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MICROBIOWGICAL CHARACTERISTICS IN URBAN 
STORMWATER RUNOFF AND SEDIMENTS 

YUWANG 

ABSTRACT 

This study was undertaken to investigate the microbiological composition of urban 
surface water runoff and sediments in both North London and Valencia. The survey 
focused primarily on the relationships between indicator microorganisms (total 
coliforms, faecal coliforms and faecal streptococci) and water quality, and between 
indicator microorganisms and pathogens (Pseudomonas aeruginosa and Salmonella) 
which cause waterborne disease. 

High levels of microorganisms were found in dry weather flow sanitary wastewater, 
combined sewage, urban receiving stream, beach outfall and storm water runoff as well 
as sediments. Pathogenic bacteria were consistently isolated from the urban water 
courses. Pseudomonas aeruginosa were recovered at high concentration and Salmonella 
required concentration for enumeration. 

The results indicated that storm water runoff from urban areas contain high levels of 
indicator microorganisms and pathogenic bacteria. The pollution appears to be 
predominantly of non-human origin and is mainly derived from animal wastes. In 
general, the runoff resembled dilute raw sewage in microbiological composition and 
obversely represents a public health risk. 

Although some connection between bacteria densities and selected environmental factors 
is apparent, the relationship is not simple. Factors such as BODs, flow, temperature, 
pH, faecal deposit age and hydrologic proximity of pollution sources all affect bacterial 
densities in runoff and according to different water sources. However, the parameter 
of bacterial loading may be used in survey of aquatic environment to estimate probable 
bacteria density ranges. 

The characteristics of bacterial concentration in different layers of sediments and 
bacterial release from sediment in a continuous flow tank have also been investigated. 
Indicator and pathogenic bacteria occur at the highest concentration in the upper layers 
of sediment. Pseudomonas aeruginosa was more easy released than indicator 
microorganisms. The microbial release peak was detected at 6 hours. The ratio of faecal 
coliform to faecal streptococcus densities can be used to help identify particular sources 
of faecal pollution and had relatively small fluctuation rate after faeces deposited in 
water under 4°C than 20°C. 
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Chapter 1: Introduction 

1.1. The Research Context 

During recent years there has been a growing recognition of the importance of urban 

sewage discharges and stormwater runoff as major sources of microbiological pollution 

in urban natural surface water and sediment. Several studies have been conducted to 

determine the qualitative and quantitative characteristics of microorganisms in urban 

sewage, storm water and sediments as well as their impact on receiving waters 

(Geldreich et al., 1968; Field et al., 1976; Olivieri et al., 1978; Rhodes and Kator, 

1988; Marino and Gannon, 1991). The striking emphasis of these studies has been to 

identify the similarity between storm water runoff and sewage effluent in term of their 

inherent potential hazards to public health. 

This thesis describes research carried out over two years into aspects of microbiological 

contaminants in urban surface water runoff in both North London (The U.K.) and 

Valencia (Spain). The studies were designed to collect baseline data and information on 

the current topics with the following major objectives in mind. 

a). To determine the levels of indicator microorganisms (total coliforms, faecal 

coliforms and faecal streptococci) and pathogenic bacteria (Pseudomonas aeruginosa 

and Salmonella) in domestic wastewater, combined sewage, receiving stream and beach 

outfall and to utilise bacterial indices to enable a comparison of temperate and 

Mediterranean situations. 

b). To determine the incidence and distributions of pollutant indicator microorganisms 

and pathogenic bacteria in areas having different urban land uses. 

c). To determine whether the ratio of faecal coliform to faecal streptococcus has 

significance as a pollution index that may be used in urban surface runoff studies under 

different climatic conditions. 

d). To determine and compare the survival and release characteristics of indicator 
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microorganisms and pathogenic bacteria in different sediments of an urban water 

discharge system and in different sediment layers. 

e). To determine diurnal patterns of indicator microorganisms and pathogenic bacteria 

in dry weather flow sanitary wastewater flows. 

f). To determine the relationship between microorganisms and environmental factors in 

order to evaluate the potential influence of flow to bacteria pollution. 

1.2. Thesis Content and Organization 

The structure of this thesis and a fuller description of the research programme is 

outlined below: 

This is the introduction and context to the research constitutes the first of seven 

Chapters. The contents of the remainder are briefly summarised in the following 

descriptions. 

Chapter 2 provides a review of the literature which gives background information of 

general relevance to the subjects considered in later sections. The sources and 

characteristics of microorganisms and pathogenic bacteria in urban surface waters and 

sediments are described. 

Chapter 3 provides details of sampling locations, sampling methods and microbiological 

analytical methods as well as physio - chemical analysis techniques which have been 
, 

employed in the research; details of the microbiological media are also included. 

Chapter 4 describes the main investigations carried out to determine the microbiological 

characteristics and levels of both indicator microorganisms and pathogenic bacteria 

found in urban surface runoff and sediment. A comparison of the levels of indicator 

microorganisms and pathogenic bacteria between an urban catchment in North London 

and Valencia is made. The relationships between indicator microorganisms, pathogenic 
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bacteria and selected environmental factors are developed. 

Chapter 5 describes an investigation undertaken to determine the occurrence and 

distribution of pollution indicator microorganisms and pathogenic bacteria found in 

storm water samples collected during several storm events in both North London and 

Valencia. 

Chapter 6 discusses laboratory experiments conducted to determine changing ratios of 

faecal coliforms and faecal streptococci in various kind of sewage under different 

conditions and bacterial release rates from sediment. 

Chapter 7 provides a general overview of the main conclusions and recommendations 

for future work. 
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Chapter 2: A Review of Microbiological Characteristics in Urban 

Surface Water Runoff and Sediments 

2.1. Background/Introduction 

Water quality is a measure of the suitability of a water for specific uses and is defined 

in terms of the physical, chemical, and biological parameters which are pertinence to 

the use. Historically, the "microbial" quality of water has meant some assessment of 

the safety of the water in respect to the possible transmission of infectious waterborne 

diseases. However, water borne disease is only of concern where there is a possibility 

of direct or indirect human contact with the water and thus microbial quality has been 

traditionally determined and applied in respect of public water supplies, swimming 

pools, direct contact recreational waters, and waters used for crop irrigation. 

There are many microbial parameters which could be used to assess the quality of raw 

water. For example the total numbers of viruses, bacteria, bacteriophages, fungi, 

protozoa, or number of particular groups (e.g. enteric viruses, coliforms, Salmonella 

etc.) could be determined. However the relative simplicity, speed and specificity of 

bacterial tests in particular has enabled most use to be made of these tests in water 

examination. Hence, most standards and guidelines of raw water quality are framed in 

terms of maximum numbers of bacterial indicators for faecal pollution (coliforms, faecal 

coliforms (Escherichia coli), faecal streptococci and Clostridium pe1j'ringens). 

In early urban drainage developments, sanitary and storm water flows were traditionally 

combined. More recently, efforts have been made to 'correct' the perceived problems 

of combined sewer systems by installing partially or completely separate sewer systems. 

Many large older cities such as metropolitan London still retain predominantly 

combined systems. In many cases however, when the combined flow exceeds three 

times the average dry weather flow, the overall transporting efficiency is impaired 

(Dumbar and Henry, 1966) and at 5 or 6 times dry weather flow the sewage treatment 

capacity is usually exceeded. Therefore, following heavy and prolonged rainfall, sewage 

will by-pass treatment completely and discharge directly to adjacent water courses, as 
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freely discharging or uncontrolled overflows (Greeley and Langdon, 1961; 

Shuttleworth, 1986; Fiddes, 1989). Urban stormwater discharged through these types. 

of storm sewer systems is comparable with other forms of sewage effluent and should 

arguably be treated to remove pathogenic bacteria and viruses that may be discharged 

to recreation areas, shellfish growing waters or source waters that may be used for 

water abstraction. 

In areas where surface water quality has been degraded below established river quality 

objectives or set standards, field investigations should attempt to identify the types and 

sources of pollution through sanitary surveys and appropriate laboratory analysis. Since 

a major concern of water pollution relates to the occurrence of intestinal pathogens that 

could create a human health hazard, bacteriological tests must be directed toward 

establishing the magnitude of faecal pollution, including the locations and contributions 

of both point and non-point discharges of any polluted inputs. 

Some studies of the survival and increased numbers of both indicators and pathogens 

in sediments have been done. However the knowledge of the detailed microbial 

characteristics of urban sewer/stream sediments may need to be extended to provide 

valuable information which relates to the structural characteristics of the sediments; in 

environmental microorganism terms, it is the indicator bacteria which are the main 

concern. 

2.2. Microorganism Sources and Occurrence 

2.2.1. The Microbial Flora in Faeces 

Since the major microbiological health hazard associated with water consumption 

originates from faecal contamination, the search for an adequate indicator has logically 

been associated with organisms occurring in the microbial flora of human and animal 

faeces. The most consistent microorganisms and groups of microorganisms found in 

human faeces are Bacteroides jragi/es (an anaerobic Gram negative bacilli), total 

coliforms, Escherichia coli, faecal streptococci and enterococci. 
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Of the microorganisms having a high frequency of isolation, B. jragi/es is the most 

numerous followed by members of the faecal streptococci. Leclerc et al. (1977) have . 

summarised the basic microbial flora found in normal human faeces (Tables 2.1 and 

2.2). They noted the occurrence and density of Citrobacter which had previously been 

considered to occur infrequently and in low density; they further ranked the 

microorganisms found in human faeces. The primary microorganisms found, as well 

as the observed densities, are for the most part similar to those reported by Geldreich 

(1978). 

Many of the microorganisms observed in these early surveys are not confined to the 

human intestinal tract. Numerous reports regularly found many of the aforementioned 

microorganisms in other warm - blooded animals and frequently in cold-blooded 

animals. The average density of selected microorganisms for several domesticated and 

wild animals is shown in Table 2.3. The average density per gram of faecal streptococci 

for pets, farm and wild animals is consistently higher than faecal coliforms, whereas 

the average density per gram associated with human faeces of faecal coliforms is more 

than four times higher than streptococci. It should be noted that the anaerobic bacilli 

reported were conspicuous by their absence from certain warm-blooded animals but 

were consistently found in human faeces. 

Whilst the initial concern is for the presence of human faeces in water, the level of 

some animal pathogens cannot be ignored. Geldreich (1978) has summarized the 

available information on the percentage of individuals excreting pathogenic 

microorganisms. Animals provide a significant reservoir for Salmonella, Leptospira, 

and enteric pathogenic E.coli. More information (Pipes, 1982) suggests that Giardia 

lamblia occurs frequently in animals found in the wild, particularly beavers. Shigella, 

Vibrio cholerae, Mycobacterium tuberculosis and the enteric viruses appear to be 

associated solely with humans. 
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Table 2.1: Human faeces flora: qualitative survey on 30 adults 

(from Leclerc et al., 1977) 

Number Positive 

Species / Genus Samples Presence( % ) Frequency 

Aerobic Bacteria (gram-negative) 

Escherichia coli 30 100 constant 

Citrobacter-Levinea 20 66 high 

Klebsiella 15 50 medium 

Enterobacter 3 10 rare 

Aerobic bacteria (gram-positive) 

Staphylococcus 15 50 medium 

Enterococcus 30 100 constant 

Bacillus 28 93 constant 

Anaerobic Bacteria (gram-negative) 

Lactobacillus 30 100 constant 

Bacteroides 30 100 constant 

Anaerobic Bacteria (gram-positive) 

Clostridium 23 76 high 
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Table 2.2: Human faeces flora: quantitative survey on 30 adults 

(from Leclerc et al., 1977) 

Species Average number of samples where 

(cfu/ g3) the species is found/30 

Total bacteria 1.5x1011 24 

Total aerobic bacteria 7.0x108 30 

Aerobic bacteria (gram - negative) 

Escherichia coli 4.0x108 30 

Citrobacter-levinea 1. Ox 106 20 

Klebsiella 5.0xl<r 14 

Enterobacter 1. Ox 105 . 3 

Aerobic bacteria (gram - positive) 

Enterococcus 2.0x105 30 

Staphylococcus 8.0x106 15 

Bacillus 3.0xl<r 28 

Anaerobic bacteria (gram - negative) 

Bocteroides 1. Ox 1010 30 

Lactobacillus 1.0xl09 30 

Anaerobic bacteria (gram - Positive) 

Clostridium 4.0x106 23 

acfu = colony forming units. 
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Table 2.3: Estimates of microbial flora of animal faeces 

(from Ge1dreich, 1978) 

Average Density/g 

FC FS CP Bac Lac 

FARM ANIMALS 

Cow 2.3x1<f 1. 3x 106 2.0x102 <1 2.5x1Q2 

Pig 3.3x106 8.4x107 3.9x1Q3 5.0x1OS 2.51x108 

Sheep 1.6x107 3.8x107 1.9x1OS <1 7.9x1<f 

Horse 1.3x1<f 6.3x106 <1 <1 1. Ox 107 

Duck 3.3x107 5.4x107 - - -

Chicken 1. 3x 106 3.4x106 2.5x1Q2 <1 3.2x108 

Turkey 7.9x106 2.8x106 - - -

ANIMAL PETS 

Cat 7.9x106 2.7x107 2.5x107 7.9x108 6.3x108 

Dog 2.3x107 9.8x108 2.51x108 5.0x108 3.9x1<f 

WILD ANIMALS 

Mice 3.3x105 7.7x106 <1 7.9x108 1.3x109 

Rabbits 20 4.7x1<f <1 3.9x107 <1 

Chipmunk 1. 5x 105 6.0x106 - - 0 

HUMAN 1. 3x 107 3x1(Yi 1.6x103 5.0x109 6.3x108 

FC: Faecal coliforms. FS: Faecal streptococci. 

Cp: Clostridium peifringens. Bac: Bacteroides. 

Lac: Lactobacilli. 
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2.2.2. Pollution Indicator Microorganisms and Pathogenic Bacteria 

The most microorganisms are common microbial flora of faeces including total 

coliforms, faecal coliforms, faecal streptococci, Clostridium pe1jHngens and probably 

to other anaerobic groups, such as Bifidobacterium bifidus, Bacteroides and Lactobacilli 

(Berg, 1978, Olivieri, 1982). In previous studies, total coliforms, faecal coliforms and 

faecal streptococci have been widely accepted and selected as indicator microorganisms 

for research into the water environment. Pseudomonas aeruginosa and Salmonella spp 

have also been chosen as representative for water pollution research, and have 

recognised significance for public health risk associated with recreational waters. 

Total coliforms 

Total coliforms have long been recognized as suitable microbiological indicators of 

water quality largely because they are easy to detect and quantify in water. Although 

the name of the indicator was changed several times over the years, the current 

coliform group is essentially the some group of microorganisms that has served since 

the late 19th century as an indicator. The total coliform group is currently defined in 

the 16th edition of 'Standard Methods for the Examination of Water and Wastewater' 

as "aerobic and facultative anaerobic, gram-negative, non-spore-forming, rod-shaped 

bacteria that ferment lactose with gas formation with 48 hours at 35°C" (APHA, 1985). 

Faecal coliforms 

Much of the conflict in accurately assessing the microbiological quality of natural 

waters can be eliminated by using faecal coliforms as indicators of faecal pollution. The 

presence of this subgroup of the total coliform population in surface waters a more 

accurate allows correlation with warm - blooded animal faecal discharges than the total 

coliform group. 

Faecal streptococci 

The faecal streptococcus group includes a wide spectrum of strains that have specific 

faecal origins and diverse survival rates and includes several biotypes of limited sanitary 

significance (Mundt and Graham, 1968; Geldreich and Kenner, 1969). Within the faecal 

10 



streptococcus group, S. bovis and S. equinus are specific indicators of nonhuman warm 

- blooded animal pollution. In addition, S. bovis and S. equinus are faecal streptococci . 

that die off most rapidly outside the animal intestinal tract. By contrast, the ubiquitous 

S. faecalis may affect the precision of this indicator system at counts below 100 faecal 

streptococci per 100 ml because at these low population levels, this biotype generally 

predominates. 

Pseudomonas aeruginosa 

Pseudomonas aeruginosa (P. aeruginosa) is frequently considered to be an ubiquitous 

microorganism which is easily isolated from surface waters and soils. Sanitary 

wastewater is regarded as a major source of P. aeruginosa in surface waters, although 

it is occasionally isolated from non - faecal polluted waters, especially from waters 

leaching agricultural soils or urban runoff (Hoadley, 1968a and 1977; Wheater et al., 

1980; Dutka, 1981) and may be associated with high densities of bacteria (Cabelli et 

ai, 1976; Cabelli, 1977). The presence of P. aeruginosa in urban runoff must be 

considered because it is an opportunistic pathogenic microorganism which may be 

spread by water. It is know to cause infections of the skin, ears, eyes and other mucous 

membranes of bathers swimming in waters polluted by organisms (Hoadley, 1977 and 

Dutka, 1981). 

Salmonella 

The increase of pollution in natural waters has intensified the detection frequency and 

persistence of other pathogenic microorganisms, mainly Salmonella spp., in urban areas 

affected by sewage discharges with subsequent potential hazard to public health. 

2.2.3. Relationships between Indicators 

While the criteria for the utility of an indicator microorganism appear to be simple and 

straightforward, no one microorganism or group of microorganisms adequately satisfies 

all of them. The utilization of water by man is an important factor to be considered 

when the indicator criteria are evaluated. Indicator species by their presence, indicate 

pollution, but their absence will not absolutely guarantee a clean environment and 
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quantitative relationships to other factors are not presupposed. 

Olivieri et al. (1978) have reported a positive correlation between the bacterial 

indicators and the bacterial pathogens. As the levels of total coliforms, faecal coliforms 

and faecal streptococci increase, the levels of Salmonella spp. P. aeruginosa and 

Staphylococcus aureus also increase. However, small differences in the levels of 

indicator bacteria may not reflect changes in the levels of pathogens. Conversely, small 

differences in the levels of pathogens may not be reflected in the levels of indicators. 

Correlations between levels of total coliform, faecal coliform and faecal streptococcus 

and bacterial pathogens were found by Olivieri (1982) to be highly significant at the 1 

% level when outfall samples were considered. However, little or no correlation was 

found between indicator and pathogenic bacteria in storm and stream samples. Morinigo 

et al. (1990) also reported that close correlation between indicator bacteria and 

Salmonella in highly polluted freshwater was observed. However, Salmonella was 

occasionally detected when faecal streptococci levels were < 50/100ml. Generally, the 

percentage of samples in which Salmonella were detected increased with the pollution 

level. 95 % of storm samples with faecal coliform levels greater than 2,OOO/I00ml were 

positive for Salmonella (Olivieri et al., 1977). 

2.2.4. Indicator Ratios 

Many ratios of indicator microorganisms have been employed to provide some insight 

into the possible source of microbial contamination such as: The ratios of faecal 

coli forms to total coliforms (Geldreich 1970), Escherichia coli to faecal coliforms, 

Enterococci to faecal coliforms (Dufour, 1984; Cabelli, 1983; Gannon and Busse, 

1989), faecal coliforms to total coliphages (Kenard and Valentine 1974; Bell, 1976; 

Kott, 1976; Borrego et aZ., 1987 and O'Keefe and Green, 1989), Streptococcus jaecalis 

to Staphylococcus jaecium (Wheater et ai, 1979), Pseudomonas aeruginosa to faecal 

coliforms ( Cabelli et ai, 1976; Wheather et aZ, 1980; Vicente et aZ., 1991) and faecal 

coliforms to faecal streptococci (Geldreich and Kenner, 1969; Geldreich et aZ., 1968; 

Feachem, 1974; Skinner et al., 1974). 
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The ratio of faecal coliforms to faecal streptococci (Fe/FS) has been utilized more 

frequently than others to determine whether the pollution is of human or animal origin. . 

Many workers have demonstrated that faecal streptococci are present in greater numbers 

than coliform bacteria in the faeces of animals (Bartley and Slanctz, 1960; Kenner et 

al., 1960; Mundt, 1963; Roges and Sarles, 1964). In human faeces however, faecal 

coliforms are found in greater numbers than faecal streptococci. According to Geldreich 

(1976) and Geldreich and Kenner (1969), ratios above 4.0 are indicative of human 

faecal pollution whilst ratios below 0.7 are indicative of animal pollution. Ratios 

between 0.7 and 4.0 are usually taken to indicate waste of mixed human and animal 

sources. However, Wheater et al. (1979) have reported that FelPS ratios are not 

always relevant in waters containing treated sewage effluent. McPeters et al. (1973) has 

pointed out that die-away ratios depend upon differential die-away rates of faecal 

coliforms and faecal streptococci. Olivieri et al. (1977) in stormwater studies found 

pe/Ps difficult to interpret, even within the initial 24 hour period in urban streams 

within Baltimore. The applicability of the pe/Ps ratio to the determination of sources 

of pollution in urban runoff is therefore questionable (Olivieri et al., 1989). Hussong 

et al. (1979) found the FelPS ratios in faeces of waterfowls to be similar to that of 

human faeces and thus the ratio may not even be useful to separate animal from human 

faecal contamination. 

FelPS ratios must be applied carefully. The correlations are most meaningful when 

developed from bacterial densities of samples taken at the point of wastewater outfall 

into a receiving stream, together with the value of the pe/Ps ratios for the initial 24 

hours of downstream travel from the point of discharge. Once organisms are diffused 

into the receiving stream, factors such as water temperature, available organic nutrients, 

toxic metal ions such as copper, zinc, silver, unfavourable pH below 4.0 or above 9.0 

as well as other ecological forces may fundamentally alter the interrelationship between 

these indicator systems during flow-time downstream (Geldreich and Kenner, 1969). 

To minimize misinterpretation of ratios the following precautions have been 

recommended by APHA (1985): 

"(a) Measure sample pH because faecal streptococci densities can be altered 

significantly if water pH is above 9.0 or below 4.0. 
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(b) sample as close as possible to the pollution source because faecal streptococci have 

relatively short life times outside the animal host. Sampling points downstream, where. 

travel time from pollution sources exceeds 24 hours, will provide erroneous ratios. 

(c) inspect source(s) of pollution when various pollution sources are present because 

ratios may yield deceptive assessments. 

(d) careful use must be made of ratios for samples taken from marine waters, bays and 

estuaries, because ratios may be of little value in differentiating between human and 

non-human sources. 

(e) do not calculate the ratios when faecal streptococci are below 1oo1100mI as too 

many factors will influence the densities of faecal coliforms and faecal streptococci". 

The magnitude of these densities, along with the volume of water which carries the 

contamination, combined with the numerous environmental factors that will affect the 

levels of these microorganisms, make the useful application of the PC/PS ratio difficult 

and contentious in the urban environment. The calculation of the PC/PS ratio for a 

storm outfall or a stream must be recognized to be the nett result of the effects of many 

different localized environmental conditions that are likely to alter the microbial 

populations and species distribution. 

2.2.5. Microbial Characteristics of Rain and Snow 

Geldreich et al. (1968) have showed that pollution indicator bacteria counts for rainfall 

are generally less than 1 per 100 ml as demonstrated by the medium values for 49 

samples. In their analysis individual storms during two summers of record that 

contained total coliform densities between 1 and 92 per 100 ml. One of these rain 

samples had 1 faecal coliform per 100 ml and two samples contained 1 and 2 faecal 

streptococci per 100 ml respectively. The origin of these positive samples was 

associated with material acquired in dust, storms, insects, vegetation fragments and soil 

particles, insect or vegetation fragments found on microscopic examination of debris 

trapped by the membrane filtration method used in the bacteriological examination of 

these rainwater samples. 
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Since rainwater contains 'insignificant' levels of bacteria, its major contamination must 

occur on contact with the land environment, creating a potential pollution problem in . 

the resulting runoff (Geldreich et al., 1968). A variety of surface materials from diverse 

sources contaminate rainwater runoff and can find their way into storm water discharges 

( Van Donsel et al., 1967; Sartor et al., 1974). 

2.3. Microorganisms in Urban Stormwater and Sewage Effluent 

2.3.1. The Levels and Characteristics of Microorganism in Stormwater Runoff 

Historically, the major concern about storm water in rural areas has been related to 

erosion control or diversion to storage impoundments for potable water supplies, 

livestock feeding waters, irrigation releases, and flow control to prevent river flooding 

or to maintain navigable rivers during otherwise low flow periods during the year. 

However, the problems of storm water runoff in metropolitan areas have resulted in the 

development of an extensive collection networks of drains from street, shopping areas, 

building foundations and roofs for transport of the runoff to more convenient areas for 

release. Intermittent water collection systems are thus either diverted to nearby creeks, 

rivers, lakes and coastal waters or combined with the sanitary wastewater for treatment 

before discharge to receiving waters. Although the bacterial quality of stormwater 

runoff has been recognized for many years, the health hazard implications of these 

discharges into bathing areas, urban reservoirs and shellfish growing waters have 

largely been ignored until fairly recently. 

A major source of microbial contamination within the urban catchment are derived from 

faecal material deposited on soil, asphalt and cement surfaces by cats, dogs and rodents 

(Geldreich et al., 1968; Faust, 1982). Storm water runoff from impervious surfaces 

within urban areas is known to be associated with a wide range of pollutants and is 

undoubtedly of poor quality (Ellis, 1979). There is now a considerable evidence from 

United States as well as other studies that urban storm runoff water contains high 

bacterial levels, including a variety of pathogenic strains (Geld reich et al., 1962; 

Qureshi and Dutka, 1974; Olivieri et al., 1979; Canada Ontario Agreement, 1979; 
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Cowan et ai, 1989). 

Benzie and Courchaine (1966) have reported on the densities of microorganisms found 

in both separate and combined sewer systems in the Detroit area. Considerably larger 

quantities of total coliforms (mean value 9.4 x H)6/100ml), faecal coliforms (mean value 

2.7 x 106/100ml) and faecal streptococci (mean value 5.8 x HY/100ml) were found in 

the discharge from a combined system comparison to a separate storm sewer system. 

During the period of their study, the average median total coliform density for the 

combined system was about eight times that of the separate system whilst faecal 

coliform and faecal streptococci were approximately 3 times and 4 times larger 

respectively, in the discharges of the combined system. Similar results have been 

reported by Burm and Vaughan (1966). Ellis (1985b) has also reported on the high 

levels of bacteria and selected pathogens obtained from separate and combined sewers 

during a seven year survey conducted between 1975 - 1982 in the Silk Stream 

catchment, N London. 

Previous studies on the sources of bacteria found in storm water runoff from residential 

and light commercial areas have indicated that bacteria are predominantly of non

human origin (Weibel et al., 1964; Benzie and Courchain, 1966; Geldreich and Kenner, 

1969). Geldreich et al. (1968) has investigated levels of bacteria found in storm water 

from various residential streets, suburban business districts and wooded hill-sides 

adjacent to a city park. Total coliform peak densities for urban locations (wooded hill

side, street gutters, and suburban business district) occurred in autumn. This was also 

noted for faecal coliform and faecal streptococcus densities occurring in urban street 

gutters and business district stormwater runoff. In drainage from rural storm water 

runoff, the possible existence of summer and winter peaks in bacterial indicator 

densities was demonstrated. These peaks may be related, in part, to the existence of 

more lateral, sub-surface drainage conditions. In the spring and autumn however, land 

cultivation results in a greater downward migration of water, and thus by association, 

bacteria into both soil and ground waters. Faecal streptococci densities were 

consistently higher than faecal coliform levels for all four different sources of 

stormwater runoff. The highest median value for faecal streptococci (7.9x1(}'i/lOO ml) 

occurred in the rural runoff during winter. A median value of 4.7xH11100 ml 
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represented the highest faecal coliform densities and this occurred in stormwater 

discharges coming from street gutters during autumn. Total coliform and faecal . 

coliform densities have also been show by other studies to demonstrate significant 

increases in magnitude during the summer months (Geldreich, 1968). 

Qureshi and Dutka (1979) also have reported on the characteristics of stormwater 

runoffs obtained from residential and commercial areas in the nearly Burlington area 

of Toronto. It is interesting to note that the distribution was similar throughout various 

periods of the storm and that, among coliforms found in the runoff water, 

approximately 45 % of the isolates were E. coli with the remainder belonging to 

Klebsiella (23 -31 %), Enterobacter (16 - 22%) and Citrobacter (6 - 10%). A larger 

density of E. coli was found in association with infiltration samples as compared with 

runoff waters. Coliform isolates from one of these infiltration samples showed the 

following distribution pattern: Aeromonas sp. 50%, Klebsiella sp.45 %, and E. coli 5 %. 

In both the infiltration and runoff samples, the faecal coliforms belonged to the E. coli 

group. 

A number of studies have indicated that the proportion of faecal coliform to faecal 

streptococcus bacteria is consistent for samples of similar origin. In sewage, both total 

and faecal coliforms are predictably more numerous than faecal streptococci (Burm and 

Vaughan, 1966; Geldreich and Kenner, 1969; Cohen and Shuval, 1973). In stormwater 

runoff this relationship is reversed and faecal streptococci exceed faecal coliform 

bacteria (Geld reich and Kenner, 1969; Evans et al., 1968; Geldreich et al., 1968). 

Actuarial densities of these bacteria are shown in Table 2.4. In addition to faecal 

bacteria, the presence of pathogenic bacteria in storm water has frequently been 

reported. Evans et al. (1968) demonstrated the existence of a potential health hazard by 

isolating Salmonella thompson (at a level of 4500/100ml) from a stormwater sample 

taken from an urban business district separate storm sewer. Olivieri et al. (1978) have 

also reported that a high recovery of pathogens is from separate and storm water sewers. 

The levels of Salmonella spp., Pseudomonas aeruginosa and Staphylococcus au reus in 

stormwater were several fold higher than found in local urban streams, but significantly 

lower than found in raw sewage. 
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Table 2.4: Densities of faecal coliform and faecal streptococci bacteria 

in sewage and stormwater (from Geldreich and Kenner, 1969). 

Sources Organisms/ l00ml 

Sewage 

Faecal coliforms 3.7x105 
- 4.9x107 

Faecal streptococci 6.4xlQ4 - 4.5x106 

Stormwater 

Faecal coliforms 2.7x103 
- 1.4xlQ4 

Faecal streptococci 5.8xlQ4 - 1.5x105 

The most abundantly occurring pathogen in urban water is P.aeruginosa which is found 

in the range of 20 to 3.1xl<1 MPN/I00 ml (Ellis, 1985a). Although foul sewage 

discharges represent the major potential sources of P. aeruginosa in the environment, 

storm drainage from municipal areas contributes a continuous inoculum to surface 

waters and farm drainage can also contain small numbers of the bacterium under certain 

conditions. Relatively heavy popUlations found in streams below sewage outfalls 

decrease rapidly as they progress are traced further downstream. On the other hand, 

population levels of less than about 100 MPN/lOOml consistently occur in streams 

contiguous to human habitation and activity. In this sense, the presence of P. 

aeruginosa in river waters at population levels at about 100 MPN/l00 ml and below 

reflects the influence of drainage from inhabited areas and sewage discharges 

respectively. Populations in excess of 1. Ox 103 MPNIlOO ml would suggest very recent 

sewage contamination (Hoadley, 1968b). 

In term of pathogen incidence, the relative order appears to be P. aeruginosa > 
Staphylococcus > Salmonella and there is always a better than 70 per cent recovery of 

these pathogenic bacteria; the recovery efficiency of animal viruses has been reported 
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to be even higher at 80 to 90 per cent (Ellis, 1985b). 

2.3.2. Microorganisms in Raw Sewage 

Raw sewage is a collection of diverse wastes created by man. To a large extent, raw 

urban sewage is principally composed of human wastes, kitchen wastes from food 

preparation and home laundry wastes. Wastes from hospitals, schools, restaurants, 

hotels, businesses also contributes to the total composition of raw sewage found in the 

sewer pipes. 

Microbial populations in raw sewage vary greatly, depending on the size of the 

population served, the common prevalence of diseases in the community, dilution, 

impact of storm water , physical and chemical characteristics of the mixture, degree of 

diffusion of the micro-faecal pellets, retention time in the sewage pipe network, season 

of the year and hour of sampling (Geldreich, 1978). The discharge of certain industrial 

wastes, including phenols, acids, alkaline substances and heavy metal ions, can give rise 

to very low bacterial counts but the introduction of wastes rich in organic nutrients may 

promote rapid multiplication of substantial portions of the bacteria flora. 

2.3.3. Microorganisms Survival and Die-off 

Once microorganisms enter a receiving water they may multiply, remain static in 

number or die-off. The survival of a microorganism in an environment in which it is 

not indigenous is dependent upon its ability to withstand the physical, chemical and 

biological conditions which are different from those encountered in its natural habitat. 

Numerous reports have compared the survival rate of faecal streptococci with that of 

faecal and coliform bacteria. These survival studies have been carried out in a variety 

of natural and polluted test waters including sewage (Cohen and Shuval, 1973; 

Chamberlin and Mitchell, 1978), stormwater (Geldreich et al., 1968), marine water 

(Alonso et al., 1987) and well water (McFeters et al., 1973; Rhodes and Kator, 1988; 
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Lim and Flint, 1989). Geldreich et al (1968) carried out experiments in stormwater 

studies at l00e and 20oe; incubation temperatures chosen to represent the average . 

winter and summer storm water temperatures respectively. The resulting data indicate 

organisms persisted at higher levels at lOoe during the 14 days of storage as compared 

with 200e. S. faecalis persisted longer at both temperatures and at higher levels than 

Aerobacter aerogenes, faecal coliform or the S. typhimurium strains used. S. 

typhimurium persistence at l00e was slightly higher than that of Aerobacter aerogenes 

but less than that of the faecal coliforms for the first 11 days of storage. These data 

indicate a die-away pattern between faecal coliforms and S. typhimurium than between 

faecal streptococci and the Salmonella strain. 

Mancini (1978) has suggested that temperature is the dominant influence on survival of 

coliforms. Flint (1987) has also shown the E. coli. was survive for longer than 260 days 
0' 

at temperature between 4°e and 25°e in the absence of other microorganisms, although 

in the presence of the natural microbial flora, temperature was again the main factor 

which influenced its survival. He suggested that temperature and competition for 

nutrients were the major factors influencing the survival of E. coli in freshwater. 

McFeters et al. (1973) have also reported a study on the survival of enteric pathogenic 

cultures found in well water. The survival of the organisms tested under their 

experimental conditions showed the following orders: Aeromonas sp. > Shigella sp. 

(S. jlexneri, S. sonnei and S. dysenteria) > faecal streptococci > coliforms and 

Salmonella (S. enteritidis ser., paratyphi A and S. enteriditis ser. typhimurium) > 

Streptococcus equinus > Vibrio cholerae > Salmonella typhi > Streptococcus bovis 

> Salmonella enteritidis. paratyphi B. They also reported different die-off rates of 

indicator microorganisms from bovine faecal material. Human and faecal material 

yielded results similar to pure cultures tested. Andre et al. (1967) reported that 

Salmonella (S. typhosa, S.newport, S. worthington, and S. manhattan) survived for 16 

days and Shigella (S. flexneri I, S. jlexneri II, and S. sonnei) for 12 days in farm pond 

water at 21°e to 29°e. These studies however, provide little information on the natural 

survival of microorganisms in mixed popUlations under variable environment conditions. 

The mechanisms of natural inactivation, the effect of natural predators on the microbial 

population and the effect of daily change in the normal aquatic environment are not well 
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understood. 

It seems that the faecal bacteria which have been used as indicators of faecal 

contamination are not, in general, good indicators of pollution. Their densities in water 

do not correlate very well with the typical chemical parameters used to measure the 

deterioration of water quality resulting from discharge of waste waters (Pipes, 1982). 

A number of studies have been undertaken by several investigations on the relationship 

between bacterial and physical parameters (Jannasch, 1968; Zobell, 1968; Meaon et al., 

1972; Qureshi and Dutk, 1974; El Shaarawi et al. ,1978). The consensus of these 
~ 

studies is that bacterial populations are related to nutrient levels and temperature and 

that the higher the total nutrient levels the greater in the effluent, the popUlation will 

be (Flint, 1978). 

The importance of light to the mortality of microorganisms in an aquatic system was 

first demonstrated by Gameson and Saxon (1969) and by other studies (Chamberlin and 

Mitchell, 1978; Jujioka et al., 1981; McCambridge and McMeekin, 1981). Most of 

these studies were carried out in marine and estuary systems and all strongly suggested 

the dominant influence of light on bacterial die - off. Cavari and Berostein (1986) 

showed that light was also a dominant factor on the survival of the number of E. coli 

in a freshwater system and that the decrease in cell number is directly related to light 

intensity. 

There is very little information on how chemical changes affect bacterial popUlations 

in surface waters. Some studies have been made to assess the correlation of chemical 

factors with various bacterial populations that are used as faecal pollution indicators. 

Jana and Bhattacharga (1988) have reported that a gradual decline in growth population 

of the faecal coliforms with increase of exposure time and concentration of metals. 

Nuttall (1982) indicated that bacterial populations were positively correlated to 

discharges and variables representing articulated and organic matter increased in 

concentration with increased river flow; conversely, the ionic chemical parameters 

decreased in concentration. 

Dutka and Kwan (1980) have also reported a bacterial die-off study of closed water 
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bodies in Lake Ontario and Hamilton Bay, Canada. The three bacteria, E. coli, 

Streptococcus jaecalis and Salmonella thompson used in the membrane filter diffusion 

chamber studies were all isolated from obtained water samples. The die-off patterns 

produced by these three organisms are very similar (Fig 2.1,2.2 and 2.3), with bottom 

chamber populations tending to decrease at a slightly slower rate than surface chamber 

populations. The data also indicate that organisms suspended in the less polluted waters 

of Lake Ontario have a tendency to die-off faster than organisms suspended in the more 

polluted waters of Hamilton Bay. These observations may be due to differences in 

nutrient levels between the lake and land runoff, as well as between sewage and 

industrial discharges which reflect the higher concentration of nutrients from in addition 

to the influence of vertical mixing. It is also very clear that it is extremely difficult to 

establish consistent relationships between specific biological, physical, or chemical 

parameters and bacterial densities. Population decreases after 3 days of immersion 

varied from 0.1 to 3.1 logarithms for E. coli, 0.2 to 3.7 logarithms for S. jaecalis and 

0.4 to 3.8 logarithms for S. thompson. 
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Figure 2.1: E, coli survival in membrane filter chambers suspended 

in Lake Ontario and Hamilton Bay (from Dutka and Kwan, 1980), 
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Figure 2.2: Streptococcus jaecalis survival in membrane filter chambers 

suspended in Lake Ontario and Hamilton Bay (from Dutka and Kwan, 1980). 
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Figure 2.3: Salmonella thompson survival in membrane filter chambers suspended 

in Lake Ontario and Hamilton Bay (from Dutka and Kwan, 1980). 
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These die-off rates are a little slower than those reported by McFeters et al. (1973) for 

organisms suspended in well water, but were equivalent to those noted by Vasconcelos. 

and Suartz (1976) in sea-water studies and faster than those noted by Slanctz and 

Bartley (1965) for sea-water. 

2.3.4. Diurnal Variations of Bacterial Concentration 

Many workers have agreed that microbial concentrations of sewage effluent input be 

correlated with flow rate and time of samples (Gameson, 1978; Ruiter and Fujioka, 

1978; Jefferies et al., 1989). Jefferies et al. (1989) demonstrated that bacterial counts 

tend to be low in combined sewer systems during the early morning in the case of total 

coliform, faecal coliform and faecal streptococcus under dry weather conditions. A 

sharp rise in the number of faecal coliforms and faecal streptococci occurs around 07.00 

hours with peak recovery of both species being at approximately 10.00 hours. The 

average number of total coliforms also show a dramatic increase at this time but the 

peak value is obtained much later in the day at about 14.00 hours. A second smaller 

peak was noted for both total and faecal coliforms at around 20.00 hours. A further 

small peak was noted for both total and faecal coliforms at around 20.00 hours. This 

Dundee data is consistent with Gameson's Northampton results (1978) and show typical 

daily variations in bacterial counts encountered during dry weather flows. Jacobs and 

Ellis (1991) have also demonstrated that only 36% of the total bacterial mess discharged 

in the first 65 % of mass of flow volume in Silk stream. The studies also indicate the 

difficulty of undertaking accurate bacteria studies in urban effluent; errors of the order 

of a factor of 3 appear almost inevitable. The data suggest that under dry weather flow 

patterns, bacteria deposited with the same pattern as suspended solid with an 

observable 'first flush' effect. Different bacteria predominate at different times of day 

with total coliforms peaking in the afternoon and faecal coliforms in the morning. Total 

coliforms are likely to be associated with wash out of older deposits lying on or near 

the sewer invert. Despite the peak values, there is evidence that total coliforms increase 

during storms whereas faecal coliforms and faecal coliforms decrease. This may be due 

to storm dilution of the foul input and resuspension of older bed deposits with the 

release of· a matured bacterial population reflected in the increased total coliforms 
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counts. 

Ruiter and Fujioka (1978) reported that enteroviruses were discharged with sewage into 

Mamala Bay, Hawaii. 24 hour grab samples, as well as 12 two-hour composite samples 

of sewage were obtained from the outfall pipes and analyzed for the virus. Both 

sampling methods resulted in similar results, with peaks of virus discharge observed 

between 11.00 and 14.00 hours and again between 20.00 and 23.00 hours probably 

reflecting the daily morning (breakfast) and evening (dinner) activities of the city with 

the time differential accounting for the flow of sewage to the outfall pipe. 

2.4. Sediment Microbiology 

2.4.1. Microbiological Characteristics in Sediment 

Several authors have suggested that sediment is a bacterial store (Van Donsel and 

Geldreich, 1971; Grimes, 1975; Matson et al., 1978). No conclusions have been made 

however about the mechanisms by which bacteria are stored and released. The possible 

explanations include simple deposition of bacteria clumps, adsorption to particular grain 

sizes, slower rates of death in sediment or growth of the E. coli population in sediment 

by metabolism of hexose and protein of an organic origin (Hendricks, 1970 and Gerba 

and Mclead, 1976). The bacterial species present in urban sediments will be heavily 

dependent on oxygen availability with the sediment regime and thus on the nature of 

liquid flows immediately above and within the upper sediment layers. 

It is now generally agreed that sediment bacteria from stormwater runoff constitutes 

a major source of stream pollution within urban rivers and indeed in terms of average 

storm event characteristics, suspended solids can be viewed as being of "sewage" 

quality (Ellis, 1985a). There is sufficient evidence available to confirm that many 

bacteria can be taken up by solids and become concentrated in the benthal sediments 

and interstitial waters of urban rivers (Ellis, 1985b). Hendricks (1970) found 

approximately 90 percent of Salmonella downstream of a wastewater effluent and 

demonstrated a higher recovery rate from sediments than from water. Van Donsel and 
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Geldreich (1971) recovered 100 to 1000 times more faecal coliforms in river mud than 

in the overlying water. Grimes (1975) showed increased numbers of faecal coliforms . 

in the Mississippi River during and after channel dredging and concluded that the 

resuspended sediments had released coliforms into the water. 

The importance of benthic microorganisms is recognized in shallow water systems, 

since the benthic community accounts for most of the system's biomass and metabolic 

activity (Hynes, 1960; Matson et al., 1978). It is clear that sediment analysis for 

indicators can provide additional water quality information. 

Ellis (1985a) reported the bacterial enumeration of sediments obtained from an urban 

stream bed; be showed the sediment - water bacterial ratio to be 45: 1. Scanning 

electron microscopy showed that over 65 per cent of bacteria cells were associated with 

particulate less than 36 ~m in size with 80 and 92 per cent of faecal coliforms and P. 

aeruginosa respectively being associated with this size fraction. It was noticeable that 

there was a consistent correlation of organic particulate with bacterial attachments, and 

the high organic content of storm runoff solids is well documented (Ellis, 1976). 

Therefore, high numbers of opportunistic pathogens are always likely to be present in 

the thick benthal organic sludge typical of urban receiving waters (Ellis, 1985b). More 

investigations (Hendricks, 1971; Van Donsel and Geldreich, 1971; Gary and Adems, 

1985) have found that coliforms, faecal coliforms and Salmonella tend to concentrate 

in sediment and that they are almost totally located in the upper layers of sediment. 

Reports of survival and multiplication of indicators and pathogens in sediments are 

significant. Enteric organisms have been shown to metabolize freshwater sediment 

elutes (Hendricks, 1971). Thus, rapid die-off from the water column may result in 

increased sediment popUlation due to settlement and accumulation. The bacteria which 

exist in sediment will depend to a very large extent on the nature of the dissolve oxygen 

regime in the sediment. The water flow patterns above the sediment and temperature 

of the water will have an effect on the microbial population. 
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2.4.2. Bacterial Release from Sediment 

The importance of aquatic sediment as reservoirs of potential health hazard indicators 

is determined by at least two factors: 

(1) the possibility of extended survival or growth of indicators in sediment (thus altering 

temporal concepts of wastewater pollution). 

(2) the potential for resuspension of the sediment into the water column, thus exposing 

water users to sediment-bound indicators and pathogens (Matson et al., 1978). 

The fate of indicators microorganisms which do attach to the sediment is regulated by 

several factors, including the ability to metabolize benthic nutrients (Hendricks, 1970; 

Gerba and Mclead, 1976), withstand predatory pressure and metabolically compete with 

other microbes (Gerba and Mclead, 1976). Temperature and velocity are also important 

factors in the sediment - water equilibrium. There is a clear evidence to demonstrate 

the concentration of indicators and their extended survival in aquatic sediment relative 

to the overlying water and survival in a variety of real and simulated lentic, fresh, 

estuarine, and salt water systems. 

Grimes (1975) demonstrated that faecal coliform densities were significantly higher 

during dredging than before or after. Data indicated that disturbance and relocation of 

bottom sediments by dredging results in a concomitant release of sediment-bound faecal 

coliform. Matson et al. (1978) reported that sediments harboured sufficient indicators 

in shallow water systems to provide increased health hazard information. The question 

remains however, as to whether these populations present any real potential threat to 

water users. 

Certainly, physical resuspension of shallow water sediment can be accomplished 

through (1) increased river discharge, waves, and tides, (2) wind - induced turbulence, 

(3) dredging, (4) motor boats, (5) swimming, walking, wading, and (6) normal loading, 

roosting and other related activities of aquatic animals. Whether these mechanisms 

result in the actual release of indicators from the resuspended sediment is more difficult 

to answer. Past and present research on the subject involves developing mechanisms to 

desorb attached sediment bacteria for enumeration procedures. However, since the 
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resuspended sediment would be included in any water samples taken at the time of 

resuspension, it may not matter whether the organisms are released in terms of indicator· 

detection. 

Matson et ai. (1976) have constructed a simple model which describes phenomena 

observed during several storms in the Shetucket River basin. The relative concentrations 

of microorganisms in sediments and water resulting from a rapid increase in river 

discharge are illustrated in Fig 2.4. 
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Figure 2.4: Model of the relative changes in numbers of microorganisms in sediment 

and water during changing river discharge rates (From Matson et ai., 1978). 

During stable flow conditions, sediment and water popUlations achieve a relatively 

"steady - state" level. During high runoff when river discharge increases, sediment 

organisms are scoured from the benthic surface and mobilised into the water column. 

This results from the abrasion of attachment surfaces and a release of given particle 

sizes. Simultaneously, popUlations in the ambient water increase due to runoff from 
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terrestrial sources as well as from release by sediment. Both of these events reach a 

maximum at or just before the slope of the river hydrography reaches zero, since no . 

more resuspension will occur. During peak discharge, water numbers decrease through 

dilution since all resuspension and runoff mechanisms have ceased. Thus water 

populations become reduced to pre-storm values. After a system-specific time period, 

the populations achieve their pre-storm "steady-state" values. 

2.5. Summary 

The search for an adequate indicator of faecal contamination in water has logically been 

associated with total coliforms, faecal coliforms and faecal streptococci, Clostridum 

pe1j'ringens and possibly to other anaerobic groups such as Bacteroides, lactobacilli and 

to Bifidobacterium bifidus. Of these indicator groups, total coliforms, faecal coliforms 

and faecal streptococci are most frequently used because they correlate best with faecal 

occurrence, are relatively easy to test for and because their survival patterns are similar 

to those of the most persistent waterborne pathogens. Human wastes and runoff from 

urban area are probably major sources of P. aeruginosa reaching most surface waters 

(Hoadley, 1977). 

Previous studies have demonstrated that urban stormwater runoff must be considered 

as making a significant contribution to the microbial load in a sewage system and that 

sewer discharges are associated with a variety of bacteria which can exert acute impacts 

on the receiving water regime as well as large term deleterious effects due to bacterial 

mobilization. However the mechanisms of bacterial growth, removal and remobilisation 

are very unclear as are the temporal variations. Bacterial species require further 

analysis, as do the mechanisms and functions of aerobic bacteria in sediments associated 

with urban discharges. 

Microorganisms population in aquatic environment are very related to nutrient levels 

and temperatures. Microorganisms can survival longer in lower nutrient and 

temperature levels than higher. Many workers have demonstrated that bacterial levels 

of sewage effluent are correlated with flow and sampling time. Peak bacterial levels are 
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always delayed behind the peak of flow. Many ratios of indicator microorganisms have 

been employed, but FC/FS ratio has been utilized more frequently to determine whether. 

the pollution is of human and animal origin. 

Sedimentation leads to the formation of high population of microorganisms and 

pathogens in bottom sediments, which is of special health concern in recreational 

waters. Microbial populations in sediment can be resuspended relatively easily. High 

flow regimes will cause dispersion of any sediment within the sewer/river and this will 

result in the transport of sediment solids, including bacteria, along the sewer/river. The 

studies of survival of indicator bacteria and pathogens have demonstrated that growth 

survival depends on redox condition in sediment. 
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Chapter 3: Methods 

3.1. Introduction 

All of the experimental data on which the discussion of chapters 4 - 7 is based were 

obtained at various field sites in North London and Eastern Spain, Valencia. Simulation 

experiments were carried out at the Microbiology Laboratory of the Urban Pollution 

Research Centre at Middlesex Polytechnic, U.K. and at the Instituto de Hidrologia y 

Medio Natural in the Universidad Politecnica, Valencia. Details of each of the major 

field sites are given in this chapter. An outline of the investigations carried out at each 

site is included with forward reference to subsequent chapters where the work will be 

reported in further detail. Descriptions of microbiological and physico - chemical 

methods are also included. 

3.2. Sampling Locations 

Twenty one sampling sites were selected for investigation in North London (U.K.) and 

Valencia (Spain), varying from dry weather flow sanitary wastewaters, urban receiving 

stream waters within heavily urbanised areas, combined sewers, a beach discharge point 

as well as for storm water runoff within typical urban areas. Most of the samples were 

obtained during the period October 1990 to July 1991 under different weather 

conditions and storm water samples were obtained during the summer of 1990 in 

Valencia. The study sites are individually listed in Table 3.1. Sampling sites located in 

North London are given with a initial capital L and sites in Valencia, a capital V. 
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Table 3.1: Locations of sampling sites of investigations 

Sources Site City Site code 

Combined Sewage New Barnet London LA 

Combined Sewage Waterfall Walk Overflow London LB 

Sanitary Wastewater Osidge Road London LC 

Combined Sewage Amos Park (twin pipe) London LD 

Combined Sewage Amos Park (under the bridge) London LE 

Upper Pymmes Brook K. G. Playing Field London LF 

Down Pymmes Brook Inside Amos Park London LG 

Sanitary Wastewater Las Fuentes Valencia VH 

Combined Sewage South Politecnica Valencia VI 

Beach Outfall Malvarrosa Valencia VJ 

Commercial Area Enfield Town Shopping Centre London LK 

Open Market Enfield Town Open Market London LL 

Car Parking Enfield Town Car Park London LM 

Urban Main Road Ponders End High Street London LN 

Residential Area Garfield Road London LO 

Commercial Area Plaza della Virgen Valencia VP 

Open Market Plaza del Mercado Market Valencia VQ 

Car Parking Nuevo Centro Valencia VR 

Urban Main Road Fernando Calle Valencia VS 

Residential Area Calle de Doctor Zomenhoff Valencia VT 

Valencia Suburban Valencia Politecnica Campus Valencia VU 
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3.2.1. Sampling Sites in North London 

3.2.1.1. Urban Sewage Discharges and Receiving Stream Sites 

The principal field work was undertaken within the catchment of the Pymmes Brook in 

North London during the period of October 1990 to February 1991. Pymmes Brook 

stream is a major tributary of the River Lea in North London. Some eighty per cent of 

the catchment is in urbanized areas and contains a total population of about 300,000. 

Over half of the catchment carries a high urban density populations particularly in the 

areas of Barnet and Southgate. Sixty per cent of the total storm flow is derived from 

impervious surface runoff and many outfalls and overflows from separated and 

combined sewer systems discharge to the main stream. There are a considerable number 

of parks, open spaces and playgrounds located immediately adjacent to the stream which 

act as natural wash and flood plains for over bank discharges as well as being a focus 

for recreational and local amenity activities. The main area of sampling interest within 

the catchment is shown in Fig. 3.1. All sites were on the receiving stream except site 

LC which is the trunk sanitary sewer discharging to the Edmonton Sewage Treatment 

Works. 

The New Barnet site (LA) is situated in one of the tributaries of the upper Pymmes 

Brook stream. At this point about 0.027m3/s of sewage effluent is discharged into the 

stream from 3 major sources during periods dry weather. About 0.29m3/s sewage 

effluent is derived from 9 sources (plus effluent from 5 storm water pipes during wet 

weather at this site (Plate. 3.1). The Waterfall Walk site (LB) further down stream is 

at an overflow point from the main trunk sewer. The sewage overflow enters a 1.2m3/s 

(I.2m x 1m x 1m) storage tank before passing into the river which is located at the 

edge of Brunswick Park (Plate. 3.2). 

The Osidge site (LC) is at the main entry to the Barnet - Edmonton trunk sewer from 

the North London region (Plate. 3.3) and is located inside Brunswick Park. During dry 

weather conditions, the average flow rate is about 0.13m3/s with flows of 0.26m3/s 

measured in periods of wet weather. 
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Figure 3.1: Sewage and receiving stream locations in North london. 
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Plate 3.1: Site LA, the combined sewers at New Barnet. 

Plate 3.2: Site LB, the combined sewer at Waterfall Walk. 
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Plate 3.3: Site LC, sanitary wastewater sewer at Brunswick Park. 

Site LD is at a twin pipe discharge situated at northern edge of Arnos Park (Plate 3.4). 

The pipes are of 1.2m diameter and discharge combined sewage into the stream at a 

average rate varying between 0.015m3/s and 0.08m3/s during periods of dry weather 

and wet weather respectively. The stream receives a further 0.002m3/s of sewage 

effluent during periods of dry weather and 0.005m3/s in wet weather at site LE further 

down stream in Arnos Park (Plate. 3.5). 

The King George Playing Field site (LF) Is situated in the upper Pymmes Brook and 

is located near the regulated source of the stream (Plate 3.6); this was chosen as the 

background control site as there was no further contributing effluent above this site. The 

stream at this point is 0.7m wide and approximately O.4m deep and has average flow 

rates of 0.001 m3/s in periods of dry weather and 0.003m3/s in periods of wet weather. 

The down stream site (LG) is situated in the lower reaches of the Pymmes Brook which 

passes th rough Arnos Park to its confluence with the River Lea. The meandering stream 

is about 8m wide and has a depth of about O. 8m. During dry weather the average flow 

is 0.11 3m3/s rising to 0.599m3/s during rainfall (Plate 3.7). 
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Plate 3.4: Site LD, two combined sewage discharge pipes at Amos park. 

Plate 3.5: Site LE, under the bridge sewer at Amos Park. 

37 



I: 

Plate 3.6: Site LF, upper Pymmes Brook stream at King Playing Field. 

Plate 3.7: Site LG, in the lower reaches of Pymmer Brook stream. 
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3.2.1.2. Urban Surface Runoff 

Enfield area is one of the largest commercial and residential centres in Northeast 

London with a popUlation of over 100,000 and is comprised of many individual 

neighbourhood communities as well as major business and industrial zones. The 

sampling areas for road surface runoff were selected from within the centre of Enfield 

Town and Ponders End which is one of the main residential area of Enfield. Figure 3.2 

shows the sampling locations within Enfield Town and Ponders End where impermeable 

surface runoff was collected during the winter period from October 1990 to February 

1991. 

Sites LK, LL and LM are located in Enfield Town shopping centre, an open market and 

a main car park respectively. The area is nearly 100% impervious area with side walks, 

a paved car park surface and commercial lands. The shopping centre contains many 

principal large chain stores as well as small consumer shops. The open market area 

contains multiple business including hardware, clothes, food and so on. The Car Park 

site is located in the largest ground car park available in the centre of the town. The 

main trunk road site (LN) is located in the High Street (A 1010) at Ponders End. The 

residential site (LO) is also located in Ponders End at Garfield road. It is totally 

residential in character and is generally clean and free of litter although characterised 

by continuous on street car parking. 
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Figure 3.2: Road surface runoff sampling sites in Northeast London. 

40 

• 



3.2.2. Sampling Sites in Valencia 

3.2.2.1. Urban Sewers and Outfall within Valencia Bay 

Valencia is situated in Eastern Spain, and is a popular Spanish tourist city on the 

Mediterranean seaboard with a total population of 800,000, increasing to over 

1,000,000 during the summer. The principal field work was undertaken within the 

Benimaclet catchment in the north suburbs of the city during March 1991 to July 1991. 

The Benimaclet catchment (popUlation 120,000) is a major residential area in the north 

suburbs of Valencia. Two main sewers (VH and VI) or open ditches discharge the 

untreated sewage directly from the catchment to Valencia Bay (Fig. 3.3). 

The sites at Las Fuentes (VH) and South Politecnica (VI) are outside the Benimaclet 

catchment. Site VH is an open shallow sanitary wastewater ditch with slow-flowing 

effluent. During dry weather the average flow rate was about 0.028m3m/s increasing 

to 0. 14m3/s during wet weather (plate. 3.8). 

Site VI is located within the grounds of south Politecnica (plate. 3.9). Where it passes 

through an agricultural area and is a deeper and faster-flowing than at site VH. This is 

a combined system used for both irrigation and effluent transport. The flow rates were 

very different between the dry and wet weather conditions, being mainly dependent on 

local agricultural activity. During the time of study average dry weather flow was about 

0. 177m3/s and wet weather flow was 0.53m3/s. 

The Malvarrosa site (VI) is located at the combined outfall of the two main combined 

sewers which drain the Benimaclet catchment to Valencia Bay (Plate. 3.10). Sewage 

effluent, representing the contribution from the entire Benimaclet catchment was 

obtained by sampling from the outfall just before prior to entering the ocean. The 

discharge point at this location was about 12m wide with a depth of O.4m and an 

average flow rate of about 2.6m3/s during periods of dry weather. 
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Figure 3.3: Sewage locations in Valencia 
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Plate 3.8: Site VR, sanitary wastewater sewer at Las Fuentes, Valencia. 

1-

Plate 3.9: Site LI, combined sewage sampling site at South Valencia Politecnica. 
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Plate 3.10: Site VI, Malvarrosa beach outfall in Valencia. 

3.2.2.2. Urban Surface Runoff 

• . , 

.' 

Figure 3.4 shows the six urban surface runoff sampling sites within Valencia city. Plaza 

della Virgen (VP) is located within the old commercial area in the city centre. Land 

use here is 85 % commercial and 15 % residential. Plaza del Mercado (VQ) is the 

biggest open market in Valencia. It is about 12000 m2 in area with almost 100% of the 

commercial land used. Nuevo Centro (VR) is located in the Northwest part of the city 

and provides the main car parking for the central shopping area of the city. Fernando 

Street (LS) is one of the main roads within the city whilst the residential site (LT), 

named Doctor Zomenhoff, is located in the western part of Valencia. This street is 

300m long and 10m wide and is 100% residential. Three six floors residential blocks 

border the alley on each side with some trees and ground vegetation. The alley is in 

generally good sanitary condition, but like Garfield road in Ponders End is used for car 

parking. 
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Figure 3.4: Surface runoff sampling sites in Valencia 
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Site (VU) is located within the open campus of the Valencia Politecnica in the Northeast 

suburbs of Valencia. It has 60 % cultivated land (mainly horticulture), 5 % is. 

undeveloped, 5 % is paved road and 30% is comprised of Polytechnic buildings with 

inter-grassed space. 

3.3. Sampling Methods 

3.3.1. Sewage and Stream Water Samples 

Samples were taken at two week intervals over the period October 1990 to February 

1991 in North London and over the period March to July of 1991 in Valencia. All 

samples were taken by hand with wide-mouthed sterile glass bottles (500ml). Water 

samples were taken by holding the bottle near its base and plunging it, neck downward, 

some 3cm below the water surface. The bottle was than turned until the neck pointed 

slightly upward and its mouth was directed toward the current. Samples were 

transported back to the laboratory on ice in a dark container. All analyses were usually 

performed within 4 hours of sampling. Flow, temperature and pH of the effluent were 

recorded concurrently with sampling. 

3.3.2. Road Surface Runoff Samples 

All road surface runoff samples were collected during days of heavy rain in sterile wide 

mouthed bottles. For the~e samples, a technician was dispatched to the sampling site 

as soon as possible after the rainfall began and the sample was collected from a gully 

pot on the street within about 20 min of the initiation of a storm event on the street 

surface. All samples were immediately placed after collection in a dark insulated chest 

containing ice packs and transported to the laboratory within 2 hours for analysis. 
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3.3.3. Continuous Samples 

An automatic vacuum sampler (Model MK.4B) was installed to obtain continuous data 

throughout a 24 hour period at site LC in North London and at site VH in Valencia 

respectively during periods of dry weather. The inside of the sampler, the rubber tubes 

and the outside of the plastic vacuum tubes were immersed in 1000 mg/l bleach for 1 

hour, then triple washed with sterilized distilled water. Ice packs were placed around 

the sample bottles during the period of continuous sampling. Samples were drawn into 

pre - sterilised bottles every 3 hours. 

3.3.4. Sediment Samples 

Sediment samples were also taken at sites LE and LG (North London) as well as VH 

and VI (Valencia). The sediment was retrieved with a sterilized cylindrical sampler and 

sub samples were aseptically removed with a sterile spoon at different depths from the 

surface of three successive layers at (1) at 0 - 0.3cm depth, (2) at 3.0cm - 5.0cm depth 

and (3) at 5.0cm - 7.0cm. All samples were transferred to separated sterile 100ml glass 

bottles which were placed on ice and returned to the laboratory within 2 hours and 

enumeration procedures were completed within 4 hours. 1.0g of wet sediment was 

suspended in 99 ml of sterile dilution water. This slurry was vigorously mixed on a 

platform shaker for 0.5 h (SBSS Shaking Machine, Model AD 0 - 1) with a frequency 

of 100 revs/min. 

3.4. Materials 

3.4.1. The Methods Used in the Investigation 

The experimental method used to determine the selected microorganisms (total 

coliforms, faecal coliforms, faecal streptococci and P. aeruginosa) was the multiple 

tube fermentation technique base on "Standard Methods for the Examination of Water 

and Wastewater" (APHA, 1985). The results, expressed in terms of the most probable 
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number (MPN) based on certain probability formula, provide an estimate of the mean 

densityllOOml of test bacteria in the water samples and mean densitylg in sediment. As 

most samples possessed a high turbidity, the membrane filter technique could not be 

used for enumeration purposes. 

The water samples were concentrated by membrane filter for the detection of 

Salmonella in water to qualitatively assess the presence or absence of the organism. 

3.4.2. Media and Broth 

All media were prepared according to the manufacturer's instructions and sterilized at 

121°C for 15 mins unless stated. All agar plates were dried at room temperature and 

stored at 4°C until used. 

a. Lauryl Tryptose Broth (OXOID). 35.6gllitre distilled water. 

3 ml Phenol Red solution (0.003 gil) was added to 1 litre Lauryl Tryptose Broth as an 

indicator. Lauryl Tryptose Broth was dispensed in 10 ml qualities in test tubes with an 

inverted Durhan's tube. Double strength of Lauryl Tryptose Broth was prepared for 10 

ml volume samples. The pH of the medium was adjusted to 6.8 ± 0.2 before 

sterilization. 

b. EC Broth (OXOID). 37gllitre distilled water. 

The BC broth was dispensed in 10 ml quantities in test tubes with an inverted Durhan's 

tube. Double strength of the broth was prepared for 10 ml volume samples. The pH of 

the broth was adjusted to 6.9 ± 0.2 before sterilization. 

c. Azide Dextrose Broth (DIFCO). 34.7g/litre distilled water. 

Azide Dextrose broth was dispensed in 10 ml test tubes. Double strength of the 

medium was prepared for lOml volume samples. The pH of the medium was adjusted 

to 7.2 before sterilization. 
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d. Ethyl Violet Azide Broth 

Ethyl Violet Azide broth (Litsky et ai, 1953) was prepared in the laboratory. the. 

ingredients were as follows: 

NaCI ..... 20.0 g 

K2HP04 .......... 2.7 g 

KH2P04 2.7 g 

NaN3 ..... 0.4 g 

Glucose 7.5 g 

Ethyl violet 0.00083 g 

Distilled water 1000 ml 

The medium was dispensed in 10 ml test tubes. The pH was adjusted to 7.0 ± 0.2 

before sterilization. Double strength of this medium was also prepared for lOml volume 

samples. 

e. Asparagine Broth 

Asparagine broth (APHA, 1985) was prepared in the laboratory as follows: 

Asparagine 

K 2HP04 

MgS04.7H20 

Distilled water 

3.0 g 

1.0 g 

0.5 g 

1000 ml 

The pH was adjusted to between 6.9 - 7.2. The medium was filtered through 0.45 J.tm 

pore size membrane (millipore) to sterilize and then 10 ml volumes of broth were 

dispensed into sterilized test tube. Double strength of this medium was also prepared 

for 10 ml volume samples. 

f. Cetrimide Agar (DIFCO). 45.4g/litre distilled water. 

Cetrimide agar was dispensed into 10 ml test tube. After sterilization the tubes were 

inclined during cooling to provide a large slant surface. The pH of the agar was 

adjusted to 7.2 + 0.2 before sterilization. 
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g. NR 10/43 Enrichment Broth 

NRlO/43 (Alcaide et al., 1982) was prepared in the laboratory. The ingredients were. 

as follows: 

(1) Tryptone 5.0 g 

Sodium chloride 8.0 g 

K2HP04 1.2 g 

Distilled water 1000 ml 

(2) MgCl26H2O ..... 40.0 g 

Distilled water 100 ml 

(3) Malachite Green-oxalate 4.0 mg 

Distilled water 10 ml 

NR 10/43 broth: 1000 ml(l) + 100 ml(2) + 10 ml(3) = 1110 ml 

100 ml NR 10/43 broth was dispensed into conical flasks and sterilised as stated 

previously. 1 ml Sodium Novobiocin (40mg/l) was added before use (Alcaide, et ai, 

1982). The pH of the broth adjusted to about 7.4 before sterilization. 

h. Rambach Agar (Rambach, 1990). 33.1g/litre distilled water. 

The pH of this agar was adjusted to 7.2 ± 0.2 before sterilization. The agar was made 

up and sterilised in the conventional manner. Rambach agar contains the following 

ingredients: 

Propylene glycol 

Peptone 

Yeast extract 

Sodium desoxycholate 

Neutral red 

5-bromo-4-chloro-3-indoc1yl.f3D 

-galactopyranoside 

Agar 

Distilled water 
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10.0 g 

5.0 g 

2.0 g 

1.0g 

0.003 g 

0.1 g 

15.0 g 

1000 ml 



i. Buffer 

3.0 g of K2HP04 and 1.0 g of KH2P04 was suspended in 1 litre distilled water (APHA, . 

1985) which was then dispensed in 9 ml quantities in test tubes and sterilized as stated 

previously. The pH of the buffer adjusted to 7.4 + 0.5 with IN sodium hydroxide 

(NaOH) before sterilization. 

3.4.3. Microorganisms Selected and Enumeration for Water and Sediment Samples 

The indicators chosen for this investigation are total coliforms, faecal coliforms and 

faecal streptococci all of which have been widely accepted and selected for research into 

the water environment. Pseudomonas aeruginosa and Salmonella spp were also chosen 

as representative for the study, and have recognised significance for public health risks 

associated with recreational waters. 

a. Total Coliforms by MPN Technique 

For total coliforms, a series of five test tubes (5 x lOml) of Lauryl Typtose broth 

(OXOID) were inoculated with appropriate decimal quantities to determine the most 

probable number (MPN) of total coliforms (APHA, 1987). The tubes were incubated 

at 37°C for 48h. Formation of gas in any amount within the inverted Durhan's tubes 

and acid production in 48h was considered a positive reaction. 

b. Faecal coliforms by MPN Technique 

All positive presumptive tubes from the total coliform MPN test were used to determine 

levels of faecal coliforms. 3 loops of each presumptive tube were transferred to EC 

broth (OXOID). The inoculated tubes were incubated in a water bath at 44.5 + 0.2°C 

for 24 ± 2 hours. Gas production in EC broth within 24h or less was a positive 

reaction indicating coliforms of faecal origin. 

c. Faecal streptococci by MPN Technique 

Water samples were inoculated into a series of five tubes (5 x lOml) containing Azide 

Dextrose broth (DIFCO) using 10 ml of single strength broth to inoculate 1 ml samples 

and 10 ml of double - strength broth for 10 ml samples (APHA, 1985). The inoculated 
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tubes were incubated at 35°C ± 0.5. Each tube was examined for turbidity after 48h. 

3 loops of culture from all tubes showing turbidity were transferred to lOml of Ethyl . 

Violet broth. The inoculated tubes were incubated at 37>C ± 0.5 for 24 + 2h. Tubes 

with turbidity and purple deposition on the bottom confirm the presence of faecal 

streptococci (APHA, 1985). 

d. Pseudomonas aeruninosa by MPN Technique 

Asparagine broth was used throughout this study for the presumptive enumeration by 

the MPN technique (APHA, 1985). Appropriate dilutions of water samples were 

inoculated into a five tube series (5 x lOml) and incubated at 41.5°C for 48 h (Alonso, 

et. al., 1989). The tubes showing pigment production, superficial pellicle formation 

and/or turbidity after 48h of incubation were interpreted as presumptively positive. 

The confirmatory test was carried out by transferring inocula from positive asparagine 

broth to cetriminde agar slants (Brodsky and Ciebin, 1978) and incubated at 41.5°C for 

48h. Tubes that developed a yellow - green colour were considered positive and used 

to establish confirmed MPN counts. 

e. Qualitative Test for Salmonella by Filtration Technique 

The standard membrane filtration technique was used for the qualitative assessment of 

Salmonella (APHA, 1985). 200 ml samples from sanitary wastewater sewer (LC and 

LV) and 500 ml samples from other combined sewage samples was pre-filtered through 

sterile sartorius membrane filters (pore size 12 J.'m). The filtrate was further filtered 

through a sterile Millipore membrane (0.45 J.'m pore size) and the membranes 

introduced respectively into flasks containing 100mi NRlO/43 enrichment broth. 

Enrichment media were incubated at 43°C for 24h All flasks which contained 100 ml 

NRlO/43 were streaked on to duplicate plates of Rambach agar, one heavily and one 

lightly and incubated at 37°C for 24h. Typical colonies with a bright red colour were 

considered positive (Rambach, 1990). 
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3.4.4. Physico - Chemical Methods 

Temperature, pH and flow were concurrently recorded during sampling. 

Temperature was measured by a fine centigrade thermometer (scale, -10 - 30°C) 

and pH by universal pH paper. Flow was measured using a flow meter (Armeied, 

No. 1178 - 1020). BODs (Biological oxygen Demand) was determined using standard 

WTW (Wissenschaftlich-Techn-Werkstatten) test equipment (Model 1002). For the 

laboratory bacterial release experiment, pH was measured using a Micro-pH meter 

(Crison Ltd Model 2000). DO (Dissolved Oxygen) was measured by YSI Oxygen 

Meter (Yellow Springs, Model 51A). Organic matter was measured by heating the 

dried sediment to 550°C in a Muffle Furnace Overnight (Block, 1965) and then 

determining the average weight loss of three replicates. 

3.5. Investigation of Changes in FC/FS Ratio 

Two types of effluent samples of dry weather flow sanitary wastewater and 

combined sewage water were sampled from sites LC and LA in January 1991 in 

North London. Samples were transported back to the laboratory on ice in a dark 

container. Samples were divided and stored in the dark at both 20°C and 4°C and 

total coliforms and faecal coliforms enumerated every 24 h for 5 days. 

3.6. Bacterial Release Experiments 

This experiment was carried out in order to determine the rate of release of 

bacterial from sediments. 

3.6.1. Experimental Design 

Experiments were conducted in plastic tanks under continuous flow conditions. The 
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size of tank 1 (water feeder tank) was 40 cm x 30 cm x 18 cm and tank 2 (water -

sediment system tank) was 40 cm x 30 cm x 15cm. Both tanks were initially 

sterilized by immersing in bleach at 500 mg/I for 2 hours, followed by triple 

washing with sterilized distilled water. All connecting tubes, inlet and outlet tubes 

were sterilized by the same method. At sampling site VI, a section of sediment of 

similar size to tank 2, and about 4 cm thick was removed without water, and was 

placed into the bottom of tank using a sterilized sampling spade, then transported 

to the laboratory within 20 min. The sediment was washed continuously with 

sterilised sewage. This sewage was removed from site VI in about 20 litre quantities 

and sterilized in the autoclave at 121°C for 15 mins, cooled and poured into tank 

1. New sterilized sewage water was added to water tank 1 every day to keep the 

system in operation for 9 days. Water was flowed into tank 2 from tank 1 through 

a connective tube as tank 1 was higher than tank 2. The overflow from tank 2 was 

located at the water surface, 12 cm above the bottom of the tank. The flow rate was 

15 ml/min (2.5xl07 mJ/s). 

Figure 3.5 shows the experimental tanks devised for the water - sediment system 

to determine bacterial release. 

Connective Tube 

! 

Water Outlet 

18cm 
Sterilized sewage ! 

Tank 1 ,-- - -

10cm 

........................................ 1Il 
Sterilized sewage l·1 j 

Sediment A 4cmL-L-______________________ ~~ 

Tank 2 

Figure 3.5: Water - Sediment System 
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3.6.2. Microbiological Assays 

Water samples were collected at time zero (started from the first drip) and then after 

at 1h, 3h, 6h, 12h, 24h, 3 days, 5 days, 7 days and 9 days successively. All water 

samples were collected using a sterile 100 ml flask at the outlet of tank 2. Sediment 

samples were taken using a sterile spoon removed from both the edges and centre of 

the tank, resulting in a total of 3g of wet sediment. 1 g of this wet sediment was taken 

from the mixed sediments for finial analysis. The first sample of sediment was taken 

at day zero before the experiment began and the second sample taken on the 9th (the 

last day), after the last water sampling. Each sample was assayed for levels of total 

coliform, faecal coliform, faecal streptococci and Pseudomonas aeruginosa as well as 

for pH, temperature and DO (Dissolved oxygen). 

3.6.3. Test Sediment 

Sediment texture was determined by the hydrometer method (Day, 1956). Approximate 

particle sizes ranges were as follows; sand > 70 #-tm; silt, 4 - 62 #-tm; and clay, < 4 

#-tm. Organic matter was also estimated. 

3.7. Statistical Analysis 

Statistical analysis of the parameter variables measured at each sampling site has been 

carried out using the MINIT AB programme. The multiple correlation matrices and 

principle component analysis (Krazanowski, 1988) of the data are reported in the 

relative chapter. Only correlations significant at the 95%, 99% and 99.9% level of 

probability are reported. The log normal distribution has been widely applied to 

interpret microbiological data in environmental microbiological studies (Alonso et al., 

1984; Meynard et al., 1989; Mujeriego, 1990 and Vicent et ai., 1991). In this study, 

the log normal distribution (LoglO transformation) was also found to best describe the 

variation of the bacteria indicator organisms according to the test of normality. All 
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microbiological data were transformed to natural logarithms in graphs and tests for 

statistical significance. However, the normal distribution was found to best describe the . 

variation of the physico - chemical data, and it is this format which has been used to 

summarize and test these parameters. 
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Chapter 4: The Levels and Characteristics of Microorganisms in 

Urban Sewage, Stormwater, Receiving Stream and Sediments. 

4.1. Introduction 

As with most aquatic microbiology studies, the determination of faecal indicator 

bacteria distributions for both urban surface waters and sediments as well as the 

relationships between different indicator microorganisms and pathogens are of great 

importance. Many studies have shown that the increase of pollution in natural surface 

waters has intensified the detection frequency and persistence of coliform and 

pathogenic microorganisms in areas affected by urban sewage discharges (Bonde, 1963; 

Braga and Pagano, 1970; Olivieri et al., 1978; Ge1dreich, 1982; Morinigo et al., 

1990). This current study represents investigations of indicator microorganisms and 

pathogenic bacteria at the various field sites to give indications concerning the nature 

of faecal indicator bacterial distributions and relationships between different indicator 

microorganisms and pathogens, in order to provide baseline information on bacterial 

indicators in urban sewage discharges, receiving streams and associated coastal outfal1s. 

Several studies of faecal bacterial survival and characteristics have been completed for 

sediment systems (Grimes, 1975; Gerba and McLead, 1976; Roper and Marshall, 1978; 

Chan et ai, 1979; Hood and Ness, 1982; Laliberti and Grimes, 1982; Goyal and 

Adams, 1984), but most of this freshwater sediment microbiology has been confined 

to studies of the deep water sediment. This chapter will therefore include details of 

further investigations undertaken in the urban storm water and sediments. The indicators 

and pathogens as well as their essential characteristics under different weather 

conditions for London and Valencia will also be compared. 
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4.2. Results 

4.2.1. The Levels of Indicator Microorganisms, Pathogens and Physico - Chemical 

Parameters in Combined Sewage and Receiving Stream in North London. 

The levels and geometric mean densities of total coliform (TC), faecal coliform (FC), 

faecal streptococci (TS), Pseudomonas aeruginosa (PA) and Salmonella obtained at 

combined sewage sites LA, LB, LD, LE, dry weather flow (DWF) sanitary wastewater 

site LC, receiving stream sites LF and LG are presented in Tables 4.1, 4.2, 4.3, 4.4, 

4.5, 4.6 and 4.7, respectively for the period October 1990 to February 1991. The 

figures reflect variable conditions although in general they can be said to reflect dry, 

cold temperate weather and low flow conditions. The tables also include wet weather 

combined sewage, receiving stream water in order to provide a basis for comparison 

of levels recovered in these different systems under differing conditions. 

The geometric mean densities of indicator microorganisms and pathogenic bacteria at 

all combined sewage sites (LA, LB, LD, and LE) were similar. Total coliforms were 

found in the ranges of 1.0 x lOS - 2.8 X 105 MPNIlOO ml, faecal coliforms in the 

ranges of 1.8 x 1()4 - 5.9 x 1()4 MPN/100 ml, faecal streptococci in the ranges of 4.7 

x 1()3 - 2.3 x 1()4 MPN/100 ml and P. aeruginosa in the range of 2.7 x 1()2 - 4.2 x 102 

MPN/100 ml. 

Site LF is located in the head water of the Pymmes Brook. There is no sewage 

discharged in to the stream above this site. Results for this site are presented in Table 

4.6. Low levels of total coliforms, faecal coliforms and faecal streptococci (geometric 

mean range was from 5.0x1()2 to 4.5x103 MPN/100 ml) and pathogenic bacteria 

(geometric mean of P. aeruginosa was 2.4 MPN/100 ml) were recovered. Salmonella 

was also absent at this site confirming the "good" quality of this background site. 

Indicator microorganisms at this site may be derived from soil particles, insects, 

vegetation (Geldreich et al., 1964) and pets which local residents exercise in the 

surrounding space adjacent to the river channel. 
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Table 4.1: Levels of Microorganisms Recovered at Site LA (MPN/1OOml). 

Date TC FC FS PA Sal: 

3/10190 1.3x105 3.0xlQ4 2.0xlQ4 9.5x103 

24/10 3.0x106 8.0x105 4.5x103 4.5x103 

29/10 7.0x105 3.0x105 7.5x103 4.5xlO 

26/11# 1.3x105 8.0xlQ4 1. 5x 103 9.5x103 

4/12 5.0x103 1. 3x 103 4.5x104 7.5xlO 

17/12 3.0x103 8.0x102 9.5x103 9.5 

9/1191# 3.0xlOS 2.3xlOS 4.0xlQ4 6.5x102 

2111 8.0xlQ4 2.3xlQ4 2.5x103 9.5x102 

GMa 1.0x105 3.7xlQ4 8.1x103 3.5x102 

MINb 3.0x103 8.0x102 1. 5x 103 7.5 

MAXC 3.6x106 8.0x105 4.5xlQ4 9.5x103 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. NT: Not tested. 
#: Rainfall date. 

Table 4.2: Levels of Microorganisms Recovered at Site LB (MPN/l00ml). 

Date TC FC FS PA 

3/10190 2.3xlOS 8.0xlQ4 1.5xlQ4 9.5x102 

24/10 1. 2x 106 5.0xlOS 7.5xlQ3 9.5xlQ3 

29/10 8.0xlOS 3.0x105 7.5x103 4.5xlQ3 

26111# 8.0xlOS 5.0xlQ4 2.5xlQ4 7.5xlO 

4112 3.0xlQ4 2.3xlQ4 4.5x103 4.0xlO 

17/12 4.0xlQ3 5.0xlQ3 9.5xlQ3 2.5xlO 

9/1191# 8.0xlOS 3.0xlQ4 2.5x102 7.5x102 

2111 1.4xlOS 7.0xlQ4 4.5xlQ4 1. 5x 102 

GMa 1.9xlOS 5.9xlQ4 7.5xlQ3 2.7xl02 

MINb 4.0x103 5.0xlQ3 2.5x102 2.5xlO 

MAXC 1.2x106 5.0x105 4.5xlQ4 9.5x103 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. NT: Not tested. 
#: Rainfall date. 
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Table 4.3: Levels of Microorganisms Recovered at Site LD (MPN/100ml). 

Date TC FC FS PA 

3/10/90 5.0x105 2.3x105 4.5x10" 1.5x102 

24/10 5.0x1OS 2.3x105 1.5x10" 7.5x102 

29/10 1. 7x105 5.0x10" 4.5x10" 4.5x103 

26/11 # 1.3x106 2.8x105 4.5x105 4.5x102 

4112 5.0x105 8.0x10" 9.5x103 4.5x102 

17112 5.0x10" 1.3x103 2.5x103 4.0xlO 

9/1191# 7.0x10" 2.3x10" 4.5x10" 1.5xlO 

2111 1.1x1OS 5.0x10" 2.5x1Q3 4.5xlO 

2/2 9.0x105 7.0x10" 4.5x10" 1.5x102 

GMA 2.8x105 5.7x10" 2.3x10" 4.2x102 

MINb 5.0x10" 1. 3x 103 2.5x103 1.5xlO 

MAXC 1. 3x 106 2.8x105 4.5x105 7.5x1Q3 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. NT: Not tested. 
#: Rainfall date. 

Table 4.4: Levels of Microorganisms Recovered at Site LE (MPNI100ml). 

Date TC FC FS PA 

3/10/90 3.0x1OS 5.0xlO" 4.5x10" 9.5x102 

24/10 1.1x106 3.0xlOS 1.5x10" 4.5x102 

29110 7. Ox 105 3.0x105 7.5x103 4.5xlQ3 

26/11# 5.0x10" 2.3xlO" 4.5x1Q3 7.5xlO 

4112 1.3x10" 3.0xlQ3 7.5x102 9.5 

17112 5.0x103 2.3x103 4.0xlO 9.5 

9/1191# 3.0xlO" 1.1xlO" 2.5x102 9.5xlO 

2111 9.0xlOS 3.0x105 4.2x1Q3 4.5x1Q3 

212 3.3x1OS 7.9x10" 7.5x104 4.5x1Q3 

GMa 1.3x1OS 1.8xlO" 4.7x1Q3 4.0x102 

MINb 5.0x103 2.3xlQ3 4.0xlO 9.5 

MAXC 9.0x105 3.0x105 9.3x10" 4.3x10" 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. NT: Not tested. 
#: Rainfall date. 
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Table 4.5: Levels of Microorganisms Recovered at Site LC (MPN/l00ml). 

Date TC FC FS PA Sal: 

3/10/90 2.3x107 1.3x107 1.5xlQ4 2.5xlQ3 + 
24/10 8.0x107 5.0x107 7.5xlOS 4.5x1OS + 
29/10 1.7x108 8.0xl07 4.5x105 1.5xlOS + 
26/11# 1.1x107 8.0x106 7.5xlOS 1.5xlOS + 

4/12/90 1.3x107 3.0x106 2.5xlQ4 2.5xlQ3 + 
17/12/90 7.0x106 5.0xl06 4.5xlOS 4.5xlQ3 -

9/1191# 1. 3x 107 8.0x106 4.5xlOS 4.5xlQ4 NT 

2111 3.0x106 8.0x105 4.0xlQ4 2.0xlQ3 + 
212 4.9x107 1. Ix 107 1.5xlOS 2.0xlQ4 NT 

GM8 2.0x107 9.1x106 1.3x105 2.0xlQ4 

MINb 3.0x106 8.0x105 1.5xlQ4 2.0x103 

MAXC 1. 7x 108 8.0x107 7.5xlOS 4.5x105 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. NT: Not tested. 
#: Rainfall date. 

Table 4.6: Levels of Microorganisms Recovered at Site LF (MPN/l00ml). 

Date TC FC FS PA Sal: 

3/10/90 2.3xlQ4 2.3xlQ4 2.0xlQ4 9.5x102 -

24110 3.0xlQ3 2.3xlQ3 9.5xlO NF -

29/10 1.3xlQ4 3.0x103 2.5xlQ2 2.5 -

26/11# 3.0x103 4.0x102 1.5x102 NF -

4/12 3.0x103 1.1x103 7.5xlO NF -

17/12 2.2x103 1.1x103 2.3x103 NF -

9/1191# 3.0x103 5.0x102 1. 5x 102 NF NT 

2111 1.3x1Q4 5.0xlQ3 4.5x102 NF -

212 2.2x103 1. Ix 103 2.3xlQ3 NF -

GM8 4.9x103 1.8x103 5.0xlQ2 2.4 

MINb 2.2x103 4.0x102 9.5xlO NF 

MAXC 2.3xlQ4 2.3xlQ4 2.0xlQ4 9.5x102 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. NF: Not found. 
#: Rainfall date. NT: Not tested. 
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Table 4.7: Levels of Microorganisms Recovered at Site LG (MPN/100ml). 

Date TC FC FS PA Sal: 

3110190 2.3x1<t 2.3x1<t 2.5x1<t 2.5xlO -
24110 1.7xlOS 1.7x1<t 4.5xlO 4.0 -

29/10 5.0x1<t 3.0xl<t 9.5xlO 1.2x102 -

26111# 1.3x1Q3 5.0x102 4.5xl02 9.5xlO -

4/12 4.0x1Q3 1.3x102 6.5x1Q3 7.5xlO -

17/12 1.lx1<t 5.0x1Q3 2.5x1Q3 9.5xlO -

9/1191# 5.0x105 1.7x105 9.5x103 9.5x102 -

2111 1. 1 xl OS 2.3x1<t 4.5xl<t 7.5 -

GMa 3.0xl<t 7.9x103 2.1x1Q3 7.0xlO 

MINb 1.3x1Q3 5.0x102 4.5xlO 4.0 

MAXc 5.0xlOS 1. 7x 105 4.5x1<t 9.5x102 

*: Salmonella. a: Geometric mean. b: Minimum. c: Maximum. #: Rainfall date. 

The levels of bacteria recovered at receiving stream site LG were generally lower than 

at the combined sewage sites. The levels of total coliform, faecal coliform, faecal 

streptococcus and P. aeruginosa were 3.0 x 1<t MPN/100 ml, 7.9 x 103 MPN/100 ml, 

2.1 x 1Q3 MPN/100 ml and 7.0 x 10 MPN/100ml, respectively. However, the levels 

of bacteria at site LC were generally higher than those recorded at any of the combined 

sites. The geometric mean of total coliforms recorded was 2.0 x 107 MPN/100 ml, 

faecal coliforms was 9.1 x 1()6 ·MPNI100 ml, faecal streptococci was 1.3 x 105 

MPN/100 ml and P. aeruginosa was 2.0 x 1<t MPN/100 ml. 

The levels of organisms recovered showed a descending order as follows: total coliform 

> faecal coliform > faecal streptococcus > P. aeruginosa for all sampling sites (Fig. 

4.1). There is a general trend towards maximum numbers in the earlier (October) and 

late winter (February), but decreasing to a minimum in the middle winter (December), 

for all indicator microorganisms at all sites. Figures 4.2,4.3 and 4.4 are the examples 
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Figure 4.1: Geometric mean of bacteria in combined sewage and receiving stream sites in North London. 
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of bacterial variations at sites LE, LG and LC respectively. 

The occurrence of Salmonella was found in 42.9%, 14.2% and 14.2% of samples at 

sites LA, LB, and LD, respectively. At site LC, Salmonella was found in 85.7% of 

samples. No Salmonella was recovered from sites LE, LF and LG. 

Geometric mean densities of indicator microorganisms and pathogenic bacteria 

recovered appear to reflect the quality and sources of sewage and can be grouped 

accordingly. The first group contains sites LA, LB, LD and LE which are all combined 

sewage. The second group includes sites LF and LG. Site LF is located at the upper 

end of receiving stream and site LG at the lower reaches. The values were lower than 

those as sites LA, LB, LD and LE. Finally site LC presented about 100 - fold higher 

values than sites LA, LB, LD and LE. 
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Figure 4.2: Variation of bacteria in combined sewage at site LE. 
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Figure 4.3: Variations of bacteria in receiving stream at site LG. 
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Figure 4.5: FC/FS ratios in combined sewage at sites LA, LB, LD and LE. 
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Figure 4.6: FC/FS ratios in receiving stream at sites LF and LG. 
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The logarithm of faecal coliform densities has been plotted against the logarithm of the 

density of faecal streptococci for all sites. 60% of all samples from the combined. 

sewage sites LA, LB, LD and LE had a ratio of FC/FS of more than 4.0, 23% of 

samples had a ratio of between 4.0 and 0.7, and 17 % of samples had a ratios of less 

than 0.7 (Fig. 4.5). At the upper stream site LF, 50% samples showed a FC/FS ratio 

of more than 4.0 and some 13% of samples less than 0.7. At site LG, 25% of samples 

had a ratio of less than 0.7 and 37.5% of samples had a ratio of more than 4.0 (Fig. 

4.6). At site LC, 44.4% samples showed a FC/FS ratio of more than 4.0 and total 

88.8% of samples had a ratio of more than 0.7 (Fig. 4.7). 
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Figure 4.7: FC/FS ratios in DWF sanitary wastewater at site LC. 

Correlation coefficients for total coliform, faecal coliform, faecal streptococcus and P. 

aeruginosa levels observed in the North London sampling sites are summarized in Table 

4.8. Significant correlations between total and faecal coliforms were found for all sites. 

This is presumably due to the fact that the decrease of concentrations of total coliform 
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and faecal coliform is nearly paralleled in sewage and faeces. No significant 

correlations were obtained between faecal coliforms and faecal streptococci for sites . 

LA, LB, LC, LD, LF and LG. This may be due to the fact that the origins of faecal 

coliforms and faecal streptococci were from different sources in the combined sewage. 

At site LE, there are significant relationships between P. aeruginosa and indicator 

bacteria. At site LC, the correlation coefficients between P. aeruginosa and indicator 

bacteria were 0.710 (p < 0.05) for faecal coliforms and 0.960 (p < 0.001) for faecal 

streptococci. The correlation coefficient between P. aeruginosa and total coliform was 

0.758 (p < 0.05) and 0.862 (p < 0.01) between P. aeruginosa and faecal coliform at 

site LB. No correlations between P. aeruginosa and indicators were found at sites LA, 

LD and LG. 

Physico - chemical observations, summarized in Tables 4.9 and 4.10, reflect the type 

and sources of effluent and receiving water runoff. Generally, the temperatures are at 

a maximum during early winter (October) with minimums occurring in mid-winter 

(December - January). pH values obtained tended to fluctuate considerably over the 

study period. However, the pH values were relatively stable at site LC probably due 

to its below ground location, which is less affected by atmospheric environmental 

factors. There were notable changes at site LG, where the values ranged between 5.8 

to 7.1, reflecting the effects of variable types of sewage effluent. 

The changes in pH values recorded at the combined sewer sites LA, LB, LD and LE 

were effected by many factors, but mainly by prevailing environmental and sanitary 

conditions. At site LD, for example, there were strong detergent smells and visible 

bubbles. There are possibly from car washing or other surfactant sources which have 

a inevitable impact on pH. Flow data are presented in Table 4.10. Two typical winter 

rainfall events occurred during the study period. The first rainy day was on 26/11/90 

with rainfall of 8.6mm and the second on 9/1/91 with a rainfall total of 16.3mm. 
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Table 4.8: Correlation coefficients between bacteria for all sampling sites 

in North London 

Site TC FC FS 

FC 0.985a 

LA FS -0.300 -0.291 

PA 0.561 0.546 -0.342 

FC 0.789c 

LB FS -0.160 0.208 

PA 0.758c 0.862b -0.197 

FC 0.915a 

LC FS 0.482 0.525 

PA 0.651 0.710cc 0.960a 

FC 0.817b 

LD FS 0.633 0.598 

PA 0.471 0.476 0.394 

FC 0.984-

LE FS 0.807b 0.731c 

PA 0.909a 0.902a 0.767C 

FC 0.854b 

LF FS 0.396 0.604 

PA • • • - - -

FC 0.886b 

LG FS 0.048 0.071 

PA -0.059 0.062 0.117 

TC: Total coliform. FC: faecal coliform. FS: Faecal streptococcus. 

PA: Pasedumonas aeruginosa. a: p < 0.001. b: p < 0.01. c: p < 0.05. 

*: Pasedumonas aeruginosa recovered on only 2 occasions thus no correlation 

coefficient calculated 
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Table 4.9: The pH and temperature data from the sampling sites in North London. 

Sampling sites 

Date LA LB LC LD LE LF LG 

pH T'C pH T'C pH TOC pH T'C pH T'C pH T'C pH T'C 

3/10/90 6.0 14.0 6.0 15.5 6.8 17.0 5.5 15.0 6.4 15.0 6.7 10.5 7.1 14.0 

24/10 6.5 14.5 6.4 14.0 6.8 19.0 6.4 15.0 5.8 14.0 6.7 11.5 6.2 10.5 

29110 6.0 12.5 6.5 15.0 7.0 17.0 6.0 12.5 6.7 14.0 6.7 9.5 6.7 0.0 

26/11 6.4 10.0 6.5 11.0 7.0 15.0 6.1 10.0 6.4 12.0 6.7 7.0 5.8 9.0 

4112 6.4 10.0 6.4 12.0 6.8 15.0 6.1 10.0 6.4 12.0 7.0 6.0 6.5 9.0 

17112 6.5 8.0 6.4 9.0 6.8 15.0 6.0 9.0 5.8 9.0 7.0 4.0 6.7 6.5 

9/1191 5.8 7.0 6.4 6.0 6.8 13.0 6.3 7.0 6.2 9.0 7.0 2.0 6.5 6.0 

2111191 6.5 10.5 5.9 10.0 7.1 15.5 6.1 8.5 5.9 10.0 6.5 6.5 5.8 7.0 

MAX 6.5 14.5 6.5 15.5 7.1 19.0 6.4 15.0 6.7 15.0 7.0 11.5 7.1 14.0 

MIN 5.8 7.0 5.9 6.0 6.8 13.0 5.5 7.0 5.8 9.0 6.5 2.0 5.8 6.0 

AM 6.2 11.05 6.3 12.06 7.1 15.9 6.0 11.27 6.2 12.7 6.8 7.3 6.4 8.7 
... , .. -,.. ..... .,. ........ T ...... ..,.... .. . 

70 



Table 4.10: Flow data from sampling sites in North London (m3/s) 

Date Sampling sites 

LA LB LC LD LE LF LG 

3/10/90 0.029 - 0.190 0.002 0.002 0.001 0.262 

24/10/90 0.029 - 0.103 0.022 0.002 0.002 0.034 

29/10/90 0.029 - 0.095 0.018 0.002 0.001 0.028 

26/11/90· 0.044 - 0.229 0.033 0.003 0.002 0.853 

4/12/90 0.023 - 0.123 0.009 0.002 0.001 0.169 

17/12/90 0.016 - 0.124 0.010 0.002 0.001 0.159 

9/1191* 0.540 - 0.284 0.130 0.007 0.004 0.345 

2111191 0.037 - 0.184 0.033 0.002 0.001 0.026 

MAX 0.539 - 0.284 0.130 0.007 0.004 0.853 

MIN 0.012 - 0.090 0.002 0.002 0.001 0.026 

AM 0.084 - 0.158 0.029 0.003 0.001 0.223 

MAX: Maximum MIN: Minimum AM: Arithmetic mean *: Rainfall. 

4.2.2. The Levels of Indicator Microorganisms and Pathogens in Combined Sewer 

and Receiving Stream Sediments in North London. 

The data in Table 4.11 show geometric mean densities of selected indicator 

microorganisms and pathogenic bacteria for sediment samples obtained at combined 

sewage sites LE and LG. The comparative ratios of the geometric mean of indicator 

microorganisms and pathogenic bacteria between water and sediment column (sediment 

/ water) are also included. At site LE, levels of bacteria found in sediment were 

generally much lower than those recovered in sewage. Sediment / water ratios of total 

coliform, faecal coliform, faecal streptococcus and P. aeruginosa are 0.17,0.16,0.30 

and 0.17 respectively. At site LG, sediment / water ratios are higher than at site LE 

with the ratios of total coliform, faecal coliform, faecal streptococcus and P. aeruginosa 
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LE 

LG 

Table 4.11: Levels of microorganisms recovered from sediments 

and sediment/water (S/W) ratios at sites LE and LG (MPN/g). 

Total Faecal Faecal 

3/10/90 3.0x1<P 3.0x1Q4 4.5x1Q2 

24110 7.0x1<P 5.0xlQ4 9.5x1Q3 

29/10 5.0x1Q4 3.0x1Q3 9.5x101 

26/11 8.0x1Q3 7.0xlQ2 9.0 

4/12 6.0x1Q3 2.3x1Q2 2.5x101 

17/12 3.0x1Q3 8.0xlQ2 7.5x1Q2 

9/1/91 5.0x1Q3 2.3x1Q3 9.5x102 

21/1 8.0x103 3.0x1Q3 2.5 

GM 2.2x1Q4 2.8x1Q3 1.4x103 

MAX 7. OX 105 5.0X1Q4 4.5X1Q4 

MIN 5.0X103 2.3X102 9.0 

S/W 0.17 0.16 0.30 

3/10/90 5.0x1Q4 4.5x1Q4 3.0x1Q4 

24/10 4.5x1Q4 2.5x1Q4 8.0x1Q3 

29/10 6.5x1Q4 2.5xlQ4 3.0x1Q3 

26/11 9.5x102 4.5x1Q2 1.7x102 

4/12 1.4x1Q4 5.0x1Q3 4.5x1Q3 

17/12 1.1x1Q4 5.0x1Q3 2.5x103 

9/1/91 5.0x1Q4 1.3xlQ4 1.5x1Q3 

21/1 1.7x1Q4 2.3x1Q3 2.5x1Q3 

OM 1.9x1Q4 7.4xlQ3 2.9x103 

MAX 6.5x1Q4 4.5x1Q4 1.5x1Q4 

MIN 1.lx1Q4 2.3x1Q2 1. 7x1Q2 

S/W 0.63 0.94 1.38 

GM: Geometric mean. MAX: Maximum. MIN: Minimum. 
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Pseudomona 

4.5x102 
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1.5x101 

4.5xlOl 
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being 0.63, 0.94, 1.38 and 5.42 respectively. 

The levels of indicator organisms and pathogenic bacteria in different layers of sediment 

at site LE are presented in Fig. 4.8. The results show that as the depth of sediment 

increases from the top layer (L1) to the second layer (L2) and than the third layer (L3), 

the levels of total coliform, faecal coliform and P. aeruginosa are reduced gradually. 

Faecal streptococci, however, showed a slightly higher level in layer 2 ( 3.9 x 101 

MPN/g) than in 1 (3.2 x 101 MPN/g), but then decreased again in layer 3. 

Log MPN/100 ml 

TC FC FS 
Sediment 

PA 

D Layer 3(5-7cm) _ Layer 2(3-5cm) _ Layer 1(O-3cm) 

Figure 4.8: The levels of bacteria from different sediment layers at site LE. 

4.2.3. The Levels of Indicator Microorganisms, Pathogens and Physico - Chemical 

Parameters in Combined Sewage and Beach Outfall in Valencia. 

The occurrence of selected microorganisms at combined sewage sites VH (DWF 

sanitary wastewater), VI and beach outfall VJ in Valencia are summarised in Tables 

4.12, 4.13 and 4.14. They provide an indication of the relative microbial qUality. One 

rain day sample is also included in Table 12 in order to compare different weather 

conditions. 
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Table 4.12: Levell of microorganisms recovered at site VR. 

Date Total Faecal Faecal Pseudomonas Salmonella 

coli forms coli forms streptococci aeruginosa 

22/3/9 7.9x107 3.3x107 9.3x105 2.3x105 + 

23/3 2.9x106 3.3x106 4.3x105 4.3x103 + 

10/4 3.0x107 2.3x106 9.3x106 9.3x1<t + 

15/4 8.0x107 3.5x107 4.3x1<t 1.5x105 + 

30/4 7.9x107 7.9x106 4.3x104 2.1x104 + 

6/5 7.9x107 7.9x106 2.3x1<t 2.3x105 NT 

7/5 4.9x107 4.9x107 2.3x105 2.1x1<t + 

13/5 3.3x108 2.3x108 2.3x105 2.3x1<t + 

14/5 7.9x107 1.8x107 7.5x103 2.5x103 + 

20/5 1.1x108 3.5x107 2.3x103 9.3x1<t + 

27/5 3.6x107 1. 3x 106 4.3x105 1.5x105 + 

11/6 3.3x107 7.9x106 4.3x105 4.3x1<t + 

MAX 3.3x108 2.3x108 9.3x106 2.3x105 

MIN 2.9x106 2.3x106 2.3x103 2.5x1Q3 

GM 5.4x107 1.4x107 1.3x105 4.4xl<t 

MAX: Maximum MIN: Minimum GM: Geometric mean NT: Not tested 
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Table 4.13: Levels of microorganisms recovered at site VI. 

Date Total Faecal Faecal Pseudomonas Salmonell 

coliforms coliforms streptococci aeruginosa 

22/3/91 4.9x107 1. Ix 107 1.5x105 2.4xlQ4 + 

23/3* 3.3x107 7.0x106 9.3xlQ4 4.3x103 + 

10/4 1.3x106 1.3x106 2.4xlQ4 9.3x103 + 

15/4 5.0x107 2.5x107 4.3xlQ4 2.3xlQ4 + 

30/4 7.9x106 2.3x106 4.3x105 1.5xlQ4 + 

7/5 5.0x106 2.5x106 2.3x105 1.5xlQ4 + 

13/5 3.3x106 1. 3x 106 2.3x105 4.3xlQ4 + 

14/5 1.7x107 4.9x106 2.1xlQ4 4.3xl04 + 

20/5 3.5x107 8.0x106 2.3x105 1.1xlQ4 + 

27/5 7.9x107 1. 3x 106 2.3xlQ4 9.3xlQ4 + 

11/6 7.9x107 2.2xl06 2.3x105 9.3xlQ4 + 

MAX 7.9x107 2.5x107 4.3x105 9.3xlQ4 

MIN 3.3x106 1.3x106 2.1xlQ4 4.3x103 

GM 1.7x107 3.3x106 9.8x104 1.8x104 

MAX: Maximum MIN: Minimum GM: Geometric mean. *: rainfall day. 
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Table 4.14: Levels of microorganisms recovered at site VJ. 

Date Total Faecal Faecal Pseudomonas Salmonella 

coliforms coliforms streptococci aerugmosa 

22/3 8.0xlOS 1.7xlOS 1.5xlOS 4.3xlQ3 + 

10/4 8.0xlOS 2.5xlOS 4.3xlOS 4.3x103 + 

15/4 7.9xlQ3 4.9xlQ3 2.3xlQ2 2.3x102 -

2015 1.3xl06 2.3xlOS 2.3xlQ3 4.3xlQ3 + 

27/5 1.7xl06 1. 3x 106 4.3xlot 4.3xlQ3 + 

11/6 7.9xlOs 3.3xlOS 4.3xlot 1.5xl03 + 

MA 1. 7x 106 1. 3x 106 4.3xlOs 4.3xlQ3 

MIN 7.9xlQ3 4.9xlQ3 2.3x102 2.3x102 

GM 4.5xlOs 1. 7xlOS 2.0xlot 2.2x103 

MAX: Maximum MIN: Minimum GM: Geometric mean 

Generally, densities of indicator microorganisms and pathogenic bacteria found at site 

VH were higher than site VI which in turn is higher than site VJ (Fig. 4.9). The 

geometric mean of total coliform isolate was 5.4 x 107 MPNIlOO ml at site VH and 1.7 

x 107 MPN/100 ml at site VI; similarly, the geometric mean of faecal coliforms was 

1.4 x107 MPN/100 ml at site VH and 3.3 x 106 MPN/100 ml at site VI. Levels of 

faecal streptococci recovered at sites VH and VI were in the ranges of 1.3 x lOS and 

9.8 x lot MPNIlOO ml respectively. P. aeruginosa levels of 4.4 x lot MPN/100 ml and 

1.8 x lot MPN/100 ml were recovered at sites VH and VI respectively. However, the 

levels of organisms recovered at site VJ were lower than those at sites VH and VI. The 

levels of total coliforms and faecal coliforms at site VJ were in the range of 4.5 x lOS 

MPNIlOO ml and 1.7 x lOS MPN/lOO ml, faecal streptococci were found at level of 2.0 

x lot MPNIlOO ml and P. aeruginosa at the level of 2.2 x 103 MPNIlOO ml. The 

geometric mean of organisms for all sites showed the following order: total coliform 

> faecal coliform > faecal streptococcus > P.aeruginosa for all sites (Fig. 4.9). 

Salmonella was recovered from all samples at sites VH and VI and with an 83 % 
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recovery from the samples at the beach site (YJ). 

The physico - chemical characters of the various sewage effluent are shown in Table 

4.15. During the sampling periods, mean water temperature was 19.5°C, 19.5°C and 

18.2°C at sites VR, VI and VJ respectively. Generally, there were gradual increases 

from 19°C to 24° at sites VR and VI during the study except on the rainy day (23/3). 

At site VJ, temperatures ranged from 15.erC to 23.0°C. 

pR values of the samples obtained were relatively stable for all sites. The mean of pR 

was 7.3, 7.1 and 7.2 for sites VR, VI and VJ respectively. BODs concentration at sites 

VR, VI and VJ show a noticeable parallel with levels of bacteria. The flow changed 

significantly on the rainy day (23/3/91) when rainfall of 9.5mm was recorded (Table 

4.16 ). 

Log MPN/100 ml 

VH VI VJ 

Sites 

D P.aeruginosa _ F.streptococci 0 F.coliforms - T.coliforms 

Figure 4.9: Geometric mean of bacteria recover at sites VR, VI and VJ. 

The logarithm of faecal coliform levels has been plotted against the logarithm of faecal 

streptococci levels for sites YR, VI and VJ (Fig. 4.10). The samples from sites VH 

and VI all had FC/FS ratios of greater than 7.0. At site VJ, most of samples are greater 
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than 4.0. 80% of samples had a ratio of more than 4.0 at site VH and some 60% of 

samples had a ratio of more than 4.0 at site VI. 

Table 4.15: pH and temperature data at sites VH, VI and VI. 

Date Sampling sites 

VH VI VI 

pH T'C pH T'C pH TOC 

22/3/91 7.0 19.0 6.9 19.0 7.2 18 

23/3* 7.1 16.0 7.0 16.0 # 

10/4 7.1 19.0 7.0 19.0 7.0 16 

15/4 7.0 18.0 7.0 18.0 7.0 15 

30/4 7.0 18.0 7.0 18.0 # # 

6/5 7.7 19.0 # # # # 

7/5 7.8 19.0 7.6 19.0 # # 

13/5 7.3 20.0 7.0 19.0 # # 
-
14/5 7.6 20.0 7.0 20.0 # # 

20/5 7.4 20.0 7.2 20.0 7.4 18 

27/5 7.2 24.0 7.1 24.0 7.1 23 

11/6 7.0 22.0 7.1 22.0 7.3 19 

MAX 7.8 24.0 7.6 24.0 7.4 23 

MIN 7.0 16.0 6.9 16.0 7.0 15 

AM 7.3 19.5 7.1 19.5 7.2 18.2 

AM: Arithmetic mean MAX: Maximum MIN: Minimum. *: rainfall day. 

#: Not tested. 

78 



Table 4.16: DO, BODs and flow (M3/S) data at sites VH, VI and VI . 

. Sampling sites 
Date 

VH VI VI 

DO BODs Flow DO BODs Flow DO BODs Flow 

22/3/ 1.29 488.7 0.02 2.04 377.9 0.15 7.1 248.9 2.5 

23/3* 2.8 317.2 0.14 4.4 265.6 0.53 # # # 

10/4 2.7 497.3 0.03 4.75 265.3 0.24 6.8 283.2 1.65 

15/4 6.3 483.7 0.005 4.5 435.5 0.38 6.4 249.6 4.8 

30/4 2.4 437.6 0.01 6.8 353.2 0.13 # # # 

6/5 5.0 470 0.03 # # # # # # 

7/5 3.5 416.5 0.04 6.5 333.5 0.13 # # # 

13/5 2.0 558.0 0.036 2.4 197.6 0.142 # # # 

14/5 2.4 387.6 0.054 7.5 272.5 0.173 # # # 

2015 2.1 387.9 0.045 6.2 333.8 0.14 6.8 189.2 2.6 

27/5 2.2 517.8 0.014 6.0 354.0 0.15 6.2 153.8 3.18 

11/6 1.9 498.1 0.026 2.8 237.2 0.312 6.8 213.2 1.047 

MAX 6.3 558.0 0.14 6.8 435.5 0.53 7.1 283.2 4.8 

MIN 1.29 317.2 0.005 2.04 197.6 0.13 6.2 153.8 1.047 

AM 2.88 455.0 0.037 4.89 311.5 0.225 6.68 222.9 2.63 

BOD : BlOchemlcal ox s yg en demand. D( ): DIssolve Ox yg en. *: ram tall d a . y 
#: Not tested. 
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Figure 4.10: FC/FS ratios at sites VR, VI and VL. 

9 

The correlation coefficients between levels of indicators microorganisms and P. 

aeruginosa are summarized in Table 4.17. The correlation between total coliforms and 

faecal coliforms is significant at the levels of 0.001, 0.01 and 0.05 as considered for 

sites VR, VJ and VI respectively. No significant correlations were found between faecal 

streptococci and faecal coli forms at the levels of 0.05 for any site. The correlation 

between P. aeruginosa and indicators were 0.9452 (p < 0.01) for total coliforms and 

0.8664 (P < 0.05) for faecal coliforms at site VJ. The correlation coefficient for P. 

aeruginosa and faecal streptococci at site VI was 0.6492; this is significant at the 0.05 

level. No such correlations were found at site VR. 
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Table 4.17: Correlation coefficients between bacteria at sites VH, VI and VI. 

Site TC FC FS 

FC 0.797-

VH FS -0.412 -0.349 

PA 0.256 0.033 0.162 

FC 0.643c 

VI FS -0.267 -0.336 

PA -0.125 -0.284 0.649c 

FC 0.956b 

VI FS 0.718 . 0.704 

PA 0.945b 0.866c 0.736 

TC: Total coliforms. FC: Faecal coliforms. FS: Faecal streptococci 

PA: P. aeruginosa a: p < 0.001. b: p < 0.01. c: p < 0.05. 

4.2.4. The Levels of Indicator Microorganisms and Pathogens in Combined Sewer 

and Beach Outfall Sediment in Valencia. 

The data presented in Table 4.18 show the geometric mean of bacteria recovered from 

sediment samples at sites VH and VI. The comparative ratios of the geometric mean 

of indicator microorganisms and pathogenic bacteria between water and sediment 

column (sediment / water) are also included. The levels of bacteria found in sediment 

at site VH were higher than those recovered from site VI. The sediment / water ratios 

of total coliforms, faecal coliforms, faecal streptococci and P. aeruginosa were 0.0015, 

0.0025, 0.35 and 0.012 respectively at site VH. However, the ratios at site VI were 

higher than site VH, being 0.03, 0.024, 0.42 and 0.078 respectively. 

81 



VH 

VI 

Table 4.18: Levels of microorganisms recovered from sediments 

and sediment/water ratios at sites VH and VI. 

Site Total Faecal Faecal Pseudomonas 

coliforms coliforms streptococci aeruginosa 

22/3 1. Ix 106 4.9xHP 2.3xlOS 2.3x103 

23/3 7.9xlOS 3.3xlOS 2.3xlQ4 9.5xl02 

10/4 1.7x106 1.7x106 2.3xlOS 9.3xl01 

15/4 8.0xlQ4 3.5xlQ4 2.3xlQ3 2.3x102 

30/4 4.9xl05 2.3x105 2.3xlOS 2.3xlQ2 

6/5 4.9xlOS 1. 3x 105 l.5x105 2.3xlQ3 

13/5 2.2x106 2.3x105 9.3xlQ4 1.5x102 

27/5 2.3xlOS 7.0xlQ4 2.3xlQ4 4.3x102 

11/6 2.3x105 4.9xlQ4 4.3xlQ3 2.lxlQ3 

GM 5.3xlOS 1.8x105 4.6xlQ4 5.3xl02 
, 

MAX 2.2X106 1.7X106 2.3XIQ4 2.3X103 

MIN 8.0XIQ4 3.5XIQ4 2.3x103 4.3X101 

S/W 0.0015 0.0025 0.35 0.012 

10/4 1.7xlQ4 5.0xlQ3 9.5xl05 3.9x103 

15/4 4.9x102 2.3x102 2.3x102 2.3x102 

20/5 5.0x103 1. 7x 103 9.3x103 4.3x101 

27/5 3.3xlOS 7.0xlQ4 9.3x103 4.3x101 

11/6 1.7xlQ4 7.9x103 2.3x103 9.3x101 

GM 1.2xlQ4 4.1x103 8.5x103 1.7x102 

MAX 3.3x105 7.9xlQ4 9.5x105 3.9x103 

MIN 4.9x102 2.3x102 9.3x101 4.3x101 

S/W 0.03 0.024 0.42 0.078 

GM: Geometric mean. MAX: Maximum. MIN: Minimum. S/W: Sediment / Water. 
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The trends by which the levels of bacteria decrease from the top layer to the bottom 

layer at site VR are showed in Fig. 4.11. Generally, the levels of bacteria in the bottom. 

layer (3) were 100 fold lower than the top layer (1). P. aeruginosa presented a sharper 

decrease from top (4.9 x 1(j2 MPN/g) to the bottom layer (4.9 MPN/g) than other 

bacterial indicators. The results demonstrated that indicator and pathogenic bacteria 

occur in the highest concentration within the upper layers of sediment; this may of 

course be resuspended during turbulence flow phases. 

Log MPN/100 ml 
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5 
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1 
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PA 

o Layer 3(5-7cm) _ Layer 2(3-5cm) _ Layer 1(O-3cm) 

TC:Total coliforms FC:Faecal coliforms 
FS:Faecal streptococci PA:P.aeruginosa 

Figure 4.11: Geometric mean of bacteria from different sediment layer at site VR. 

4.2.5. Diurnal Bacterial Patterns 

Daily cycle tests for total coliforms, faecal coliforms, faecal streptococci and P. 

aeruginosa were conducted in sanitary wastewater in both North London and Valencia. 

FigA.12 a and b show the levels of indicator organisms recovered in samples taken 

continuously over 24 hours at sites LC (North London) and VH (Valencia). 

At site LC in North London, the lowest levels of were recovered during the early 
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morning (06.00). At this time levels of total coliforms were 3 x HJ'i MPN/loo ml, 

faecal coliforms were 2.3 x lOS MPN/loo ml, faecal streptococci were 9.5 x 1()3 . 

MPN/loo ml and P. aeruginosa 4.5 x 10 MPN/loo ml. A sharp rise in the number of 

bacteria occurs around 06.00 - 08.00 hours with peak recovery of faecal coli forms (5.0 

x 107 MPN/lOO ml), faecal streptococci (4.5 x 106 MPN/lOO ml) and P. aeruginosa 

(1.5 x lOS MPN/100 ml) at 10.00 hours. The levels of total coliform increased at the 

same time but peak values were obtained at about 12.00 hours (8.0 x 107 MPN/lOO 

ml). Levels of total coliform and faecal coliform remain fairly stable for the 24h period, 

but levels of faecal streptococci and P. aeruginosa fall gradually after about 10.00 -

12.00 hours, than rise to a peak again at 22.00. The time of peak recovery in North 

London differed from that recorded in Valencia. At site VH, P. aeruginosa was at a 

maximum in the morning (09.00) at a level of 2.3 x 1()3 MPN/loo ml which was 

similar to the peak time in London. The highest levels of total coliform (3.3 x l(f 

MPN/loo ml) and faecal coliform (3.3 x 108 MPN/100 ml) recovered at site VH were 

at 24.00 hours. There was a smaller peak for total coliforms (7.9 x 108 MPN/lOO ml), 

faecal coliforms (2.3 x 108 MPNIlOO ml), faecal streptococci (9.3 x 106 MPN/loo ml) 

and P. aeruginosa (9.3 x 102 MPNIlOO ml) at 18.00 hours. 

4.3. Discussion 

4.3.1. Occurrence and Levels of Indicator Microorganisms and Pathogenic Bacteria 

in Urban Sewage Discharges 

The results of this study showed that the water quality of the urban stream, combined 

sewage, DWF sanitary wastewater and beach outfall was uniformly poor. The 

populations of indicators and pathogenic bacteria recovered were generally high. In 

North London, geometric means of indicator microorganisms and pathogenic bacteria 

found in DWF sanitary wastewater were generally about 100 - fold higher than in 

combined sewage. Total coliforms, faecal coliforms and faecal streptococci in combined 

sewage were about 10 - fold higher than in the receiving stream water with P. 

aeruginosa being some 100 - fold higher. The levels of indicator organisms and P. 
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aeruginosa, at the lower reaches of stream site LG were 4 - fold higher than found at 

the head of stream site LF, with P. aeruginosa being 29 - fold higher than site LF. The . 

levels of P. aeruginosa were generally lower than levels of indicator microorganisms 

for all sites. 

In Valencia, discharges from combined sewer ( VI) contained significant qualities of 

total coliforms, faecal coliforms, faecal streptococci and P. aeruginosa with Salmonella 

being frequently isolated. The geometric mean densities of microorganisms in combined 

sewage (VI) approached the levels found in DWF sanitary wastewater (VH). The 

relatively low levels of organisms found at site VJ are likely to be due to natural die-off 

during self - purification in sewage. Generally, the water quality from a microbial point 

of view was still very poor at the beach outfall site VJ. High density of P. aeruginosa 

is hazardous to swimmers, having been associated with ear infections, primarily otitis 

extern a (Favero et al., 1964; Jones 1965; Cabelli et al., 1979, 1982; Cabelli, 1983). 

The levels of P. aeruginosa found were very high during the study at sampling sites 

VH, VI and VJ, which demonstrates that sewage probably represents the major source 

of P. aeruginosa found in surface water. Sampling sites VH and VI were only a short 

distance from the centre of the Benimac1et catchment and thus there could be less time 

for die-off to deplete the bacterial popUlation, and so the recovered levels of P. 

aeruginosa remain higher than at site VJ which is a further 2 miles away from the 

Benimac1et catchment. The results also confirm the suggestion made by Hoadley et aZ. 

(1968b) that populations of P. aeruginosa in excess of 1000/100 ml would imply very 

recent contamination. 

4.3.2. Relationships between Indicators and Pathogenic Bacteria 

The results of the correlation analysis demonstrate that there were good correlations 

between total and faecal coliforms for all sampling sites in both North London and 

Valencia. This is possibly due to the fact that the increase of concentration of total 

coliform and faecal coliform was nearly paralleled in combined and receiving water. 

In contrast, no significant correlations were found between faecal coliforms and faecal 
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streptococci in most of the water samples in the two cities except site LE, which could 

be affected by different faecal pollution sources. The relationships between P. . 

aeruginosa and indicators were not consistent in urban sewage for either North London 

or Valencia. There were no significant correlations between P. aeruginosa and indicator 

bacteria in DWF sanitary wastewater at site VR. A high correlation coefficient (p < 

0.001) between P. aeruginosa and indicator bacteria was obtained at site LE. No 

significant correlations were found between P. aeruginosa and total coliforms, faecal 

coliforms and faecal streptococci at sites LA, LD, LG and VI. Bacteria die-off or 

survival in the water environment has been broadly attributed to a variety of physical, 

chemical and biological factors and processes. Thus the different correlations between 

P. aeruginosa and indicators in urban sewage discharges probably reflect the 

characteristics of urban sewage from different sources of pollution and under different 

weather and water quality conditions. Bonde (1977) relates the presence of P. 

aeruginosa in faecal polluted waters to the incidence of faecal coliforms. The larger the 

numbers of coliforms the more frequently P. aeruginosa was isolated. Vicente et aZ. 

(1991) also suggests that total coliforms, faecal coliforms and faecal streptococci could 

be considered adequate indicators of the presence and density of P. aeruginosa in 

natural waters, as these parameters showed the best correlations with P. aeruginosa. 

According to the results in this study, there were not consistently such relationships 

observed at all sites in both cities. 

One valuable application of the faecal streptococci indicator system in stream pollution 

investigations has been through correlations with the faecal coliform group. Faecal 

streptococci are present in the faeces of warm blooded animals and in wastewater 

polluted with such faeces. Faecal coliform bacteria, however, are more numerous than 

faecal streptococci in the faeces of man. During the study, most of the sampling sites 

in the two cities present FC/FS ratios greater than 0.7, suggesting more a human faeces 

origin in the urban sewage than animal according to Geldreich (1976)'s suggestion. 

Sites LA (37.5 %) and LD (25 %) possessed a higher percentage of FC/FS ratios of less 

than 0.7 than sites LB and LE. It is possible that more animal faeces have their origin 

at those two sites than at others included in the survey. 
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FC/FS ratios must however be applied with care. These correlations are most 

meaningful when developed from bacterial densities for samples taken from combined . 

sewage and receiving stream. Once these organisms are diffused into the sewage and 

receiving stream, factors of water temperature, available organic nutrients, toxic metal 

ions such as copper, zinc, silver, etc., unfavourable water pH below 4.0 or above 9.0, 

and other ecological forces may alter the inter relationships between these indicator 

systems during flow - time. The use of a ratio relationship for stream samples would 

therefore only be valid during the initial 24h travel time down stream from point of 

pollution discharge into the receiving stream (Geldreich 1969). It is obvious that ratios 

must be interpreted with care and certainly they do not provide undisputed indicators 

of the pollution source. 

4.3.3. Characteristics of Bacterial Loads 

Figures 4.13 to 4.16 show the comparison between logarithm of bacterial densities 

(expressed as Log MPNIlOO ml) and bacterial loads (Log MPN/m3.s·1
) in order to 

compare the changes between bacterial levels and bacterial loads that occur between dry 

weather and storm events during the time of study. There were two typical winter 

rainfall events (26/11/90 with rainfall total of 8.6mm and an event on 9/1/91 with 

rainfall of 16.3mm) in North London and one rainfall event in the early summer 

(23/3/91 with rainfall of 9.5mm) in Valencia during the period of study. 

Flow is a important factor in term of its effect on bacteria loads. At site LA, bacterial 

loads show sharp increases for both indicator bacteria and P. aeruginosa at a recorded 

flow of 0.54 m3/s (Table 4.10) on the second rainfall day (9/1/91), even though 

bacterial levels recovered do not show any remarkable increase (Fig. 4.13a). This 

represents the result of a relatively high flow which was 20 - fold higher than the 

average DWF of 0.027 m3/s. At sites LD, LE and LI, however, the changing trends 

of both bacterial loads and bacterial levels were very similar during the time of study. 

It is possibly due to the flow was not remarkably high during rainy days (Figs. 4.13b 

and 4.14). At site LC, the flow was 1.6-fold and 2-fold higher than average dry 
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weather flow of 0.137 m3
/ s on the first rainy day (26/11/90) and the second rainy day 

(9/1/91) respectively, but the levels of bacterial loads did not show notable changes. 

during the rainy days. Similarly there were no significant changes of bacterial loads on 

the rainy day (23/3/91) at site VH, even though the rainy day flow was 5-fold higher 

than the average dry weather flow of 0.028 m3/s (Fig. 4.15). These results demonstrate 

that bacterial loads only increase noticeably when flow is significantly higher than 

average dry weather flow. 

Bacterial loads are also correlated with bacteria levels. At receiving stream site (LG) 

in London, although the highest flow of 0.853 m3/s (Table 4.10) was recorded on the 

first rainfall day (26/11/90), which was 7.5-fold higher than the average DWF of 0.113 

m3/s, bacterial loads did not show any remarkable increase. On the second rainy day 

(9/1/91), the flow (0.345m3/s, Table 4.10) was about 3-fold higher than the average 

dry weather flow of 0.113 m3/s, but the levels of all indicator microorganisms and P. 

aeruginosa loads do show notable increases. Comparison of bacterial levels between the 

two rainfall days, show that bacterial levels of total coliforms and faecal coliforms were 

about 2 log scales higher on the second rainy day (9/1/91) than the first (26/11/90). 

Faecal streptococci and P. aeruginosa were also one log scale higher on the second 

rainy day than the first (Fig. 4.16a and b). It is possible the second rainy day sample 

taken was on the peak of bacterial flush, because higher levels of bacterial were also 

recorded on the second rainy day than the first. Bacterial level is correlated with both 

flow and flush peak, thus sampling time is a very important factor during the rainy day. 

Ellis (1985b) and Jefferies et al. (1989) have suggested that the peak microbial 

concentrations are often delayed behind the peak flow. Jacobs and Ellis (1991) have 

pointed out that only 36% of the total bacterial mass may be discharged during the first 

65 % of mass flow volume 

Past research has demonstrated that the levels of indicator bacteria in stream water tend 

to increase during individual storm events (Matson et al., 1978; McDonald and Kay, 

1981; Hunter and McMonald, 1991). This has been explained either by the enhanced 

input of bacteria to stream water from a surrounding land store caused by the generation 

of storm runoff (Davis et al., 1977) or by the wash-out of bacteria existing in stream 
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bed sediments as stream discharges increase (Kay and Mcdonald, 1982). Kunkle (1970), 

Baxter - Potter and Gillil (1988) as well as Dan (1991) have also shown that there is . 

a relationship between bacterial levels and flow. According to the results of the present 

study, the levels of bacteria recovered at combined sewage sites and receiving stream 

sites in both North London and Valencia showed similar relationships between flow and 

bacteria levels, but sometimes vary according to flow and sampling time. 

Flow is an extremely important environmental factor for bacterial pollution in urban 

sewage discharges according to the present study. According to the study, bacterial 

loads can be correlated with bacterial levels recovered during DWF and low flow rainy 

days. However, under high flow conditions, bacterial loads present a much more 

serious pollutant threat than bacterial levels. 

4.3.4. Comparison of Indicator Microorganisms and Pathogenic Bacteria Levels 

between Sewage and Sediment for both North London and Valencia 

The weather conditions differ markedly between North London and Valencia. Sampling 

in North London took place during a cold wet winter in comparison with the dry hot 

early summer period in Valencia. A comparison of the geometric means for urban 

sewage runoff between the two cities is shown in Figure 4.17. 

Comparison of the bacterial levels recovered from sanitary wastewater at site LC (North 

London) and site VH (Valencia) are similar, although both sites are located in different 

countries and are exposed to different climate conditions. The mean sewage temperature 

was not found to be very different at either location. The sewer at site LC was at a 

depth of 2m under the ground in North London and even during the winter, the mean 

temperature is 15.9°C (Table 4.9), which is reasonably close to the mean of 19.5°C 

(Table 4.15) recorded at site VH during the early summer in Valencia. Furthermore, 

as they both carried DWF sanitary wastewater heavily polluted with human faeces, the 

levels of total coliforms, faecal coliforms, faecal streptococci and P. aeruginosa 

recovered were similar. Salmonella were found to be present in all samples at site VH 
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and in 85.7 % samples at site LC. 
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Figure 4.17: The Comparison of levels of bacteria recovered in combined sewage 

between North London and Valencia. 

Comparison of the microbial quality in combined sewage between North London sites 

(LA, LB, LD and LE) and the Valencia site (VI) shows that the geometric means of 

bacteria in Valencia were obviously higher than the mean value for all combined 

sewage sites in North London. The levels of total coliforms, faecal coliforms and faecal 

streptococci recorded in Valencia were generally about 100 - fold higher than in North 

London with the levels of P. aeruginosa recorded in Valencia being 50 - fold higher 

than in North London and approached the levels of DWF sanitary wastewater in North 

London. Similarly, there were higher levels of bacteria recorded at Site VI (beach 

outfall) in Valencia than site LG (lower reaches of receiving stream) in North London. 

For instance at site VI, the geometric mean of total coliforms was 4.5 x lOS MPN/lOO 
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ml and of faecal coliforms was 3.0 x lot MPN/lOO ml. At site LG, the Geometric 

mean of total coliforms was 3.0 x lot MPN/lOO ml and faecal coliform was 7.9 x 1()3 . 

MPN/100 ml. 

Generally, the levels of combined sewage bacteria found under the hot dry climates 

conditions prevalent in Valencia were much higher than those observed under the wet 

and cold conditions of North London. The results also reflected the relative urban 

environmental healthl sanitary conditions and degree of urbanization occurring in the two 

regions. There were more unpaved and open areas, building sites and undeveloped areas 

in the Benimeclet catchment of Valencia than in the well urbanized North London 

catchment. 

Figure 4.18 shows the comparison of the bacterial loading between sanitary wastewater, 

combined sewage, receiving stream and beach outfall in North London and Valencia. 

In sanitary wastewater (sites LC and VH), the average bacterial loads at site LC (North 

London) were about 4.0 - fold higher than site VH (Valencia). This is due to a higher 

mean flow value (0.158 m3/s) at site LC than at site VH (0.037 m3/s). From the view 

point of public health, it is more polluted at site LC than at site VH. But P. aeruginosa 

loads were higher in Valencia than in North London, which result from higher levels 

of P. aeruginosa recovered at site VH than site LC. For the combined sewage, the 

levels of bacterial loads in Valencia (site VI) were higher than the mean values of sites 

LA, LD and LE in North London. Similarly, higher bacterial loads were identified at 

Site VJ (beach outfall in Valencia) than at Site LG receiving stream (in North London). 

These results are consistent with the bacterial levels recorded. 

The combined sewage and beach outfall in Valencia were more heavy polluted than the 

combined sewage and receiving stream in North London. These results are also 

consistent with bacterial levels recorded. 
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Figure 4.18: Comparisons of bacterial loads between North London and Valencia 

The graphs of Figures 4.19 and 4.20 demonstrate different levels of bacteria in water 

and sediment existing during the time of study at sites LE, LG, VH and VJ. Generally, 

the variation in levels of bacteria found in sediment corresponded with levels of bacteria 

in water for combined sewage and receiving stream water. At site LE, faecal 

streptococci in sediment were recovered at higher levels than in sewage for the samples 

taken on 17112/90 and 9/1/91. P. aeruginosa were also recovered at higher levels in 

sediment than sewage for samples on 4/12/90 and 17112/90 (Fig. 4.19). Similar trends 

were also found at the receiving stream site LG and beach outfall site VJ on some 

sampling days (Fig. 4.20), but there was no such trends to be found at site VH. The 

variation of bacterial levels between water and the sediment column is possibly affected 

by variable urban combined sewage discharges. However, bacterial levels in sanitary 

wastewater were consistently higher in the water column than in sediment due to 

heavily polluted sewage effluent. In previous studies, many workers (Hendricks, 1971; 

Van Donsel and Geldreich, 1971; Grimes, 1975,1980; Matson et al., 1978) have found 

higher levels of microorganisms recovered from river sediments than water. In the 
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present study, however, the sediment/water ratios were variable in the urban receiving 

stream and combined sewage due to variable polluted sewage discharges. 

The decreased bacterial levels from the top to the bottom layers of the sediment indicate 

particular characteristic of bacterial survival in sediments. However, at site LE, the 

levels of faecal streptococci were only slightly increased from layer 1 to layer 2, 

possibly due to faecal streptococci survival being longer in sediment than in the case 

for other indicators. Sayler et aZ. (1975) and Grimes (1980) have reported that faecal 

streptococci remain viable longer than other organisms in sediment. Kibbey et aZ. 

(1978) also showed that S. jaecalis survived for long periods of time (at least 12 weeks) 

in coal and moist soil if sufficient nutrients were available. 

The above analysis and discussion strongly supports the hypothesis that sedimentation 

is an important factor in distributing the bacteria vertically (Dan and Stone, 1991). 

Densities of bacteria in different layers of sediment greatly depend on the oxygen 

content and nutrient condition (Collins, 1977). The distinctive high survival rates of 

faecal streptococci found in sediment in this study indicates that each bacteria has its 

own specific survival rate and unique response characteristics that determine its 

distribution over depth and time. 

4.3.5. Characteristics of Diurnal Bacterial Discharges in Sanitary Wastewater 

In continuous effluent samples, the peaks of bacterial discharge were observed around 

06.00 - 08.00 in the morning and 22.00 in the evening for site LC in North London. 

In Valencia, the peaks of bacterial discharge were observed at 18.00 and 24.00 in the 

evening for site VH. These peaks reflect the principal meal times and social domestic 

activities in North London which are just after breakfast and dinner time and in 

Valencia which are after lunch (taken from 14.00 - 16.00 in Spain) and late dinner. P. 

aeruginosa was higher at 09.00 from site VH following breakfast and during the early 

morning peak of domestic water use. The results therefore probably reflect normal 

social domestic activities patterns of North London and Valencia with the social 
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variations largely accounting for the quality of sewage. 

This data show similar trends to previous works (Gameson, 1978; Jefferies et at., 1989) 

with typical daily variations in bacterial counts occurring during cold mid-winter in 

North London and hot early summer in Valencia. FC/F ratios were greater than 4 

throughout the 24 hours sampling period, indicating as would be expected, that the 

pollution was mainly of human rather than animal origin. 

4.3.6. Principal Component Analysis of Selected Environmental Variables with 

Indicators Bacterial and P. aeruginosa 

Principal Component Analysis (PCA) involves the extraction of the eigenvalues and 

eigenvectors from the matrix of correlation coefficients of the original variables. PCA 

finds successively the axes (components) of the hyperellipse defined by the data points 

in n-fold hyperspace. The axes have lengths (eigenvalues) and directions (defined by 

eigenvector coefficients). A distinctive characteristic of PCA is its data reduction 

capability. This multivariate technique enables one to see whether some underlying 

pattern of relationships exists, such that the data may be reduced to a smaller set of 

components (Nuttall, 1982). 

The principal components were constructed for the data of DWF sanitary wastewater 

sites LC and VH, combined sewage sites LD and VI, receiving stream site LG and 

beach outfall site VJ, respectively. For site LC, the first two components accounted for 

79.8 % of the total variance (Fig. 4.21a), There was almost the same contribution to 

the first axis (quantitative gradient) for P. aeruginosa (PA), total coliform (TC), faecal 

coliform (FC), faecal streptococcus (FS) and pH, but their position on axis 2 produced 

a difference between them with pH being above 0 point of axis 2 as well as TC and FC 

being below. P A and FS were above the zero point. The points representing TC and 

FC were also very close. The flow variable fell opposite to the bacteria along axis 1. 

However, for site VH with the first two components accounted for 57.3 % of total 

variation (Fig. 4.21b), most of the variations spread contributed on the left of the zero 
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point to the first axis except flow. The major components for the two sites were 

dominated by flow. There were obvious negative correlations between bacteria and flow . 

at site LC. Site VH also presented similar correlations between flow and TC, FC and 

PA respectively. BODs was also included in this components for site VH. 

A change in component structure was apparent for the combined sewage sites LD and 

VI with the first two components accounted of 73.1 % and 58.6 % respectively (Fig. 

4.22a and b). For site LD, flow presented a relative high value to axis 2 and low value 

to axis 1. The value of temperature presented higher values to axis 1 at site LD than 

site LC. The points of bacteria location were packed. At site VI, FS and PA had almost 

the same contribution to the first axis as well as FC and FC. BODs fell opposite to flow 

with FS and P A occurring along axis 1. TC and FC packed together with the position 

opposite flow to axis 1 as well as opposite to pH and DO on axis 2. Fig. 4.23a and b 

shows the first two components explained 63.4 % and 71.1 % for site LG and site VI, 

respectively. Generally, dispersive contributions of variations presented at site LG. TC 

and FC appeared relatively close as were PA and FS which were close to flow than TC 

and FC. TC, FC and PA were packed again at site VI with FS being opposite to them 

on axis 1. Flow also presented the opposition relationship with bacteria at axis 1. 

Generally, flow presented negative correlations with bacteria for sanitary wastewater 

samples in both North London and Valencia. The relationship of contributions were 

clearer for site LC than site VH, probably due to the underground sewer in North 

London being less effected by environmental factors than that part of the open sewer 

(VH) in Valencia. However, the closer relationship between flow, FS and PA were 

show in combined sewage samples at site VI than site LD. The results indicated that 

there are significant correlations between the levels of bacteria and flow in combined 

sewage, especially for FS and PA in Valencia. At sites LG and VI, flow also presented 

better correlations with FS and PA than for TC and FC. From the view of the 

relationships between all variables, the snslysis showed there were more close 

relationships between BODs and bacteria than flow and bacteria for all six sites. In the 

first component, BODs was the more dominant variable at sites VH and VI, but at site 

VI, BODs was a subordinate variable. It is consistent with the low levels of bacteria 
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recovered at site VJ. 

The results described here indicate the complex interrelationships of selected 

environmental factors and their influence on bacterial population dynamics. PCA 

allowed an identification of the degree of redundance between selected bacteria and 

environmental factors by the calculation of correlation coefficients. It seems to be 

difficult to establish an equation between selected microorganisms and environmental 

factors due to the problems brought about by the stabilization of the variance. 
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4.4. Summary 

1). In both North London and Valencia, the highest levels of indicators, P. aeruginosa 

and high percentage of Salmonella were recovered in DWF sanitary wastewater. High 

levels of indicators, P. aeruginosa and Salmonella were recovered in combined sewage, 

receiving stream water and beach outfall. The levels of bacteria in sanitary wastewater 

for both cities are very similar even given the different weather conditions. For 

combined sewage, the geometric mean of both bacteria levels and loads in Valencia 

were higher than in North London. Similarly, there were higher levels of bacteria 

recovered at the beach outfall in Valencia than from the receiving stream in North 

London. The quality of urban runoff waters was very poor from a microbiological point 

of view. 

2). High levels of bacteria were also recorded in the sediments and the results 

demonstrated that most bacteria abounded in the top layer of sediments, this may of 

cause be resuspended by turbulence. For combined sewers, the levels of bacteria in 

sediment were lower than these in the water column. However, the levels of bacteria 

in sediment were higher than in the water in the receiving stream on rainy days. Faecal 

streptococci and P. aeruginosa showed distinctive high sediment I water ratios. 

3). Bacterial loads are a useful parameter to be used in such a study as this. It has been 

suggested that the dynamic bacterial population can be determined by the calculation of 

an activity index expressed as Log MPN/m3.s-1
• There are close relationships between 

bacterial level and flow during dry weather flow conditions and low flow rainy days. 

However under high flow conditions, bacterial loads present a more significant pollution 

threat than bacterial levels. 

4). There were strong positive correlations between levels of total coliforms and faecal 

coliforms for all sampling sites for both North London and Valencia. There were no 

significant correlations between faecal coliforms and faecal streptococci. No consistent 

correlation between P. aeruginosa and indicators was found in combined sewage for 

105 



either North London or Valencia. 

5. peA analysis yields detailed information on the nature and strength of relationships 

between the variables, especially between the selected environmental factors and 

bacterial population in different kinds of water samples between the two cities. 

According to principal component analysis, flow presented a negative correlation with 

microorganisms for sanitary wastewater samples in both North London and Valencia. 

There were significant positive correlations between flow and microorganisms in 

combined sewage. There were closer relationships between BODs and microorganisms 

than between flow and microorganisms. 

6). One of the principal aims of the study was to determine whether variations in the 

bacterial content of sewage effluent could be correlated with time and people's daily 

activity. It can be concluded that such a conclusion can be made. 
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Chapter 5: Characteristics of Indicator Microorganisms and 

Pathogens in Road Surface Runoff 

5.1. Introduction 

Geldreich et al. (1968) have reported that stonn waters from urban streets and suburban 

residential district have bacterial densities similar to stonn water runoff from cultivated 

farm land. Other studies (Weibel et al., 1964; Evans et al., 1968; Sartor et al., 1974; 

Qureshi, 1978; Gannon and Busse, 1989) have shown that runoff from street surfaces 

is highly contaminated with bacteria and is similar in many aspects to wastewater. In 

addition to faecal pollution indicator bacteria, the presence of pathogenic bacteria in 

stonnwater has frequently been reported. Evans et al. (1968) demonstrated the existence 

of a potential health hazard by isolating Salmonella thompson from a separated sewer 

stonnwater sample in an urban business district. Studies on sources of bacteria found 

in stonnwater runoff from residential and light commercial area have indicated that 

bacteria are predominantly of non-human origin (Benzie and Courchaine, 1966; 

Geldreich et al., 1968). However, in several instances pathogenic bacteria have also been 

isolated in runoff waters (Sartor et al., 1974; Dutka, 1977; Qureshi and Dutka, 1979), 

demonstrating the existence of a potential health hazard. 

This chapter provides some infonnation on the non-human sources of microbial 

indicators found in stonn runoff from different types of urban environments as a basis 

for comparison of the characteristics of stonnwater runoff between North London and 

Valencia under different weather conditions. 

5.2. Results 

5.2.1. The Levels of Indicator Microorganisms and P. aeruginosa in Stormwater 

Runoff in North London 

Four stonn events were monitored during the study period. The levels of 
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microorganisms recovered in storm water runoff samples (Table 5.1) reflected the 

surface runoff quality and the state of sanitation in the local neighbourhoods. The. 

samples from site LL (Open Market) presented a higher geometric mean than other 

sites; total coliforms were 1.4 x 1Q4 MPN/100 ml, faecal coliforms were 1.3 x 103 

MPN/100 ml, faecal streptococci were 2.0 x 1Q4 MPNIlOO ml and P. aeruginosa were 

1.2 x 102 MPN/100 ml (Fig. 5.1). The geometric mean level of faecal streptococci 

recovered at site LL was consistently higher than faecal coliforms at all five sites. The 

highest geometric mean for faecal streptococci (2.0 x 1Q4 MPN/100 ml) occurred at site 

LL, followed by site LO (residential area, 8.9 x 1Q3 MPN/100 ml), site LK 

(commercial area, 4.9 x 1Q3 MPN/100 ml), site LM (car park, 1.1 x 103 MPN/100 ml) 

and site LN (urban main road, 1.0 x 1Q3 MPN/100 ml). The levels of bacteria observed 

at site LN were relatively much lower than any other site for the first three samples 

(Table 5.1). However, levels of total coliform, faecal coliform and faecal streptococcus 

were unusually high for the fourth rainfall-melting snow samples on 12/2/91. P. 

aeruginosa levels were not particularly high. The levels of total coliforms, faecal 

coliform and faecal streptococcus for this winter event were 1.3 x 1Q4 MPN/100 ml, 

4.9 x 1Q3 MPN/100 ml and 7.5 x 1Q3 MPN/100 ml respectively. 

From both Table 5.1 and Fig. 5.1, it can be seen that microbial levels fluctuated over 

the time of study at each site except site LM where little variability is presented. 

The levels of P. aeruginosa showed the biggest variation, fluctuating from a minimum 

of zero up to 7.5 x 1()2 MPNI 100 ml at site LL. In contrast, the least variation in P. 

aeruginosa levels were found at site LN ranging from 2.3 MPN/100 ml to 9.3 

MPNIlOO ml (Fig 5.1). 
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Table 5.1: The levels of microorganisms in stormwater samples (MPN/100 ml) 

Date Site TC FC FS PA 

LK 8.0xl02 3.0x102 4.5x10" 7.5x10 

25/11/90 LL 1.7xlO" 3.0x1Q3 1.5xlOs 4.5x102 

LM 1.7x1()3 1.1x1Q3 9.5x102 NF 

LN 5.0x102 8.0xlO 4.5x1Q3 4.5 

LO 7.0x1Q3 3.0xlQ3 4.5x1OS 4.5x102 

LK 3.0xl02 1.3x102 7.5x1Q3 4.5x102 

8/12/90 LL 1. 7x10s 3.0x1Q3 2.0xlOs 7.5x102 

LM 8.0x102 2.3x102 7.5x102 NF 

LN 1. 7x 102 8.0xlO 7.5x102 4.5 

LO 1.1x102 3.0x10 4.5x102 2.5xlO 

LK 4.3x102 2.3x102 7.5x102 4.3x10 

15/12/90 LL 1.1x10" 9.8x102 2.3x103 7.5x102 

LM 7.5x102 5.0x102 4.3x102 2.3 

LN 2.3x102 1.1x102 4.3x102 2.3 

LO 5.0x102 3.0x102 7.5x1Q3 1.1x102 

LK 4.9x102 2.3x102 2.3x1Q3 NF 

12/2/91- LL 1.1x1Q3 3.3x102 2.3x1Q3 NF 

LM 1. 3x 103 4.9x102 4.3x103 4.3 

LN 1.3xlO" 4.9x1Q3 7.5x103 9.3 

LO 7.9x102 2.3 4.3x103 NF 

TC: Total coliforms FC: Faecal coliforms FS: Faecal streptococci PA: P.aeruginosa 

NF: Not found. *: Snow melt runoff. 
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Figure 5.1 Geometric Mean, maximum and minimum levels of bacteria from storm events in North London. 
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Figure 5.2 shows the relationships between faecal coliform and faecal streptococcus in· 

storm water samples. All samples from the five sites had FC/FS ratios of consistently 

less than 0.7 except one sample at the car park site LM which had a ratio of between 

4.0 and 0.7. 
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Figure 5.2 Relationships between faecal coli forms and faecal streptococci 

in storm water samples in North London. 

5.2.2. The Levels of Indicator Microorganisms and P. aeruginosa in Stonnwater 

Runoffs in Valencia 

Densities of microorganisms recovered from stormwater runoff at sites within Valencia 

are presented in Table 5.2. All results were from summer storms during 1990 and 

1991. Geometric means and bacterial ranges for all sites are presented in Fig. 5.3. The 

highest geometric mean values for faecal streptococcus were found at sites VT 

(residential area, 1.2 x 106 MPN/100 ml) and VQ (open market, 3.6 x 105 MPN/100 

ml). The highest geometric mean values for P. aeruginosa were also found at sites VT 

and VQ (1.2 x IcY MPNIlOO ml and 6.4 x 10 MPNIlOO ml respectively). At the 
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Table 5.2: Levels of microorganisms in storm water samples (MPN/l00 ml) 

Date Site TC FC FS PA 

16/5/90 VU 7.0xlQ3 2.2xlQ3 2.3xlOS NF 

25/5/90 VT 1.1xlOS 4.9xl06 9.5x106 2.3xlQ2 

30/5/90 VP 4.9xlQ3 1.7xlQ3 4.3xlQ2 4.0 

VU 1.lxlQ4 4.6xlQ3 4.3xlQ3 4.3 

7/6/90 VT 1.1xlOS 2.8xlQ4 2.1xl06 1.5xlQ2 

VS 2.2xlQ4 1.3xlQ4 4.3x103 NF 

VP 3.3xlQ4 2.3x1Q4 4.3xlQ4 4.0 

9/6/90 VS 4.6xlQ4 1. 7xlQ4 4.3xlQ4 9.3xlO 

VQ 1.3xl0s 3.3xlQ4 2.lxlOS l.5xlQ2 

11/6/90 VR 1. Ix 106 3.5xlOS 4.3xlO 2.3xlO 

VP 4.9xlQ4 1.3x1Q4 4.3xlQ4 4.3 

VQ 1. 7xlOS 4.9xlQ4 2.3x106 7.5xlO 

23/3/91 VR 1. 7x 105 3.3xlQ4 4.3xlQ4 4.3 

VS 3.3xlQ4 7.9x103 4.3xlQ4 9.3 

VT 1.3xlOs 4.9xlQ4 4.3xlOs 9.3 

VU 4.9xlQ4 4.9x103 2.3x102 4.3 

VP 7.9xlQ4 2.3xlQ4 2.4xlQ4 7.5 

VQ 1. 7xlQ4 1.5xlQ4 9.3xlQ4 2.4xlO 

16/4/91 VR 1.3xlQ4 3.3x103 1.2x102 NF 

VS 1.3xlQ4 4.9x103 4.3x103 NF 

VT 3.3xlQ4 7.9x103 2.3xlOS 7.5xlO 

VU 1.lxlQ4 4.6x103 2.3x102 4.3 

TC: Total coliform FC: Faecal coliform FS: Faecal streptococcus PA: P.aeruginosa 

NF: Not found. 
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Valencia polytechnic campus site (VU), the lowest geometric mean values for P. 

aeruginosa (3.0 MPN/lOO ml) were found. 

The summary compiled in Fig. 5.4 shows FelFS ratios in the storm water runoff 

samples obtained in Valencia differs between the various sites. At Valencia polytechnic 

campus site VU, two samples showed FelFS ratios greater than 4.0, one less than 0.7 

and one between 4.0 and 0.7. The samples from residential site VT and the open 

market site VQ possessed FelFS ratios of consistently less than 0.7. The samples from 

commercial site VP presented FelFS ratios of between 4.0 and 0.7 for two samples 

with the remain two samples showing a ratio ofless than 0.7. Valencia main road site 

VS had ratios of less than 0.7 for two samples; the other two samples fell between 4.0 

and 0.7. The car park site VR was the only location where all the recorded FelFS 

ratios were greater than 4.0. 
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Figure 5.3: Geometric means, maximum and minimum levels of bacteria from storm 

events in Valencia. 
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Figure 5.4: Relationships between faecal coliforms and faecal streptococci 

in storm water samples in Valencia. 

5.3. Discussion 

5.3.1. Sources and Characteristics of Indicator Microorganisms and P. aeruginosa 

All stormwater samples collected during the study period, from both North London and 

Valencia, contained significant levels of indicator bacteria. The levels of total coliforms, 

faecal coliforms and faecal streptococci approached dilute sewage concentrations during 

each event at some sites, thus re-emphasizing the potential health hazards due to high 

levels of indicator microorganisms which are contained within storm water runoff. 

In the rainfall-snow melt event within the North London catchment (12/2/91), levels of 

total coliform, faecal coliform and faecal streptococcus found at site LN were higher 

than in any other samples. During this event, the ground was frozen and relatively 

impervious to the rain, therefore, it is possible that rainfall-snow melt mixtures were 

responsible for the high levels of microorganisms. Snowfall/slush in urban areas may 
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harbour and preserve microorganisms, especially of animal faecal origin, which 

eventually reach storm sewers and receiving waters. Another factor which may have . 

impact on the high levels of microorganisms, was roads which were paved by sand after 

snowfall for traffic safety. The sand probably contributed some external microorganisms 

into the road surface runoff. These results are consistent with Qureshi and Dutka 

(1979)'s findings in Ontario during winter period. 

The extent of "dirtiness" of the source associated with the particular land use activity 

will inevitably have an effect on the microbial quality of storm water runoff. The major 

background sources of urban surface pollution are of faeces from animals and birds 

which are washed by rainfall from the roof and street surface. At site VU (Valencia 

Polytechnic campus), which is located in the eastern suburban area of Valencia, the 

high levels of coliform could be derived from birds. The microbial densities in urban 

stormwater runoff also reflect the local population densities, the local state of sanitation 

as well as the nature of social activities. For instance, the relatively high levels of 

faecal streptococci consistently found from open market (sites LL and VQ) and 

residential areas (sites LO and VT) in both North London and Valencia were probably 

due to the concentrated social and commercial activities which take place in these 

relatively enclosed areas. The results would also tend to confirm that animal faeces are 

the main sources of bacterial pollution in urban storm waters. 

The varying range of bacterial levels found in storm water runoff from the different 

sampling sites reflect the inherent local characteristics of microbial pollution associated 

with nonpoint sources. Relatively large scale variation in P. aeruginosa and faecal 

streptococcus occurred at commercial site LK, open market site LL and residential site 

LO in North London, where more anthropogenic activity leads to contamination than 

at the car park site (LM) and the main road site (LN). This reflects the characteristics 

of urban non-point polluted sources which are inevitable affected by man's social 

activity in central urban areas. In Valencia, few such trends were to be found. 

Inversely, there were relatively small scale variations of bacterial levels in storm water 

samples between the different sites. This probably due to the levels of bacteria in 

stormwater samples at each Valencia site being constantly higher than those recovered 

in North London, so the fluctuation of bacterial levels were also affected by nonpoint 
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pollution sources. 

5.3.2. Comparison of Microorganisms Levels in Storm Water Runoff between 

North London and Valencia 

The levels of bacteria recovered in stormwater runoff between North London and 

Valencia clearly showed different microbial qualities under the different prevailing 

weather and sanitary conditions. The bacterial geometric means at each site within 

North London and Valencia are shown in Fig. 5.5. 

The bacterial geometric mean densities recovered in storm water runoff within 

Valencia, particularly during the hot dry summer period, were higher than those found 

in North London during the cold wet winter at the commercial sites (VP), open market 

sites (VQ), urban main road site (VS) and residential site (VT). At the car park site 

(VR), total coliforms and faecal coliforms within Valencia were higher than London, 

but faecal streptococci and P. aeruginosa were lower than London. The geometric 

means of total coliform and faecal coliform at all sites were several hundred fold higher 

in Valencia than North London. Commercial activity does have an impact on the 

sanitary environment of road surfaces and the microbial quality of storm water runoff 

even in the cold winter conditions of the UK, which has unfavourable temperatures for 

survival of the high levels of microorganisms. 

The bacterial hierarchy observed in storm water runoff from the various sampling sites 

in North London and Valencia vary according to the type of bacteria recorded. For 

instance in North London, in terms of the degree of faecal streptococci pollution at each 

site the following order of incidence was noted: open market> residential area > 

commercial area > urban main road> public car parking. In Valencia, the order was 

residential area > open market > urban main road > commercial area > Polytechnic 

campus > public car parking. The order reflects the characteristics of urban storm 

water runoff pollution which are influenced by the principal land use and social activity. 

The open market and residential areas are main major nonpoint pollution sources being 

derived from animal and rodent faeces as well as from dust, litter and normal biogenic 
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synthesis of organic materials accumulating on the surface. 

Several other investigators (Burm and Vaughan, 1966; Benzie and Courchaine, 1966; 

Geldreich et al., 1968; Gannon and Busse, 1989) have reported high levels of total 

coliform, faecal coliform and faecal streptococcus found in stormwater. Geldreich et 

al.(1968) reported seasonal variations (with autumn densities higher than winter) in the 

levels of indicator bacteria in storm water. Benzie and Courchaine (1966) as well as 

Qureshi (1978) found that the levels of coliforms were lower in storm water runoff 

during the winter and early spring than for the warmer weather periods. Similar results 

were obtained in the present study as the total coliform, faecal coliform and faecal 

streptococcus densities were considerably higher (in Valencia) in samples obtained 

during summer than those collected in winter periods (North London). 

Comparison of FC/FS ratios in storm water runoff from different sampling sites showed 

a distinct difference between North London and Valencia. In North London sites, most 

samples had FC/FS ratios less than 0.7; thus the pollution was highly likely to be of 

animal origin according to Geldreich and Kenner, 1969. In Valencia, three samples had 

FC/FS ratios greater than 4.0 at the public car park site (VR) with two samples greater 

than 4.0 at the polytechnic campus site (VQ) as well as other samples being FC/FS 

ratios between 4.0 and 0.7. According to Geldreich and Kenner (1969) 's suggestion, 

there would be slightly more of human pollution origin in Valencia than London. 

Some published literature has reported conflicting information in respect of FC/FS 

ratios. Hussong et al. (1979) for example, found the FC/FS ratios in waterfowls faeces 

to be similar to those of human faeces. Wheater et al. (1979) found FC/FS greater than 

4.0 in faecal samples of cattle, sheep, pigs, ducks and turkeys. Olivieri et al. (1989) 

also concluded that the applicability of the conventional FC/FS ratio to the 

determination of sources of bacterial population in urban runoff is questionable. 

Therefore the FC/FS ratio should not be accepted unconditionally as a suitable criteria 

for bacterial pollution, especially in stormwater runoff containing multiple contaminant 

sources. Based on the results of this study, the comparison of FC/FS ratios between 

North London and Valencia has nevertheless provided some useful information in 

respect of the differences in pollutant origins. Most samples had FC/FS ratios of less 
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than 0.7 in both cities, thus the pollutant was highly likely to be of animal origin. 

5.4. Summary 

1). High levels of faecal pollution indicator bacteria and notable elevated levels of P. 

aeruginosa were found in stormwater samples from both North London and Valencia. 

These results indicate that impermeable surface urban storm water discharges can be 

major sources of intermittent microbial pollution to urban receiving waters. Water 

bodies receiving untreated storm water are therefore unlikely to be suitable for bathing, 

swimming and general contact recreation because such discharges can be potential 

causes of human and animal infections. 

2). Higher levels of microorganisms and pathogenic bacteria were found in stormwater 

runoff within Valencia under warm summer conditions than North London under the 

cold winter, but for the view of public health hazards, the levels of microorganisms in 

storm water runoff in North London are still not acceptable. 

3). Distinctive levels of bacteria associated with varying land use activity have been 

identified. Storm water from high population density urban neighbourhoods having 

generally poor sanitary conditions contained higher densities of microorganism 

indicators and of P. aeruginosa. The levels of bacteria in storm water from these areas 

approached levels found in raw sewage. In contrast, storm water from cleaner low 

population density neighbourhoods was associated with lower levels of bacteria. 

4). The results of the study showed the importance of faecal streptococci rather than 

total coliforms to be a more realistic microbial indicator of storm water pollution. The 

FelFS ratio can provide some first order, screening information on sources of pollution 

in urban storm water. 
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Chapter 6: Ratios of Faecal coliforms and Faecal streptococci in 

Stored Water Samples and Bacterial Release from Combined Sewer 

Sediment 

6.1. Introduction 

The survival of a microorganism in an environment to which it is not indigenous is 

dependent upon its ability to withstand physical, chemical and biological conditions. 

Knowledge of the survival characteristics of indicator microorganisms and pathogenic 

bacteria in a variety of aquatic environments is of prime importance to public health. 

Although there have been many studies on the survival of microorganisms in aquatic 

environments both in situ and in the laboratory (Vasconcelas and Swartz, 1976; Rhodes 

and Kator, 1988; Lim and Flint, 1989), the characteristics of Fe/FS ratios in different 

urban runoff waters are less well defmed. This may, however, proved a useful approach 

to ascertain whether bacterial pollution of waters is of human or animal origin. The aim 

of this part of study is therefore to detennine the relative change of FC/FS ratios in 

DWF sanitary wastewater, combined sewage and receiving streams under different 

controlling temperatures. The methods were carried out as described in section 3.5 of 

Chapter 3. 

Several studies of bacterial survival have been carried out in sediment systems, which 

have indicated that sediments may play an important role in the survival and distribution 

of indicator and pathogenic bacteria within the water environment. (Van Donsel and 

Geldreich, 1971; Matson et al., 1978; Labelle et al., 1980; Laliberte and Grimes, 1982; 

Burton et al., 1987 and Marino and Gannon, 1991). Sediment results as described in 

Chapter 4 have also revealed very high levels of indicator and pathogenic bacteria in 

combined sewers and receiving stream. Apparently, high concentrations of indicator and 

pathogenic bacteria in the sediments can be due to extended survival (Gerba and 

McLead, 1976; Goyal and Adams, 1984 and Dan and Stone, 1991). Matson et al. (1978) 

and Grimes (1975) have observed a phenomena of bacterial resuspension / release from 

the sediment during stonns and dredging operations in rivers. These studies have 

demonstrated that sediments can harbour many bacteria and thus could pose a potential 
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health hazard as a result of bacterial release from sediment, especially in the case of 

urban streams which have variable discharges. The present study was undertaken to 

investigate the pattern of bacterial release from combined sewer sediment under 

continuous flow condition. The methods were carried out as described in section 3.6 of 

Chapter 3. 

6.2. Results 

6.2.1. Ratios of Faecal coliforms and Faecal sh'eptococci in Stored DWF SanitaQ' 

Wastewater and Combined Sewage Samples 

The significance of die-away rates of FC/FS ratios was investigated in samples from 

sites LA (combined sewage) and LC (DWF sanitary wastewater, Figs 6.1 and 6.2). 

FC/FS ratios shown at zero time represent levels recovered at beginning of experiment. 

Figs. 6.1 and 6.2 illustrate the change of FC/FS ratios over 120 hours at 20°C and 4°C 

in the dark. 

At 4°C, the FC/FS ratio were relatively stable during the 120 hours of the experimental 

period for combined sewage and DWF sanitary wastewater samples. FC/FS ratios ranged 

between 1.22 and 1.36 in sanitary wastewater and 1.08 to 1.18 in combined sewage. 

At a temperature of 20°C, FC/FS ratios in DWF sanitary wastewater and combined 

sewage samples showed almost parallel fluctuation trends. In DWF sanitary wastewater, 

the FC/FS ratios ranged between 1.22 and 1.69 with the ratio on the final day being 

1.63. For combined sewage, FC/FS ratios ranged between 1.16 and 1.6 with the ratio on 

the final day being 1.30. 
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Figure 6.1: Changing Ratios of FC/FS in stored samples at 4°C. 
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Figure 6.2: Changing Ratios of FC/FS in stored samples at 20°C. 
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6.2.2. Experiments of Microorganisms Release from Combined Sewer Sediment 

The main aim of this part of the study was to investigate the release of bacteria from 

urban combined sewer sediment. The trends of bacterial release varied among the tested 

bacteria and the time of the experiments. Fig. 6.3 illustrates the typical release curves 

observed. 

All test bacteria increased sharply in the water column during the first hour (Fig 6.3). 

The release of total coliform rose continuously until the third day to 3.3 x 105 MPNjl00 

mI, than decreased to 4.9 x 103 MPNjl00 mI by the ninth day. Faecal coliforms 

increased up to 1.7 X 105 MPNjl00 mI within 6 hour, then decreased to 7.9 x 103 

MPNjl00 mI by the ninth day. For faecal streptococci, high levels of bacteria were 

released from sediment into the water in the fIrst hour, but then gradually declined 

to 2.3 x 102 MPNj100 mI at the end of experiment. The highest release of 

microorganisms was observed between 1 and 3 hours for P. aeruginosa, but the numbers 

then decreased rapidly and the organisms were not detected after the 3rd day. 

The levels of sediment bacteria also show noticeable changes during the experiment (Fig 

6.3). Before the experiment, the levels of total coliforms in sediment were 7.9 x 105 

MPNjl00 mI, faecal coliforms were 7.9 x 104 MPNj100 mI, faecal streptococci were 2.3 

x 105 MPNjl00 mI and P. aeruginosa were 2.3 x 103 MPN/IOO mI. At the end of 

experiment (the ninth day), the levels of total coliform decreased to 1.3 x 104 MPNj100 

mI, faecal coliform decreased to 3.3 x 103 MPNjl00 mI, faecal streptococci decreased 

to 2.3 x 103 MPNj100 mI and P. aeruginosa was not found. Thus, the levels of 

indicators had decreased by about 1.5 - 2.0 log MPNjl00 m1 during the experiment. 

Fig. 6.4 shows the level of dissolved oxygen and pH recorded during the experiment. 

Dissolved oxygen decreased gradually from the third hour (6.5 mg/l) to the third day 

(2.8 mg/l), then increased by the ninth day to 5.5 mg/l. pH remained stable level during 

the experiment at about 7.0 ± 0.2. 

123 



Log MPN/100 ml 
7~--------------------------------------------~ 

6 

5 

4 - O----~----El * , *' * * 3 , 

2 
51 , 

1 
"8 ___ -- ___ n_ 

O 
0 1h 3h 6h 1d 

TCw ~ FCw -TCs 0 FCs 

w:water s:sediment 
TC: Total coliforms FC: Faecal coliforms 
FS: Faecal streptococci PA:P.aeruginos 

* -
3d 

FSw 

FSs 

* * 

5d 7d 9d 

-{} - PAw 

IIIlllIl PAs 

Figure 6.3: Bacteria Release from sediment of Combined Sewer. 

mg/L 
8 

7 

6~ 

5 

4 

3 

2 
0 1h 3h 

DO: Dissolved Oxygen 

6h 1d 
Time 

3d 

~DO -+-pH 

5d 7d 9d 

Figure 6.4: Dissolved Oxygen and pH Changing Pattern in Water during the experiment 

124 



6.3. Discussion 

6.3.1. Ratios of FC/FS in Stored Domestic Wastewater and Combined Sewage 

Samples 

Generally, FC/FS ratios show a relatively smaller fluctuation range at 4°C than 20°C in 

samples of DWF sanitary wastewater and combined sewage during the 120 hours 

experiments. This is probably the result of low temperature inhibiting bacterial 

metabolism, thus both faecal coliforms and faecal streptococci present slow die-way 

rates and FC/FS ratios remain relatively stable. The use of FC/FS ratio as a means of 

determining whether pollution is of human or animal origin has been questioned by 

many previous workers (Hussong 1979; Olivieri, 1989). McFeters ef at (1973) point out 

that the FC/FS ratios depend upon differential die-away rates of faecal coliform and 

faecal streptococcus. Faechem (1974) suggested that different die - away rates may 

increase the value of FC/FS ratio in determining the source of pollution. According to 

the present study, the temperature dose have an important impact on the FC/FS ratio. 

FC/FS ratios at a temperature of 4° C remain relatively stable when compared to 20°C 

for DWF sanitary wastewater and combined sewage. 

6.3.2. Bacterial Release from Combined Sewer Sediment 

This study showed the patterns of indicator bacteria released from combined sewer 

sediment and also confmned that bacteria can be resuspended / released into the water 

column by activities which disturb the sediment. This confirms the findings noted in 

previous literature which state that aquatic sediment can serve as a reservoir for 

indicator bacteria (Sayler, 1975; Gimes, 1980). 

Matson ef at (1978) have found that gradual increases in indicator microorganism levels 

in water or decreases in sediment can be significantly correlated with river flow. They 

suggest that the physical characteristics such as river flow at each sampling site regulate 

the sediment-water equilibrium of indicators. Thus, wherever contaminated sediment is 

present, the accumulation in and release of bacteria from the sediment is possible. Once 
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sedimentation occurs, the fate of the bacteria is regulated by their ability to metabolize 

benthic nutrients, withstand predatory pressure as well as metabolically compete with 

other microorganisms (Labiberte and Grimes, 1982). This probably explains the 

phenomenon of variable release rates for different bacteria observed during the 

experiment. Again, indicator and pathogenic bacteria occur at the highest concentration 

in the upper layers of sediment, which is more easily resuspended by turbulence. In the 

present study, most P. aeruginosa were released in the first 24 hours, which reflected 

their mobile characteristics. The changing trends in DO concentrations in the ambient 

water column reflects the changes recorded in bacterial levels. As the bacterial numbers 

increase in the water column, dissolved oxygen decreases due to bacterial metabolism, 

but increases again as bacterial levels decrease in the water column (Fig. 6.4). 

High levels of indicator bacteria were still found on the ninth day in the sediment 

during the experiment. Stable bacterial survival in sediment indicated that nutrients 

should not be bacterial limiting for at least nine days and confmn extended bacterial 

survival in sediments. 

The data from this experiment also indicate that bacteria can be resuspended easily even 

under low flow conditions and different amounts of each bacteria can be released at 

different times. Most of the bacteria reach release peaks within 6 hours. The 

characteristics of bacterial release do have significance, especially for combined sewage 

with variable discharges. Bacteria will be released easily when the population of bacteria 

is unsaturated within the water column. This study suggests that the sediment reservoir 

allows extended bacterial survival. Furthermore, the sediment of urban receiving streams 

and combined sewers should be considered of equal importance to bacterial density 

determinations in the water column; the two are closely related. 

6.4. SummarJ 

1). The changing Fe/FS ratios depend upon different die-away rates of faecal coliform 

and faecal streptococcus at different times after the water is contaminated by faeces. 
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2). There were different changing FC/FS ratios for different kinds of water. The 

temperature is an important factor which impacts on the ratio. There were relatively 

small changes in FC/FS ratio at the lower temperatures compared to the higher. 

3). Bacteria can be easily resuspended / released from sediment. P. aeruginosa were 

more easily released than other indicator bacteria during the experiment. The peak of 

bacterial release was found in the fIrst 6 hours. The sediments function as major 

reservoirs of total coliforms, faecal coliforms and faecal streptococci for at least 9 days 

and for P. aeruginosa for up to 5 days. 
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Chapter 7: Conclusions. 

7.1. Summary of Major Findings. 

1). Discharges from urban combined sewage systems contain large quantities of total 

coliforms, faecal coliforms, faecal streptococci and P. aeruginosa as well as a high 

percentage of Salmonella. The geometric mean of samples collected during the various 

periods of discharge of combined sewage in both North London and Valencia for total 

coliforms ranged from 1.0 x 105 MPN/ 100 mI to 1.7 X 107 MPN/100 mI, faecal 

coliforms ranged from 1.8 x 104 MPN/100 mI to 3.3 X 106 MPN/100 mI, faecal 

streptococci ranged from 4.7 x 103 MPN/100 mI to 9.8 X 104 MPN/100 mI and P. 

aeruginosa ranged from 2.7 x 102 MPN/100 mI to 1.8 X 104 MPN/lOO mI. Salmonella 

was found in 100 % of samples at the combined sewage sites VH and VI in Valencia 

and in 42.9%, 14.2% and 12.5% and 11% of samples at sites LA, LB, LD and LE 

respectively in North London. A comparison of geometric mean and percentage indicates 

that considerably larger quantities of indicator microorganisms, P. aeruginosa and 

Salmonella were found in Valencia during the warm summer than North London during 

the cold winter. 

High levels of indicator microorganisms, P. ael'uginosa and Salmonella were recovered 

at the beach outfall in Valencia. Geometric mean of total coliforms were 4.5 x 105 

MPN/100 mI, faecal coliforms were 1.7 x 105 MPN/100 mI, faecal streptococci were 2.0 

x 104 MPN/100 mI and P. aeruginosa 2.2 x 103 MPN/100 mI as well as 83.3 % of 

samples were found to contain Salmonella. Significant levels of indicator 

microorganisms and P. ael'llginosa were recovered at receiving stream (LG), total 

coliforms, faecal coliforms, faecal streptococci and P. ael'llginosa being 3.0 x 104 

MPN/100 mI, 7.9 x 103 MPN/I00 mI, 2.1 x 103 MPN/I00 mI and 7.0 x 10 MPN/IOO 

rnl respectively. No Salmonella was recovered over the time of study at this site. 

Comparison of levels of indicator microorganisms and pathogenic bacteria in DWF 

sanitary wastewater are very similar between North London and Valencia. Total and 

faecal coliforms were about 107 MPN/100 mI, faecal streptococci were about 105 
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MPN/100 mI and P. aeruginosa 104 MPN/100 mI. Salmonella was recovered in sanitary 

wastewater from 100 % of samples in Valencia and from 87.5 % of samples in North 

London. 

Generally, the quality of urban runoff waters was very poor from a microbiological point 

of view for both cities. Recently, urban reservoirs and coastal waters are increasingly 

being utilised for recreational purposes. Such water bodies are subject to intermittent 

impermeable surface water discharges which have been shown to carry significant levels 

of microorganisms and pathogens. Primary and secondary contact activities with such 

waters could therefore carry a risk of ingestion and infection. 

2). High levels of indicator microorganisms and P. aeruginosa were recovered in 

sediments from the DWF sanitary wastewater sewer, combined sewer, receiving stream 

and beach outfall. The highest levels of total coliforms, faecal coliforms, faecal 

streptococci and P. aeruginosa were 5.3 x 105 MPN/100 mI, 1.8 x 105 MPN/100 mI, 4.6 

x 104 MPN/100 mI and 5.3 x 102 MPN/100 mI respectively in sediment of DWF sanitary 

wastewater (VH). Total coliforms, faecal coliforms and faecal streptococci were about 

104 MPN/100 mI, 103 MPN/100 mI and 103 MPN/100 mI in sediment of combined 

sewer (LE) and receiving stream (LG) respectively. High levels of P. aeruginosa (102 

MPN/lOO mI) in sediment of beach outfall than combined sewer and receiving stream 

with 101 MPN/100 mI. The highest ratios of sediment to water appeared in the receiving 

stream. The ratios of sediment to water for total coliform was 0.63, faecal coliform was 

0.94, faecal streptococcus was 1.38 and P. aeruginosa 5.42. The lowest ratios of 

sediment to water appeared in DWF sanitary wastewater. The ratios of sediment to water 

were 0.0015, 0.0025, 0.35 and 0.012 for total coliforms, faecal colifonns, faecal 

streptococci and P. aeruginosa respectively. The ratio of sediment to water of faecal 

streptococci showed the highest value for sites LE, VH and VJ. At site LG, P. 

aeruginosa presented the highest ratios of FC/FS. High levels of P. aeruginosa were 

found (3.8 x 102 MPN/100mI) in sediment at receiving stream site (LG) than the 

combined sewage site (LE, 6.9 x 10 MPN/100ml). 

Indicator microorganisms and P. aeruginosa occurred at the highest level in the 

superficial upper layer of sediments. There are distinctive differences in bacterial 
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distribution found at different depths of sediment. Each bacterial species has its own 

specific survival rate and unique response characteristics that determine its distribution 

over depth and time. The sediment reservoir allow indicator microorganisms and P. 

aeruginosa to have extended survival and can be resuspended by flow. 

3). Bacterial pollutant loading was considered in this study. This index provided the 

better evidence of the dynamics of sanitary bacteria in water. From the view point of 

bacterial loads, the results were not very different between North London and Valencia, 

as far as combined sewage flows are concerned because flow rates recorded were higher 

in Valencia than in North London. For DWF sanitary wastewater, the results of bacterial 

loads were higher in Valencia than North London. The highest bacterial loads were 

found at a beach outfall in Valencia, which had higher bacterial loads than the 

equivalent receiving stream in North London. Bacterial loadings are of considerable 

importance in terms of the management of sewage prior to entry into recreational waters. 

Of equal importance is the effect of environmental factors on the survival and mortality 

of pathogens in the receiving water as well as dilution factors and dispersal rates. 

4). There were strong positive correlations between levels of total coliforms and faecal 

coliforrns at all sites. There were significant correlations between P. aeruginosa and total 

coliforms, faecal coliforms and faecal streptococci at most of the combined sewage sites. 

According to principal component analysis undertaken for six sites, flow presented a 

negative correlation with microorganisms for sanitary wastewater samples in both North 

London and Valencia. There were significant positive correlations between flow and 

microorganisms in combined sewage. There were closer relationships between BODs and 

microorganisms than flow. 

5). There are significant relationships between bacterial content of sewage effluent with 

time and man's daily social activity for DWF sanitary wastewater sewers in both North 

London and Valencia. 

6). Storrnwater runoff from high population density urban neighbourhoods with generally 

poor sanitary conditions contained high levels of indicator microorganisms and P. 
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aeruginosa. The highest levels of indicator microorganisms and P. aeruginosa were 

found at an open market site in North London and in both residential areas and open 

market sites in Valencia. The levels of indicator microorganisms and P. aeruginosa in 

the stormwater from these areas approached levels found in raw sewage. Higher levels 

of indicator microorganisms and P. aeruginosa were found in Valencia stormwater 

during the warm summer periods than in North London over winter. 

Storm water from clean low popUlation density neighbourhoods had lower levels of 

indicator microorganisms and P. aeruginosa. Distinctive different levels of bacteria were 

recorded from different urban areas due to varying nature of urban activity and land use. 

7). FC/FS ratios proved to be useful indicators of faecal pollution in urban surface water 

runoff during the time of study. But based on the experiment of changing FC/FS ratios, 

the ratio appears to depend upon different die off ratios of faecal coliforms and faecal 

streptococci in the time following faeces deposition and their incorporation in run off. 

There was a relatively small changing range of FC/FS ratios under 4°C in sanitary 

wastewater and combined sewage than at 20°C conditions. 

FC/FS ratios for road surface runoff are low which suggests more animal sources than 

human in both cities. In contrary, FC/FS ratios in combined sewage are suggesting of 

more human than animal sources. The receiving stream showed mixed characteristics 

of FC/FS ratios. It is clear that the ratios of FC/FS must be used with care and certainly 

do not provide undisputed indicators of pollution source. 

8). Indicator microorganisms and P. aeruginosa can be resuspended and released from 

sediment. The highest release peak of total coliforms were 3.3 x 105 MPN/IOO ml, faecal 

coliforms were 1.7 x 105 MPN/100 rn1 over 6 hours, faecal streptococci were 2.3 x 104 

MPN/IOO rn1 on the third day (72 hours) and 9.3 x 103 MPN/100 rn1 for P. aerllginosa 

in the first hour. High levels of indicator microorganisms were found on the ninth day 

indicating that aquatic sediment can serve as a reservoir and can lead to extended 

survival. These observations indicate that the quality of sediment microbiology should 

be investigated as part of the evaluations for public health safety associated with 

sewage discharges. 
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7.2. Suggestions for Further Work. 

1). The studies described in Chapter 4 have indicated the bacterial loading rates 

associated with urban stonnwater runoff. It would be of considerable interest to 

undertaken further investigations on the loading characteristics of bacteria found in urban 

surface water runoff, associated recreational reservoirs and at beach outfalls. Such 

discharges and receiving waters have significance for public health. Further research 

should be taken to study a catchment and its hydrology in conjunction with the 

microorganisms which the living populations of the catchment introduce into the various 

water flows. If an understanding can be gained as to mechanisms controlling the input 

of faecal contaminants into the water flow, and the manner in which the concentrations 

of these contaminants fluctuate, it will be possible to taken rational steps to control the 

water environmental capacity. 

2). Chapter 6 has outlined the results of bacterial release experiments carried out with 

slow flow in a water tanle Further studies should be taken to examine bacterial release 

under variable flow conditions associated physico - chemical factors for both water and 

sediment column to detennine the relationships between bacterial level and controlling 

environmental factors. The different kinds of sewer sediment also need to be examined, 

especially for stonn drain sediment which serve as reservoirs of faecal bacteria, thus 

increasing the health hazard to receiving waters. This could enable a modelling of 

bacterial release in urban aquatic ecosystems and help an understanding of their 

mechanisms under more realistic and mobile conditions. Studies of bacterial contribution 

in different layers of sediment from different kinds of sewer also need to be carried out 

to determine the characteristics of bacteria accumulation and transportation for systems 

of different ages, transporting capacities and network design. 

3). The results described in this thesis indicate limited infonnation on how physical and 

chemical changes affect microbiological populations in urban surface water runoff. In 

order to further understanding the survival and die - off of microorganisms in aquatic 

environment, it is very important to know more about the complex interrelationships of 

environmental factors and their influence on microbiological population dynamics. The 
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mortality rate of bacteria in natural waters is governed by many factors, including 

predation, toxic compounds, salinity and temperature. None of these exert the same 

degree of lethality on all organisms. In any particular situation mortality rates are 

difficult to establish for even one group of organisms since the ability to resist hostile 

environments depends on physiological function. Further work should be undertaken to 

relate microbiological populations in water to environmental factors and develop a 

mathematical model in order to understand the mortality rate of bacteria in water. The 

importance of organic particulate matter as a predictor of microorganism and pathogenic 

bacterial changes also suggests a need for a detailed analysis of the sources that 

contribute to the particular load. 
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