Middlesex University Research Repository: an open access repository of Middlesex University research
 http://eprints.mdx.ac.uk

Hackett, Edward Alfred, 1974. Development and application of learning curves. Available from Middlesex University's Research Repository.

Copyright:

Middlesex University Research Repository makes the University's research available electronically.
Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work's full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk
The item will be removed from the repository while any claim is being investigated.

OF LEARNING CURVES

EDWARD ALFRED HACKETT

A The is submitted to the Council for National Academic Awards in Candidature for the Degree of Master of Philosophy

Research conducted in the Post Office under the supervision of the Middlesex Polytechnic at Hendon

BEST COPY

AVAILABLE

Variable print quality

VOLUME CONTAINS CLEAR OVERLAYS

$$
\begin{gathered}
\text { OVERLAYS HAVE } \\
\text { BEEN SCANNED } \\
\text { SEPERATELY } \\
\text { AND } \\
\text { THEN AGAIN OVER } \\
\text { THE RELEVANT PAGE }
\end{gathered}
$$

CONTAINS

PULLOUTS

Page
Acknowledgements vii
Declatration ix
Summary x
List of Tables xiii
List of Diagrams xiv
List of Transparencies xv

1. Introduction 1
1.1 The Training Research Project 1
1.2 The Nature of the Problem 2
2. History of Previous Work 4
2.1 Introduction 4
2.1.1 Robertson's Equation 4
2.1.2 Moore's Equation 6
2.1.3 Wright's Equation 7
2.1.4. Crawford's Equation 7
2.1.5 De Jong's Equation 8
2.1.6 American Govt. Equation 9
2.1.7 Gloverts Equation 10
3. 4. 8 Wiltshire ${ }^{\text {s }}$ Equation 10
2.1.9 Bevis's Equation 11
2.2 An alternative Approach: Psychological Models of Learning 13
2.2.1 A model for Replacement Learning 13
2.2.2 A model for Accumulative Learning 14
2.2.3 Modification of the above Equations to depict learning to a base of time 16
1. 3 Other Niathematical forms of Equations to fit learning data 16
2.3.1 Modification to the Equation of the Basic Hyperbola 16
2. 3.2 The same modification to a logarithmic scale 17
2.3.3 A mathematical form using hyperbolic expressions 17
2.3.4 A cubic model 17
2.3.5 Gompertz's Equation 18
2.4 A Second Order Mode1 18
2.4.1 Three hypothetical experiments 18
2.4.2 A possible relationship between Under- standing and Information 20
2.4.3 A possible relationship between Infor- mation and Output Performance 21
3. Which Model? 26
3.1 A Historical/Computational Review 26
3.2 The connection between the shape of the learning curve and the parameter values 27
4. 3 Choice of Models for Investigation 30
5. Measuring the "Goodness of Fit" 32
4.1 The nature of the problem 32
4.2 The Validity Statistic 33
4.3 The Chi-square statistic 35
4.4 The 'R' statistic 35
6. 5 Choice of statistic to be used in the analysis 36
4.6 Statistical Analysis of the sum of errors squared values obtained 36
7. The curve-fitting program and data file 38
5.1 Choice of Bevis, Finnear and Towill algorithm 38
5.2 Derivation of Basic Formulae using the Bevis, et al algorithm 38
8. 3 Derivatives required for all programs used 42
5.3.1 Bevis Equation Derivatives 42
5.3.2 Wiltshire Equation Derivatives 43
5.3.3 De Jong Equation Derivatives 44
5.3.4 Gompertz Equation Derivatives 45
5.3.5 Mathematical. Equation Derivatives 46
9. 3.6 Replacement Equation Derivatives 46
5.3.7 Accumulative Equation Derivatives 47
5.3.8 Second Order Equation Derivatives (3- parameter form) 48
5.4 Application to the Validity and Chi-squared statistics 48
5.5 Setting up the Data File 50
10. 6 Some notes on the estimation of the parameters 51
5.7 Operation of the Curve Fitting Routine 54
5.8 Computer Program Flow Diagram 56
5.9 An Example of a typical computer program used 57
11. Sources of Data 66
6.1 Blackburn's study on the Acquisition of Skill 66
6.2 Morcombe's thesis on Motor Skill Learning Models 67
6.3 Blankenship and Taylor's study of Machine Operators 67
6.4 Bevis's thesis on Industrial Learning 67
6.5 Hackett and Lamb's study of Telephonist Training 67
12. Analysis of Results 72
13. 1 Relative success rate for fitting each model 72
14. 2 Calculation of the Co-efficient of Concordance 73
15. 3 Comparis on of "Best Fit" Start and Final Values 84
7.4 Discussion and Conclusions 87
16. An Examination of the Learning Data for Individual Telephonists 90
17. 1 Introduction 90
18. 2 Fitting the Bevis Model to Recorded Data 90
8.3 Discussion 91
8.4 An Examination of the detailed Learning Data 93
19. 5 Discussion 108
8.6 Alternative Reasons for the inaccuracy of the Data obtained from Post Office sources 113
8.7 Repetitive and Quasi-Repetitive Tasks 115
8.8 Possible application of Learning Curves to other tasks within the Post Office 116
Appendix A Post Office study on Criteria for the Evaluation of Training 123
Appendix B Formulae for the estimation of the parameter values for three-parameter learning curve models 125
Appendix C Learning Curve Data from Various Sources 132
Appendix D Details Concerning Blackburn's Experiments 149
Appendix E Telephonist Training Data obtained from records in Oxford and North West Telephone Areas 157
Appendix $F \quad$ Best Fit Parameter Values for Data in Appendix C 164
Appendix G A comparitive listing of "start" and "final" values calculated from 'hest fit' parameters 200
Appendix H Parameter values for the Telephonist Training Data given in Appendix E 222
Appendix I Telephonist Training Data obtained by Direct Observation 228

ACKNOWLEDGEMENTS

Some three years have passed since the Post Office initiated the Research Project which has resulted in this thesis. During that time I have had the privilege of working with and observing many people, all of whom gave of their best to ensure a successful conclusion to the Project. At this point in time I feel rather inadequate in my attempts to express my thanks, and hope that those not mentioned by name will appreciate the thought, if not the deed.

My first thanks must go to the Post Office, who, through Mr. N. Gandon initiated the Training Research Project. His colleague; our Project Manager Mr. Frank Rippon, assisted us in many ways, not the least being his ability to convince everyone that what Dick Lamb and myself were attempting to do was relevant to training!

Professor E. N. Corlett of Birmingham University, our consultant, was particularly helpful at our regular meetings, and V. J. Morcombe, our tutor at Hendon, encouraged me in many ways at a time when I had doubts that I was on the right method of attack. I must mention also Mr. J. Tillotson of the Mathematics Department at Hendon, all the staff of the Computer Bureau at Hendon, and Mr. B. Goodall of Brunel University for their assistance and advice during the curve fitting exercise.

Especial thanks to Dick Lamb, my colleague in this Research his comments and analyses proved of great value in this study. In addition, while the results of the tape recorded tests for telephonists are not reported here, I must thank Dick's wife, Maureen; my wife, Eirwen, and Mrs. F. Gaunt for their enthusiastic help in their production.

Finally, it is only fitting that I thank all the Post Office staff who assisted us - the trainees, operators, supervisors, exchange superintendents - without their help and willing assistance this thesis could never have been written.

I declare that with the exception of some experimental results made available by R. T. Lamb and other observations taken from the literature, the work submitted in this thesis is the result of my own investigation and has not been submitted in candidature for any other degree.
 Candidate

COPYRIGHT RESERVED

The copying of part or all of this thesis is not allowed except with the permission of the Post Office or the author.

As part of a Research Project into the Cost Effectiveness of Training, various experiments were held in Telephone Exchanges in the Midland , Eastern and London Telecommunications Regions. The purpose of the experiments was to investigate the work load of telephonists, to see how the amount of time spent on the elements of the task done might vary as the training of the telephonists proceeded and also to attempt to compare two methods of training. Data from these experiments and from other sources in the literature was used to compare the efficiency of a selection of models of learning.

The method of comparison was based on an extension of an iterative 2-parameter curve fitting algorithm which uses a Taylor Series approximation to the function of the model of learning investigated.

The resulting analysis allowed a tentative choice of what might be called the "best" model, which was then used in a more detailed examination of further data obtained on telephonists. In the event, the curve fitting analysis was found to be complex, as was the apparently simple task of "telephonist". Time did not allow an extension of the study into other tasks performed by Post Office personnel.

Part I Studies of Data Available in the Literature
(1) The model which resulted in the best fit most consistently was the Wiltshire Model. However the Wilt shire Model only gave the solution in 31 of the 88 studies contained in the first part of the thesis. The second order model was the most regular method of obtaining the curve fit working in 87 of the 88 cases.
(2) The de Jong model and Logmathematical Models gave consistently the worst fits.
(3) Little difference could be detected in the remaining models.
(4) The most practical model (because the parameters may be defined in understandable terms) is the time constant model sometimes known as the Bevis model. This model worked in 77 of the 88 studies. The second order model is a logical exten sion of the Bevis model, and may fit the data more accurately, but requires a more complex curve fit procedure.

Part II Studies on GPO Data
(5) Despite the apparent advantages of the Bevis model, the accuracy with which the Bevis Model predicts the parameter values is not good enough to consider its use for a comparison of different training methods which might be used by the Post Office and hence allow an evaluation of the cost effectiveness of training. This may be due to insufficient or inaccurate data; or the model, may not be a true reflection of the learning process that occurs.
(6) Telephonists learn to do their work in two stages, a training stage and an experience gaining stage, which may be defined by two learning curves.
(7) The method of evaluating the work done by a trainee telephonist in the early stages of training is inaccurate. The inaccuracy is probably due to the high variability in the presentation of calls to the trainee.
(8) The problem of curve fitting to tasks which are not truly repetitive but contain elements which are repetitive, is complicated because of the difficulty of establishing an accurate performance measuring system. The cost of the work needed to do this is likely to be prohibitive.
Table I 200 Trials on the Purdue Pegboard for Subject 6 22
Table II Output Data for two tasks from Different Sources 33
Table III Relative Success Rates for each Curve Fitting Routine 72
Table IV Values of W and X^{2} found for 10 data-sets, 9 models, with one model deleted from rankings 80
Table $V \quad$ Values of W and X^{2} found for 10 data-sets, 8 models, with one model deleted from rankings 81
Table VI Values of W and χ^{2} found for 23 data-sets, 8 models, with one model deleted from rankings 82
Table VII Values of W and X^{2} found for 54 data-sets, 7 models, with one model deleted from rankings 83
Table VIII Values of W and χ^{2} found for 61 data-sets, 6 models, with one model deleted from rankings 84
Table IX A typical data-set, with a Comparison of "start" and "final" values found for each model 85
Table X A second example of a data set, with "Final" values found for each model 86
Table XI Data set 231 - valued calls for T3l, Exchange A 92
Table XII All parameter values found for Bevis model curve fitted to data obtained by direct observation. 94
Diagram 1 Shape of Bevis Learning Curve with Y_{c} +ve, $\mathrm{Y}_{\mathrm{f}}+\mathrm{ve}$ and $\tau+\mathrm{ve}$ 28
Diagram 2 Shape of Bevis Learning Curve with $\mathrm{Y}_{\mathrm{c}}{ }^{-v e}$, Y_{f} tre and $\tau+v e$ 28
Diagram 3 Shape of Bevis Learning Curve with $Y_{c}{ }^{-v e}$, $Y_{f}+v e, \quad \tau+v e, Y_{f}<\left|Y_{c}\right|$ 29
Diagram 4 Shape of Bevis Learning Curve with $\mathrm{Y}_{\mathrm{c}}{ }^{-v e}$, $Y_{f}-v e, \quad \tau+v e$ 30
Diagram 5 Computer Printout of Data used for Curve fitting Exercise 52
Diagram 6 Punched Cards to define parameter estimates and data modification 55
Diagram 7 Computer Flow Diagram for Operation of Curve Fitting Routines 56
Diagram 8 Learning Curve for EB, to end of first 3 weeks 96
Diagram 9 Learning Curve for $E B$, to end of training 97
Diagram 10 Learning Curve for EB, all observations 98
Diagram 11 Learning Curve for EB , experience data only 99
Diagram 12 Learning Curve for LS, to end of first 3 weeks 100
Diagram 13 Learning Curve for LS, to end of training 101
Diagram 14 Learning Curve for LS, all observations 102
Diagram 15 Learning Curve for LS, experience data only 103
Diagram 16 Learning Curve for KF , to end of first 3 weeks 104
Diagram 17 Learning Curve for KF, to end of training 105
Diagram 18 Learning Curve for KF, all observations 106
Diagram 19 Learning Curve for KF, experience data only 107
Transparency 1 Learning Curve for EB, all observations 109
Transparency 2 Learning Curve for EB, experience data only 109
Transparency 3 Learning Curve for LS, all observations 110
Transparency 4 Learning Curve for LS, experience data only 110
Transparency 5 Learning Curve for KF, all observations 111
Transparency 6 Learning Curve for $K F$, experience data only 111

1. INTRODUCTION

1.1. The Training Research Project.

During the summer of 1971, the Post Office approved the setting up of a Research Project to investigate the Effectiveness of Training. Two members of Post Office staff were recruited and commenced academic and experimental work in the following November at Hendon College of Technology (now part of Middlesex Polytechnic). Extracts from the Terms of Reference for the study are given in Appendix A.

At an early stage of the research it was agreed that although the researchers would work together on experiments of common interest, the emphasis and/or interpretations they might place on the results obtained could usefully be guided in different directions. As a result, some of the experiments quoted in this thesis are the combined efforts of the two researchers, while others are individual attempts to prove a particular point in question. Most of these experiments are described in detail in Lamb's thesis ${ }^{1}$ which deals with the Evaluation of Telephonist Training. This thesis, which concentrates on a comparison of learning curve models and the possible application of one model to the evaluation of training effectiveness does not go into such detail, to avoid duplication and also to keep the size of the thesis within reasonable bounds.

1.2. The Nature of the Problem.

Learning, or Progress Curves, have been in use for some 35 years as indicators of the improvement of skill in repetitive tasks. Originally they were developed to measure Industrial progress, i.e. the improvement in performance or the reduction in cycle times in production with passage of time. The development of Learning Curve theory was thus due to technologists and it was only at a later stage that psychologists made attempts to derive forms of equation which could be used to depict individual learning.

The pressure on the technologists was an economic one, they wished to establish reasonable estimates of future manufacturing costs so that competitive tendering was possible. In doing so, they were concerned with a mass learning effect, i.e. how the works personnel would improve their skill as a group while manufacturing several thousand or more items over periods of months, if not years. Consideration of individual performance, in which learning takes place in days or weeks for a simple repetitive task, (which would normally be an element of the complete industrial process), did not enter into their calculations.

Such models that were developed by the technologists were empirical - no formal theory of the acquisition of skill was used to assist in the derivation of the learning equations used to depict the model. Psychologists, on the other hand, used formally
developed theories to derive models for individual learning and used truly repetitive tasks in their experiments. No mention of fitting their models to industrial work has been noted, although the large number of variables which can affect the observations such as motivation to do well, variation in presentation of the task, individual differences and observational error have been discussed.

Many learning curve models have therefore been proposed, and all have some factors in their favour. While the models developed by the technologists have been used to depict learning over a long period, and those developed by psychologists have been used to depict the learning of simple tasks, little attempt appears to have been made to fit curves to training data. Can a "best" model for such a purpose be selected from those available? If such a selection can be made, can the model then be used to compare methods of training (and hence allow a cost effectiveness study to be made) say by examination and analysis of the parameters? This study attempts an answer to these questions.

2. HISTORY OF PREVIOUS W ORK.

2.1. Introduction.

Very many attempts have been made to fit curves to data relating to learning. The general approach has been empirical, in that researchers appear to have made personal judgements on what curve will fit (usually on the basis of fitting by inspection) and then tried it out on a mathematical basis.

Formulae have also been developed on a psychological basis. The discussion which follows will list the equations considered in this research, in historical sequence, and show that some suggested formulae are based on different forms of the same equation.

2.1.1. Robertson's Equation.

Morecombe ${ }^{2}$ states that the first equation proposed as suitable to fit to learning data was that of Robertson in 1915. The equation is

$$
\begin{equation*}
\log \left\{\frac{y_{i}}{a-y_{i}}\right\}=k\left(x_{i}-x_{o}\right) \tag{a}
\end{equation*}
$$

No definition of y_{i}, a, k, x_{i} and x_{o} is given but it is presumed that
y_{i} is cycle time for the $i^{\text {th }}$ operation
a, k are constants
x_{i} is the $x^{\text {th }}$ repetition of the task
x_{0} is the first observation point.

If some algebraic manipulation is done on the equation, we get:

$$
\begin{align*}
& \ln \left\{\frac{y_{i}}{a-y_{i}}\right\}=k^{\left(x_{i}-x_{0}\right)} \tag{b}\\
& \frac{y_{i}}{a-y_{i}}=e^{k\left(x_{i}-x_{0}\right)} \tag{c}\\
& y_{i}=\left(a-y_{i}\right) e^{k\left(x_{i}-x_{o}\right)} \tag{d}\\
& y_{i}+y_{i} e^{k\left(x_{i}-x_{0}\right)}=a e^{k\left(x_{i}-x_{0}\right)} \tag{e}\\
& y_{i}\left[1+e^{k\left(x_{i}-x_{0}\right)}\right]=a e^{k\left(x_{i}-x_{0}\right)} \tag{f}\\
& y_{i}=\frac{a e^{k\left(x_{i}-x_{0}\right)}}{1+e^{k\left(x_{i}-x_{0}\right)}} \tag{g}
\end{align*}
$$

and dividing the numerator and denominator by $e^{k\left(x_{i}-x_{0}\right)}$

$$
\begin{align*}
y_{i} & =\frac{a}{\left(\frac{1}{e^{k\left(x_{i}-x_{0}\right)}+1}\right)} \\
& =\frac{a}{1+e^{-k\left(x_{i}-x_{0}\right)}}=\frac{a}{1+e^{k x_{0}-k x_{i}}} \tag{h}
\end{align*}
$$

and as kx_{o} will be a constant (say b)

$$
\begin{equation*}
\text { then } y_{i}=\frac{a}{1+e^{b-k x_{i}}} \tag{i}
\end{equation*}
$$

which is the form of the Pearl and Reed equation suggested in 1925
and can also be shown to be the Bevis equation in a different form (to be discussed later).

2.1.2. Moore's Equation.
 Morecombe ${ }^{3}$ also quotes Moore's equation, suggested in 1932.

This is $\log y_{i}=a+b \cdot c^{x_{i}}$
2.1.2.(a)
which may be used to define the variation of output or cycle time, according to the signs of the parameters. However, if we consider the logistic curve $y_{i}=a-b \cdot c^{x_{i}}$
(where the parameters are positive and which defines output/time)
and let $Y_{c}=(a-b)$ and $Y_{f}=b$

$$
\begin{align*}
\text { Then } Y_{c} & =a-Y_{f} \\
\text { and } a & =Y_{c}+Y_{f} \\
y_{i} & =Y_{c}+Y_{f}-Y_{f} \cdot c^{x_{i}} \\
& =Y_{c}+Y_{f}\left[1-c^{x_{i}}\right] \tag{c}
\end{align*}
$$

If c is now made equal to $e^{-1 / \tau}, c^{x_{i}}=\left(e^{-1 / \tau}\right)^{x_{i}}$

$$
\begin{equation*}
y_{i}=Y_{c}+Y_{f}\left[1-e^{-x_{i} / \tau}\right] \tag{d}
\end{equation*}
$$

which is the Bevis equation, with x_{i} substituted for t_{i}.
Thus Moore's equation when used to define output data is effectively
a Bevis equation plotted to a logarithmic y-scale.

2.1.3. Wright's Equation.

A different form of equation was proposed by Wright ${ }^{4}$ in 1936. Morecombe ${ }^{5}$ quotes this article on factors affecting the cost of airplanes and shows the equation as

$$
\begin{equation*}
\overline{\mathrm{t}}=\mathrm{t}_{1} \mathrm{n}^{-\mathrm{m}} \tag{a}
\end{equation*}
$$

where $\bar{E}=$ the cumulative average direct labour manhours

$$
\text { for any quantity } n
$$

${ }^{t_{1}}=$ the number of direct labour manhours to manufacture the first unit produced
$\mathrm{n}=$ the number of completed units
$m=$ an exponent (typically of value. 322)
Now let $\mathrm{E}=\mathrm{Y}_{\mathrm{i}}, \mathrm{n}=\mathrm{X}_{\mathrm{i}}, \mathrm{m}=\mathrm{n}, \mathrm{t}_{\mathrm{l}}=\mathrm{A}(\mathrm{a}$ constant $)$
then $\overline{\mathrm{t}}=\mathrm{t}_{1} \mathrm{n}^{-\mathrm{m}}$ is transformed to

$$
\begin{equation*}
Y_{i}=A X_{i}^{-n} \tag{b}
\end{equation*}
$$

Note that Y_{i} or \bar{t} is calculated from

$$
\frac{\sum_{1}^{N} t_{i}}{x_{i}}
$$

so that the curves, if plotted, are to a modified y-scale.

2.1.4. Crawford's Equation.

Crawford (quoted by Morecombe) ${ }^{6}$ seems to have felt that the equation

$$
\begin{equation*}
t_{n}=t_{1} n^{-m} \tag{a}
\end{equation*}
$$

fitted his firm's experience better,
where $t_{n}=$ the unit cost, or the direct labour hours for unit number n.
$t_{I}=$ direct labour hours for the first unit
$n=$ number manufactured
$m=$ an exponent (still typically of value .322)
Converting Crawford's equation for use on x / y axes by
letting $t_{n}=y_{i}, t_{1}=A, n_{i}, \quad m=n$ gives the same form as before, i.e. $\quad y_{i}=A x_{i}^{-n}$
2.1.5. de Jong's Equation.

It was not until 1957 that de Jong $7,8,9$ proposed a further modification to Wright's and Crawford's equations. He came to the conclusion that there existed an "incompressible" component in the cycle time taken to complete an operation. Conversely, this also implies a maximum output above which a worker would not be able to go. In his series of articles, de Jong considered the reduction in cycle time of experienced workers in many industries and came to the conclusion that an equation of the form

$$
\begin{equation*}
y_{i}=t_{1} M-t_{1}(1-M) x_{i}^{-n} \tag{a}
\end{equation*}
$$

best expressed the reduction in cycle time, where

```
yi}=\mathrm{ cycle time
t}\mp@subsup{}{1}{}=\mathrm{ time required for the first cycle of a batch
M = the factor of incompressibility (0\leqM\leq1)
```

$$
n=\text { the exponent of reduction. }
$$

Now let $B=t_{1} M ; A=-t_{1}(1-M)$

$$
\begin{equation*}
y_{i}=B+A x_{i}^{-n} \tag{b}
\end{equation*}
$$

This equation is still in a form which expresses the reduction in cycle time, for when $x=1, y=B+A$ and when $x=\infty, y=B$.

If the sign of A is changed

$$
\begin{aligned}
& \text { i.e. } y=B-A x^{-n} \\
& \text { then when } x=1, y=B-A \\
& \text { and when } x=\infty, y=B
\end{aligned}
$$

which form is suitable for expressing output as a function of x.

2.1.6. American Government Equation.

Nadler and Smith ${ }^{10}$ quote a variation on the same theme.

 After extensive study by the Stanford Research Institute it was found that $y_{i}=a\left(x_{i}+B\right)^{n}$appeared to be a more suitable equation to fit to progress functions or learning curves. In that equation

$y_{i}=$	direct manhours per unit
$x_{i}=$	the cumulative number accepted
$\mathrm{a}=$	the cost of the first unit when $B=0$
$\mathrm{n}=$	a reduction exponent
$\mathrm{B}=$	a constant which could be expressed as the
	number of units theoretically produced prior
	to the first unit acceptance.

Note again that the equation may be modified to depict output or cycle times.

$$
\begin{equation*}
\text { i. e. } \quad y_{i}=a\left[x_{i}+B\right]^{-n} \tag{b}
\end{equation*}
$$

for cycle time data

$$
\begin{equation*}
y_{i}=a\left[x_{i}+B\right]^{n} \tag{c}
\end{equation*}
$$

for output data.

2.1.7. Glover's Equation.

Glover ${ }^{11,12}$ suggests an equation of the form

$$
\begin{equation*}
\Sigma y_{i}+c=a\left(\Sigma_{x_{i}}\right)^{m} \tag{a}
\end{equation*}
$$

and gives an extensive mathematical treatment which shows that given certain conditions the equation reduces to the same form as Wright's equation. For the purposes of this analysis let $\Sigma y_{i}=Y_{i}$,

$$
\begin{array}{ll}
\Sigma_{x_{i}}=X_{i}, m & =-n, c=-B, a=-A . \\
\text { Hence } & Y_{i}-B=-A X_{i}^{-n} \tag{b}\\
& Y_{i}=B-A_{i} X^{-n}
\end{array}
$$

Therefore this is de Jong's equation to a different scale.
2.1.8. Wiltshire's Equation.

Recently, Wiltshire ${ }^{13}$ has suggested an equation of the form

$$
y_{i}=k e^{-\alpha x_{i}^{n}+c \quad \text { 2.1.8.(a) }}
$$

where $\quad y_{i}=$ cycle time for $i^{\text {th }}$ cycle

$$
x_{i}=\text { no. of repetitions of cycle and }
$$

$$
\mathrm{k}, \alpha, \mathrm{n}, \mathrm{c} \text { are constants. }
$$

He gives a detailed series of results based on the cycle times of the elements of assembly tasks and also the cycle times for the complete assembly. This equation is an innovation in that it is a new form. It cannot be manipulated algebraically into a form discussed previously.

2.1.9. Bevis's Equation.

Bevis ${ }^{14}$ considered some of the previous models discussed, but also suggested the model

$$
\begin{equation*}
y_{i}=Y_{f}\left(1-e^{-\frac{\left(x_{i}-1\right)}{x_{f}}}\right)+c \tag{a}
\end{equation*}
$$

where $y_{i}=$ rate of production

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}= & \text { time in days } \\
\mathrm{c}= & \text { initial rate of production } \\
\mathrm{x}_{\mathrm{f}}= & \text { the time constant for a particular curve } \\
\mathrm{Y}_{\mathrm{f}}= & \text { Difference in the rate of output between the initial } \\
& \text { rate of output ' } c \text { ' and the maximum rate of } \mathrm{y}_{\mathrm{i}} .
\end{aligned}
$$

Hitchings ${ }^{15}$ investigated the modified form of the above equation

$$
\begin{equation*}
y_{i}=Y_{c}+Y_{f}\left(1-e^{-t_{i} / \tau}\right) \tag{b}
\end{equation*}
$$

where $Y_{c}=c$
$\mathrm{t}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}$

$$
\tau=x_{f}
$$

It is this form which is of interest, for whereas Bevis assumed that the initial output obeerved was the 'constant' Y, Hitchings accepted that that initial value could be in error, and attempted an iterative curve fitting method to sets of Bevis's data, based on the variation of the two parameters Y_{f} and τ as Y_{c} was given set values. The iterative technique developed will be discussed later. Now consider the form of equation

$$
\begin{equation*}
y_{i}=\frac{k}{1+e^{a+b x_{i}}} \tag{c}
\end{equation*}
$$

(the Pearl and Reed curve mentioned earlier)

$$
\begin{align*}
& \frac{1}{y_{i}}=\frac{1+e^{a+b x_{i}}}{k} \tag{d}\\
& =\frac{1}{k}+\frac{e^{a}}{k} \cdot e^{b x_{i}} \tag{e}
\end{align*}
$$

which is of the form

$$
\begin{equation*}
\frac{1}{y_{i}}=\mathrm{A}+\mathrm{Be}^{\mathrm{cx}} \mathrm{i} \tag{f}
\end{equation*}
$$

Now let $A=Y_{c}+Y_{f}, \quad B=-Y_{f}$

$$
\text { then } \begin{align*}
\frac{1}{y_{i}} & =Y_{c}+Y_{f}-Y_{f} e^{c x_{i}} \tag{g}\\
& =Y_{c}+Y_{f}\left[1-e^{c x_{i}}\right] \tag{h}
\end{align*}
$$

which is the Bevis Equation with $c=-1 / \tau$, and the inverse of y_{i}. Hence the Pearl and Reed equation, when used on cycle time data, is the inverse of the Bevis Equation.

2.2. An Alternative Approach: Psychological Models of Learning.

In the same period that researchers were proposing various empirical models to account for variations in performance during learning, other researchers were attempting to dev elop models, and hence equations, based on a psychological approach to the problem. Restle and Greeno ${ }^{16}$ give a modern analysis of several models, two of which are of interest from the point of view of this study.

2.2.1. A model for replacement learning.

Without going into the detailed theory used to develop the equation, it can be said that the replacement model is based on the idea that information related to the activity being learnt replaces information not related to that activity and that "learning" thus follows the equation

$$
\begin{equation*}
P_{n}=a-(a-b)(1-\theta)^{n_{i}-1} \tag{a}
\end{equation*}
$$

where $P_{n}=$ the probability of success on the $n^{\text {th }}$ trial
$a=$ the maximum probability of success
$b=$ the initial probability of success
$n_{i}=$ No. of trials
$\theta=$ a proportion.
Over the series of trials, once the probability of success has reached its maximum value, we have also reached the maximum possible
performance of the subject, i.e. maximum output. Hence, replacing probability by performance (or output) will not affect the nature of the work. Note that the equation relates output (o/p) to cumulative outpyt (Σ_{o} / p) since $n_{i}=$ total number of trials. Now we have $P_{i}=o / p_{i}=y_{i}=a-(a-b)(1-\theta)^{n_{i}-1} \quad$ 2.2.1.(b)
where o / p_{i} is the output on the $i^{\text {th }}$ trial.
Let $a=Y_{c}+Y_{f}$
and $b=Y_{c}$

$$
\begin{align*}
y_{i} & =Y_{c}+Y_{f}-\left(Y_{c}+Y_{f}-Y_{c}\right)(1-\theta)^{n_{i}-1} \tag{c}\\
& =Y_{c}+Y_{f}\left(1-(1-\theta)^{n_{i}-1}\right) \tag{d}
\end{align*}
$$

Let $(1-\theta)=e^{-1 / \tau}$

$$
\begin{align*}
y_{i} & =Y_{c}+Y_{f}\left(1-\left(e^{-1 / \tau}\right)^{n_{i}-1}\right) \tag{e}\\
& =Y_{c}+Y_{f}\left(1-e^{-\frac{n_{j}-1}{\tau}}\right) \tag{f}
\end{align*}
$$

Compare this equation with equation 2.1.9.(b)

$$
y_{i}=Y_{c}+Y_{f}\left(1-e^{-t / \tau}\right) \quad \text { the Bevis Equation }
$$

Thus the replacement model is very similar to that of Bevis.
2.2.2. A model for accumulative learning.

Restle and Greeno ${ }^{17}$ also discuss a model for accumulative learning, in which all information on the activity being learnt is accumulated. This results in the following equation, which may be related to performance as well as probability of success at trial n.

$$
\begin{equation*}
P_{n}=\frac{b+\theta a\left(n_{i}-1\right)}{1+\theta\left(n_{i}-1\right)} \tag{a}
\end{equation*}
$$

where $P_{n}, a, b, \theta, n_{i}$ stand for the same as before.

$$
\begin{align*}
& \operatorname{Set}\left(n_{i}-1\right)=X_{i} \\
& y_{i}=\frac{b+\theta a X_{i}}{1+\theta X_{i}}=\frac{b\left[1+\frac{\theta a}{b} \cdot X_{i}\right]}{1+\theta X_{i}} \tag{b}\\
& =\frac{b\left(1+\theta X_{i}-\theta X_{i}+\frac{\theta a}{b} X_{i}\right)}{1+\theta X_{i}} \tag{c}\\
& =b-\frac{b \theta X_{i}+\theta a X_{i}}{1+\theta X_{i}} \tag{d}\\
& =b-\frac{\theta X_{i}[b-a]}{1+\theta X_{i}} \tag{e}\\
& =b-\frac{(b-a)}{1+\frac{1}{\theta X_{i}}} \tag{f}\\
& =b-\frac{1}{\frac{1}{(b-a)}+\frac{\theta}{(b-a)} X_{i}} \tag{h}
\end{align*}
$$

which is of the form $y_{i}=b-\frac{1}{c+g X_{i}}$
(the equation to a mathematical hy perbola). Note again, however, that as n is the total number of trials, we can also plot o/p against $\Sigma o / p$, to obtain our learning curve.

2.2.3. Modification of the above equations to depict learning to a base of time.

Restle and Greeno ${ }^{18}$ expand their analysis to show how the above equations may be modified to account for varying speeds of learning. The resulting equations may be used to depict the variation of output with time during the learning process, but need four parameters to do so. Computer analysis in those two cases was not attempted.

2. 3. Other Mathematical Forms of Equations to Fit Learning Data.

Obviously there are an infinite variety of mathematical equations which might be used to define learning data. Ezekiel ${ }^{19}$ discusses some forms which are basically geometrical and trigonometrical. In this study, no attempt has been made to justify the use of the following equations to depict such learning data, some, in fact, were not pursued, due to their being so similar in form to other equations which were studied.

2.3.1. Modification to the equation for the Basic Hyperbola.

$$
\begin{equation*}
\text { This equation is } y_{i}=b-\frac{1}{c+g x_{i}} \tag{a}
\end{equation*}
$$

where b, c and g are constants. It is a modification to the basic form of hyperbola commonly quoted $\left.\left(y_{i}=b-\frac{c}{x}\right)_{i}\right)$ and is similar in form to the accumulative model discussed earlier.

2.3.2. The same modification to a logarithmic scale.

$$
\text { This equation is } \log y_{i}=b-\frac{1}{c+g x_{i}}
$$

and may be a better "fit" to the data. Other forms such as

$$
\begin{align*}
y_{i} & =b-\frac{1}{c+g \log x_{i}} \tag{b}\\
\log y_{i} & =\frac{1}{c+g \log x_{i}} \tag{c}
\end{align*}
$$

were not pursued.
2.3.3. A mathematical form using hyperbolic expressions.

This form was of interest because it offered the possibility of curve fitting to data which had previously given problems. The data related to "slow" learners and commonly gave an "S" curve which has been noted previously. Unfortunately, the use of 4 parameters eventually resulted in computing problems, and the model was not pursued. The equation proposed was :

$$
y_{i}=A+B \tanh \left(D x_{i}-C\right)
$$

2.3.3.(a)
where A, B, C and D are constants.
2.3.4. A cubic model.

Thomas ${ }^{20}$ has quoted Miller's equation

$$
\begin{equation*}
y_{i}=A+B X_{i}+C X_{i}^{2}+D X_{i}^{3} \tag{a}
\end{equation*}
$$

where A, B, C and D are constants and

$$
\mathrm{X}_{\mathrm{i}}=\text { cumulative number of units produced. }
$$

and suggested that a regression analysis might be used to calculate the parameters.
2.3.5. Gompertz's Equation.

Morcombe ${ }^{21}$ quotes Stanley's reference to the Gompertz curve and analyses it in some detail. The form is new to this discussion, although Wiltshire's equation has some resemblance to the form of the equation, which is

$$
\begin{equation*}
y_{i}=k a^{b_{i}} \tag{a}
\end{equation*}
$$

where k, a and b are constants.

2.4. A Second Order Model.

As a result of considering the nature of the preceding forms of equation, the author felt that an attempt to develop a learning curve equation which would be a second order, rather than a first order equation, was justified.
2.4.1. Three hypothetical experiments.

The development of the equation may best be explained by considering the following three hypothetical experiments. In all the
experiments, the purpose is the same, to get the subject S to sort out a deck of playing cards into red and black piles as quickly as possible. However, S is told before commencing the experiment to sit down at a table and wait for instructions. When the instructions are given to him, he is told, he is not allowed to ask any questions of his instructor.

Consider the situation that would occur if E (the experimenter)

 Presumably S, unless he understood Greek, would be at a complete loss on what to do.

Similarly, the situation that might occur if E came in and said to S, "Please take this pack of cards and sort them out" in English is that S would perhaps sort them out into suits. E would then say, in English "That's incorrect, please shuffle the cards and do it differently!" After shuffling the cards, S would then make a second, and perhaps several more attempts before sorting out the cards into the correct categories. At that stage E would say "That's correct, please shuffle the cards and do it again, but more quickly" and S would then proceed to repeat the process until E was satisfied that full proficiency had been attained.

In the third experiment, E would say to S "Please take this pack of cards and sort them out into piles of red and black cards as quickly as possible" in English, whereupon S would proceed to do the
experiment (hopefully in the correct manner!), repeating as frequently as necessary.

Now what are the differences in the three experiments? Experiments 1 and 3 do not differ in the amount of information given to S, because the same presentation was used to tell S what to do, yet S would presumably do far worse in Expt. 1 than in Expt. 3. Experiment 2 had less information to begin with and then built up to the same content as 1 and 3, as S^{\prime} s understanding of what was required of him increased and, in the same way, S's performance increased. Because S can do relatively badly at the commencement of Expt. 2, there is an implication that there is a lower limit to the amount of information needed before even a simple task can be done correctly. Yet this is not the complete explanation, because in experiment $1, S$ was given all the necessary information, albeit in a form which S may not have understood (i.e. in Greek).

This, it seems, is the crucial point, that the performance of a task does not depend solely on the amount of information available, but also on the understanding of that information.

2.4.2. A possible relationship between Understanding and
 Information.

Let us assume, for the moment, that we can measure "understanding" on a U-scale - how does U vary with I (information)? What we can say is that while there can be some understanding if information
related to the operation of the task is being received, if most of that information is changing from one cycle to another, then only confusion results. Once a "pattern" has been established and the information received from one cycle to another is relatively constant in content, then reinforcement learning may take place.

The total amount of understanding measured could therefore be dependent not only on the amount of information received, but on the rate of change of that information. Mathematically one might say

$$
\begin{equation*}
\mathrm{U}=\mathrm{kI}+\mathrm{k}^{\prime} \frac{\mathrm{dI}}{\mathrm{dt}} \tag{a}
\end{equation*}
$$

2.4.3. A possible relationship between Information and Output
 Performance.

How does our subject gain the information from which he attains understanding? Crossman ${ }^{22}$, suggests a theory of trial and error learning based on an earlier theory of Thorndike and also discusses what an operator measures to account for the acquisition of speed skill. He comes to the conclusion that the internal measurement of time by the operator is unlikely, but suggests that the work done by the operator is a possible suitable alternative.

A study of data from Dickering and MacAulay ${ }^{23}$ also suggests that trial and error learning is taking place.

For example, in Table I, it can be seen that the cycle time for the complete operation is showing a genexal trend downwards, yet
the elemental times do not necessarily show this trend. There are even large increases in some elemental times (over the period of trials), which nevertheless allow a reduction in the total cycle times because other elemental times are reduced by a larger total amount. It is as if the subject is able to make an assessment of his performance, as he varies his method of "grasping", "moving" etc., the variation being done by trial and error.

TABLE I

"200 TRIALS ON THE PURDUE PEGBOARD

FOR SUBJECT 6"

	Element Reach	Element Grasp	Element Move	Element Position	Cycle Time Total
1	.0905	.5564	.3691	.7136	1.7295
2	.0941	.5109	.3795	.6359	1.6205
3	.0727	.5300	.3477	.6750	1.6255
5	.0687	.5543	.3538	.6495	1.6262
10	.0700	.5282	.3732	.6023	1.5736
15	.0532	.5963	.2716	.6563	1.5774
25	.0900	.4873	.3773	.7214	1.6759
50	.1132	.5527	.3427	.5782	1.5868
100	.0436	.4441	.3627	.6200	1.4705
150	.0600	.4195	.3545	.4836	1.3177
200	.0857	.3513	.3474	.5053	1.2878

Morcombe, ${ }^{24}$ as a result of his simulated assembly task experiment, also came to the conclusion that the incentive to improve on cycle time resulted in the successive selection of better methods by "trial and error' ${ }^{\prime \prime}$

So we come to the conclusion that some mechanism is at work which allows comparison of performance, without being certain what that mechanism is. Some relationship must exist between the performance (or output) of the subject, and the information he obtains from his performance of the task.

Once again, if the subject is skilled, he completes many operations in a given time, and thus generates large amounts of information. In addition, if he makes a mistake, and so, for a short period his output is dramatically reduced, he takes particular note of that mistake, vowing "not to do that again!" (don't we all!). Thus the mathematical connection between output and information could be :-

$$
\begin{equation*}
I=k^{\prime \prime} o / p+k^{\prime \prime \prime} \frac{d o / p}{d t} \tag{a}
\end{equation*}
$$

i.e. I \propto output and also \propto rate of change of output.

$$
\begin{equation*}
\text { whence } \frac{d I}{d t}=k^{\prime \prime} \frac{d o / p}{d t}+k^{11 \prime} \frac{d^{2} o / p}{d t^{2}} \tag{b}
\end{equation*}
$$

and from equation 2.4.2. (a) $\left[U=k I+k^{\prime} \frac{d I}{d t}\right]$

$$
\begin{equation*}
U=k k^{\prime \prime} o / p+k k^{\prime \prime \prime} \frac{d o / p}{d t}+k^{\prime} k^{\prime \prime} \frac{d o / p}{d t}+k^{\prime} k^{\prime \prime \prime} \frac{d^{2} o / p}{d t^{2}} \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
\frac{U}{k k}{ }^{\prime \prime}=o / p+\frac{\left(k k^{\prime \prime \prime}+k^{\prime} k^{\prime \prime \prime}\right)}{k k^{\prime \prime}} \frac{d o / p}{d t}+\frac{k^{\prime} k^{\prime \prime \prime}}{k k^{\prime \prime}} \frac{d^{2} o / p}{d t^{2}} \tag{d}
\end{equation*}
$$

This equation is a second order differential equation, and a solution may be found using methods commonly applied in the analysis of feedback control systems. In this case, we assume learning is taking place and that the final output will be at a steady value Y_{f}, having started (at $\mathrm{t}=0$), at a value $=0$.

The experimenter, by asking his subject to do the task "as quickly as possible" may be said to be demanding a step increase in output from his subject of value Y_{f}.

From equation 2.4.3.(d) the characteristic equation can be written as

$$
\begin{gathered}
p^{2}+\frac{D}{J} p+\frac{k}{J}=0 \\
\text { where } D=k k^{\prime \prime}+k^{\prime} k^{\prime} \\
J=k k^{\prime \prime} \\
k=k^{\prime} k^{\prime \prime \prime}
\end{gathered}
$$

The solutions to this equation in this form are given by Chestnut and Mayer ${ }^{25}$ as
(a) $n>1$
$y_{i}=Y_{f}-\frac{Y_{f}}{2 \sqrt{n^{2}-1}}\left[\left(n+\sqrt{n^{2}-1}\right) e^{-\left(n-\sqrt{n^{2}-1}\right)} \omega_{o} t_{i}\right.$ $\left.-\left(n-\sqrt{n^{2}-1}\right) e^{-\left(n+\sqrt{n^{2}-1}\right)} \omega_{o} t_{i}\right]$
which is termed the over-damped condition.
(b) $n<1$

$$
\begin{gather*}
y_{i}=Y_{f}-\frac{Y_{f}}{\sqrt{1-n^{2}}} e^{-n \omega_{o} t_{i}} \sin \left[\sqrt{1-n^{2}} \omega_{o t_{i}}+\phi\right] \tag{g}\\
\text { where } \phi=\tan ^{-1} \frac{\sqrt{1-n^{2}}}{n}
\end{gather*}
$$

which is the underdamped condition
and
(c) $n=1$

$$
\begin{equation*}
y_{i}=Y_{f}-Y_{f}\left(1+\omega_{o} t_{i}\right) e^{-\omega_{o} t_{i}} \tag{h}
\end{equation*}
$$

which is the critically damped condition.

In all the equations $\quad \omega_{0}=\sqrt{\frac{k}{J}}$ and $n=\frac{D}{2 \sqrt{k J}}$
If the initial condition is assumed to have some value, it is only necessary to include the term $+Y_{c}$ in all the equations.

The solutions given are second order equations which connect output with time. Chestnut and Mayer show the effect on the transient part of the curve as n is varied, and it appears that, for $n>1$, the resulting curve could simulate the S-type learning curve which is occasionally encountered.

At a later stage in this study, it was decided to concentrate on only that equation which had 2 parameters, for the addition of a constant value Y_{c} to the equation then increased the number of parameters to 3. The model selected thus became the critically damped model:

$$
\begin{equation*}
y_{i}=Y_{c}+Y_{f}\left(1-\left(1+\omega_{o} t_{i}\right) e^{-\omega_{o} t_{i}}\right) \tag{i}
\end{equation*}
$$

The similarity with the Bevis model is obvious.

3. WHICH MODEL?

3.1. A Historical/Computational Review.

The reader will have observed that Chapter 2 dealt with learning curve models from a historical viewpoint - the models were dealt with in rough chronological order. One can also see that the computing requirements of the day also had some influence, for Robertson's, Moore's, and Pearl and Reed's models would be computationally cumbersome when dealing with large amounts of data on hand calculating machines.

This, no doubt, led to the general acceptance of Wright's model when he proposed it in 1936. Based on aircraft production figures, it was quite a good first order approximation to the learning curve generated by a large number of people employed on a production line. In addition, by use of \log / \log scales, straight line fits could be obtained, allowing good prediction for relatively long periods ahead. de Jong ${ }^{26}$, however, realised that such an approximation was not appropriate to shorter term learning curves, because the mathematical implication of the equation $y=\mathrm{Ax}^{-\mathrm{n}}$ is that as x increases, so y goes to zero, and one would not expect a production worker to reduce his cycle time to zero:

Thus de Jong postulated the model

$$
y_{i}=t_{1} M-t_{1}(1-M) x_{i}{ }^{-n},
$$

which has been shown to be of the form

$$
y_{i}=B+A x_{i}^{-n}
$$

From the computational viewpoint this equation is still difficult to fit when using hand calculating machines so that it is quite relevant to note that it is only recently that alternative forms of learning curve, having the same features as the de Jong model (asymptotic approach to a finite value) have been proposed.

Modern computors, of course, make rapid calculating facilities available, so that it seems opportune to discuss the mathematical requirements of such types of learning curve and attempt to establish that model which gives the best fit.
3.2. The Connection between the Shape of the Learning Curve and the Parameter Values.

If one considers the information available, it can be seen that the shape of the learning curves predicted by most of the learning curve models is hyperbolic and asymptotic. Because of this, it is possible to define more exactly the nature of the parameter values. As an example consider the model

$$
y_{i}=Y_{c}+Y_{f}\left(1-e^{-t_{i} / \tau}\right) \quad[\text { equation 2.1.9.(b) }]
$$

it can be seen that Y_{c} is a constant value at $t_{i}=0$ and that Y_{f} is a transient value which adds to Y_{c} as $t_{i} \rightarrow \infty . \quad$ When t_{i} reaches. $\infty \quad$, then $y_{i}=Y_{c}+Y_{f}$ (its maximum value).

The shape of the curve is then assumed to be as in diagram 1

SHAPE OF BEVIS LEARNING CURVE WITH Y ${ }_{c}+\mathrm{ve}, \mathrm{Y}_{\mathrm{f}}{ }^{+}$ve

$$
\text { AND } \quad \tau+v e
$$

"Assumed" because it has not yet been defined whether Y_{C} and Y_{f} are positive or negative numbers. If, on completing a curve fitting programme, it was found that Y_{c} was negative, the curve would be of shape shown in diagram 2 .

DIAGRAM 2
SHAPE OF BEVIS LEARNING CURVE WITH $Y_{c}{ }^{-v e}, Y_{f}+v e, \quad \tau+v e$.
and then only if $Y_{f}>Y_{C}$, for if Y_{f} was found to be less than $\left|Y_{c}\right|$ then the curve becomes as in diagram 3

DIAGRAM 3

SHAPE OF BEVIS LEARNING CURVE WITH Y ${ }_{c}-v e, Y_{f}{ }^{+v e}$,

$$
\tau+\text { ve, } Y_{f}<\left|Y_{c}\right|
$$

As a further alternative if Y_{c} were found to be positive, and Y_{f} negative, the curve would then be as in diagram 4

DIAGRAM 4

SHAPE OF BEVIS LEARNING CURVE WITH $Y_{c}+v e, Y_{f}-v e, \tau+v e$.
and obviously the other alternative of Y_{c} negative and Y_{f} negative, results in similar changes. In this short analysis, no consideration has been given to a change in sign of τ; it has been assumed positive. If, as a result of inaccurate data, a curve fitting programme hunted to any of the alternatives to the $+\mathrm{ve} \mathrm{Y}_{\mathrm{c}}$, $+\mathrm{ve} \mathrm{Y}_{\mathrm{f}}$, tve τ then while the predicted curve might fit the data points well, it is unlikely that extrapolation outside the range of data points used would be accurate.

The possibility of poor extrapolation also results in the rejection of models such as the cubic model discussed earlier, and similarly, the possible use of a polynomial of any higher degree as a model, because such models predict values of 0 or ${ }_{-}^{+\infty}$ as $x \rightarrow \infty$. The Wright, Crawford and the American Government model are also rejected on these grounds, although it is emphasised once again, that for very long term learning curves, these models may be quite good approximations to the initial stages of learning.

3. 3. Choice of Models for Investigation.

As a result of these considerations, a short-list of nine models was selected for assessment. These were:-

1. The Bevis Model $y_{i}=Y_{C}+Y_{f}\left(1-e^{-t_{i} / \tau}\right)$
2. The Gompertz Model $y_{i}=k a^{b^{x_{i}}}$
2.3.5.(a)
3. The Mathematical Model $y_{i}=b-\frac{1}{c+g x_{i}}$
4. The Wiltshire Model $y_{i}=c-k e^{-\alpha x_{i}}{ }^{n}$
5. The Accumulative Model $y_{i}=\frac{b+\theta a\left(n_{i}-1\right)}{1+\Theta a\left(n_{i}-1\right)}$
2.2.2.(a)
6. The Replacement Model $y_{i}=a-(a-b)(a-\theta)^{n_{i}-1}$
2.2.1.(a)
7. The de Jong Model $y_{i}=B-A x_{i}{ }^{-n}$
2.1.5.(b)
8. The Log-mathematical Model $\log y_{i}=b-\frac{1}{c+g x_{i}}$
2.3.2.(a)
9. The Second Order Model $y_{i}=Y_{c}+Y_{f}\left(1-\left(1+\omega_{o} t_{i}\right) e^{-\omega_{0} t_{i}}\right.$
2.4.3.(i)

By the use of a computer to reduce the vast amount of computation, it is possible to attempt a series of curve-fitting exercises, using the same data for each model. An assessment can then be made of the most suitable model.

4. MEASURING THE "GOODNESS OF FIT".

4.1. The Nature of the Problem.

How is one to say if one equation, curve-fitted to a set of data points is a better fit than a second equation? The standard practice when curve fitting to only one set of data is to use the method of least squares to obtain the best fit. Then if the sum of errors squared for one fitted equation is greater than that for an alternative equation, a choice may be made - the alternative equation is considered to be the better fit. If several models exist, the same argument applies and a choice may be made.

In the more complicated case where several sets of data exist, how is one to differentiate between the possible equations? The sets of data need not necessarily relate to the same operations, and hence the data may be measured to different orders of scale. For example, consider the two sets of data relating to cigar rolling ${ }^{27}$ and hemming ${ }^{28}$ given in Table II.

Now the sum of errors squar ed for curve fitted models to the Bevis data is almost certainly going to be greater than that for the Morcombe data, yet one cannot be sure that one fit is better than the other. Obviously there is a need to "normalise" the results in some way so that a comparison may be made.

An examination of possible methods indicates that this problem may be solved by using one of three statistics:

OUTPUT DATA FOR TWO TASKS FROM DIFFERENT

SOURCES

Bevis	Mean Score 15 Subjects Rolling		Morcombe Mean Score 23 Subjects Hemming		
Day	Mean Output	Day	Mean Output	Day	Mean Output
1.0	1670	2.5	18.5	27.5	62.0
5.0	2314	5. 0	37.0	30.0	64.0
10.0	2574	7.5	44.0	32.5	65.5
15.0	3314	10.0	51.0	35.0	67.0
20.0	3889	12.5	54.0	37.5	68.5
25.0	4055	15.0	57.0	40.0	70.0
30.0	4205	17.5	57.5	42.5	70.0
35.0	4243	20.0	58.0	45.0	70.0
		22.5	59.0	47.5	70.0
		25.0	60.0	50.0	70.0

(a) The Validity statistic
(b) The Chi-square statistic
(c) The 'R' statistic.
4.2. The Validity Statistic.

Consider the equation quoted in the TELFIT 1 computer manual ${ }^{29}$ as a Validity statistic.

$$
\begin{equation*}
\text { Validity }=\left\{1-\sqrt{\frac{\sum_{1}\left\{\frac{y_{i}-y_{e}}{y_{i}}\right\}^{2}}{(N-1)}}\right\} \times 100 \tag{a}
\end{equation*}
$$

Assume that we attempt to calculate parameters to obtain the maximum validity, and also calculate that validity (obviously for a perfect fit, Validity $=100$).

Then
Val $=\left\{1-\sqrt{\frac{\sum}{\frac{N}{1}\left(\frac{y_{i}-y_{e}}{y_{i}}\right)^{2}}}\right\} \quad \mathrm{x}-100$ is a maximum \quad 4.2.(b)
$\frac{\text { Val }}{100}=\left\{1-\sqrt{\frac{\Sigma()^{2}}{(\mathrm{n}-1)}}\right\}$ is a maximum
$1-\frac{\mathrm{Val}}{100}=\sqrt{\frac{\Sigma()^{2}}{(\mathrm{~N}-1)}}$ is a minimum
$\left(1-\frac{\mathrm{Val}}{100}\right)^{2}=\frac{\Sigma_{1}(\quad)^{2}}{(\mathrm{~N}-1)}$ is a minimum
4.2.(e)
$\left(1-\frac{V_{a l}}{100}\right)^{2} x(N-1)=\sum_{1}^{N} \frac{\left(y_{e}-y_{i}\right)^{2}}{y_{i}}$ is a minimum

Now it will be shown later that it is possible to develop an algorithm to "hunt" for parameters which will give this condition i.e.

Minimum $\left.\Sigma_{l}^{N} \frac{\left(y_{i}-y_{i}\right.}{y_{i}}\right)^{2}$

4.3. The Chi-square Statistic.

is a more accepted method of establishing the "goodness of fit" of a model to data ${ }^{30}$. In addition it is possible to calculate the probability that such a value of χ^{2} would be obtained. Later it will be shown that it is a much more difficult problem to develop an algorithm to hunt for best parameters to give minimum x^{2}, than is the problem to hunt to parameters for maximum validity or least sum of errors squared.

4.4. The 'R' Statistic.

Kendal and Yule ${ }^{31}$ discuss the problem of comparison of 'fits' to data and suggest the use of the statistic 'R'. The relationship suggested is

$$
\begin{equation*}
R^{2}=1-\frac{U}{n a_{y}^{2}} \tag{a}
\end{equation*}
$$

where $U=$ sum of squares of residuals (sum of errors squared)
$n=$ No. of data points
$a_{y}^{2}=$ Variance of observed values of Y.
R is shown to lie betwe en 0 and 1.0 , with good 'fits' having R values $\longrightarrow 1.0$.

In the example quoted by Kendal and Yule, curve fits to two
sets of data are compared, using the R value as a criterion, and a choice is made as to which is the "best" fit.

4.5. Choice of Statistic to be used in the Analysis.

As a result of the analysis to be discussed later, it was decided that the curve-fitting routines developed would be arranged to calculate not only the sum of errors squared (to allow comparison of models fitted to one set of data), but also to calculate R. Given sufficient time it was hoped to analyse the values obtained for R for all sets of data.

4.6. Statistical Analysis of the Values Obtained of the Sum of Errors Squared.

If one model is consistently a better fit for the sets of data examined, then, on average, the value of sum of errors squared should be lower than that found for other models. If all the values obtained are ranked, a suitable test for significance is Kendall's Coefficient of Concordance W.

Siege1 ${ }^{32}$ quotes an example which examines the three independent sets of ranks given by executives to six applicants and tests whether the ranking of the applicants shows a measure of agreement among the judges. In this study the 'judges' are the sets of data, and the 'applicants' are the models for which curve
fitting has been undertaken. The sum of errors squared for all models for each set of data is ranked and W computed as follows: -
(i) Calculate the sum of ranks for each model, R_{j}.
(ii) Calculate the mean value of all the R_{j}.

Each of the R_{j} may be expressed as a deviation from the mean value, and it can be shown that the greater the deviations, the greater is the degree of association among the sets of ranks.
(iii) Calculate the sum of squares of the deviations.

Then $\mathrm{W}=$

$$
\begin{equation*}
\frac{12 s}{k^{2}\left(N^{3}-N\right)} \tag{a}
\end{equation*}
$$

where $s=$ the sum of squares of the observed deviations from the mean of R_{j}
i.e. $s=\Sigma\left(R_{j}-\frac{\left.\Sigma R_{j}\right)^{2}}{N}\right.$
$\mathrm{k}=$ No. of sets of data
$\mathrm{N}=$ No. of models.

Siegel also shows that for reasonably large N, k then the expression given above is approximately distributed as X^{2} with ($\mathrm{N}-1$) degrees of freedom.

Thus if the value of x^{2} so calculated exceeds the value quoted in the $\quad x^{2}$ table for a particular level of significance and a particular value of degrees of freedom $=(N-1)$, then the null hy pothesis that the k rankings are unrelated may be rejected at that level of significance.
5. THE CURVE-FIT TING PROGRAM AND

DATA. FILE.

5.1. Choice of Bevis, Finnear and Towill algorithm.

During the course of this study, three iterative methods of curve-fitting were found in the literature. Bevis ${ }^{33}$, in his thesis, discussed the problem with special reference to calculating the parameters of the Bevis equation, but later, Bevis, et al. ${ }^{34}$ developed a 2 parameter-algorithm which "hunted" to the best parameter values. Hitchings ${ }^{35}$ used this algorithm extensively in his study on Dynamic Learning Curve Models, while later, Sriyananada ${ }^{36}$ discussed the same problem using the Kalman Filter technique.

Towill ${ }^{37}$ has also noted the method of BaHli and discussed the calculation of parameter values to the same data (Bevis's).

Unfortunately, the Kalman filter technique, and that of Ba-Hli appear to be usable oniy in the case of the Bevis Equation, and not, for example, if fitting to the Wiltshire or de Jong Equations. For this reason, the Bevis, Finnear and Towill algorithm was extended to cover more than 2 parameters, and programmes developed to calculate "best" parameters for the various forms of equation selected for study.

[^0]If the data to be studied has N data points, then the output rate is represented by the series $Y_{1} \ldots Y_{N}$. At each data point, the corresponding series using a particular control law is given by $\bar{Y}_{i} \ldots \bar{Y}_{N}$. The total error squared is then

$$
\begin{equation*}
E^{2}=\sum_{1}^{N} E_{i}^{2}=\sum_{1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)^{2} \tag{a}
\end{equation*}
$$

To seek the values of the parameters which minimise equation 5.2.(a), the usual least squares minimisation analysis is unwieldy, and Bevis et al ${ }^{38}$ suggested using a Taylor series expansion in an iterative loop, as the resulting equations are then linear and easily solved. The method is explained as follows: -

Let the estimated value of \bar{Y}_{i} at time t_{i} be represented by the function $f\left(a, b, c, t_{i}\right)$

$$
\begin{equation*}
\text { i. e. } \bar{Y}_{i}=f\left(a, b, c, t_{i}\right) \tag{b}
\end{equation*}
$$

where a, b, c are three parameters.
Expanding Equation 5.2.(b) about the estimated value of $\overline{\mathrm{Y}}_{\mathrm{i}}$, using current best estimates of a, b \& $\mathrm{c}(\overline{\mathrm{a}}, \overline{\mathrm{b}}$ \& $\overline{\mathrm{c}}$ respectively), terms above first order being ignored, yields

$$
\begin{equation*}
\bar{Y}_{i} \simeq f\left(\bar{a}, \bar{b}, \bar{c}, t_{i}\right)+\frac{\delta_{f}}{\delta_{a}} \Delta a+\frac{\delta_{f}}{\delta b} \Delta b+\frac{\delta_{f}}{\delta c} \Delta c \tag{c}
\end{equation*}
$$

where $\frac{\delta f}{\delta a}, \frac{\delta f}{\delta b}$ and $\frac{\delta f}{\delta c}$ are the partial derivatives of $f\left(a, b, c, t_{i}\right)$ with respect to a, b and c respectively and Δa, $\Delta \mathrm{b}$ and Δ_{c} are small increments ("correction factors") in a, b and c .

After Q iterative loops of the routine, adequate estimates of \bar{a}, \bar{b} and \bar{c} are obtained and since $\Delta a, \Delta b$ and Δc then become negligible, equation 5.2. (c) reduces to

$$
\bar{Y}_{i Q}-f\left(\bar{a}_{Q}, \bar{b}_{Q}, \bar{c}_{Q}, t_{i}\right) \text { and prediction is complete. }
$$

From equations 5.2.(a) and 5.2.(c), an estimate of the sum of error squared at any time in the iterative process is given by

$$
\begin{array}{r}
E^{2}=\sum_{1}^{N}\left\{Y_{i}-f\left(\bar{a}_{r}, \bar{b}_{r}, \bar{c}_{r}, t_{i}\right)-\frac{\delta f}{\delta a} \Delta a_{r}-\frac{\delta f}{\delta b} \Delta b_{r}-\frac{\delta f}{\delta c} \Delta c_{r}\right\} \\
5.2 .(\mathrm{d})
\end{array}
$$

where $\bar{a}_{r}, \bar{b}_{r}, \bar{c}_{r}$ are the $r^{\text {th }}$ estimates of the parameters a, b, c.

Since Equation 5.2.(d) is linear in $\Delta \mathrm{a}, \Delta \mathrm{b}$ and $\Delta \mathrm{c}$, the usual mean square error minimisation procedure may now be adopted.

$$
\text { For if } \frac{\delta \mathrm{E}}{\delta \Delta \mathrm{a}}=0, \frac{\delta \mathrm{E}}{\delta \Delta \mathrm{~b}}=0, \frac{\delta \mathrm{E}}{\delta \Delta \mathrm{c}}=0
$$

and if we let

$$
\begin{align*}
& \quad\left(Y_{i}-f\left(\bar{a}_{r}, \bar{b}_{r}, \bar{c}_{r}, t_{i}\right)\right)=\Delta Y_{i r} \\
& \left(\text { i. e. the } r^{\text {th }} \text { estimate of } \Delta Y_{i}\right)=P D Y \\
& \text { and let } \frac{\delta f}{\delta a}=P 01 ; \frac{\delta f}{\delta b}=P 02 ; \quad \frac{\delta f}{\delta \mathrm{c}}=P 03 \\
& \text { then } 2 \sum_{1}^{N}\left[P D Y-P 01 \Delta a_{r}-P 02 \Delta b_{r}-P 03 \Delta c_{r}\right][-P 01]=0 \quad 5.2 .(e) \\
& 2 \sum_{1}^{N}\left[P D Y-P 01 \Delta a_{r}-P 02 \Delta b_{r}-P 03 \Delta C_{r}\right][-P 02]=0 \quad 5.2 .(f) \tag{f}
\end{align*}
$$

$$
\begin{equation*}
2{ }_{\Sigma}{ }_{1}^{N}\left[P D Y-P 01 \Delta a_{r}-P 02 \Delta b_{r}-P 03 \Delta c_{r}\right][-P 03]=0 \tag{g}
\end{equation*}
$$

(on differentiating to obtain $\frac{\delta \mathrm{E}}{\delta \Delta_{\mathrm{a}}}, \frac{\delta \mathrm{E}}{\delta \Delta \mathrm{b}}, \frac{\delta \mathrm{E}}{\delta \Delta \mathrm{c}}$)
Equations 5. 2. (e), 5.2.(f), 5.2.(g) may now be rearranged to give

$$
\begin{align*}
& h_{1}=\alpha_{1} \Delta a_{r}+\beta_{1} \Delta b_{r}+\gamma_{1} \Delta c_{r} \tag{h}\\
& h_{2}=\alpha_{2} \Delta a_{r}+\beta_{2} \Delta b_{r}+\gamma_{2} \Delta c_{r} \tag{i}\\
& h_{3}=\alpha_{3} \Delta a_{r}+\beta_{3} \Delta b_{r}+\gamma_{3} \Delta c_{r} \tag{j}
\end{align*}
$$

which are 3 simultaneous equations in $\Delta a_{r}, \Delta b_{r}$ and Δc_{r} and can be solved by the usual methods. In the 3 equations 5.2.(h), 5.2.(i), 5. 2. (j)

Solution of the 3 equations 5.2.(h), 5.2.(i), 5.2.(j) give estimates for the increments $\quad \Delta_{a_{r}}, \quad \Delta b_{r}$ and $\quad \Delta c_{r}$, which allow the new
parameter estimates $\bar{a}+\Delta a_{r}, \bar{b}+\Delta b_{r}$ and $\bar{c}+\Delta c_{r}$ to be used when the iterative process is repeated.

What does this analysis imply? It implies that whatever three parameter equation is used to define the data points, three simultaneous equations may be set up for an iterative procedure, provided that the equation used may be differentiated with respect to the three parameters. Logically the analysis could be extended to n parameters, but it is likely that the difficulty of estimating the parameter values sufficiently accurately to obtain rapid convergence would be too great.
5. 3. Derivatives required for all programmes used.

All the equations used in this study, and the derivatives of those equations (with respect to the various parameters) are given below.

5.3.1. Bevis Equation Derivatives.

$$
\begin{aligned}
y_{i} & =Y_{c}+Y_{f}\left(1-e^{-t_{i} / \tau}\right) \\
& =Y_{c}+Y_{f}\left(1-e^{-t_{i} Z}\right) \text { where } Z=1 / \tau
\end{aligned}
$$

$$
\begin{align*}
& \frac{\delta y_{i}}{\delta Y_{c}}=1 \\
& \frac{\delta y_{i}}{\delta Y_{f}}=\left(1-e^{-t_{i} Z}\right) \tag{b}
\end{align*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta Z}=t_{i} Y_{f} e^{-t_{i} Z} \tag{c}
\end{equation*}
$$

5.3.2. Wiltshire Equation Derivatives.

$$
y_{i}=c-k e^{-\alpha x_{i}^{n}}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta c}=1 \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta k}=-e^{-\alpha x_{i}^{n}} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta n}=\alpha \cdot x_{i}^{n} \cdot k \cdot e^{-\alpha x_{i}^{n}} \cdot \ln \left(x_{i}\right) \tag{c}
\end{equation*}
$$

$$
\text { for if } y_{i}=k e^{-\alpha x_{i}^{n}}
$$

$$
\begin{equation*}
\ln \left(y_{\mathrm{i}}\right)=\ln \mathrm{k}-\alpha \mathrm{x}_{\mathrm{i}}^{\mathrm{n}} \tag{d}
\end{equation*}
$$

Now let $p=\alpha x_{i}{ }^{n}$

$$
\begin{align*}
& \ln p=n \ln \left(x_{i}\right)+\ln \alpha \\
& \quad \frac{1}{p} d p=\ln \left(x_{i}\right) d n \\
& \frac{d p}{d n}=p \ln \left(x_{i}\right)=\alpha x_{i}^{n} \ln \left(x_{i}\right) \tag{f}
\end{align*}
$$

From equation 5.3.2.(d)

$$
\begin{align*}
\frac{1}{y_{i}} d y_{i} & =\frac{d\left(\ln k-\alpha x_{i}^{n}\right)}{d n} \\
& =-\alpha x_{i}^{n} \ln \left(x_{i}\right) d n \tag{h}
\end{align*}
$$

$$
\begin{align*}
& \frac{d y_{i}}{d n}=-\alpha \cdot x_{i}{ }^{n} \cdot \ln \left(x_{i}\right) \cdot k \cdot e^{-\alpha x_{i}}{ }^{n} \tag{i}\\
& \frac{\delta\left(-k e^{-a x_{i}^{n}}\right)}{\delta n}=\alpha x_{i}^{n} \ln \left(x_{i}\right) \cdot k \cdot e^{-\alpha x_{i}^{n}} \tag{j}
\end{align*}
$$

$$
\begin{equation*}
\text { and } \frac{\delta y_{i}}{\delta \alpha}=x_{i}^{n} \cdot k \cdot e^{-\alpha x_{i}^{n}} \tag{k}
\end{equation*}
$$

5.3.3. de Jong Equation Derivatives.

We have shown earlier that this equation is of the form

$$
y_{i}=B-A x_{i}^{-n}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta B}=1 \tag{a}
\end{equation*}
$$

$\frac{\delta y_{i}}{\delta A}=-x_{i}{ }^{-n}$
$\frac{\delta y_{i}}{\delta n}=A . \ln \left(x_{i}\right) x_{i}^{-n}$
for if $y_{i}=A x_{i}{ }^{-n}$

$$
\begin{align*}
& \ln y_{i}=\ln A-n \ln x_{i} \tag{d}\\
& \frac{1}{y_{i}} \cdot d y_{i}=-\ln x_{i} d n \tag{e}\\
& \frac{\delta y_{i}}{\delta y_{n}}=-y_{i} \ln x_{i}=-A x_{i}^{-n} \cdot \ln x_{i} \tag{f}\\
& \frac{\delta y_{i}}{\delta n}=\frac{\delta\left(B-A x_{i}^{-n}\right)}{\delta n_{n}}=+A \cdot x_{i}^{-n} \ln \left(x_{i}\right) \tag{g}
\end{align*}
$$

5.3.4. Gompertz Equation Derivatives.

$$
\begin{align*}
& y_{i}=k a^{b^{x_{i}}} \\
& \frac{\delta y_{i}}{\delta k}=a^{b^{x_{i}}} \tag{a}
\end{align*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta a}=k \cdot b^{x_{i}} \cdot a^{\left(b^{x_{i}}-1\right)} \tag{b}
\end{equation*}
$$

$$
\frac{\delta y_{i}}{\delta b}=x \cdot b^{\left(x_{i}-1\right)} \cdot k \cdot a^{b^{x_{i}}} \cdot \text { In } a
$$

for if $y_{i}=k a^{b_{i}}$

$$
\begin{align*}
& \ln \mathrm{y}_{\mathrm{i}}=\ln \mathrm{k}+\mathrm{b}^{\mathrm{x}_{\mathrm{i}}} \ln \mathrm{a} \tag{d}\\
& \frac{1}{\mathrm{y}_{\mathrm{i}}} \cdot d \mathrm{y}_{\mathrm{i}}=\mathrm{d}\left(\mathrm{~b}^{\mathrm{x}_{\mathrm{i}}} \ln \mathrm{a}\right) \mathrm{db} \tag{e}
\end{align*}
$$

Now let $q=b^{x_{i}} \ln a$

$$
\begin{align*}
& \ln q=\ln (\ln a)+x_{i} \ln b \\
& \frac{1}{q} \cdot d q=x_{i} \frac{1}{b} \cdot d b \\
& \frac{d q}{d b}=x_{i} \cdot \frac{1}{b} \cdot q=x_{i} \frac{1}{b} \cdot b^{x_{i}} \ln a \\
& \text { As } \frac{1}{y_{i}} d y_{i}=d\left(b^{x_{i}} \ln a\right) d b \\
& \text { from 5.3.4.(e) } \\
& \text { Then } \frac{1}{y_{i}} d y_{i}=x_{i} \frac{1}{b} \cdot b^{x_{i}} \ln a \cdot d b \tag{i}
\end{align*}
$$

$$
\begin{align*}
\frac{d y_{i}}{d b} & =x_{i} \frac{1}{b} \cdot b^{x_{i}} \cdot \ln a \cdot k \cdot a^{b^{x_{i}}} \tag{j}\\
& =x_{i} b^{\left(x_{i}-1\right)} \cdot \ln a \cdot k \cdot a^{b^{x_{i}}} \tag{k}
\end{align*}
$$

5.3.5. Mathematical Equation Derivatives.

$$
\begin{align*}
& y_{i}=b-\frac{1}{c+g x_{i}}=b-\left(c+g x_{i}\right)^{-1} \\
& \frac{\delta y_{i}}{\delta b}=1 \tag{a}
\end{align*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta a}=\left(c+g x_{i}\right)^{-2} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta g}=\left(c+g x_{i}\right)^{-2} \cdot x_{i} \tag{c}
\end{equation*}
$$

Note that these expressions are valid for use in the other mathematical equations used, e.g.,

$$
\ln \left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{b}-\frac{1}{\mathrm{c}+\mathrm{g} \cdot \mathrm{x}_{\mathrm{i}}}
$$

for all that is required is to substitute $\ln \left(\mathrm{y}_{\mathrm{i}}\right)$ for y_{i} in all the necessary equations in the computer programme developed.
5.3.6. Replacement Equation Derivatives.

$$
y_{i}=P_{n}=a-(a-b)(1-\theta)^{n_{i}-1}
$$

$$
\begin{align*}
& \frac{\delta y_{i}}{\delta a}=1-(1-\theta)^{n_{i}-1} \tag{a}\\
& \frac{\delta y_{i}}{\delta b}=(1-\theta)^{n_{i}-1} \tag{b}\\
& \frac{\delta y_{i}}{\delta \theta}=-(a-b)\left(n_{i}-1\right)(1-\theta)^{n_{i}-2} \tag{c}
\end{align*}
$$

5. 3. 7. Accumulative Equation Derivatives.

$$
\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{b}+\theta \mathrm{a}\left(\mathrm{n}_{\mathrm{i}}-1\right)}{1+\theta\left(\mathrm{n}_{\mathrm{i}}-1\right)}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta \mathrm{~b}}=\frac{1}{1+\theta\left(n_{i}-1\right)} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta a}=\frac{\theta\left(n_{i}-1\right)}{1+\theta\left(n_{i}-1\right)} \tag{b}
\end{equation*}
$$

$$
\frac{\delta y_{i}}{\delta \theta}=\frac{\left(n_{i}-1\right)(a-b)}{\left[1+\theta\left(n_{i}-1\right)\right]}
$$

$$
\text { for } \begin{align*}
\frac{\delta y_{i}}{\delta \theta} & =\frac{\left[1+\theta\left(n_{i}-1\right)\right] a\left(n_{i}-1\right)-\left[b+\theta a\left(n_{i}-1\right)\right] \cdot\left(n_{i}-1\right)}{\left\{1+\theta\left(n_{i}-1\right)\right\}^{2}} \\
& \text { 5.3.7.(d) } \\
& =\frac{\left[n_{i}-1\right]\left[a+\theta a\left(n_{i}-1\right)-b-\theta a\left(n_{i}-1\right)\right]}{\left\{1+\theta\left(n_{i}-1\right)\right\}^{2}} \tag{f}\\
& =\frac{\left\{n_{i}-1\right\}\{a-b\}}{\left\{1+\theta\left(n_{i}-1\right)\right\}^{2}}
\end{align*}
$$

5.3.8. Second Order Equation Derivatives. (3 parameter

$$
\begin{align*}
& y_{i}=Y_{c}+Y_{f}\left(1-\left(1+t_{i} / \tau\right) e^{-t_{i} / \tau}\right) \\
&=Y_{c}+Y_{f}\left(1-\left(1+t_{i} Z .\right) e^{-t_{i} Z}\right) \quad \text { if } Z=1 / \tau \\
& \frac{\delta y_{i}}{\delta Y_{c}}=1 \tag{a}
\end{align*}
$$

$\frac{\delta y_{i}}{\delta Y_{f}}=1-\left(1+t_{i} Z\right) e^{-t_{i} Z}$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta Z}=t_{i}^{2} Z \cdot Y_{f} e^{-t_{i} Z} \tag{c}
\end{equation*}
$$

for if $y_{i}=Y_{c}+Y_{f}\left(1-\left(1+t_{i} Z\right) e^{-t_{i} Z}\right.$

$$
\begin{equation*}
\frac{\delta y_{i}}{\delta Z}=+t_{i} \cdot Y_{f}\left(1+t_{i} Z\right) e^{-t_{i} Z}-Y_{f} e^{-t_{i} Z} \cdot t_{i} \tag{d}
\end{equation*}
$$

$=Y_{f} \cdot t_{i} \cdot e^{-Z t_{i}}\left[1+Z t_{i}-1\right]$

$$
\begin{equation*}
=Y_{f} \cdot Z \cdot t_{i}^{2} e^{-Z t_{i}} \tag{f}
\end{equation*}
$$

5.4. Application to the Validity and the X^{2} Statistics.

In section 5.1. the application of the Bevis, Finnear, Towill curve-fitting algorithm to the solution of three parameter models was discussed with special reference to using the criterion of "least sum of errors squared". The same considerations discussed
previously in 5.2. apply even if the criterion is changed to maximum validity, or minimum x^{2} values (as discussed in Chapter 4). Naturally there is some modification to the equations derived, because it is not required to solve for parameters which minimise

$$
E^{2}=\sum_{1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)^{2} \quad \text { (equation 5.2.(a)) }
$$

but for parameters which minimise

$$
\sum_{1}^{N}\left\{\frac{Y_{i}-Y_{e}}{Y_{i}}\right\}^{2} \quad \text { for the validity statistic (from }
$$

or for parameters which minimise

$$
\int_{1}^{\Sigma}\left\{\frac{Y_{i}-Y_{e}}{Y_{e}}\right\}^{2} \text { for the } X^{2} \text { statistic (from equation }
$$

Because of the different form of these functions it is not necessarily true that parameters which minimise the sum of errors squared will also minimise the other statistics, although they may be approximately the same value.

Consider the function
Val $=\sum_{1}^{N}\left(\frac{Y_{i}-Y_{e}}{Y_{i}}\right)^{2}=\sum_{1}^{N}\left\{\frac{Y_{i}-f\left(\bar{a}, \bar{b}, \bar{c}, t_{i}\right)-\frac{\delta f}{\delta a} \Delta a^{-} \frac{\delta f}{\delta b} \Delta b-\frac{\delta f}{\delta c} \Delta c}{Y_{i}}\right\}_{\text {5.4. (a) }}^{2}$
In this case we again have a function linear in $\Delta \mathrm{a}, \Delta \mathrm{b}$ and $\Delta \mathrm{c}$ so the usual minimisation procedures apply. However, an
examination of the analysis in Section 5.2. shows that while the equations for the solution of the above function will be very similar, they are slightly more complex computationally. In the case of
$X^{2}=\sum_{1}^{N}\left\{\frac{Y_{i}-Y_{e}}{Y_{e}}\right\}^{2}$
or $X^{2}=\sum_{1}^{N}\left\{\frac{Y_{i}-f\left(\bar{a}, \bar{b}, \bar{c}, t_{i}\right)-\frac{\delta f}{\delta a} \Delta a-\frac{\delta f}{\delta b} \Delta b-\frac{\delta f}{\delta c} \Delta c}{f\left(\bar{a}, \bar{b}, \bar{c}, t_{i}\right)-\frac{\delta f}{\delta a} \Delta a-\frac{\delta f}{\delta b} \Delta b-\frac{\delta f}{\delta c} \Delta c}\right\}^{2}$
the situation is not solveable by the existing technique because the expression is not linear in $\quad \Delta \mathrm{a}, \Delta \mathrm{b}$ and $\Delta \mathrm{c}$.

It would appear that the only circumstance which would result in all three possible methods iterating and hunting to the same parameter values is that in which the data is exactly correct, and also follows the law defined by the suggested equation to the model. Small errors in the data could very well result in slightly different parameters being indicated by the three methods. Thus, the statistic chosen for this comparitive study was the "least sum of errors squared".

5.5. Setting up the Data File.

To deal with the large number of data-sets involved, it was found necessary to create a computer data file in the form of card images (TEDSFILEI). To ensure that each set of data could be
called up as required, it was given a TITLE CARD and TITLE CARD NUMBER. See the example below.

TOI 37 BLACKBURN AVERAGE SCORE OF S2. OPERATION:CROSSING OUT E'S.

The ' T ' confirms that the card is a title card, 0137 is the title card number. The remaining information relates to the source of the data and what operation was involved.

Each set of data cards also included a card giving the number of pairs of (X, Y) data points recorded. The (X,Y) data points which followed were punched 4 pairs to each card. A print-out of some data sets has been shown in diagram 5 so that the above explanation can be followed, and so that the explanation of the operation of the curvemfitting programme can be followed.

5.6. Some Notes on the Estimation of the Parameters.

It was decided in the early stages of the analysis that there was a need for fair accuracy in the parameter estimates, otherwise the iterative procedure eventually failed. Erroneous parameter estimates usually resulted in large changes in those parameter estimates, which could result in the creation of such large numbers in the numerical calculations that the computer store became overloaded. Because it was fairly easy to estimate the starting point of the curve by eye, it was decided to include estimates of the 'start' and 'final' values of the learning curve, and calculate the parameters

from these values. This procedure was followed for all 3parameter models, unfortunately the procedure did not work well for the Wiltshire model (4 parameters) and was discontinued.

$$
\begin{align*}
& \text { As an example, consider the Gompertz model } \\
& y_{i}=k a^{b^{x_{i}}} \\
& \text { when } x_{o}=0 \text { (start) } \\
& \text { (equation 2.3.5.(a)) } \\
& \text { then } y_{o}=k a^{b^{0}}=k a^{1}=k \cdot a \text {. } \tag{a}
\end{align*}
$$

If $a<b<1$, then when $x_{i} \rightarrow \infty \quad$ (final)

$$
\begin{equation*}
y_{\infty}=k a^{b^{\infty}}=k a^{o}=k \cdot 1=k \tag{b}
\end{equation*}
$$

Thus the 'final' estimate $=\mathrm{k}$

$$
\text { and } \frac{' \operatorname{start'}^{\prime}}{\text { ffinal' }^{\prime}}=\frac{k a}{k}=a
$$

Given also one of the data points $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ where n denotes the $n^{\text {th }}$ point

$$
\text { then } \begin{align*}
Y(N) & =k \cdot a^{b^{x(N)}} \tag{c}\\
\frac{Y(N)}{k} & =a^{b^{x}(N)} \tag{d}\\
\ln \frac{Y(N)}{k} & =b^{x(N)} \ln (a) \tag{e}\\
b^{x(N)} & =\frac{\ln \frac{Y(N)}{k}}{\ln (a)} \tag{f}\\
b & =\left\{\frac{\ln \frac{Y(N)}{k}}{\ln (a)}\right\} \ln (N) \tag{g}
\end{align*}
$$

Thus all three parameters may be estimated from the 'start' estimate, the 'final' estimate, and the $\mathrm{n}^{\text {th }}$ data point. Similar calculations were made for all the 3-parameter programs used and the formulae included in the programs. The derivations of other formulae are given in Appendix B.

5. 7. Operation of the Curve-Fitting Routine.

To operate the curve fitting routine, a set of "estimation" cards was included at the end of the programme which defined the title number of the data set to be used, estimates of the "final" (i.e. the asymptotic value) and the "start" values, and whether the data needed to be modified or not. (Some data sets were included which recorded cycle-time data, hence if these were going to be used in the analysis, the cycle-time data needed to be converted to output data).

Sample cards are shown below in diagram 6. The first card which would be read by the card reader is the card reading " 2 ". This indicates the number of cards which follow containing data set requirements. The third card indicates the need to modify the data ("MOD").

The program thus hunts for the card image relating to title card TO158 and enters the curve fitting routine once it is established that the correct data set has been found.

In all curve-fitting routines such as this, a test needs to be
\square

DIAGRAM 6

PUNCHED CARDS TO DEFINE PARAMETER ESTIMATES AND DATA MODIFICATIONS

included to prevent the iterative procedure from continuing indefinitely. The limit for this analysis was set at 15 iterations. Limits also need to be set, either on the change in the estimated parameter values, or on the change in the sum of errors squared, from one iteration to another. If this is not done the routine will continue to iterate 15 times, regardless of any high value of accuracy attained.

As a further check on the accuracy of the program an artificial set of data was created for each model. On each run of the program, the test data set was included so that the iterative calculations and the calculation for R could be checked. The flow diagram which follows gives the full sequence of the program developed.

PULLOUT

DIAGRAM 7
5. 9. An Example of a Typical Computer Programme Used.

A typical programme with printout of test data and the iterations for one data set is included at this point. The reader will note that the programme requires very little alteration to make it suitable for a different three parameter curve fitting problem.

USE $S=E O U / F O R M A T T E D(M I D O X C O M M O N 1$) USE $1=$ ED1/FUKMATTED (TEOSFILE1) MASTER CURVE FIT 8

NULL=0
RFAD $(5,702)$ IDENT, A, B, MODX FORMAT (1X,14,2F(0,0,A3)
ALL COMP (L,TT, 1,T(1),7)
$t=1$
IF (L.NE, 1) GOTO 110
BACKSPACE?
RFAD (1, (04)

IF (L.NE, IDENT) Goro ra
BACKSPACE
READ (1,1000) T
(9*nい) 1 bwaud
RFAD $(1,1 \cup \cup 1) \mathrm{N}$
FORMAT (13)
RFAD $(1,100<)(X(1), Y(I), T=1, N)$
FORAAT(BFも.0)
WRITE (2,10U3) DY,T
1003 FORMAT 1 H9. $60 \mathrm{X}, 1 \mathrm{HX}, 39 \mathrm{X}, 6 \mathrm{HDATE:-,A81}$
231 X, LQHCURVE FITTING TU EQN. $Y=K$. A ////.24X,10A8)
WRITE (1404

CALL COMP
IF (L.NE. 1) GOTO 2
DO $11=1, \mathrm{~N}$
$Y(1)=3600 / Y(1)$
WRITE (2,1004)
WRITE (2,100S) (I,X(I),Y(I),I=1,N)
WRITE(2.100?) A, B
START $=, F 10.3$)
$B=(A L O G(Y(N) / K) / A L \cup G(A)) * *(1 / X(N))$
IF (NULL, EQ, 1) GOTO 10
SPERT = SUMERRSQ (K, A, B, Y, N, X)
DK, OA, DE =

1, 1PE14,7.11.
:-
$\stackrel{w}{c}$
u
$-\infty$
ITER=0

$$
\begin{gathered}
21 \text { PE } 14.7 \\
\text { ITEY }=0
\end{gathered}
$$

$100 \mathrm{H} 3, \mathrm{~A}, \mathrm{C} 1, \mathrm{C}, \mathrm{C} 3, \mathrm{H} 1, \mathrm{H}, \mathrm{A} 1, \mathrm{~A} 2, B 3, B 1, B 2=0$
ITER=ITER+1
$\begin{aligned} & \text { DO } 5 \quad t=1, N \\ & \text { Pi) y }(1)=y(1)-K *(A * *(B * * x(1)))\end{aligned}$
$P \cap 1(1)=A * *(F * * X(I)$
$\operatorname{Po3}(1)=x(1) *(B * *(X(1)-1)) * K * A \operatorname{LOG}(A) *(A * *(B * * *(1)))$
IF(NULL,EQ.1) GOTO 10
$H 1=41+P \cup 1(1) * P D Y(I)$
$H 2=H C+F+1 /(1) * P D Y(1)$
$\mu 3=H 3+p 0 S(1) * P 0 Y(7)$

$D=(A 1 * B 2 * C 3+A 2 * B 3 * C 1 * A S * B 1 * C 2-A 1 * B 3 * C 2-A 2 * B 1 * C 3-A 3 * B 2 * C 1)$
IF (NULI,EQ, 1) G9TO 1U
$0 K=(H 1 * E 2 * C 3+142 * B 3 * C 1+H 3 * B 1 * C 2-H 1 * B 3 * C 2-H 2 * B 1 * C 3 * H 3 * B 2 * C 1) / 0$
$D A=(A 1 * H 2 * C 3+A C * H 3 * C 1+A 3 * H 1 * C 2-A 1 * H 3 * C 2-A 2 * H 1 * C 3-A 3 * H 2 * C 1)(D$
$A=(A 1 * H 2 * C S+A C * H S * 21+A$
$1 F(H U 11, E Q, 1) G O T O 10$
$D A=(A 1 * B<*+13+A C * B S * H 1+A 3 * B 9 * H 2-A 1 * B 3 * H 2-A 2 * B 1 * H 3-A 3 * B 2 * H 1) / 0$
IF (NULL.EQ. T) GUTO 10
$N K=K+D K$
$S P E Z Z=S U M F R R S Q(N K, N A, N B, Y, N, X)$
WRITE $(2,100 X)$ DK, DA, DB, NK,NA,NB,SPEZZ

0098
0099
0100
0102
0103
0104
0105
0906
0107
0
0
0
0
$\frac{0}{5}$
\square

FUNCTION SUMERRSQ（K，A, B, Y, ，,$X)$
REAL K
DIMENSIUN $X(N), Y(N)$
SUMERRSQ＝0
1 SUMERRSQ＝SUMERRSQ＊（K＊（A＊＊（B＊＊X（I）））－Y（I））＊＊2
END
11，NAME SUMERRSQ

LENGTH
SEGMENT，
END OF

LENGTH
SEGMENT．
$\stackrel{4}{4}$
ー～Mきいった
014
0142
014
014
0145
0146
014
END

6.1. Blackburn's Study on the Acquisition of Skill.

In 1936, H.M.S.O. published a long report by Blackburn ${ }^{39}$ dealing with an analysis of learning curves. In that report Blackburn considered the various methods then existing for depicting learning, the "plateau" effect, (in which performance apparently reaches a maximum, but then rises to a new maximum), and also the problem of whether there was a general learning curve equation. While Blackburn confined himself for the most part to the consideration of other experimenters' work, he also conducted experiments with his own volunteer subjects and recorded the results. Five experiments were performed: card sorting, maze learning, code substitution, crossing out $\mathrm{E}^{\prime} \mathrm{s}$, and addition. With the exception of maze learning, it could be said that these were simple learning experiments, in which the subjects would approach their maximum output reasonably quickly.

In Blackburn's experiments, not all subjects took part in all the experiments, and similarly not all subjects took the same number of tests. To avoid biasing any averaged curves because one or two subjects took more tests than the others, average curves were calculated for which all subjects had taken the same number of tests e.g. 7 subjects took 20 tests or more on card sorting, therefore an averaged curve was calculated for the 7 subjects for 20 tests. 4 subjects took 30 tests or more in the same card sorting experiment; these results were similarly averaged for 30 tests. In this way averaged results for 4 , 6 or 7 subjects were found for the data. Averaged and individual data is given in Appendix C and full details of Blackburn's experiments in Appendix D.
6.2. Morcombe's thesis on Motor Skill Learning Models.

As part of his thesis, Morcombe ${ }^{40}$ undertook a laboratory experiment in which the learning of a simulated simple assembly task was studied. Six subjects performed 20 tasks each at one sitting in which 54 square and triangular pieces had to be fitted into the shape of a perfect rectangle. Cycle time data for each trial is recorded in Appendix C, as is an averaged cycle time which was calculated for this study. For the purposes of the curve fitting exercise, this cycle time data was converted to output data within the computer programme used.

6.3. Blankenship and Taylor's Study of Machine Operators.

In their article, Blankenship and Taylor ${ }^{41}$ examined the learning curves of operators in 3 machine processes; covering, trimming and hemming. Data is not given in the article, but Morconibe and Corlett ${ }^{42}$ have interpolated points on the curves given and further discussed the results. The curves given are the averaged outputs of the workers, smoothed to reduce variability. The data is recorded in Appendix C.

6.4. Bevis's Thesis on Industrial Learning.

In his thesis, Bevis ${ }^{43}$ examined several different learning situations in industry, including tack-welding of small components (operation ' B^{\prime}), jointing short lengths of wire on to components (operation ' C^{\prime}), making cigars at two different iactories (rolling and bunching). In addition, data was quoted relating to one subject who assembled small machined component parts. In all cases, averaged data is quoted and is given in Appendix C.
6. 5. Hackett and Lamb's Study of Telephonist Training.

As part of their study of telephonist training the author and his associate were given permission to examine the training records
of nearly 100 telephonists employed by the Post Office. The data obtained indicates the amount of work done by the trainee in one hour for a series of tests during the training period of 5 weeks. The test is held at a switchboard, and the trainee handles live traffic (which is highly variable in content), so a scoring system has been developed by the Post Office that weights the score of each call dealt with according to the difficulty of the call handled. The units used are called "valued cells". The data is thus given in the form of the number of valued calls handled in one hour on a day of training. Included in some of the data is an observation made at a much later stage - this is a full efficiency check. All the data is given in Appendix E.

The average number of valued calls/hour handled on each day for all trainees was calculated and the mean data used to establish a best fit curve using the Bevis model. Predictions for each day of training were calculated and the individual scores ranked into high, low or medium categories using a computer programme. This allowed an estimation to be made of the trainee's overall performance during training and on the full efficiency test by using ranking scores of high $=3$, medium $=2$, low $=1$ for all rankings.

The data sets could then be split up into those containing consistently high, medium or low scores. Such data sets contained 9 or 10 sets of trainees' data which were then averaged and used in this study. The averaged data found is presented in Appendix C.

At a later stage in the study of telephonist training, a series of experiments were held in which observations were made on a
sample of trainee telephonists. Brief details of the experiments are given here, further information may be found in Lamb ${ }^{44}$.

Lamb had previously made a series of observations on experienced telephonists in which he had confirmed that experienced telephonists performed their work to a common "activity profile". The activity profile was established by using a technique based on activity sampling. The task to be performed was split into elements such as Dialling, Operating Keys, Plugging In, Timing, Speaking, Listening, etc. and a record was taken of each activity in progress at ten second intervals during an observational period of 1 hour. An analysis of 6 hours observations made on several telephonists allowed the derivation of an "activity profile"; which can be defined as "the way in which an experienced tele phonist divides her time while arorking at a switchboard'.

Lamb hypothesised that a naive traince would have an entirely different activity profile and that that activity profile would change, over a period of time, to a profile similar to that of experienced telephonists. To test this hypothesis, an experiment was arranged in which both researchers observed trainee telephonists at various exchanges and at a Training School, making frequent half-hourly and (at a later stage) hourly periods of observations when the trainees held their practice periods at the switchboard. After training was completed, further hourly periods of observations were taken at less frequent intervals. In all periods of observation activities were recorded at 6 second intervals, using an audible cue
generated by a transistorised circuit and fed into earphones used by the researchers.

The observational requirements in the above experiment were slightly different to those previously established. In addition to noting the Dialling, Timing etc. categories of activity, a further subdivision to account for Procedural Instruction was required to allow for assistance given to the trainee by her trainer. This assistance might be relevant to an activity e.g. pointing out that a key should be operated, or it could be relevant to the whole call e.g. recapitulation of the procedure to be followed on a particular ty pe of call. This further breakdown of the activities allows manipulation of the data to give a 5 day running average of occurrences of activities, set out to show the amount of work done by the trainee (Own Initiative) and the amount of Procedural Instruction received by the trainee. The resulting measures can be regarded as indicating the performance of the trainee at a particular element of the task during the period of observation, because as the trainee becomes more expert in her job, so instruction relevant to that element of the task should go down.

Now the total of Own Initiative + Procedural Instruction gives the total number of observations of any one element of activity. If the ratio Own Initiative $\times 100 \%$ is Own Initiative + Procedural Instruction
calculated for each element in a period of observation, then the percentage value should rise to 100% over the period of training, because Procedural Instruction should fall to zero. The percentage
calculated might then follow a learning curve.
The data gathered in the above experiment was modified in the above manner for one trainee telephonist to give a 5 day running average performance on the various elements of the task. Data is presented in Appendix C as a percentage Own Initiative performance for each day of training, so that the maximum performance attainable is 100%.

During the observational periods, records of the type of call, and of the difficulties that occurred were also made, so that at a later date, a "valued calls" total for the work done could be established. Appendix C includes data made available by Lamb relating to the performance of one trainee during this period of intensive observation.

7. ANALYSIS OF RESULTS

7.1. Relative Success Rates for Fitting Each Mode1.

A count of successful curve fitting runs for each model gives the following table. 88 sets of data were used.

TABLE III

 RELATIVE SUCCESS RATES FOR EACH CURVE FITTINGROU TINE

MODEL	NO. OF SUCCESSFUL RUNS
BEVIS	77
GOMPERTZ	84
MATHEMATICAL	69
WILTSHIRE	31
ACCUMULATIVE	81
REPLACEMENT	37
DE JONG	76
LOG	87
MATHEMATICAL	

From the table, it can be seen that there was little success in fitting the Wiltshire and de Jong models, but relatively high success rates for the other models. The failure of the Wiltshire
model is probably due to the difficulty of estimating reliable parameter values. It was found in practice that unless the parameters were reasonably close to their 'best' values, the program overloaded, resulting in obviously incorrect parameter values, or error messages.

The relative failure of the de Jong model does not appear to have an explanation, unless the accuracy and quantity of data was insufficient to allow easy curve fitting.

7.2. Calculation of the Coefficient of Concordance.

Because of the poor success rates in fitting the Wiltshire and de Jong models, there were only 10 sets of data for which all models were curve fitted. The values of the sum of errors squared were ranked and a computer program written to calculate W and X^{2}. For 9 models and 10 sets of data, x^{2} was significant $(p<.001)$.

To establish which model was causing the effect, the computer program was extended to eliminate each of the models in turn from the rankings, correct the rankings affected by the elimination, and to recalculate W and x^{2}.

The first printout for the 9 model/l0 data sets case is repeated on the following pages. The integer values shown under each model heading are the ranks of that model for each set of data. Columns of zeros indicate that that particular model is excluded from the calculation.

	$M(1)=$		TKE B	BEVIS MODEL					
	$M(く)=$								
	3)		THE M	MATHEMATICAL MOOEL					
	$M(4)=$		THE W	WIITSHIRE MODEL					
	5)		THE A	accumulayive monet					
	$M(\sigma)=$		THE R	REFLACEMENT MODEL					
	$M(7)=$		THE D	De Jonn	G MODEL				
	$M(8)=$		THE LO	LOGMATHEMATICAL MODEL					
	$M(9)=$		THE S	SECONO	ORDER	MCDEEL			
SET	M (1)	H(2)	$M(3)$	"(4)	M (5)	$M(6)$	P(7)	M(\quad)	$M(9)$
102	5	\bigcirc	4	2	1	8	7	3	9
906	5	7	2	4	1	8	6	3	9
ioy	4	7	2	1	5	8	0	3	9
110	2	4	7	1	3	6	9	8	5
122	2	3	4	1	y	8	7	5	6
165	6	7	4	1	2	8	5	3	9
180	3	6	5	2	1	4	y	7	8
171	4	3	7	2	6	1	9	8	5
174	5	4	$?$	2	6	3	9	8	1
185	2	3	4	1	7	8	9	5	6
4.08600005 COT			CHISQE	$=3.2640000 \mathrm{E} 0$			O.OF	FREF	DOM $=$

KENDALI COEFFICIENT OF CONCORDANCE: W


```
            KENDALL COEFFIGIENT OF CONCORDANCF: W
    SET M(1) N(e) M(3) M(4) M(5) M(6) M(7) M(4) M(9)
    102 [10 4 5 0 0
    106 4
```



```
    122 2 % 3 0
```



```
    170
    171 4
    174
    185 2
W=4.2869524EmO1 (K1SQ= 2.9966667E OT O.OF FPEEDOM= ?
KENDALL COEFFICIENT OF CONCORDANCE:U
    SET H(1)N(2) M(3) N(4) M(5) M(6) M(7) M(6)M(9)
    102 [llllllllll
    106 4
```



```
    110
    122 1 1 2 % 3 0
    105 5 5 6 % 3 % 0
    1%0
    171 3 2 0 0 % 0
    174
    185 1: 2 < 3 0
W=2.79523४7E=n4 CHISQ= 1.95666675 09 D,OF FREEDOM= ?
```


KENDALL COEFFICIENT OF CONCORDANCE: W

The values calculated for W and X^{2} are given in Table IV below. It can be seen that in the first test, where no model was omitted, x^{2} is significant at <.001, and that when models are omitted one by one, removal of the Wiltshire model causes the largest reduction in W and x^{2}. Examination of the rankings indicates that the Wiltshire model consistently gives the best fit.

TABLEIV

VALUES OF W AND X^{2} FOUND FOR 10 DATA-SETS, 9 MODELS, WITH ONE MODEL DELETED FROM RANKINGS

Model Omitted	w	x^{2}	Degrees of Freedom	Significance $<$
NONE	0.408	32.64	8	.001
BEVIS	0.394	27.60	7	.001
GOMPERTZ	0.427	29.90	7	.001
MATHEMATICAL	0.428	29.97	7	.001
WILTSHIRE	0.280	19.57	7.	.01
ACCUMULATIVE	0.467	32.67	7	.001
REPLACEMENT	0.460	32.20	7.001	
DE JONG	0.336	23.50	7.005	
LOGMATHEMATICAL	0.429	30.00	7	.001
SECOND ORDER MODEL	0.430	30.13	7	.001

Even so, the value of X^{2} remains significant at $<.01$, suggesting that a further test could be done on the remaining 8 models by once again removing a model and establishing if this caused a large change in W and x^{2}.

The test was repeated using the same 10 data sets, and the results are set out in Table V. Computer printout has not been included as the resulting text would become too bulky. In this case removal of the de Jong model causes the greatest reduction in the x^{2} value.

TABLE V

VALUES OF W AND x^{2} FOUND FOR 10 DATA SETS, 8 MODELS, WITH ONE MODEL DELETED FROM RANKINGS

| Model
 Omitted | W | x^{2} | Degrees
 of Freedom | Significance
 $<$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| NONE | 0.280 | 19.57 | 7 | .01 |
| BEVIS | 0.246 | 14.74 | 6 | .025 |
| GOMPERTZ | 0.301 | 18.04 | 6 | .01 |
| MATHEMATICAL | 0.287 | 17.23 | 6 | .01 |
| ACCUMULATIVE | 0.311 | 18.64 | 6 | .005 |
| REPLACEMENT | 0.329 | 19.71 | 6 | .005 |
| DE JONG | 0.183 | 10.97 | 6 | .10 |
| LOGMATHEMATICAL | 0.287 | 17.23 | 6 | .01 |
| SECOND ORDER MODEL | 0.281 | 16.89 | 6 | .01 |

Once the effect of the Wiltshire model had been established, it was possible to extend the scope of the test by examining 23 sets of data. (As only 8 models were being considered, more sets of data had been curve fitted by those 8 models). Results are tabulated below in Table VI. As can be seen, the de Jong model still causes the greatest reduction in x^{2} values. In this case, examination of the rankings shows that the de Jong model consistently gave the worst fits.

TABLE VI
VALUES OF W AND x^{2} FOUND FOR 23 DATA SETS, 8 MODELS, WITH ONE MODEL DELETED FROM RANKINGS

Model Omitted	W	x^{2}	Degrees of Freedom	Significance $<$
NONE	0.107	17.23	7	.02
BEVIS	0.108	14.91	6	.025
GOM PERTZ	0.123	16.94	6	.01
MATHEMATICAI	0.0884	12.20	6	.10
ACCUMULATIVE	0.134	18.56	6	.005
REPLACEMENT	0.139	19.16	6	.005
DE JONG	0.0485	6.69	6	.50
LOGMATHEMATICAL	0.0870	12.00	6	.10
SECOND ORDER MODEL	0.135	18.58	6	.005

Removal of the de Jong model reduced the number of models to be considered to 7, but also increased the data-sets available to be ranked to 54. The calculation was repeated, values of W and x^{2} being shown in Table VII below. In this instance, the removal of the logmathematical model causes the greatest reduction in x^{2}. Again, this model consistently gave the worst fits when the rankings were examined.

TABLE VII

VALUES OF W AND x^{2} FOUND FOR 54 DATA SETS, 7 MODELS, WITH ONE MODEL DELETED FROM RANKINGS

Model Omitted	W	x^{2}	Degree of Freddom	Significance $<$
NONE	0.0684	22.17	6	.005
BEVIS	0.0714	19.28	5	.005
GOMPERTZ	0.0743	20.05	5	.005
MATHEMATICAL	0.0627	16.94	5	.005
ACCUMULATIVE	0.0664	17.92	5	.005
REPLACEMENT	0.0967	26.11	5	.001
LOGMATHEMATICAL	0.0287	7.76	5	.20
SECOND ORDER MODEL	0.0840	22.69	5	.001

The analysis was extended to one more case - six models and 61 data sets. Results are shown in Table VIII. While the elimination of the second order model would cause the greatest reduction in x^{2},
no further analysis could be attempted due to the unsuccessful curve fit attempts. The second order model was consistently giving the worst fits for this set of rankings.

TABLE VIII

VALUES OF W AND x^{2} FOUND FOR 61 DATA SETS, 6 MODELS,

WITH ONE MODEL DELETED FROM RANKINGS

Model Omitted	W	x^{2}	Degrees of Freedom	Significance $<$
NONE	0.0386	11.78	5	.05
BEVIS	0.0475	11.58	4	.025
GOMPERTZ	0.383	9.35	4	.10
MATHEMATICAL	0.051	12.44	4	.02
ACCUMULATIVE	0.0278	6.78	4	.20
REPLACEMENT	0.0419	10.23	4	.05
SECOND ORDER MODEL	0.0265	6.47	4	.20

7.3. Comparison of "Best Fit" Start and Final Values.

A further comparative assessment of the models investigated may be made by studying the 'start' and 'final'values. This method if obviously better than comparing the parameter values, because the parameters do not necessarily have similar meanings from one model to another. In this section, only a selection of data sets, with their'start' and'final'values, are compared. A complete list of
parameter, 'start' and 'final' values is given in Appendix F, and a comparison of 'start' and 'final' values on a Model basis is given in Appendix G.

Consider the best fit 'start' and 'final' values obtained for the curve fitting of data set No. 106 (Mean score of 4 subjects taken from Blackburn's ${ }^{45}$ data Operation: - Addition) given in Table 9 below:

TABLE IX

A TYPICAL DATA-SET, WITH A COMPARISON OF 'START'
AND 'FINAL' VALUES FOUND FOR EACH MODEL

			Data		Data	
Model	Final	Start	X	Y	X	Y
BEVIS	134.91	61.00	1.0	73.3	15.0	124.7
GOMPERTZ	133.92	64. 34	2.0	74.2	16.0	125.7
			3.0	90.7	17.0	127.9
MATHEMATICAL	150.22	52.21	4.0	97.8	18.0	130.9
WILTSHIRE	139.29	45.88	5.0	102.7	19.0	130.9
ACCUMULATIVE	145.02	57.57	6.0	109.9	20.0	130.2
			7.0	113.2	21.0	131.2
REPLACEMENT	133.40	66.57	8.0	117.9	22.0	134.3
DE JONG	422.88	67.75	9.0	114.7	23.0	135.6
LOGMATHE-			10.0	118.4	24.0	134.9
MATICAL	150.99	54.78	11.0	120.9	25.0	135.3
SECOND ORDER			12.0	121.8	26.0	130.7
MODEL	132.32	72.86	13.0	128.1	27.0	139.9
			14.0	123.7		

It is immediately obvious that the de Jong prediction of the final value is very much higher than the other predictions. The 'start' values, as is to be expected, are reasonably the same. However, this feature of the de Jong model predicting much higher final values is fairly general, as 25 of the predicted final values obtained for the de Jong model (out of 37) avere the highest values obtained from the successful curve fitting runs.

Other examples may be found in Appendix G where the predictions of final values were not sensibly the same (as in the above example). Consider the results for data set No. 0116 (BEVIS ${ }^{46}$, Mean Score of 15 subjects Operation: - Bunching (Plant A)) given in Table X below.

TABLE X

A SECOND EXAMPLE OF A DATA SET, WITH "FINAL"
VALUES FOUND FOR EACH MODEL

		Data	
Model	Final	X	Y
BEVIS	7338.01	1.0	1800.0
GOMPERTZ	5733.79	2.0	2015.0
MATHEMATICAL	11607.18	4.0	2321.0
WILTSHIRE	4857.07	8.0	2829.0
ACCUMULATIVE	7591.04	10.0	3085.0
REPLACEMENT	5484.52	12.0	409.0
DE JONG	-	14.0	4225.0
LOGMATHEMATICAL	11788.0	16.0	4515.0
SECOND ORDER MODEL	5230.15	18.0	4617.0

If one wishes to set a standard for output on this operation, what value does one choose? In this case it is suggested that the mean value might well be a reasonable choice, but the range of values found emphasises the danger of selecting any one learning curve model and slavishly applying the results to calculate work study standards.

7.4. Discussion and Conclusions

/ In this comparitive study of the fits of various models to a selection of learning data, it has been shown that the Wiltshire Model is most consistently the best fit. This is, perhaps, obvious, when one realises that the Wiltshire model has four parameters, and the remaining models only three. Mathematically, one would expect a four parameter model to be a better fit than a three parameter model, unless the three parameter model was an exact representation of the learning data. It suggests that a useful further study might be one in which various four parameter models were compared.

Rather more surprising is the discovery that the de Jong model gave consistently the worst results. Not only was the difficulty in establishing the parameters more evident than for the other three parameter models, but those results that were obtained also predicted "final" values which were, in general, much higher than the "final" values predicted by the other models.

As such, this result throws doubt on the usefulness of the de Jong model (in comparison with the other models) when individual learning curves are to be analysed. Further work appears necessary to confirm both the above results.

It was not unexpected that the mathematical model was not rejected by the analysis, because it has been shown that that model is very similar to the Accumulative Model. The logarithmic form of the same model was shown to be the worst of the remaining models, however, and this suggests that manipulation of the x, y scales is not an improvement. It would be of interest to study the results of fitting the selected models to logarithmic scales and comparing them on that basis.

In the final table, the second order model appeared to be the worst of the 6 remaining models, indicating that perhaps the general shape of the critically damped model is not the most suitable choice. Further investigations on four parameter models would allow the overdamped and underdamped solutions of the second order equations to be compared with other four parameter models and previous results. A further experiment of interest would be to compare the damping factors found for individuals learning of different tasks. Might they be the same?

A 'best" model cannっt be selected from those remaining (Bevis, Gompertz, Accumulative, Replacement, Mathematical), purely on the basis of the statistical test done. Given very much larger quantities of learning data this might be possible, but in this instance it seems best policy to choose a model which has
parameters which may be defined in understandable terms. This criterion indicates the Bevis model as the most suitable choice because the three parameters Y_{c}, Y_{f} and τ may be easily defined in terms which are acceptable.

8. AN EXAMINATION OF THE LEARNING DATA

FOR INDIVIDUAL TELEPHONISTS
8.1. Introduction.

In the earlier chapters of this thesis it has been shown that there is little to choose between several learning curve models. The Bevis model was suggested as the most suitable model, but not directly as a result of the objective assessment attempted. To investigate the use of the Bevis model as applied to data related to skills acquired by Post Office employees, it was decided to attempt to fit the Bevis model to all the individual data--sets obtained from Oxford and North West Telephone Areas mentioned earlier in Section 6.5, and also to examine in rather more detail the fitting of the model to data obtained by personal observation.

8. 2. Fitting the Bevis Model to Recorded Data.

The attempt to fit the Bevis model to the data sets was made in two ways. In the first curve fitting attempt, all available data was used. In the second, the last data point was eliminated from those data sets which included a full efficiency check and curvefitting again attempted. A comparison of the two sets of results showed that there was little correspondence between them.

A total of 87 data sets were used in the investigation.
were obtained for the complete and one-data-point-omitted data sets. Only 9 of those pairs resulted in parameters which were all positive, and only 5 pairs gave parameters which were equal to within $\pm 25 \%$ for each curve fitting attempt.

15 pairs of results included negative Y_{f} and negative τ values for that data set with less data. 7 further pairs of results included values for Y_{c} or Y_{f} which were unlikely to be accurate. e.g. Set 249

$$
Y_{C}=-5837
$$

$$
Y_{f}=6020
$$

$$
\tau=1.10
$$

Set 282

$$
\begin{aligned}
& Y_{\mathrm{c}}=-33.73 \\
& Y_{f}=593.5 \\
& \tau=46.8
\end{aligned}
$$

A complete set of all results obtained is included in Appendix H.
8.3. Discussion.

Why were these results so poor? The first possibility is to suggest that not enough data was available accurately to predict the true parameter values and also that observational error might cause this result. In addition, the effect of a data point at some time in the far future with very few observations in the intervening period would force the curve fitting routine to hunt to parameters which would predict that value. Consider data set 231 given in Table XI below.

DATA SET 231 - VALUED CALLS FOR T31, EXCHANGE A	
Day	
5.0	Valued Calls
7.0	98.0
10.0	108.0
13.0	155.0
15.0	165.0
18.0	168.0
156.0	205.0
	225.0

The above data is typical of the data investigated. The results for the two curve fitting runs were:-

Y_{c}	Y_{f}	τ	Final

ALL DATA POINTS	1.50	225.34	9.64	226.84
LESS DAY 156	41.54	321.62	26.68	363.16

In the first run, the effect of the observation on day 156 is to cause the prediction of parameter values Y_{C} and Y_{f} which total 226.84 , very close to the observed value of 225.0 . If the last data point is removed the prediction then becomes $\mathrm{Y}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{f}}=$ final $=363.16$. The predicted τ values, 9.64 and 26.68 are not reasonably similar, thus the two predictions do not agree.

A further examination of data set 231, however, shows that
the subject was learning well up to day 18, and that the predicted values of Y_{C} and Y_{f} may well be reasonably accurate for the data to day 18. What happened in the period day 18 - day 156 ?

8.4. An Examination of More Detailed Learning Data.

We can investigate the question posed in the previous section by considering the results when the data obtained by intensive observation of trainees (mentioned in Section 6.5) is curve-fitted. The data obtained was made up into data sets which covered
(i) The first 3 weeks of training
(ii) To the end of training (5 weeks)
(iii) All observations.
(iv) Experience data only (all observations less training data), and is given in the above form in Appendix I.

Now if the learning curve follows the one equation during the observational period for a telephonist, then as long as sufficient and accurate data is available, the parameter values formed by a curve..fitting approach will be similar. If the values are not reasonably the same then the implication is that there has been a change in the learning process, and that the learner is on a new learning curve. All the results obtained are given in Table XII, blank spaces indicating failure to curve fit successfully.

ALL PARAMETER VALUES FOUND FOR BEVIS MODEL CURVE-
FITTED TO DATA OBTAINED BY DIRECT OBSERVATIONS

Trainee	Set	Y_{c}	Y_{f}	τ
J J	301			
JJ	302	86.79	102.13	15.60
JJ	303	92.50	164.71	36.23
J J	304			
KF	305	44.65	288.06	47.46
KF	306	21.12	112.16	7.11
KF	307	60.90	157.11	39.60
KF	308	144.12	72.67	24.98
LS	309	-27.75	133.25	1. 64
LS	310	76.97	89.79	34.02
LS	311	79.68	130.03	61.11
LS	312	135.09	73.46	56.57
SJ	313	54.93	128.33	5.91
SJ	314	60.32	125.12	6.53
SJ	315	95.60	159.23	25.05
SJ	316			
EB	317	-0.87	129.26	3.01
EB	318	72.66	325.65	73.41
EB	319	67.15	156.94	26.48
EB	320	175.34	52.47	33.86
KN	321			
KN	322	67.66	138.37	24.76
KN	323	63.26	123.00	18.23
KN	324			
J C	325	-106.81	205.79	2.29
J C	326	68.66	123.19	8.48
JC	327	41.22	192.58	42.85
J C	*			

* JC resigned at an early date and only 2 observations were made after completion of training. Curvefitting is thus pointless in this case.

Comparison of the results shows that the considerations discussed previously still apply. Curve fits to data for only the early stages of training predict "final" values which are not consistent with what eventually occurs, and curve-fits for data covering longer time periods do not agree with previous estimates. Some of the results are shown in graphical form in diagrams 8-19 following:-
seef

8.5. Discussion

The learning curves shown emphasise the comments made previously. Up to the end of the first 3 weeks of training, the learning curves (Diagrams 8, 12, 16) bear little resemblance to those learning curves obtained for the other data sets for the same subject. Examination of the parameter values given in Table XII for the learning curves confirms this point.

However, the learning curves for all observational data (Diagrams 10, 14, 18) do appear similar to those obtained for experience data (Diagrams 11, 15, 19) for the same subject. The similarity is emphasised by a comparison made possible by the use of transparencies (see overleaf) from which it can be seen that the shape of the learning curve appears very dependent on the last few observations, and not so dependent on the early observations made during training.

The comparison tends to confirm the earlier suggestion that there are two learning curves for the period being examined. One for the period extending to the end of training, and another for the period after training, when the telephonist is gaining experience without intensive instruction. On reflection, it can be seen that a major change occurs between the two periods - once training is over, the trainee gets a better idea of the output required of her, because she works alongside experienced operators. Previously, she had had no indication of the output required, other than in terms

以"
园:
※
LEARNING CURVE
LEARNING CURVE
थ 0
TRANSPARENCY
TRANSPARENCY

of "valued calls"。 Unfortunately, while "valued calls" are a useful yardstick for the trainer to assess progress, the trainees have no concept of the scoring system and hence, during tests, work flat out. Under such pressures the trainee will make mistakes,
 but more importantly from the learning curve aspect, is likely to attain much higher scores than might reasonably be expected when compared with the normal workrate of 200 valued calls/hour expected of experience telephonists. However, it should not be forgotten that the 200 valued calls/hour standard is that work rate which has been estimated to be reasonable for an experienced operator to work at for an 8 hour day, not the possible performance when working flat out.

The conclusion is drawn that the best fit parameter estimates which predict "final" performance figures of up to 400 valued calls/ hour are not unreliable, and that the data presented contains two learning curves related to (i) the training period and (ii) the experience gaining period.

Lamb ${ }^{47}$, using a method based on activity sampling, has shown that trainee telephonists require between 4 and 6 months before they perform the elements of the task in sensibly the same time as that observed in experienced operators, thus the experience gaining period is the major part of the trainee telephonist's training.

The presence of two learning stages, however, pases problems when it comes to comparing different methods of training, because the implication is that only the training period should be considered,
rather than including information relevant to the post training period. Given successful curve fitting it might then be possible to compare the times taken by a control group of trainees to reach a suitable performance standard with those times taken by an experimental group to reach the same standard. Such learning times could be calculated from the best fit curves for each trainee's performance figure.

A suitable statistical test appears to be the Mann-Whitney U-test ${ }^{48}$, which could be used to do this comparison. During the tape recorded tests described by Lamb ${ }^{49}$ further records of the control and experimental groups performance were taken and used in an attempt to confirm the possibility of using this test, but curve-fitting was successful in only a small number of cases, too small to be used in the statistical tests with any reliability.

The method obviously demands accurate data, and an accurate measurement system. Hackett ${ }^{50}$ has shown that while valued calls may be used within any one exchange to provide a useful guide to trainee performance, inter-exchange comparisons of trainee performance are not valid because of high variability between exchanges. The use of the scoring system of "valued calls" thus causes problems if training methods are compared.
8.6. Alternative Reasons for the Inaccuracy of the Data Obtained From Post Office Sources.

At this point it should be noted that other data obtained by
direct observation was not successfully curve fitted. Data relating to the first three weeks of training for $J J$ and $K N$, when curvefitted, resulted in negative Y_{f} and τ values. Was the data inaccurate?

It is possible that inaccurate data is caused by the inherent variability in the method of giving practice to and testing the trainees. Trainee telephonists practise and take their progress checks at the switchboard, handling live traffic generated by the public. Calls are received at random, and the type of call received by the trainee may vary from a simple long distance connection to a personal call. Calls may go 'wrong' at any time, not only for reasons within the control of the telephonist. For example, the telephonist may misdial - a fair mistake to make at an early stage in training. But the equipment she uses may also be faulty, so that she gets fault indications at some stage in the call (number unobtainable tone, say). Alternatively, the switching equipment the call is routed through may develop faults. What it amounts to is that the task is not repetitive in the absolute sense. It is true that over a very long period, a telephonist will repeat the various types of call she may handle until she becomes fully versed in the necessary operating techniques, but in the training period, the trainee is only starting to build up this experience, and all calls are likely to be regarded as different rather than the same. Comparison between trainees using learning curves then becomes difficult because the weighting system developed to score the performance of the trainee relies on a large quantity
of the types of call being handled. The poor results obtained for data sets relating to training in the Oxford and North West Areas which were discussed earlier, and also the failure to curve fit the more detailed observations could very well have been caused by this effect. Reference to Appendix H will show that only about 20 of the 87 data sets were successfully curve fitted.
8. 7. Repetitive and Quasi-Repetitive Tasks.

Lamb ${ }^{51}$ has coined the term "quasi-repetitive task" as descriptive of a telephonist's work. This seems a most apt description of the ty pe of work load received by the telephonist, for over a long period, it is repetitive, yet it is not repetitive in the short term (in the sense that the assembly of components would be regarded as repetitive in the short term). In such a situation, where a learning curve approach is to be attempted, either a scoring system must be developed which allows for the varying difficulty of the type of call received, or, during tests, standardised calls must be presented to the trainee. For the first case, it seems that the scoring system developed would need to be very complex, as the 'difficulty' of a Fersonal call would be great for a first day trainee, not so great for a second week trainee, and less difficult still once the trainee had received the necessary tuition to allow her to handle the call in the correct manner. To apply such a scoring system in the correct manner might very well imply a
complete record of all calls handled and is regarded at this stage as too complex and costly to apply. It is probable that all quasirepetitive tasks encounter this difficulty in scoring.

The simpler method which allows an extra score for difficult calls and difficulties encountered but does not vary the score according to the point in training the call is received, has been shown to be inaccurate, ${ }^{52}$ thus the conclusion is drawn that an entirely different approach is needed. For example, the use of tape recorded telephone calls to present problems to each trainee in the same manner might allow comparison of training methods, but would be unlikely to provide data suitable for a learning curve approach. Lamb ${ }^{53}$ discusses this approach in detail.

8. 8. Possible Application of Learning Curves to other Tasks within the Post Office.

The previous discussion has suggested that scoring the task performed is a difficulty where quasi-repetitive tasks are encountered. Certainly the work of a telephonist poses this problem. Some other examples may also be suggested, such as fault-finding, because there is the obvious difficulty of deciding whether one fault is twice or four times more difficult to solve than a second (different) fault, and also the installation of telephones, because no two installations will be the same.

Other tasks within the Post Office are more representative
of repetitive tasks. The use of the Machine Jointing No. 4 demands a manipulative skill to successfully joint two wires at a reasonable pace, and there is a knack to the older method of hand twist jointing which is gained with repetition. Such skills could probably be measured and depicted quite well by the Learning Curve models discussed previously.

In other tasks not related to Engineering such as Clerical work, it is also likely that a repetitive rather than quasi-repetitive nature will be found.

On the other hand, skills required in the Research, Development and Managerial fields are much more difficult to define and also to measure, so that it is unlikely that learning curve theory could be applied to those fields in the near future. A much more promising approach is that of Lamb, using tape-recorded tests as discussed previously. This, at least, allows for the presentation of the same problem to each of the trainees, without the possible bias that might be introduced, say, by the variations in tone of voice that could be found when several questioners were used.

Further researcin into the use of four parameter models could also be useful, for if a model could be defined which was rather more successful than those tried to date, statistical tests might then be possible which would allow an objective comparison of training methods to be made.

1. LAMB R.T. "Evaluation of the Training of Telephonists". Unpublished M. Phil. Thesis, Middlesex Polytechnic at Hendon, 1974.
2. MORCOMBE V.J. "Motor Skill Learning Models".

Unpublished M.Sc. Thesis, University of Birmingham, Sept. 1969, p. 47.
3. MORCOMBE V.J. op. cit., p. 47.
4. WRIGHT T. P. "Factors Affecting the Cost of Airplanes". Journal of the Aeronautical Sciences, Vol. 3, Feb. 1936, pp. 122-127.
5. MORCOMBE V.J. op. cit., p. 52.
6. MORCOMBE V.J. op. cit., p. 56 .
7. DE JONG J.R. "The effects of Increasing Skill on Cycle Time and its consequences for time standards". Ergonomics, 1, 1, 1957, pp. 51-60.
8. DE JONG J.R. "Increasing Skill and Reduction of Work Time" (pt. 1). Time and Motion Study, Sept. 1964, pp. 28-41.
9. DE JONG J.R. "Increasing Skill and Reduction of Work Time" (pt. 2). Time and Motion Study, Oct. 1964, pp. 21-33.
10. NADLER G. and SMITH W.D. "Manufacturing Progress Functions for Types of Processes'.

International Journal of Production Research, 2, 2, 1963, pp. 115-135.
11. GLOVER J.H. "Manufacturing Progress Functions" (Pt. 1)

International Journal of Production Research, 4, 4, 1966, pp. 277-298.
12. GLOVER J.H. "Manufacturing Progress Functions" (Pt. 2). International Journal of Production Research, 5, 1, 1966 . pp. 43-59.
13. WILTSHIRE H.C. "The Variation of cycle times with Repetition for Manual Tasks". Ergonomics, 10,3, 1967, pp. 331-347.
14. BEVIS F.W. "An Explanatory Study of Industrial Learning with Special Reference to Work Study Standards". Unpublished M.Sc. Thesis, University of Wales, March 1970, p. 66.
15. HITCHINGS B. "Dynamic Learning Curve Models Describing the Performance of Human Operators on Repetitive Industrial Tasks". Unpublished M.Sc. Thesis, University of Wales, Nov. 1972.

16, 17, 18. RESTLE F. and GREENOJ.G. "Introduction to Mathematical Psychology'. Addison-Wesley, 1970, Ch. 1.
19. EZEKIEL M. "Methods of Correlation Analysis". John Wiley and Sons Ltd., 1945, pp. 79-81.
20. THOMAS M.U. 'Developing More Accurate Cubic Learning Curves". Manufacturing Engineering and Management, July 1972, Vol. 69, No. 1, pp. 29-30.
21. MORCOMBE V.J. op. cit., p. 80 .
22. CROSSMAN E.R.F.W. "A Theory of the Acquisition of Speed Skill ${ }^{\prime \prime}$.

Ergonomics, 2,2,1959, pp. 153-166.
23. PICKERING A. and MACAULAY R.J. "Manual Dexterity Tests".

Unpublished M.Sc. Thesis, University of Birmingham, 1966, p. 23.
24. MORCOMBE V.J. op. cit., p. 144.
25. CHESTNUT H. and MAYER R.W. "Servomechanisms and Regulating Systems Design'.

John Wiley and Sons, Inc., 1963, Vol.1, pp. 57-59.
26. DE JONG op. cit.
27. BEVIS F.W. op. cit., p. 110 .
28. MORCOMBE V.J. op. cit., p. 26.
29. TELFIT. ${ }^{\text {"Curve }}$ fitting programs - one Independent Variable".

Time Sharing Ltd., TM 20/1, p. 48.
30. MORONEY M.J. "Facts From Figures".

Penguin Books Ltd., 1962, pp. 249-269.
31. YULE G.U. and KENDALL M.G. "An Introduction to the
theory of Statistics".
Charles Griffin \& Co. Ltd., 1965, pp. 361-362.
32. SIEGEL S. "Nonparametric Statistics for the Behavioural

Sciences".
McGraw Hill, 1956, pp.229-238.
33. BEVIS F.W. op. cit.
34. BEVIS F.W., FINNIEAR C. and TOWILL D.R. "Prediction
of Operator Performance during Learning of Repetitive Tasks".

International Journal of Production Research, 1970, Vol. 8, No. 4, pp. 293-305.
35. HIT CHINGS B. op. cit.
36. SRIY ANANDA H. "Fault Diagnosis in Feedback Control

Systems".
Unpublished Ph. D. Thesis, University of Wales, 1972, Ch. 7.
37. TOWILL D.R. "A direct method for the determination of

Learning Curve parameters from historical data".
International Journal of Production Research, 1973.
Vol. 11, 1, pp. 97-101.
38. BEVIS F.W., FINNIEAR C. and TOWILL D.R. op. cit.
39. BLACKBURN J.M. "The Acquisition of Skill: An Analysis
of Learning Curves".
Medical Research Council, Industrial Health Research
Board Report No. 73, H.M.S.O., 1936.
40. MORCOMBE B.J. op. cit., p. 140 .
41. BLANKENSHIP A. and TAYLOR H.R. "Predittion of Vocational Proficiency in Three Machine Operations". Journal of Applied Psychology, 1938, 22, pp. 518-526.
42. MORCOMBE V.J. and CORLETT E.N. "Straightening out Learning Curves".

Personnel Management, June 1970, pp. 14-19.
43. BEVIS F.W. op. ctt.
44. LAMB R.T. op. cit.
45. BLACKBURNJ.M. op. cit., p. 82.
46. BEVIS F.W. op. cit., p. 113.
47. LAMB R.T. op. cit.
48. SIEGEL S. op. cit., pp. 116-126.
49. LAMB R.T. op. cit.
50. HACKETT E.A. 'Valued Calls and Variability in Calling Traffic at Exchanges".

Unpublished Training Research Project Study, Post Office, Jan. 1973.
51. LAMB R.T. op. cit.
52. HACKETTE.A. op. cit.
53. LAMB R.T. op. cit.

PO STUDY ON CRITERIA FOR THE EVALUATION OF TRAINING.

Investigation Objectives

We propose to determine procedures to provide measures of the effectiveness of training and of field performance against the costs involved. We would also endeavour to state the costs associated with subsequent performance, to define appropriate criteria to measure the progress of Post Office trainees, initially those undergoing training; to specify ranges of acceptable performance on their training courses, using the criteria developed and to develop some adequate measures of the effectiveness of current and future training procedures. Two Post Office men are working on the project, initially studying the training of telephonists in both Rodwell House and exchanges and then engineering training in a Maintenance Area.

The proposal requires 2 years of investigation, divided approximately into 15 months for preparation of the measurement scheme and 9 months for validation in both training centre and work area training situations. During the first 3 to 4 months data is being gathered, either from existing records, by observation or via special records in the training centres. This data will be subjected to trial analyses to identify the most appropriate factors for subsequent study. The following year will be devoted to analyzing material for the chosen models
of learning performance to be developed and dimensioned. In the final 9 months' period, models will be subjected to pilot and fullscale testing, both in the training centre and with appropriate training groups in work areas.

Probable Methods

Several approaches are possible to provide scales against which training performance may be judged. These could include studies of the current activities of operators in the exchanges chosen for study, to establish some validity for the criteria proposed. These studies may take the form of analysis of activities and decisions of operators for various types of call, of determination from questionnaires, of the operators' view of job difficulty both as a trainee and as an experienced operator.

In view of the telephonists' training objectives involving their development of "accuracy, courtesy and speed", it may be appropriate to introduce into the testing situation a taped sequence of calls with known difficulties run at a traffic rate which would be experienced during the busy period.

Comparable approaches would be adopted in the engineering field.

FORMULAE FOR THE ESTIMATION OF THE PARAMETER

VALUES FOR THREE PARAMETER LEARNING CURVE MODELS

(a) The Bevis Model. $y_{i}=Y_{c}+Y_{f}\left(1-e^{-t_{i}} z^{z}\right)$ (where $z=1 / \tau$).

$$
\begin{array}{ll}
\text { When } t_{i}=0 \text { (start) } & y_{o}=Y_{c} \\
\text { When } t_{i}=\infty \text { (final) } & y_{\infty}=Y_{c}+Y_{f}
\end{array}
$$

Given estimates of the "final" and "start" values

$$
\begin{aligned}
& \text { Final }=Y_{c}+Y_{f} \\
& \text { Start }=Y_{c}
\end{aligned}
$$

$$
\mathrm{Y}_{\mathrm{f}}=\text { Final - Start. }
$$

B. (a). 2 .

Given value t_{n}, y_{n}

$$
\begin{aligned}
& \text { Then } Y(N)=Y_{C}+Y_{f}\left(1-e^{-t(N) \cdot z}\right) \\
& \text { B. (a). } 3 \text {. } \\
& =\text { Start }+(\text { final }- \text { start })\left(1-e^{-t(N) \cdot z}\right) \\
& \text { B. (a). } 4 \\
& \frac{(Y(N)-s \operatorname{tar} t)}{(\text { final-start })}=\left(1-e^{-t(N) \cdot z}\right) \\
& \text { B. (a). } 5 \\
& e^{-t(N) \cdot z}=1-\frac{Y(N)-\operatorname{star} t}{\text { final }-\operatorname{star} t} \\
& \text { B. (a). } 6 \\
& =\frac{(\text { final }-s \operatorname{tart}-\mathrm{Y}(\mathrm{~N})+\text { start })}{(\text { final }-\operatorname{star} \mathrm{t})} \\
& \text { B. (a). } 7 \\
& =\frac{(\text { final }-Y(N))}{(\text { final }-s \operatorname{tart})} \\
& \text { B. (a). } 8 \\
& e^{t N \cdot z} \\
& =\frac{(\text { final }- \text { start })}{\text { final }-Y(N)} \\
& \text { B. (a). } 9
\end{aligned}
$$

$$
\begin{align*}
& t(N) \cdot Z=\ln \left(\frac{\text { final - start }}{\text { final }-Y(N)}\right) \tag{10}\\
& Z=\frac{1}{t(N)} \cdot \ln \left(\frac{\text { final }- \text { start }}{\text { final }-Y(N)}\right) \tag{11}
\end{align*}
$$

(b) The Gompertz Model has been analysed previously in

Section 5.8.
(c) The Mathematical Model $y_{i}=b-\frac{1}{c+g x_{i}}$
when $x_{i}=0(\operatorname{star} t) \quad y_{i}=b-\frac{l}{c}$
B. c. (2)

$$
\begin{equation*}
\text { when } \mathrm{x}_{\mathrm{i}}=\infty 1 \text { (final) } \mathrm{y}_{\infty}=\mathrm{b} \tag{3}
\end{equation*}
$$

Given estimates of "final" and "start" values

$$
\begin{align*}
\text { final } & =b \\
\text { start } & =b-\frac{1}{c} \\
\frac{1}{c} & =b-\text { start }=\text { final }- \text { start } \tag{4}\\
c & =\frac{1}{\text { final-start }} \tag{5}
\end{align*}
$$

And given value $\mathrm{X}(\mathrm{N}), \mathrm{Y}(\mathrm{N})$

$$
\begin{array}{ll}
Y(N)=b-\frac{1}{c+g x(N)} & \text { B.c.(6) } \\
b-Y(N)=\frac{1}{c+g \cdot x(N)} & \text { B.c. }(7) \\
c+g \cdot X(N)=\frac{1}{b-Y(N)} & \text { B.c. }(8) \\
g \cdot X(N)=\frac{1}{b-Y(N)}-c & \text { B. c. }(9) \\
g=\left(\frac{1}{b-Y(N)}-c\right) \cdot \frac{1}{X(N)} & \text { B.c. } 10)
\end{array}
$$

$$
\begin{equation*}
=\left(\frac{1}{(\text { final }-Y(N))}-\frac{1}{(\text { final-start })}\right) \cdot \frac{1}{X(N)} \tag{11}
\end{equation*}
$$

(d) The Accumulative Model

$$
y_{i}=\frac{b+\theta \cdot a \cdot\left(N_{i}-1\right)}{1+\theta\left(N_{i}-1\right)}
$$

B. d. (1)

$$
\begin{aligned}
& \text { final }=a \\
& \text { start }=b
\end{aligned}
$$

and given a value $N(N), Y(N)$

$$
Y(N)=\frac{b+\theta a(N(N)-1)}{1+\theta(N(N)-1)} \quad \text { B.d. (2) }
$$

$$
\begin{array}{rlrl}
Y(N)(1+\theta(N(N)-1))=b+\theta a(N(N)-1) & \text { B. d. (3) } \\
Y(N)+Y(N) \cdot \theta \cdot(N(N)-1)=b+\theta a(N(N)-\theta a & \text { B.d. (4) } \\
Y(N)-b & =\theta a(N(N)-1)-Y(N) \cdot \theta \cdot(N(N)-1) & \text { B.d. }(5) \\
& =\theta(N(N)-1)(a-Y(N)) & \text { B.d. }(6)
\end{array}
$$

$$
\theta=\frac{Y(N)-b}{(a-Y(N))(N(N)-1)}
$$

$$
\begin{equation*}
=\frac{(Y(N)-\text { start })}{(\text { final }-Y(N))(N(N)-1)} \tag{8}
\end{equation*}
$$

(e) The Replacement Model $y_{i}=a-(a-b)(1-\theta)^{N_{i}-1}$

$$
\begin{aligned}
& \text { final }=a \\
& \text { start }=b
\end{aligned}
$$

And given a value $N(N), Y(N)$

$$
\begin{equation*}
y(N)=a-(a-b)(1-\theta)^{N(N)-1} \tag{2}
\end{equation*}
$$

$$
\begin{array}{rlr}
\frac{(a-y(N))}{(a-b)}=(1-\theta)^{N(N)-1} & \text { B. e. (3) } \\
1-\theta & =(N(N)-1) \sqrt{\frac{(a-y(N))}{(a-b)}} & \text { B. e. (4) } \\
\theta & =1-(N(N)-1) \sqrt{\frac{(a-y(N))}{(a-b)}} & \text { B. e. }(5) \tag{5}\\
& =1-(N(N)-1) \sqrt{\frac{(\text { final-Y(N))}}{(\text { final-start })}} & \text { B. e. (6) }
\end{array}
$$

(f) The de Jong Model $y_{i}=t_{1} M-t_{1}(1-M) x_{i}{ }^{-n}$

It has been shown previously that this equation is the equivalent
of $y_{i}=B-A x_{i}{ }^{-n}$
At $x_{i}=1, y_{i}=B-A=\operatorname{start}$
at $\mathrm{x}_{\mathrm{i}}=\infty, \mathrm{y}_{\infty}=\mathrm{B}=$ final
final $=B$
start $=B-A$
$A=$ final - start.
B. f. (2)

And given a value $\mathrm{X}(\mathrm{N}), \quad \mathrm{Y}(\mathrm{N})$

$$
\begin{align*}
& Y(N)=B-A \cdot[X(N)]^{-n} \tag{3}\\
& A(X(N))^{-n}=B-Y(N) \tag{4}\\
& X(N)^{-n}=\frac{(B-Y(N))}{A} \tag{5}\\
& X(N)^{n}=\frac{A}{(B-Y(N))} \tag{6}\\
& n \ln \langle X(N)\rangle=\ln \left[\frac{A}{(B-Y(N))}\right]
\end{align*}
$$

$$
\begin{align*}
n & =\frac{\ln \left[\frac{A}{(B-Y(N))}\right]}{\ln (X(N))} & & \text { B.f. (8) } \tag{8}\\
& =\frac{\ln \left[\frac{(\text { final }- \text { start })}{(\text { final }-Y(N))}\right]}{\ln (X(N))} & & \text { B.f. (9) }
\end{align*}
$$

(g) The Logmathematical Model, $\log \mathrm{y}_{\mathrm{i}}=\mathrm{b}-\frac{1}{\mathrm{c}+\mathrm{gx}{ }_{\mathrm{i}}}$
B. g. (1)

This model is dealt with in the same way as the mathematical model, which means that (using $\log \left(y_{i}\right)$ values)

$$
\begin{align*}
\text { final } & =b \\
\text { start } & =b-\frac{1}{c} \\
c & =\frac{1}{\text { final-start }} \\
g=\left\{\frac{1}{(\text { final }-\mathrm{Y}(\mathrm{~N})}-\frac{1}{\text { (final-start })}\right\} \cdot \frac{1}{X(N)} & \text { B.g. (2) } \\
\text { B. } & \text { (3) } \tag{3}
\end{align*}
$$

However, to ensure a fair comparison of the sum of errors squared for this model with that of the other models, once b, c and g have been calculated for best fit, the sum of error squared should be calculated for the fit of the equation

$$
\begin{equation*}
y_{i}=e^{\left(b-\frac{1}{c+g \cdot x_{i}}\right)} \tag{4}
\end{equation*}
$$

which ensures that a comparison is made for the same scale of output.
(h) The Second Order Model $y_{i}=Y_{c}+Y_{f}\left(1-\left(1+\omega t_{i}\right) e^{-\omega t_{i}}\right)$
at $t_{i}=0 \quad y_{o}=Y_{c}=$ start

$$
t_{i}=\infty \quad y_{\infty}=Y_{c}+Y_{f}=\text { final }
$$

Now consider the values for two points, $\left(\mathrm{t}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{t}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$

$$
\begin{align*}
& y_{1}=Y_{c}+Y_{f}\left(1-(1+1 \omega) e^{-1 \omega}\right) \tag{2}\\
& y_{N}=Y_{c}+Y_{f}\left(1-\left(1+\omega t_{n}\right) e^{-\omega t_{n}}\right) \tag{3}
\end{align*}
$$

From B.h. (2) $\frac{y_{1}-Y_{c}}{Y_{f}}=1-(1+\omega) e^{-\omega}$
From B.h. (3) $\frac{\mathrm{y}_{\mathrm{n}}-\mathrm{Y}_{\mathrm{c}}}{\mathrm{Y}_{\mathrm{f}}}=1-\left(1+\omega \mathrm{t}_{\mathrm{n}}\right) \mathrm{e}^{-\omega \mathrm{t}_{\mathrm{n}}}$
and from B.h. (4) $1-\frac{y_{1}-Y_{c}}{Y_{f}}=\frac{Y_{f}-y_{1}+Y_{c}}{Y_{f}}=$ final $-Y_{1}=(1+\omega) e^{-\omega}$ B.h. (6) and from B. h. (5) $1-\frac{\mathrm{y}_{\mathrm{n}}-\mathrm{Y}_{\mathrm{c}}}{\mathrm{Y}_{\mathrm{f}}}=\frac{\mathrm{Y}_{f^{-y_{n}}}+\mathrm{Y}_{\mathrm{c}}}{\mathrm{Y}_{\mathrm{f}}}=$ final $-\mathrm{Y}_{\mathrm{n}}=\left(1+\omega \mathrm{t}_{\mathrm{n}}\right) \mathrm{e}^{-\omega t_{\mathrm{n}}}$ B. h. (7)

Dividing B.h. (7) by B.h. (6)

$$
\begin{equation*}
\frac{\left(1+\omega t_{n}\right)}{(1+\omega)} e^{-\omega\left(t_{n}-1\right)}=\frac{\text { final }-Y_{n}}{\text { final }-Y_{1}} \tag{8}
\end{equation*}
$$

Now if t_{n} is large $\frac{1+\omega t_{n}}{1+\omega} \simeq t_{n}$

$$
\begin{align*}
& t_{n} e^{-\omega\left(t_{n}-1\right)} \simeq \frac{\text { final }-Y_{n}}{\text { final }-Y_{1}} \tag{10}\\
& e^{\omega\left(t_{n}-1\right)} \simeq t_{n} \cdot \frac{\left(\text { final }-Y_{1}\right)}{\left(\text { final }-Y_{n}\right)} \tag{11}\\
& \omega\left(t_{n}-1\right) \simeq \ln \left\{\frac{t_{n}\left(\text { final }-Y_{1}\right)}{\left(\text { final }-Y_{n}\right)}\right\} \tag{12}\\
& \omega \simeq \frac{1}{\left(t_{n}-1\right)} \quad \ln \left\{\frac{t_{n}\left(\text { final }-Y_{1}\right)}{\left(\text { final }-Y_{n}\right)}\right\}
\end{align*}
$$

And as $\omega=\frac{1}{\tau}$, an approximate value of τ may be found.

```
TUTUO BLACKBURN MEAN SCORE OF I SUBJECTS.
UPERATION:- CARD SORTING
CO
1.0 26.4 2.0 <ll 2.2 3.0 28.2 4.0}30.4
2.0 34.5 0.0 53.9 7.0 30.6 6.0 40.5
y.0 43.5 10.0 43.0 11.0 46.1 12.0 46.9
13.0 47.5 14.0 52.5 13.0 52.2 10.0 >1.0
1%.0 55.4 10.0 57.3 14.0 56.9 20.0 59.0
TUTU? BLACKBURN MEAN SCORE OF & SUBJECTS.
UPERATION - CARD SORTING
```

```
SO
```

```
SO
```



```
b.0 32.1 6.0 34.8 7.0 34.0 8.0 34.1
```

b.0 32.1 6.0 34.8 7.0 34.0 8.0 34.1
9.0 38.8 10.0 56.4 11.0 41.0 12.0 40.8
9.0 38.8 10.0 56.4 11.0 41.0 12.0 40.8
13.0 40.0 14.0 44.4 1b.0 48.3 10.0 43.0
13.0 40.0 14.0 44.4 1b.0 48.3 10.0 43.0
1%.0 46.Y 9%.0 50.3 14.0 4?.1 20.0 30.%
1%.0 46.Y 9%.0 50.3 14.0 4?.1 20.0 30.%
61.048.< 22.0 52.0 23.0 53.4 24.0 31.4
61.048.< 22.0 52.0 23.0 53.4 24.0 31.4
<b.0 59,6 26.0 52.8 27.0 56.0 26.0 5 5.%
<b.0 59,6 26.0 52.8 27.0 56.0 26.0 5 5.%
C4.0 58.5 50.0 62.7

```
C4.0 58.5 50.0 62.7
```

tuTuL blackburn mean score of 4 subjects. OPERATIUN:- CROSSING UUT 'E'S

```
C3
```

$1.0128 .42 .0137 .0 \quad 3.0151 .94 .0163 .0$
3.0 166.2 $0.0164 .0 \quad 7.0 \quad 163.5 \quad 8.0 \quad 111.1$
$9.0 \quad 179.510 .0 \quad 181.9 \quad 11.0 \quad 1 / 8.712 .0 \quad 180.2$
13.0 180.0 $14.0 \quad 187.2 \quad 13.0180 .7 \quad 10.0184 .4$
$\begin{array}{ll}18.0 & 190.5 \\ 98.0 & 180.1 \\ 18.0 & 183.3 \\ 20.0 & 190.9\end{array}$
$<1.0191 .8 \quad 26.0 \quad 186.1 \quad 23.0186 .1$
tuTus blackburn mean score of 1 subjects. UPERATION:- CUDE SUBSTITUTION
CS
1.0 $18.8 \quad 2.0 \quad 22.0 \quad 3.0 \quad 24.8 \quad 4.0 \quad 21.8$
$3.0 \quad 28.0 \quad 6.0 \quad 30.4 \quad 7.0 \quad 33.6 \quad 8.0 \quad 53.0$
4.0 $35.310 .030 .1 \quad 11.041 .112 .042 .1$
13.042 .214 .040 .115 .045 .116 .040 .5
$11.050 .2 \quad 18.048 .419 .048 .420 .048 .1$
$21.052 .9 \quad 22.0 \quad 54.2 \quad 23.054 .8$

TUIU4 BLACKBURN MEAN SCORE OF 4 SUBJECTS. UPERATION:- CUDE SUBSTITUTIUN

```
S<
1.0 17.5 2.0<1.1 3.0 22.4 4.0 24.4
3.0 25.4 0.0 <0.0 7.0 30.5 8.0 30.3
4.0 30.5 10.0 31.4 11.0 34.3 12.0 35.5
13.0 35.0 14.0 37.1 15.0 38.6 í.0 54.0
1%.0 40.0 18.0 39.0 19.0 39.0 20.0 34.8
<1.0 43.5 <2.0 4e.0 23.0 47.2 <4.0 48.3
C3.0 44.9 3.0.0 47.4 <7.0 52.1 28.0 52.2
#.0 37.0 30.0 56.4 31.0 52.8 32.0 54.2
```

```
TUTUS BLACKBURN MEAN SCORE OF O SUBJECYS.
OPERATION:- ADDITION
    18
    1.0 71.0 2.0 67.4 3.0 84.0}4.04.0 94.9
    5.0 98.5 6.0 100.7 7.0 101.8 8.0 1144.4
    9.0 110.9 10.0 115.3 11.0 119.1 1L.0 111.6
    13.0 118.9 14.0 120.0 15.0 1<1.8 16.0 123.5
    1%.0 123.9 18.0 127.4
```

TUTU6 BLACKBURN MEAN SCORE OF 4 SUBJECTS.
OPERATION:- ADDITION
Cl
1.0 $1.03 .5 \quad 2.0 \quad 14.2 \quad 3.0 \quad 90.7 \quad 4.0 \quad 97.8$
5.0 $102.76 .0109 .9 \quad 7.0113 .28 .0117 .9$
4.0 114., 10.0 118.4 11.0 120.9 12.0 121.8
$13.0128 .114 .0123 .715 .0124 .716 .01<3.6$
$17.0128 .918 .0130 .919 .0130 .9 \quad 20.0150 .2$
<1.0 131.2 2L.0 $134.3 \quad 25.0135 .0 \quad 24.0134 .9$
$25.0135 .326 .0130 .7 \quad 27.0139 .9$

TuTur blackburn mean score of o subjects. OPERATION:- MAZE LEARNING

```
<3
```

$\begin{array}{llllllll}1.0 & 5.6 & 2.0 & 6.6 & 3.0 & 10.3 & 4.0 & 12.5\end{array}$
$3.0 \quad 15.06 .0<0.5 \quad 7.0 \quad 20.2 \quad 8.0 \quad 32.3$
$4.0<1.110 .022 .511 .034 .812 .033 .5$

$17.067 .7 \quad 18.063 .6 \quad 19.0 \quad 48.0 \quad 20.0 \quad 81.6$
$<1.0 \quad 11.122 .0 \quad 59.1 \quad 23.0 \quad 67.9$

TUTUB BLACKBURN MEAN SCORE OF 4 SUBJECTS. UPERATIUN: - MALE LEARNING

```
S2
1.0 2.6 2.0 6.2 3.0 7.9 4.0 11.6
5.0 18.8 6.0 18.9 7.0 16.1 8.0 20.4
y.0 26.0 10.0 <3.6 11.0 35.1 12.0 35.3
15.0 47.4 14.0 41.1115.0 38.3 10.0. 4C.1
11.0 57.5 18.0 58.0 14.0 53.0 20.0 1<.0
C1.0 63.1 22.0 62.8 23.0 58.4 24.0 14.0
<5.0 62.1 26.0 71.3 2%.0 82.6 28.0 64.6
24.0 67.1 30.0 77.7 31.0 86.3 32.0 63.2
```

tuqug morcumbe mean score of st subjects. UPERATIUN:- COVERING

```
<0
<.5 16.0 5.0<l.0 7.5 37.5 10.0 41.0
1<.5 44.0 1כ.0 47.0 17.5 49.5 < % 0.0 b<.5
<<.5 55.5 25.0 57.5 27.5 59.5 30.0 01.0
S<.5 62.') 35.0 63.0 37.5 63.5 40.0 63.8
42.5 64.0 45.0 64.0 47.5 64.0 50.0 64.0
```

```
TU110 MORCOMBE MEAN SCORE OF 27 SUBJECTS.
OPERATION:- TRIMMING
    16
    C.j 20.5 5.0 34.0 7.b 41.5 10.0 bL., 
    12.5 57.5 15.0 60.0 17.5 62.5 20.0 63.5
    <2.5 64.5 25.0 65.3 27.5 66.0 50.0 66.5
52.5 67.0 35.0 67.0 37.5 67.0 40.0 61.0
TUTT1 MORCOMBE MEAN SCORE OF 23 SUBJECTS.
OPERATION:- HEMMING
    CO
    <.5 18.5 5.0 5>.0 7.5 44.0 10.0 51.0
    12.5 54.0 15.0 57.0 17.5 57.5 2U.0 58.0
L2.3 59.0 25.0 60.0 21.5 62.0 30.0 64.0
52.5 65.5 35.0 67.0 37.5 68.5 40.0 10.0
42.5 7U.0 45.0 70.0 47.5 70.0 50.0 10.0
TUT12 MORCOMBE MEAN SCORE OF 6 SUBJECTS.
OPERATION:- SIMULATED ASSEMBLY
    <0
    1.0 2.8 2.0 5.8 3.0 7.0 4.0 7.5
```



```
9.0 8.4 10.0 8.3 11.0 8.1 12.0 8.4
```



```
1%.0 8.0 18.0 Y.0 19.0 4.0 20.0 9.3
TUTIS BEVIS MEAN SCORE OF 4 SUBJECTS.
OPERATION:m "B"
    8
```



```
TUT14 BEVIS MEAN SCORE OF 8 SUBJECTS.
OPERATION:~ "C"
11
1.0}34.4 2.0 40.0 3.0 54.4 4.0 61.0
3.0 0Y.< 6.0 15.2 7.0 75.3 6.0 8<.%
y.0 86.1 10.0 88.2 11.0 41.0
TUI1' BEVIS MEAN SCURE OF ID SUBJECTS.
OPERATION:- ROLLING,(PLANT A)
    8
1.0 1.670.0 5.0 2314.0 10.0 2574.0 15.0 3314.0
<0.0 388Y.0 25.0 4055.0 30.0 4205.0 35.0 4243.0
TU110 BEVIS MEAN SCURE OF 1S SUBJECTS.
OPERATION:- BUNCHING,(PLANT A)
10
1.0 1800.0 2.0 2015.0 4.0 2321.0 6.0 282y.0
8.0 3u^b.0 TU.U 3703.0 1<.0 4084.0 14.0 4225.0
16.0 4らì.U 18.0 4.617.0
```

```
TOT1/ BEVIS MEAN SCORF OF 6 SUBJECTS.
OPERATION:- RULLING,(PLANT B)
11
1.0 1450.0 5.0 1642.0 10.0 1950.0 15.0 2117.0
20.0 2385.0 25.0 2950.0 30.0 3525.0 35.0 3533.0
40.0 4200.0 43.0 4375.0 50.0 4700.0
```

```
TUTIX BEVIS MEAN SCORE OF }6\mathrm{ SUBJECTS.
UPERATION:- BUNCHING,(PLANT B)
    8
1.0 1400.0 2.0 1560.0 10.0 2120.0 15.0 2360.0
<0.0 28<0.0 25.0 3400.0 30.0 4060.0 35.0 4480.0
```

TOI19 BEVIS MEAN SCORE OF 1 SUBJECT.
OPERATION:- INDUSTRIAL STUDY 3
<7
$1.016 .00 \quad 6.019 .61 \quad 11.00 \quad 22.6316 .00 \quad 30.08$
21.032 .2726 .032 .0331 .037 .5936 .0036 .59
$41.037 .59 \quad 40.0 \quad 31.50 \quad 51.0 \quad 30.69 \quad 36.0039 .46$
$61.0 \quad 36.1166 .0 \quad 36.90 \quad 71.0 \quad 37.6176 .00 \quad 41.75$
81.045 .0086 .041 .3191 .042 .1496 .0043 .99
$101.0 \quad 46.25106 .046 .72111 .041 .50116 .049 .00$
121.041 .50126 .048 .15131 .050 .0

TUTZU HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS． OPERATION：－TELEPHONIST
19

```
3.0 143.5 (.0 108.5 9.0 180.5 10.0 144.3
```

13.0188 .815 .0199 .016 .0145 .017 .0141 .0
18.0 191.0 20.0 $265.5 \quad 2.0 \quad 229.5100 .0 \quad 259.0$
$112.0310 .0118 .0 \quad 210.0121 .0 \quad 265.0 \quad 155.0 \quad 284.0$
$185.0248 .0198 .0 \quad 241.0 \quad 288.0237 .0$

TUTZ1 HACKETT AND LAMB MEAN SCORE OF 9 SURJECTS． OPERATION：－TELEPHONIST
CU
5．0 111．5 1．0 $136.48 .0188 .0 \quad 9.0117 .2$
10.0172 .313 .0156 .415 .0181 .816 .01240 .0
$11.0195 .610 .0203 .0 \quad 20.0 \quad 234.0 \quad 22.0 \quad 285.0$
区勺．0 224．0 100．0 215．0 104．0 247．0 107．0 249．0
$109.0218 .0156 .0225 .0158 .0 \quad 202.0 \quad 196.0 \quad 220.0$
TOTZ2 HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS． OPERATION：－YELEPHONIST
C）
$4.0 \quad 85.0 \quad 5.0 \quad 116.20 .0110 .0 \quad 7.0136 .6$
o．0 115．0 9．0 149．2 10．0 143．8 11．0 125．0
1ム．0 171．0 13.0146 .114 .0103 .515 .0134 .2
16.0176 .017 .0185 .218 .0179 .319 .0115 .0
$\angle 0.0151 .0 \quad 22.0204 .0 \quad 104.0<56.0 \quad 1 \angle 5.0<35.5$ 121.0214 .0154 .0279 .0169 .0231 .0305 .0254 .0 318.0220 .0

YUTZS HACKETT AND LAMB MEAN SCORE OF 9 SUBJECTS. OPERATION:- TELEPHONIST

<4

```
4.094.0 5.0 107.9 7.0 154.4 8.0 145.0
9.0 156.8 10.0.0154.3 12.0 157.0 13.0 131.4
14.0 141.0 15.0 140.8 16.0 140.0 17.0 114.1
18.0 208.0 20.0 169.0 22.0 187.う 7i.0 274.0
108.0 232.0 113.0 207.0 122.0 270.0 126.0 210.0
133.0 216.0 1/1.0 251.0 172.0 24%.0 <u1.0 237.0
```

TU124 HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS. OPERATION: - TELEPHONIST

```
\(\angle 4\)
\(4.0109 .05 .0108 .47 .0112 .8 \quad 8.088 .0\)
4.0 160,0 10.0 129.3 12.0 \(1444.6 \quad 15.0135 .4\)
14.0161 .015 .0153 .010 .0154 .017 .0133 .3
18.0 164.8 19.0 157.5 2U.0 171.5 21.0 189.0
L2.0 170.5 106.0 \(283.0112 .0 \quad 212.0122 .0 \quad 229.0\)
\(154.0251 .0156 .0204 .0154 .0220 .0<02.0184 .0\)
```

TU12 5 HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS. OPERATION:- TELEPHONIST

```
C4
3.0 69.5 7.0 107.2 8.0 122.0 9.0 140.5
10.0 11<.0 11.0 123.0 12.0 136.0 13.0 124.9
15.0 144.5 10.0 147.0 11.0 164.3 18.0 150.8
14.0 1/0.5 21.0 152.0 2<.0 158.0 23.0 153.0
111.0 214.0 115.0 277.0 114.0 342.0 121.0 210.0
126.0 251.0 151.0 2<8.0 158.0 249.0 180.0 24<.0
```

TU1ZO HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS.
OPERATIUN:- TELEPHONIST
CO
3.0 $04.1 \quad 7.0 \quad 41.9$ 9.0 115.810 .0111 .0
11.0123 .513 .0117 .913 .0134 .417 .0165 .0
18.0138 .6 19.0 $156.3 \quad 20.0150 .6 \quad 21.01 / 0.0$
$\angle 2.0151 .0104 .0265 .0114 .0254 .01 \angle 6.0218 .0$
$155.0224 .0140 .0 \quad 221.0150 .0 \quad 200.0<24.0 \quad 260.0$

TUTZ7 HACKETT AND LAMB MEAN SCORE OF 9 SUBJECYS. OPERATION:- TELEPHONIST
$\angle 4$
3.0 54.0 $\quad 0.0 \quad 10.18 .088 .09 .091 .4$
$10.0111 .311 .0 \quad 90.012 .0110 .013 .0113 .0$
15.0 114.8 10.0 151.0 17.0 146.0 18.0 164.0
$19.0154 .7 \quad 20.0 \quad 157.0 \quad 21.0 \quad 183.0 \quad 22.0168 .5$
$23.0194 .0<7.0 \quad 195.0102 .0335 .0 \quad 106.0<31.0$
10%.0 23S.5 120.0 2i1.0 121.0 231.0 134.0 220.0

```
TUlZठ HACKETT AND LAMB MEAN SCORE OF 9 SUBJECTS.
UPERATION: - TELEPHONIST
    Cl
    3.0 60.0 7.0 82.8 9.0 92.8 10.0 104.<
    11.0 11.0 13.0 87.4 15.0 91.1 17.0 105.0
    18.0 144.3 14.0 116.0 20.0 147.1 21.0 160.3
    \angleL.0 160.0 30.0 199.0 32.0 237.0 109.0 <14.0
    1<2.0 289.0 128.0 300.0 129.0 252.0 131.0 2<0.0
    155,0 3<4.5
TUT\angleG BLACKBURN AVERAGE SCORE OF SI
OPERATION:- CARD SORTING
    Sb
1.0}357.8 2.0 35.0 3.0 40.0 4.0 42.4
S.0 48.8 6.0 41.7 7.0 49.4 8.0 49.4
Y.0 bz.S 10.U 36.8 11.0 64.6 12.0 60.%
13.0 לr.S 14.0 6<.7 15.0 68.9 16.0 66.7
17.0 71. % 18.0 80.8 19.0 76.4 20.0 70.4
<1.0 68.9 22.0 17.8 23.0 84.0 24.0 81.5
<3.0 84.0 20.0 64.6 27.0 79.2 26.0
24.0 85.7 30.0 87.5 31.0 85.7 32.0 91.3
35.0 95.5 34.0 102.5 35.0 103.0
TUISU BLACKBURN AVERAGE SCORE OF SZ
OPERATION:- CARD SORTING
    SS
1,0 15.0 2.0 17.8 3.0 18.3 4.0 18.9
3.0 21.0 0.0 <3.8 1.0 22.8 8.0 26.2
y.0 26.2 10.0 18.3 11.0<5.1 12.0 25.1
15.0 21.1 14.0 25.4 15.0 27.5 16.0 20.2
1%.0 <8.8 18.0 55.0 19.0 30.2 20.0 24.4
<1.0 32.0 22.0 53.9 23.0 37.2 24.0 33.6
23.U 36.C 20.0 S5.3 27.0 35.1 28.0 31.8
24.0}34.4 30.0 $1.6 51.0 40.4 32.0 42.0
33.0 42.4 34.0 42.0 35.0 43.7
TUI31 BLACKBURA AVERAGE SCORE OF S3
OPEKATION:- CARD SORTING
    SL
1.0 <3.9 2.0 25.9 3.0 20.8 4.0 28.4
5.0 <ל.1 0.0 24.0 7.0 50.0 8.0 37.2
9.0 55.0 10.0 34.1 11.0 30.7 12.0 31.3
13.0 38.5 14.0 S%.5 1).0 41.6 10.0 3द.3
17.0}40.0 18.00 35.9 14.0 39.5 20.0 41.6
21.0 40.4 2L.0 42.4 23.0 42.4 24.0 5<.5
23.0 31.4 20.0 44.7 27.0 51.< 28.0 48.8
Cy.0 54.3 50.0 35.3 31.0 bo.0 32.0 44.4
```

TUI3L BLACKBURN AVERAGE SCORE OF S4 OPERATION:- CARD SORTING 2S
$\begin{array}{llllllllll}1.0 & 28.2 & 2.0 & 24.1 & 3.0 & 27.5 & 4.0 & 27.1\end{array}$
 Y.0 $40.4 \quad 10.0 \quad 57.511 .046 .1 \quad 12.044 .2$ $15.043 .1 \quad 14.0 \quad 41.215 .0 \quad 44.216 .048 .8$ $11.041 .118 .041 .2 \quad 19.0 \quad 51.2 \quad 20.048 .3$ $21.0 \quad 54.5 \quad 22.0 \quad 41.6 \quad 23.0 \quad 48.8$

```
TUT33 blackburN avERAGE SCORE OF S5
OPERATION:- CARD SORTING
    SU
1.0 25.8 <.0 28.< 3.0 26.8 4.0 21.5
3.0 35.3 0.0 35.4 7.0 33.6 8.0 43.1
9.0}41.0\quad10.0 38.5 11.04 40.7 12.04 45.1
13.0 42.9 14.0 51.9 15.0 55.3 10.0 40.7
11.0 46.1 18.0 44.4 19.0 42.4 20.0 53.3
<1.0 50.0 22.0 51.9 23.0 50.0 24.0 50.0
23.0 64.0 26.0 60.7 27.0 02.7 28.0 52.5
24.0 59.2 30.0 76.4
```

TU134 BLACKBURN AVERAGE SCORE OF SO OPERATION:-CARD SORTING
$\angle 1$
$1,0 \quad 30.4 \quad 2.0 \quad 28.0 \quad 3.0 \quad 32.3 \quad 4.0 \quad 31.8$
$3.041 .6 \quad 0.0 \quad 42.47 .0 \quad 47.2 \quad 8.047 .2$
9.0 50.6 10.0 $00.0 \quad 11.0$ 34.2 12.0 58.5
$\begin{array}{lllllllllll}13.0 & 64.6 & 14.0 & 08.9 & 15.0 & 60.9 & 16.0 & 63.6\end{array}$

$21.084 .0 \quad 22.0 \quad 03.6 \quad 23.0 \quad 77.8 \quad 24.091 .7$
$23.091 .3 \quad 26.0 \quad 91.3 \quad 27.0 \quad 105.0$

TUTSS BLACKBUEN AVERAGE SCORE OF S?
OPERATION:- CARD SORTING
くU
$1.0 \quad 22.8 \quad 2.0 \quad 25.8 \quad 3.0 \quad 25.9 \quad 4.0 \quad 30.7$
$5.0 \quad 54.4 \quad 0.0 \quad 24.4 \quad 7.0 \quad 34.3 \quad 8.0 \quad 50.0$
y.u 53.8 10.0 36.0 11.0 4y.4 12.0 62.7
$15.062 .1 \quad 14.0 \quad 15.715 .0 \quad 06.116 .0 \quad 75.0$
$11.084 .018 .0 \quad 76.419 .082 .5 \quad 20.0 \quad 76.4$

TUI36 BLACKBURN AVERAGE SCORE OF S 1
OPERATION:- CROSSING OUT "E"'S
5
$1.0 \begin{array}{lllllllll}133.3 & 2.0 & 134.4 & 3.0 & 172.2 & 4.0 & 195.6\end{array}$
勺.0 202.0 6.0 147.2 7.0 201.7 8.0. 211.7
4.0211 .010 .0221 .111 .0205 .912 .0212 .8
15.0 213.3 14.0 222.3 15.0 223.0 16.0 219.8
$11.0 \quad 230.6 \quad 18.0 \quad 222.9 \quad 19.0 \quad 235.3 \quad 20.0<23.4$
$<1.0 \quad 231.422 .0234 .1 \quad 23.0 \quad 218.9<4.0 \quad 251.4$
$25.0252 .9 \quad 26.0 \quad 253.8 \quad 27.0 \quad 257.8 \quad 28.0 \quad 270.1$
24.0 $268.9 \quad 30.0 \quad 270.7 \quad 31.0 \quad 200.1 \quad 32.0<60.1$
3S.U 271.6 34.0275 .033 .0219 .0

```
TUIS/ BLACKBURN AVERAGE SCORE OF S2
OPERATION:- CROSSING OUT"E"'S
    5)
1.0 101.1 2.0 111.1 3.0 124.4 4.0 134.4
5.0 150.0 6.0 135.6 7.0 140.0 8.0 139.4
9.0 157.8 10.0 153.3 11.0 148.3 12.0 148.3
15.0 149.4 14.0 160.0 15.0 150.1 16.0 15%.8
1/.0 157.2 18.0 156.1 19.0 145.0 20.0 10<.8
21.0 155.0 22.U 150.0 23.0 151.7 <4.0 144.4
23.0 159.4 26.0 145.0 27.0 150.0 <8.0 145.0
24.0 138.9 30.0 142.2 31.0 121.8 32.0 150.0
35.0 144.4 54.0 153.9 35.0 158.9
TUT3甘 BLACKBURN AVERAGE SCORE OF S3 UPERATION:- CROSSING OUT "E"'S
```



```
TU1SY BLACKBURN AVERAGE SCORE OF S4
```

TU1SY BLACKBURN AVERAGE SCORE OF S4
OPERATION:- CROSSING OUT "E"'S
OPERATION:- CROSSING OUT "E"'S
C3
C3
1.0 152.0 2.0 135.0 3.0 1/0.0 4.0 170.3
1.0 152.0 2.0 135.0 3.0 1/0.0 4.0 170.3
3.0 179.0 6.0 180.4 7.0 180.2 8.0 185.1
3.0 179.0 6.0 180.4 7.0 180.2 8.0 185.1
9.0 140., 10.0 200.0 11.0 198.7 1<.0 193. ל
9.0 140., 10.0 200.0 11.0 198.7 1<.0 193. ל
13.0 194.6 14.0 199.3 15.0 188.0 16.0 198.0
13.0 194.6 14.0 199.3 15.0 188.0 16.0 198.0
11.0 211., 18.0 <04.0 19.0 204.1 <0.0 218.2
11.0 211., 18.0 <04.0 19.0 204.1 <0.0 218.2
29.0 <10.0 <2.0 196.1 <3.0 206.7
29.0 <10.0 <2.0 196.1 <3.0 206.7
TUT40 BLACKBURN AVERAGE SCORE OF ST
OPERATION:.- CODE SUBSTITUTION
Sb
1.0<2.2<.0<< < .0 3.0 30.0 4.0 28.9
S.0 3<.0 0.0 SL. % 7.0 40.0 6.0 40.0
9.0 41.7 10.0 41.7 11.01 48.3 12.0 48.9
15.0 49.4 14.0 50.0 15.0 51.0 10.0 55.6
11.0 53.3 10.0 58.9 19.0 51.0 20.0 5<.8
<1.0 OU.0 22.0 0\&.2 23.0 02.0 24.0 00.1
<3.0 65.0 26.0 03.9 27.0 71.0 28.0 17.1
<4.0 70.0 30.0 13.3 31.0 13.3 32.0 7L.8
53.0 13.4 34,0 11.2 35.0 18.4

```
```

TU141 BLACKBURN AVERAGE SCORE OF S2
OPERATION:- CODE SUBSTITUTION
SS
1.0}12.2 2.0 17.2 3.0 16.1 4.0 < < 0.6
5.0 18.9 6.0 20.6 7.0 <2.8 8.0 22.2
9.0 <3.9 10.0 <3.3 11.0 <2.8 12.0 22.8
15.0 25.0}14.0<26.1 15.0<8.3 16.0 31.1

```

```

<1.0}36.1 22.0 40.0 23.0 37.2 24.0 34.4
23.0 34.4 26.0 42.2 27.0 40.6 28.0 42.2
24.0}42.8 420.0 46.7 31.0 37.8 32.0 4C.2
35.0 42.8 34.0 45.0 35.0 47.2

```

TUT4C BLACKBURN AVERAGE SCORE OF \(\$ 3\) UPERATION:- CODE SUBSTITUTION

\section*{SL}
\(1.0<20.0 \quad 2.0<5.3 \quad 3.0 \quad 23.3 \quad 4.0 \quad 26.1\)
b.0 \(30.0 \quad 6.0 \quad 29.47 .0 \quad 31.18 .030 .6\)
\(9.0 \quad 29.4 \quad 10.0 \quad 28.9 \quad 11.0 \quad 32.2 \quad 12.0 \quad 32.2\)
\(13.0 \quad 36.1 \quad 14.0 \quad 33.9 \quad 15.0 \quad 37.2 \quad 16.0 \quad 30.1\)
\(18.0 \quad 33.318 .0 \quad 36.119 .040 .0 \quad 20.044 .4\)
\(21.042 .0 \quad 22.045 .6 \quad 23.0 \quad 50.0 \quad 24.0 \quad 44.4\)
25.0 51.1 \(26.0 \quad 49.4 \quad 27.0 \quad 51.128 .0 \quad 50.0\)
\(24.050 .030 .0 \quad 37.231 .0 \quad 26.132 .056 .1\)
TU१ 43 BLACKBURN AVERAGE SCORE OF 54 OPERATIUN:- CODE SUBSTITUTIUN
\(<3\)
\(1.0 \quad 28.3 \quad 2.0 \quad 24.4 \quad 3.0 \quad 29.44 .0 \quad 33.3\)
5.0 20.7 6.0 \(35.8 \quad 1.0 \quad 36.0 \quad 8.0 \quad 29.0\)
\(9.044 .710 .043 .5 \quad 11.041 .1 \quad 12.042 .7\)
\(13.052 .614 .044 .015 .052 .016 .0 \quad 51.0\) 11.058 .018 .051 .519 .047 .120 .058 .4 \(<1.068 .422 .061 .2 \quad 23.069 .3\)

TU144 BLACKBURN AVERAGE SCORE OF SS
OPERATIUN:- CODE SUBSTITUTION
35
\(1.0 \quad 15.6 \mathrm{~L} .0\)\begin{tabular}{l}
18.3 \\
3.0 \\
\hline
\end{tabular} \(20.2 \quad 4.0 \quad 21.8\)
3.U \(21.9 \quad 6.0 \quad 24.3 \quad 7.0 \quad 27.3 \quad 8.0 \quad 27.8\)
\(4.0<1.1 \quad 10.0 \quad 51.8 \quad 11.0 \quad 53.7 \quad 12.0 \quad 30.2\)
\(15.0 \quad 29.5 \quad 14.0 \quad 38.2 \quad 15.037 .016 .035 .5\)
11.0 42.2 \(18.0 \quad 34.3\) 14.0 \(33.320 .0 \quad 24.3\)
\(21.0 \quad 35.2 \quad 22.0 \quad 34.4 \quad 23.0 \quad 38.8 \quad 24.0134 .1\)
23.0 \(28.0 \quad 26.0 \quad 34.2 \quad 27.0 \quad 44.8 \quad 28.0 \quad 44.8\)
24.0 \(43.530 .048 .2 \quad 31.043 .532 .0 \quad 50.0\)
35.055 .1

TU14) BLACKBURN AVERAGE SCORE OF S6 OPERATION: CODE SUBSTITUTION

\section*{SU}
\(1.0 \quad 21.1<.0 \quad 29.8 \quad 3.0 \quad 36.0 \quad 4.0 \quad 36.4\)
勺.0 \(38.16 .0 \quad 35.5 \quad 7.040 .48 .040 .4\) y. \(0 \quad 46.3 \quad 10.0 \quad 45.2 \quad 11.0 \quad 47.5 \quad 12.0 \quad 50.1\) \(15.047 .014 .046 .315 .054 .316 .0 \quad 51.6\) \(11.067 .918 .0 \quad 60.319 .0 \quad 64.420 .061 .3\) \(21.0 \quad 63.5 \quad 22.0 \quad 68.5 \quad 23.0 \quad 60.9 \quad 24.0 \quad 70.4\) c). 0 11.1 26.0 36.7 \(27.062 .0 \quad 28.0 \quad 63.5\) \(24.0 \quad 74.530 .0 \quad 14.5\)

TUI 46 BLACKBURN AVERAGE SCORE OF S? OPERATIUN: - CODE SUBSTITUTION


TUT41 BLACKBURN AVERAGE SCORE OF S 1
OPERATION:- ADDITION
```

3)

1.0 33.3 2.0 82.8 3.0 100.0 4.0 107.8
5,0 112.8 6.0 114.4 7.0 113.9 8.0 121.7
9.0 112.8 10.0 121.% 11.0 125.0 1L.0 120.1
13.0 127.6 14.0 1<3.3 15.0 133.9 16.0 131.2
1%.0 130.0 18.0 132.8 14.0 140.6 <0.0 146.1
21.0 141.1 LL.0 150.0 23.0 140.3 <4.0 143.3
23.0 146.1 20.0 137.2 27.0 151.1 <8.0 151.7
24.0 140.0 30.0 147.8 31.0 154.4 32.0 154.4
35.0 155.5 34.0 146.1 35.0 136.1
TUT4O BLACKBURN AVERAGE SCORE OF SL
OPERATION:- ADDIYION

```
```

S)

```
S)
1.0 50.6 2.0 54.4 3.0 58.9 4.0 61.1
1.0 50.6 2.0 54.4 3.0 58.9 4.0 61.1
S.0 12.2 6.0 12.8 7.0 10.1 8.0 76.1
S.0 12.2 6.0 12.8 7.0 10.1 8.0 76.1
4.0 81.1 10.0 19.4 11.0 83.9 12.0 89.4
4.0 81.1 10.0 19.4 11.0 83.9 12.0 89.4
13.0 94.4 14.0 y1.1 15.0 83.9 10.0 91.1
13.0 94.4 14.0 y1.1 15.0 83.9 10.0 91.1
11.0.93.3 18.0 40.1 19.0 93.4 20.0 92.2
11.0.93.3 18.0 40.1 19.0 93.4 20.0 92.2
21.0 99.4 22.0 94.4 23.0 106.1 24.0 100.6
21.0 99.4 22.0 94.4 23.0 106.1 24.0 100.6
23.0 97.< 26.0 y8.3 27.0 109.4 28.0 103.9
23.0 97.< 26.0 y8.3 27.0 109.4 28.0 103.9
24.0 100.0 30.0 101.1 31.0 101.7 32.0 91.1
24.0 100.0 30.0 101.1 31.0 101.7 32.0 91.1
35.0 100.6 34.0 105.6 35.0 101.2
```

35.0 100.6 34.0 105.6 35.0 101.2

```

TU14Y BLACKBURN AVERAGE SCORE OF S3 OPERATION:- ADDITION
32
```

1.0 102.5 2.0 (3.3 3.0 115.0 4.0 125.0
5.0 125.0 6.0 127.8 7.0 132.8 8.0 136.7
4.0 135.0 10.0 130.7 11.0 136.1 12.0 133.9
15.0 138.3 14.0 133.3 15.0 153.9 16.0 135.6
16.0 138.9 18.0 130.1 19.0 132.8 20.0 135.6
21.0 142.2 22.0 133.9 23.0 141.1 24.0 146.7
23.0 143,0 26.0 138.3 27.0 140.0 28.0 134.4
24.0 147.8 50.0 142.8 31.0 140.6 32.0 141.2

```

TUTSU BLACKBURN AVERAGE SCORE OF S4
OPERATION:- ADDITION
    18
\(1.0 \quad 84.42 .060 .0 \quad 3.0 \quad 89.7 \quad 4.0 \quad 114.3\)

9.0 128.8 10.0 135.711 .0132 .212 .0136 .9
13.0136 .914 .0143 .415 .0149 .016 .0153 .1
1\%.0 142.1 18.0 149.0

TUISI BLACKBURN AVERAGE SCORE OF S5
OPERATION:- ADDITION
\[
\angle 7
\]
\(1.0 \quad 87.12 .0 \quad 86.1 \quad 3.0 \quad 88.44 .0 \quad 96.1\)
勺.0 \(100.06 .0124 .5 \quad 7.0129 .08 .0137 .1\)
\(9.0129 .8 \quad 10.0 \quad 135.611 .0138 .612 .0137 .1\)
\(13.0 \quad 152.514 .014 \% .015 .0147 .016 .0138 .6\)
11.0 148.8 18.0 158.4 19.0 156.4 20.0 141.0
<1.0 141.9 22.0 158.4 23.0 147.0 24.0 148.9
\(25.0 \quad 152.2 \quad 26.0 \quad 148.9 \quad 27.0154 .1\)

YUIbZ BLACKBURN AVERAGE SCORE OF SG OPERATION:- ADDITION
```

 C)
 1.0}32.2\mp@code{2.0}44.0\quad3.0 59.3 4.0 63.6
3.0 66.7 0.0 10.7 1.0 12.< 8.0 77.8
9.0 17.8 10.0 82.4 11.0 98.6 12.0 81.4
15.0 64.L 14.0 85.4 15.0 83.5 10.0 85.3
1/.0 89.% 18.0 92.1 19.0 94.0 20.0 100.0
<1.0 97.< 22.0 89.7 23.0 120.7 24.0 1u4.4
<3.U 116,1
TUTSS BLACKBURN AVERAGE SCORE OF S1
OPERATION:- MAZE LEARNING
3)
1.0 5.6 <.0 2.6 3.0 6.9 4.0 14.1
3.0}10.5\mp@code{0.0}<26.3 7.0) 31.2 8.0 40.0
4.0 43.5 10.0 58.5 11.0 50.0 12.0 62.5
15.0 52.0 14.0 47.0 15.0 37.0 10.0 70.9
11.0 90.4 18.0 125.0 19.0 111.1 20.0 125.0
21.0 142.9 22.0 90.9 23.0 100.0 24.0 142.9
2b.0 90.9 20.0 100.0 21.0 125.0 20.0 71.4
24.0 111.1 30.0 100.0 31.0 146.9 32.0 90.9
35.0 16.y 34.0 25.6 35.0 125.0

```

TU1S4 BLACKBURN AVERAGE SCORE OF S2 OPERATION:- MAZE LEARNING
Sb
\[
1.03 .62 .03 .93 .05 .64 .014 .1
\]
\[
3.0 \quad 16.46 .0 \quad 10.2 \quad 7.0 \quad 18.2 \quad 8.033 .7
\]
\[
9.0 \quad 41.7 \quad 10.0 \quad 31.2 \quad 11.062 .5 \quad 12.0 \quad 41.7
\]
\[
15.0 \quad 11.414 .0 \quad 58.8 \quad 15.062 .5 \quad 10.062 .5
\]
\[
11.083 .518 .030 .819 .066 .1 \quad 20.0 \quad 111.1
\]
\[
21.045 .5 \quad 22.0 \quad 20.8 \quad 23.0 \quad 55.6 \quad 24.0 \quad 85.3
\]
\[
23.0 \quad 100.0 \quad 20.0 \quad 71.4 \quad 27.090 .9 \quad 28.0 \quad 100.0
\]
\[
24.071 .4 \quad 30.0125 .0 \quad 31.0100 .032 .0 \quad 40.0
\]
\[
35.0 \quad 125.0 \quad 54.0 \quad 1<5.0 \quad 35.0 \quad 111.1
\]

TUTSS BLACKBURN AVFRAGE SCORE OF SS OPERATION:- MAZE LEARNING
```

 SL
 1.0 3.6 2.0 5.6 3.0 13.5 4.0 11.8
3.0}34.5 6.0 53.3 7.0 9.5 8.0 24.4
9.0 15.4 10.0 19.2 11.0 <L.2 12.0 23.3
15.0 55.6 14.0 43.5 15.0 43.5 16.0 1%.2
11.0 45.5 18.0 37.0 19.0 <1.3 20.0 41.7
21.0 37.0 22.0 52.6 23.0 47.0 24.0 41.%
25.0 26.5 20.0 10.9 27.0 55.0 28.0 50.0
<4.U 52.0 30.0 22.0 31.0 06.7 32.0 85.3

```
TUISO BLACKBURN AVERAGE SCURE OF S 4
OPERATION:- MAZE LEARNING
    CS
\(1.05 .6<.04 .13 .018 .54 .0 \quad 18.9\)
\(3.0 \quad 3.6 \quad 6.0 \quad 3.6 \quad 3.06 .8 \quad 8.0 \quad 23.6\)
\(9.016 .1 \quad 10.010 .411 .017 .912 .0 \quad 20.8\)
\(15.045 .514 .0 \quad 30.315 .0 \quad 23.816 .041 .6\)
\(11.0 \quad 19.410 .066 .719 .0 \quad 26.3 \quad 20.0 \quad 90.9\)
\(21.0 \quad 66.122 .060 .1 \quad 23.0 \quad 02.5\)
TUISI BLACKBURN AVERAGE SCORE OF SS
UPERATIUN:- MAZE LEARNING
SS
\(1.0 \quad 3.0 \quad 2.0 \quad 3.6 \quad 3.0 \quad 3.6 \quad 4.0 \quad 6.4\)

\(4.0 \quad 5.6 \quad 10.0 \quad 5.6 \quad 11.0 \quad 5.6 \quad 12.0 \quad 5.0\)
\(15.09 .8 \quad 14.014 .5 \quad 15.010 .1 \quad 16.013 .3\)
11.09 .318 .011 .014 .012 .720 .010 .1
\(<1.0 \quad 27.0 \quad 22.0 \quad 23.0 \quad 23.0 \quad 30.5 \quad 24.0 \quad 30.3\)
25.0 \(31.6 \quad 20.0 \quad 37.0 \quad 27.038 .6 \quad 28.031 .0\)
Cy.U 33.3 30.U \(53.3 \quad 31.035 .132 .036 .5\)
35.022 .6

TUTB8 BLACKBURN AVERAGE SCORE OF SO
OPERATION:- MAZE LEARNING
```

SU
1.0 3.6 2.0 2.0 3.0 11.4 4.0 9.4

```

```

9.0 40.0 10.0 50.3 11.0 50.0 12.0 58.0
15.0 71.4 14.0 90.9 15.0 111.1 16.0 100.0
11.0 100.0 18.0 83.3 19.0 50.0 20.0 111.1
21.0 111.1 22.0 100.0 23.0 111.1<4.0 111.1
<う.01 142.,y <0.0 142.7 27.0 62.5 <8.0 111.1

```


TUTSY MURCOMBE CYCLE TIME (SECONDS)/TKIAL FUR GA. OPERAYION: - SIMULATED ASSEMBLY
    \(\angle 0\) MOD
    \(1.0 \quad 175.0 \quad 2.0 \quad 155.0 \quad 3.0165 .04 .0 \quad 145.0\)
2.0 135.0 6.0 130.0 7.0 127.0 8.0 128.0
    \(9.0127 .010 .01<7.011 .0127 .012 .0127 .0\)
\(15.0128 .014 .0126 .015 .01 \angle 7.016 .0121 .0\)
\(11.0128 .018 .0126 .019 .0127 .0 \quad 20.0127 .0\)

TUTGU MORCOMBE CYCLE TIME (SECONDS)/TKIAL FOR.MS. OPERATION: - SIMULATED ASSEMBLY \(\angle O\) MOD
\(1.0 \quad 228.02 .0150 .03 .0138 .04 .0154 .0\)
\(5.0121 .06 .0150 .0 \quad 7.0128 .0 \quad 8.0111 .0\)
צ.0 122.0 10.0 123.0 11.0 151.0 12.0 143.0
15.0120 .014 .0119 .015 .0100 .010 .0113 .0
\(11.0122 .018 .0111 .019 .01 \mathrm{CS} .0<0.0115 .0\)

TUT61 MORCOMBE CYCLE TIME (SECONDS)/TRIAL FUR PD. OPERATION:- SIMULATED ASSEMBLY
```

ZO MOD
1.0 255.0 2.0 155.0 5.0 115.0 4.0 125.0
5.0 120.0 6.0 113.0 7.0 112.0 8.0 113.0
9.0 111.0 10.0 102.0 11.0 118.0 12.0 103.0
15.0 100.0 14.0 95.0 15.0 96.0 16.0 49.0
11.0 107.0 18.0 107.0 19.0 100.0 20.0 1U2.0

```

TUTG乙 MORCOMBE CYCLE TIME (SECONDS)/TRIAL FUR BC. OPERATIUN:- SIMULATED ASSEMBLY
```

CU MOD
1.0 114b.0 2.0 493.0 3.0 200.0 4.0 13%.0
5.0 152.0 6.0 106.0 1.0 152.0 8.0 143.0
4.0 142.0 10.0 143.0 11.0 145.0 12.0 131.0
15.0 148.0 14.0 147.0 15.0 144.0 16.0 150.0
1%.0 136.0 18.0 126.0 19.0 124.0 20.0 125.0

```

TUTG3 MORCOMBE CYCLE IIME (SECONDS)/TKIAL FOR GG. UPERATIUN:- SIMULATED ASSEMBLY

```

TUTO4 MORCOMBE CYCLE TIME (SECONDS)/TRIAL FOR JS.
UPERATION:- SIMULATED ASSEMBLY
CU MOD
1.0118.0 2.0 114.0 3.0 111.0 4.0 105.0
5.0 94.0 6.0 91.0 7.0 93.0 8.0 102.0
9.0 y4.0 10.0 101.0 11.0 92.0 12.u ys.0
15.0 101.0 14.0 9%.0 15.01 101.0 10.0 09.0
11.0 94.0 18.0 %%.0 19.0 92.0 20.0 88.0

```
TUT65 HACKETT PERCENT OWN INITIATIVE.S-DAY SUM FOK EB.
OPERATION: - PLUGGING IN
    18
    1.0 84.00 2.0 90.42 3.0 93. 20 4.0 94.59
5. U 46.56 6.U y8. 117.0 y7.50 8.0 91.43
\(9.099 .1110 .099 .0611 .099 .191<.0100 .0\)
13.0100 .014 .0100 .015 .0100 .018 .0100 .0
18.0100 .018 .0100 .0
TU1OO HACKETT PERCENT OWN INITIATIVE.S-DAY SUM FOR EE.
OPERATION:- OPERATING KEYS
    18
    1.084 .812 .093 .053 .097 .304 .098 .59
5.098 .656 .098 .707 .098 .768 .098 .76
    y. 098.7010 .098 .9211 .099 .0612 .0 9y. 14
    13.099 .2514 .099 .3113 .0100 .016 .0100 .0
    \(11.0100,010.0100 .0\)
TU167 HACKETT PERCENT OWN INITIAITIVE. 5-DAY SUM FUR EB.
OPEKATION:- OIALLING
    18
    1.090 .852 .0 y5.20 3.0 99.25 4.0 94.25
S.0 90.50 6.0 48.52 7.0 98.42 8.0 98.56
    Y. 0 91. \(9910.096 .8311 .099 .0812 .099 . \ll\)
    13.099 .3114 .0100 .01 15.0 100.0 10.0 100.0
    11.0100 .018 .0100 .0

TU16 HACKETT PERCENT OWN INITIATIVE S-DAY SUM FUR EB.
OPERATIUN:- USE V.I.F.
    18
\(1.0 \quad 87.35 \quad 2.084 .343 .095 .164 .095 .16\)
    2.0 94.44 6.0 93.85 7.0 95.56 8.096.06
9.0 90.42 1U.0 98.01 11.0 99.4312.0 99.52
    15.099 .5714 .099 .6315 .0100 .016 .0100 .0
    17.0 100.0 18.0 100.0

TUTOY HACKETT PERCENT OWN INITIATIVE S-UAY SUM FOR EB. UPERATION:- TICKET WORK
18
\(1.084 .712 .091 .03 \quad 3.095 .674 .091 .40\)
\(5.098 .056 .094 .24 \quad 7.094 .97 \quad 8.0 \quad y<.79\)
y.0 92. ८. 10.0 90.94 11.0 95.86 1L.0 95.47
15.091 .0314 .098 .1315 .0 y9.50 16.0 99.48
18.0100 .090 .0100 .0

TUףIU HACKETT PERCENT OWN INITIATIVE \(\zeta\)-DAY SUM FOR EB. OPERATION:~ SPEAKING
IY
```

1.040.21 2.0 50.52 3.0 60.21 4.0 65.00
5.0 84.04 6.0 88.54 7.0 89.13 8.0 85.71
9.0 85.71 10.0 80.95 11.0 80.0 12.0 89.83
15.0 94.40 14.0 96.98 15.0 96.27 16.0 96.73
17.0 90.76 18.0 96.04 19.0 90.93

```

TOT/1 HACKETT PERCENT OWN INITIATIVE S-DAY SUM FOR EB. OPERATION:- LISTENING
\[
19
\]
\[
1.0 .81 .69 \quad 2.0 \quad 83.53 \quad 3.0 \quad 89.77 \quad 4.0 \quad 90.32
\]
\[
5.095 .156 .094 .57 .095 .528 .096 .11
\]
\[
9.096 .1310 .096 .6211 .00100 .012 .00100 .0
\]
\[
15.0100 .014 .0100 .095 .099 .7716 .099 .77
\]
\[
17.099 .16 \quad 18.099 .73 \quad 19.099 .74
\]

TOI72 HACKETT PERCENT OWN INITIATIVE S-DAY SUM FOR EB. OPERATION:- FILING
```

1%
1.0 83.87 2.0 96.29 3.0 92.30 4.0 93.10
5.0 93.33 6.0 89.28 7.0 88.88 8.0 yo.15
9.0 92.85 10.0 87.50 11.0 93.54 12.0 45. }4
13.0 96.01 14.0 98.36 15.0 100.0 16.0 100.0
1%.0 100.0 18.0 100.0

```
```

TO17S HACKETT PERCENT OWN INITIATIVE 5-DAY SUM FOR EB.
OPERATION:- TIMING
1%
1.0 63.40 2.0 19.54 3.0 81.39 4.0 79.48
5.0 76.96 6.0 18.57 7.0 86.45 8.0 84.61
9.0 83.33 10.0 65.71 11.0 96.15 12.0 96.06
13.0 100.0 14.0 100.0 15.0 100.0 16.0 100.0
17.0 100.0 10.0 100.0

```
TU174 HACKETT PERCENT OWN INITIATIVE SODAY SUM FOR EB.
OPERATION: - CLEAKING DOWN
18
\(1.0 \quad 85.0 \quad 2.0 \quad 86.04 \quad 3.0 \quad 86.954 .0 \quad 93.75\)
3.0 44.35 6.0 93.91 7.0 96.00 8.00 9r.91
    \(9.097 .81 \quad 10.097 .8211 .098 .18\) 12.0 98.46
    15.098 .6414 .098 .7512 .0100 .010 .0100 .0
    11.0100 .016 .0100 .0
TUY 13 LAMB VALUED CALLS COUNT FUR J DURING TRAINING.
OPERATION:- TELEPHONIST
    18
    L.0 101.5 3.0 100.0 4.0 118.5 5.0 102.5
8.0117 .09 .0155 .510 .0131 .011 .0147 .0
    12.0 15 . 0 15.0 150.7516 .0177 .017 .0180 .25
\(18.0154 .019 .099 .5 \quad 22.0152 .75<3.0165 .5\)
\(25.0 \quad 180.0 \quad 26.0 \quad 169.0\)
```

TU1/O LAMB VALUED CALLS COUNT FOR J,ALL OBSERVATIUNS
UPERATION:- TELEPHONIST
Cl
2.0 101.5 5.0 100.0 4.0 118.5 5.0 102.5
8.0 117.0 9.0 135.5 10.0 131.0 11.0 141.0
1<.0 15L.0 15.0 150.15 10.0 177.0 17.0 180.25
18.0 154.0 19.0 49.5 22.0 152.75 23.0 165.5
<5.0}180.0 20.0 169.0 30.0 108.15 33.0 107.25
40.0 264.5 50.0 165.5 58.0 214.0 75.0 289.0
108:0 239.75 124.0 241.25 103.0 <34. C5
TU\7% LAMB TEST SCURES FUR J.
OPERATION:- TELEPHONIST
b
5.0 100.0 9.0 159.0 17.0 163.5 19.0 186.0
1<1.0 244.0
TUT/8 LAMB VALUED CALLS COUNT FOR K. DURING TRAIINING
OPERATION:- TELEPHONIST
19
2.0 49.5 3.0 68.5 4.0 56.0 5.0 81.25
8.0 95.0 9.0 115.75 10.0 85.5 11.0 105.75
12.0 109.0 15.0 98.25 16.0 128.25 11.0 136.25
18.0 143.0 19.0 147.5 22.0 144.0 23.0 132.75
24.0 114.5 25.0 127.5 26.0 117.0
T01/9 LAMB VALUED CALLS COUNT FOR K,ALL OBSERVATIONS
OPERATION:- TELEPHONIST
2%
2.0 49.5 3.0 68.5 4.0 56.0 5.0 81.25
8.0 45.0 9.0 115.75 10.0 85.5 11.0 105.75
12.0 109.0 15.0 98.25 16.0 128.25 17.0 150.35
18.0 143.0 19.0 147.5 22.0 144.0 23.0 132.75
24.0 114,5 <3.0 127.5 26.0 111.0 <4.0 152.0
33.0 104.25 31.0 141.5 41.0 190.5 54.0 162.5
115.0 214.5 136.0 214.75 165.0 213.25
TUT\&O LAMB TEST SCORES FOR K.
OPERATION:- TELEPHONIST
6
5.0 134.0 9.00 95.5 17.0 136.25 14.0 157.5
<2.0 187.75 1<1.0 213.5
TO\@1 LAMB VALUED CALLS COUNT FOR L. DURING TRAINING
OPERATION:-TELEPHONIST
19
2.0 54.0 3.0 112.0 4:0 65.5 5.0 16.5
8.0 128.0 9.0 104.0 10.0 112.0 11.0 58.2ל
1C.0 68.0 15.0 40.0 16.0 130.75 1%.0 105.0
18.0 127.75 19.0 101.5 22.0 139.0 23.0}128.1
24.0 104.15 23.0 105.75 <6.0 140.5

```

TUIOZ LAMB VALUED CALLS COUNT FOR L,ALL OBSERVATIUNS OPERATION:- TELEPHONIST
```

 Cl
 2.0 29.0 3.0 112.0 4.0 65.5 5.0 76.5
8.0 128.0 9.0 104.0 10.0 112.0 11.0 >8.23
12.0 68.0 15.0 96.0 16.0 130.75 17.0 105.0
18.0 127.75 19.U 101.2 2<.0 139.0 23.0 128.75
24.0 104.75 25.0 105.15 20.0 146.5 27.0 110.5
35.0 143.0 56.0 133.0 47.0 150.75 54.0 147.5
113.0 174.5 130.0 2<2.5 165.0 1Y0.0

```
TUI83 LAMB TEST SCORES FOR L.
OPERATION: - TELEPHONIST
    6
5.0 127.0 9.0 80.5 17.0 151.75 19.0 157.5
26.0 187.75 120.0 281.75
TU184 LAMB VALUED CALLS COUNT FOR S.DURING TRAINING
OPERATION:- TELEPHONIST
    11
\(2.094 .0 \quad 3.0\) 120.0 4.0 93.0 3.0 125.0
8.0 140. 05 צ. 0117.010 .0192 .511 .0175 .0
1く.0 205.5 13.0 166.75 16.0 181.5 17.0 154.0
18.0 167.5 22.0 179.25 25.0 182.0 25.0 161.5
20.0 155.0
TOTB女 LAMB VALUED CALLS COUNT FOR S,ALL OBSERVATIONS
OPERATION:- TELEPHONIST
    26
2.0 y4.0 \(5.0 \quad 126.04 .093 .05 .0123 .0\)
8.0 140.25 9.0 117.010 .0192 .511 .0175 .0
\(1<.0<05.513 .0166 .1510 .0161 .517 .0154 .0\)
\(18.0167 .5 \quad 22.0179 .25 \quad 25.0182 .0 \quad 25.0161 .5\)
26.0 155.0 29.0 191.25 33.0 <22, 5 \(40.0 \quad 261.0\)
41.0222 .554 .0228 .2575 .0269 .0108 .0230 .5
\(1<8.0 \quad 236.0158 .0 \quad 263.5\)
TUIठ6 LAMB YEST SCURES FOR S
OPERATION:- TELEPHONIST
\begin{tabular}{l}
5.0 \\
\(1<1.0\) \\
\(1<1\) \\
\hline
\end{tabular}
TUT४, MINTER (CORRESPUNDENCE)
```

13
0.0 30.0 4.0 49.49 8.0 55.55 12.0 68.41
16.0 17.40 20.0 84.68 24.0 84.58 <8.00 92.27
S2.0 88.12 so.0 y8.05 40.0 103.51 44.0 103.11
48.0 101.52

```

\section*{APPENDIX D}

DETAILS CONCERNING BLACKBURN'S EXPERIMENTS.
I .

In order to illustrate points in the arguments developed in the preceding pages frequent reference has been made to the experiments performed by me. Details of these experiments are presented here in order that the statements can be verified, if necessary, by reference to the actual figures.

The nature of the Experiments.
Five experiments were performed: - Card sorting, Maze learning, Code substitution, Crossing out e's and Addition.
(1) In the card-sorting experiment the observer had to sort a pack of 42 cards into their appropriate compartments on a table in front of him. The compartments were marked in random order and the pack of cards was also arranged in a random order for the first trial, although the same order was used in successive trials and with all observers. The observer was given the pack face upwards, and one sorting constituted a trial, his time being noted. The arrangement of the compartments is shown in Fig. 25, and the order of the cards was as follows: 4d, As, 5h, 2c, Qs, Js, Kc, 6d, Ah, Ks, 4s, 3c, 10s, 2s, Kh, 5d, 7c, Jc, Jh, 7h, Qd, 6h, 8d, Qh, \(10 \mathrm{c}, ~ 3 \mathrm{~d}, ~\) Qc, \(4 \mathrm{~h}, ~ 7 \mathrm{~d}, ~ 8 \mathrm{~h}, ~ 5 \mathrm{~s}, ~ 9 \mathrm{~s}, ~ 3 \mathrm{~h}, ~ 2 \mathrm{~d}, ~ 6 \mathrm{c}, ~ 9 \mathrm{c}, 10 \mathrm{~h}, ~ 8 \mathrm{~s}, ~ 9 \mathrm{~d}, ~ A c\), 7s, Ad (where d, s, c, h, stand for diamonds, spades, clubs and hearts respectively).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{Sa}_{4}\) & 4 s & 3 H & 76 & AH & 30 \\
\hline KH & 5 s & 10 H & Ac & Qs & jo \\
\hline Ks & 90 & 60 & 4 H & Os & 70 \\
\hline 40 & Js & 2. & 80 & Q. 0 & Q 4 \\
\hline JH & 9 c & As & Es & 50 & 20 \\
\hline 7s & Q0 & 74 & 2 s & 3 c & 64 \\
\hline Ko & 10 s & AD & 6 c & 5 H & 10 c \\
\hline
\end{tabular}

FIG. 25
ARRANGEMENT OF COMPARTMENTS IN CARD SORTING
EXPERIMENT; H, HEARTS; S, SPADES; C, CLUBS;
D, DIAMONDS.
(2) In the maze-learning experiment the observer had to learn a stylus maze which was placed on the far side of a black cloth screen through which he put his hand. The observer was thus unable to see what he was doing, and he had to learn the maze by means of either visual images or kinaesthetic sensations, or a combination of both. The score was the time taken to get the pencil from the entrance to the exit. One run through the maze constituted a trial. The design of the maze is shown in Fig. 26.
(3) In the code-substitution experiment a rather complicated code was used in which the letters of the alphabet were represented by different combinations of the figures "1" and "2", and the figures "1" and "2" had to be represented by a stroke to the left (for "1")


FIG. 26
PLAN OF THE MAZE.
or to the right (for " 2 ") of a series of vertical lines on the form provided for the purpose. The arrangement of the code is shown in Fig. 27. This key was kept constantly in front of the observer

\section*{CODE SUBSTITUTION}
\(1=\) One mark to the LEFT. \(\quad 2\) = One mark to the RIGHT.
\begin{tabular}{llll}
\(\mathrm{A}=11\) & \(\mathrm{H}=12\) & \(0=21\) & \(\mathrm{~V}=22\) \\
\(\mathrm{~B}=111\) & \(\mathrm{I}=121\) & \(\mathrm{P}=211\) & \(\mathrm{~W}=221\) \\
\(\mathrm{C}=112\) & \(\mathrm{~J}=122\) & \(\mathrm{Q}=212\) & \(\mathrm{X}=222\) \\
\(\mathrm{D}=1111\) & \(\mathrm{~K}=1211\) & \(\mathrm{R}=2111\) & \(\mathrm{Y}=2211\) \\
\(\mathrm{E}=1112\) & \(\mathrm{~L}=1212\) & \(\mathrm{~S}=2112\) & \(\mathrm{Z}=2212\) \\
\(\mathrm{~F}=1121\) & \(\mathrm{M}=1221\) & \(\mathrm{~T}=2121\) & \\
\(\mathrm{G}=1122\) & \(\mathrm{n}=1222\) & \(\mathrm{U}=2122\) &
\end{tabular}


\section*{CODE SUBSTITUTION}
at every trial so that immediate reference could be made to it if required. The same passage containing about 100 words of prose was put before the observers on every trial, but only a portion of this was translated each time. Details concerning the practice periods will be found in the next section.
(4) In the addition experiment a page of Kraepelin's

Rechenhefte was put before the observers, and they had to add successive pairs of the figures. The first two figures were added and the unit figure of the sum (if the result were greater than 9) was written at the side of the second figure, then the second and third figures were added and the unit figure of the sum was written by the side of the third figure, and so on, until the observer reached the bottom of the first column, after which he proceeded to the second column, and so on. Details concerning the practice periods will be found in the next section.
(5) Crossing out \(e^{\prime} s\). This consisted of crossing out all the \(e^{\prime} s\) in a page of French words arranged in an order not making sense (see Fig. 28). There were \(10 \mathrm{e}^{\prime} \mathrm{s}\) on each line - although this was
not noticed by any of the observers - and the position in which they occurred differed in every line. Details concerning the practice periods will be found in the next section.

Observers and the Arrangement of the Conditions of Learning.
7 observers were used. They were all university students, two being research workers, and the others working for their final degree is psychology.

Observer 1 did one trial a day on each of the tests for 6 days a week, and the order in which he did the tests remained the same on successive days. This order was - Card sorting, Addition, Code substitution, Crossing out e's, and Maze learning. Each trial in card sorting and maze learning consisted of one distribution of the cards or of one run through the maze each day. Each practice period in the addition, code substitution, and crossing out e's experiments consisted of three minutes work. This remained the same throughout the whole experiment, with the exception that in the e's test this observer managed to complete the whole page in under three minutes after the 14 th trial. After this trial his record was scored by the time he took to do the page of e's.

Observer 2 did the experiments under exactly the same conditions, and with exactly the same arrangement, as Observer 1 , except that in the e's test he never managed to complete the page in the three minutes allotted.

Observer 3 also did the experiment under the same conditions, with the exception that the order in which he did the tests varied from
routes voir premier pas micux dire et le mouchoir emmener soleil de maricr le demeurer de bonnes des froid front lui de se cinq le lendemain trouver minutes retard cellier la virile de moyens jamais rarement sauvage perte les bleu laissa le splendeur les or magnificences reve de sa beaux nulle sur collier de cette rois certainement resistance on la ces charmants plantureuse au prix de querelle est large ne sans une des sires les plus de vegetation reporter esprit passee son rivages de chart retour des la capricieuses ses peur montrent des paysages faits des yeux etre nulle arret part dans premiere rois les yeux la lumiere matelots meme pour le aux dernieres implorent comme tant de terre pieux souriait cruel beau rue ce des aspects ce radieux priere plus grandirent avec et de pres de viendrait pelerinages la de trois parvenait a cette la precieuse mirage que appelait

FIG. 28

\section*{MATERIAL USED IN THE E S EXPERIMENT.}
day to day.

Observer 4 did the same as Observers 1 and 2 in regard to the maze and the card distributing tests, except that his trials were not quite so regular - one or two days being occasionally missed between trials (this, however, had no discernible effect on his results). In the addition, code substitution, and e's tests the conditions were different for this observer. His record was scored
by the time in successive trials that he took to do a fixed quantity of the work - this fixed quantity being the amount he did in three minutes on his first trial.

Observers 5, 6, and 7 did all their trials of one task on one afternoon, i.e., their trials were massed. They performed one test on the same day each week, and between each trial they gave their introspections before proceeding to the next trial. One longer interval of about 10 minutes was permitted after about the 14 th trial. Apart from the fact that their trials were massed the constitution of the trials in the different tests was the same for them as for Observer 4, that is to say, one trial in the maze consisted of one run, and one trial in the card sorting test of one distribution of the cards: in the addition, crossing out \(\mathrm{e}^{\prime} \mathrm{s}\), and code substitution tests their trials consisted of doing exactly the same amount in subsequent trials as they did in their first three minute trial, their scores being the time they took to do it.

The conditions and arrangements of the trials were deliberately altered for the different observers by me because I was primarily interested in discovering whether the different processes could be represented by typical learning curves. Consequently as many of the different factors as possible were altered, so that if the particular process did have any predominant characteristics they would become apparent.

The scores of the different observers in the tests are given below in Tables 1-V. The observers were not specially penalised
if they made errors. The fact that they had made an error was regarded as sufficient penalty, hindering, as it did, the formation of the final adjustments required for a perfect knowledge of the problem. The scores are all given in the achievement form, this being the form on which the curves given in the preceding chapters have been based. In the maze test this has been obtained by simply taking the reciprocals of the original times: while the scores in the other tests are based on the average performance in the arbitrary time of 100 seconds. In order to check the figures given below with the figures given in the graphs it must also be remembered that in some cases the graphs have been based on a "moving average" in order to eliminate the day to day fluctuations. This moving average had a base of three trials, i. e. the first point was obtained by summing the performance scores in trials l-3, the second by summing the performance scores in trials 2-4, the third in trials 3-5, etc. In every case it has been stated on the graphs when the moving average system was used.

NOTE: - The tables mentioned in the text are not included as the relevant data is in Appendix C.
```

TOZO1 TELEPHONIST TRAINING DATA TY, EXCHANGE A
7
5.0 58.0 1.0 84.0 10.0 105.0 13.0 104.0
18,0 153.0 20.0 147.0 21.0 163.0
YOZOZ TELEDHONIST TRAINING DATA TZ, EXCHANGE A
7
5,0 118,0 7.0 122.0 10,0 128,0 13,0 141.0
15,0 966.0 97.0 216.0 969.0 23(.0
YO203 TELEPHUNIST TRAINING DATA T3, EXCHANGE A
l
5.0 196.0 1.0 153.0 10.0 137.0 13.0 176.0
15,0 144.0 17.0 165.0 18.0161,0
YO204 TEGEPHONIST TRAINING DATA T4, EXCHANGE A
7
5.0 74.0 7.0 107.0 10.0 140.0 13.0 110.0
15,0 124,0 97,0 95%,0 20,0 174,0
TOZ05 TELEPHUNIST TRANNING DATA TS, EXCHANGE A
7
5.0 85,0 8.0 88.0 12.0 110,0 15.0 126,0
17.0 155.018.01957.0 19.01951.0
YOCOG TELEPHGNIST TRAINING OATA TGI EXCHANGE A
50
5,0 104.0 1,0 104,0 10.0 104,0 13,0 1<3,0
15,0 134.0 18.0 156.0
TO207 TELEPHONIST TRAINING DATA TT, EXCHANGE A
7
5.065.0 7.0 92.0 10.0 138.0 13.0 78,0
15,0 108,0 18,0 191,0 20," 160,0
YOZ08 TELEPHONIST TRAINING DATA T\&, EXCHANGE A
5
5.0 123.0 1.0 147.0 10.0 170.0 13.0 1/4.0
15,0 212.0
YOZOg TELEPHONIST TRAINING DATA TQ, EXCHANGE A
8
5.0 28.0 7,0 44.0 10.0 87.0 15,0 118.0
15,0 130.0 17,0 1/1.0 19.0175,0 20.0 159,0
TO210 TELEPHONIST TRAINING DATA TYO, EXCHANGE A
6
5,0 93,0 %,0 122,0 12,0 150,0 15,0 105,0
17,0 152,0 19,0 162.0
YO299 TELEPHONIST TRAINING DATA Tף१, EXCHANGE A
7
5.0 140.0 1.0 113,0 10.0.113.0 13,0 130.0
15.0 126.0.18.0 144.0 19.01 153.0
TO212 TELEPHONIST TRAINING DATA TIZ, EXCHANGE A
6
5,0 56,0 7,0 90,0 10.0 120,0 13,0 146,0
15.0 159.0 17.0 168.0
TO213 TELEPHONIST TRAINING DATA TY3, EXCHANGE A
6
5,0 97.0 7.0 131.0 10.0 123.0 13,0 141,0
15.0 157.0 17.0 903.0
TOC94 TELEPHONIST TRAINING DATA T14, EXCHANGE A
7
5.0 55,0 7,0 111,0 10,0 90,0 15,0 160,0
15.0 154.0 18.0 103.0 151.0 220.u.

```

TOZ19 TELEPHONIST TRAINING DATA" T19, EXCNANGE A 7
5.049 .07 .078 .010 .0143 .015 .0140 .0
\(18,0162, \cup 22,0163.0180,0254, \mathrm{U}\)
FOZ21 TELEPHUNIST TRAINING DATA TRI, EXCHANGE A 6
5.042 .07 .080 .010 .0104 .018 .0145 .0
19.0 1664.0 224.0 260.0

TOZ22 TELEPHUNIST TRAINING DATA TZZ, EXCHANGE B 7
5.0142 .07 .0134 .010 .0 .89 .013 .0134 .0

15,0 139.0 17,0101.0 172.0 241.0
YOZ23 TELEPHUNIST TRAINING DATA TZSE EXCHANGE A 8
\(4,094,08,0143.012,0157.014,0149,0\)
16.0 140.0 17,0 136.0 1 त, 0200,0 133.0 290.0

FO224 TEGEPHUNIST TRAINING DATA TZ4, EXCHANGE B 6
5.0 111.07.0 148.0 9.0.156.0 13.0.120.0
15.0 970.0 927.0 <14.0

TO225 TELEPHONIST TRAINING DATA TZS, EXCHANGE A 6
\(5,0230,07,0235,010,0258,013,0262,0\)
15.0 230.0 996.0 241.0

TOZ26 YEGEPHONIST TRAINING DATA TVOE EXCHANGE C 7
5.0 95.0 7.0 119.0 10.0.130.012.0194.00

15,0171, , 17,0 107.0 154. U 220.0
YOZ27 TELEPHUNIST TRAINING DATA TZ7, EXCHANGE A 9
\(5.032 .01,0122.010 .063 .015 .0135,0\)
\(15,0145,016,0165.017 .1190,019.0206,0\)
\(186,0 \quad 232,0\)
TO229 TELEPHONIST TRAINING OATA TRY, EXCNANGE A 10
5.0 58,0 7,0 65,0 10.1, 121,015,0 121,0
\(15,0129,010,0121,017,0152,018.0159,0\)
19,0 159.0 120, 0 <11.0
TO230 TELEPHONIST TRAINING OATA TZO, EXCHANGE A 7
\(5.0126,08,0188,010.0209 .013,0141,0\)
\(15,0203,040,0240,0\) 个58, U 26<, 0
TO231 TELEPHONIST TRAINING DATA YS1, EXCHANGE A 1
5,0 98,0 1,0108,0 10,0 155,013,0165,0
15.0 168.0 18.0 205.0 156.1) 225.0

TO232 TELEPHONIST TRAINING DATA TS2, EXCHANGE A 7
5.087 .01 .0192 .010 .0151 .013 .0166 .0
\(15,0142,017,0212,0179,0251,0\)
TOZ3S TELEPHUNIST TRAINYPG DATA TS3, EXCMANGE A 7
\(4,085,06.0109 .09 .0919,012,0979.0\)


TOZ34 TELEPHUNIST TRAINTING DATA T34, EXCNANGE B
6
6.0111 .08 .0195 .010 .0143 .014 .0144 .0
17.0 980.0 30 5.0 656.0

TOZ35 TELEPHONIST TRAINING DATA YZ5. EXCHANGE C 8
5.0 101.0 1.0 116.0 10.0 115.0 13.0 133.0
16.0 154.0 18.0 146.020.0 160,0 202.0 104.0

TOL36 TELEPHQNIST TRAINING DATA 566 EXCHANGE A ठ

\(16,0154,0 \quad 17,0142.018,1176,0137,0203.1\)
TOZ38 TELEPHUNIST TRAINING DATA T38, EXCHANGE A 8
5.0 129.0 \(\quad 1.0905 .0 \quad 10.01<3,093.0124 .0\)

15,0 140,0 17,0 158.0 18.0.195.0 137,0 205.0
TO239 TELEPHUNIST TRAINING DATA T39, EXCHANGE A 7
\(5,0 \quad 93,0 \quad 7,0116.010 .0170 .013,0148,0\)
15,0 156, 0 17,0 158.0 123.0 206.0
TOZLO TELEPHONIST TRAINING DATA T \(\angle O\), EXCHANGE A 8

\(15,0120,019.0927 .020 .0170,0134,0220.0\)
TOZ49 TELEPHONIST TRAINING DATA T4Y, EXCHANGE A 7
\(5.0128 .0 \quad 1.0161 .010 .0153 .013 .0126 .0\)
\(15,0149,017,0208,0198.0\) 2e0,0
TOZ4Z TELEPHUNIST TRAINING OATA TLZ, EXCHANGE A 8
5.0 36,07.0 115,0 10,0 85,0 15.0 103.0
15.098.0 17,0 110.0 19.0 964, 0 131.0 c20.0

TO243 TEGEPHONIST TRAININO OATA Y Y S EXCHANGE B
4
\(5.0142 .01 .0126,010.0153 .013 .0191 .0\)
TOZ44 TELEP4UNIST TRAINING OATA T\&4, EXCHANGE A 10
\(5.031 .0 \quad 7.0109 .010 .0 \quad 124.093 .1100 .0\)
15,0 153,0 16,0 141,0 17.0 100,0 10, , 16 160,0
19.0 982.0 921.0 <96.0

TOZ46 TELEPHUNIST TRAINING DATA TKO, EXCHANGE A 8
\(5.0106 .0 \quad 1.0 \quad 140.0 \quad 10.0140 .013 .0110 .0\)
\(15,0128,0,7,0134,019,0156,0126,0 \quad 251,0\)
TOZ47 TELEPHONIST TQAINING DATA Tム7, EXCKANGE A 6
\(5.094,07,0139,010,0175.013,0156.0\)
15,0 201, 0 85,0 264,0
TO248 TELEPHUNIST TRAINING DATA TG8, EXCHANGE A 5
5.0146 .01 .0128 .010 .0128 .016 .0148 .0

18,0 192.0
TO249 TELEPHONIST TRAINING DATA T49, EXGHANGE B 5
\(5.0117 .07 .0170 .010 .0196 .013,0171,0\)
288,0
237,0
    7
\(5.0111,0 \quad 7.0122,09.0135 .013 .0137 .0\)
15.0143 .097 .0189 .0318 .0220 .0
YOZ52 TELEPHUNIST YRAINYNG DATA TSZ, EXCHANGE F
    7
5.0 137.0 7.0 113.09.0151.013.0110.0
\(20.0145 .0 \quad 22,0107.0122,0 \quad 224.0\)
TO253 TELEPHUNIST TRAINYNG DATA T53, EXCHANGE G
    10
\(5.060 .0 \quad 1.090 .09 .0 \quad 106.019 .0110 .0\)
\(13,0143,095,0153,017,0131,019,0161,0\)
29.0 170.0 1 U४. 0 <6.5.0
TOZS4 TELEPHONIST TRAINING DATA TS4, EXCHANGE F
    1
5.0 115.0 7.0 113.0 9.0 120.0 13.013<,0
15.0 153.0 17.0 170.0 122.0 270.0
TO255 TELEPHUNIST TRAINING DATA T55. EXCHANGE F
    7
\(5.088 .0 \quad 1.0121 .09 .0177 .013 .0106 .0\)
\(15,0102,017,0201.0113 .0271,0\)
YO256 TELEPRONIST TRAINING DATA 156 , EXCHANGE F
    7
5,0 195.0 1.0 149.09.0 170.0 13.0196.0
\(20,0 \quad 347.022,0256.0118 .0210,0\)
TOZST TELEPHUNIST TRAINING DATA TST, EXCHANGE G
    6
\(5.062 .0 \quad 7.088 .0 \quad 9.0 \quad 163.013 .0137 .0\)
\(15,0171.017 .0131 .020 .0195 .0106 .0280 .0\)
TOZ58 TELEPHONIST TRAINING OATA T5B, FXCHANGE G
    \(y\)
5,0 54.0 1,0 13.0 9.0 79.0 11.0 10.0
\(13,082,015,091,017,0120,018,0<01,0\)
\(135,0347.0\)
TOZ59 TELEPHONISY TRAINING DATA TS9, EXCHANGE F
    7
5.0 113.0 1.0 137.0 9.0 148.0 13.0 111.0

TOZ6O TELEPHUNIST TRAINING DATA TGUI EXCHANGE F
    7
\(5.075 .01 .095 .09 .0135 .015,0116.0\)
15.0170 .0 9 \(100153.0158 .0 \quad 24 \%\), 0
TO261 TELEPHUNIST TRAINING DATA YOI, EXCHANGE F
    7
5.095.0 7.0 123.09.0 175.015.0197.0
\(20.0254 .026,0285.0104 .0241 .0\)
TOZ62 TELEPHONIST TRAINING DATA TOZ, EXCHANGF G
    9
\(5,062,0 \quad 1,0109,09,087,013,0\) 1<0, 0
\(15,0105,097.081 .022 .0100,0 \quad 27.01 \times 5.0\)
121.0237 .0

YOZO்3 TELEPHUNIST TRAINING DATA TG3, EXCHANGE F 7
5.0193 .01 .0138 .09 .0200 .013 .0115 .0
\(15.0 \quad 192.6 \quad 17.0\) 140.0 107.0 249.0
TOZ6G TELEPHONIST TRAINING DATA TG4, EXCHANGE F
\(5.0105 .010 .9134 .012 .0145,011.0161 .1\)
\(19,0162,021,0139.0134 .0251,0\)
TOZ65 TELEPHONIST TRAINING DATA TOS, EXCHANGE G 7
\(5.050 .0 \quad 7.080 .09 .090 .017 .0133 .0\)
18,0 161.0 19,0 160.0107,0 243.0
TOZG6 TELEPHONIST TRAINING DATA TGG, EXCHANGE G 10
\(5.054 .0 \quad 7.062 .010 .073 .015,0 \quad 15.0\)
\(15.090 .0 \quad 17.097 .019 .0107 .020 .0133 .0\)
22,0 185,0 128.0 306.0
TO267 TFLEPNUNIST TRAINYNG DATA TG7, EXCHANGE F 7
\(5,080,0 \quad 7,095.09 .0133,013,0127,0\)
\(20,0144,0 \quad 22,0171.0106 .0231 .0\)
TO268 TELEPHUNISY YRAINING DATA 168 , EXCHANGE G ठ
\(5,0123,0 \quad 7,0197,09,0156,013,0165,0\)
16,0 195,0 17,0 189.0 18, U 191,0 112,0 310, 0
YOZ69 TELEPHONIST TRAINING OATA YG9, EXCHANGE F 7
\(5.075,0 \quad 1,0 \quad 62.09 .0136,013.0126 .0\)
\(15,0145,017,0166,0111,0 \quad 214,0\)
TOC70. TELEPHUNIST TRAINING DATA TVO, EXCMANGE G 10
5.0 61.0 7,072.0 9.0 89.0 11.0 76.0
\(13,0106,015,0109,017,0155,018,0179,0\)
19,0 188,0 902,0 335,0
TOZ79 TELEPHUNISY TRAINING DATA T71, EXCHANGE F
1
5.0 113,0 1,0 112,09,0 122,013, 1 100,0

TOZTZ TELEPHONIST TRAINING DATA TTZ, EXCHANGE F 7
\(5.0110 .0 \quad 1.0138 .09 .0102 .013,0131,0\)
15.0 192.0 17.0 202.0 107,0 244.0

TOZ73 TELEPHONIST TRAINING DATA T73, EXCHANGE F 7
5.0 144.0 7,0 232,0 9.0 234,0 13,0,205,0

15,0 197,0 17.0 217.0 193.0 240.0
TOZ74 TELEPHONIST TRAINING DATA T14, EXCHANGE G 10
5.074 .01 .089 .09 .0197 .011 .076 .0
13.086 .015 .0104 .017 .0137 .019 .0116 .0

20,0 941.0 36,0 237.0
TOZ75 TELEPHONIST TRAINING DATA TTS EXCHANGE F 7
5.0 82, 0 7,0 170.0 9,0 195,0 15,0 156,0
\(20.0178 .0 \quad 22,0192.0108 .025 \mathrm{~L}, 0\)

YOZ76 TELEPHONIST TRAINING DATA TYG, EXCHANGE G 10
\(5.059 .07 .019 .09 .0 \quad 190.011 .0194 .0\)
\(13,0923,095,0100.097,0960,019,0155,0\)
20.0 154.0 194.0 254.0

TOC77 TEGEPHONIST IRAINING DATA TYZ, EXCHANGE F 7
\(5,0204.0 \quad 1.0214,09.0218 .015,0181,0\)
15.0 178,0 17.0 109.0 121,0 203,0

TOZ78 TELEPHOLISY YRAINING OATA TT8, EXCHANGE F 9
5.0 45.0 7.0 137.0 9.0 130.0 15.0 106.0

15,0137,0 17,0 122.0 18,0115,0 119.0 141,0
\(140.0221,0\)
TOZ79 TELEPMONIST TRAINING DATA T79, EXCHANGE F 7
\(5.078 .6 \quad 1,0 \quad 87.09 .0 \quad 120,0 \quad 15,087.0\)
\(20,0124,0 \quad 26,0157.0133,022.4,0\)
TO280 TELEPHONIST TRAINING DATA T80, EKCHANGE F 7
\(\begin{array}{lllllllllllll}5.0 & 85.0 & 7.0 & 82.0 & 9.0 & 117.0 & 13.0 & 100.0\end{array}\)
\(20,0144,022,0151.0109,0214.0\)
FO281. TELEPHUNIST TRAINING IATA T81, EXCHANGE F 7
5.0 75.0 7.0 \(141.09 .0154 .015,0129.0\)

15,0 153.0 17,0 187.0 207,0 251,0
YOZ82 TELEPHONIST TRAINING DATA TBZ EXCTIANGE G 9
\(5.040 .0 \quad 7.032 .09 .0 \quad 58.911 .0104 .0\)
17,0 155,0 19,0 958.0 21, 11 185,0 63.0 194, 0
107,0 262.0
TOZ83 TELEPHONIST TRAINING DATA T83. EXCHANGE F 7
5.0190 .01 .0117 .010 .0159 .013 .0133 .0

20,0 182.0 22,0 1/4.0 112.0 21L.0
TO284 TELEPHUNIST TRAINING DATA T84, EXCHANGE G 9
\(5.043 .0 \quad 7.0 \quad 57.0 \quad 13.070 .015 .0 \times 9.0\)
\(17,088.019 .0115 .020 .0131,021,0174,0\)
129.0252 .0

TOZ85 TELEPHONIST TRAINING DATA TBS EXCHANGE F 7
5,0 132,01.0 155,09.0 167,0 15,0112.0
\(15,0132,017,0100,077,0279,0\)
YOZ86 TELEPHQNIST TRAINING DATA TXG, EXCHANGE F 7
\(5.0 \quad 60.0 \quad 7,093.0 \quad 9.0 \quad 107,0 \quad 13,0 \quad 111,0\)
\(15,0149.017,0232.0150 .0200 .0\)

YOZ87 TELEPHONIST TRAINING DATA TB7. EXCHANGE F 7
5.0 117.0 7.0 113,0 10.0 157.0 13.0 195.0
\(20.0160 .0 \quad 22.0 \quad 183.0113,0207.0\)
POG88 TELEPHONIST TRAINING DATA TB8, EXCHANGE F \(\gamma\)
\(5.0105 .07 .0 \quad 57.0 \quad 13.070 .0 \quad 15.089 .0\)
\(20.0151 .0 \quad 22,0 \quad 204.0 \quad 123,0 \quad 203,0\)
TO289 TELEPHONIST TRAINING OATA T89, EXCHANGE F 7
5.0 122.0 1.0 142.09.0 102.013.0161.0

20,0 184.0 26.0 203.0 106.0 25y.0
TO290 TELEPHUNIST TRAINING DATA T9O, EXCHANGE G 10
5.0 58.0 1.0 49.0 9.0 58.0 11.0 61.0
13.079.0 15.0 50.017.081.019.0 55.0
\(20,0168.0135 .0302 .0\)
TOC91 TELEPHUNIST TRAINING DATA TY1. EXCHANGE F 7
\(5,0123.0 \quad 7,0157,09.0192 .013,0161,0\)
\(95,0163,017,0208,0109,0210,0\)
Y0292 TELEPHUNIST TRAINING OATA T9Z, EXCHANGE F 7
\(5.0195 .07 .0135,09.0139 .013 .0156 .0\)
\(15,0986,017,0110.0100,0215.0\)
T0C93 TELEPHUNIST TRAINING OATA 993 EXCHANGE Ǵ 10
5.0 73,0 \(7,075,010.0120,015,099,0\)
\(15,094.017 .0125 .019 .0134,0<1.0144 .0\)
\(30,0199.0126 .0<89.0\)
TO29६ TELEPHONISY TRAINING DATA TY4, EXCHANGE G 10
5.0 91.0 7,0107.0 9.0114.011.0123.0
\(10,0135,098.0\) 444.0 29.0 156.0 22, 0 153.0
23.0153 .0914 .0542 .0

TOZQ5 TELEPHONIST TRAINING DATA TOSI EXCHANGE F
\(\begin{array}{llllllll}7 \\ 0 & 115.0 \quad 1.0 & 153.0 & 9.0 & 155.0 \quad 13.11186 .0\end{array}\)
95.0 978.0 97,0 1ע3.0 155.0 264.0

TO296 TELEPHUNIST TRAINING DATA TOGI EXGMANGE G 10
\(5.0129 .0 \quad 1.0146 .09 .0141 .011,0125.0\)
13.0 161.0 15,0 146.017.0 175,018.0185,0
\(19,0175.0\) 909.0 256.0

\section*{APPENDIX F}

BEST FIT PARAMETER VALUES FOR DATA IN APPENDIX C

\section*{BEST FIT PARAMETER VALUES BEVIS MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(Y_{C}\) & \(Y_{f}\) & TAN & FINAL & START \\
\hline 100 & 22.0 & 80.32 & 32.21 & 102. 32 & 22.00 \\
\hline 101 & 24.16 & 72.86 & 44.69 & 97.01 & 24.16 \\
\hline 102 & 115.26 & 72.64 & 4.68 & 187.90 & 115.26 \\
\hline 103 & 17.38 & 58.79 & 23.60 & 76.17 & 17.38 \\
\hline 104 & 18.68 & 109.09 & 79.22 & 127.77 & 18.68 \\
\hline 105 & 55.77 & 73.31 & 6.12 & 129.07 & 55.77 \\
\hline 106 & 61.00 & 73.91 & 6.29 & 134.91 & 61.00 \\
\hline 107 & -1.41 & 290.24 & 77.70 & 288.83 & -1.41 \\
\hline 108 & -3.63 & 123.42 & 29.22 & 119.78 & \(-3.63\) \\
\hline 109 & -2. 29 & 69.28 & 6.36 & 65.67 & -2.29 \\
\hline 110 & -2. 29 & 69.28 & 6.36 & 136.27 & -2.29 \\
\hline 111 & 10.21 & 58.48 & 9. 83 & 68.69 & 10.21 \\
\hline 112 & -1.87 & 10.51 & 1.64 & 8. 64 & \(-1.87\) \\
\hline 113 & 4.96 & 105.18 & 4. 33 & 110.14 & 4.96 \\
\hline 114 & 24.34 & 82.33 & 6.63 & 106.68 & 24. 34 \\
\hline 115 & 1460.26 & 3502.32 & 19.79 & 4962. 59 & 1460.26 \\
\hline 116 & 1475.11 & 5862.90 & 22.25 & 7338.01 & 1475.11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(Y_{c}\) & \(Y_{f}\) & TAN & TINAL & START \\
\hline \multicolumn{6}{|l|}{118} \\
\hline 119 & 181.26 & 31.47 & 49.21 & 49.49 & 181.26 \\
\hline 120 & 99.64 & 157.46 & 13.52 & 257.10 & 99.64 \\
\hline 121 & \(-22.78\) & 259.24 & 6.68 & 236.46 & -22.78 \\
\hline 122 & 65.33 & 180.59 & 18.91 & 245.92 & 65.33 \\
\hline 123 & 74.73 & 164.11 & 20.13 & 238.84 & 74.73 \\
\hline 124 & 71.35 & 156.42 & 20.14 & 227.77 & 71.35 \\
\hline 125 & 58.49 & 195.46 & 26.33 & 253.95 & 58.49 \\
\hline 126 & 38.95 & 197.37 & 21.50 & 236.32 & 38.95 \\
\hline 127 & -13.82 & 261.49 & 17. 33 & 247.68 & \(-13.82\) \\
\hline 128 & 1.09 & 272.12 & 25.94 & 273.21 & 1.09 \\
\hline 129 & 33.82 & 130.69 & 53. 74 & 164.52 & 33.82 \\
\hline \multicolumn{6}{|l|}{130} \\
\hline \multicolumn{6}{|l|}{131} \\
\hline 132 & 20.47 & 37.08 & 14.21 & 20.47 & 20.47 \\
\hline 133 & 24.99 & 90.35 & 52.98 & 115.34 & 24.99 \\
\hline 134 & 26.00 & 324.98 & 111.41 & 350.97 & 26.00 \\
\hline 135 & 14.71 & 178.98 & 40.84 & 193.68 & 14.71 \\
\hline 136 & 157.26 & 155.08 & 26.40 & 312.34 & 157.26 \\
\hline 137 & 80.42 & 70.57 & 3.21 & 150.99 & 80.42 \\
\hline 138 & 129.15 & 49.79 & 14.03 & 178.94 & 129.15 \\
\hline 139 & 144.42 & 64.82 & 7.28 & 209.24 & 144.42 \\
\hline 140 & 21.70 & 93.90 & 39.15 & 115.60 & 21.70 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(\mathrm{Y}_{\mathrm{c}}\) & \(\mathrm{Y}_{\mathrm{f}}\) & TAN & FINAL & START \\
\hline 141 & 13.64 & 152.14 & 144.71 & 165.79 & 13.64 \\
\hline \multicolumn{6}{|l|}{142} \\
\hline 144 & 17.98 & 82.66 & 75. 77 & 100.64 & 17.98 \\
\hline 145 & 22.59 & 62.97 & 20.63 & 85.56 & 22.59 \\
\hline 146 & 3. 18 & 72.56 & 10.59 & 104.35 & 3.18 \\
\hline 147 & 61.66 & 86.55 & 7.71 & 148.22 & 61.66 \\
\hline 148 & 44.24 & 60.48 & 9.95 & 104.73 & 44. 24 \\
\hline 149 & 72. 88 & 67.06 & 3.64 & 139.94 & 72.88 \\
\hline 150 & 61.42 & 117.75 & 12.01 & 179.17 & 61.42 \\
\hline 151 & 63.27 & 92.06 & 6.58 & 155.32 & 63.27 \\
\hline 152 & 53.80 & 932.60 & 401.27 & 986.41 & 53. 80 \\
\hline 153 & -24.09 & 139.68 & 11.82 & 115.59 & -24.09 \\
\hline 154 & \(-2.66\) & 170.77 & 35.63 & 168.11 & -2.66 \\
\hline \multicolumn{6}{|l|}{155} \\
\hline \multicolumn{6}{|l|}{156} \\
\hline \multicolumn{6}{|l|}{157} \\
\hline 158 & -18.74 & 142.99 & 12.52 & 124.25 & -18.74 \\
\hline 159 & 16.95 & 11.66 & 3.11 & 28.61 & 16.95 \\
\hline 160 & 10.43 & 19.52 & 2.35 & 29.95 & 10.43 \\
\hline 161 & 3.44 & 31.07 & 2.08 & 34.51 & 3. 44 \\
\hline 162 & -12.18 & 38.03 & 1.92 & 25.86 & -12.18 \\
\hline 163 & 8.20 & 26.18 & 2.09 & 34.39 & 8.20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(Y_{c}\) & \(\mathrm{Y}_{\mathrm{f}}\) & TAN & FINAL & START \\
\hline 164 & 26.60 & 12.10 & 3.15 & 38.70 & 26.60 \\
\hline 165 & 77.72 & 22.12 & 2.65 & 99.84 & 77.72 \\
\hline 166 & 63.68 & 35.64 & 1.12 & 99.31 & 63.68 \\
\hline 167 & 76.43 & 22.82 & 1.02 & 99.25 & 76.43 \\
\hline 168 & 85.63 & 14.82 & 5.11 & 100.44 & 85.63 \\
\hline 169 & 63.08 & 33.38 & 0.98 & 96.46 & 63.08 \\
\hline 170 & 21.37 & 74. 75 & 3.75 & 96.12 & 21.37 \\
\hline 171 & 76.30 & 24. 24 & 4.42 & 100.54 & 76.30 \\
\hline \multicolumn{6}{|l|}{172} \\
\hline 173 & 67.33 & 61.93 & 21.22 & 129.26 & 67.33 \\
\hline 174 & 79.31 & 20.88 & 4.26 & 100.19 & 79.31 \\
\hline 175 & 82. 11 & 94. 50 & 11.72 & 176.62 & 82.11 \\
\hline 176 & 92.28 & 165.03 & 36.31 & 257.31 & 92.28 \\
\hline 177 & 57.07 & 186.90 & 17.58 & 243.98 & 57.07 \\
\hline 178 & 24.21 & 112.15 & 7.67 & 136.36 & 24.21 \\
\hline 179 & 60.89 & 156.50 & 39.17 & 217.39 & 60.89 \\
\hline 180 & 86.82 & 132.13 & 25.54 & 218.95 & 86.82 \\
\hline \multicolumn{6}{|l|}{181} \\
\hline 182 & 73.70 & 133.43 & 55.27 & 207. 13 & 73.70 \\
\hline 183 & 72.09 & 219.27 & 36.90 & 291.36 & 72.09 \\
\hline 184 & 44.69 & 129.58 & 4.63 & 174.27 & 44.69 \\
\hline 185 & 95.23 & 160.28 & 25.09 & 255.52 & 95.23 \\
\hline 186 & 32.76 & 176.94 & 9.89 & 209. 71 & 32.76 \\
\hline 187 & 30.90 & 77.30 & 17.85 & 108.20 & 30.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & K & A & B & FINAL & START \\
\hline 100 & 76.18 & 0. 30 & 0.93 & 76.18 & 22.56 \\
\hline 101 & 76.96 & 0.32 & 0.95 & 76.96 & 24.80 \\
\hline 102 & 187.48 & 0.63 & 0.79 & 187.48 & 117.78 \\
\hline 103 & 64.07 & 0.29 & 0.92 & 64.07 & 18.45 \\
\hline 104 & 79.43 & 0.25 & 0.96 & 79.43 & 19.48 \\
\hline \(105^{\circ}\) & 126. 94 & 0.46 & 0.81 & 126.94 & 58.21 \\
\hline 106 & 133.92 & 0. 48 & 0.83 & 133.92 & 64. 34 \\
\hline 107 & 87.28 & 0.040 & 0.89 . & 87. 28 & 3.51 \\
\hline 108 & 82.34 & 0.043 & 0.89 & 82. 34 & 3.54 \\
\hline 109 & 64.52 & 0.22 & 0.90 & 64.52 & 14.05 \\
\hline 110 & 66. 33 & 0.15 & 0.81 & 66. 33 & 9. 74 \\
\hline 111 & 68.00 & 0.26 & 0.88 & 68.00 & 17. 78 \\
\hline 112 & 8.61 & 0.098 & 0.45 & 8.61 & 0.85 \\
\hline 113 & 99.25 & 0. 14 & 0.66 & 99.25 & 13. 97 \\
\hline 114 & 98.93 & 0.28 & 0.79 & 98.93 & 28.10 \\
\hline 115 & 4628.92 & 0.33 & 0.92 & 4628.92 & 1515.32 \\
\hline 116 & 5733.79 & 0.27. & 0.90 & 5733.79 & 1532.85 \\
\hline 117 & 10254.76 & 0.13 & 0.98 & 10254.76 & 1329.12 \\
\hline 118 & 25148. 37 & 0.052 & 0.98 & 25148.37 & 1307:36 \\
\hline 119 & 48. 72 & 0.40 & 0.97 & 48. 72 & 19. 70 \\
\hline 120 & 257.11 & 0.43 & 0.92 & 257.11 & 111.66 \\
\hline 121 & 236. 58 & 0.19 & 0.84 & 236.58 & 45. 40 \\
\hline 122 & 245.71 & 0.32 & 0.93 & 245.71 & 77. 98 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES GOMPERTZ MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & K & A & B & FINAL & START \\
\hline 123 & 238.72 & 0.36 & 0. 94 & 238.72 & 84.78 \\
\hline 124 & 227. 72 & 0.35 & 0. 94 & 227.72 & 80.38 \\
\hline 125 & 253.18 & 0.29 & 0.95 & 253.18 & 73.39 \\
\hline 126 & 236.01 & 0.24 & 0.93 & 236.01 & 57.12 \\
\hline 127 & 247.07 & 0.11 & 0.92 & 247.07 & 28.01 \\
\hline 128 & 270.54 & 0.10 & 0.94 & 270.54 & 27.65 \\
\hline 129 & 124.51 & 0.28 & 0.96 & 124.51 & 35.23 \\
\hline 130 & 87.55 & 0.19 & 0.98 & 87.55 & 17.16 \\
\hline 131 & 129.82 & 0.19 & 0.98 & 129.82 & 24.29 \\
\hline 132 & 53.58 & 0.39 & 0.89 & 53.58 & 20.76 \\
\hline 133 & 88.27 & 0.29 & 0.96 & 88.27 & 25.99 \\
\hline 134 & 146.46 & 0.19 & 0.95 & 146.46 & 27.72 \\
\hline 135 & 106.18 & 0.15 & 0.90 & 106.18 & 16. 44 \\
\hline 136 & 305.13 & 0.53 & 0.95 & 305.13 & 160.36 \\
\hline 137 & 150.95 & 0.56 & Q. 71 & 150.95 & 84.57 \\
\hline 138 & 178.3] & 0.73 & 0.92 & 178.31 & 129.95 \\
\hline 139 & 208. 54 & 0.70 & 0.86 & 208. 54 & 145.62 \\
\hline 140 & 93.14 & 0.25 & 0.96 & 93.14 & 23.52 \\
\hline 141 & 69.12 & 0.20 & 0.96 & 69.12 & 14.17 \\
\hline 142 & 300. 40 & 0.073 & 0.98 & 300.40 & 21.99 \\
\hline 143 & 134.84 & 0.18 & 0.96 & 134.84 & 24.16 \\
\hline 144 & 77.37 & 0.24 & 0.97 & 77.37 & 19.13 \\
\hline 145 & 77.72 & 0.31 & 0.92 & 77.72 & 24.14 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES GOMPERTZ MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DAT A SET & K & A & B & FINAL & START \\
\hline 146 & 71.49 & 0. 14 & 0.86 & 71.49 & 9.80 \\
\hline 147 & 147.77 & 0.46 & 0. 86 & 147.77 & 68.20 \\
\hline 148 & 103.49 & 0.45 & 0. 88 & 103.49 & 46.64 \\
\hline 149 & 139.64 & 0.53 & 0. 72 & 139.64 & 74.61 \\
\hline 150 & 166.40 & 0.38 & 0.88 & 166.40 & 63.32 \\
\hline 151 & 153.71 & 0.43 & 0. 83 & 153.71 & 66.37 \\
\hline 152 & 282.41 & 0.20 & 0.98 & 282.41 & 55.13 \\
\hline \multicolumn{6}{|l|}{153} \\
\hline 154 & 115.47 & 0.070 & 0.92 & 115.47 & 8.08 \\
\hline \multicolumn{6}{|l|}{155} \\
\hline 156 & 139.97 & 0.016 & 0.92 & 139.97 & 2.18 \\
\hline \multicolumn{6}{|l|}{157} \\
\hline 158 & 109.12 & 0.017 & 0.83 & 109.12 & 1.84 \\
\hline 159 & 28. 57 & 0.61 & 0.70 & 28.57 & 17.38 \\
\hline 160 & 29.89 & 0.42 & 0.62 & 29.89 & 12.48 \\
\hline 161 & 34. 33 & 0. 24 & 0. 54 & 34.33 & 8.12 \\
\hline 162 & 25.59 & 0.015 & 0.44 & 25.59 & 0.39 \\
\hline 163 & 34.24 & 0.31 & 0.54 & 34.24 & 10.46 \\
\hline 164 & 38.63 & 0.69 & 0.70 & 38.63 & 26.76 \\
\hline 165 & 99.81 & 0.78 & 0.67 & 99.81 & 78.28 \\
\hline 166 & 99.31 & 0.68 & 0.39 & 99.31 & 66.30 \\
\hline 167 & 99.25 & 0.78 & 0.37 & 99.25 & 77. 53 \\
\hline 168 & 100.40 & 0.85 & 0.81 & 100.40 & 85.80 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES GOMPERTZ MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & K & A & B & FINAL & START \\
\hline 169 & 96.45 & 0.68 & 0.35 & 96.45 & 65.69 \\
\hline 170 & 94.95 & 0.29 & 0.70 & 94.95 & 27.44 \\
\hline 171 & 100.43 & 0.76 & 0.78 & 100. 43 & 76.72 \\
\hline 172 & & & & & \\
\hline 173 & 121.66 & 0.56 & 0.93 & 121.66 & 67.60 \\
\hline 174 & 100.09 & 0.79 & 0.78 & 100.09 & 79. 55 \\
\hline 175 & 172.11 & 0.49 & 0.89 & 172.11 & 84.10 \\
\hline 176 & 253.86 & 0.38 & 0.96 & 253.86 & 97.67 \\
\hline 177 & 243.78 & 0.29 & 0.93 & 243.78 & 71.62 \\
\hline 178 & 134.17 & 0.26 & 0.84 & 134.17 & 35.31 \\
\hline 179 & 214.64 & 0.32 & 0.96 & 214.64 & 69.02 \\
\hline 180 & 218.17 & 0.40 & 0.95 & 218.17 & 88.29 \\
\hline 181 & 322.67 & 0.23 & 0.98 & 322.67 & 74.73 \\
\hline 182 & 201.22 & 0.38 & 0.97 & 201.22 & 76.58 \\
\hline 183 & 284.60 & 0.26 & 0.96 & 284.60 & 75.46 \\
\hline 184 & 173.75 & 0.34 & 0.77 & 173.75 & 58.52 \\
\hline 185 & 254.54 & 0.40 & 0.95 & 254.54 & 102.88 \\
\hline 186 & 209.31 & 0.28 & 0.89 & 209. 31 & 59.71 \\
\hline 187 & 104.03 & 0.32 & 0.92 & 104.03 & 32.80 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 100 & 163.97 & 0.0070 & 0.00013 & 163.97 & 21.98 \\
\hline 101 & 146.95 & 0.0081 & 0.00011 & 146.95 & 24.01 \\
\hline 102 & 200.22 & 0.010 & 0. 0035 & 200.22 & 101.28 \\
\hline 103 & 111.49 & 0.011 & 0.00030 & 111.49 & 17.08 \\
\hline 104 & 209.05 & 0.0053 & 0.000039 & 209.05 & 18.58 \\
\hline 105 & 151.85 & 0.010 & 0.0016 & 151.85 & 52.40 \\
\hline 106 & 150.22 & 0.010 & 0.0021 & 150.22 & 52. 21 \\
\hline \multicolumn{6}{|l|}{107} \\
\hline 108 & 201.82 & 0.0049 & 0.00010 & 201.82 & \(-3.60\) \\
\hline 109 & 77.39 & 0.013 & 0.0015 & 77.39 & -0.04 \\
\hline 110 & 75.39 & 0.0092 & 0.0035 & 75.39 & \(-33.33\) \\
\hline 111 & 76.78 & 0.011 & 0.0025 & 76.78 & \(-11.12\) \\
\hline 112 & 9.21 & 0.0083 & 0.15 & 9.21 & -111.41 \\
\hline 113 & 155.11 & 0.0066 & 0.0012 & 155.11 & -2.53 \\
\hline 114 & 141.88 & 0.0084 & 0.0010 & 141.88 & 22.21 \\
\hline 115 & 6704.22 & 0.00019 & 0.0000069 & 6704.22 & 1449.91 \\
\hline 116 & 11607.18 & 0.000099 & 0.0000026 & 11607.18 & 1474.84 \\
\hline \multicolumn{6}{|l|}{117} \\
\hline \multicolumn{6}{|l|}{118} \\
\hline 119 & 57.42 & 0.024 & 0.00058 & 57.42 & 15.73 \\
\hline 120 & 263.95 & 0.0037 & 0.00092 & 263.95 & \(-9.62\) \\
\hline \multicolumn{6}{|l|}{121} \\
\hline 122 & 259.46 & 0.0043 & 0.00042 & 259.46 & 28.96 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES MATHEMATICAL MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 123 & 256.45 & 0.0049 & 0.00038 & 256.45 & 51.96 \\
\hline 124 & 243.26 & 0.0051 & 0.00041 & 243.26 & 48.72 \\
\hline 125 & 281.63 & 0.0040 & 0.00022 & 281.63 & 32.02 \\
\hline 126 & 257.91 & 0.0040 & 0.00030 & 257.91 & 5.88 \\
\hline 127 & 274.48 & 0.0029 & 0.00030 & 274.48 & \(-75.95\) \\
\hline 128 & 323.25 & 0.0029 & 0.00013 & 323.25 & -12.72 \\
\hline 129 & 249.34 & 0.0046 & 0.000054 & 249.34 & 33.43 \\
\hline \[
\begin{aligned}
& 130 \\
& 131
\end{aligned}
\] & & & & & \\
\hline 132 & 79.07 & 0.017 & 0.00078 & 79.07 & 20.66 \\
\hline 133 & 167.26 & 0.0070 & 0.000089 & 167.26 & 24.60 \\
\hline \multicolumn{6}{|l|}{134} \\
\hline 135 & 351.42 & 0.0030 & 0.000039 & 351.42 & 14.83 \\
\hline 136 & 356.60 & 0.0048 & 0.00019 & 356.60 & 150.14 \\
\hline 137 & 155.44 & 0.0078 & 0.0094 & 155.44 & 27.34 \\
\hline 138 & 190.06 & 0.015 & 0.0014 & 190.06 & 123.55 \\
\hline 139 & 226.29 & 0.011 & 0.0018 & 226.29 & 139.20 \\
\hline 140 & 172.94 & 0.0065 & 0.00011 & 172.94 & 21.27 \\
\hline 141 & 305.73 & 0.0034 & 0.000012 & 305.73 & 13.65 \\
\hline \multicolumn{6}{|l|}{142} \\
\hline \multicolumn{6}{|l|}{143} \\
\hline 144 & 131.43 & 0.0088 & 0.000092 & 131.43 & 17.46 \\
\hline 145 & 118.17 & 0.010 & 0.00036 & 118.17 & 22.04 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 146 & 99.59 & 0.010 & 0.00091 & 99.59 & 0.75 \\
\hline 147 & 159.92 & 0.0080 & 0.0022 & \[
159.92
\] & 35.04 \\
\hline 148 & 120.43 & 0.012 & 0.0014 & 120.43 & 40.27 \\
\hline 149 & 148.09 & 0.012 & 0.0054 & 148.09 & 63.50 \\
\hline 150 & 244.33 & 0.0055 & 0.00031 & 244.33 & 61.12 \\
\hline 151 & 178.27 & 0.0083 & 0.0014 & 178.27 & 59.19 \\
\hline \multicolumn{6}{|l|}{152} \\
\hline 153 & 165.71 & 0.0053 & 0.00038 & 165.71 & -24.32 \\
\hline 154 & 262.57 & 0.0038 & 0.000073 & 262.57 & --3.99 \\
\hline \multicolumn{6}{|l|}{155} \\
\hline \multicolumn{6}{|l|}{156} \\
\hline \multicolumn{6}{|l|}{157} \\
\hline 158 & 183.5 & 0.0049 & 0.00031 & 183.5 & -19.62 \\
\hline 159 & 30.16 & 0.063 & 0.038 & 30.16 & 14.15 \\
\hline 160 & 31.45 & 0.019 & 0.046 & 31.45 & -20.36 \\
\hline 161 & 36.73 & 0.011 & 0.033 & 36.73 & \(-54.68\) \\
\hline 162 & 28.52 & 0.0099 & 0.029 & 28.52 & \(-72.60\) \\
\hline 163 & 36.92 & 0.024 & 0.030 & 36.92 & \(-4.69\) \\
\hline 164 & 40.63 & 0.063 & 0.031 & 40.63 & 24.63 \\
\hline 165 & 102.17 & 0.026 & 0.029 & 102.17 & 63.88 \\
\hline \multicolumn{6}{|l|}{166} \\
\hline 167 & & & & & \\
\hline 168 & 103.29 & 0.049 & 0.015 & 103.29 & 82.73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline \multicolumn{6}{|l|}{169} \\
\hline & & & & & \\
\hline 170 & 109.22 & 0.0099 & 0.0041 & 109.22 & 8. 42 \\
\hline 171 & 105.41 & 0.031 & 0.0097 & 105.41 & 73.03 \\
\hline \multicolumn{6}{|l|}{172} \\
\hline \multicolumn{6}{|l|}{173} \\
\hline 174 & 104.86 & 0.036 & 0.011 & 104.86 & 77.45 \\
\hline 175 & 213.96 & 0.0074 & 0.00054 & 213.96 & 79.72 \\
\hline 176 & 300.28 & 0.0047 & 0.00013 & 300.28 & 86.66 \\
\hline 177 & 262.19 & 0.0041 & 0.00042 & 262.19 & 20.05 \\
\hline 178 & 162.86 & 0.0066 & 0.0011 & 162.86 & 10.89 \\
\hline 179 & 249.74 & 0.0050 & 0.00015 & 249.74 & 50.88 \\
\hline 180 & 247.17 & 0.0062 & 0.00024 & 247.17 & 86.10 \\
\hline \multicolumn{6}{|l|}{181} \\
\hline 182 & 253.27 & 0.0055 & 0.000087 & 253.27 & 71.37 \\
\hline 183 & 360.65 & 0.0034 & 0.000079 & 360.65 & 70.82 \\
\hline 184 & 192.44 & 0.0052 & 0.0023 & 192.44 & 1.70 \\
\hline 185 & 282.63 & 0.0050 & 0.00026 & 282.63 & 81.22 \\
\hline 186 & 215.69 & 0.0012 & 0.0015 & 215.69 & -608.14 \\
\hline 187 & 135.48 & 0.0095 & 0.00047 & 135.48 & 29.94 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES WILTSHIRE MODEL
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DATA SET & C & K & ALPHA & N & FINAL & START \\
\hline 100 & 67.73 & 43.33 & 0.023 & 1. 40 & 67.73 & 24.41 \\
\hline \multicolumn{7}{|l|}{101} \\
\hline 102 & 191. 24 & 98.16 & 0.43 & 0.68 & 191.24 & 93.08 \\
\hline 103 & & & & & & \\
\hline \multicolumn{7}{|l|}{104} \\
\hline 105 & 126.18 & 65.55 & 0.12 & 1.19 & 126.18 & 60.63 \\
\hline 106 & 139.29 & 93.42 & 0.29 & 0.72 & 139.29 & 45.88 \\
\hline 107 & 73.26 & 65.44 & 0.0030 & 2.18 & 73.26 & 7. 82 \\
\hline 108 & 76.93 & 70.35 & 0.0052 & 1. 88 & 76.93 & 6.58 \\
\hline 109 & 68.86 & 75.71 & 0.19 & 0.71 & 68.86 & \(-6.85\) \\
\hline 110 & 67.14 & 71.98 & 0.18 & 0.95 & 67.14 & \(-4.84\) \\
\hline \multicolumn{7}{|l|}{111} \\
\hline 112 & & & & & & \\
\hline 113 & 93.14 & 70.18 & 0.085 & 1.82 & 93. 14 & 22.96 \\
\hline \multicolumn{7}{|l|}{114} \\
\hline 115 & 4323.81 & 2589.15 & 0.010 & 1.67 & 4323.81 & 1734.66 \\
\hline 116 & 4857.07 & 3060.84 & 0.017 & 1. 74 & 4857.07 & 1796.23 \\
\hline 117 & 5771.53 & 4265.34 & 0.0014 & 1. 76 & 5771.53 & 1506.19 \\
\hline 118 & & & & & & \\
\hline \multicolumn{7}{|l|}{119} \\
\hline 120 & & & & & & \\
\hline \multicolumn{7}{|l|}{121} \\
\hline 122 & 247. 22 & 220. 58 & 0.14 & 0.73 & 247.22 & 26.64 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES WILTSHIRE MODEL
DATA SET
C
K
ALPHA N
FINAL START

123
124
125
126
236. 96
212.85
0.071
0.88
236.96
24.12

127
128
129
130
131
132
133
134
\(\begin{array}{lllllll}135 & 83.93 & 60.71 & 0.0059 & 2.08 & 83.93 & 23.22\end{array}\)
136
137
138
139
214. 71
80.49
0.23
0.74
\(214.71 \quad 134.22\)
140
141
82.05
67.55
0.0097
1.17
82.05
14. 50

142
143
350.45
326. 17
0.0043
1.10
350.45
24. 28

144
145
92. 45
71.28
0.056
0.90
\(92.45 \quad 21.16\)

BEST FIT PARAMETER VALUES WILTSHIRE MODEL
\begin{tabular}{cccccccc} 
DATASET & C & K & ALPHA & N & FINAL & START \\
146 & 71.73 & 62.58 & 0.049 & 1.28 & 71.73 & 9.16 \\
147 & 105.34 & 62.39 & 0.11 & 0.95 & 105.34 & 42.95 \\
148 & & & & & & & \\
149 & 151.60 & 77.57 & 0.022 & 1.77 & 151.60 & 74.03 \\
150 & 150.52 & 70.48 & 0.028 & 1.79 & 150.52 & 80.05
\end{tabular}

154

155

156

157

158

159

160

161

162

163

164
\(\begin{array}{lllllll}165 & 100.94 & 63.64 & 1.33 & 0.42 & 100.94 & 37.30\end{array}\)

166

167

168

169

BEST FIT PARAMETER VALUES WILTSHIRE MODEL
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DATA SET & C & K & ALPHA & N & FINAL & START \\
\hline 170 & 97. 13 & 82. 18 & 0.34 & 0.88 & 97.13 & 14.95 \\
\hline 171 & 100.41 & 23. 40 & 0.20 & 1.05 & 100.41 & 77.00 \\
\hline \multicolumn{7}{|l|}{172} \\
\hline \multicolumn{7}{|l|}{173} \\
\hline 174 & 99.38 & 16. 72 & 0.096 & 1. 50 & 99.38 & 82.56 \\
\hline \multicolumn{7}{|l|}{175} \\
\hline 176 & 254.12 & 155.69 & 0.017 & 1.13 & 254.12 & 98.43 \\
\hline 177 & 262.70 & 564.88 & 0.75 & 0.32 & 262. 70 & -302.19 \\
\hline \multicolumn{7}{|l|}{178} \\
\hline \multicolumn{7}{|l|}{179} \\
\hline \multicolumn{7}{|l|}{180} \\
\hline \multicolumn{7}{|l|}{181} \\
\hline 182 & 215.50 & 145.88 & 0.027 & 0.88 & 215.50 & 69.63 \\
\hline \multicolumn{7}{|l|}{183} \\
\hline \multicolumn{7}{|l|}{184} \\
\hline 185 & 257.05 & 167. 71 & 0.053 & 0.91 & 257.05 & 89.33 \\
\hline 186 & & & & & & \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline 100 & 92.31 & 22.73 & 0.0012 & 92.31 & 22.73 \\
\hline 101 & 92.36 & 24.87 & 0.00079 & 92.36 & 24. 36 \\
\hline 102 & 197.77 & 106.60 & 0.0023 & 197.77 & 106.60 \\
\hline 103 & 76.83 & 18. 54 & 0.0017 & 76.83 & 18. 54 \\
\hline 104 & 93.72 & 19.68 & 0.00073 & 93.72 & 19.68 \\
\hline 105 & 142.13 & 55.11 & 0.0022 & 142.13 & 55.11 \\
\hline 106 & 145.02 & 57.57 & , 0.0024 & 145.02 & 57.57 \\
\hline 107 & 104.59 & 5.01 & 0.0022 & 104.59 & 5.01 \\
\hline 108 & 97.75 & 4.95 & 0.0022 & 97.75 & 4.95 \\
\hline 109 & 71.66 & 11.30 & 0.0077 & 71.66 & 11.30 \\
\hline 110 & 72.05 & 2.37 & 0.017 & 72.05 & 2. 37 \\
\hline 111 & 73.57 & 10.97 & 0.0010 & 73.57 & 10.97 \\
\hline 112 & 9.07 & 0.33 & 0.022 & 9.07 & 0.33 \\
\hline 113 & 120.51 & 13.68 & 0.0054 & 120.51 & 13.68 \\
\hline 114 & 117.50 & 27.45 & 0.0031 & 117.50 & 27.45 \\
\hline 115 & 5721.09 & 961.92 & 0.000097 & 5721.09 & 961.92 \\
\hline 116 & 7591.04 & 1304.59 & 0.000036 & 7591.04 & 1304. 59 \\
\hline 117 & 11147.35 & 1129.01 & 0.000017 & 11147.35 & 1129.01 \\
\hline 118 & 18261.02 & 1087.11 & 0.000011 & 18261.02 & 1087.11 \\
\hline 119 & 53.04 & 15.01 & 0.0051 & 53.04 & 15.01 \\
\hline 120 & 310.94 & 131.77 & 0.00064 & 310.94 & 131.77 \\
\hline 121 & 269.36 & 3 91.12 & 0.0014 & 269.36 & 91.12 \\
\hline 122 & 867.76 & 99.04 & 0.000060 & 867.76 & 99.04 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline 123 & 467.46 & 98.69 & 0.00017 & 467.46 & 98.69 \\
\hline 124 & 388.23 & 93. 74 & 0.00021 & 388.23 & 93.74 \\
\hline 125 & 675.17 & 85.65 & 0.00011 & 675.17 & 85.65 \\
\hline 126 & 447.36 & 75.90 & 0.00026 & 447.36 & 75.90 \\
\hline 127 & 416.67 & 56.65 & 0.00030 & 416.67 & 56.65 \\
\hline 128 & 905.35 & 52.16 & 0.00012 & 905.35 & 52.16 \\
\hline 129 & 146.74 & 35.16 & 0.00049 & 146.74 & 35.16 \\
\hline 130 & 94.04 & 17.26 & 0.00046 & 94.04 & 17.26 \\
\hline 131 & 135.37 & 24.40 & 0.00029 & 135.37 & 24.40 \\
\hline 132 & 64.27 & 20.94 & 0.0023 & 64.27 & 20.94 \\
\hline 133 & 102.52 & 25.87 & 0.00069 & 102.52 & 25.87 \\
\hline 134 & 169.68 & 28.22 & 0.00052 & 169.68 & 28.22 \\
\hline 135 & 128.07 & 17.12 & 0.0014 & 128.07 & 17.12 \\
\hline 136 & 335.53 & 155.19 & 0.00022 & 335.53 & 155.19 \\
\hline 137 & 154.75 & 51.98 & 0.0081 & 154.75 & 51.98 \\
\hline 138 & 187.62 & 124.92 & 0.00066 & 187.62 & 124.92 \\
\hline 139 & 222.87 & 141.06 & '0.00097 & 222.87 & 141.06 \\
\hline 140 & 110.66 & 23.66 & 0.00082 & 110.66 & 23.66 \\
\hline 141 & 81.37 & 14.43 & 0.00082 & 81.37 & 14.43 \\
\hline 142 & 200.85 & 22.12 & 0.00020 & 200.85 & 22.12 \\
\hline 143 & 143.72 & 24. 30 & 0.00050 & 143.72 & 24.30 \\
\hline 144 & 81.63 & 18.67 & 0.00072 & 81.63 & 18.67 \\
\hline 145 & 92.71 & 24.17 & 0.0013 & 92.71 & 24.17 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline 146 & 82.17 & 9.62 & 0.0036 & 82.17 & 9.62 \\
\hline 147 & 156.34 & 52.78 & 0.0024 & I 56.34 & 52.78 \\
\hline 148 & 114.23 & 43.77 & 0.0018 & 114.23 & 43.77 \\
\hline 149 & 145. 70 & 59.47 & 0.0052 & 145.70 & 59.47 \\
\hline 150 & 196.09 & 61.71 & 0.00096 & 196.09 & 61.71 \\
\hline 151 & 169.34 & 62.46 & 0.0019 & 169.34 & 62.46 \\
\hline 152 & 288.37 & 55.26 & 0.00015 & 288.37 & 55.26 \\
\hline 153 & 122.25 & 0.53 & 0.0031 & 122.25 & 0.53 \\
\hline 154 & 128.90 & 9.08 & 0.0015 & 128.90 & 9.08 \\
\hline 155 & 430.27 & 14.37 & 0.00013 & 430.27 & 14.37 \\
\hline 156 & 147.99 & 2.15 & 0.0013 & 147.99 & 2. 15 \\
\hline \multicolumn{6}{|l|}{157} \\
\hline 158 & 126.08 & 3.22 & 0.0029 & 126.08 & 3.22 \\
\hline 159 & 29.90 & 15.50 & 0.024 & 29.90 & 15.50 \\
\hline 160 & 31.26 & 4. 98 & 0.051 & 31.26 & 4. 98 \\
\hline 161 & 36.23 & -0.15 & 0. 050 & 36.23 & -0.15 \\
\hline 162 & 27.45 & -0.08 & 0.060 & 27.45 & -0.08 \\
\hline 163 & 36.31 & 5.69 & 0.039 & 36.31 & 5.69 \\
\hline 164 & 40.37 & 25.41 & 0.015 & 40.37 & 25.41 \\
\hline 165 & 102.00 & 67.38 & 0.011 & 102.00 & 67.38 \\
\hline 166 & & & & & \\
\hline
\end{tabular}

167

168

\section*{BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline \multicolumn{6}{|l|}{169} \\
\hline 170 & 104.03 & 21.10 & 0.0068 & 104.03 & 21.10 \\
\hline 171 & 104.78 & 73.83 & 0.0036 & 104.78 & 78.83 \\
\hline \multicolumn{6}{|l|}{172} \\
\hline \multicolumn{6}{|l|}{173} \\
\hline 174 & 104.30 & 77.84 & 0.0034 & 104.30 & 77.84 \\
\hline 175 & 197.87 & 84.41 & 0.0010 & 197.87 & 84.41 \\
\hline \multicolumn{6}{|l|}{176} \\
\hline \multicolumn{6}{|l|}{177} \\
\hline 178 & 152.86 & 34.05 & 0.0027 & 152.86 & 34.05 \\
\hline \multicolumn{6}{|l|}{179} \\
\hline \multicolumn{6}{|l|}{180} \\
\hline 181 & 318.08 & 75.48 & 0.00014 & 318.08 & 75.48 \\
\hline 182 & 257.05 & 89.33 & & 257.05 & 89.33 \\
\hline \multicolumn{6}{|l|}{183} \\
\hline 184 & 193.87 & 61.10 & 0.0028 & 193.87 & 61.10 \\
\hline 185 & 674.28 & 108.22 & 0.000077 & 674.28 & 108.22 \\
\hline 186 & 248. 53 & 32.65 & 0.0045 & 248.53 & 32.65 \\
\hline 187 & 119.82 & 18.32 & 0.0049 & 119.82 & 18.32 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES REPLACEMENT MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline 100 & 68.69 & 23.08 & 0.0017 & 68.69 & 23.08 \\
\hline 101 & 70.26 & 25.36 & 0.0011 & 70.26 & 25.36 \\
\hline 102 & 187.25 & 119.52 & 0.0014 & 187.25 & 119.52 \\
\hline 103 & 59.79 & 19.29 & 0.0021 & 59. 79 & 19.29 \\
\hline 104 & 68.84 & 20.12 & 0.0010 & 68.84 & 20.12 \\
\hline 105 & 125.75 & 59.76 & 0.0019 & 125.74 & 59.76 \\
\hline 106 & 133.40 & 66.57 & 0.0016 & 133.40 & 66.57 \\
\hline 107 & 76.11 & 5.68 & 0.0026 & 76.11 & 5.68 \\
\hline 108 & 76.58 & 6.45 & 0.0023 & 76.58 & 6.45 \\
\hline 109 & 64.07 & 16.99 & 0.0050 & 64.07 & 16.99 \\
\hline 110 & 66.17 & 13.17 & 0.0090 & 66.17 & 13.17 \\
\hline 111 & 67.81 & 21.05 & 0.0054 & 67.81 & 21.05 \\
\hline 112 & 8.61 & 1. 90 & 0.092 & 8.61 & 1.90 \\
\hline 113 & 96.22 & 16.90 & 0.0055 & 96.22 & 16.90 \\
\hline 114 & 96.00 & 30.29 & 0.0032 & 96.00 & 30.29 \\
\hline 115 & 4557.81 & 1077.64 & 0.00010 & 4557.81 & 1077.64 \\
\hline 116 & 5484.52 & 1331.49 & 0.000050 & 5484.52 & 1331.49 \\
\hline 117 & 7095.29 & 1134.99 & 0.000028 & 7095.29 & 1134.99 \\
\hline 118 & 10528. 10 & 1088.54 & 0.000020 & 10528.10 & 1088. 54 \\
\hline 119 & 48.33 & 19.30 & 0.0032 & 48.33 & 19.30 \\
\hline 120 & 267.33 & 135.08 & 0.00069 & 267.33 & 135.08 \\
\hline 121 & 242.36 & 104.77 & 0.0011 & 242.36 & 104.77 \\
\hline 122 & 519.29 & 99.05 & 0.00011 & 519.29 & 99.05 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES REPLACEMENT MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline 123 & 320.64 & 98.51 & 0.00027 & 320.64 & 98.51 \\
\hline 124 & 274.71 & 93.44 & 0.00033 & 274.71 & 93.44 \\
\hline 125 & 412.32 & 85.08 & 0.00019 & 412.32 & 85.08 \\
\hline 126 & 309.22 & 76.38 & 0.00039 & 309.32 & 76.38 \\
\hline 127 & 291.45 & 57.17 & 0.00044 & 291.45 & 57.17 \\
\hline 128 & 525.49 & 51.71 & 0.00021 & 525.49 & 51.71 \\
\hline 129 & 112.94 & 36.42 & 0.00061 & 112.94 & 36.42 \\
\hline 130 & 63.57 & 17.37 & 0.00074 & 63.57 & 17.37 \\
\hline 131 & 87.60 & 24.44 & 0.00049 & 87.60 & 24. 44 \\
\hline 132 & 51.68 & 20.97 & 0.0029 & 51.68 & 20.97 \\
\hline 133 & 80.87 & 26.86 & 0.00083 & 80.87 & 26.86 \\
\hline 134 & 123.14 & 29.18 & 0. 00071 & 123.14 & 29.18 \\
\hline 135 & 92.70 & 17.67 & 0.0018 & 92.70 & 17.67 \\
\hline 136 & 299.06 & 162.30 & 0.00020 & 299.06 & 162.30 \\
\hline 137 & 150.93 & 86.82 & 0.0024 & 150.93 & 86.82 \\
\hline 138 & 177.91 & 130.59 & 0.00048 & 177.91 & 130.59 \\
\hline 139 & 208.10 & 146.58 & 0.00079 & 208.10 & 146.58 \\
\hline 140 & 85.86 & 24.87 & 0. 00098 & 85.86 & 24.87 \\
\hline 141 & 57.07 & 14.59 & 0.0012 & 57.07 & 14.59 \\
\hline 142 & 119.85 & 22.13 & 0.00036 & 119.85 & 22.13 \\
\hline 143 & 97.84 & 24.55 & 0.00078 & 97.84 & 24.55 \\
\hline 144 & 71.72 & 19.96 & 0.00069 & 71.72 & 19.96 \\
\hline 145 & 74.28 & 25.21 & 0.0015 & 74. 28 & 25.21 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES REPLACEMENT MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A & B & THETA & FINAL & START \\
\hline 1.46 & 70.15 & 12.98 & 0.0029 & 70.15 & 12.98 \\
\hline 147 & 147.39 & 71.50 & 0.0011 & 147.39 & 71.50 \\
\hline 148 & 102.79 & 48.38 & 0.0014 & 102.79 & 48.38 \\
\hline 149 & 139.31 & 72.66 & 0.0027 & 139.31 & 72.66 \\
\hline 150 & 159.39 & 63. 57 & 0.0011 & 159.39 & 63.57 \\
\hline 151 & 122.72 & 68.18 & 0.0015 & 152.72 & 68.18 \\
\hline 152 & 224.07 & 55.98 & 0.00019 & 224.07 & 55.98 \\
\hline 153 & 105.48 & 33.28 & 0.0025 & 105.48 & 33.28 \\
\hline 154 & 110.20 & 14.27 & 0.0011 & 110.20 & 14.27 \\
\hline 155 & 287.75 & 14.57 & 0.00019 & 287.75 & 14.57 \\
\hline 156 & 91.76 & 1.88 & 0.0021 & 91.76 & 1.88 \\
\hline 157 & 42.97 & -0.27 & 0.0038 & 42.97 & -0.27 \\
\hline 158 & 106.59 & 6.65 & 0.0024 & 106.59 & 6.65 \\
\hline 159 & 28.55 & 17.68 & 0.013 & 28.55 & 17.68 \\
\hline 160 & 29.87 & 13.56 & 0.017 & 29.87 & 13.56 \\
\hline 161 & 34.35 & 10.24 & 0.018 & 34.35 & 10.24 \\
\hline 162 & 25. 58 & 2.12 & - 0.034 & 25.58 & 2.12 \\
\hline 163 & 34.20 & 11.25 & 0.019 & 34.20 & 11.25 \\
\hline 164 & 38.60 & 26.94 & 0.0098 & 38.60 & 26.94 \\
\hline 165 & 99.80 & 78.71 & 0.0041 & 99.80 & 78.71 \\
\hline 166 & 99. 30 & 67.02 & 0.0095 & 99.30 & 67.02 \\
\hline 167 & 99.25 & 77.83 & 0.010 & 99.25 & 77.83 \\
\hline 168 & 100.37 & 85.94 & 0.0021 & 100.37 & 85.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & A. & B & THETA & FINAL & START \\
\hline 169 & 96.45 & 66.15 & 0.011 & 96.45 & 66.15 \\
\hline 170 & 94. 50 & 30.23 & 0.0043 & 94.50 & 30.23 \\
\hline 171 & 100.36 & 77.07 & 0.0025 & 100.36 & 77.07 \\
\hline \multicolumn{6}{|l|}{172} \\
\hline 173 & 116.63 & 67.71 & 0.00078 & 116.63 & 67.71 \\
\hline 174 & 100.01 & 79.73 & 0.0026 & 100.01 & 79.73 \\
\hline 175 & 168.52 & 85. 71 & 0.0012 & 168.52 & 85.71 \\
\hline \multicolumn{6}{|l|}{176} \\
\hline \multicolumn{6}{|l|}{177} \\
\hline 178 & 133.60 & 41.25 & 0.0021 & 133.60 & 41.25 \\
\hline \multicolumn{6}{|l|}{179} \\
\hline \multicolumn{6}{|l|}{180} \\
\hline 181 & 217.89 & 75. 70 & 0.00024 & 217.89 & 75.70 \\
\hline \multicolumn{6}{|l|}{182} \\
\hline \multicolumn{6}{|l|}{183} \\
\hline 184 & 206. 32 & 34.54 & 0.0021 & 206.52 & 34.54 \\
\hline 185 & 456.61 & 109.13 & 0.00012 & 456.61 & 109.13 \\
\hline 186 & 212.85 & 57.41 & 0.0033 & 212.85 & 57.41 \\
\hline 187 & 102.62 & 24.68 & 0.0039 & 102.62 & 24.68 \\
\hline
\end{tabular}

\section*{BEST FIT PARAMETER VALUES DE JONG MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & A & N & FINAL & START \\
\hline \multicolumn{6}{|l|}{100} \\
\hline \multicolumn{6}{|l|}{101} \\
\hline 102 & 255.50 & 130.22 & 0.22 & 255.50 & 125.28 \\
\hline \multicolumn{6}{|l|}{103} \\
\hline \multicolumn{6}{|l|}{104} \\
\hline \multicolumn{6}{|l|}{105} \\
\hline 106 & 422.88 & 355.14 & 0.066 & 422.88 & 67.75 \\
\hline \multicolumn{6}{|l|}{107} \\
\hline \multicolumn{6}{|l|}{108} \\
\hline 109 & 169.17 & 174.71 & 0.14 & 169.17 & -4.54 \\
\hline 110 & 83.90 & 105.90 & 0.53 & 83.90 & -22.00 \\
\hline 111 & 100.07 & 109.62 & 0.33 & 100.07 & -9. 55 \\
\hline 112 & 9.24 & 6.46 & 0.96 & 9.24 & 2. 79 \\
\hline \multicolumn{6}{|l|}{113} \\
\hline \multicolumn{6}{|l|}{114} \\
\hline \multicolumn{6}{|l|}{115} \\
\hline \multicolumn{6}{|l|}{116} \\
\hline \multicolumn{6}{|l|}{117} \\
\hline \multicolumn{6}{|l|}{118} \\
\hline \multicolumn{6}{|l|}{119} \\
\hline 120 & 268.27 & 397.21 & 0. 70 & 268.27 & -128.94 \\
\hline 121 & 238.41 & 1188.32 & 1.35 & 238.41 & -949.91 \\
\hline 122 & 301.57 & 355.13 & 0.36 & 301.57 & -53.56 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES DE JONG MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DA.TA SET & B & A & N & FINAL & START \\
\hline 123 & 339.09 & 347.62 & 0.25 & 339.09 & -8. 52 \\
\hline 124 & 310.43 & 321.04 & 0.27 & 310.43 & -10.61 \\
\hline 125 & 462.66 & 516.32 & 0.18 & 462.66 & -53.66 \\
\hline 126 & 353.52 & 434. 36 & 0.26 & 353.52 & \(-80.83\) \\
\hline 127 & 336.43 & 553.74 & 0.39 & 336.43 & -217.31 \\
\hline 128 & 2500.36 & 2579.23 & 0.030 & 2500.36 & \(-78.88\) \\
\hline \multicolumn{6}{|l|}{129} \\
\hline 130 & & & & & \\
\hline \multicolumn{6}{|l|}{131} \\
\hline \multicolumn{6}{|l|}{132} \\
\hline \multicolumn{6}{|l|}{133} \\
\hline \multicolumn{6}{|l|}{134} \\
\hline \multicolumn{6}{|l|}{135} \\
\hline \multicolumn{6}{|l|}{136} \\
\hline 137 & 156.49 & 61.15 & 0.75 & 156.49 & 95.34 \\
\hline \multicolumn{6}{|l|}{138} \\
\hline \multicolumn{6}{|l|}{139} \\
\hline \multicolumn{6}{|l|}{140} \\
\hline \multicolumn{6}{|l|}{141} \\
\hline \multicolumn{6}{|l|}{142} \\
\hline \multicolumn{6}{|l|}{143} \\
\hline \multicolumn{6}{|l|}{144} \\
\hline 145 & & & & & \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES DE JONG MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & A & N & FINAL & START \\
\hline \multicolumn{6}{|l|}{146} \\
\hline 147 & 230.15 & 172.68 & 0.22 & 230.15 & 57.47 \\
\hline 149 & 165.64 & 76.20 & 0.36 & 165.64 & 89.44 \\
\hline \multicolumn{6}{|l|}{150} \\
\hline \multicolumn{6}{|l|}{151} \\
\hline \multicolumn{6}{|l|}{152} \\
\hline \multicolumn{6}{|l|}{153} \\
\hline \multicolumn{6}{|l|}{154} \\
\hline \multicolumn{6}{|l|}{155} \\
\hline \multicolumn{6}{|l|}{156} \\
\hline \multicolumn{6}{|l|}{157} \\
\hline \multicolumn{6}{|l|}{158} \\
\hline 159 & 32.21 & 12.25 & 0.44 & 32.21 & 19.96 \\
\hline 160 & 32.67 & 16.34 & 0.69 & 32.67 & 16.33 \\
\hline 161 & 37.79 & 23.48 & 0. 76 & 37.79 & 14.31 \\
\hline 162 & 29.32 & 26.56 & 0.80 & 29.32 & 2.76 \\
\hline 163 & 39.31 & 20.98 & 0.57 & 39.31 & 18.32 \\
\hline 164 & 46.60 & 16.70 & 0.28 & 46.60 & 29.90 \\
\hline 165 & 104. 36 & 20.50 & 0.58 & 104.36 & 83.86 \\
\hline 166 & 99.96 & 15.29 & 1.38 & 99.96 & 84.68 \\
\hline 167 & 99.72 & 8. 95 & 1.33 & 99.72 & 90.78 \\
\hline 168 & 133.22 & 45.93 & 0.12 & 133.22 & 87.30 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES DE JONG MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & A & N & FINAL & START \\
\hline 169 & 98.33 & 13.09 & 0.89 & 98.33 & 85.24 \\
\hline 170 & 156.99 & 120.09 & 0.25 & 156.99 & 36.90 \\
\hline 171 & 136.67 & 56.27 & 0.16 & 136.67 & 80.40 \\
\hline \multicolumn{6}{|l|}{172} \\
\hline \multicolumn{6}{|l|}{173} \\
\hline 174 & 153.12 & 69.72 & 0.099 & 153.12 & 83.41 \\
\hline \multicolumn{6}{|l|}{175} \\
\hline \multicolumn{6}{|l|}{176} \\
\hline 177 & 330.73 & 378.70 & 0.31 & 330.73 & \(-47.97\) \\
\hline 178 & 351.10 & 334.41 & 0.13 & 351.10 & 16.69 \\
\hline \multicolumn{6}{|l|}{179} \\
\hline \multicolumn{6}{|l|}{180} \\
\hline \multicolumn{6}{|l|}{181} \\
\hline \multicolumn{6}{|l|}{182} \\
\hline \multicolumn{6}{|l|}{183} \\
\hline 184 & 206.52 & 171.99 & 0.54 & 206.52 & 69.05 \\
\hline 185 & 1883.3 & 182.47 & 0.024 & 1883.3 & 58.83 \\
\hline 186 & 219.23 & 472.54 & 0.85 & 219.23 & -253.31 \\
\hline 187 & & & & & \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES LOGARITHMIC MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 100 & 5.05 & 0.52 & 0.026 & 156.31 & 22.71 \\
\hline 101 & 4. 77 & 0.62 & 0.028 & 118.16 & 23.77 \\
\hline 102 & 5.30 & 1. 50 & 0.69 & 200.44 & 102.88 \\
\hline 103 & 4.54 & 0.58 & 0.052 & 93.81 & 16.86 \\
\hline 104 & 4.70 & 0.54 & 0.026 & 100.46 & 17.59 \\
\hline 105 & 5.04 & 0.97 & 0.22 & 155.22 & 55.27 \\
\hline 106 & 5.02 & 0.99 & 0.32 & 150.99 & 54.78 \\
\hline 107 & 5. 52 & 0.23 & 0.025 & 248.68 & 3.47 \\
\hline 108 & 5.21 & 0.24 & 0.031 & 182.49 & 3.07 \\
\hline 109 & 4. 32 & 0.32 & 0.13 & 75. 54 & 3.26 \\
\hline 110 & 4.33 & 0.14 & 0. 24 & 76. 38 & 0.06 \\
\hline 111 & 4.31 & 0.12 & 0.24 & 74.40 & 0.02 \\
\hline \multicolumn{6}{|l|}{112} \\
\hline 113 & 5.06 & 0.38 & 0.20 & 157.81 & 11.04 \\
\hline 114 & 4.87 & 0.56 & 0.20 & 130.78 & 22.06 \\
\hline 115 & 8.84 & 0.66 & 0.046 & 6898.00 & 1516.70 \\
\hline 116 & 9. 37 & 0.49 & 0. 034 & 11788.00 & 1562.00 \\
\hline 117 & 11.48 & 0.24 & 0.0020 & \(97184.00^{\circ}\) & 1380.34 \\
\hline 118 & 12.97 & 0.17 & 0.0013 & 43137.00 & 1316.87 \\
\hline 119 & 4.00 & 0.76 & 0.044 & 54.47 & 14.67 \\
\hline 120 & 5. 57 & 0.48 & 0.24 & 262.55 & 30.94 \\
\hline \multicolumn{6}{|l|}{121} \\
\hline 122 & 5.55 & 0.52 & 0.12 & 257.49 & 37.81 \\
\hline
\end{tabular}

\section*{BEST FIT PARAMETER VALUES LOGARITHMIC MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 123 & 5. 54 & 0.68 & 0.10 & 254.59 & 58.27 \\
\hline 124 & 5.49 & 0.74 & 0.093 & 243.76 & 62.60 \\
\hline 125 & 5.60 & 0.43 & 0.080 & 270.60 & 26.68 \\
\hline 126 & & & & 253.38 & 16.59 \\
\hline 127 & 5.63 & 0.23 & 0.077 & 278.14 & 3.78 \\
\hline 128 & 5.81 & 0.39 & 0.037 & 333.75 & 25.93 \\
\hline 129 & 5.22 & 0.58 & 0.026 & 185.68 & 32.69 \\
\hline 130 & 3.16 & 0.42 & 0.0079 & 174.58 & 16.58 \\
\hline 131 & 5. 94 & 0.36 & 0.0046 & 383.33 & 24.07 \\
\hline 132 & 4. 55 & 0.69 & 0.041 & 93.35 & 22. 30 \\
\hline 133 & 4.69 & 0.65 & 0.038 & 108.77 & 23.10 \\
\hline 134 & 5.49 & 0.44 & 0.023 & 241.85 & 25.16 \\
\hline 135 & 5.96 & 0.32 & 0.017 & 389.65 & 18.49 \\
\hline 136 & 5.70 & 1.19 & 0.18 & 298.16 & 128.70 \\
\hline 137 & & & & 155. 74 & 47. 89 \\
\hline 138 & 5.23 & 2. 32 & 0.33 & 186.36 & 121.02 \\
\hline 139 & 5.42 & 2.07 & 0. 42 & 225.71 & 139.16 \\
\hline 140 & 4. 90 & 0.53 & 0.035 & 134.77 & 20.60 \\
\hline 141 & 4. 96 & 0.43 & 0.013 & 142.67 & 13.70 \\
\hline 142 & 7.22 & 0.24 & 0.023 & 1366.16 & 21.72 \\
\hline 143 & 6.09 & 0.34 & 0.078 & 442.80 & 23.91 \\
\hline 144 & 4.17 & 0.68 & 0.059 & 64.82 & 14.47 \\
\hline 145 & 4.65 & 0.63 & 0.063 & 104.34 & 21.33 \\
\hline
\end{tabular}

\section*{BEST FIT PARAMETER VALUES LOGARITHMIC MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 146 & 4.60 & 0.37 & 0.093 & 99.85 & 6.50 \\
\hline 147 & 5.04 & 0.48 & 0. 50 & 153.94 & 19.06 \\
\hline 148 & 4.80 & 0.94 & 0.17 & 120.92 & 41.88 \\
\hline 149 & 5.00 & 1.28 & 0.67 & 149.72 & 68.58 \\
\hline 150 & 5.62 & 0.68 & 0.059 & 277.08 & 63.65 \\
\hline 151 & 5.22 & 0.98 & 0.20 & 184.93 & 66.58 \\
\hline 152 & 5.10 & 0. 80 & 0.057 & 164.39 & 47.00 \\
\hline 153 & 5.27 & 0.21 & 0.047 & 193.98 & 1. 56 \\
\hline 154 & 5.29 & 0.23 & 0.035 & 198.53 & 2.46 \\
\hline 155 & 4.64 & 0.32 & 0.040 & 103.14 & 4. 36 \\
\hline 156 & & & & & \\
\hline 157 & & & & & \\
\hline 158 & 5.43 & 0.20 & 0.046 & 227.58 & 1. 59 \\
\hline 159 & 3.41 & 1.47 & 1.01 & 30.35 & 15.37 \\
\hline 160 & & & & & \\
\hline 161 & & & & & \\
\hline 162 & & & & & \\
\hline 163 & 3.61 & 0. 44 & 1.00 & 37.10 & 3. 79 \\
\hline 164 & \[
\text { 3. } 71
\] & 2. 10 & 1.19 & 40.68 & 25.24 \\
\hline 165 & 4.63 & 2.15 & 2.96 & 102.17 & 64.17 \\
\hline \multicolumn{6}{|l|}{166} \\
\hline \multicolumn{6}{|l|}{167} \\
\hline 168 & 4.63 & 4.47 & 1.59 & 103.17 & 82. 48 \\
\hline
\end{tabular}

\section*{BEST FIT PARAMETER VALUES LOGARITHMIC MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & B & C & G & FINAL & START \\
\hline 169 & & & & & \\
\hline 170 & 4. 71 & 0.55 & 0. 40 & 111.06 & 18.26 \\
\hline 171 & 4.66 & 2. 76 & 0.99 & 105.59 & 73.48 \\
\hline 172 & & & & & \\
\hline 173 & 5.08 & 1.14 & 0.061 & 160.13 & 66.66 \\
\hline 174 & 4.66 & 3. 34 & 1.05 & 105.14 & 77.96 \\
\hline 175 & 5.37 & 1.05 & 0.11 & 215.12 & 83.17 \\
\hline 176 & 5.71 & 0.83 & 0. 038 & 301.66 & 90.55 \\
\hline 177 & -. 56 & 0.46 & 0.12 & 259.88 & 30.19 \\
\hline 178 & 5.10 & 0.51 & 0.16 & 165.30 & 23.04 \\
\hline 179 & 5.40 & 0.59 & 0.062 & 221.56 & 40.95 \\
\hline 180 & 5.56 & 0.97 & 0.044 & 260.76 & 93.37 \\
\hline 181 & 7.10 & 0.35 & 0.0035 & 1211.75 & 70.94 \\
\hline 182 & 5.51 & 0.77 & 0.025 & 247.24 & 67.92 \\
\hline 183 & 5.95 & 0.63 & 0.024 & 385.38 & 79.15 \\
\hline 184 & 5.29 & 0.68 & 0.32 & 198.98 & 46.03 \\
\hline 185 & 5.63 & 0.81 & 0.081 & 277.53 & 80.40 \\
\hline 186 & & & & & \\
\hline 187 & 4.89 & 0.68 & 0.072 & 132. 9 & 30.26 \\
\hline
\end{tabular}

\section*{BEST EIT PARAMETER VALUES SECOND ORDER MODEL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(Y_{c}\) & \(\mathrm{Y}_{\mathrm{F}}\) & TAU & FINAL & START \\
\hline 100 & 25.54 & 40.56 & 6.60 & 66.11 & 2.5 .54 \\
\hline 101 & 27.62 & 38.37 & 9.72 & 65.99 & 27.62 \\
\hline 102 & 128.72 & 57.46 & 2.54 & 186.18 & 128.72 \\
\hline 103 & 21.36 & 37.00 & 6.69 & 58.36 & 21.36 \\
\hline 104 & 22.08 & 42.60 & 11.87 & 64.69 & 22.08 \\
\hline 105 & 66.44 & 58.06 & 2. 92 & 124.50 & 66.44 \\
\hline 106 & 72.85 & 59.45 & 3.22 & 132.32 & 72.85 \\
\hline 107 & -5.10 & 91.16 & 8. 93 & 96.28 & 5.10 \\
\hline 108 & 4. 72 & 81.48 & 8.74 & 86.19 & 4.72 \\
\hline 109 & 18.09 & 45.83 & 6.69 & 63.93 & 18.09 \\
\hline 110 & 13.69 & 52.53 & 3. 75 & 66.22 & 13.69 \\
\hline 111 & 20.97 & 46.15 & 5.21 & 67.11 & 20.97 \\
\hline 112 & 1.03 & 7.57 & 1.03 & 8.60 & 1.03 \\
\hline 113 & 20.08 & 78.75 & 1.91 & 98. 83 & 20.08 \\
\hline 114 & 34.30 & 60.67 & 2.68 & 94.98 & 34.30 \\
\hline 115 & 1720.16 & 2730.35 & 7.49 & 4450.50 & 1720.16 \\
\hline 116 & 1776.25 & 3453.89 & 5.52 & 5230.15 & 1776.25 \\
\hline 117 & 1503.34 & 5390.19 & 24.91 & 6893.54 & 1503.34 \\
\hline 118 & 1459.73 & 7067.31 & 23.92 & 8527.05 & 1459. 73 \\
\hline 119 & 21.45 & 25.09 & 20.94 & 46.54 & 21.45 \\
\hline 120 & 136.52 & 120.57 & 7. 97 & 257.09 & 136.52 \\
\hline 121 & 70.04 & 166.55 & 4. 64 & 236.60 & 70.04 \\
\hline 122 & 96.96 & 148.51 & 9.92 & 245.47 & 96.96 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES SECOND ORDER MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(Y_{c}\) & \(\mathrm{Y}_{\mathrm{F}}\) & TAU & FINAL & START \\
\hline 123 & 103.76 & 134.90 & 10.66 & 238.66 & 103.76 \\
\hline 124 & 97.96 & 129.66 & 10.52 & 227.62 & 97.96 \\
\hline 125 & 92.03 & 160.78 & 13. 54 & 252.82 & 92.03 \\
\hline 126 & 74.81 & 161.06 & 11.38 & 235.87 & 74.81 \\
\hline 127 & 41.39 & 205.70 & 9. 76 & 270.69 & 41.39 \\
\hline 128 & 43.67 & 227.01 & 13.01 & 247.09 & 43.67 \\
\hline 129 & 39.45 & 66.25 & 10.98 & 105.71 & 39.45 \\
\hline 130 & 18.96 & 35.90 & 16.26 & 54.87 & 18.96 \\
\hline 131 & 26.51 & 44.68 & 15.99 & 71.20 & 26.51 \\
\hline 132 & 23.75 & 27.65 & 5.25 & 51.39 & 23.75 \\
\hline 133 & 28.61 & 42.29 & 9.87 & 70.91 & 28.61 \\
\hline 134 & 31.94 & 84.90 & 10.44 & 116.85 & 31.94 \\
\hline 135 & 21.06 & 79.20 & 7.05 & 100.26 & 21.06 \\
\hline 136 & 173.36 & 110.96 & 9.89 & 284. 32 & 173.36 \\
\hline 137 & 97.56 & 53.29 & 2.01 & 150.85 & 97.56 \\
\hline 138 & 135.34 & 38.16 & 5.99 & 173.51 & 135.34 \\
\hline 139 & 154.61 & 51.28 & 3.63 & 205.89 & 154.61 \\
\hline 140 & 27.37 & 56.77 & 10.35 & 84.15 & 27.37 \\
\hline 141 & 16.46 & 40.71 & 13.93 & 57. 18 & 16.46 \\
\hline 142 & 24.43 & 69.96 & 20.40 & 178.54 & 24.43 \\
\hline 143 & 26.82 & 57. 77 & 10.36 & 84.60 & 26.82 \\
\hline 144 & 20. 75 & 32.88 & 11.68 & 53.63 & 20.75 \\
\hline 145 & 28. 34 & 45. 45 & 7. 42 & 73.79 & 28. 34 \\
\hline
\end{tabular}

BEST FIT PARAMETER VALUES SECOND ORDER MODEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA SET & \(\mathrm{Y}_{\mathrm{c}}\) & \(Y_{F}\) & TAU & FINAL & START \\
\hline 146 & 13.06 & 57.94 & 5.02 & 71.01 & 13.06 \\
\hline 147 & 78.76 & 67.53 & 4. 34 & 146.30 & 78.76 \\
\hline 148 & 53.21 & 48. 70 & 4.95 & 101.92 & 53.21 \\
\hline 149 & 84.21 & 55.02 & 1.97 & 139.23 & 84.21 \\
\hline 150 & 72.40 & 85.56 & 4.37 & 157.96 & 72.40 \\
\hline 151 & 77.32 & 74.92 & 3.38 & 152.25 & 77.32 \\
\hline 152 & 59.36 & 79.42 & 11.79 & 138.78 & 59.36 \\
\hline 153 & . -5.00 & 113.84 & 5.85 & 108.83 & -5. 00 \\
\hline 154 & 7.17 & 104.56 & 9.38 & 111.73 & 7.17 \\
\hline 155 & 15.60 & 158.21 & 28.00 & 173.81 & 15.60 \\
\hline 156 & 5.71 & 429.04 & 31.99 & 434.76 & 5.71 \\
\hline 157 & 2.18 & 119.72 & 28.74 & 121.90 & 2.18 \\
\hline 158 & -1.35 & 113.64 & 5.64 & 112.28 & -1.35 \\
\hline 159 & 19.52 & 9.00 & 1.85 & 28.51 & 19.52 \\
\hline 160 & 14.82 & 14.93 & 1.35 & 29.75 & 14.82 \\
\hline 161 & 9.83 & 24.36 & 1.15 & 34.18 & 9.83 \\
\hline 162 & -2.53 & 28.19 & .1.16 & 25.66 & -2.53 \\
\hline 163 & 13.96 & 20.23 & 1.20 & 34.19 & 13.96 \\
\hline 164 & 28.67 & 9.80 & 1.67 & 38.47 & 28.67 \\
\hline 165 & 82.77 & 16.83 & 1.55 & 99.59 & 82.77 \\
\hline 166 & 75.95 & 23.33 & 0.76 & 99.27 & 75.95 \\
\hline 167 & 84.68 & 14.56 & 0.71 & 99.24 & 84.68 \\
\hline 168 & 88.33 & 11.52 & 2.69 & 99.86 & 88.33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DAT A SET & \(\mathrm{Y}_{\mathrm{c}}\) & \(\mathrm{Y}_{\mathrm{F}}\) & TAU & FINAL & START \\
\hline 169 & 75.78 & 20.67 & 0.69 & 96.45 & 75.78 \\
\hline 170 & 34.94 & 59.39 & 2.01 & 94.34 & 34.94 \\
\hline 171 & 80.80 & 19.09 & 2. 39 & 99.89 & 80.80 \\
\hline 172 & & & & & \\
\hline 173 & 71.67 & 38.37 & 6.01 & 110.04 & 71.67 \\
\hline 174 & 82.91 & 16.63 & 2. 24 & 99.55 & 82.91 \\
\hline 175 & 94.59 & 72.60 & 5.15 & 167.19 & 94.59 \\
\hline 176 & 111.95 & 138.07 & 16.72 & 250.01 & 111.95 \\
\hline 177 & 90.80 & 152. 72 & 9.46 & 243.52 & 90.80 \\
\hline 178 & 46.93 & 86.28 & 4.27 & 133.21 & 46.93 \\
\hline 179 & 80.25 & 130.33 & 18.08 & 210.59 & 80.25 \\
\hline 180 & 102.42 & 115.89 & 11.97 & 218.31 & 102.42 \\
\hline 181 & 79.91 & 86.08 & 13.89 & 166.0 & 79.91 \\
\hline 182 & 85.66 & 110.19 & 21.81 & 195.85 & 85.66 \\
\hline 183 & 91.71 & 191.83 & 14.97 & 283.54 & 91.71 \\
\hline 184 & 79.52 & 94.26 & 2. 95 & 173.77 & 79.52 \\
\hline 185 & 119.65 & 133.09 & 13.08 & 252. 74 & 119.65 \\
\hline 186 & 78.40 & 129.57 & 5. 98 & 207.97 & 78.40 \\
\hline 187 & 36.14 & 64.99 & 7.45 & 101.24 & 36.24 \\
\hline
\end{tabular}

\section*{A COMPARITIVE LISTING OF "START" AND "FINAL" VALUES}

\section*{CALCULATED FROM "BEST FIT" PARAMETERS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0100 & & & 0102 & & \\
\hline BEV & 102. 32 & 22.00 & & 187.90 & 115.26 \\
\hline GOM & 76.18 & 22.56 & & 187. 48 & 117.78 \\
\hline MTH & 163.97 & 21.98 & & 200.22 & 101.28 \\
\hline WILT & 67.73 & 24.41 & & 191.24 & 93.08 \\
\hline ACC & 92.31 & 22. 73 & & 197. 77 & 106.60 \\
\hline REP & 68.69 & 23.08 & & 187.25 & 119.52 \\
\hline DJ & & & & 255.49 & 125.28 \\
\hline MTHL & 156.31 & 22.71 & & 200. 44 & 102. 88 \\
\hline 2ORD & 66.11 & 25.55 & & 186.18 & 128.72 \\
\hline 0101 & & & 0103 & & \\
\hline BEV & 97.01 & 24.16 & & 76.17 & 17.38 \\
\hline GOM & 76.96 & 24. 80 & & 64.07 & 18.45 \\
\hline MTH & 146.95 & 24.01 & & 111.49 & 17.08 \\
\hline WILT & & & & & \\
\hline ACC & 92.36 & 24.87 & & 76. 83 & 18. 54 \\
\hline REP & 70.26 & 25. 36 & & 59.79 & 19.29 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 118.16 & 23. 77 & & 93. 81 & 16. 86 \\
\hline 2ORD & 65.99 & 27.63 & & 58.36 & 21.36 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0104 & & & 0106 & & \\
\hline BEV & 127.77 & 18.68 & & 134.91 & 61.00 \\
\hline GOM & 79.43 & 19.48 & & 133.92 & 64.34 \\
\hline MTH & 209.05 & 18.58 & & 150.22 & 52.21 \\
\hline WILT & & & & 139.29 & 45. 88 \\
\hline ACC & 93.72 & 19.68 & & 145.02 & 57.57 \\
\hline REP & 68.84 & 20.12 & & 133.40 & 66.57 \\
\hline DJ & & & & 422.88 & 67.75 \\
\hline MTHL & 110.47 & 17.59 & & 150.99 & 54.78 \\
\hline 2ORD & 64.69 & 22.09 & & 132.32 & 72.86 \\
\hline 0105 & & & 0107 & & \\
\hline BEV & 129.07 & 55.77 & & 288. 83 & -1.41 \\
\hline GOM & 126.94 & 58.21 & & 87.28 & 3.51 \\
\hline MTH & 151.85 & 52.40 & & & \\
\hline WILT & 126.18 & 60.63 & & 73.26 & 7. 82 \\
\hline ACC & 142.13 & 55.11 & & 104.59 & 5.01 \\
\hline REP & 125.75 & 59. 76 & & 76.11 & 5.68 \\
\hline DJ & & & & & \\
\hline MTHL & 155.22 & 55.27 & & 248.68 & 3.47 \\
\hline 2ORD & 124.50 & 66.44 & & 96.28 & 5.11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0108 & & & 0110 & & \\
\hline BEV & 119.78 & -3.64 & & 136.27 & -2.29 \\
\hline GOM & 82.34 & 3.54 & & 66.33 & 9.74 \\
\hline M TH & 201.83 & \(-3.60\) & & 75.39 & -33.33 \\
\hline WILT & 76.94 & 6.58 & & 67.14 & -4. 84 \\
\hline ACC & 97.75 & 4.95 & & 72.05 & 2.37 \\
\hline REP & 76.58 & 6.45 & & 66.17 & 13.17 \\
\hline DJ & & & & 83.90 & -22.00 \\
\hline M THL & 182.49 & 3.07 & & 76.38 & 0.06 \\
\hline 2ORD & 86.19 & 4.72 & & 66.22 & 13.69 \\
\hline 0109 & & & 0111 & & \\
\hline BEV & 65.67 & 7.32 & & 68.69 & 10.21 \\
\hline G OM & 64.52 & 14.05 & & 68.00 & 17.78 \\
\hline M TH & 77.39 & -. 04 & & 76. 78 & -11.12 \\
\hline WILT & 68.86 & -6.85 & & & \\
\hline ACC & 71.66 & 11.30 & & 73.57 & 10.97 \\
\hline REP & 64.07 & 16.99 & & 67.81 & 21.05 \\
\hline DJ & 169.17 & -4. 54 & & 100.07 & -9.55 \\
\hline M THL & 75.54 & 3.26 & & 74.40 & 0.02 \\
\hline 2ORD & 63.93 & 18.10 & & 67.11 & 20.97 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0112 & & & 0114 & - & - \\
\hline BEV & 8. 64 & -1.87 & & 106.68 & 24. 34 \\
\hline GOM & 8.61 & 0.85 & & 98.93 & 28.10 \\
\hline MTH & 9.21 & -111.41 & & 141.88 & 22.21 \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 9.07 & 0.33 & & 117.50 & 27.45 \\
\hline REP & 8.61 & 1.90 & & 96.00 & 30.29 \\
\hline DJ & 9.24 & 2.79 & & & \\
\hline MTHL & & & & 130.78 & 22.06 \\
\hline 2 ORD & 8.60 & 1.04 & & 94.98 & 34.30 \\
\hline 0113 & & & 0115 & - & \\
\hline BEV & 110.14 & 4.96 & & 4962.59 & 1460.26 \\
\hline GOM & 99.25 & 13.97 & & 4628.92 & 1515.32 \\
\hline MTH & 155.11 & 2. 53 & & 6704.22 & 1449.91 \\
\hline WILT & 93.14 & 22.96 & & 4323.81 & 1734.66 \\
\hline ACC & 120.51 & 13.68 & & 5721.09 & 961.92 \\
\hline REP & 96.22 & 16.90 & & 4557.81 & 1077.63 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 157.81 & 11.04 & & 6898.00 & 1516.70 \\
\hline 2 ORD & 98.83 & 20.08 & & 4450.50 & 1720.15 \\
\hline
\end{tabular}
\begin{tabular}{lccccc} 
CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0116 & & 0118 & & \\
BEV & 7338.01 & 1475.11 & & & \\
GOM & 5733.79 & 1532.85 & 25148.37 & 1307.36 \\
MTH & 11607.18 & 1474.84 & & \\
WILT & 4857.07 & 1796.23 & & 18261.02 & 1087.11 \\
ACC & 7591.04 & 1304.59 & 10528.10 & 1088.54 \\
REP & 5484.52 & 1331.49 & & \\
DJ & & & & & \\
MTHL & 11788.00 & 1562.00 & 831370.0 & 1316.87 \\
2ORD & 5230.15 & 1776.25 & 8527.05 & 1459.73
\end{tabular}
\begin{tabular}{lllll}
\hline 0117 & & 0119 & & \\
BEV & & & 49.59 & 18.13 \\
GOM & 10254.77 & 1329.12 & 48.72 & 19.70 \\
MTH & & 57.42 & 15.73 \\
WILT & 5771.53 & 1506.19 & & \\
ACC & 11147.35 & 1129.01 & 53.04 & 15.01 \\
REP & 7095.29 & 1135.00 & 48.33 & 19.30 \\
DJ & & & & \\
MTHL & 97194.00 & 1380.34 & 46.54 & 21.45 \\
2ORD & 6893.54 & 1503.34 & & 14.67 \\
& & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0120 & & & 0122 & & \\
\hline BEV & 257.10 & 99.64 & & 245.92 & 65.33 \\
\hline GOM & 257.11 & 111.66 & & 245. 71 & 77.98 \\
\hline M TH & 263.95 & \(-9.62\) & & 259.46 & 28.96 \\
\hline WILT & & & & 247.22 & 26.64 \\
\hline ACC & 310.94 & 131.77 & & 867.76 & 99.04 \\
\hline REP & 267.33 & 135.08 & & 519.29 & 99.05 \\
\hline DJ & 268.27 & -128.94 & & 301.57 & -53.56 \\
\hline M THL & 262.55 & 30.94 & & 257.49 & 37.81 \\
\hline 2ORD & 257.09 & 136.52 & & 245.47 & 96.96 \\
\hline 0121 & & & 0123 & & \\
\hline BEV & 236.46 & -22.78 & & 238.84 & 74.73 \\
\hline GOM & 236.58 & 45.40 & & 238.72 & 84.78 \\
\hline MTH & & & & 256.45 & 51.96 \\
\hline WILT & & & & & \\
\hline ACC & 269.36 & 91.12 & & 467.46 & 98.69 \\
\hline REP & 242.36 & 104.77 & & 320.64 & 98.51 \\
\hline DJ & 238.41 & -949.91 & & 339.10 & -8. 52 \\
\hline M THL & & & & 254.59 & 58.27 \\
\hline 2ORD & 236.60 & 70.04 & & 238.66 & 103.76 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0124 & & & 0126 & & \\
\hline BEV & 227.77 & 71.35 & & 236.32 & 38. 95 \\
\hline GOM & 227.72 & 80.38 & & 236.01 & 57.12 \\
\hline MTH & 243.26 & 48.72 & & 257.92 & 5.88 \\
\hline WILT & & & & 236.96 & 24.12 \\
\hline ACC & 388.23 & 93.74 & & 447.36 & 75.90 \\
\hline REP & 274.71 & 93.44 & & 309.22 & 76.38 \\
\hline DJ & 310.43 & -10.61 & & 353.52 & -80.83 \\
\hline M THL & 243.76 & 62.60 & & 253.38 & 16.59 \\
\hline 2ORD & 227.62 & 97.96 & & 235.87 & 74.81 \\
\hline 0125 & & & 0127 & & \\
\hline BEV & 253.95 & 58.49 & & 247.68 & -13.82 \\
\hline GOM & 253.19 & 73.39 & & 247.07 & 28.01 \\
\hline M TH & 281.63 & 32.02 & & 274.48 & -75.95 \\
\hline WILT & & & & & \\
\hline ACC & 675.17 & 85.65 & & 416.67 & 56.65 \\
\hline REP & 412.32 & 85.08 & & 291.45 & 57.17 \\
\hline DJ & 462.66 & -53.66 & & 336.43 & -217.31 \\
\hline MTHL & 270.60 & 26.68 & & 278.14 & 3.78 \\
\hline 2ORD & 252.82 & 92.03 & & 270.69 & 41.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0128 & & & 0130 & & \\
\hline BEV & 273.21 & 1.09 & & & \\
\hline GOM & 270.54 & 27.65 & & 87.55 & 17.16 \\
\hline MTH & 323.25 & \(-12.72\) & & & \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 905.35 & 52.16 & & 94.04 & 17. 26 \\
\hline REP & 525.49 & 51.71 & & 63.57 & 17.37 \\
\hline DJ & 2500. 36 & -78.88 & & & \\
\hline MTHL & 333.75 & 25.93 & & 174.58 & 16.58 \\
\hline 2ORD & 247.09 & 43.68 & & 54.87 & 18.96 \\
\hline 0129 & & & 0131 & & \\
\hline BEV & 164.52 & 33.82 & & & \\
\hline GOM & 124.52 & 35.23 & & 129.82 & 24.29 \\
\hline MTH & 249.34 & 33.43 & & & \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 146.74 & 35.15 & & 135.37 & 24.40 \\
\hline REP & 112.94 & 36.42 & & 87.60 & 24.44 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 185.68 & 32.69 & & 383. 33 & 24.07 \\
\hline 2ORD & 105.71 & 39.46 & & 71.20 & 26.52 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0132 & & - & 0134 & & \\
\hline BEV & 57. 55 & 20.47 & & 350.97 & 25.99 \\
\hline GOM & 53. 58 & 20.76 & & 146.46 & 27.72 \\
\hline MTH & 79.07 & 20.66 & . & & \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 64.27 & 20.94 & & 169.68 & 28.22 \\
\hline REP & 51.68 & 20.97 & & 123.14 & 29.18 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 93.35 & 22.30 & & 241.85 & 25.16 \\
\hline 2ORD & 51.39 & 23.75 & & 116.85 & 31.94 \\
\hline 0133 & & & 0135 & & \\
\hline BEV & 115.34 & 24.99 & & 193.68 & 14.71 \\
\hline GOM & 88.27 & 25. 99 & & 106.17 & 16.44 \\
\hline MTH & 167.26 & 24.60 & & 351.42 & 14.83 \\
\hline WILT & & & & 83.93 & 23.22 \\
\hline ACC & 102.52 & 25.87 & & 128.07 & 17.12 \\
\hline REP & 80.87 & 26.86 & & 92.70 & 17.67 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 108.77 & 23.10 & & 389.65 & 18.49 \\
\hline 2ORD & 70.91 & 28.61 & & 100.26 & 21.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0136 & & & 0138 & & \\
\hline BEV & 312.34 & 157.26 & & 178.94 & 129.15 \\
\hline GOM & 305.13 & 160.36 & & 178.31 & 129.95 \\
\hline MTH & 356.60 & 150.14 & & 190.06 & 123.55 \\
\hline WILT & & & , & & \\
\hline ACC & 335.53 & 155.19 & & 187.62 & 124.92 \\
\hline REP & 299.06 & 162.30 & & 177.91 & 130.59 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 298.16 & 128.70 & & 186.36 & 121.02 \\
\hline 2ORD & 284.32 & 173.36 & & 173.51 & 135.34 \\
\hline 0137 & & & 0139 & & \\
\hline BEV & 150.99 & 80.42 & & 209. 24 & 144.42 \\
\hline GOM & 150.95 & 84.57 & & 208. 54 & 145.62 \\
\hline MTH & 155.44 & 27. 34 & & 226.29 & 139.20 \\
\hline WILT & & & & 214.71 & 134.22 \\
\hline ACC & 154.75 & 51.98 & & 222.87 & 141.06 \\
\hline REP & 150.93 & 86.82 & & 208.10 & 146.58 \\
\hline DJ & 156.49 & 95.34 & & & \\
\hline MTHL & 155. 74 & 47.89 & & 225.71 & 139.16 \\
\hline 2 RRD & 150.85 & 97.56 & & 205. 89 & 154.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0140 & . & & 0142 & & \\
\hline BEV & 115.60 & 21.70 & & & \\
\hline GOM & 93. 14 & 23.52 & & 300.40 & 21.99 \\
\hline MTH & 172.94 & 21.27 & & & \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 110.66 & 23.66 & & 200.85 & 22. 12 \\
\hline REP & 35.86 & 24.37 & & 119.85 & 22.13 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 134.77 & 20.60 & & 1366.16 & 21.72 \\
\hline 2ORD & 84.15 & 27. 37 & & 178.54 & 24.43 \\
\hline 0141 & & & 0143 & & \\
\hline BEV & 165.79 & 13.64 & & & \\
\hline GOM & 69.12 & 14.17 & & 134.84 & 24.16 \\
\hline MTH & 305.73 & 13.65 & & & \\
\hline WILT & 82.05 & 14.50 & & 350.45 & 24. 28 \\
\hline ACC & 81.37 & 14.43 & & 143.72 & 24. 30 \\
\hline REP & 57.07 & 14.59 & & 97.84 & 24.55 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 142.67 & 13.70 & & 442.80 & 23. 91 \\
\hline 2ORD & 57. 18 & 16.47 & & 84.60 & 26. 83 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0144 & . & & 0146 & - & \\
\hline BEV & 100.64 & 17. 98 & & 104.35 & 31.79 \\
\hline GOM & 77.37 & 19.13 & & 71.50 & 9. 80 \\
\hline MTH & 131.43 & 17.46 & & 99.60 & 0.75 \\
\hline WILT & & & & 71.73 & 9.16 \\
\hline ACC & 81.63 & 18.87 & & 82.17 & 9.62 \\
\hline REP & 71.72 & 19.96 & & 70.15 & 12. 98 \\
\hline DJ & & & & & \\
\hline MTHL & 64.82 & 14.47 & & 99.85 & 6. 50 \\
\hline 2ORD & 53.63 & 20. 75 & & 71.01 & 13.07 \\
\hline 0145 & & & 0147 & & \\
\hline BEV & 85.56 & 22. 59 & & 148.22 & 61.66 \\
\hline GOM & 77. 72 & 24.14 & & 147.77 & 68.20 \\
\hline MTH & 118.16 & 22.04 & & 159.92 & 35.04 \\
\hline WILT & 92.45 & 21.16 & & & \\
\hline ACC & 92.71 & 24.17 & & 156. 34 & 52. 78 \\
\hline REP & 74.28 & 25.21 & & 147.39 & 71.50 \\
\hline DJ & & & & 230.15 & 57.47 \\
\hline MTHL & 104. 34 & 21. 33 & & 153.94 & 19.06 \\
\hline 2 ORD & 73.79 & 28. 34 & & 146. 30 & 78. 96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0148 & & & 0150 & & \\
\hline BEV & 104.73 & 44.24 & & 179.17 & 61.42 \\
\hline GOM & 103.49 & 46.64 & & 166.40 & 63.32 \\
\hline MTH & 120.44 & 40.27 & & 244.33 & 61.12 \\
\hline WILT & 105.34 & 42.95 & & 151.60 & 74.03 \\
\hline ACC & 114.23 & 43. 77 & & 196.09 & 61.71 \\
\hline REP & 102.79 & 48.38 & & 159.39 & 63.57 \\
\hline DJ & & & & & \\
\hline MTHL & 120.92 & 41.88 & & 277.08 & 63.65 \\
\hline 2ORD & 101.92 & 53.21 & & 157.96 & 72.40 \\
\hline 0149 & & & 0151 & & \\
\hline BEV & 139.94 & 72.88 & & 155. 32 & 63.27 \\
\hline GOM & 139.64 & 74.61 & & 153.71 & 66.37 \\
\hline MTH & 148.09 & 63.50 & & 178.27 & 59. 19 \\
\hline WILT & & & & 150.52 & 80.05 \\
\hline ACC & 145.70 & 59. 47 & & 169.34 & 62.46 \\
\hline REP & 139.31 & 72.66 & & 152.72 & 68.18 \\
\hline DJ & 165.64 & 89.44 & & & \\
\hline MTHL & 149.72 & 68.58 & & 184.93 & 66. 58 \\
\hline 2ORD & 139.23 & 84.21 & & 152.25 & 77. 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0152 & & & 0154 & & \\
\hline BEV & 986.41 & 53. 80 & & 168.11 & \(-2.66\) \\
\hline GOM & 282.41 & 55.13 & & 115.47 & 8. 08 \\
\hline MTH & & & & 262.57 & -3. 99 \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 288.37 & 55.26 & & 128.90 & 9.08 \\
\hline REP & 224.07 & 55.98 & & 110.20 & 14.27 \\
\hline \multicolumn{6}{|l|}{DJ} \\
\hline MTHL & 164.39 & 47.00 & & 198.53 & 2. 46 \\
\hline 2 ORD & 138.78 & 59.36 & & 111.73 & 7. 17 \\
\hline 0153 & & & 0155 & & \\
\hline BEV & 115.59 & \(-24.09\) & & & \\
\hline \multicolumn{6}{|l|}{GOM} \\
\hline MTH & 165.71 & -24. 32 & & & \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 122.25 & 0. 53 & & 430.27 & 14.37 \\
\hline REP & 105.48 & 33.28 & & 287.75 & 14.57 \\
\hline DJ & & & & & \\
\hline MTHL & 193.98 & 1. 56 & & 103.14 & 4. 36 \\
\hline 2ORD & 108.83 & \(-5.00\) & & 173.81 & 15.60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0156 & & & 0158 & & \\
\hline BEV & & & & 124.25 & -18.74 \\
\hline GOM & 139.97 & 2.18 & & 109.12 & 1. 84 \\
\hline MTH & & & & 183.52 & \(-19.62\) \\
\hline WILT & & & & & \\
\hline ACC & 147.99 & 2.15 & & 126.08 & 3.22 \\
\hline REP & 91.76 & 1. 88 & & 106.59 & 6. 65 \\
\hline DJ & & & & & \\
\hline MTHL & & & & 227.58 & 1.59 \\
\hline 2ORD & 434.76 & 5. 72 & & 112.28 & \(-1.35\) \\
\hline 0157 & & & 0159 & & \\
\hline BEV & & & & 28.61 & 16.95 \\
\hline GOM & & & & 28.57 & 17. 38 \\
\hline MTH & & & & 30.16 & 14. 15 \\
\hline WILT & & & & & \\
\hline ACC & & & & 29.90 & 15. 50 \\
\hline REP & 42.97 & -. 27 & & 28. 55 & 17.68 \\
\hline DJ & & & & 32.21 & 19.96 \\
\hline MTHL & & & & 30.35 & 15.37 \\
\hline 2ORD & 121.90 & 2.18 & & 28.51 & 19. 57 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0160 & \multicolumn{5}{|c|}{0162} \\
\hline BEV & 29.95 & 10.43 & & 25. 86 & -12.18 \\
\hline GOM & 29. 89 & 12.48 & & 25.59 & 0.39 \\
\hline MTH & 31.45 & \(-20.36\) & & 28.52 & \(-72.60\) \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 31.26 & 4. 98 & & 27. 45 & -0.08 \\
\hline REP & 29.87 & 13. 56 & & 25. 58 & 2. 12 \\
\hline DJ & 32.67 & 16. 33 & & 29. 32 & 2.76 \\
\hline \multicolumn{6}{|l|}{MTHL} \\
\hline 2ORD & 29.75 & 14.82 & & 25.66 & -2. 53 \\
\hline 0161 & & & 0163 & & \\
\hline BEV & 34.51 & 3. 44 & & 34.39 & 8.20 \\
\hline GOM & 34.33 & 8.12 & & 34. 24 & 10.46 \\
\hline MTH & 36.73 & \(-54.68\) & & 36.92 & -4.69 \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 36.23 & -0.15 & & 36.31 & 5.69 \\
\hline REP & 34.35 & 10.24 & & 34.20 & 11.25 \\
\hline DJ & 37.79 & 14.31 & & 39. 31 & 18. 32 \\
\hline MTHL & & & & 37. 10 & 3. 79 \\
\hline 2ORD & 34.18 & 9.83 & & 34.19 & 13.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0164 & & & 0166 & & \\
\hline BEV & 38. 70 & 26.59 & & 99. 31 & 63.68 \\
\hline GOM & 38.63 & 26.76 & & 99.31 & 66.30 \\
\hline MTH & 40.63 & 24.68 & & & \\
\hline WILT & & & & & \\
\hline ACC & 40. 37 & 25.41 & & & \\
\hline REP & 38.60 & 26. 94 & & 99. 30 & 67.02 \\
\hline DJ & 46.60 & 29.90 & & 99.97 & 84.68 \\
\hline MTHL & 40.68 & 25.24 & & & \\
\hline 2 ORD & 38.47 & 28.68 & & 99.27 & 75.95 \\
\hline 0165 & & & & & \\
\hline BEV & 99.84 & 77. 72 & 0167 & 99.25 & 76.43 \\
\hline GOM & 99.81 & 78.28 & & 99.25 & 77.53 \\
\hline MTH & 102.17 & 63.88 & & & \\
\hline WILT & 100.94 & 63.64 & & & \\
\hline ACC & 102.00 & 67.38 & & & \\
\hline REP & 99. 80 & 78.71 & & 99.25 & 77.83 \\
\hline DJ & 104.36 & 83.86 & & 99.72 & 90.78 \\
\hline MTHL & 102.17 & 64.17 & & & \\
\hline 2ORD & 99. 59 & 82.77 & & 99.24 & 84.68 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
CURVE & FINISH & START & CURVE \\
\hline 0168 & & 0170
\end{tabular}
\begin{tabular}{lrrrr} 
BEV & 100.44 & 85.62 & 96.12 & 21.37 \\
GOM & 100.40 & 85.80 & 94.95 & 27.44 \\
MTH & 103.29 & 82.73 & 109.22 & 8.42 \\
WILT & & & 97.13 & 14.95 \\
ACC & & & 104.03 & 21.10 \\
REP & 100.37 & 85.94 & 94.50 & 30.23 \\
DJ & 133.23 & 87.30 & 156.99 & 36.90 \\
MTHL & 103.17 & 82.48 & 111.06 & 18.26 \\
2ORD & 99.86 & 88.33 & 94.34 & 34.95
\end{tabular}
\begin{tabular}{lcccc} 
0169 & & \multicolumn{3}{c}{0171} \\
BEV & 96.46 & 63.08 & & 100.54 \\
GOM & 96.45 & 65.69 & 100.43 & 76.30 \\
MTH & & & 105.41 & 73.03 \\
WILT & & & 100.41 & 77.00 \\
ACC & & & 104.78 & 73.83 \\
REP & 96.45 & 66.15 & 100.36 & 77.07 \\
DJ & 98.33 & 85.24 & 105.67 & 80.40 \\
MTHL & & & 99.89 & 80.80 \\
2ORD & 96.45 & 75.78 & & 73.48
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0172 & & & 0174 & & \\
\hline BEV & & & & 100.19 & 79. 31 \\
\hline GOM & & & & 100.09 & 79.55 \\
\hline MTH & & & & 104.86 & 77.45 \\
\hline W ILT & & & & 99.38 & 82.56 \\
\hline ACC & & & & 104.30 & 77.84 \\
\hline REP & & & & 100.01 & 79. 73 \\
\hline DJ & & & & 153.13 & 83.41 \\
\hline MTHL & & & & 105.14 & 77.96 \\
\hline 2 ORD & & & & 99.55 & 82. 92 \\
\hline 0173 & & & 0175 & & \\
\hline BEV & 129.26 & 67.33 & & 176.62 & 82.12 \\
\hline GOM & 121.66 & 67.60 & & 172.11 & 84.10 \\
\hline MTH & & & & 213.96 & 79.72 \\
\hline WILT & & & & & \\
\hline ACC & & & & 197.87 & 84.41 \\
\hline REP & 116.63 & 67.71 & & 168.52 & 85. 71 \\
\hline DJ & & & & & \\
\hline MTHL & 160.127 & 66.66 & & 215.12 & 83.17 \\
\hline 2 ORD & 110.04 & 71.67 & & 167.19 & 94.59 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0176 & & & 0178 & & \\
\hline BEV & 257.31 & 92.28 & & 136.36 & 24. 21 \\
\hline GOM & 253.86 & 97.67 & & 134.17 & 35. 31 \\
\hline MTH & 300.28 & 86.66 & & 162.86 & 10.89 \\
\hline WILT & 254.12 & 98.43 & & & 59 \\
\hline ACC & & & & 152.86 & 34.05 \\
\hline REP & & & & 133.60 & 41.25 \\
\hline DJ & & & & 351.10 & 16.69 \\
\hline MTHL & 301.66 & 90.55 & & 165.30 & 23.04 \\
\hline 2ORD & 250.01 & 111.95 & & 133.21 & 46.93 \\
\hline 0177 & & & 0179 & & \\
\hline BEV & 243.98 & 57.07 & & 217.39 & 60.89 \\
\hline GOM & 243. 77 & 71.62 & & 214.64 & 69.02 \\
\hline MTH & 262.19 & 20.05 & & 249. 74 & 50.88 \\
\hline WILT & 262. 70 & \(-302.19\) & & & \\
\hline ACC & & & & & \\
\hline REP & & & & & \\
\hline DJ & 330.73 & -47. 97 & & & \\
\hline MTHL & 259.88 & 30.19 & & 221.56 & 40.95 \\
\hline 2 ORD & 243.52 & 90.80 & & 210. 59 & 80.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0180 & & & 0182 & & \\
\hline BEV & 218.95 & 86.82 & & 207. 13 & 73. 70 \\
\hline GOM & 218.17 & 88.29 & & 201.23 & 76.58 \\
\hline MTH & 247.17 & 86.10 & & 253.27 & 71.37 \\
\hline WILT & & & & 215.51 & 69.63 \\
\hline ACC & & & & 257.05 & 89. 33 \\
\hline REP & & & & & \\
\hline DJ & & & & & \\
\hline MTHL & 260.76 & 93.37 & & 247.24 & 67.92 \\
\hline 2ORD & 218.31 & 102.42 & & 195.85 & 85.66 \\
\hline 0181 & & & 0183 & & \\
\hline BEV & & & & 291.36 & 72.09 \\
\hline GOM & 322.67 & 74.73 & & 284.60 & 75. 46 \\
\hline MTH & & & & 360.65 & 70.82 \\
\hline WILT & & & & & \\
\hline ACC & 318.08 & 75.48 & & & \\
\hline REP & 217.89 & 75.70 & & & \\
\hline DJ & & & & & \\
\hline MTHL & 1211.75 & 70.94 & & 385.38 & 79.15 \\
\hline 2 ORD & 166.00 & 79.91 & & 283.54 & 91.71 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CURVE & FINISH & START & CURVE & FINISH & START \\
\hline 0184 & & & 0186 & & \\
\hline BEV & 174.27 & 44.69 & & 209.71 & 32.76 \\
\hline GOM & 173.75 & 58. 52 & & 209.31 & 59.71 \\
\hline MTH & 192.44 & 1. 70 & & 215.69 & -608.14 \\
\hline \multicolumn{6}{|l|}{WILT} \\
\hline ACC & 193.87 & 61.10 & & 248.53 & 32.65 \\
\hline REP & 206.52 & 34. 54 & & 212.85 & 57.41 \\
\hline DJ & 175.27 & 69.05 & & 219.23 & -253. 31 \\
\hline MTHL & 198.98 & 46.03 & & & \\
\hline 2 ORD & 173.77 & 79.52 & & 207.97 & 78. 40 \\
\hline 0185 & & & 0187 & & \\
\hline BEV & 255.52 & 95.24 & & 108.20 & 30.91 \\
\hline GOM & 254.54 & 102.88 & & 104.03 & 32.80 \\
\hline MTH & 282.63 & 81.22 & & 135.48 & 29. 94 \\
\hline WILT & 257.05 & 89. 33 & & & \\
\hline ACC & 674.28 & 108.22 & & 119.82 & 18.32 \\
\hline REP & 456.61 & 109.13 & & 102.62 & 24.68 \\
\hline DJ & 1883.29 & 58.83 & & & \\
\hline MTHL & 277. 53. & 80.40 & & 132.59 & 30.26 \\
\hline 2ORD & 252. 74 & 119.65 & & 101.24 & 36.24 \\
\hline
\end{tabular}

\section*{APPENDIX H}

PARAMETER VALUES FOR TELEPHONIST TRAINING DATA

\section*{GIVEN IN APPENDIX E}
\begin{tabular}{|c|c|c|c|}
\hline DATA SET & Yc & YF & TAU \\
\hline \(201 \mathrm{FE}^{*}\) & - & - & - \\
\hline 201 & 36.12 & 1105.66 & 183.95 \\
\hline 202 FE & 53.24 & 205.93 & 16.97 \\
\hline 202 & 117.82 & -0.41 & -3.10 \\
\hline 203 FE & - & - & - \\
\hline 203 & \(-4304.38\) & 4460.75 & 1.06 \\
\hline 204 FE & - & - & - \\
\hline 204 & 59.34 & 2108.41 & 377.61 \\
\hline 205 FE & - & - & - \\
\hline 205 & 66.06 & \(-39.93\) & \(-15.68\) \\
\hline 206 FE & - & - & - \\
\hline 206 & 97.49 & -2. 71 & -5.75 \\
\hline 207 FE & - & - & - \\
\hline 207 & 95.25 & -0.000075 & \(-1.45\) \\
\hline 208 FE & - & - & - \\
\hline 208 & 95.40 & \(-249.16\) & -41.16 \\
\hline 209 FE & - & - & - \\
\hline 209 & \(-63.26\) & 353.03 & 17.92 \\
\hline 210 FE & - & - & - \\
\hline 210 & 16.20 & 157.58 & 7. 43 \\
\hline 211 FE & - & - & - \\
\hline 211 & & & \\
\hline 212 FE & - & - & - \\
\hline 212 & \(-58.35\) & 263.52 & 8.62 \\
\hline
\end{tabular}
* 'FE' data sets include the full efficiency check.
\begin{tabular}{|c|c|c|c|}
\hline DATA SET & Yc & YF & TAU \\
\hline 213 FE & - & - & - \\
\hline 213 & 76.17 & 290.37 & 48. 19 \\
\hline 214 FE & -18.64 & 245. 87 & 12. 22 \\
\hline 214 & -48.21 & 243.45 & 8.34 \\
\hline 219 FE & -4.66 & 252.29 & 16. 21 \\
\hline 219 & -216.25 & 382. 88 & 4.36 \\
\hline 221 FE & 12. 64 & 272.11 & 18.91 \\
\hline 221 & -68. 66 & 249.95 & 8. 26 \\
\hline 222 FE & 115.88 & 156.96 & 95.02 \\
\hline 222 & & & \\
\hline 223 FE & 70.86 & 144.94 & 16.54 \\
\hline 223 & 26.82 & 141.95 & 5.85 \\
\hline 224 FE & 102.24 & 111.78 & 21.40 \\
\hline 224 & & & \\
\hline 225 FE & & & \\
\hline 225 & & & \\
\hline 226 FE & 39.81 & 180.02 & 12.96 \\
\hline 226 & 31.02 & 174.05 & 10.56 \\
\hline 227 FE & & & \\
\hline 227 & & & \\
\hline 229 FE & & & \\
\hline 229 & & & \\
\hline 230 FE & 76.99 & 184.33 & 12.01 \\
\hline 230 & & & \\
\hline 231 FE & 1. 50 & 225. 34 & 9. 64 \\
\hline 231 & 41. 54 & 321.62 & 26.68 \\
\hline 232 FE & 13.35 & 237.86 & 12. 94 \\
\hline 232 & 30.02 & 282. 32 & 20.43 \\
\hline 233 FE & 12. 87 & 267.61 & 14.00 \\
\hline 233 & 53.79 & -275.96 & -36.41 \\
\hline 234 FE & 55.65 & 198.51 & 19.28 \\
\hline 234 & 85. 51 & -125.48 & -31.41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DATA SET & Yc & YF & TAU \\
\hline 235 FE & 55.57 & 128. 93 & 11.89 \\
\hline 235 & 64.09 & 138.04 & 16.18 \\
\hline 236 FE & 61.74 & 143. 11 & 15.33 \\
\hline 236 & 84.22 & -88. 76 & -27.12 \\
\hline 238 FE & 76.25 & 131.52 & 18.02 \\
\hline 238 & & & \\
\hline 239 FE & 47.08 & 214.12 & 17.00 \\
\hline 239 & -173.68 & 348.26 & 3.52 \\
\hline 240 FE & 42.59 & 178.23 & 23.06 \\
\hline 240 & & & \\
\hline 241 FE & 111.20 & 109.73 & 21.73 \\
\hline 241 & & & \\
\hline 242 FE & 16.60 & 210.62 & 22. 57 \\
\hline 242 & 78.07 & -0.14 & -2. 95 \\
\hline 243 FE & - \({ }^{-}\) & 0. 27 & -2.41 \\
\hline 243 & 132.39 & -0.27 & -2.41 \\
\hline & -42.56 & 258. 59 & 11. 14 \\
\hline \[
244
\] & -41.37 & 258.82 & 11.32 \\
\hline 246 FE & 104.13 & 182.66 & 69. 36 \\
\hline 246 & & & \\
\hline 247 FE & -23.06 & 246.00 & 7.39
4.65 \\
\hline 247 & -104.96 & 303.31 & \\
\hline 248 FE & - & - & \\
\hline 248 & & & \\
\hline 249 FE & 39.06 & 194.05 & 7. 88 \\
\hline 249 & -5837.63 & 6020.58 & 1. 10 \\
\hline 251 FE & 72.13 & 154.67 & 18.40 \\
\hline 251 & & & \\
\hline 252 FE & 118.40 & 139.55 & 77. 14 \\
\hline 252 & & & \\
\hline 253 FE & 15.95 & 249.70 & 21.40 \\
\hline 253 & -22. 49 & 214.27 & 9.96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DATA SET & Yc & YF & TAU \\
\hline 254 FE & 77. 39 & 197. 20 & 31.80 \\
\hline 254 & 109.62 & -1.68 & -4.68 \\
\hline 255 FE & 81.91 & 205. 79 & 38. 13 \\
\hline 255 & & & \\
\hline 256 FE & & & \\
\hline 256 & & & \\
\hline 257 FE & 25. 38 & 263.29 & 21.67 \\
\hline 257 & -300.97 & 467.64 & 3. 41 \\
\hline 258 FE & -4. 10 & 360.33 & 35.60 \\
\hline 258 & & & \\
\hline 259 FE & 100.54 & 110.90 & 26.49 \\
\hline 259 & & & \\
\hline 260 FE & 28. 73 & 219.89 & 18.47 \\
\hline 260 & -39.09 & 208.61 & 6.30 \\
\hline 261 FE & -117.93 & 385.45 & 6. 60 \\
\hline 261 & -2.45 & 375. 71 & 16.27 \\
\hline 262 FE & 26.46 & 210. 43 & 24.91
-10.87 \\
\hline 262 & 72.49 & -11.51 & -10.87 \\
\hline 263 FE & 63.20 & 182. 51 & 11.92 \\
\hline 263 & -462.56 & 652.89 & 2. 39 \\
\hline 264 FE & 70. 57 & 187. 37 & 24. 44 \\
\hline 264 & 79.66 & 344.06 & 60.58 \\
\hline 265 FE & -16.73 & 262.06 & 16. 39 \\
\hline 265 & -20.15 & 256. 32 & 15.18 \\
\hline 266 FE & 4.01 & 315.91 & 39.56 \\
\hline 266 & 61.47 & -0.45 & \\
\hline 267 FE & & & \\
\hline 267 & & & \\
\hline 268 FE & & & \\
\hline 268 & & & \\
\hline 269 FE & 8. 54 & 203.27 & 12.83 \\
\hline 269 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DATA SET & Yc & Y.F & TAU \\
\hline 270 FE & -13.44 & 359.58 & 27. 81 \\
\hline 270 & 59.82 & -3. 77 & -5.28 \\
\hline 271 FE & 96.02 & 134.90 & 53.33 \\
\hline 271 & & & \\
\hline 272 FE & 60.24 & 189. 43 & 14. 55 \\
\hline 272 & 109.82 & -21. 92 & -10.37 \\
\hline 273 FE & & & \\
\hline 273 & & & \\
\hline & & - 0 &  \\
\hline \[
274
\] & 71.81 & -20.94 & -14.63 \\
\hline 275 FE & 54.43 & 163.53 & 9.65 \\
\hline 275 & & & \\
\hline 276 FE & 20. 54 & 233.69 & 21.82 \\
\hline 276 & -52.82 & 217.97 & 6.96 \\
\hline 277 FE & & & \\
\hline 277 & & & \\
\hline 278 FE & & & \\
\hline 278 & & & \\
\hline 279 FE & 57.43 & 175.91 & 34.98
-2.74 \\
\hline 279 & 92.40 & -0.021 & \\
\hline 280 FE & 52.42 & 164.05 & 25.19 \\
\hline 280 & 67.18 & -413.56 & -119.25 \\
\hline 281 FE & 43.85 & 192.22 & 14.89 \\
\hline 281 & -3882.29 & 4039.69 & 1.28 \\
\hline 282 FE & -72. 79 & 337.96 & 15.66
46.84 \\
\hline 282 & -33.73 & 593.53 & \\
\hline 283 FE & 71.74 & 140.29 & 15. 47 \\
\hline 283 & 70.14 & 138.63 & 14.63 \\
\hline 284 FE & -8. 82 & 265.48 & 28.11 \\
\hline 284 & 51.23 & -0.58 & -3. 97 \\
\hline 285 FE & - & - & - \\
\hline 285 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DATA SET & Yc & YF & TAU \\
\hline 286 FE & -65.92 & 281.09 & 8. 88 \\
\hline 286 & & & \\
\hline 287 FE & 84.50 & 124.24 & 19. 76 \\
\hline 287 & & & \\
\hline 288 & 23.96 & 189.11 & 20.52 \\
\hline 288 & 75.68 & -0.11 & -3.11 \\
\hline 289 FE & 97. 39 & 163.15 & 23.28 \\
\hline 289 & 84.58 & 138.83 & 13.75 \\
\hline 290 FE & 49.58 & 940.08 & 431.32 \\
\hline 290 & & & \\
\hline 291 FE & 87.41 & 128. 77 & 10.37 \\
\hline 291 & \(-1165.62\) & 1346.40 & 1.59 \\
\hline 292 FE & 72.46 & 141.56 & 12.17 \\
\hline 292 & -14.24 & 192. 31 & 4.49 \\
\hline 293 FE & 33.40 & 269.27 & 38.81 \\
\hline 293 & 61.79 & -71.15 & 2.79 \\
\hline 294 FE & 79.29 & 396.98 & 105.21 \\
\hline 294 & 57.09 & 120.20 & 14.08 \\
\hline 295 FE & 82. 34 & 201.25 & 20.45 \\
\hline 295 & -42.97 & 236.42 & 4.41 \\
\hline 296 FE & 106. 38 & 156.41 & 33. 93 \\
\hline 296 & 131.39 & -2.55 & -6. 22 \\
\hline
\end{tabular}

TELEPHONIST TRAINING DATA OBTAINED BY DIRECT OBSERVATION
\[
\begin{aligned}
& \text { TO324 HACKETT, TELEPHONIST EXPERIENCE DATA } \\
& \begin{array}{l}
31.0184,044 \% 0 \text { 162,0 } 53.0213,061,19150,0 \\
0325 \text { HACKETT. TELEPHONTST TRALNING DATA FOR }
\end{array} \\
& \text { TOS25 HACKETT, TELEPHONTST TRALNANG DAYA FOR FIRST THREE WEEKS } \\
& 2,012.05 .048,04.064,0 \quad 5,065,0
\end{aligned}
\]
\[
\begin{aligned}
& \text { TO326 HACKETT, TELEPHONISY TRAINING DATA TO END OF TRAINING } \\
& 48,04.0 \quad 64,0 \quad 5,066.0 \\
& 0^{*} フ レ レ 0^{*} 2 し 0^{*} 960^{\circ} \downarrow 60^{*} 70 \downarrow \\
& \text { TRAINING DATA, ALL } \\
& \begin{array}{llllllllll}
12.0 & 5,0 & 48.0 & 4 & 0 & 64.0 & 5,0 & 60 & 0 \\
94.0 & 9,0 & 104.0 & 11.0 & 40.0 & 12.0 & 1
\end{array} \\
& \begin{array}{lllll}
12,0 & 92,0 & 16,0182,0 & 18 & 0 \\
22 & 142,0 & 25,0 & 124,0 & 24,0 \\
20 & 100,0 & 109,0 & 24,01 & 121,011 \\
21,0 & 154,0 & 33,0 & 145,0 \\
31.0 & 148,0 & 10,0 & <03.0
\end{array}
\end{aligned}
\]
SUBJECT: KKN
SUBJECT: KN
\(N x=: \perp \jmath 3\) r\&のS
TO321 HACKETT, TELEPHONIST TRALNING DATA FOR FIRST THREE WEEKS,




\footnotetext{
\(37,0179,044,01900,1353,0205, v 93,020,0\)
\(129,01245,0185,0217,0\)
}
subject:-Ls

jx=:103r8กs
s×-: 103 r 8 n
SUBJECT:-KF
 \(\qquad\)
END OF TRAINING,

TOSO8 LAMB, TELEPHONIST EXPERIENCE OATA,

\(2,0 \quad 59.03 .0112,04,066,0\) 5,0 97,0

232
SUBJECT: J.
SUBJECT: \(\because J\)
SUBJECT: \(-J J\)
SUBJEGT: \(-J J\)
SUBjECT: \(\quad K F\)
SNココ1
OF FIRST THREE WEEKS.```


[^0]:    5.2. Derivation of Basic Formulae using the Bevis et al Analysis.

