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Abstract—This letter addresses a multivariate optimization
problem for linear movable antenna arrays (MAAs). Particularly,
the position and beamforming vectors of the under-investigated
MAA are optimized simultaneously to maximize the minimum
beamforming gain across several intended directions, while ensur-
ing interference levels at various unintended directions remain
below specified thresholds. To this end, a swarm-intelligence-
based firefly algorithm (FA) is introduced to acquire an effective
solution to the optimization problem. Simulation results reveal
the superior performance of the proposed FA approach compared
to the state-of-the-art approach employing alternating optimiza-
tion and successive convex approximation. This is attributed to
the FA’s effectiveness in handling non-convex multivariate and
multimodal optimization problems without resorting approxima-
tions.

Index Terms—Firefly algorithm, nature-inspired optimization,
movable antenna arrays.

I. Introduction

The problems of coupling variables in joint beamforming
and position design for movable antenna arrays (MAAs)
are typically tackled by utilizing the sub-optimal alternating
optimization (AO) approach [1]–[9]. Specifically, this method
decomposes the original problem into two sub-problems,
where each of the optimization variables is solved in an
iterative manner while keeping the other fixed, e.g., [1], [3],
[6]–[8]. Unfortunately, these decomposed sub-problems are
mostly non-convex, hence, require further manipulations to
acquire an effective solution. For example, the successive
convex approximation (SCA) technique was employed in [1]
to establish convex surrogate problem counterparts. Similarly,
SCA was leveraged in [4], [6], and [8] for tackling the sub-
problem for the position vector.

Despite the fruitful efforts devoted in the literature, the solu-
tions to beamforming and position vectors in MAA problems,
derived by the exploitation of AO and other approximation
methods, cannot be guaranteed as globally optimal. More
importantly, the performance gaps between these suboptimal
solutions and their corresponding globally optimal counter-
parts have never been revealed. Motivated by this fact, this
letter employs a nature-inspired meta-heuristic firefly algo-
rithm (FA), which has been shown to be more effective in
solving non-convex beamforming problems than the interior
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point method [10], to find an effective solution for a MAA
problem.

This letter jointly optimizes the beamforming and position
vectors of a linear MAA such that the minimum beamforming
gain across various intended directions is maximized subject to
maintaining interference levels at multiple unintended direc-
tions below required thresholds. This multivariate optimiza-
tion problem is known to be highly non-convexity [1], [6].
Unlike the state-of-the-art approach in [1], which addresses
independently yet iteratively the beamforming and position
vectors in each approximated convex sub-problem, this letter
proposes a novel swarm-intelligence-based FA to concurrently
optimize both vectors without any approximation. To this
end, the penalty method [11] is first exploited to convert
the originally non-convexity problem to an equivalent uncon-
strained problem and then linearly mapping it to the flashing
brightness of a firefly which does not alter the originality of
the problem. A firefy population is then initiated in which
each firefly is associated with a pair of randomly generated
position and beamforming vectors. The nature behaviour of
the tropical fireflies, i.e., flying toward the brighter one with
some random moves along their ways, will finally lead them
to the brightest one representing the solution to the problem.
Furthermore, the computational complexity of the proposed
approach is thoroughly analyzed. Simulation results confirm
the convergence of the propose FA approach as well as its
superior performance over the state-of-the-art approach in
[1]. This letter extends our recent work in [10], originally
introduced for transmit beamforming designs, to a receive
beamforming problem in MAAs. To the best of the authors’
knowledge, this is the first work leveraging a nature-inspired
FA approach in MAAs.

Notation: Lower and upper case letters s and S : a scalar;
bold-lower-case letter s: a column vector; (·)T : the transpose
operator; (·)H: the complex-conjugate-transpose operator; ∥·∥:
the Euclidean norm; CNA×1: the set of NA×1 complex-element
vectors; RNA×1: the set of NA × 1 real-element vectors.

II. Problem Formulation

Consider a linear antenna array of NA antennas and each
of which is movable, i.e., its location can be relocated, within
an one-dimensional line segment1 of length L [1], [3], [6],
[7]. Let di ∈ [0, L] be the location of the i-th antenna, ∀i ∈
{1, 2, · · · ,NA}, i.e., 0 ≤ d1 ≤ d2 ≤ · · · ≤ dNA ≤ L, and d =
[d1, d2, · · · , dNA ]T ∈ RNA×1. Let θ be the steering angle with
respect to the line/axis joining all elements of the array and ψ

1The adopted approach in this letter can be easily extended to two-
dimensional or three-dimensional MAAs by representing the MAA elements’
positions in a matrix form.
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be the carrier wavelength, the antenna steering vector s (d, θ) ∈
CNA×1 for a receive MAA can be expressed as2:

s (d, θ) =
[
e j 2π

ψ d1 cos θ, e j 2π
ψ d2 cos θ, · · · , e j 2π

ψ dNA cos θ
]T
. (1)

Let w ∈ CNA×1 be the beamforming vector, the beamforming
gain with respect to angle θ can be written as:

G (w,d, θ) = |wHs (d, θ) |2. (2)

Without loss of generality, let {θt}
T
t=1 and {ϕq}

Q
q=1 be the set

of T desired signal directions and the set of Q undesired inter-
ference directions, respectively. We aim to jointly determine
the beamforming vector w and the location vector d such that
the minimum beamforming gain is maximized while keeping
the power at undesired directions below the required threshold,
I0. To this end, the optimization problem can be posed as:

max
{w},{d}

min
t

{G (w,d, θt)}

s. t. C1 : d1 ≥ 0,
C2 : dNA ≤ L,

C3 : di − di−1 ≥ L0, ∀i = 2, 3, · · · ,NA,

C4 : G
(
w,d, ϕq

)
≤ I0,∀q = 1, 2, · · · ,Q,

C5 : ||w||2 ≤ 1,

(3)

where L0 is the minimum distance between two adjacent
antenna elements. Besides, {w} and {d} are two sets of different
variables to be optimized. C1, C2, and C3 are imposed to
ensure that the antennas are within the range [0, L] and the
distance between a pair of neighbouring antennas is always not
smaller than a required value of L0 to avoid coupling effect
[1]. C4 is to control the interference level at the undesired
directions below the threshold. Finally, C5 is to guarantee the
normalized power of the beamforming vector.

In general, problem3 (3) is highly non-convex due to two
reasons: i) its objective and constraint C4 are non-concave
with respect to either w or d; ii) the two sets of optimization
variables, w and d, are coupled in the objective function and
C4 [6]. In the following, we introduce the FA to tackle the
problem.

III. Proposed FA Approach
To facilitate the presentation, let fi = L0 − di + di−1 and

Φq

(
ϕq

)
= |wHs

(
d, ϕq

)
|2 − I0. Then, we can rewrite (3) as:

max
{w},{d}

min
t

{G (w,d, θt)}

s. t. − d1 ≤ 0,
dNA − L ≤ 0,
fi ≤ 0,∀i, i = 2, 3, · · · ,NA,

Φq

(
ϕq

)
≤ 0,∀q = 1, 2, 3, · · · ,Q,

||w||2 − 1 ≤ 0.

(4)

2Since the focus of this letter is to design position and beamforming vectors
to amplify the impinging signals at intended directions while suppressing
the interference at unintended angles, the channel effects, e.g., path-loss and
fading, are not considered, as also adopted in e.g., [1], [7].

3Problems (3) in this letter and (P1) in [1] are equivalent as (P1) is an
epigraph form of (3) where the non-linear objective in (3) is transformed into
a constraint in (P1) by introducing an auxiliary optimization variable δ.

We then proceed by utilizing the penalty method [11]
to transform problem (4) into an equivalent un-constrained
problem:

max
{w},{d}

{
G (w,d) + P

(
w,d, θt, ϕq

)}
, (5)

where G (w,d) = min
t
{G (w,d, θt)} and P

(
w,d, θt, ϕq

)
is the

penalty term given as:

P
(
w,d, θt, ϕq

)
= β1max {0,−d1}

2 + β2max
{
0, dNA − L

}2
+

NA∑
i=2

β3,imax {0, fi}2

+

Q∑
q=1

ρqmax
{
0,Φq(ϕq)

}2
+ λmax {0, ||w||2 − 1}2 , (6)

with β1 > 0, β2 > 0, β3,i > 0, λ > 0 and ρq > 0 are penalty
constants.

Note that the FA is developed based on the following three
idealized rules [11], [12]. First, fireflies are assumed to be
unisex and attract others within their population. Second, the
attractiveness of any firefly to others is proportional to its
flashing brightness. Both attractiveness and flashing brightness
decrease as the distance between two fireflies increases. Given
any two flashing fireflies, the less brighter firefly will fly
towards the brighter mate. If a firefly does not find any brighter
one, it will randomly fly. Third, the flashing brightness of
a firefly depends on the landscape of the objective function.
Their relations with solution search in the considered problem
will be discussed later.

In this letter, we adopt the generalized FA approach [10] to
solve the receive beamforming problem in (4) with two sets of
independent optimization variables {w} and {d}. To start with,
let {wk,dk} be firefly k. Specifically, we randomly initialize a
population of Ω fireflies {wk,dk}, k ∈ {1, 2, · · · ,Ω}, and the
third rule is implemented by defining the flashing brightness,
i.e., the light density, of firefly k as:

Bk (wk,dk) = G (wk,dk) + P
(
wk,dk, θt, ϕq

)
. (7)

On the other hand, the first and second rules are interpreted
by considering any fireflies k and j amongst the population, if
Bk (wk,dk) > B j

(
w j,d j

)
, then firefly j will fly toward firefly

k at the n-th generation as:

w(n+1)
j = w(n)

j + β0e−
(
γ0.5r(n)

w,k j

)2 (
w(n)

k − w(n)
j

)
+ α(n)w̃, (8)

d(n+1)
j = d(n)

j + β0e−
(
γ0.5r(n)

d,k j

)2 (
d(n)

k − d(n)
j

)
+ α(n)d̃, (9)

where r(n)
w,k j = ||(w

(n)
k − w(n)

j || and r(n)
d,k j = ||(d

(n)
k − d(n)

j || are
the Cartesian distances, β0 is the attractiveness at r(n)

w,k j = 0
and r(n)

d,k j = 0, γ presents the variation of the attractiveness.
Note that the second terms of equations (8) and (9) capture
the attractions while the third terms of these equations are
randomizations comprised of a randomization factor α(n) ∈

[0, 1] associated with two random vectors w̃ ∈ CNA×1 and
d̃ ∈ RNA×1. The real and imaginary parts of each element
of w̃ and the entries of d̃ are drawn from either an uniform
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or a Gaussian distribution. The proposed FA for solving
optimization problem (4) is described in Algorithm 1.

The value γ−0.5 determines the average distance of a flock
of fireflies which is seen by its neighbour flocks. Therefore,
the whole population is automatically divided into different
flocks enabling the ability of solving highly non-linear and
multimodal problems [10]. The randomizations in (8) and
(9) are in fact random walks in which the exploitation and
exploration of the algorithm can be managed by controlling the
value of α(n). When the population size significantly exceeds
the number of local optima, the iterations of Algorithm 1
will stochastically guide the initial population toward the best
solution amongst the local optima. Indeed, the population can
theoretically attain the global optimal solution if Ω → ∞

and n ≫ 1 [10]–[12]. In fact, it has been reported in [10]
that the FA converges with less than 120 generations for four
representative transmit beamforming approaches with fixed-
position antenna array scenarios.

Algorithm 1 Firefly Algorithm for Solving (4)

1: Input: Two sets {θk}
T
t=1 and {ϕq}

Q
q=1; L; NA; L0; I0; Ω;

maximum generation R; β1; β2; β3,i; λ; ρq; β0; γ;
2: Randomly generate Ω populations
{{w1,d1}, {w2,d2}, · · · , {wΩ,dΩ}};

3: Calculate the flashing brightness of Ω fireflies as (7);
4: Sort the firefly population in a descending order of the

flashing brightness Bk (wk,dk);
5: Declare the current best solution: B⋆ := B1

(
w⋆,d⋆

)
;

{w⋆,d⋆} := {w1,d1};
6: for n = 1 : R do
7: for j = 1 : Ω do
8: for k = 1 : Ω do
9: if B j

(
w j,d j

)
> B⋆ then

10: B⋆ := B j

(
w j,d j

)
; {w⋆,d⋆} := {w j,d j};

11: end if
12: if Bk (wk,dk) > B⋆ then
13: B⋆ := Bk (wk,dk); {w⋆,d⋆} := {wk,dk};
14: end if
15: if Bk (wk,dk) > B j

(
w j,d j

)
then

16: Move firefly j towards firefly k as (8), (9);
17: end if
18: Attractiveness varies with distances via

e−
(
γ0.5r(n)

w,k j

)2
and e−

(
γ0.5r(n)

d,k j

)2
;

19: Evaluate new solutions and update light inten-
sity as (7);

20: end for
21: end for
22: Sort the firefly population in a descending order of the

flashing brightness Bk (wk,dk);
23: Update the current best solution: B⋆ := B1

(
w⋆,d⋆

)
;

{w⋆,d⋆} := {w1,d1};
24: end for
25: return w⋆,d⋆.

Computational complexity: It is clear that the computational
complexity of the proposed FA approach presented in Algo-
rithm 1 is dominated by the three loops from steps 6 to 24.
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Fig. 1: Radiation beam patterns. NA = 8. L0 =
ψ

2 ; L = 8ψ. T = 2;
Q = 2; and I0 = 0.1. Case 1: {θt}

T
t=1 = [100◦, 145◦] and {ϕq}

Q
q=1 =

[125◦, 165◦]. Case 2: {θt}
T
t=1 = [75◦, 150◦] and {ϕq}

Q
q=1 = [120◦, 170◦].

With a note that xyz is the order of computational complexity
of evaluating the product of two matrices of sizes x×y and y×z
adopting a schoolbook iterative algorithm [10], one can verify
that the computational complexities of steps 16, 18, and 19 are
on the order of NA. Moreover the computational complexity of
step 22 is on the order of Ω logΩ. Therefore, one can conclude
that the dominant term of the computational complexity of
Algorithm 1 is on the order of R

(
Ω2NA + Ω logΩ

)
.

IV. Simulation Results

A. Simulation Setup

The array length is set at L = 8ψ with the minimum
distance between two adjacent antennas of L0 = ψ/2. The
setup parameters for FA are as follows. The variation of the
attractiveness γ is set as 1. The penalty constants are set
identical but they dynamically vary as β1 = β2 = β3,i = λ =
ρq = n2, ∀i ∈ {2, 3, · · · ,NA}, where n is the generation index
in Algorithm 1. The attractiveness at zero distance is β0 = 1
[10]. Finally, the initial randomization factor is α(0) = 0.07
and its value at the n-th generation is α(n) = α(0)0.989n.

B. Performance Comparison

Here, the performance of the proposed FA approach is
evaluated and compared with the state-of-the-art approach
in [1], hereafter is referred to as AO-SCA. Monte Carlo
simulations are carried out over 50 direction distributions
where in each distribution, a number of T intended directions
and Q unintended directions are randomly generated following
an uniform distribution between [0◦, 180◦] with the step size of
5◦. Furthermore, for each direction distribution, Algorithm 1
is executed 50 times to obtain an average performance. The
firefly population and number of generations are, respectively,
Ω = 40 and R = 500.

In Fig. 1, the radiation beamforming patterns of the pro-
posed FA and the AO-SCA are shown for two following cases
of direction distributions. In Case 1, two intended directions
are located on the same side of the boresight of the antenna
array, i.e., {θt}

2
t=1 = [100◦, 145◦]. In Case 2, two intended
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Fig. 2: Max-min beamforming gain versus the number of array
antennas NA when T = Q = 2.

directions are located on different sides of the boresight of the
antenna array, i.e., {θt}

2
t=1 = [75◦, 150◦]. It can be seen from

the figure that both proposed FA and the AO-SCA approaches
attain almost 100% beamforming gain for Case 2. However,
for Case 1, the proposed FA outperforms the AO-SCA with the
max-min beamforming gain of 6.56, i.e., 82% beamforming
gain, in comparison with 4.48, i.e., 56% beamforming gain,
offered by the AO-SCA. The same trends as seen in Case 1
and Case 2 were also observed in other direction distributions.

These above results can be explained as follows. Under
favorable conditions, i.e., Case 2 distributions, the surrogate
functions developed in the SCA in [1] do not deviate from
these original ones. As a result, the AO-SCA can attain
almost the highest possible gain. The approximation-free FA
approach, as expected, also offers similar performance as its
counterpart. On the other hand, under unfavorable conditions,
i.e., Case 1 distributions, the AO-SCA suffers from a high
side-lobe problem, i.e., the side lobes have unexpected high
beamforming gains, indicating a fact that the approximations
imposed by the AO and SCA processes severely degrade the
system performance as they are unable to effectively control
the potential energy leakage. In fact, the AO-SCA approach
is highly likely trapped in local optimums resulting in sub-
optimal solutions [1], [7]. The proposed FA, on the other hand,
is free from any kind of approximations and has a well control
on its side lobes, hence, offers a much better solution than its
counterpart. This confirms the effectiveness of the proposed
FA in handling multivariate and non-convex problems.

Fig. 2 illustrates the max-min beamforming gain versus the
number of array antenna elements NA for the proposed FA and
AO-SCA approaches with different values of the interference
threshold I0. It is clear that the proposed FA prevails the AO-
SCA for all setups of I0 and NA. For instance, the former offers
the max-min beamforming gain higher than the latter around
1.2 and 1.3 for I0 = 0.1 and I0 = 0.01, respectively.

Fig. 3 indicates the max-min beamforming gain versus the
number of interference directions with different values of I0.
Fig. 3 again confirms the superior performance of the proposed
FA over the AO-SCA. Interestingly, the proposed FA are
capable of handling tougher scenarios with higher number of
interference directions while the AO-SCA struggles to do so.
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This can be observed by the fact that the performance gap
between the proposed approach and its counterpart enlarges
when the number of interference directions increases. For
example, the gaps are, respectively, 0.90 and 1.53 at Q = 1
and Q = 6 with I0 = 0.1. When I0 = 0.01, the gaps are,
respectively, 0.72 and 1.30. The less effective behaviour of
the AO-SCA is again due to the approximation process. The
superior performance of the proposed approach is due to
its approximation-free nature as well as the exploitation and
exploration capabilities of the FA.

C. Impacts of Ω and R

In this section, the performance of the proposed FA ap-
proach is evaluated via Monte Carlo simulations with 50
executions of Algorithm 1 for one direction distribution with
{θt}

T
t=1 = [100◦, 145◦] and {ϕq}

Q
q=1 = [125◦, 165◦], i.e., Case 1.

Fig. 4 plots the max-min beamforming gain versus the
number of firefly population Ω and different values of I0
and NA. The results reveal the fact that the beamforming
gain significantly improves when the number of population
increases from 15 to 40, except for the case of NA = 4 and
I0 = 0.1. For example, with NA = 10 when the population
grows from 15 to 40, the gain improves from 6.15 to 7.30 and
from 5.08 to 6.93 for I0 = 0.1 and I0 = 0.01, respectively.
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Fig. 6: CPU run time versus: (a) the number of antennas when T =
Q = 2; (b) the number of interference directions when T = 2, NA = 8.

These results are due to the fact that a larger population
size provides a better representation of the feasibility region
hence allowing the FA to reach a better solution. However,
a population of around 20 fireflies is sufficient to reflect
the global optimality for the setup {NA = 4, I0 = 0.1}.
Therefore, having more fireflies does not result in noticeable
improvement. This trend is also seen with {NA = 6, I0 = 0.1}
where 30 fireflies are adequate to solve the problem.

On the other hand, Fig. 4 also reveals that the gain increases
0.3 with NA = 8 and 0.36 with NA = 10 if the population size
grows from 40 to 80. This is due to the fact that a higher
population size is required to represent the enlarger feasible
space as a result of increased numbers of antennas.

Fig. 5 shows the max-min beamforming gain versus the
maximum generations R with different population sizes. It is
clear from the figure that the beamforming gains converge after
around 500 generations for all setups.

D. CPU Run Time Comparison

The simulations were carried out on a Matlab R2022b
on a 64-bit-Lubuntu-Operating-System server equipped with
40 virtual CPUs and 256 GB RAM. The total processing
speed was equivalent to 94.687 GHz. CVX package [13] was
employed to implement the AO-SCA approach in [1]. The

CPU run time for the experiments shown in Figs. 2 and 3 are,
respectively, plotted in Figs. 6 (a) and (b).

It is clear from Fig. 6 that the proposed FA outperforms the
AO-SCA approach with a lower CPU run time. The run-time
gap significantly increases with higher values of NA and Q, or
lower value of I0. The results can be explained as follows. The
AO-SCA involves three types of iterative processes/loops. Two
inner loops are dedicated to solving two SCA problems, where
either beamforming or position vector is iteratively solved
with initiative values of itself and the other vector in each
problem. The outer loop repetitively solves these two SCA
problems until convergence. In challenging scenarios, i.e.,
when NA and Q increase or I0 decreases, due to these inherited
approximations, the AO-SCA suffers from high numbers of
inner and outer iterations to obtain a solution leading to a
longer CPU run time. On the other hand, the proposed FA,
being free from any approximations, maintains a consistent
number of calculations resulting in a relatively stable and
lowest CPU run time. The computational complexity of the
FA does not depend on the value of I0 while it is mainly
determined by the number of fireflies Ω and the maximum
generation R. Consequently, as shown on the figure, the values
of NA and Q have a small impact on the CPU run time while
the value of I0 does not.

V. Conclusion
This letter proposed a novel nature-inspired FA to solve

a multivariate, highly non-convex optimization problem in
MAAs. Simulations confirmed the superior performances,
i.e., max-min beamforming gain and CPU run time, of the
proposed FA over the state-of-the-art AO-SCA approach.
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