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Matjaž Perc§

Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
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Sender-receiver games are simple models of information transmission that provide a formalism to
study the evolution of honest signaling and deception between a sender and a receiver. In many
practical scenarios, lies often affect groups of receivers, which inevitably entangles the payoffs of
individuals to the payoffs of other agents in their group, and this makes the formalism of pairwise
sender-receiver games inapt for where it might be useful the most. We therefore introduce group
interactions among receivers, and study how their interconnectedness in higher-order social networks
affects the evolution of lying. We observe a number of counterintuitive results that are rooted in the
complexity of the underlying evolutionary dynamics, which has thus far remained hidden in the realm
of pairwise interactions. We find conditions for honesty to persist even when there is a temptation
to lie, and we observe the prevalence of moral strategy profiles even when lies favor the receiver at
a cost to the sender. We confirm the robustness of our results by further performing simulations on
hypergraphs created from real-world data using the SocioPatterns database. Altogether, our results
provide persuasive evidence that moral behaviour may evolve on higher-order social networks, at
least as long as individuals interact in groups that are small compared to the size of the network.

INTRODUCTION

Flow of information from a source to its destination
is ubiquitous, and fundamental to life at all levels –
from signalling at the cellular level for coordinating the
activities of cells to communication between people in
and across societies. Particularly crucial is communica-
tion and transmission of honest signals between different
parts of a system for maintaining its efficient function-
ing as epitomized by colonies of ants and honey bees and
also by the super-cooperating humans [1]. However, the
breakdown of communication and dishonest signalling
can severely hamper the operations of a system and lead
to undesirable consequences. A striking example of this is
how misinformation and rumours can propagate fear and
paranoia during times of crises, like the coronavirus dis-
ease 2019 (COVID-19) pandemic, and amplify the hard-
ship that come along with it. Needless to say that tack-
ling the problem of misinformation and fake news stands
as one of the most important challenges of our time.
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While the study of fake news has attracted a lot of
attention over the last years [2–4], the literature on sig-
nalling and deception has a much longer history [5].
Evolutionary biologists have developed several models to
study diverse scenarios such as predator–prey signaling
[6–8], sexual signaling [9, 10], and the interactions be-
tween siblings [11] and between parents and offsprings
[12]. On the other hand, the focus of economists and
psychologists has been towards the development of tasks
which would allow us to quantify (dis)honesty. Some ex-
amples include the die rolling paradigm [13], the matrix
search task [14], the Philip Sidney game [15], and the
sender-receiver game [16]. The latter game, in partic-
ular, has received a great deal of attention in the last
years.
The sender-receiver game is a classic example of a game

with asymmetric information, and provides us with a
paradigm to explore strategic interactions between two
types of agents: senders, who possess a piece of informa-
tion and can either honestly or dishonestly communicate
it to the second type of agents; receivers, who can choose
to either believe or not believe the message sent to them.
A particularly interesting feature of this game is that
it allows us to distinguish among different types of lies,
based on whether lying has positive or negative conse-
quences for the players [17]. Not surprisingly, it has at-
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tracted a lot of research attention from behavioural scien-
tists [16–39] and, more recently, from physicists. Recent
studies [40, 41] using Monte Carlo simulations following
the replicator dynamics have provided an extensive the-
oretical study of the sender-receiver game in well-mixed
and structured populations to complement the massive
amount of experimental data available.

Although important, these studies consider only one-
to-one interactions, and a major assumption is that the
payoffs of individual receivers in a population depends
solely on their own strategy, and the strategy of the
sender they interacted with. However, since people in a
society are interconnected, it is inevitable that the pay-
offs of each receiver would not only depend on whether
they were deceived, but also on whether the other re-
ceivers around them got deceived. In panels B and C of
Fig. 1, we emphasize this point. This realization, though
simple, has profound consequences for models of strategic
interactions as the fitness of an individual in a popula-
tion is entangled with the fitness of other people in the
population. This calls for a new modelling framework,
which goes beyond the simple consideration of only pair-
wise interactions between agents, and takes into account
the effects of group interactions to provide an improved
description of reality [42]. While this paradigm of in-
cluding higher order interactions has successfully been
incorporated in the study of the evolution of coopera-
tion in the form of the Public Goods Game [43], there
is a strong need for a systematic study of such group ef-
fects in other problems of strategic interactions, such as
signalling games, where higher-order interactions are in-
evitable, and must be accounted for. This encourages us
to explore the role of group interactions in the evolution
of honesty and lying in the sender-receiver game. We
note that in several other contexts, higher-order interac-
tions have already been shown to lead to novel collective
phenomena as in the case of synchronization phenom-
ena [44–47], random walks [48, 49], consensus [50, 51],
and ecological dynamics [52, 53].

The plan of our paper is as follows: In Section I, we
extend the sender-receiver game to incorporate group ef-
fects. In Section IIA, we study the evolution of differ-
ent strategies in a well-mixed population and explore
the parameter space of the game to unravel rich and
novel results. In Section II B, we explore the evolution of
strategies on a class of hypergraphs, namely the hyper-
rings. The hyperrings also allows us to investigate the
role played by the size of the hyperedges on the evolu-
tion of the strategies. In Section II C we examine the
evolution on four ‘real world’ hypergraphs, built using
the SocioPatterns dataset. We conclude with a discus-
sion and a brief outlook for future research in Section
IV.

FIG. 1. Schematic of different aspects of our work. Panel
A: the hypergraph considered for our simulations – the hy-
perring. The one shown in the figure consists of 11 nodes
with each hyperedge containing 4 nodes. Panels B and C
denote two possible scenarios which exemplify the need to
incorporate group interactions – suppose a sender sends a
deceitful message to a group of receivers, which could possi-
bly lead them to disregard the social distancing norms in the
pandemic. The situation described in panel B depicts a sce-
nario where none of the receivers were deceived (all marked in
green) whereas panel C represents a scenario where a receiver
who was not deceived (centre, marked in green) is surrounded
by receivers who were deceived. It is clear that the central re-
ceiver in panel C should obtain a lower payoff than the one in
panel B as the pandemic is being facilitated (by the deceived
receivers) and restrictions will be extended for everyone. This
group effect is not captured by the pairwise models considered
in literature.

I. MATHEMATICAL MODEL

A. The Sender-Receiver game

We first define the canonical 2-player sender-receiver
game, as introduced by Erat and Gneezy [17]. In this
game, the sender first rolls a die and observes the out-
come of the roll which can be any of the six possible
outcomes in {1, 2, 3, 4, 5, 6}. The sender then sends a
message about the outcome, which can be the truth (T)
or a lie (L), and the message is communicated to the re-
ceiver. After receiving the message, the receiver chooses
a number between 1 and 6. If this number is equal to the
actual outcome of the die, without loss of generality, we
set the payoffs of the sender and receiver, both, to be 0.
In case this number is different from the actual outcome
of the die, then the sender gets a payoff s and the re-
ceiver gets r. This game can be easily reduced to a game
with two strategies for each player. Indeed, the payoff
of the receiver essentially depends only on whether they
choose to believe (B) the message sent by the sender, or
not (N). We can rewrite the payoff bimatrix of this game
as follows:
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B N
T 0, 0 s, r
L s, r 4

5
s , 4

5
r

where the ratio 4

5
comes from the fact that, if the sender

lies and the receiver does not believe the sender, then the
receiver reports a wrong outcome of the die with proba-
bility 4

5
.

The fact that the sender-receiver game is essentially
a game with two players, each of which has only two
strategies, makes it suitable to study using methods of
statistical physics, and the Monte Carlo method in par-
ticular. Another reason why the sender-receiver game is
becoming increasingly popular is that it allows to study
different types of lies, depending on the values of s and
r:

Pareto white lies are those that benefit both the
sender and the receiver: r, s > 0.

Altruistic white lies are those that benefit the re-
ceiver at a cost to the sender: r > 0, s < 0.

Black lies are those that benefit the sender at a cost
to the receiver: r < 0, s > 0.

Spiteful lies are those that harm both the sender
and the receiver: r, s < 0.

The distinction among different types of lies is useful also
for the equilibrium analysis, which indeed depends on the
type of lie. In the domain of spiteful lies, there are two
equilibria in pure strategies – (T,B) and (L,N) – and one
equilibrium in mixed strategies – (1

6
T + 5

6
L, 1

6
B + 5

6
N).

In the domain of altruistic or black lies, there is only
one equilibrium: (1

6
T + 5

6
L, 1

6
B+ 5

6
N). In the domain of

Pareto white lies, there are two equilibria in pure strate-
gies – (T,N) and (L,B) – and one equilibrium in mixed
strategies, once again, (1

6
T + 5

6
L, 1

6
B + 5

6
N). The cases

r = 0 and/or s = 0 are straightforward, because the cor-
responding players are indifferent between the two avail-
able strategies.

B. Introducing group interactions

We now extend the canonical sender-receiver game to
allow for multiple receivers, who interact among them-
selves, meaning that the payoff of each receiver does not
only depend on whether the receiver herself believes the
message sent by the sender, but also on whether the other
receivers believe this message. In particular, we assume
that the payoff obtained by each receiver is the sum of
two components: the payoff due to the individual ‘pair-
wise’ interaction with the sender (ΠI), and the payoff due
to the group interaction with the other receivers (ΠG).
The pairwise payoff, ΠI , is defined to be identical to

the payoff of the standard sender-receiver game described
in Section IA.

To account for the group payoff, ΠG, we introduce
some terminology and some notation. We say that a
receiver is deceived by the sender if they report a wrong
outcome of the die. We denote xW the fraction of re-
ceivers who are deceived by the sender (excluding the
receiver for which we are calculating the payoff); where
W stands for wrong as the receiver reports the wrong
outcome of the die. When a receiver is not deceived by
the sender, we define their group payoff to ΠG = kRxW ;
where kR is a fixed real number, and R stands for right,
because the receiver reports the right outcome of the die.
When the receiver reports the wrong outcome of the die,
we denote their group payoff as ΠG = kWxW , where kW
is, again, a real constant.
To summarize, the total payoff, ΠI +ΠG, obtained by

each receiver can be tabulated as:

B N
T 0 + kRxW r + kWxW

L r + kWxW
1

5
kRxW + 4

5
(kWxW + r)

Of course, as r, kR, kW vary in R
3, one can have different

prototypical cases. A detailed discussion of the differ-
ent types of group interactions captured by this model
is presented in our discussion section. In principle, the
model allows for various choices of group payoffs ΠG re-
ceived by individuals, which can be defined to be general
functions fR(xW ) and fW (xW ), depending on whether
the receiver was deceived by the sender or not. For sim-
plicity, we make the choice of assuming the payoffs to
be linear functions of the fraction of deceived receivers
in the group (fR(xW ) = kRxW and fW (xW ) = kWxW ).
Clearly, setting kR = kW = 0, one reduces the game to
the standard sender-receiver game.
So far, we have defined only the payoff of the receiver.

We define the payoff of the sender to be simply the sum
of the payoffs that they obtain in their interactions with
each receiver.

C. The Monte Carlo method for well-mixed

populations

We consider a sender-receiver game among n agents.
Initially, each agent is randomly assigned one of the four
pure strategy profiles (T,B), (T,N), (L,B), (L,N). Then
one agent is randomly selected to play as the sender. The
n agents then receive a payoff from the n-player sender-
receiver game played with the selected agent in the role
of sender and all the other agents in the role of receivers.
At the end of this interaction, another agent is selected
to play in the role of sender. We repeat this procedure n
times so that, at the end of this Monte Carlo step each
agent has played the role of sender exactly once. This
concludes one Monte Carlo step.
At the end of a Monte Carlo step, for each agent we

randomly select another agent. Then the first agent
copies the strategy of the second agent with a probability
that depends on the difference between their accumulated
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payoffs in the last n rounds. In particular, if player P1

and its randomly selected pair, player P2, collect payoffs
ΠP1

and ΠP2
, respectively, then P1 copies the strategy of

P2 with probability

w =
1

1 + exp
[(

ΠP1

n
−

ΠP2

n

)

/K
] (1)

where K quantifies the uncertainty/error in strategy
adoptions. In real-world settings, one would expect that
agents would try to copy their neighbours who are per-
forming better than them. However this imitation would
have its limitations and imperfections, and with a small
probability, agents can also copy the strategy of poorly
performing neighbours. In our simulations, we choose
K = 0.1, unless explicitly stated otherwise.

To reach sufficient accuracy, we simulate large system
sizes, with n = 500, as well as long enough thermalization
and sampling times, of 105 Monte Carlo steps.

D. The Monte Carlo method for hypergraphs

To study the effect of spatial correlations on the evo-
lution of strategies in the n-player sender-receiver game,
we simulate the game on hypergraphs. A hypergraph
is a generalization of a graph, where edges, instead of
connecting two nodes, can connect any number of nodes.
Formally, a hypergraph is a pair H = (X,E), where X is
a non-empty set of nodes and E is a family of non-empty
subsets of X , called hyperedges. Nodes who belong to
the same hyperedge are said to be neighbors.

The sender-receiver game is simulated on hypergraphs
as follows.

We treat each hyperedge as a well-mixed group.
Within one Monte Carlo step, we first select a hyperedge
and all players in that hyperedge play the group sender-
receiver game with each other such that each player in
the hyperedge gets to play the role of a sender exactly
once. To account for heterogeneties in sizes of the hyper-
edge, the payoff obtained by each agent in the hyperedge
is divided by the number of agents in the hyperedge. This
is repeated until we go over all hyperedges. Players ac-
cumulate payoffs from all hyperedges they are part of.
This brings us to the imitation step, where we go over
each of the n players in the hypergraph one by one, and
each player P1 copies the strategy of a randomly chosen
neighbour P2 with probability

w =
1

1 + exp
[(

ΠP1

K1

−
ΠP2

K2

)

/K
] (2)

where Ki denotes the number of hyperedges node i is part
of.

II. RESULTS

The results section is structured as follows. In Section
IIA, we simulate the evolutionary group sender-receiver
game on well-mixed populations, and we compare the re-
sults with those already obtained for the standard pair-
wise sender-receiver game [40]. We will see that, already
in the well-mixed case, several new features emerge with
the addition of group interactions. Then, in Section II B
we study the evolution in the group sender-receiver game
on a particular class of hypergraphs, hyperrings, and we
will see that, compared to the well-mixed populations,
further new features emerge. Finally, in Section II C we
explore the evolution of the group sender-receiver game in
four real world hypergraphs, and we show that the results
qualitatively confirm those obtained in the hyperrings.
The main result will be that the spatial structure leads
to the evolution of the moral strategy (T,B), whereby the
sender sends a truthful message and the receiver trusts
the message sent by the sender, even for small values of
kR and independently of kW . Moreover, the moral strat-
egy (T,B) can more easily emerge in small groups than
in large ones.

A. Well-mixed populations

We start by reporting the densities in the stationary
state of the four strategy profiles (T,B), (T,N), (L,B),
and (L,N), as a function of the parameters s, r, kR and
kW in a well-mixed population consisting of 500 agents.
First, we isolate the effect of kW by setting kR = 0.

We report two simulations, one for kW = 10 and one for
kW = 0.25. We choose these two parameter values as
they provide key insight into the behaviour of the model,
and how evolutionary dynamics is affected by incorpo-
ration of higher-order interactions. Since the absolute
values of s and r (the pairwise payoffs) lie between 0 and
1, choosing the value of the group payoff strength to be
kW = 0.25 allows us to probe the model behaviour in
the case in which the payoffs associated with the group
interactions are comparable to those associated with the
pairwise interaction. Similarly, the value kW = 10 allows
us to explore the behaviour of the model when group in-
teractions bring a much higher payoff than pairwise inter-
actions, and thus are the dominant factor in determining
the evolution of the strategies.
When kW = 10, it is extremely beneficial for each re-

ceiver to be deceived, whenever at least another receiver
is deceived. This suggests that the believing strategy
B should quickly vanish and, at the stationary state,
receivers should never believe the message sent by the
sender. This intuition is confirmed by the simulations
(Fig. 2, panel A). The strategy played by senders can also
be easily determined. It suffices to observe that, when
s > 0, senders would want to maximize their chances of
deceiving the receivers and hence would choose to tell the
truth (T ) to a population of non-believers (N), making
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A B

C D

FIG. 2. Final densities of the four strategy profiles, (T,B), (T,N), (L,B) and (L,N), in well-mixed populations for panel A:
kR = 0, kW = 10, panel B: kR = 0, kW = 0.25, panel C: kR = 10, kW = 0 and panel D: kR = 0.25, kW = 0. We show that the
presence of group interactions can lead to evolution which is quite different from the case where only pairwise interactions are
considered (compare with Fig. S1 in Ref. [54], and Fig. 2 of Ref. [40]).

(T,N) the strategy profile with maximal payoff. On the
contrary, when s < 0, senders have an incentive to lie
(L) to a population of non-believers (N), making (L,N)
the stable strategy profile. Hence, for s > 0, (T,N) is
the evolutionarily stable strategy, while otherwise it is
(L,N). We report this result in panel A of Fig. 2, where
we plot the stationary frequencies of different strategies,
for s and r taking values between −1 and 1.
When kW = 0.25, it is still beneficial for each receiver

to be deceived, whenever the other receivers are deceived.
However, since this time both group interaction param-
eters, kR and kW , are small, we observe a more nuanced
evolution that looks similar to the one already reported
for pairwise interactions (see Fig. S1 [54], and also Fig.
2 in Ref [40]), apart from a small shift. This result in
reported in panel B of Fig. 2. Next, we isolate the effect
of kR, by setting kW = 0. We report two simulations,
one for kR = 10 and one for kR = 0.25.
When kR = 10, it is extremely beneficial for a receiver

not to be deceived, whenever the other receivers are de-
ceived. Starting from random initial conditions, it is easy
to argue that believers have an initial advantage as they
are less likely to be deceived. If, in addition, s < 0, then
the ‘moral strategy profile’ (T,B), whereby the sender
tells the truth and the receiver believes the message sent
by the sender, would have the highest fitness. There-
fore, in this case we would expect a quick convergence to
(T,B). Fig. 2, panel C confirms this intuition. The case
of s > 0 is more nuanced. A theoretical analysis suggests
that the system undergoes a shift in the optimal strat-
egy profile from (L,B) to (T,N). Indeed, since believers
have an initial advantage and since now lying is benefi-

cial to the sender, (L,B) will tend to proliferate at the
initial stages of the evolution. However, as L evolves, it
is no longer beneficial for receivers to believe the message
sent by the sender and therefore, they would start play-
ing N . Since when receivers do not believe the message
sent by the sender, the difference in the sender’s payoff
when the sender plays T compared to when s/he plays
L is very little, this would lead the evolution to stabilize
around the strategy profile (T,N), with a small residual
of the other strategy profiles. This nuanced evolution
is reported in Fig. S2 in the SI [54], which highlights
that we do indeed see the anticipated initial increase in
(L,B), however, soon after, (T,N) takes over. It is inter-
esting to observe, at this stage, that in this regime where
it is extremely beneficial for an agent to not be deceived
but others be deceived. Reminiscent of the tragedy of
the commons [55–57], the ultimate fate here is unfavor-
able to all as no one earns the much coveted group payoff
even for the slightest temptations to lie (s > 0). Even
the sender’s payoff for lying, which instigates the transi-
tion from (T,B) to (T,N), is not enjoyed in the end. See
panel C of Fig. 2, for a heatmap of stationary frequencies
of the four strategies for kR = 10 and kW = 0, for various
values of s and r.
When kR = 0.25, it is still beneficial for receivers not to

be deceived whenever other receivers are deceived. How-
ever, since both group interactions parameter, kR and
kW , are small, this time we see an evolution that more
closely portrait the evolution in the pairwise game, apart
from a shift to the right upon introduction of kR as op-
posed to the effect of kW making (T,B) more prevalent
for s < 0 and promoting not-believing (N) for s > 0. We
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A

C

B

D

FIG. 3. Final densities of the four strategy profiles, (T,B), (T,N), (L,B) and (L,N), in the hyperring where each hyperedge
has size 4, for (panel A) kR = 0.25, kW = 0 and (panel B) kR = 0, kW = 0.25. We also provide a comparison between (kR, kW )
= (0.25,−0.25) for (panel C) well mixed and (panel D) hyperrings. Here we note that there is an emergence of the moral profile
on the hyperring, which is not present in well mixed populations for (s > 0, r < 0 and s < 0, r > 0).

report this result in panel D of Fig. 2.
To conclude this section, where we isolated the effects

of kR and kW , we now mention some of our results for
the cases when they both act together. For kR = kW ,
the group payoffs of each round act like a constant ad-
dition of payoff to each strategy in the simple pairwise
game, and hence, we expect that the evolution of strate-
gies in this case resembles the pairwise sender-receiver
game. We confirm our expectation in Fig. S1 in the Sup-
plementary Information [54]. We also report the cases
(kR, kW ) = (−0.25, 0) and (0,−0.25) in the SI. They are
all very similar to the cases just reported.

B. Hyperring

Next, we conduct simulations on a hyperring consist-
ing of 500 nodes. The hyperring can be thought of as a
lattice-equivalent for hypergraphs because of its uniform
structure (see Figure 1). Apart from the total number
of nodes, only one parameter has to be predetermined to
uniquely define a hyperring, the size of each hyperedge.
We start by analysing the case in which hyperedges have
size 4. At the end of this subsection, we will discuss the
dependence on the size of the hyperedge.
As a first step, we simulate the evolution for

(kR, kW ) = (0.25, 0) and for (kR, kW ) = (0, 0.25), so that
we can make a direct comparison with the results pre-
sented in the previous subsection, regarding well-mixed
populations. In Fig. 3, we report the evolution for
(kR, kW ) = (0.25, 0) (panel A) and (kR, kW ) = (0, 0.25)
(panel B). In both cases, we notice that the evolution

is far more nuanced on the hyperring, compared to the
well-mixed populations. In particular, we notice that
the “moral strategy profile” (T,B), whereby the sender
sends a truthful message and the receiver believes the
message sent by the sender, which, on well-mixed pop-
ulations evolve only in the trivial case of spiteful lies
(r, s < 0), in the hyperring evolves with non-zero fre-
quency also in the domain of black lies (r < 0, s > 0) and
in the domain of altruistic white lies (r > 0, s < 0). On
the other hand, in both cases, the evolution of the “im-
moral strategy profile” (L,N) is disfavoured, compared
to the well-mixed case. We note that a similar enhance-
ment of moral strategies has already been observed in
the canonical (pairwise) sender-receiver game played on
networks, compared to the case of well-mixed populations
[41]. However, we point out that higher order effects have
a more nuanced effect on the evolutionary dynamics – the
evolution of the strategy (T,B) on pairwise networks can
be further enhanced, or completely hindered, depending
on the nature of group interactions, i.e., the value of the
parameters kR and kW (See Fig. S5 in the [54]).
The bottom two figures of Fig. 3 provide a compari-

son between the evolution on the hyperring with that on
the well-mixed populations for (kR, kW ) = (0.25,−0.25).
The heatmap in panel C is for the well-mixed popula-
tion, and panel D for hyperring with 4 nodes in each
hyperedge. We show that in this case too, the spatial
structure provided by the hyperring favours the evolu-
tion of the moral strategy profile (T,B) and disfavours
the evolution of the immoral strategy profile (L,N), both
in the domain of altruistic white lies and in the domain
of selfish black lies. We point out that the two evolutions
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FIG. 4. Stationary frequencies of the four strategy profiles
for parameters s = 0.2, r = −0.3, kR = 0.25 and kW = −0.25
as a function of number of elements in a hyperedge. We show
that the emergence of the moral profile due to the spatial
correlations provided by the hypergraph structure is only sig-
nificant when group sizes are small, and the effect dies out as
we increase the group size – the relative density of (T,B) in
the figure is the highest when each group contains 4 elements,
and monotonically decreases as the group sizes increase.

are fundamentally different. While the moral strategy
profile (T,B) evolves with almost zero frequency in well-
mixed populations, it evolves with almost 70% frequency
in the hyperring. On the other hand, the immoral strat-
egy profile evolves to a frequency close to 30%.
In the supplementary information [54], we also re-

port the results of the simulations for (kR, kW ) =
(−0.25, 0), (0,−0.25), (−0.25, 0.25) and (0.25, 0.25). The
emergence of the moral strategy profile, (T,B), in re-
gions of r < 0, s > 0, s < −r (black lies) and r >
0, s < 0, r < −s (altruistic white lie) is an especially
interesting feature and can be observed in all cases, al-
beit with varying frequencies. Evidently, the evolution
of (T,B) in the regime of black lies is enhanced by a
positive value of kR and negative value of kW , corrob-
orated by the high frequency of the moral profile for
(kR, kW ) = (0.25,−0.25) and significantly less frequency
for parameter values (kR, kW ) = (−0.25, 0.25). Our re-
sults convincingly point towards the conclusion that spa-
tial correlations provide a route for the emergence of hon-
est signalling in groups, at least when the population
consists of groups of small size.
We now analyse the dependence on the size of the hy-

peredges. Figure 4 reports the stationary frequencies of
the four strategy profiles for parameters s = 0.2, r =
−0.3, kR = 0.25 and kW = −0.25 as a function of number
of elements in a hyperedge. We see that the group size is
unfavourable to the evolution of moral behaviour, as the
stationary frequency of the moral strategy profile (T,B)
decreases as a function of the group size, and becomes
nearly zero for group size greater than or equal to 10.
This is, a posteriori, not surprising, as, when the group
size increases, the hyperring converges to a well-mixed

population, which we already know to be unfavourable
to the evolution of (T,B) (see Section IIA). In the SI
[54], we also report the final densities for several other
values of kR, kW , r, and s (with r, s either in the domain
of black lies or in the domain of altruistic lies). In all
cases, we found that the final density of (T,B) decreases
with the group size. In the domain of spiteful and Pareto
white lies, clearly (T,B) either always evolve with 100%
frequency (spiteful lies) or with 0% (Pareto white lies).
This case is trivial and thus excluded from the numerical
analysis.

C. Real-world hypergraphs

The key result of the previous section is that the hy-
perring structure promotes the evolution of the moral
strategy profile (T,B), at least when the group size of
the hyperedges is relatively small. One might wonder
whether this is a particular feature of hyperrings with a
small group size, or it holds also for other hypergraphs
and, in particular, for more heterogenous hypergraphs,
like the ones created from real-world data.
To answer this question, we created four hyper-

graphs describing real-world interactions using the pub-
licly available SocioPatterns dataset. SocioPatterns is
“an interdisciplinary research collaboration formed in
2008 that adopts a data-driven methodology to study
social dynamics and human activity. Since 2008, [they]
have collected longitudinal data on the physical prox-
imity and face-to-face contacts of individuals in numer-
ous real-world environments”[58]. In particular, the So-
cioPatterns datasets record face-to-face interactions with
a temporal resolution of 20 seconds. This allows us
to check whether individuals are truly interacting as a
group, and this allows us to create a hypergraph as fol-
lows. For every 20 second window, we create a network
of interactions and catalogue all the maximal cliques be-
yond size 2. Repeated appearance of clique, beyond a
specified threshold, is treated as a group interaction and
we create a hyperedge consisting of the nodes in the re-
curring clique. A similar approach of creating hyper-
graphs has already been adopted to study opinion dy-
namics on hypergraphs [59], as well as studying the tem-
poral nature of higher order interactions [60].
In doing so, we created four hypergraphs starting from

the following datasets that we downloaded from So-
cioPatterns:

1. Primary Schools dataset, formed by school children
and teachers at a primary school in France.

2. Conference dataset, formed by participants at the
2009 SFHH conference in Nice, France.

3. High school dataset, formed by students at a high
school in Marseilles.

4. Workplace dataset, formed by the staff at an office
building in France
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FIG. 5. Persistence of honest signalling and believing behaviour (T,B), demonstrated on four hypergraphs generated using
real world interaction patterns, namely primary school (panel A), conference (panel B), high school (panel C), and workplace
(panel D) datasets (descriptions in text) for kR = 0.25, kW = −0.25, s = 0.2 and r = −0.3. These simulations provide evidence
for our observation on hyperrings than higher order interactions, coupled with spatial correlations allow for the emergence of
the moral profile (T,B).

These datasets represent a diverse variety of social sit-
uations and thus, provide the ideal setting for our simu-
lations. Figure 5 reports the time evolution of the four
strategy profiles for each of these four real-world hyper-
graphs. We note that, in each hypergraph, the moral
strategy profile (T,B) persists with a non-zero frequency.
In the primary school hypergraph (panel A), it evolves
with frequency close to 17%; in the high school hyper-
graph (panel B) it evolves with frequency around 30%;
in the workplace hypergraph (panel C), it evolves with
frequency around 32%; and in the conference hypergraph
(panel D), it even evolves with frequency above 60% [61].

III. DISCUSSION

In our work, we provided a natural extension to the
sender-receiver game which allowed us to study the im-
pact of group interactions on the evolution of honesty.
Different combinations of parameter values in our model
correspond to different types of higher order effects in
strategic interactions among agents. Some particularly
relevant choices of parameters, from a practical perspec-
tive, include:

1. r < 0 and 0 > kR > kW . It is beneficial for each

receiver if they do not get deceived and also the
other receivers in the group do not get deceived.
Example. During the COVID-19 crisis, there have
been several incidents caused by the spreading of
fake news. For example, in India a rumour spread
about some trains being arranged by the govern-
ment for the labourers that were stuck away from
home. This caused a gathering of thousands of peo-
ple at a major railway station [62]. We can formal-
ize this situation with: kR, kW < 0, because the
more receivers get deceived, the more social dis-
tancing rules are violated, leading to an increase in
the COVID-19 transmission, with potentially neg-
ative consequences also for receivers that were not
deceived; kR > kW , because, everything else being
equal, it is more likely to get infected if being de-
ceived (i.e., gathering at the railway station), than
if not; r < 0, because receivers who go to the rail-
way station spend money and time for no reason.

2. r < 0, kR > kW , and kR > 0. It is beneficial for
each receiver if they do not get deceived, but other
receivers in the group get deceived.
Example. At the beginning of the COVID-19 crisis,
there has been a shortage of essential goods, includ-
ing groceries and household items of daily use. Sup-
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pose there is a rumour spreading that these goods
are available at shop X and not at shop Y (where
they are actually available). Then, it is in the re-
ceiver’s best interest if they do not get deceived but
other people do, in order to minimize the competi-
tion for the utilities in shop Y .

3. r > 0 and 0 > kW > kR. It is beneficial for each
receiver if they get deceived but the other receivers
in the group do not get deceived.
Example. Any white lie being told in a population
of competing receivers belongs to this case. For
instance, suppose that two sport teams are com-
peting for an important match and that, right be-
fore the match, the presidents of the two teams
are informed about some tragic event that might
lower the performance of the teams, for example,
the sudden death of someone well known in their
field. The presidents have to decide whether to tell
the truth to the coaches and the teams before the
match or not. In this case, for each team, it is bet-
ter to believe the white lie, while the other team
does not. Indeed, in this case, it is more likely to
win the game, because the other team lowers its
performance.

4. r > 0, kW > kR, kW > 0. It is beneficial for each
receiver if they get deceived and that also the other
receivers in the group get deceived.
Example. This is a very general case, because there
are a number of examples where cooperative behav-
ior, that benefits everyone, emerges from collective
beliefs which are not supported by evidence. The
examples include various cultural beliefs.

By performing Monte Carlo simulations of the pro-
posed model, we first explored in detail the stationary
frequencies of the different strategy profiles in well-mixed
populations across the parameter space of the model. In
doing so, several novel features emerged out of group in-
teractions, which were not observed in the canonical pair-
wise sender-receiver game. Also by isolating the group
effects, we gained further insight into how the evolution
is modified upon the inclusion of group interactions in
well mixed populations.
But, of course, real populations are often structured,

and, in many cases, individuals do not interact in pairs,
but in groups. These higher-order structures are thus im-
portant for a realistic modelling of any complex system.
To probe them, we used the formal paradigm of hyper-
graphs, which allowed us to model networked systems
with group interactions. We first performed simulations
on hyperrings, which, owing to its uniform structure,
can be thought of as the hypergraph version of a lat-
tice. We observe that the evolution of strategies changes
drastically, and, in particular, we identified the regions in
the parameter space where the ‘moral strategy profile’,
whereby senders tell the truth and receivers believe the
message sent by the senders, evolve, which were not ob-
served in well mixed populations. In particular, we find

that new values of the parameters emerge, which allows
agents to overcome the temptation to lie (s > 0), even
for comparatively small values of kR and kW . We fur-
ther established that this effect, which was not present
in well-mixed populations, is strongest when the group
size is small and decays very quickly with the increasing
sizes of groups. This decrease in morality as a function of
the group size is not surprising, as our model of the hy-
perring converges to well-mixed populations as the size
of the hyperedges increases. What is surprising is the
fact that the moral strategy profile does evolve in small
groups. Moreover, this is not just a mathematical curios-
ity due to the special hyperring structure, as we found a
qualitatively similar result in all real-world hypergraphs
that we have built from the SocioPatterns dataset: the
strategy profile (T,B) persists in all real-world hyper-
graphs that we have built, although with different final
densities.

Recent works have explored the evolution of honesty
on only the canonical, pairwise sender-receiver game in
well-mixed populations and on networks [40, 41], as part
of a research direction to study the evolution of moral be-
haviour [63, 64]. This work constitutes the first system-
atic study of group effects in signalling games. As any
first study, also this has some limitations that can suggest
directions for future work. For example, we considered
only the case in which there is one sender and multiple
receivers. However, in reality, sometimes there are multi-
ple senders that compete among themselves, such as news
outlets which compete for who has more receivers. Future
work could extend our formalization to include competi-
tion among senders. Also, as real higher-order networks,
we considered only four hypergraphs downloaded from
the SocioPatterns database, which refer to physical inter-
actions in a primary school, a high school, a conference,
and an office. It is possible that these interactions are
spatially different from virtual interactions that happen
online. Understanding the effects of the network struc-
ture on the spread of misinformation online is certainly
an important direction for future work.

This study also contributes to our understanding of the
effect of group size on the evolution of morality. Previous
work has mainly focused on another form of morality, co-
operative behavior [65]. In this context, a line of work
using several techniques, ranging from numerical simu-
lations, to mathematical analyses and behavioral exper-
iments, has found that the relationship between group
size and cooperation is very nuanced and much depends
on the particular experimental paradigm being used to
formalize cooperative behavior [66–77].

Cooperation, one of the most well studied topics in
the field of evolutionary game theory [78–83], is only one
specific type of moral behaviour among several others
[65], among which honesty is also present [29]. However,
unlike cooperation, other moral behaviors have not re-
ceived significant theoretical attention, and certainly not
from the point of view of group interactions. In a society
as complex as ours, it is expected that the phenomena
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that emerge out of it cannot be explained solely through
pairwise interactions between individuals as many inter-
actions naturally happen in groups. We hope that our
work provides a stepping stone towards bridging this gap
and encourages further studies devoted to group interac-
tions. An interesting future direction also emerges on the
experimental side, where behavioral changes in strategic
interactions between individuals can be explored, in situ-

ations where their rewards are entangled with each other.
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Supplementary results

In what follows, we provide additional figures that support the results and arguments presented in the main paper.
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FIG. S1. Final densities of the four strategy profiles (T,B), (T,N), (L,B) and (L,N), when kR = 0.25 and kW = 0.25.

FIG. S2. The time evolution of strategies for s = 0.5, r = 0.5, kR = 10 and kW = 0 in well mixed populations, depicting the
slow relaxation to equilibrium.
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FIG. S3. Stationary frequencies of the four strategies on the hyperring with 4 nodes in each hyperredge: (Left) (kR, kW ) =
(−0.25, 0) and (Right) (kR, kW ) = (0,−0.25) .
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FIG. S4. Stationary frequencies of the four strategies on the hyperring with 4 nodes in each hyperredge: (Top left) kR =
−0.25, kW = 0, (Top right) kR = 0, kW = −0.25, (Bottom left) kR = −0.25, kW = 0.25, (Bottom right) kR = 0.25, kW = 0.25.



S3

1 10 100 1000 10000
MC steps (t)

10
-4

10
-3

10
-2

10
-1

10
0

D
en

si
ty

k
R
 = 0,  k

W
 = 0

k
R
 = 1,  k

W
 = 0

k
R
= -1,  k

W
 = 0

FIG. S5. Evolution of the moral strategy (T,B) for (kR,kW )= (0, 0), (1, 0), and (−1, 0). The parameter values s = 0.2 and
r = −0.3 are fixed for all three curves. The (kR,kW )= (0, 0) curve depicts the simulation on the projected pairwise network of
the hypperring (where each hyperredge is replaced by a clique with only pairwise links between each member of the hyperedge).
While it was known that networks facilitate the evolution of moral behavior in the pairwise sender-receiver game, it is clear
that group interactions can further promote the strategy (T, B) (brown curve) or even hinder it (pink curve), depending on the
nature of group interactions (the value of kR and kW ).
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FIG. S6. Stationary frequencies of the four strategy profiles in the hyperring, as a function of number of elements in a hyperedge,
for parameters (Top left) s = −1, r = 1, kR = 0.25 and kW = 0, (Top right) s = 0.2, r = −0.3, kR = 0 and kW = −0.25, (Bottom
left) s = −0.8, r = 0.2, kR = 0 and kW = −0.25, and (Bottom right) s = 0.1, r = −0.8, kR = 0 and kW = −0.25.


