Beyond Annotations: A Proposal for Extensible Java (XJ)

Tony Clark, Paul Sammut, James Willans - Ceteva Ltd.

1 Introduction

In his 1994 paper on Language Oriented Programming
(LOP) [1], Martin Ward proposes that the problems
of complexity, conformity, change and invisibility that
occur with large software systems can be addressed by
designing a formally specified, domain-oriented, very
high level programming language as the basis for system
design. Recently, Guy Steele [2] has emphasised this
point:

a good programmer in these times does not
Just write programs. [...] a good program-
mer does language design, though not from
scratch, but building on the frame of a base
language

The term Domain Specific Language (DSL) has been
used to refer to languages that have been designed for
a restricted class of applications. Martin Fowler [3]
makes the distinction between external DSLs and in-
ternal DSLs. An external DSL is written outside the
main language of an application whereas an internal
DSL is written in and uses the main application lan-
guage.

Medium to large scale enterprise information sys-
tems are implemented using a collection of different
technologies. These include JavaScript, JUnit, Ant,
(lots of) XML, Drools and various extensions to Java
implemented using annotations. In addition to fairly
standard technologies such as those mentioned above,
there are a large number of extensions being pro-
posed to standard programming languages such as
Java. Many of these extensions are implemented us-
ing different pre-processor technologies. Each of these
different technologies addresses a different aspect of the
overall system. Therefore the system is implemented
using a collection of loosely integrated DSLs.

The arguments made by Ward in favour of LOP and
DSLs are even more relevant today given the prolifera-
tion of technologies and the scale of software systems.
Developers are using these techniques all the time in
various different ways.

The danger with home-grown LOP technology is
that it can make the problem worse, not better. If de-
velopers use a variety of methods and tools to construct
a language then they may get some immediate bene-
fit, but issues will arise if the underlying technology

Domain Specific
Engine

Domain Specific
Language

General Purpose
Engine

General Purpose
Language

Fig. 1. Abstract Model of Development

is not stable. In addition, to be useful DSLs must be
portable - perhaps not as widely distributed as general
purpose languages, but transferrable nonetheless. For
large scale benefit, it should not be necessary to sup-
ply the complete language support system along with
a system module.

This paper is a proposal for a language extension to
Java called XJ that supports LOP and therefore allows
DSLs to be constructed to be standard, portable and
easily understood. The extension is conservative in the
sense that it will not conflict with any existing language
features and will preserve backward compatibility. The
proposal extends classes with syntax definitions to pro-
duce new modular language constructs, called syntax-
classes, that can easily be distributed along with an
application in the usual way.

The LOP extensions to Java have been implemented
in an existing language called XMF [4]. XMF is a
high-level object-oriented language designed to support
DSLs. XMF has been used in a commercial product
and has a Java-like sub-language. Therefore we are
confident that the XJ proposal has been adequately
validated.

This paper is structured as follows: section 2 reviews
the state of the art in DSLs; section 3 describes the
XJ language extensions; section 4 describes some LOP
defined examples using XJ; finally, section 5 analyses
the proposal and compares it to related proposals for
Java-based LOP technologies.

2 Domain Specific Languages

Consider an idealised development process. You are
given an application to develop. You start by trying
to understand the kind of executions you will need to
perform - just fragments at first. Gradually, you join

2 Domain Specific Languages

the executions together to form ever greater descrip-
tions of what will need to happen. The executions, are
described in terms of entities from the application do-
main: financial transactions, customers, interest rates
and so on.

You start to notice common themes in the executions
and design execution rules that cover them. Gradually,
you wind up with a fairly comprehensive collection of
execution rules; each rule expects to be given some
information that causes it to perform some calculation.
The rules define an idealised domain specific execution
engine and the data that drives the engine defines a
domain specific program. The range of variability in
the programs you can given the engine is a domain
specific language.

Once you have arrived at an engine and language
then you choose a general purpose language. You un-
derstand the language very well and your implementa-
tion task becomes one of working out how to translate
the domain specific program into a real-world program
so that it faithfully executes on your general purpose
engine. See figure 1.

Of course, the above process is idealised, however
it is representative of how a developer gets from an
application specification to a working implementation.
How closely the process is followed will depend on how
expert the programmer is (there are lots of translations
going on). An expert programmer will perform many
of the steps instinctively and perhaps often not even
be aware of the various representations.

The difference between the DSL and the implemen-
tation language is the representation chasm. Once the
process has jumped from one side of the chasm to the
other, it is very difficult to get back. This one-way
process is a source of many problems since it loses the
meaning of the original representation. Once lost, it is
difficult for humans to interpret the code (maintenance
becomes an issue), and it is difficult for machines to
extract meaning from the code (for example building
reuse libraries or generating efficient code).

DSLs have their roots in the language extensions
mechanisms provided by Lisp and Scheme. These lan-
guages promoted a declarative approach to application
development through the use of macros. A key feature
for LOP is the ability to process the abstract syntax of
the underlying language. The Lisp family of languages
represents both data and programs using S-expressions
which has a simple structure.

Until the development of C++ templates, most
mainstream languages other than Lisp, provided very
little support for LOP. The C pre-processor is not really
a suitable technology for LOP. Whilst C+-+ templates
provide much more support for LOP than the C pre-
processor, they do not support access to the underlying
abstract syntax.

Current mainstream languages do not provide any

support for LOP, however there is increasing interest
in LOP and DSLs because of the perceived benefits
outlined above. A number of language extensions to
Java have been proposed to support LOP and these
are analysed in section 5.

Many of the approaches to LOP involve language
pre-processors that perform source-to-source transla-
tions. Whilst this provides LOP and DSLs, it intro-
duces a new technology, usually a parser and some form
of source code translation mechanism, that is not in-
tegrated with the main implementation language. In
order to use the new language in Java, the provider
must supply the pre-processing technology which may
not work with Java development tools and will be de-
pendent on a third party for maintenance.

The structure of this section is as follows: section
2.1 describes a number of architectural styles for de-
veloping DSLs; section 2.2 describes a number of tech-
nologies used to implement DSLs; section 2.3 analyses
the styles and technologies and makes a proposal for
a standard extension to Java that supports LOP and
DSLs; finally, section 2.4 lists a number of example
DSLs that could be added to Java using the proposals.

2.1 DSL Architectural Styles

There are a number of approaches to architecting a
DSL using LOP technologies. This section briefly de-
scribes the main styles.

2.1.1 Internal vs External DSLs

Fowler makes the distinction between internal and ez-
ternal DSLs. An internal DSL makes use of an existing
language and possibly integrates with it whereas an ex-
ternal DSL is completely separate. It should be noted
that, if technology supports a fully integrated inter-
nal approach then that can be used to implement an
external approach. This is because such a technology
would allow the complete replacement of the host lan-
guage syntax whilst still using the host language for
the implementation of the DSL.

2.1.2 DSL Integration

DSLs may be fully or partially integrated with their
host language. A full integration allows the DSL con-
structs to be interleaved, where appropriate, with the
host constructs. Effectively the host language is ex-
tended by the DSL. Partial integration involves levels
of restriction on the potential for interleaving. A very
restricted integration allows the DSL constructs to oc-
cur at pre-defined points in the host language. A fully
restricted integration is effectively an external DSL.

2 Domain Specific Languages

2.1.3 Concrete Syntax

DSLs may introduce new syntax constructs, may re-
interpret the syntax constructs of the host language, or
may simply use the existing constructs of a language in
a systematic way. New syntax constructs are perhaps
the purest form of DSL but will require some parsing
technology. Re-interpretation often involves observing
patterns of existing language constructs and treating
them specially in some way, perhaps involving pattern
matching technology. A typical example is to treat
certain procedure calls, method calls or field references
in a special way.

2.1.4 Translational vs Execution

DSLs may be translational or may involve their own
execution engines. A translational DSL transforms
source code from the DSL constructs to existing con-
structs in a target language. This may involve a pre-
processor or be integrated within the target language
compiler. A translational approach requires technology
for manipulating syntax - concrete, abstract or both.

DSLs that have their own execution engines tend to
be external DSLs (but need not be). In this case the
DSL program is a data structure that is processed by
an engine written specifically for the purpose. Such an
approach is related to software frameworks as discussed
below.

2.2 Existing Technologies for DSLs

This section describes a number of different technolo-
gies and approaches that are currently used to imple-
ment DSLs.

221 XML

XML has been proposed as a technology for express-
ing DSLs. This is possible and achieves a standard
representation, however XML is not integrated with
a programming language in any way and cannot take
advantage of the feature of the language in the DSL
constructs, therefore it does not meet the criteria set
out in [2] for language definition. In certain lim-
ited highly declarative domains (for example express-
ing data structure relationships, declaring project de-
pendencies or menu items) XML is fine, but otherwise
it requires a complete language engine to be written
from scratch using a representation that is not partic-
ularly human-friendly.

2.2.2 Pre-processors

A pre-processor can be used to add DSL features to
an existing language. Some pre-processors also al-
low macros to be defined so that the user can define

new language features. In both cases this achieves the
aims of LOP but introduces new technology. The pre-
processor technology must be distributed with the lan-
guage definition in order for anyone to use it. Most
pre-processing technologies have restricted knowledge
of the target language and cannot provide new lan-
guage features with information about their static con-
text (variables in scope, types etc). This makes it dif-
ficult to use pre-processors to extend an existing lan-
guage in order to achieve [2].

Pre-processors may also be limited to the existing
syntax of the target language, i.e. they can inter-
pret patterns of existing constructs, but not introduce
new constructs. This feature limits the ability of pre-
processors to achieve the goals set out in [1]. Finally,
pre-processors may not work with existing language
tools. For example, Java IDEs can only process stan-
dard Java; language constructs introduced via a pre-
processor will not be legal in such an IDE and the code
produced by the pre-processor will not be understood
by the developer.

2.2.3 Chained Calls

A good place to start when defining a DSL is to make a
list of the nouns and verbs associated with the domain.
These are good candidates for the data and language
features that the DSL will need to support. A style of
OOP uses chains of method calls to implement these
features. Proponents of this style, claim that the ap-
proach achieves the benefits of a DSL without needing
any new language features.

As an example of chained calls in Java consider the
following example of XML (taken from http://www.
infoq.com/articles/internal-dsls-java):

String sql =
"select id, name " +
"from customers c, order o " +
"where " +

"c.since >= sysdate - 30 and " +

"sum(o.total) > " + significantTotal + " and " +

"c.id = o.customer_id and " +
"nvl(c.status, ’DROPPED’) !'= ’DROPPED’";

This can be refactored as a chained method call DSL:

Table ¢ = CUSTOMER.alias();

Table o = ORDER.alias();

Clause recent =
c.SINCE.laterThan(daysEarlier(30));

Clause hasOrders =
0.TOTAT.sum() . isAbove(significantTotal);

Clause ordersMatch =
c.ID.matches(o.CUSTOMER_ID) ;

Clause activeCustomer =
¢.STATUS. isNotNullOr ("DROPPED") ;

2 Domain Specific Languages

String sql =
CUSTOMERS
.where(recent.and (hasOrders)
.and (ordersMatch)
.and (activeCustomer)
.select(c.ID, c.NAME)
.sq1Q);

Whilst chained-calls can lead to readable code and
no doubt the approach can be good practice since it fo-
cusses design attention on the domain, there is limited
scope for proper encapsulation of new concepts and no
scope for conveying semantic intent to the language
tools.

2.2.4 Processing Concrete Syntax

Systems that support an LOP approach often provide
mechanisms for working with concrete syntax. These
include patterns for matching structure and templates
for generating code. It is important that processing
is not limited to concrete syntax since there are of-
ten constructs in a language that have no correspond-
ing concrete syntax language feature. For example, in
Java there is no concrete syntax for defining a package
containing classes. However, in order to achieve [1] it
is necessary to be able to produce new features that
abstract commonly occurring language patterns.

Systems that are limited to just pattern matching
over concrete syntax cannot introduce new language
features whose structure differs from that of existing
features. In order to deal with new concrete syntax,
some form of parsing mechanism is required. One way
of achieveing this is to allow grammars to be defined
within the language. Each new grammar corresponds
to a new language construct. In order for the new
language constructs to be embedded within the existing
language, the grammar rules should be able to extend
those of existing constructs.

2.2.5 Scripting and External DSLs

An external DSL is one that does not extend or use
the main implementation language. Such a language
is often used to implement a module in a larger sys-
tem. There are a number of scripting languages, such
as JRuby, that can be used in conjunction with gen-
eral purpose programming languages, such as Java. In
these cases the GPL is used to implement the core sys-
tem and the scripting languages provides a DSL for
specific aspects, in the case of JRuby this could be the
user interface.

For specific types of application this can work well,
but it does not really address the key motivations be-
hind [2, 1]. The scripting language is often just another
GPL that happens to be used for a specific aspect of the
system. The main GPL (Java) knows little about the

semantics of the constructs it is calling in the scripting
language. In many cases the scripting language is quite
broad in scope and therefore is not really achieving the
aim of providing a DSL.

2.2.6 Java Annotations

Java has recently been extended with annotations
which can be used to introduce properties to specific
places in the source code. The motivation for the anno-
tations has been to provide a mechanism for extending
the Java language with new constructs, by allowing
existing constructs to have properties. A new class of
construct can be defined by distinguishing between ex-
isting constructs based on their property annotations.
In addition, the annotations are a standard part of the
language and therefore can be processd by Java lan-
guage tools such as compilers and IDEs.

This approach has been used in a number of exten-
sions to Java and, if used lightly, can be successful.
However the aim of achieving new program constructs
that reflect the domain or capture programming idioms
is not achieved using annotations since they cannot in-
troduce any new syntax. In addition, if annotations
are overused then the source code becomes difficult to
read.

2.2.7 Frameworks and Libraries

A Software Framework is a collection of classes that
capture a design pattern or an aspect of an applica-
tion. The key feature of a software framework is that
it represents a reusable component where some of the
features of the framework are fixed in structure and
behaviour and some are left open to extension by the
user. A framework differs from a more traditional soft-
ware library in that the user provides the framework
with the implementation of services that the frame-
work calls. In a software library this works the other
way round where the user calls services provided by the
library (the so-called Inversion of Control). The exten-
sion points in a framework are typically supplied with
objects whose classes implement abstract methods. At
appropriate points in its life-cycle, the framework will
invoke the methods of the registered objects.

A DSL is related to frameworks in a number of ways.
A DSL that extends the syntax of a language typically
uses a parsing framework to deal with the new concrete
syntax. If the new syntax is fully integrated with an ex-
isting language then extension points can be provided
by the parser for the existing language to support the
extensions. If the compiler or interpreter for an exist-
ing language is a framework then it can provide exten-
sion points for new language constructs to be expanded
into existing language constructs. Finally, if a DSL is
to be implemented as an external language then the
execution engine for that language can be viewed as a

2 Domain Specific Languages

framework where the extension points are implemented
in data that is supplied as the DSL program.

2.3 Analysis

We have described DSLs, their architectural styles and
some technologies that can be used to implement them.
This section reviews the benefits and drawbacks of
DSLs and then makes some recommendations regard-
ing an approach to DSL architecture and implementa-
tion technology. XJ supports all of these recommenda-
tions.

2.3.1 Benefits of DSLs

LOP is important because it allows languages to grow
in line with [2]. It allows new programming idioms and
patterns to be captured in a standard way, can signif-
icantly reduce the number of technologies required to
produce a large application, and it supports DSL devel-
opment. The amount of investment necessary to imple-
ment a new language from scratch or even to make sig-
nificant modifications to an existing language is huge.
Given that LOP and DSLs are generally accepted to
have benefits, this raises a significant problem regard-
ing DSL development.

DSLs improve the readability and maintainability of
code since they close the representation chasm. In ad-
dition DSLs improve the scope for a developer to con-
vey the intent of program code to system tools such as
IDEs and compilers. This is important for tool support
of DSLs and to ensure efficient execution of DSL pro-
grams. DSLs can be designed so that system compo-
nent properties are made explicit which provides scope
for reuse.

2.3.2 Drawbacks of DSLs

Current approaches to DSLs suffer from having no
standard technology that supports language definition.
DSL developers are forced to use a variety of technolo-
gies or write their own. This has lead to the objection
that DSLs are hish-risk since they require specialised
skills for development and are difficult to maintain.
Lack of standards for DSLs also mean that tool support
for development is weak.

2.3.3 Recommendations

Standardisation is key to achieving the aims of LOP
and DSLs. Without standardisation, each LOP devel-
oper uses different approaches and technologies which
makes the development highly specialized and the
maintenance difficult to control. If LOP technology
can be standardized then languages become easier to

develop since tools can support the standard and prob-
lems of maintenance are greatly reduced. Standardiza-
tion can also significantly reduce the number of tech-
nologies necessary to support LOP and develop DSLs.

Should such a standard support fully integrated
DSLs or external DSLs? Given that technology for
fully integrated DSLs subsumes that of external, the
the standard should support a the definition of lan-
guage constructs that can be fully integrated with a
host language. In addition, the standard should allow
full concrete syntax extension and the ability to process
abstract syntax in arbitrary ways since this is perhaps
the essence of DSLs.

Should the standard support a translational ap-
proach or an execution engine approach? As noted
above, the execution engine approach is universal, but
quite specialized. It is more suited to external DSLs
that internal DSLs. Whilst there are benefits from an
execution engine approach (notably control and debug-
ging), a translational approach is more accessible and
supports a more lightweight approach for non-language
specialists.

Our proposal is to incorporate the above recommen-
dations as a standard language extension to Java. The
extension produces a language called eXtensible Java
(XJ) which is introduced in the rest of this paper.

2.4 Example DSLs

The following is a list of some of the DSLs that could
be supported by XJ. Many of these examples are ex-
isting DSLs that are implemented using the techniques
described above.

SQL Traditional methods of embedding SQL in
Java have used strings. The Java can-
not check the SQL and embedding Java
variable values within SQL statements is
clumsy. A DSL for SQL would embed the
language within Java and allow Java ex-
pressions to be references within SQL, see

[5]-

A single conceptual entity that is imple-
mented in terms of several Java constructs.
A DSL for Java Beans would abstract the
different constructs into a single language
feature.

Beans

Comprehensions Java does not provide declarative
program support for processing collections.
Comprehensions are a standard way of flex-
ibly processing collections and could easily
be added as a DSL.

Patterns Java does not support pattern matching.

There are various ways of implementing

3XJ

patterns, for example by overloading meth-
ods with argument patterns. DSLs would
allow a new form of method, calling would
dispatch to the method whose argument
patterns matched the supplied values.

There are a number of proposals for lan-
guages to support testing including JUnit
and jMock [6]. DSLs allow the details of
testing to be hidden and for tests to be ex-
pressed declaratively. A DSL for testing
could be defined so that tools supported a
test driven approach to development.

Testing

XML Both XML and HTML can be embedded as
concrete languages within Java via a DSL
approach leading to a similar integration as

provided by JSP.

Architecture Marcus Voelter [7] shows how system ar-
chitecture can be expressed using a DSL
and describes how code can be generated
from the DSL. This is representative of a
class of DSLs that can be added to Java to
express architecture.

Closures There is current discussion regarding how

to add closures to Java. DSLs can support

the definition of closures.

SPLA Feature models and product line architec-

tures allow single systems to describe a

number of products. DSLs can be used

to express the systems and their variation
points.

Hardware Many hardware systems are controlled by

small scripting languages. DSLs would al-

low these languages to be embedded within

Java and to allow the scripts to take advan-

tage of the features of Java.

Rules Rules systems such as Drools [8] already

class themselves as DSLs. These rules sys-

tems are very useful for encoding business
logic which monitor multiple data sources.

A standard mechanism for expressing DSLs

would provide scope for including a rules

system in Java.

GUI Libraries for constructing GUIs tend to re-

quire a large amount of code to create, link

and configure the various graphical com-
ponents. DSLs would allow the detail of
this code to be hidden and constructed in

a standard way.

3 XJ

XJ is a proposed extension to Java that supports LOP.
It introduces the idea of a syntaz-class into Java. A
syntax-class is a normal Java class that defines a lan-
guage grammar. When the Java parser encounters an
occurrence of a language feature delimited by a syntax-
class, the class’s grammar is used to process the input.
If the parse succeeds then the grammar synthesizes an
Java abstract syntax tree (AST). An object of type
AST has a standard interface that is used by the Java
compiler when it processes the syntax. New types of
AST can be defined providing that they implement the
appropriate interface.

The rest of this section introduces XJ using examples
and analyses the main features: section 3.1 specifies a
simple language construct; section 3.2 shows how Java
is extended with concrete syntax for the new construct;
section 3.3 describes the features in XJ for specify-
ing concrete syntax; section 3.4 describes how the new
construct is translated into standard Java; section 3.5
describes how abstract syntax is manipulated in XJ;
section 3.6 describes some further simple language ex-
amples in XJ; finally, 3.7 reviews the main features of
XJ.

3.1 The Select Language Construct

Consider a simple language construct in Java that se-
lects an element from a collection based on some predi-
cate. An example of the new construct is shown below:

import language mylang.Select;

public Person getChild(Vector<Person> people) {

@Select Person p from people where p.age < 18 {

return p;
} else { return null; }

}

The new language construct is called Select. A LOP-
defined construct in XJ is used by prefixing a reference
to the syntax-class with the @-character. The value p
is selected from the vector people providing that the
age of the person is less than 18. If a value can be
selected then it is returned otherwise null is returned.

The use of Select is equivalent to the following defi-
nition:

public Person getChild(Vector<Person> people) {
for(int i = 0; i < people.size(); i++) {
Person p = people.elementAt(i);
if(p.age < 18)
return p;

}

return null;

3XJ 7

package mylang;
import language java.syntax.Grammar;

import java.syntax.AST;
import java.syntax.Block;
import java.syntax.Context;
import java.syntax.Statement;
import java.syntax.Sugar;
import java.syntax.Type;
import java.syntax.Var;

public class Select extends Sugar {

private Type type;
private Var var;

private AST collection;
private AST test;
private Block body;
private Block otherwise;

public Select(Type T,String n,AST c,AST t,Block b,Block o) {
type = T;
var = new Var(n);
collection = c;
test = t;
body = b;
otherwise = o;

}

@Grammar extends Statement {

Select ::=
T = Type
n = Name
’from’ c = Exp
’when’ t = Exp
b = Block
o = (’else’ Block | { return new Block(); })
{ return new Select(T,n,c,t,b,0); }.

Fig. 2: A Select Command (Part 1 of 2)

3XJ

3.2 Concrete Syntax for Select

A new language construct is defined in XJ by defin-
ing a syntax-class. A syntax-class contains a grammar
which is used by the Java parser to process the con-
crete program syntax and to return an abstract syntax
tree (AST). Once a syntax-class has been defined, it
can be used in program code by referencing the class
after the syntax escape character 'Q’.

Figure 2 shows the concrete syntax part of the
syntax-class for Select. The grammar definition de-
scribes how to recognize a select statement. A gram-
mar consists of named parse rules. The grammar for
Select extends that for Statement which allows Select
to be used wherever a statement is expected and also
allows Select to reference the parse rules defined for
statements (in this case Type, Exp and Block).

The Select rule specifies that a well-formed state-
ment is a type followed by a name, the keyword from
followed by an expression, the keyword when followed
by an expression and then a block which is the body
of the select. After the body there may be an optional
else keyword preceding a block.

In each case within the Select rule, the parse ele-
ments produce a value that may optionally be associ-
ated with names. For example, the type is associated
with the name T. In addition, a parse rule can contain
Java statements that return a value. These are en-
closed in { and }, and may reference any of the names
that have been defined to the left of the statement. The
final value returned by the Select rule is an instance of
the class Select.

3.3 XJ Grammars and Parsing

XJ requires Java classes to be extended with an op-
tional grammar. Classes that contain a grammar def-
inition are referred to as syntax-classes. XJ also re-
quires that the Java parser is extended to allow the
current grammar to be changed during a parse.

Referencing a syntax-class after the syntax escape
character '@’ causes the Java parser to temporarily
switch grammars. When the parser encounters @C ...,
it finds the class C (loading it if necessary), extracts its
grammar and continues with the parse using the gram-
mar defined by the class. The starting non-terminal for
the class is always the parse rule named C.

The XJ parser maintains a stack of grammars. When
an @C ... construct is encountered, the grammar for
C is pushed onto the stack. If the current grammar
succeeds, then the stack is popped, the current value is
returned and the parse continues with the grammar at
the top of the stack. XJ grammars can be associated
with their own tokenizers, but get the standard Java
tokenizer by default.

XJ grammars have been implemented and used for
a number of years in the XMF system [15]. XMF is

open-source so the parsing algorithms and language for
expressing grammars are available for inspection.

3.4 Abstract Syntax for Select

The value synthesized and returned by a grammar
must be an instance of java.syntax.AST. If the return
value is an instance of one of the standard Java AST
classes then no special action needs to be taken by the
syntax-class. If the return value is an instance of a user-
defined syntax-class then that class must implement
the AST interface which is used by the compiler to
translate the source code into Java VM code. To make
this process easier, a user defined syntax-class can ex-
tend java.syntax.Sugar which implements the AST in-
terface through a method called desugar. The desugar
method is responsible for translating the receiver into
an AST for which the interface is defined (typically
desugaring into standard Java code).

The syntax-class Select extends the class
java.syntax.Sugar and defines the desugar opera-
tion in figure 3. The Java compiler needs to process
an AST instance in various ways. It achieves this
via the AST interface. The class java.syntax.Sugar
implements the AST interface by calling desugar and
then performing the appropriate AST operation on
the result. The desugar operation is supplied with
the current compilation context which contains the
variables in scope, types etc.

The Select syntax-class uses desugar to produce the
selection code. The particular code depends on the
type of the collection so the first thing that desugar
does it to work out the type of the collection and dis-
patch to an appropriate desugaring method. Figure 3
shows how vectors are desugared, other types such as
arrays are very similar. The desugarVector method re-
turns code using quasi-quotes which are explained in
the next section.

3.5 Quasi-Quotes

To define the desugar method, a syntax-class will gen-
erally construct new AST instances. This process is
made easy in XJ through the use of quasi-quotes. A
quasi-quoted AST is shown below:

[| x + <new java.syntax.Int(1)> |]
which is equivalent to the Java expression:
new java.syntax.BinExp(
new java.syntax.Var("x"),
||+ll s

new java,syntax.Int(1))

The delimiters [| and |] transform the enclosing con-
crete syntax into the corresponding abstract syntax.

3XJ

public AST desugar(Context context) {
Class<T> cType =
if (isVector(cType))
return desugarVector (cType,contect);
else // More cases...

}

Var done = context.newVar();

Var coll = context.newVar();

return [| boolean <done> = false;
<cType> coll = <collection>;

for(int i =

if (<test>) {
<done> = true;
<body>;
}
}
if ('<done>)
<otherwise>;

[1;

context.getType(collection) ;

public AST desugarVector (Class<T> cType,Context context) {

0; i < <coll>.size(); i++) {

<underlyingType(cType) > <var> = <coll>.elementAt (i);

Fig. 3: A Select Command (Part 2 of 2)

Within [| and |] the delimiters < and > can be used to
'unquote’ the syntax in order to drop in some abstract
syntax. The two forms of delimiters can be arbitrarily
nested. Quasi-quotes are an easy way to create code
templates in XJ.

The drop-quotes < and > allow a single AST valued
expression to be ’dropped’ into program code. Some-
times, it is necessary to splice a collection of program
elements into a single location. For example, this can
occur when a single DSL construct expands into a
collection of method definitions. XJ provides splice-
quotes <$ and $> to support this. For example the
following is a method that constructs a class definition
with a fixed field and a variable number of methods:

amples in the rest of this paper use a couple of syntax-
classes in this way. These are specified in this section
without their implementations.

3.6.1 Iterate

The UML Object Constraint Language provides a use-
ful language construct called ’iterate’ which is a re-
stricted form of collection-folding. The following is a
simple example of the use of a syntax-class called Iter-
ate:

04

@Iterate int i in nums with int sum =
return sum + i;

public AST mkClass(String n,Vector<Method> M) {3

return
[| public class <n> {
private int storage;
<$ M $>

[1;

3.6 Other Examples

Syntax expansions can make use of syntax-classes (sim-
ilar to macros-calling-macros) in XJ. Some of the ex-

The example adds up a collection of integers in the
collection nums. This code is equivalent to a call of a
method called addUp:

public int addUp(Vector<Integer> nums) {
int sum = O;

for(int i : sums)
sum = sum + ij;
return sum;

}

4 DSLs in XJ

10

3.6.2 Comprehensions

A set comprehension is a standard construct in math-
ematics for processing set-elements and constructing
new sets. This is a useful feature for processing Java
collections:

@Cmp(x + 1) {
int x <- nums

3

which creates a new collection by adding 1 to the
integers in the collection nums. This is equivalent to a
call of add1:

public Vector<Integer> addl(Vector<Integer> nums) {
Vector<Integer> vec = new Vector<Integer>();
for(int x : nums)
vec.addElement (x + 1);
return vec;

}

3.7 Review

The main features of XJ are:

syntax-classes XJ extends Java classes with the ability
to be associated with grammars.

grammars XJ extends Java classes with grammars. A
class with a grammar definition can be used
as a language construct. Grammars can
extend other grammars causing the syntax

rules of the parent grammar to be included
in the child.

A new type of syntax construct is added
to Java. Any construct starting with @
introduces a reference to a syntax-class.
The path following the @ must reference
a syntax-class. When the parser encoun-
ters an @ it dispatches to the grammar for
the syntax-class.

import A new import mode for importing refer-
ences to syntax classes. Once imported,
a syntax-class can be referenced by name

after @ without further qualification.

AST Access to, and standardization of, Java ab-
stract syntax. The compiler interface for
abstract syntax is also standardized along
with a compiler context. Various utility

classes such as Sugar are provided.

quasi-quotes Delimiters [| and || that allow abstract
syntax to be constructed as though it were
concrete syntax. Drop-quotes < and >
within quasi-quotes unquote the delimited
expression and allow code templates to be

constructed. The splice-quotes, <$ and $>
splice sequences of AST objects into a sin-
gle location within quasi-quotes.

Any Java value can be transformed into an
AST object whose evaluation will produce
the original value. Thus o.lift() produces
an AST object e whose subsequent compi-
lation and evaluation will produce o.

lifting

4 DSLs in XJ

This section describes two DSLs and shows how they
can be implemented in X.J.

4.1 Processing Transaction Records

This example is due to Martin Fowler [16]. Suppose we
have data that contains information about customer
events. A customer event might be a service call in-
cluding the name of the customer, the type of the call
(failed hardware, billing query etc) and the date. This
information may be provided in real-time or in a log
file as text:

SVCLFOWLER 10101MS0120050313
SVCLHOHPE 10201DX0320050315
SVCLTWO x10301MRP220050329
USGE10301TWO x50214..7050329

A Java program is to process the information. Obvi-
ously the first task of the Java application is to split the
input strings up in terms of their fields. If there are a
very small number of types of call then it would be OK
to just write the appropriate string manipulation calls
on the input. However, it would be better to define a
string processing framework and use that. Fowler gives
a framework-based implementation something like that
shown in figure 4.

A DSL could be defined that makes the code much
easier to read:

@Reader CallReader

map (SVCL, ServiceCall)
4-18:CustomerName
19-23:CustomerID
24-27:CallTypeCode
28-35:Data0fCallString

end

map (USGE, Usage)
4-8:CustomerID
9-22:CustomerName
30-30:Cycle
31-36:ReadDate

end

do
ServiceCall

4 DSLs in XJ 11

public void ConfigureCallReader (Framework framework) f{
framework.registerStrategy(ConfigureServiceCall());
framework.registerStrategy(ConfigureUsage());

}

private ReaderStrategy ConfigureServiceCall() {
ReaderStrategy result = new ReaderStrategy("SVCL",typeof (ServiceCall));
result.addFieldExtractor (4,18, "CustomerName")) ;
result.addFieldExtractor(19,23,"CustomerID"));
result.addFieldExtractor(24,27,"CalltypeCode"));
result.addFieldExtractor (28,35, "Data0fCallString")) ;

private ReaderStrategy ConfigureUsage() {
ReaderStrategy result = new ReaderStrategy("USGE",typeof (Usage));

result.addFieldExtractor (4,8, "CustomerID"));
result.addFieldExtractor (9,22, "CustomerName")) ;
result.addFieldExtractor(30,30,"Cycle"));
result.addFieldExtractor (31,36, "ReadDate"));

Fig. 4: Configuring a Framework for Service Calls

difficult to read. If a new language syntax was designed
for representing Enterprise Java information it would
be significantly more concise and have a simpler map-
ping between the users’ conceptual view of the program
and its definition. Figure 6 shows the same program
using an XJ defined syntax (given in Appendix 6.2):
A further example of applying XJ to Enterprise Java
is in easing the specification of the object to relational
mapping in entity beans. Figure 7 shows an example

Usage
end

which is equivalent to a class definition:

public class Callreader {
public void ConfigureCallReader(Framework f) {
// configuration calls...
}
private ReaderStrategy ConfigureServiceCall() {

// Construction of service call strategy...
}

// More configurations...

}

The syntax-class for the Reader construct is defined
in section 6.

4.2 Enterprise Java

Annotations are a new features of Java 5 which allow
additional data to be embedded in program code in the
form of name value bindings. Since annotations are a
means of extending the Java language for specific use
cases, they can be seen as an approach to defining Do-
main Specific variants of Java. An example of this is
Enterprise Java where annotations are used to add in
enterprise deployment information which is not facil-
itated in the standard Java language. Figure 5 is an
example of defining a Calculator session bean which
has a local and remote interface.

Although the annotations add in the necessary in-
formation, they arguably make the existing code more

of a mapping between an order entity bean and its re-
lational storage. Using the XJ technology to define a
domain language, this could be expressed significantly
more concisely as demonstrated in figure 8. Within
this the persistance mapping is captured as part of the
object’s definition and the availability of getters and
setters is expressed as a modifiers on the attribute def-
initions.

4 DSLs in XJ 12

@Stateless

@Local ({Calculator.class})

Q@LocalBinding (jndiBinding="LocalCalculator")

O@Remote ({RemoteCalculator.class})

QRemoteBinding (jndiBinding="RemoteCalculator")

public class LocalRemoteCalculator implements Calculator, RemoteCalculator {

public double calculate (int start, int end, double growthrate, double saving) {
double tmp = Math.pow(l. + growthrate / 12., 12. * (end - start) + 1);
return saving * 12. * (tmp - 1) / growthrate;

}

public String getServerInfo () {
return "This is the JBoss EJB 3.0 TrailBlazer";

}

}

public interface Calculator {

public double calculate (int start, int end, double growthrate, double saving);

public interface RemoteCalculator {
public double calculate (int start, int end, double growthrate, double saving);

public String getServerInfo ();

¥

Fig. 5: Calculator Session Bean

import language Enterprise.EnterpriseBean;
import language Enterprise.Remotelocal;
import language Enterprise.Remote;

Q@EnterpriseBean Calculator isStateless {

@RemotelLocal double calculate(int start, int end, double growthrate, double saving) {
double tmp = Math.pow(l. + growthrate / 12., 12. * (end - start) + 1);
return saving * 12. * (tmp - 1) / growthrate;

}

ORemote String getServerInfo() {
return "This is the JBoss EJB 3.0 TrailBlazer";
}

Fig. 6: Calculator Session Bean in XJ

4 DSLs in XJ 13

@Entity
Q@Table (name="0RDER_TABLE")
public class Order {

private int id;
private String address;

QId

@Column (name="0RDER_ID")

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

@Column (name="SHIPPING_ADDRESS")
public String getAddress() {
return address;

}

public void setAddress(String address) {
this.address = address;

}

Fig. 7: Order Entity Bean

import language Enterprise.EntityBean;

Q@EntityBean Order persistAs "ORDER_TABLE" {
private int id persistAs "ORDER_ID" (get,set);
private int address persistAs "SHIPPING_ADDRESS" (get,set);

)

Fig. 8: Order Entity Bean in XJ

5 Analysis

14

5 Analysis

This paper has reviewed the motivation for language
oriented programming (LOP) and domain specific lan-
guages (DSLs). It has described and analysed a num-
ber of approaches and technologies for LOP and DSLs
and has made some recommendations regarding how
LOP and DSLs can become part of mainstream sys-
tem development.

The key recommendation is that the technology for
LOP should become a standard part of a mainstream
language and we have shown how this can be achieved
by defining eXtensible Java (XJ). XJ supports LOP
through the introduction of syntax-classes.

A syntax-class is a standard Java class extended with
a grammar. Once defined, a syntax-class can be used
as a construct within Java programs through the use
of the '@’ language escape character. LOP is also sup-
ported within XJ through standard access to Java ab-
stract syntax and the use of quasi-quotes.

There are other systems that support LOP within
Java. OpenJava (OJ) [9] supports LOP using a meta
object protocol (MOP) that supports syntax expan-
sion. Each class may specify a meta-class that is re-
sponsible for expanding its definition. The meta-class
uses a standard definition interface to process its in-
stances. This is a very flexible approach which sup-
ports complete access to abstract syntax. However,
OJ does not include a mechanism for extending the
concrete syntax of the language.

Maya [10] uses a pattern matching mechanism to
define macro expansion rules on Java abstract syn-
tax trees. The macros are defined using a new lan-
guage concept called a mayan which defines a gram-
mar production rule in terms of patterns. Maya allows
macros to be overloaded based on the type of the argu-
ments, thereby allowing the macros to expand differ-
ently. Maya offers similar features to XJ, however the
changes to the language are global and not modular-
ized by being attached to classes. The use of the syntax
escape @-character, means that new syntax constructs
are encapsulated, attached to classes and do not have
global effect on the Java grammar. This is in contrast
to Mayans that are independent of classes and have
global scope much like macros in Lisp and Scheme.

The Java Syntactic Expander (JSE) [11] is a macro
system that supports the definition of macros in Java
and uses a quasi-quote mechanism to process the ab-
stract syntax. JSE does not support new syntax rules
and operate on the concrete syntax of the language.
As we have seen in XJ it is sometimes necessary for
syntax-classes to have raw access to AST structures.

Meta-AspectJ (MAJ) [12] is an annotation-based
language extension mechanism that generates AspectJ.
MAJ does not support concrete language extension.

The Jakarta Tool Suite (JTS) [13] provides a macro

facility and uses a quasi-quote like mechanism for deal-
ing with abstract syntax. The expansion mechanism
provides access to environments that are similar to the
compiler contexts of XJ. JTS allows the concrete syn-
tax of Java to be extended via the Bali parser. JTS
is aimed at writing GenVoca generators and as such,
although it provides a number of key LOP features, it
is a pre-processor and therefore not as integrated with
Java as the proposal for XJ.

The Fortress language [17] is an example of a new
language that has included features that support LOP.
The support is fairly simple: delimiters can be specified
and the compiler supplies the raw string between the
delimiters to user code for processing. However, this
is an indication that LOP and DSLs are starting to
emerge in languages simed at the mainstream.

XJ is a proposal for a language extension to Java.
In order for XJ to achieve its potential as a LOP sys-
tem to support mainstream DSL development it must
become part of the Java standard. A requirement for
any proposal for mainstream language extension is that
it should undergo a rigorous validation process. Al-
though XJ has not been implemented in Java, it is one
of the key features of the XMF language [15, 14] that
has been used in commercial tools (XMF-Mosaic) and
has been made open-source in 2008. All of the language
mechanisms and algorithms necesary to implement X.J
have been validated through the XMF system.

References

[1] Language Oriented Programming. Martin Ward.
Software - Concepts and Tools, Vol.15, No.4, pp
147-161, 1994

[2] Steele, G. L. 1998. Growing a language. In Adden-
dum To the 1998 Proceedings of the Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (Addendum) (Vancou-
ver, British Columbia, Canada). J. Haungs, Ed.
OOPSLA ’98 Addendum. ACM Press, New York

[3] Martin Fowler’s blog on Domain Specific
Languages http://www.martinfowler.com/
articles/languageWorkbench.html

[4] XMF. Available from http://wuw.ceteva.com.

[5] JEQUEL A Java embedded Query language
(SQL in Java). http://jequel.de/index.php?
n=Main.JEQUEL

[6] Evolving an Embedded Domain Specific Language
in Java OOPSLA 2006.

[7] Architecture as Language: A Story. Mar-
cus Voelter. http://www.infoq.com/articles/
architecture-as-language-a-story.

6 Appendix

15

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Drools. http://www. jboss.org/drools/

OpenJava: A Class-based Macro System for Java.
Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier
Killijian and Kozo Itano Lecture Notes in Com-
puter Science 1826, Reflection and Software En-
gineering, , Walter Cazzola, Robert J. Stroud,
Francesco Tisato (Eds.), Springer-Verlag, pp.117-
133, 2000

Maya: Multiple-Dispatch Syntax Extension in
Java. Jason Baker, Wilson C. Hsieh. The 2002
Conference on Programming Language Design
and Implementation.

The Java Syntactic Extender (JSE). Jonathan
Bachrach, Keith Playford. OOPSLA 2001.

Easy Language Extension with Meta-AspectJ.
Shan Shan Huang, Yannis Smaragdakis. ICSE
2006.

JTS: tools for implementing domain-specific lan-
guages. Batory, D. Lofaso, B. Smaragdakis, Y.
Proceedings. Fifth International Conference on
Software Reuse, 1998. Publication Date: 2-5 Jun
1998 On page(s): 143-153.

Applied MetaModelling: A Foundation for Lan-
guage Driven Development. Second Edition, 2008.
Tony Clark, Paul Sammut, James Willans. E-book
available from http://wuw.ceteva.com.

Superlanguages: Developing Languages and Ap-
plications with XMF. First Edition 2008. Tony
Clark, Paul Sammut, James Willans. E-book
available from http://wuw.ceteva.com.

DSLs. Martin Fower presentation at JAOQO
2006. http://www.infoq.com/presentations/
domain-specific-languages.

The Fortress Language Specification. Allen
et al. Version 1.0 2008. Available from
http://research.sun.com/projects/plrg/
Publications/fortress.1.0.pdf

Appendix

6 Appendix 16

import language java.syntax.Grammar;
public class Reader extends Sugar {
private String name;
private Vector<Mapping> mappings;

private Strategy strategy;

public Reader(String n,Vector<Mapping> m,Strategy s) {

name = n;
mappings = m;
strategy = s;
}
@Grammar {
Reader ::= n = Name ’{’ M = Mapping* s = Strategy ’}’
{ new Reader(n,s,M) }.
Mapping ::= ’map’ ’(’ t = Name ’,’ n = Name ’)’ ’{’ F = Fieldx ’}’
{ new Mapping(t,n,F) }.
Field ::= s = Int ’-? e = Int ’:’ n = Name
{ new Field(s,e,n) }.
Strategy ::= ’do’ N = Namex

{ new Strategy(@Cmp new MappingRef(n) | n <- N end) }.

Fig. 9: Reader Syntax Class (Part 1 of 2)

6 Appendix 17

public AST desugar (Context context) {
return
[l public class <name> {
public void <"Configure" + name>(Framework framework) {
<@Iterate Strategy s in strategies with e = [| [|] {
String name = "Configure" + s.getName();
return
[l <e>; framework.registerStrategy(<name>()); |]
>
<$@Cmp([| private ReaderStrategy <"Configure" + m.getName() {
ReaderStrategy result = new ReaderStrategy(t,typeof (<v>));
<@Iterate Field f in m.getFields() with e = [| [] {
AST start = f.getStartPos().1ift();
AST end = f.getEndPos().lift();
AST name = f.getName().1ift();

return
[| <e>; result.addFieldExtractor(<start>,<end>,<name>) |];
>
I A

AST t = m.getTag().1ift();
AST v = Var(m.getName());
Mapping m <- mappings;

18>

Fig. 10: Reader Syntax Class (Part 2 of 2)

6 Appendix

18

import language java.syntax.Grammar;

public cl

private
private
private
private

public
this
this.
this.

t

@Gramma:
Enter

sta
sig

r

ass EnterpriseBean Calculator extends Sugar {

String name;
boolean stateless;
AST signature;
Block body;

EnterpriseBean(String name,boolean stateless,AST signature,Block body) {

.name = name,

stateless = stateless;
signature = signature;
his.block block;

r extends Command {

priseBean ::=

name = Name

teless = ’isStateless’ {true} | {false}

nature = ClassSignature

body = ClassBody {

eturn new EnterpriseBean(name,stateless,signature,body) ;

Fig. 11: Syntax Class for Enterprise Beans (Part 1 of 3)

6 Appendix 19

}

}

}

public AST desugar(Context context) {

CompilationUnits cus = new CompilationUnits();
cus.setContext (context) ;
cus.add(createlLocalInterface(context));
cus.add(createRemoteInterface(context));
cus.add(createBeanClass) ;

return cus;

private CompilationUnit createBeanClass(Context context) {

CompilationUnit bean = new CompilationUnit();

bean.setContext (context) ;

ClassDef beanDef = new ClassDef (name) ;

signature.addImplements(name + "Local");

signature.addImplements(name + "Remote");

beanDef . setSignature(signature);

if (stateless)
bean.addAnnotation("Stateless");

bean.add (beanDef) ;

return bean;

private CompilationUnit createLocalIlnterface(Context context) {

CompilationUnit local = new CompilationUnit();
local.setContext(context);
InterfaceDef locallnterface = new InterfaceDef(name + "Local);
Vector<MethodDef> methods = body.getMethodDefs() ;
for(int i=0;i<methods.size();it++) {

if (methoddef .hasProperty("Local") ||

methoddef . hasProperty("RemoteLocal"));

remoteInterface.add(local.getDeclaration());
}
local.add(localInterface);
return local;

private void createRemoteInterface(Context context) {

CompilationUnit remote = new CompilationUnit();

remote.setContext (context) ;

InterfaceDef remotelnterface = new InterfaceDef(name + "Remote");

Vector<MethodDef> methods = body.getMethodDefs();

for(int i=0;i<methods.size();i++) {

if (methoddef .hasProperty("Remote") |

methoddef .hasProperty("RemoteLocal"))
remoteInterface.add(remote.getDeclaration())

}
remote.add(remoteInterface) ;
cus.add(remote) ;

Fig. 12: Syntax Class for Enterprise Beans (Part 2 of 3)

6 Appendix 20

import language java.syntax.Grammar;
public class RemoteLocal extends Sugar {
Q@Grammar extends Command {
Remotelocal ::= methodDef = MethodDef {
methodDef . setProperty ("RemoteLocal","true");

return methodDef;

}

import language java.syntax.Grammar;

public class Remote {

@Grammar extends Command {
RemoteLocal ::= methodDef = MethodDef {
methodDef . setProperty ("Remote","true") ;
return methodDef;

Fig. 13: Syntax Class for Enterprise Beans (Part 3 of 3)

