this. Time constraints meant that proper genetic analysis of the 

genes involved in the tomato or Salmonella immune responses, was not possible. 

However, identification of potential genes responsible for said immune responses, allowed 

for suggestion of further research. This study has reiterated that the plant-pathogen 

immune responses are complex and dynamic with a host of confounding variables. Whilst 

this study has demonstrated hydrogen peroxide concentration is clearly a factor that 

contributes to the susceptibility of tomatoes to Salmonella proliferation, there multiple 

facets to consider such as pre/post-harvest nature of the fruit, tomato ripeness as well as 

the multitude of stress response genes present in Salmonella.  
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A P P E N D I X  
This appendix contains full, unaltered data from the results shown in this study. All analyses of the 
data as referred to in the text is also shown. Appendices are shown in chronological order in 
reference to the results.  

Appendix 1 – Raw data 
Appendix 1.1. Increase in S. Typhimurium (4028) Proliferation (log) in S. lycopersicum 
var. Alicante and var. cerasiforme  

 BIOLOGICAL 
REPLICATES 

CFU INCREASE IN 
SALMONELLA 

PROLIFERATION (LOG)  TECH REP 1 TECH REP 2 AVERAGE 

AL
IC

AN
TE

 

1 39 96 67.5 3.294 
2 60 88 74 3.322 
3 81 76 78.5 3.371 
4 217 149 183 3.652 
5 300 300 300 3.942 
6 300 300 300 3.760 

Average     3.557 
      

C
H

ER
R

Y 

1 136 138 137 3.226 
2 28 20 24 2.469 
3 5 4 4.5 1.735 
4 12 14 13 2.203 
5 49 63 56 2.830 
6 105 117 111 3.127 

Average     2.598 
 

Appendix 1.2 H2O2 concentration from deproteinised vs. non-deproteinised samples of S. 
lycopersicum var. Alicante intercellular fluid 

 
H2O2 (pmol) 

DEPROTEINISED SAMPLES  NON-DEPROTEINISED SAMPLES 
BIOLOGICAL 
REPLICATE 1 

BIOLOGICAL 
REPLICATE 2 

BIOLOGICAL 
REPLICATE 1 

BIOLOGICAL 
REPLICATE 2 

TECHNICAL 
REPLICATE 1 26.9 23.1 21.2 24.1 
TECHNICAL 

REPLICATE 2 26.5 23.1 20.8 24.6 
AVERAGE 26.7 23.1  21 24.4 
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Appendix 1.3 H2O2 concentration from deproteinised vs. non-deproteinised samples of S. 
lycopersicum var. cerasiforme intercellular fluid 

 H2O2 (pmol) 
 DEPROTEINISED SAMPLES  NON-DEPROTEINISED SAMPLES 
 BIOLOGICAL 

REPLICATE 1 
BIOLOGICAL 
REPLICATE 2 

BIOLOGICAL 
REPLICATE 3  BIOLOGICAL 

REPLICATE 1 
BIOLOGICAL 
REPLICATE 2 

BIOLOGICAL 
REPLICATE 3 

TECHNICAL 
REPLICATE 1 22.97 23.62 19.09  22.32 28.14 22.32 
TECHNICAL 

REPLICATE 2 21.03 24.26 22.32  21.03 27.49 20.39 
AVERAGE 22 23.9 20.7  21.6 27.8 21.3 

 

Appendix 1.4 Intercellular concentration of H2O2 in S. lycopersicum var. alicante and var. 
cerasiforme post infection of S. Typhimurium 

 H2O2 (pmol) 
 CHERRY  ALICANTE 
 BIOLOGICAL 

REPLICATE 1 
BIOLOGICAL 
REPLICATE 2 

BIOLOGICAL 
REPLICATE 3  BIOLOGICAL 

REPLICATE 1 
BIOLOGICAL 
REPLICATE 2 

BIOLOGICAL 
REPLICATE 3 

TECHNICAL 
REPLICATE 1 19 19 19  9.4 6.8 4.8 
TECHNICAL 

REPLICATE 2 19 19.7 19.7  9.4 6.8 5.5 
AVERAGE 19 19.35 19.35  9.4 6.8 5.2 

 

Appendix 1.5 Intercellular production of H2O2 (pmol) in S. lycopersicum var. alicante and 
var. cerasiforme 

 H2O2 (pmol) 
TOMATO REPLICATE 1 REPLICATE 2 REPLICATE 3 REPLICATE 4 AVERAGE 

CHERRY 58.137 59.317 89.281 194.548 100.321 

ALICANTE 31.909 42.839 39.661 48.453 40.716 
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Appendix 1.6 Increase in S. Typhimurium (LT2 14028) Proliferation (log) in S. 
lycopersicum var. alicante and var. cerasiforme when treated with Mannitol vs. control 

 BIOLOGICAL 
REPLICATES 

CFU INCREASE IN 
SALMONELLA 

PROLIFERATION (LOG)  TECH REP 1 TECH REP 2 AVERAGE 

AL
IC

AN
TE

 
(M

AN
N

IT
O

L 
TR

EA
TM

EN
T)

 1 176 131 153.5 5.286 
2 237 224 230.5 5.507 
3 109 104 106.5 5.082 
4 330 335 332.5 5.632 
5 164 108 136 5.254 
6 104 113 108.5 5.144 

Average     5.317 
      

AL
IC

AN
TE

 
(C

O
N

TR
O

L)
 1 173 123 148 5.287 

2 134 68 101 5.144 
3 227 194 210.5 5.445 
4 15 84 49.5 4.854 
5 56 130 93 5.135 
6 107 59 83 4.994 

Average     5.143 
      

C
H

ER
R

Y 
(M

AN
N

IT
O

L 
TR

EA
TM

EN
T)

 1 461 560 510.5 5.226 
2 245 374 309.5 5.006 
3 208 289 248.5 4.909 
4 593 258 425.5 5.143 
5 170 177 173.5 4.755 
6 361 172 266.5 4.927 

Average     4.994 
      

C
H

ER
R

Y 
(C

O
N

TR
O

L)
 1 239 222 230.5 4.892 

2 129 153 141 4.653 
3 236 146 191 4.807 
4 113 160 136.5 4.658 
5 37 11 24 3.913 
6 164 113 138.5 4.690 

Average     4.602 
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Table. 1.7 Increase in S. Typhimurium (LT2 14028) Proliferation (log) in S. lycopersicum 
var. alicante and var. cerasiforme when treated with Sodium Pyruvate vs. control 

 BIOLOGICAL 
REPLICATES 

CFU INCREASE IN 
SALMONELLA 

PROLIFERATION (LOG)  TECH REP 1 TECH REP 2 AVERAGE 

AL
IC

AN
TE

 
(S

O
D

IU
M

 
PY

R
U

VA
TE

 
TR

EA
TM

EN
T)

 1 191 152 171.5 4.887 
2 82 73 77.5 4.562 
3 113 97 105 4.704 
4 212 202 207 4.989 
5 184 181 182.5 4.930 
6 35 120 77.5 4.558 

Average     4.772 
      

AL
IC

AN
TE

 
(C

O
N

TR
O

L)
 1 159 136 147.5 4.505 

2 205 251 228 5.092 
3 202 111 156.5 4.920 
4 133 106 119.5 4.734 
5 148 165 156.5 4.862 
6 103 143 123 4.764 

Average     4.813 
      

C
H

ER
R

Y 
(S

O
D

IU
M

 
PY

R
U

VA
TE

 
TR

EA
TM

EN
T)

 1 210 158 184 4.374 
2 92 100 96 4.105 
3 124 151 137.5 4.254 
4 85 106 95.5 4.096 
5 69 65 67 3.929 
6 99 110 104.5 4.135 

Average     4.149 
      

C
H

ER
R

Y 
(C

O
N

TR
O

L)
 1 64 115 89.5 4.074 

2 88 191 139.5 4.227 
3 69 79 74 3.966 
4 54 72 63 3.909 
5 92 104 98 4.094 
6 43 107 75 3.971 

Average     4.041 
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 Mannitol Treatment Control (PBS) Sodium Pyruvate Treatment  
C A B C A B C A B C 
1 0.224 0.28025 0.312 0.32 0.288 0.327 0.24 0.31275 0.264 0.32525 0.274 0.3025 0.255 0.30575 0.243 0.284 0.238 0.28425 
1 0.285   0.321   0.343  0.351   0.358   0.287   0.329   0.282   0.285   
1 0.305   0.346   0.36  0.347   0.377   0.344   0.333   0.307   0.313   
1 0.307   0.301   0.317   0.313   0.302   0.305   0.306   0.304   0.301   
2 0.067 0.06925 0.07 0.06475 0.064 0.063 0.069 0.0645 0.069 0.0665 0.066 0.06375 0.068 0.06425 0.067 0.06475 0.067 0.065 
2 0.068   0.063   0.063  0.063   0.063   0.063   0.063   0.064   0.065   
2 0.064   0.063   0.063  0.063   0.071   0.063   0.063   0.063   0.063   
2 0.078   0.063   0.062   0.063   0.063   0.063   0.063   0.065   0.065   
3 0.083 0.07275 0.069 0.064 0.064 0.06225 0.069 0.0635 0.067 0.065 0.065 0.063 0.067 0.0635 0.066 0.06325 0.066 0.0645 
3 0.068   0.062   0.061  0.061   0.062   0.062   0.062   0.063   0.065   
3 0.063   0.062   0.062  0.062   0.07   0.063   0.062   0.061   0.063   
3 0.077   0.063   0.062   0.062   0.061   0.062   0.063   0.063   0.064   
4 0.084 0.073 0.069 0.0635 0.063 0.06225 0.07 0.06375 0.067 0.065 0.065 0.06275 0.067 0.06375 0.065 0.0635 0.065 0.06425 
4 0.067   0.061   0.062  0.062   0.062   0.062   0.062   0.063   0.065   
4 0.063   0.062   0.062  0.062   0.069   0.062   0.063   0.062   0.063   
4 0.078   0.062   0.062   0.061   0.062   0.062   0.063   0.064   0.064   
5 0.078 0.072 0.069 0.0635 0.063 0.0625 0.07 0.06425 0.066 0.06475 0.064 0.0625 0.068 0.0635 0.066 0.06375 0.064 0.064 
5 0.068   0.061   0.062  0.062   0.062   0.061   0.062   0.063   0.065   
5 0.064   0.062   0.063  0.062   0.07   0.063   0.062   0.062   0.063   
5 0.078   0.062   0.062   0.063   0.061   0.062   0.062   0.064   0.064   
6 0.077 0.07925 0.07 0.06525 0.064 0.06375 0.071 0.0655 0.068 0.066 0.066 0.064 0.069 0.06525 0.066 0.06475 0.066 0.06575 
6 0.069   0.064   0.064  0.064   0.063   0.063   0.064   0.064   0.067   
6 0.065   0.064   0.064  0.064   0.07   0.064   0.064   0.063   0.064   
6 0.106   0.063   0.063   0.063   0.063   0.063   0.064   0.066   0.066   
7 0.076 0.079 0.069 0.06425 0.064 0.06275 0.068 0.06375 0.067 0.06525 0.065 0.063 0.068 0.06425 0.066 0.06425 0.065 0.065 
7 0.069   0.062   0.062  0.062   0.063   0.062   0.062   0.064   0.066   
7 0.065   0.063   0.063  0.063   0.069   0.063   0.063   0.062   0.064   

Appendix 1.8 Growth of Salmonella in treatment of mannitol, sodium pyruvate and control.  
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7 0.106   0.063   0.062   0.062   0.062   0.062   0.064   0.065   0.065   
8 0.082 0.07425 0.07 0.065 0.065 0.06375 0.07 0.065 0.067 0.06575 0.065 0.0635 0.069 0.065 0.066 0.0645 0.065 0.0675 
8 0.069   0.063   0.064  0.063   0.064   0.063   0.063   0.064   0.076   
8 0.066   0.063   0.063  0.064   0.07   0.063   0.064   0.063   0.064   
8 0.08   0.064   0.063   0.063   0.062   0.063   0.064   0.065   0.065   
9 0.08 0.074 0.07 0.06525 0.064 0.0635 0.071 0.06525 0.067 0.066 0.066 0.06425 0.069 0.06525 0.066 0.06525 0.065 0.065 
9 0.069   0.063   0.063  0.063   0.064   0.063   0.064   0.065   0.066   
9 0.066   0.064   0.064  0.064   0.07   0.064   0.064   0.064   0.064   
9 0.081   0.064   0.063   0.063   0.063   0.064   0.064   0.066   0.065   

10 0.079 0.074 0.07 0.065 0.064 0.06325 0.071 0.065 0.067 0.06575 0.066 0.064 0.069 0.0655 0.066 0.06525 0.065 0.065 
10 0.069   0.063   0.063  0.063   0.063   0.063   0.063   0.065   0.066   
10 0.067   0.063   0.063  0.063   0.07   0.064   0.065   0.064   0.064   
10 0.081   0.064   0.063   0.063   0.063   0.063   0.065   0.066   0.065   
11 0.082 0.07575 0.071 0.0655 0.064 0.0635 0.077 0.06675 0.066 0.06575 0.066 0.06425 0.069 0.0655 0.066 0.06525 0.065 0.065 
11 0.07   0.063   0.063  0.063   0.064   0.063   0.064   0.065   0.066   
11 0.068   0.064   0.064  0.064   0.07   0.064   0.064   0.064   0.064   
11 0.083   0.064   0.063   0.063   0.063   0.064   0.065   0.066   0.065   
12 0.086 0.0775 0.07 0.06475 0.064 0.0635 0.072 0.0655 0.066 0.0655 0.066 0.06375 0.069 0.06575 0.067 0.0655 0.065 0.065 
12 0.071   0.063   0.063  0.063   0.063   0.062   0.064   0.064   0.066   
12 0.069   0.063   0.064  0.064   0.07   0.064   0.065   0.064   0.064   
12 0.084   0.063   0.063   0.063   0.063   0.063   0.065   0.067   0.065   
13 0.092 0.0805 0.071 0.06575 0.065 0.06425 0.076 0.0665 0.066 0.06575 0.066 0.06425 0.07 0.06625 0.068 0.067 0.065 0.0755 
13 0.073   0.063   0.064  0.063   0.064   0.063   0.064   0.065   0.108   
13 0.071   0.064   0.064  0.064   0.07   0.064   0.065   0.066   0.064   
13 0.086   0.065   0.064   0.063   0.063   0.064   0.066   0.069   0.065   
14 0.091 0.08375 0.071 0.06625 0.065 0.0645 0.074 0.06625 0.065 0.06575 0.066 0.06425 0.071 0.06725 0.07 0.06825 0.065 0.065 
14 0.078   0.064   0.064  0.063   0.065   0.063   0.065   0.066   0.066   
14 0.075   0.065   0.065  0.064   0.07   0.063   0.066   0.067   0.064   
14 0.091   0.065   0.064   0.064   0.063   0.065   0.067   0.07   0.065   
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15 0.103 0.0935 0.073 0.0675 0.067 0.0655 0.075 0.067 0.067 0.067 0.067 0.06525 0.074 0.06875 0.076 0.07125 0.065 0.06525 
15 0.088   0.065   0.065  0.064   0.066   0.064   0.066   0.068   0.067   
15 0.083   0.066   0.066  0.065   0.071   0.065   0.067   0.068   0.064   
15 0.1   0.066   0.064   0.064   0.064   0.065   0.068   0.073   0.065   
16 0.136 0.11675 0.076 0.06925 0.07 0.06675 0.079 0.0685 0.066 0.06725 0.068 0.066 0.081 0.0725 0.086 0.076 0.065 0.0655 
16 0.108   0.067   0.065  0.065   0.067   0.065   0.069   0.072   0.067   
16 0.106   0.067   0.067  0.065   0.071   0.066   0.069   0.07   0.065   
16 0.117   0.067   0.065   0.065   0.065   0.065   0.071   0.076   0.065   
17 0.174 0.1465 0.084 0.0735 0.077 0.06975 0.081 0.07 0.067 0.06825 0.07 0.06725 0.096 0.0785 0.11 0.0875 0.066 0.066 
17 0.13   0.07   0.066  0.067   0.068   0.066   0.074   0.078   0.068   
17 0.132   0.07   0.07  0.066   0.071   0.066   0.07   0.075   0.065   
17 0.15   0.07   0.066   0.066   0.067   0.067   0.074   0.087   0.065   
18 0.193 0.17775 0.104 0.08225 0.097 0.07725 0.088 0.073 0.068 0.06925 0.075 0.07 0.125 0.09175 0.138 0.10525 0.067 0.06675 
18 0.158   0.076   0.07  0.068   0.07   0.067   0.08   0.091   0.068   
18 0.161   0.075   0.074  0.067   0.071   0.068   0.076   0.087   0.066   
18 0.199   0.074   0.068   0.069   0.068   0.07   0.086   0.105   0.066   
19 0.207 0.199 0.118 0.098 0.108 0.087 0.105 0.0805 0.07 0.07275 0.09 0.07675 0.158 0.1265 0.158 0.13925 0.07 0.06875 
19 0.184   0.098   0.08  0.073   0.076   0.072   0.141   0.135   0.07   
19 0.196   0.09   0.085  0.072   0.073   0.071   0.1   0.13   0.067   
19 0.209   0.086   0.075   0.072   0.072   0.074   0.107   0.134   0.068   
20 0.213 0.221 0.142 0.12575 0.131 0.10925 0.129 0.09725 0.075 0.07725 0.11 0.0925 0.158 0.14725 0.17 0.15575 0.076 0.07125 
20 0.207   0.132   0.11  0.089   0.083   0.085   0.142   0.142   0.072   
20 0.221   0.126   0.107  0.087   0.074   0.094   0.139   0.142   0.068   
20 0.243   0.103   0.089   0.084   0.077   0.081   0.15   0.169   0.069   
21 0.24 0.24525 0.159 0.15375 0.148 0.1425 0.154 0.13075 0.09 0.08725 0.141 0.13025 0.184 0.166 0.187 0.16775 0.09 0.07675 
21 0.232   0.161   0.143  0.132   0.097   0.138   0.152   0.146   0.075   
21 0.239   0.161   0.166  0.133   0.076   0.141   0.163   0.147   0.07   
21 0.27   0.134   0.113   0.104   0.086   0.101   0.165   0.191   0.072   
22 0.275 0.2785 0.175 0.1755 0.164 0.16775 0.181 0.16575 0.114 0.104 0.158 0.1565 0.228 0.19375 0.222 0.19975 0.127 0.09175 
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22 0.266   0.161   0.183  0.16   0.12   0.147   0.185   0.178   0.086   
22 0.271   0.198   0.175  0.174   0.081   0.172   0.18   0.169   0.075   
22 0.302   0.168   0.149   0.148   0.101   0.149   0.182   0.23   0.079   
23 0.279 0.3045 0.184 0.18575 0.181 0.18075 0.19 0.17825 0.14 0.14375 0.173 0.16725 0.248 0.21525 0.269 0.23575 0.144 0.10675 
23 0.313   0.179   0.172  0.175   0.163   0.157   0.188   0.217   0.1   
23 0.308   0.18   0.195  0.169   0.121   0.168   0.2   0.207   0.088   
23 0.318   0.2   0.175   0.179   0.151   0.171   0.225   0.25   0.095   
24 0.299 0.33225 0.209 0.219 0.208 0.211 0.219 0.1965 0.152 0.166 0.199 0.19 0.25 0.2285 0.266 0.2465 0.205 0.1365 
24 0.345   0.222   0.207  0.186   0.187   0.187   0.224   0.234   0.124   
24 0.337   0.216   0.211  0.193   0.153   0.191   0.203   0.221   0.105   
24 0.348   0.229   0.218   0.188   0.172   0.183   0.237   0.265   0.112   
25 0.328 0.3565 0.231 0.25175 0.228 0.21675 0.233 0.22325 0.169 0.191 0.227 0.2165 0.283 0.26025 0.288 0.27275 0.189 0.15825 
25 0.372   0.287   0.195  0.212   0.231   0.218   0.25   0.256   0.167   
25 0.357   0.234   0.225  0.218   0.18   0.201   0.243   0.262   0.133   
25 0.369   0.255   0.219   0.23   0.184   0.22   0.265   0.285   0.144   
26 0.336 0.36925 0.259 0.26575 0.253 0.2405 0.262 0.24825 0.184 0.2025 0.238 0.238 0.303 0.284 0.31 0.2935 0.23 0.1955 
26 0.37   0.266   0.219  0.247   0.235   0.242   0.276   0.272   0.207   
26 0.39   0.263   0.239  0.233   0.173   0.235   0.263   0.29   0.159   
26 0.381   0.275   0.251   0.251   0.218   0.237   0.294   0.302   0.186   
27 0.357 0.37275 0.291 0.28125 0.28 0.26925 0.289 0.26825 0.216 0.233 0.253 0.26275 0.346 0.312 0.325 0.303 0.232 0.2205 
27 0.387   0.259   0.246  0.258   0.275   0.274   0.3   0.286   0.244   
27 0.364   0.268   0.264  0.258   0.206   0.262   0.287   0.29   0.2   
27 0.383   0.307   0.287   0.268   0.235   0.262   0.315   0.311   0.206   
28 0.372 0.3865 0.332 0.29725 0.306 0.29125 0.31 0.286 0.234 0.2555 0.282 0.2875 0.351 0.32425 0.333 0.31625 0.242 0.241 
28 0.403   0.269   0.269  0.263   0.303   0.299   0.318   0.304   0.26   
28 0.37   0.266   0.287  0.287   0.227   0.289   0.308   0.301   0.235   
28 0.401   0.322   0.303   0.284   0.258   0.28   0.32   0.327   0.227   
29 0.378 0.3875 0.347 0.30675 0.337 0.307 0.329 0.304 0.259 0.27425 0.304 0.30875 0.355 0.33925 0.435 0.35775 0.281 0.25975 
29 0.377   0.266   0.273  0.285   0.303   0.318   0.328   0.33   0.26   
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29 0.384   0.281   0.314  0.304   0.25   0.302   0.333   0.325   0.244   
29 0.411   0.333   0.304   0.298   0.285   0.311   0.341   0.341   0.254   
30 0.393 0.411 0.373 0.32325 0.407 0.33875 0.353 0.33125 0.273 0.30325 0.33 0.33325 0.437 0.37125 0.426 0.38175 0.296 0.2775 
30 0.435   0.282   0.289  0.336   0.346   0.341   0.342   0.395   0.278   
30 0.412   0.301   0.342  0.325   0.274   0.321   0.346   0.347   0.257   
30 0.404   0.337   0.317   0.311   0.32   0.341   0.36   0.359   0.279   
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Appendix 1.9 – Hydrogen peroxide standard used for quantitation 
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Appendix 2 – Statistical Analysis 

Appendix 2.1 – Salmonella Proliferation 
Appendix 2.1.1 – Normality test for Salmonella proliferation in var. cerasiforme (CFU) 

 

 
Appendix 2.1.2 - Normality test for Salmonella proliferation in var. alicante (CFU) 

200150100500-50-100

99

95

90

80
70
60
50
40
30

20

10

5

1

Mean 57.58
StDev 54.95
N 6
AD 0.365
P-Value 0.301

Cherry prof cfu

Pe
rc

en
t

Probability Plot of Cherry prof cfu
Normal 

5004003002001000-100

99

95

90

80
70
60
50
40
30

20

10

5

1

Mean 167.2
StDev 111.4
N 6
AD 0.571
P-Value 0.077

Large prof cfu

Pe
rc

en
t

Probability Plot of Large prof cfu
Normal 



  Gabriel Sutton M00384509 

81 
 

Appendix 2.1.3 – Test for equal variances between Salmonella proliferation (CFU) in var. 
cerasiforme and var. alicante 

 

 
Appendix 2.1.4 – Normality test for Salmonella proliferation in var. cerasiforme (log) 
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Appendix 2.1.5 – Normality test for Salmonella proliferation in var. alicante (log) 

 

 

Appendix 2.1.6 – Test for equal variances between Salmonella proliferation (log) in var. 
cerasiforme and var. alicante 
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Appendix 2.1.7 – Two sample t-test of Salmonella proliferation between var. cerasiforme 
and var. alicante  

Two-Sample T-Test and CI: Cherry prof, Large prof  
 
Two-sample T for Cherry prof vs Large prof 
 
             N   Mean  StDev  SE Mean 
Cherry prof  6  2.599  0.574     0.23 
Large prof   6  3.557  0.267     0.11 
 
 
Difference = μ (Cherry prof) - μ (Large prof) 
Estimate for difference:  -0.958 
95% CI for difference:  (-1.534, -0.383) 
T-Test of difference = 0 (vs ≠): T-Value = -3.71  P-Value = 0.004  DF = 10 
Both use Pooled StDev = 0.4475 
 
 
Appendix 2.2.1 – Normality test of hydrogen peroxide concentration in var. alicante 
(deproteinised) 
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Appendix 2.2.2 - Normality test of hydrogen peroxide concentration in var. alicante 
(untreated) 

 

 

Appendix 2.2.3 – Test for equal variance between hydrogen peroxide concentration in 
var. alicante  (deproteinised and untreated)  
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Appendix 2.2.4 – Two sample t-test of hydrogen peroxide concentration in var. alicante 
(deproteinised and untreated) 
Two-Sample T-Test and CI: L Depro, L No depro  
 
Two-sample T for L Depro vs L No depro 
 
            N   Mean  StDev  SE Mean 
L Depro     4  24.90   2.08      1.0 
L No depro  4  22.67   1.95     0.98 
 
 
Difference = μ (L Depro) - μ (L No depro) 
Estimate for difference:  2.23 
95% CI for difference:  (-1.27, 5.72) 
T-Test of difference = 0 (vs ≠): T-Value = 1.56  P-Value = 0.170  DF = 6 
Both use Pooled StDev = 2.0194 
 
 
Appendix 2.2.5 - Normality test of hydrogen peroxide concentration in var. cerasiforme 
(deproteinised) 
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Appendix 2.2.6 - Normality test of hydrogen peroxide concentration in var. cerasiforme 
(untreated) 

 

 
Appendix 2.2.7 – Test for equal variance between hydrogen peroxide concentration in 
var. cerasiforme  (deproteinised and untreated) 
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Appendix 2.2.8 – Two sample t-test of hydrogen peroxide concentration in var. 
cerasiforme (deproteinised and untreated) 
Two-Sample T-Test and CI: C Depro, C No Depro  
 
Two-sample T for C Depro vs C No Depro 
 
            N   Mean  StDev  SE Mean 
C Depro     6  22.22   1.89     0.77 
C No Depro  8  26.25   8.48      3.0 
 
 
Difference = μ (C Depro) - μ (C No Depro) 
Estimate for difference:  -4.04 
95% CI for difference:  (-11.36, 3.28) 
T-Test of difference = 0 (vs ≠): T-Value = -1.30  P-Value = 0.233  DF = 7 
 
 
Appendix 2.3.1 – Normality test for hydrogen peroxide concentration in var. cerasiforme 
post infection from Salmonella  

 

 
Appendix 2.3.2 – Man-Whitney test of hydrogen peroxide concentration in var. 
cerasiforme in post infection vs untreated. 
Mann-Whitney Test and CI: C Post infec, C Depro  
 
              N  Median 
C Post infec  6  19.000 
C Depro       6  22.645 
 
 
Point estimate for η1 - η2 is -3.320 
95.5 Percent CI for η1 - η2 is (-4.620,-0.091) 
W = 23.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0131 
The test is significant at 0.0114 (adjusted for ties) 
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Appendix 2.3.3 – Normality test for hydrogen peroxide concentration in var. alicante post 
infection from Salmonella 

 
 

Appendix 2.3.2 – Two samples t-test test of hydrogen peroxide concentration in var. 
alicante in post infection vs untreated. 
Two-Sample T-Test and CI: L post infec, Large prof  
 
Two-sample T for L post infec vs Large prof 
 
              N   Mean  StDev  SE Mean 
L post infec  6   7.12   1.93     0.79 
Large prof    6  3.557  0.267     0.11 
 
 
Difference = μ (L post infec) - μ (Large prof) 
Estimate for difference:  3.559 
95% CI for difference:  (1.788, 5.331) 
T-Test of difference = 0 (vs ≠): T-Value = 4.48  P-Value = 0.001  DF = 10 
Both use Pooled StDev = 1.3772 
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Appendix 2.4.1 – Normality for hydrogen peroxide concentration in var. cerasiforme 
(second run) 

 
 
Appendix 2.4.2 – Normality for hydrogen peroxide concentration in var. alicante (second 
run) 
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Appendix 2.4.3 – Test for equal variances for hydrogen peroxide concentration in var. 
alicante and var. cerasiforme (second run) 

 

 

Appendix 2.4.4 – Man-Whitney test of hydrogen peroxide concentration in var. 
cerasiforme and var. alicante (second run). 

Mann-Whitney Test and CI: Cherry h2, Large h2  
 
           N  Median 
Cherry h2  4    74.3 
Large h2   4    41.3 
 
 
Point estimate for η1 - η2 is 34.1 
97.0 Percent CI for η1 - η2 is (9.7,162.7) 
W = 26.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0304 
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Appendix 2.5.1 – Normality test for Salmonella proliferation in var. alicante (mannitol) 

 

 
Appendix 2.5.2 - Normality test for Salmonella proliferation in var. alicante (control) 
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Appendix 2.5.3 – Normality test for Salmonella proliferation in var. cerasiforme (mannitol) 

 

 
Appendix 2.5.3 – Normality test for Salmonella proliferation in var. cerasiforme (control) 
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Appendix 2.5.3 – Two samples t-test test of Salmonella proliferation in var. alicante 
(control vs. mannitol) 

Two-Sample T-Test and CI: Large Man, Large Con  
 
Two-sample T for Large Man vs Large Con 
 
           N   Mean  StDev  SE Mean 
Large Man  6  5.318  0.212    0.087 
Large Con  6  5.144  0.209    0.085 
 
 
Difference = μ (Large Man) - μ (Large Con) 
Estimate for difference:  0.174 
95% CI for difference:  (-0.097, 0.445) 
T-Test of difference = 0 (vs ≠): T-Value = 1.43  P-Value = 0.182  DF = 10 
Both use Pooled StDev = 0.2105 
 
 
 
Appendix 2.5.4 – Man-Whitney test of Salmonella proliferation in var. cerasiforme (control 
vs. mannitol). 

Mann-Whitney Test and CI: Cherry Man, Cherry Con  
 
            N  Median 
Cherry Man  6  4.9670 
Cherry Con  6  4.6747 
 
 
Point estimate for η1 - η2 is 0.2953 
95.5 Percent CI for η1 - η2 is (0.0968,0.8421) 
W = 55.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0131 
 

 

Appendix 2.5.4 – Man-Whitney test of Salmonella proliferation in var. cerasiforme vs. var. 
alicante (control) 

Mann-Whitney Test and CI: Cherry Con, Large Con  
 
            N  Median 
Cherry Con  6  4.6747 
Large Con   6  5.1400 
 
 
Point estimate for η1 - η2 is -0.4785 
95.5 Percent CI for η1 - η2 is (-0.9408,-0.1954) 
W = 22.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0082 
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Appendix 2.5.6 – Two samples t-test test of Salmonella proliferation in var. alicante vs. 
var. cerasiforme (mannitol) 

Two-Sample T-Test and CI: Cherry Man, Large Man  
 
Two-sample T for Cherry Man vs Large Man 
 
            N   Mean  StDev  SE Mean 
Cherry Man  6  4.995  0.170    0.069 
Large Man   6  5.318  0.212    0.087 
 
 
Difference = μ (Cherry Man) - μ (Large Man) 
Estimate for difference:  -0.323 
95% CI for difference:  (-0.570, -0.075) 
T-Test of difference = 0 (vs ≠): T-Value = -2.91  P-Value = 0.016  DF = 10 
Both use Pooled StDev = 0.1924 
 
 

 

Appendix 2.5.6 – Summarised Two samples t-test test of estimated difference in 
Salmonella proliferation in var. alicante vs. var. cerasiforme (mannitol) and var. alicante 
vs. var. cerasiforme (control) 

Two-Sample T-Test and CI  
 
Sample  N   Mean  StDev  SE Mean 
1       6  0.323  0.176    0.072 
2       6  0.541  0.176    0.072 
 
 
Difference = μ (1) - μ (2) 
Estimate for difference:  -0.218 
95% CI for difference:  (-0.444, 0.008) 
T-Test of difference = 0 (vs ≠): T-Value = -2.15  P-Value = 0.057  DF = 10 
Both use Pooled StDev = 0.1756 
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Appendix 2.6.1 - Normality test for Salmonella proliferation in var. cerasiforme (sodium 
pyruvate) 

 

 

Appendix 2.6.2 - Normality test for Salmonella proliferation in var. cerasiforme (control) 
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Appendix 2.6.3 - Normality test for Salmonella proliferation in var. alicante (control) 

 

 

Appendix 2.6.3 - Normality test for Salmonella proliferation in var. alicante (sodium 
pyruvate) 
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Appendix 2.6.4 – Two samples t-test test of Salmonella proliferation in var. alicante vs. 
var. cerasiforme (control) 

Two-Sample T-Test and CI: Cherry P con, Large P con  
 
Two-sample T for Cherry P con vs Large P con 
 
              N   Mean  StDev  SE Mean 
Cherry P con  6  4.041  0.115    0.047 
Large P con   6  4.813  0.197    0.081 
 
 
Difference = μ (Cherry P con) - μ (Large P con) 
Estimate for difference:  -0.7726 
95% CI for difference:  (-0.9806, -0.5646) 
T-Test of difference = 0 (vs ≠): T-Value = -8.27  P-Value = 0.000  DF = 10 
Both use Pooled StDev = 0.1617 
 
 
Appendix 2.6.4 – Two samples t-test test of Salmonella proliferation in var. alicante vs. 
var. cerasiforme (sodium pyruvate) 

Two-Sample T-Test and CI: Cherry Pyr, Large Pyr  
 
Two-sample T for Cherry Pyr vs Large Pyr 
 
            N   Mean  StDev  SE Mean 
Cherry Pyr  6  4.149  0.152    0.062 
Large Pyr   6  4.772  0.189    0.077 
 
 
Difference = μ (Cherry Pyr) - μ (Large Pyr) 
Estimate for difference:  -0.6229 
95% CI for difference:  (-0.8437, -0.4020) 
T-Test of difference = 0 (vs ≠): T-Value = -6.28  P-Value = 0.000  DF = 10 
Both use Pooled StDev = 0.1717 
 
 
 
Appendix 2.5.6 – Summarised Two samples t-test test of estimated difference in 
Salmonella proliferation in var. alicante vs. var. cerasiforme (sodium pyruvate) and var. 
alicante vs. var. cerasiforme (control) 

Two-Sample T-Test and CI  
 
Sample  N   Mean  StDev  SE Mean 
1       6  0.773  0.162    0.066 
2       6  0.630  0.172    0.070 
 
 
Difference = μ (1) - μ (2) 
Estimate for difference:  0.1427 
95% CI for difference:  (-0.0718, 0.3572) 
T-Test of difference = 0 (vs ≠): T-Value = 1.48  P-Value = 0.169  DF = 10 
Both use Pooled StDev = 0.1668 
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Appendix 2.6.1 – Regression analysis of Mannitol treated Salmonella growth vs time 

Regression Analysis: Mannitol versus Time  
 
Analysis of Variance 
 
Source      DF    Adj SS    Adj MS  F-Value  P-Value 
Regression   1  0.088743  0.088743  2395.27    0.000 
  Time       1  0.088743  0.088743  2395.27    0.000 
Error       12  0.000445  0.000037 
Total       13  0.089187 
 
 
Model Summary 
 
        S    R-sq  R-sq(adj)  R-sq(pred) 
0.0060868  99.50%     99.46%      99.27% 
 
 
Coefficients 
 
Term          Coef   SE Coef  T-Value  P-Value   VIF 
Constant  -0.22212   0.00922   -24.08    0.000 
Time      0.039501  0.000807    48.94    0.000  1.00 
 
 
Regression Equation 
 
Mannitol = -0.22212 + 0.039501 Time 
 
 
Fits and Diagnostics for Unusual Observations 
 
Obs  Mannitol      Fit     Resid  Std Resid 
 14   0.33767  0.35065  -0.01298      -2.47  R 
 
R  Large residual 
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Appendix 2.6.2 – Regression analysis of sodium pyruvate treated Salmonella growth vs 
time 

Regression Analysis: SP versus Time  
 
Analysis of Variance 
 
Source      DF    Adj SS    Adj MS  F-Value  P-Value 
Regression   1  0.070425  0.070425  2148.41    0.000 
  Time       1  0.070425  0.070425  2148.41    0.000 
Error       12  0.000393  0.000033 
Total       13  0.070818 
 
 
Model Summary 
 
        S    R-sq  R-sq(adj)  R-sq(pred) 
0.0057254  99.44%     99.40%      99.17% 
 
 
Coefficients 
 
Term          Coef   SE Coef  T-Value  P-Value   VIF 
Constant  -0.20907   0.00868   -24.10    0.000 
Time      0.035189  0.000759    46.35    0.000  1.00 
 
 
Regression Equation 
 
SP = -0.20907 + 0.035189 Time 
 
 
Fits and Diagnostics for Unusual Observations 
 
                                  Std 
Obs       SP      Fit    Resid  Resid 
  1  0.08300  0.07244  0.01056   2.14  R 
 
R  Large residual 
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Appendix 2.6.3 – Regression analysis of sodium pyruvate treated Salmonella growth vs 
time 

Regression Analysis: PBS versus Time  
 
Analysis of Variance 
 
Source      DF    Adj SS    Adj MS  F-Value  P-Value 
Regression   1  0.071141  0.071141  1439.84    0.000 
  Time       1  0.071141  0.071141  1439.84    0.000 
Error       12  0.000593  0.000049 
Total       13  0.071734 
 
 
Model Summary 
 
        S    R-sq  R-sq(adj)  R-sq(pred) 
0.0070291  99.17%     99.10%      98.81% 
 
 
Coefficients 
 
Term          Coef   SE Coef  T-Value  P-Value   VIF 
Constant   -0.1842    0.0107   -17.29    0.000 
Time      0.035367  0.000932    37.95    0.000  1.00 
 
 
Regression Equation 
 
PBS = -0.1842 + 0.035367 Time 
 
 
Fits and Diagnostics for Unusual Observations 
 
Obs      PBS      Fit     Resid  Std Resid 
 14  0.31492  0.32862  -0.01370      -2.26  R 
 
R  Large residual 
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Appendix 2.6.4 – Summarised two sample t-test between Salmonella growth over time 
(mannitol treatment) vs. Salmonella growth over time (control) 

Two-Sample T-Test and CI  
 
Sample   N     Mean    StDev  SE Mean 
1       12  0.03950  0.00280  0.00081 
2       12  0.03537  0.00323  0.00093 
 
 
Difference = μ (1) - μ (2) 
Estimate for difference:  0.00413 
95% CI for difference:  (0.00158, 0.00669) 
T-Test of difference = 0 (vs ≠): T-Value = 3.35  P-Value = 0.003  DF = 22 
Both use Pooled StDev = 0.0030 
 

Appendix 2.6.4 – Summarised two sample t-test between Salmonella growth over time 
(sodium pyruvate treatment) vs. Salmonella growth over time (control) 

Two-Sample T-Test and CI  
 
Sample   N     Mean    StDev  SE Mean 
1       12  0.03519  0.00263  0.00076 
2       12  0.03537  0.00323  0.00093 
 
 
Difference = μ (1) - μ (2) 
Estimate for difference:  -0.00018 
95% CI for difference:  (-0.00267, 0.00231) 
T-Test of difference = 0 (vs ≠): T-Value = -0.15  P-Value = 0.884  DF = 22 
Both use Pooled StDev = 0.0029 
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