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Abstract

Defining identity for entities is a longstanding logical problem in philosophy, and
it has resurfaced in current investigations within the philosophy of technology. The
problem has not yet been explored for the philosophy of information, and of Com-
puter Science in particular. This paper provides a logical analysis of identity and
copy for computational artefacts. Identity is here understood as the relation holding
between an instance of a computational artefact and itself. By contrast, the copy
relation holds between two distinct computational artefacts. We distinguish among
exact, inexact and approximate copies. We use process algebra to provide suitable
formal definitions of these relations, using in particular the notion of bisimulation
to define identity and exact copies, and simulation for inexact and approximate
copies. Equivalence is unproblematic for identical computational artefacts at each
individual time and for inexact copies; we will examine to which extent the for-
mal constraints on identity criteria discussed in the literature are satisfied by our
approach. As for inexact and approximate copy, they are intended as a weakening
of the identity relation in that equivalence and other constraints on identity are vi-
olated. The proposed approach also suggests a computable treatment of identity
and copy checking.

Keywords. Philosophy of Information; Philosophy of Computer Science; Identity Cri-
teria; Copy; Process Algebra.

1 Introduction
Since Frege, the problem of identity of the informational content of two sentences is
a fundamental one in the philosophy of language and information. The more recent
debate in the philosophy of technology has exploited this problem for the analysis of
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technical artefacts. The problem of identity for technical artefacts can be rephrased as
the one concerning the informational content of sentences describing their functional
properties.

Computational artefacts are informational systems defined at several levels of ab-
straction for which the problem of identity has not been investigated within the philos-
ophy of computer science (Turner and Angius, 2017). Furthermore, the closely related
notion of copy assumes a special significance in the context of computational arte-
facts which are particularly subject to replication, inducing legal, ethical, and technical
issues.

Available analyses for identity and copy of technical artefacts are largely conceptual
and have typically an informal nature. This paper contributes to the philosophical
debate on identity and copy by providing a rather formal analysis of those concepts
for computational artefacts. The examination of identity and copy for computational
artefacts is here carried out at the specification level. This allows us to make use of
process algebra to understand the formal relations holding between two specifications
for distinct artefacts.

The paper is structured as follows. The problem of identity of natural objects in an-
alytic ontology is introduced in Section 2 together with the identity criteria that entities
of a given kind are required to satisfy in oder to be considered objects. It is then shown
how the problem has been reconsidered in the philosophy of technology in terms of
the so-called problem of ontological respectability of artefacts. After introducing some
formal preliminaries in the representation and specification of computational artefacts
in section 3, a taxonomy of identity and copy relations, that are of significance in the
examination of computational artefacts, is provided in section 4. This paper in partic-
ular distinguishes among three different sub-categories of copy, namely exact copies,
inexact copies, and approximate copies. Section 5 introduces the formal relation of
bisimulation on states to capture a suitable identity relation satisfying an identity crite-
rion for computational artefacts. It is shown how, besides being an equivalence relation,
bisimulation on states satisfies all of the formal constraints on identity criteria for natu-
ral objects. The close relation of bisimulation between state transition systems is used,
in section 6, to capture the notion of exact copies, which is shown to satisfy all the
constraints satisfied by the identity relation for computational artefacts. The relation
of simulation is then used to formalize the notions of inexact copy and approximate
copy. Inexact copy is shown here to be a weaker relation than identity, in that it is
not symmetric and it violates some additional constraints. And the approximate copy
relation is finally shown to be weaker than identity and inexact copy in that it violates
transitivity while it preserves symmetry. We conclude in Section 7 to illustrate further
developments and applications of the present formal framework.

2 Identity and Copy: from Analytic Ontology to the
Philosophy of Technology

The notion of identity in contemporary analytic ontology arises in connection with the
problem of defining what an object is. Whereas Frege (1892), and the tradition follow-
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ing it (Quine, 1948; Wright, 1983), argued that an object is anything that is associated
with interpretations of terms and variables, others, such as (Lowe, 1998; Quine, 1990;
Wiggins, 2001), argue that an object is anything satisfying defined identity criteria.
Such a metaphisical approach (Lowe, 1997) on the definition of object is also involved
in closely related metaphysical problems. For instance, counting objects falling under
a given sortal concept (such as counting cats in a room) presupposes the identification
of identity criteria for that sortal, so that each object is counted only once, and counting
twice, or more, the same objects is avoided. Identity is also involved in the interpeta-
tion of modal predicates using possible worlds semantics; for instance, ∃x(^Px) is true
if and only if there is an x and there is at least one accesible world with an individ-
ual identical to x having property P (Lewis, 1986). And indentity is also involved in
mereology when dealing with the problem of whether the composition of the parts of
a whole is identical or not with the whole (Baxter, 1988; Lewis, 1991).

According to the ‘classical view’ on identity (Noonan and Curtis, 2017), identity
is the reflexive, symmetric, and transitive relation that each object has with itself and
with nothing else, and such that it satisfies Leibniz’s Law, i.e. the principle of the
indiscernibility of identical. According to Leibniz’s Law, if x and y are two identical
objects, then, whatever is true of x is also true of y. Much of the philosophical reflection
on identity turned around the problem of establishing identity crtieria. The problem of
identity criteria was initially put forward by Frege (1953) and can be splitted into (1) an
epistemic question, (2) an ontological question, and (3) a semantic question on identity
(Carrara et al., 2014). According to this vew, any kind K of objects determines an
identity criterion for objects of kind K. Given a kind K and objects x and y of kind K:

1. How can one know that x = y?

2. In what consists the identity relation x = y between x and y?

3. When do x and y have the same interpretation?

Whereas the epistemic question (1) demands for a procedure to decide indentity
questions, the ontological question (2) refers to properties that objects of the same kind
must share in order to be identical. Frege (1953) defined the identity criterion for the
identity relation x = y in terms of a relation R(x′, y′) holding between objects x′ and y′

different from, but functionally related to, x and y. For instance, identity of directions
was defined in terms of parallelism between lines in the following way:

∀x∀y((Line(x) ∧ Line(y))→ (Direction(x) = Direction(y)↔ Parallel(x, y)))

The identity criterion for directions specified by Frege can be generalized with the fol-
lowing formula, wherein f is a functional expression (Lowe, 1989):

∀x∀y( f (x) = f (y)↔ R(x, y)) (1)

Identity criteria of the form of equation 1 have been called by Williamson (1990)
two-level criteria, in that the equivalence relation R(x, y) defines an identity relation
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between objects f (x) and f (y) distinct from x and y. By contrast, one-level identity
criteria define an identity relation x = y between two objects x and y of kind K by
means of an equivalence relation R(x, y) holding just between x and y, according to the
following formula:

∀x∀y((x, y ∈ K)→ ((x = y)↔ R(x, y))) (2)

As an example, consider the following identity criterion proposed by Davidson (1969)
for events:

∀x∀y((Event(x) ∧ Event(y))→
(x = y↔ ∀z(Event(z)→

((Cause(x, z)↔ Cause(y, z)) ∧ (Cause(z, x)↔ Cause(z, y)))))

Here if x and y are two objects of the kind events, they are identical if and only if they
cause, and are caused by, any distinct event z.

Some argue that two-level criteria are more appropriate to define identity of ab-
stract objects, while one-level criteria are more suitable for concrete objects (Noonan
and Curtis, 2017). Some others argue that it is always possible to reduce a two-level
criterion to a one-level criterion so that one can dispense with two-level criteria (Lowe,
1997). For both reasons, this paper will focus only on one-level identity criteria for
computational artefacts.

The equivalence relation R in equation 2 can be used to define both synchronic and
diachronic identity. Synchronic identity of an object x is the identity of x with itself at
a given time t. Diachronic identity is the identity of object x at time t with x at any time
t′ > t. In this paper we will focus in particular on the former and only provide remarks
for an analysis of the latter.

Independently of whether synchronic or diachronic identity is considered, relation
R is required, besides equivalence, to comply with different constraints (Lombard,
1986; Wiggins, 2001). Following Carrara and Giaretta (2001), this paper considers
the following list of constraints:

Non-vacuousness. R must refer to properties that are relevant for defining identity
between objects x and y of a given kind K, and such that they be not trivially satisfiable
by x and y. For instance, being parallel is a relevant property to define sameness of
directions of two lines, while being 5 centimeters long is not. Significant properties
of this sort have been called by Lombard (1986) determinables, and objects satisfying
them determinates.

Informativeness. As stated above, it is kind K that determinates the identity cri-
terion for objects of kind K. Nevertheless, it is required that relation R in the identity
criterion is informative with respect to K, in the sense that R should not specify tauto-
logical properties.

Partial Exclusivity. Besides being non-vacuous, relation R for kind K should spec-
ify determinables such that the determinates satisfying them are only objects of kind K.
In other words, R should not appear in the identity criterion for objects of kind different
than K and each kind of objects should have its own distinct identity criterion.
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Minimality. R should include the smallest set of determinables being both nec-
essary and sufficient to determiny identity of any two objects of kind K. Minimality
ensures that superfluous determinables are not considered.

Non-circularity. R must not make reference to the identity relation.
Non-totality. It is required that R ⊂ K × K, that is, that not all object pairs in K

satisfy the identity relation defined by R.
K-maximality. R should be the maximal equivalence relation defining identity of

objects of some kind K. Given two K objects x and y, for any different relation R′

defining identity for K objects, it should hold that R′(x, y) → R(x, y) but ¬(R(x, y) →
R′(x, y)).

Uniqueness. In addition, R must be unique with respect to K, that is, for any R′,
also ¬(R′(x, y) → R(x, y)) holds. In other words, R is unique with respect to K when
there are neither wider, nor narrower relations than R for K objects.

Equivalence. R is required to be reflexive, symmetric, and transitive.
Congruence. If R(x, y), then Leibniz’s Law holds: all properites satisfied by x are

all and only the properties satisfied by y.

The problem of defining identity of technical artefacts is almost as old as the prob-
lem of identity for natural kinds. It traces back to the second book of Aristotelian
Physica and the distinction between things that ‘exists by nature’ and ‘artificial prod-
ucts’. Aristotle argued that natural objects can be distinguished from technical artefacts
in that the latter lack form. Whereas natural objects, such as water, earth, and animals,
change according to principles that are inner to them, artefacts change according to
principles inner to the artefacts’ material or to human intervention. Paradigmatic is the
case, known till antiquity, of the ship of Theseus, i.e. the ship that Theseus used to
reach Crete and defeat the Minotaur. Athenians wanted to retain the ship and preserved
it by gradually replacing worn planks by new planks. The question is whether the ship
retained by the Athenians was the same ship of Theseus.

The problem of the distinction between natural obejcts and technical artefacts is put
forward, by contemporary philosophy of technology, in terms of the so-called problem
of ontological respectability of artefacts (Wiggins, 2001): artefacts are ontologically
respectable, i.e. they are on a par with natural objects, if and only if they are able to
satisfy identity criteria. Wiggins (2001) defines an artefact kind K as composed of all
those artefacts satisfying a given set of functional requirements. And two artefacts x
and y of kind K are said to be identical if and only if they satisfy the same sub-set
of functional requirements. However, it is known that artefacts correctly instantiating
their functional requirements may start, at a certain point, to malfunction, that is, they
may start, under usage, violating one or more requirements. Consequentely, transitivity
of relation R in equation 2 may not hold. Artefact x at time t may still be said to be
identical to artefact x′ at time t′ even though x′ starts malfunctioning. The same can
be said for artefacts x′ and x′′ at time t′′. However there may be a time t∗ at which
artefact x∗ is not identical to x insofar as too many requirements are being violated by
x∗. Identity criteria for technical artefacts thus violate the equivalence constraint. For
the same reason they violate the congruence constraint, in that it may be the case that
not all that is true of artefact x is still true of artefact x∗.

Wiggins’ critique highlights a potential limitation to any approach using functions
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to determine identity criteria. This includes, in principle, an understanding of compu-
tational artefacts in terms of their functional requirements. Below, starting in Section
3, we provide a description of computational artefacts based on their layered ontology,
which includes the designer’s intention, its translation to a functional specification, and
their implementation: this exposes our analysis to a critique similar to Wiggins’. To
dispel any doubt on this matter, let us briefly consider two main approaches to func-
tional analysis in engineering:

• Functional Representation: this approach defines a function in a device-centric
sense; it starts from a description of the intended function independently of how
the function is accomplished, followed by a description of the structure of the
device in terms of its components’ composition, finally matching the device to
the function by offering a process description, see Chandrasekaran (1994);

• Functional Basis: this approach aims at constructing a functional design of an
artefact; it starts from a generic input/output relationship, followed by its decom-
position in terms of sub-functions, inductively generating a function flow and
then the artfeact’s process in terms of a model and a structure, finally combined
in a design language, see Stone and Wood (1999).

The approach followed below for computational artefacts resembles the Functional
Representation approach. We provide a functional description not just as a characteri-
zation of a function, but rather as a description of the artefact involved in the execution
of such a function. As computational artefacts present multiple realizability of their
functional description (several languages and architectures can implement the same
functional requirements), this cannot be done in terms of the device’s components com-
position. Instead, we do so by formulating functions in terms of behaviours, clarifying
in Section 3 in which sense are such behaviours intended. For the purposes of this sec-
tion, it is just essential to note the following: on the one hand, the notion of behaviour
used here allows us to side-step Wiggins’ critique, in that behaviours provide a low-
level treatment of malfunctions, hence not falling in the same problem that functions
have; on the other hand, while computational artefacts can in principle be understood
as I/O black boxes, the use of behaviours to characterise functional representations of
such artefacts allows us to avoid a functional basis interpretation.

In contrast to natural objects, the notion of copy is proper of technical – and hence
specifically of computational – artefacts, but also of artworks (Goodman, 1968). Ex-
cept for some analyses (Carrara and Soavi, 2010; Hick and Schmcke, 2016; Tzouvaras
et al., 1993), there is not a well-established and accepted analysis of the notion of
copy in the philosophy of technology. Tzouvaras et al. (1993) understand copy as an
equivalence relation holding between two artefacts x and y such that x and y are func-
tionally interchangeable, that is, such that each can replace the other one in a given
system, by playing the same functional role. Carrara and Soavi (2010) critizise Tzou-
varas’definition in that it does not take into account the intentional aspect of copying.
Copying means reproducing an artecfact taken as a model: if y is a copy of x, the latter
is the model of the former and it cannot be said that, at the same time, x is a copy of y.
It follows that the copy relation is neither reflexive, nor symmetric, and hence it is not
an equivalence relation.
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Transitivity does not apply either, at least in those cases in which copying means
reproducing an artefact taken as a model: if x is the model for the copy y and y is also
taken as a model for copy z, it does not hold that x is the model of z. Also consider that,
if x is used as a model to produce y, y is supposed to presents structural similarities
or resemblances with x. If x′ resembles x, and x′′ resembles x′, there will be a point
in which some x∗ cannot be said to resemble x. There are cases, though, in which
copying consists of creating a ‘perfect copy’, such as when duplicating digital artefacts,
in which copying is transitive. Perfect copies allowed by the producer of the original
artefacts are callled by Carrara and Soavi (2010) ‘replicas’, this being the case, for
instance, of the copies of a piece of software released by a software company.

This paper contributes to fill the gap in the analysis of the notion of copy for com-
putational artefacts by defining it as a weaker relation than identity. To do so, we first
define identity for compuatational artefacts, that is, a candidate for relation R in equa-
tion 2 and show that it is an equivalence relation complying with all the constraints
for the identity criteria. Secondly, we consider candidates for the copy relation R′ in
equation 3 below, defining when x f y, that is, when a computational artefacts y is a
copy of a distinct artefact x:

∀x∀y((x, y ∈ K)→ ((xf y)↔ R′(x, y))) (3)

The proposed candidates for relation R′ in equation 3 are shown, besides violating
equivalence, not to comply with all constraints for indentity.

Preliminarily, let us introduce some formal notions concerning the representation
and the specification of computational artefacts.

3 Formal preliminaries for Computational Artefacts and
their Specifications

Technical artefacts are artefacts, i.e. human made systems, built with the specific pur-
pose of fulfilling some functions, in contrast with other kind of artefacts, such as art-
works, wich are not supposed to implement functions. It follows that technical artefacts
can be defined on the basis of both functional properties, dealing with the functions to
be fulfilled, and structural properties, concerning the phisical properties of the arte-
facts that allow it to accomplish the intended funtions (Kroes, 2009; Meijers, 2000).
Functions usualy reflect intentions of both designers and users (Kroes, 2012) and they
can be multiply-realised by different artefacts1. What is often called the dual nature of
technical artefacts (Kroes and Meijers, 2006) is also reflected in their design process:
stakeholders’ requirements are ususally translated into a set of functional requirements
on the basis of which a set of design specifications are advanced, flowing into a final
bluprint of the artefacts (Franssen et al., 2015).

Computational artefacts can be described in terms of functional and structural prop-
erties, and their design process associated with that of technical artefacts. However, the

1Issuess arise here in connection with the problem of how functions, qua human intentions, can con-
strain the structural substratum (Franssen et al., 2015). Addressing this problem requires a proper theory of
functions (Kroes, 2009; Vermaas and Houkes, 2003)
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nature of computational artefacts cannot be fully understood by the dual ontology ap-
proach of Kroes and Meijers (2006). This is due to the role programs play in the
design process (Floridi et al., 2015). Functional requirements are tranlsated into pro-
gram specifications which are in turn implemented by high-level language programs.
For this reason, programs themselves can be understood as technical artefacts provid-
ing design specifications for the lower structural levels (Turner, 2014). Also, programs
can instantiate specifications in several ways, thereby adding a further level of multiple
realizability in the design process.

Accordingly, computational artefacts are characterised by a more layered ontology
requiring a description at several levels of abstraction (LoA) (Floridi, 2008; Fresco
and Primiero, 2013). Primiero (2016) summarises the informational description of
computational systems provided by the philosophy of computer science, distinguishing
among:

• Intention

• Specification

• Algorithm

• High-level programming language instructions

• Assembly/machine code operations

• Execution.

Our approach makes use of this layered analysis to investigate the issue of iden-
tity and copies by providing a formal analysis at the level of Specifications. This will
also cascade through the lower levels. Identity and Copy are formalised as relations
between two entities x, y belonging to some kind K, according to equations 2 and 3
above. Following Wiggins (2001) in the functional definition of artefacts kinds, K is
here taken to be a class of programs implementing a well-defined set of algorithms
(computable functions) and the entities x, y of interest are computational artefacts im-
plementing those functions. For brevity, we will refer to a computational artefact as P,
to its specification as S (P), to its implementation in a programming language as L(P),
and to its physical realization as I(P). As mentioned above, the analysis of the notions
of identity and copy for computational artefacts is here addressed at the level of S (P).
As such, kind K = {P, P′, P′′ . . .} is given as the class of programs each correctly imple-
menting a defined set of specifications in the class {S (P), S (P′)′, S (P′′)′′ . . .} and such
that all specifications defining K be the realization of some common Intention. For
instance, K may be identified with the class of text editors; all specifications defining
K are specifications of text editors, and members of K are editors each satisfying the
proper specifications. It makes sense to question whether a text editor y ∈ K is a copy
of editor x ∈ K. In order to do so, we first define the identity relation for the members
of K.

We consider formal specifications S (P) as state transition systems defined as fol-
lows:
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6
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read(n) i := 0 f := 1

i < n

i := i + 1

f := f ∗ i

¬(i < n)

write( f )

Figure 1: A Transition System for the factorial function

Definition 1 (Finite State Transition System). A finite transition system

TS = (S , A,T, I, F, AP, L)

is a set theoretic structure where:

• S = (s0, . . . , sn) is a finite set of states;

• A is a set of finite transitions labels;

• T ⊆ S × A × A is a transition relation;

• I ⊆ S is a set of initial states;

• F ⊆ S is a set of final states;

• AP is a finite set of states labels;

• L : S → 2AP is the function labelling states.

Let us start with an easy example showing why it is convenient to focus on S (P)
when reasoning about identity and copy of computational artefacts. Consider a pro-
gram P to compute the factorial of any integer n.2 At the S (P) level, such program
can be presented as a transition system, see Figure 1. This formal specification S (P)
presented by a TS can then be offered at the L(P) level in several formats: for example,
as a Pascal implementation (Figure 2), or as a program written in C (Figure 3). The
program from Figure 3 can in some sense be considered a copy of the program from
figure 2, even though their high-level programming language instructions are different,
while their specification is the same.

Actual executions of the two programs above correspond to paths in the TS pre-
sented in Figure 1, which list the states the computation goes through, according to the
following definition of path:3:

2For this example see (Middelburg, 2016, pp.8-9).
3See (Baier and Katoen, 2008, p.96).
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PROGRAM f a c t o r i a l ( i n p u t , o u t p u t ) ;
VAR i , n , f : 0 . . maxint ;

BEGIN
read ( n ) ;
i : = 0 ; f : = 1 ;

WHILE i <n DO
BEGIN i := i +1; f := f ∗ i
END;

w r i t e ( f )
END

Figure 2: A program to compute the factorial in PASCAL

i n t main ( )
{

i n t i , n , f = 1 ;
s c a n f ( ”%i ” , &n ) ;
f o r ( i =1; i <=n ; i ++)

f = f a c t ∗ i ;
re turn 0 ;

}

Figure 3: A program to compute the factorial in C

Definition 2 (Path). Given a finite transition system TS , a finite path fragment is a
finite sequence of states π = (s0, . . . , sn), such that each si is the successor of si−1. An
infinite path fragment is an infinite sequence of states π = (s0, s1, . . .) such that each si

is the successor of si−1. A path is a path fragment which starts in an initial state si ∈ I
and either terminates in a final state s j ∈ F, or is infinite.

A path in the TS from Figure 1 is therefore an execution of the program with
given values (see Figure 4; here multiple labels on the edges indicate corresponding
executions of the related sub-path for computing the factorial of 2).

A notion equivalent to the one of path is given by looking at labels of states belong-
ing to it, corresponding to the following notion of trace:4

Definition 3 (Trace). Given a finite transition system TS , the trace of a finite path
fragment π = (s0, . . . , sn) is the sequence of its labels trace(π) = (L(s0), . . . , L(sn)).
The trace of an infinite path fragment π = (s0, s1, . . .) is the sequence of its labels
trace(π) = (L(s0), L(s1) . . .).

State transition systems specify all the allowed behaviours of the program imple-
menting the corresponding specification. Individual behaviours are usually formalized
by means of temporal logic formulas. Temporal logics (Kröger and Merz, 2008) are
formalisms capable of stating how systems evolve over time. Originally they were de-
veloped in modal logic in order to express how propositions may change their truth
values over time; they extend propositional logic with temporal operators and path
quantifiers that allow reference to the ordering of events so as to render them suitable

4See (Baier and Katoen, 2008, p.98). Note that an infinite trace over a transition system with terminal
states is a trace with a self-loop on its terminal state.
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0start 1 2 3

45

6

7

read(2) i := 0 f := 1

0 < 2

1 < 2

i := 1i := 2

f := 1

f := 2

2 = 2

write(2)

Figure 4: A path in the TS from Figure 1 for n = 2

for formalizing specifications of concurrent systems, wherein different processes take
place at the same time. When an individual behaviour is executable by a computational
system, the transition system corresponding to the latter will satisfy a temporal logic
formula expressing that behaviour. CT L (Computational Tree Logic) is the temporal
logic which allows for branching time models, i.e. where at each stage different paths
are non-deterministically possible, and it is a typical model to analyse properties of
software artefacts.

Definition 4 (Satisfaction of CT L formulas). Given a TS and an atomic formula p,
the satisfaction relation in TS of CT L formulas is defined as follows:

TS , si |= p iff p ∈ L(si);
TS , si |= ¬p iff TS , si 2 p;
TS , si |= p ∧ q iff TS , si |= p and TS , si |= q;
TS , si |= Xp iff there exists s j ∈ S s.t. siT s j and TS , s j |= p;
TS , si |= F p iff for all paths π = (si, s j, . . .) such that

there exists sk ∈ π, TS , sk |= p;
TS , si |= Gp iff there exists a path π = (si, s j, . . .) such that

for all sk ∈ π, TS , sk |= p;
TS , si |= [pUq] iff there exists a path π = (si, s j, . . .) and an index k such that

TS , sk |= q and TS , s j |= p for all j ≤ k;
TS , si |= ∀p iff for all paths π = (si, s j, . . .), TS , π |= p;
TS , si |= ∃p iff there exist a path π = (si, s j, . . .) such that TS , π |= p;
TS , π |= Xp iff TS , π1 |= p;
TS , π |= F p iff there exists k ≥ 0 such that TS , πk |= p;
TS , π |= Gp iff for all k ≥ 0, TS , πk |= p;
TS , π |= [pUq] iff there exists k ≥ 0 such that TS , πk |= q

and TS , π j |= p for all j ≤ k;

The above clauses formulate the satisfaction relation distinguishing between state
formulas and path formulas. For the state formulas: a formula p is satisfied at a give
state si ∈ TS when p is in the labels of si; its contradictory is valid if and only if
the satisfaction does not hold; the conjunction of two formulas p, q is satisfied iff each
can be individually satisfied; Xp (next) holds at a given state when p will hold at the
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following state; F p (finally) holds at a given state when p will eventually hold at some
successive state; Gp (globally) holds at a given state when p will hold at all successive
states; pUq (until) holds at a given state when q holds at a given state and p holds in
all inbetween states; ∀p holds at a given state s if every path starting from it satisfies
p; ∃p holds at a given state s if there is a path starting from it that satisfies p. For the
path formulas: Xp holds in a given path when there is an immediate suffix of the path
in which p holds; F p holds in a given path when there exists a non-immediate suffix of
the path in which p holds; Gp holds in a given path when for all suffixes of the path, p
holds; pUq holds in a given path when there exists a non-immediate suffix of the path
in which q holds and for all inbetween suffixes p holds.

Process algebras allows therefore to express a system’s functional structure in terms
of paths and their traces. A temporal logic formula satisfiable within a given transition
system reflects a valid behaviour for the computational artefact interpreted by that sys-
tem. In the following, starting from Section 4, identity and copy relations are expressed
in terms of relations quantified over such behaviours. An important task is the charac-
terization of this formal notion of behaviour with that in use in engineering design. To
illustrate such comparison, let us refer to the different meanings of ‘behaviour’ offered
in (Chandrasekaran and Josephson, 2000, p.169):

• Beh-i: The value(s), or relations between values, of state variables of interest at
a particular instant;

• Beh-ii: The value(s), or relations between values, of properties of an object.

• Beh-iii: The value(s) of state variables of interest over an interval of time.

• Beh-iv: The value(s) of state variable(s) specifically labelled ‘output’ state vari-
ables, either at an instant or over an interval of time.

• Beh-v: The values of all the state variables in the object description, either at an
instant or over an interval of time.

• Beh-vi: The causal rules that describe the values of the variables under various
conditions.

When considering the path of a system in terms of a finite fragment of its states and a
trace as the corresponding sequence of labels, we are considering both meaning (i) and
(ii) above, as we look at values of state variables and relations between them. When we
further express these by a temporal logic formula, we add the interval of time parameter
required by meaning (iii) above. If the formula of interest refers to a trace including a
final state, we are referring to meaning (iv) above. If we are considering all paths of
a given transition system, i.e. the set of all possible behaviours, then we are looking
at meaning (v) above. The last meaning of behaviour, interpreted in terms of causal
rules, can be covered in terms of the implicative relations between states of a given
system. In other words, it appears that the use of a definition of behaviour as regulated
by temporal logics and process algebra is general enough to provide all the intended
standard meaning in engineering design. Note, moreover, that such meanings are not
different between identity and the various versions of copy relations: the difference
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IDENT ITY EXACT COPY INEXACT COPY APPROXIMAT E COPY
S (P) = S (P) S (P) = S (P) S (P) ⊂ S (P′)′ S (P) ∩ S (P′)′

L(P) = L(P) L(P) = L(P) L(P) = L(P′) L(P) = L(P′)′

I(P) = I(P) I(P) , I(P)′ I(P) , I(P′)′ I(P) , I(P′)′

Figure 5: Taxonomy of Relations

is determined by the transition systems and the set-theoretical relations between their
traces.

4 Defining Identity and Copy Relations
We are now able to associate the specification of a computational artefact S (P) to the
corresponding formal representation provided by a TS ; different language implemen-
tations L(P), L(P)′, L(P)′′, . . . may correspond to a single S (P); the physical realization
I(P) corresponds to the set of possible paths (or traces) valid for that TS in some given
language; and any behaviour prescribed by the S (P) can be expressed by a temporal
formula p satisfied by that TS . The relations of identity and copy to be investigated
in the following of this paper can now be illustrated in terms of the possible combina-
tions of set-theoretic relations between the three terms S (P), L(P), I(P), as presented in
Figure 5.

The first one is the case of Identity: it expresses the relation of a computational
artefact P with itself at any given time t; in this case there will be only one specifica-
tion S (P), one language implementation L(P), and one instance of reference I(P). We
do not consider here the case of diachronic identity and the corresponding ontological
problem of whether a computational artefact is identical to itself at different times. A
reason to do so is based on the consideration that a solid analysis of identity and copy
for computational artefacts needs to avoid, in the first instance, the problems associated
with their unreliability and continuous changes in the execution environment. There-
fore, we assume here a principle of computational correctness, according to which any
implementation I(P) will always correctly respect the behaviour prescribed by the cor-
responding S (P). Nonetheless, we suggest here briefly that the behavioural relation of
a computational artefact with itself at different points in time, if altered by restriction of
functionalities, or addition of (unintended) behaviours, may be considered in a similar
vein to what done below for the different relations of copy.5

The second case is what we call Exact Copies: it refers to two instances I(P) and
I(P)′ of a computational artefact P with one single specification S (P), installed on two
different machines M,N. We then say that I(P)′ is an exact copy of I(P) when I(P)′

manifests all and only the behaviours of I(P).6 In this case we can in fact distinguish

5For an approach to software theory change which can be assumed to model such transformation of
specification see Primiero and Raimondi (2015).

6This case has been investigated in the Philosophy of Technology literature as the relation of perfect
copies and replicas, see (Carrara and Soavi, 2010, p.215).
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two sub-cases:

1. the two instances I(P), I(P)′′ share the same implementations L(P) = L(P) in
high-level programming languages;

2. the two instances I(P), I(P)′′ have different implementations L(P) , L(P)′ in
high-level programming languages.

The third case is what we call Inexact Copies: it refers to two distinct computa-
tional artefacts P and P′, with different specifications S (P) and S (P′)′. We then say
that P′ is an inexact copy of P when P′ manifests all the behaviours of P, i.e. such
that S (P) ⊂ S (P′)′. This relation is known, in the literature in formal methods, as sys-
tem refinement. Refinements mappings are used since Abadi and Lamport (1991) to
prove that a lower-level specification correctly implements a higher-level one in terms
of (possibly infinite) state machines specifying safety and liveness requirements.7 A
system S ′ refines a system S if and only if the behaviours of S are a subset of the
behaviours of S ′. Refinement can be understood as the process of developing a new
system S ′ out of an old one S , by preserving all the behaviours of the former, and
possibly adding new ones. Refinement can be modelled in terms of simulation as first
introduced by Milner (1971): informally, a simulation holds between two systems S ′

and S if we can relate each state of S to a state of S ′ so that two related states s, s′

agree on their observations and every successor of s is related to some successor of s′;
accordingly, the relation S ′ ← S , stating that S refines S ′ formally corresponds to the
statement that S is simulated by S ′, or else that S ′ simulates S , (Gorogiannis and Ryan,
2007). In the present work, we use simulation to model the slightly more specific case
represented by the notion of inexact copy. In analogy with the case of exact copies, we
can distinguish two subcases, on the basis of whether L(P) = L(P′) or L(P) , L(P′)′.

The fourth case is what we call Approximate Copies: it refers to two distinct com-
putational artefacts P and P′, with different specifications S (P), S (P′)′. We then say
that P′ is an approximate copy of P when P′ manifests some of the behaviours of P, i.e.
S (P) ∩ S (P′)′. Analogously to the case of exact and inexact copies, also for approx-
imate copies we distinguish between approximate copies sharing the same high-level
programming language implementation L(P) = L(P′) and approximate copies having
different implmentations L(P) , L(P′)′.

In the next section we use process algebra to provide suitable formal definitions
of the four relations defined above. Consequently, copy relations will be examined
only considering the logic properties they satisfy, without taking into consideration the
non-formal properties that nonetheless define them, including their intentional charac-
ter. Indeed, it follows from the definition of exact copy above that it is an equivalent
relation in that it clearly is reflexive, symmetric, and transitive. And, as it will be
shown in the details of sections 6.5 and 6.7, inexact copy is a reflexive, asymmetric,
and transitive relation, whereas approximate copy is reflexive, symmetric, but intran-
sitive. However, according to Carrara and Soavi (2010), exception made for replicas,
copy is an irreflexive, asymmetric, and non-transitive relation.

7See section 6.3 for a definition of safety and liveness properties.
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As highlighted in section 2, the reason at the basis of the non-equivalence of copy
lies in the intentional aspect of such relation. Whether exact copies are replicas or
not properly depends on that intentional character of copies, that is, it depends on
whether copying is allowed by the producer. In case it is not, it can be said that exact
copy, qua logic relation, is reflexive, symmetric, and transitive, but they are irreflexive,
asymmetric, and non-transitive if the intentional aspect of creating illegal copies of
an artefact is considered. The same holds for inexact and approximate copies: the
former is reflexive, asymmetric, and transitive, and the latter reflexive, symmetric, and
intransitive, only qua logic relations. Whereas an analysis based on logic properties
seems to be indespensable when a taxonomy of the copy relations for computational
artefacts is to be provided, the intentional aspect of copy cannot be ignored when ethical
and legal aspects of copying are considered. In particular, given two artefacts x and y
for which R′(x, y), identifying the model and the copy between x and y is necessaty
when determing copyright infringement.

5 Logical Definition of Identity for Computational Arte-
facts

Process Algebra Theory (Fokkink, 2000), a formal theory for concurrent processes in-
terpreted over process graphs (like a TS ), is apt to formalize the notion of equivalence
between structures. From a general point of view, two structures are said to be equiva-
lent if and only if they can execute the same strings of transitions. In order to compare
or relate two TS s, certain binary relations between states, called implementation rela-
tions, are introduced. There are several kinds of implementation relations: some, called
strong relations, impose very strict constraints; others, called weak relations, impose
more relaxed constraints. Two typical implementation relations are the bisimulation
equivalence and the simulation preorder, which are two strong relations.

The strongest equivalence relation is bisimulation; this notion requires not only
that two structures be able to execute the same transitions, but also that they have the
same branching structure and thus can simulate each other. Intuitively, bisimulation
between two structures requires that every step of one structure be matched by one step
of the other structure and vice versa. Bisimulation equivalence is a mutual, stepwise
simulation.

Definition 5 (Bisimulation). Given two labelled transition systems TS and TS ′ on a
finite set of states S , a bisimulation between them denoted as TS ≡ TS ′ occurs when:

1. for each initial state s0 in TS there is an initial state s′0 in TS ′ that establishes a
bisimulation relation ≡ (s0, s′0), and vice versa;

2. ≡ (s0, s′0) holds if and only if s0 and s′0 have the same label and there is a suc-
cessor state s′1 of s′0 in TS ′ for each successor state s1 of s0 in TS such that
≡ (s1, s′1).

In other words, a bisimulation between two states occurs when they have the same
label and there is a successor state in the second structure for each successor state in the
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Figure 6: Two bisimilar TSs.

first structure, and vice versa, such that a bisimuation relation between the successors
holds. A bisimulation between two structures occurs when for each initial state of one
structure there is an initial state of the second structure that establishes a bisimulation
relation. Bisimulation is an equivalence relation, that is, it is a reflexive, symmetric and
transitive relation.

Bisimulation implies a number of properties over the related transition systems.
For our purposes, it is essential to recall how the relation of bisimulation is defined
over paths and temporal formulas: the former allows to compare identical behaviours,
the latter identical properties. Let us start from defining identical paths:8

Lemma 1 (Bisimulation on Paths). Given two bismulation equivalent transition sys-
tems TS and TS ′, if ≡ (si, s′i), then for each (finite or infinite) path π = (si, s j, . . .) of
TS there exists a path π′ = (s′i , s

′
j, . . .) of the same length in TS ′ and ≡ (sk, s′k) for all

k, and viceversa.

Recall that paths correpond to the transitions through labels indicated by traces,
hence the following result holds:9

Theorem 1 (Bisimulation implies trace equivalence). Two transition systems TS and
TS ′, defined over the same set of atomic proposition AP, are said to be trace equiv-
alent, if tracesAP(TS ) = tracesAP(TS ′), where traces(TS ) =

⋃
s∈I traces(s) denotes

the set of traces starting at initial states of TS . It holds that: TS ≡ TS ′ implies that
tracesAP(TS ) = tracesAP(TS ′).

Bisimulation corresponds to equivalence of properties, as expressed by valid tem-
poral formulas being satisfied by the corresponding structures. To intrduce this known
result, recall that CT L∗ is the superset of CT L where formulas containing temporal
operators need not to be directly preceded by a quantifier.

8See (Baier and Katoen, 2008, p.454).
9See (Baier and Katoen, 2008, p.456).
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Theorem 2 (Bisimulation and CT L∗ equivalence). TS ≡ TS ′ iff TS ≡CT L∗ TS ′, i.e.
TS , si � g↔ TS ′, s′i � g, for any CT L∗ formula g.

Bisimulation expresses therefore exactly that two structures have identical behaviours
and satisfy identical structures. In order to be exploited to express identity of behaviour
of a computational artefact with itself, we need to define bisimulation as a relation on
its states, as follows:10

Definition 6 (Bisimulation as a Relation on States). Given a TS , a bisimulation on
states of TS denoted by ≡TS is a binary relation ≡⊆ S × S such that for all ≡ (si, s j)

1. si and s j have the same label;

2. if there is a successor state s′i of si, then there is a successor s′j of s j such that
≡ (s′i , s

′
j) and

3. if there is a successor state s′j of s j, then there is a successor s′i of si such that
≡ (s′i , s

′
j).

We argue that a computational artefact P is identical to itself insofar as a bisim-
ulation equivalence can be defined on the TS corresponding to S (P). This is shown
in Figure 6 by two bisimilar TSs which are one the duplication of the other, as in a
structure related to itself. In other words, we propose to identify relation R in equation
2 with ≡TS .

Definition 7 (Identity as Bisimulation on States). TS is identical to itself in that the
relation ≡TS of bisimulation on its states can be defined.

We understand identity at the level of specification as sameness of prescribed be-
haviours. The set of temporal properties corresponding to such behaviours is the set:

G := {g | TS , si �CT L∗ g}

for each si ∈ TS , where TS is the formal translation of the specification S (P) for
the computational artefact of interest. If the specification modelled by TS satisfies at
each given time the same set of properties as expressed by G, then TS ≡CT L∗ TS ; then
by Theorem 2 it holds TS ≡ TS , which means ≡TS . Conversely, the relation ≡TS is
a subset of S × S satisfied by all the pairs that are related by a transition in TS ; this
identifies exactly all behaviours of TS , hence is by definition behaviourally identical
to the specification of TS .

5.1 Constraints on Identity Criteria
We analyse here the constraints for identity satisfied by ≡TS .

Non-vacuousness. The bisimulation on states relation ≡TS is a significant, non-
vacuous, determinable for the evaluation of identity of computational artefacts, as ex-
plicated in Definition 7: a computational artefact is identical to itself in that a bismula-
tion on the states of the artfact’s specification can be defined.

10See (Baier and Katoen, 2008, p.456).
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Informativeness. ≡TS contributes to specifying the nature of K in that bisimula-
tion is preserved over different modes of presentation of the same structure, as given
a TS, several bisimilar graphs can be used to represent it, including unwinding and
duplication.11 This means that given two different graphs, bisimulation allows one to
ensure that the two graphs are bisimilar graphs for the same specification TS of a given
program P.

Partial Exclusivity. K is defined as the set of objects that instantiate a defined
set of computable functions which are here expressed as TS s, and bisimulation is an
algebraic relation holding between them. Notice that TS s are cyclic graphs able to rep-
resent non-ending executions characterizing the so-called reactive software systems.
It should be noted that also many physical processes can be represented by means of
directed graphs, but a-cyclic ones, including causal processes (Pearl, 2009). Accord-
ingly, bisimulation cannot be applied to non-computational processes. These processes
are therefore excluded by our analysis and bisimulation is not a trivializing relation.

Minimality. ≡TS is the only one determinable induced by our identity criterion for
computational artefacts. Definition 7 ensures that ≡TS is a both necessary and sufficient
condition, as it associates two analytic concepts to one another.

Noncircularity ≡TS does not presuppose identity. Indeed, given any two distinct
computational artefacts P and P′, if S (P) = S (P′) then S (P) ≡ S (P′). This is the case
of exact copies presented below.

Non-totality. Given kind K = {P, P′, . . . , P◦} of objects each satisfying a set of
specifications in S = {S (P), S (P′), . . . , S (P◦)◦}, the relation ≡TS is a subset of K × K,
namely:

≡TS =de f {(S (P), S (P)), (S (P′)′, S (P′)′), . . . , (S (P◦)◦, S (P◦)◦)}

Hence all other pairs in K × K are not included by the relation ≡TS .
K-maximality. ≡TS is maximal with respect to K in that it is the only relation over

K that for all S (P) with P ∈ K, returns all the pairs that satisfy identity.
Uniqueness. ≡TS is unique with respect to K, since every other relation which can

be taken to satisfy an identity criterion cannot be considered independent of bisimu-
lation, i.e. it can be at most equivalent to ≡. Trace inclusion and CTL* equivalence
being some cases in point. One admissible alternative to evaluate the identity relation
of computational artefacts that is also independent from bisimulation may be observa-
tional equivalence. However, supposing that two artefacts, while observed for a finite
lapse of time, manifest the very same behaviours, one cannot conclude that the two
artefacts are necessarily identical, as one cannot argue for generalizations on the basis
of testing.

Equivalence. ≡TS is an equivalence relation.12

Congruence. ≡TS is congruent in that it implies CT L∗ equivalence: whatever is
true of a TS according to a CT L∗ state formula is true of any bisimulation euqivalent
TS , including itself.13

11For these definitions, see e.g. (Clarke et al., 1999, p.172).
12See (Baier and Katoen, 2008, Lemma 7.8, p.453).
13See (Baier and Katoen, 2008, Definition 7.17, part 2, p. 468).
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Figure 7: Two distinct bisimilar TSs.

6 Logical Definition of Copies for Computational Arte-
facts

6.1 Exact Copies
For the formal translation of the notion of exact copy, we still rely on the relation of
bisimulation. According to this definition, two computational artefact P, P′ are exact
copies if a bisimulation equivalence can be defined between the corresponding TS ,TS ′

for the relevant S (P), S (P′)′. In other words, we propose to identify relation R′ in equa-
tion 3 for exact copies with ≡. Note how bisimulation is not only definable bewteen two
structures where one is a duplication of the other, but also where identical behaviours
are present among distinct structures, see Figure 7.

Theorem 3 (Exact Copy as Bisimulation). TS ′ is an exact copy of TS if and only if
TS ≡ TS ′.

Proof. From left to right: consider the set of properties of TS as expressed by the set
of formulas

G := {g | TS , si �CT L∗ g}
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for each si ∈ TS , where TS is the formal translation of the specification S (P) for
the first computational artefact of interest; and the set of properties of TS ′ as expressed
by the set of formulas

G′ := {g′ | TS ′, s′i �CT L∗ g′}

for each s′i ∈ TS ′, where TS ′ is the formal translation of the specification S (P′)′

for the second computational artefact of interest. Then, if G = G′, then TS ≡CT L∗ TS ′

and by Theorem 2 it holds TS ≡ TS ′.

From right to left: the relation TS ≡ TS ′ is a subset of S × S ′ satisfied only by the
pairs that are related by a transition in TS as well as in TS ′; this identifies exactly all
behaviours of both TS and TS ′, hence by definition it expresses behavioural identity
of the specifications of TS and TS ′, which as such can be called exact copies. �

6.2 Exact Copy Constraints
We analyse here the constraints for exact copies satisfied by ≡.

Non-vacuousness. Theorem 3 shows that the bisimulation relation TS ≡ TS ′ is a
non-vacuous determinable to establish whether TS ′ is or is not an exact copy of TS .

Informativeness. ≡ contributes to specifying the nature of K in that, given a TS
representing I(P) and TS ′ representing I(P)′, then for every computable function f
valid according to K, if TS ≡ TS ′ then TS |= g iff TS ′ |= g for any CT L∗ formula g
expressing a property satisfied by a function f .

Partial Exclusivity. The same observation as for Identity Criteria applies here.
Minimality. The same observation as for Identity Criteria applies here.
Noncircularity Bisimulation does not presuppose the relation of being an exact

copy, indeed bisimulation also holds for identity, where I(P) = I(P)′.
Non-totality. Given I(P) and I(P)′ which are exact copies, they are instances of

the same specification S (P) and hence still satisfying only one pair in

≡ =de f {(S (P), S (P)), (S (P′)′, S (P′)′), . . . , (S (P◦)◦, S (P◦)◦}

and hence it still is a subset of K × K.
K-maximality. Given I(P) and I(P)′ which are exact copies, they are instances of

the same specification S (P) and hence still satisfying only one pair in

≡ =de f {(S (P), S (P)), (S (P′)′, S (P′)′), . . . , (S (P◦)◦, S (P◦)◦}

which is the maximal partition over K returning all the identical specifications for
exact copies.

Uniqueness. ≡ is unique wrt K since every other relation which can be taken to
satisfy an exact copy criterion cannot be considered independent of bisimulation. Trace
inclusion and CTL equivalence being some cases in point.
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Equivalence. Assuming correctness of each exact copy with respect to the identical
specification, ≡ is an equivalence relation.14

Congruence. ≡ is congruent in that, given a TS representing the specification
determining executions of I(P) and a TS ′ representing the specification determining
executions of I(P)′, TS and TS ′ are CTL* equivalent.15

This analysis shows that bisimulation, both defined as ≡TS for identity and as ≡ for
exact copies, satisfies all constraints on identity illustrated in the literature.

6.3 Simulation
An equivalence relation is a binary relation that must be reflexive, transitive and sym-
metric; if a binary relation between structures is only reflexive and transitive but not
symmetric it generates a preorder. Whereas bisimulation is an equivalence relation
requiring two bisimilar states to exhibit identical stepwise behaviors, the simulation re-
lation is a preorder requiring only that one state be able to mimic all stepwise behaviors
of the simulated state but not vice versa. This means that the simulating structure might
perform transitions that are not performed by the simulated structure. The simulation
relation can be formally defined in the following way:

Definition 8 (Simulation). Given two labelled transition systems TS and TS ′ on a
finite set of states, TS ′ is said to simulate TS denoted by TS ≤ TS ′ when

1. for every initial state s0 in TS there is an initial state s′0 in TS ′ such that ≤
(s0, s′0) holds;

2. ≤ (s0, s′0) holds if s0 and s′0 have the same label and there is a successor state s′1
of s′0 in TS ′ for each successor state s1 of s0 in TS such that ≤ (s1, s′1).

In Figure 8, we have a relation TS ≤ TS ′: the structure TS ′ on the right is able
to mimic all the stepwise behaviours of the strucure TS on the left, in particular: path
π = (s0, s1, s2) of TS is allowed by transitions a, b of TS ′, and path π = (s0, s1, s3)
of TS is allowed by transitions a, c of TS ′. The two systems are not in a bisimulation
relation in that TS is not able to similarly mimic all behaviours of TS ′: in particular,
at state denoted s1 in TS , there is no undeterministic choice to move to state denoted
s2 or to a state denoted s3, but only deterministically to either one of such states. Note
that it is essential here to specify whether the structures of reference is finite, as we are
doing here by denoting states s2, s3 as final.

As for bisimulation, the simulation relation on finite structures implies a number
of properties at the level of behaviours and properties. Let us start by considering the
considerably weakened implication to path simulation:16

Lemma 2 (Simulation on Paths). Given two transition systems TS and TS ′ such that
TS ≤ TS ′, if ≤ (si, s′i), then for each (finite or infinite) path π = (si, s j, . . .) of TS there
exists a path π′ = (s′i , s

′
j, . . .) of the same length in TS ′ and ≤ (sk, s′k) for all k.

14See (Baier and Katoen, 2008, Lemma 7.8, p.453).
15See (Baier and Katoen, 2008, Definition 7.17, part 2, p. 468).
16See (Baier and Katoen, 2008, p.504).
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Figure 8: TS ′ on the right simulates TS on the left

Note that, as expected, here the existence of identical paths is only induced in
one direction, i.e. from the existence in the simulated structure to existence in the
simulating structure. Accordingly, this implies trace inclusion:17

Theorem 4 (Simulation implies trace inclusion). Two transition systems TS and TS ′,
defined over the same set of atomic proposition AP, are said to satisfy trace inclusion, if
tracesAP(TS ) ⊆ tracesAP(TS ′), where traces(TS ) =

⋃
s∈I traces(s) denotes the (finite)

set of traces starting at initial states of TS . It holds that: TS ≤ TS ′ implies that
tracesAP(TS ) ⊆ tracesAP(TS ′).

As the relation of trace inclusion presented above concerns finite traces, the prop-
erties of relevance are safety properties of the system. Let us see. If one defines the
universal fragment of CT L∗, denoted ∀CT L∗, as the temporal logic obtained by con-
sidering only universally quantified formula in CT L∗, then:18

Theorem 5 (Simulation and ∀CT L∗ equivalence). TS ≤ TS ′ iff TS ′, s′i � g→ TS , si �
g, for any ∀CT L∗ formula g.

As an example, consider that in TS ′ from Figure 8, the state labelled by s0 satisfies
the formula G1 (where we take here the name of the state to express a corresponding
propositional variable), which simulates the behaviour of the state labelled by s0 in
TS . Also, the state on the left branch labelled by s1 in TS satisfies X2, while the state
labelled by s1 in TS ′ does not. Because ∀CT L∗ describes properties that are quantified
over all possible behaviors, and since every behavior of TS ′ is a behavior of TS , every
∀CT L∗ formula satisfied by TS ′ must also hold true in TS . However, when a ∀CT L∗

formula is not satisfied in TS ′, it may or may not be satisfied in TS . It is crucial that
the behaviour inclusion of the simulated structure in the simulating structure concerns
universally quantified formulas, i.e. expressing safety properties.

17See (Baier and Katoen, 2008, p.512).
18See (Baier and Katoen, 2008, p.517–519).
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Figure 9: TS ′ on the right simulates TS on the left

A different situation concerns structures which admit infinite paths, by the presence
of loops on states. Consider the two structures in Figure 9. In this case, TS ≤ TS ′, but
there is now an infinite path in TS , namely π = {s0, s1, s1...} such that the sequence of
its states’ labels 01 is still included in TS ′.

Theorem 6 (Simulation implies trace inclusion). Two transition systems TS and TS ′,
defined over the same set of atomic proposition AP, are said to satisfy trace inclusion,
if tracesAP(TS ) ⊆ tracesAP(TS ′), where traces(TS ) =

⋃
s∈I traces(s) denotes the (in-

finite) set of traces starting at initial states of TS . It holds that: TS ≤ TS ′ implies that
tracesAP(TS ) ⊆ tracesAP(TS ′).

Let us now consider how this extends to other properties of the structures as ex-
pressed by temporal formulas. If one defines the existential fragment of CT L∗, denoted
∃CT L∗, as the temporal logic obtained by considering only existentially quantified for-
mula in CT L∗, then:19

Theorem 7 (Simulation and ∃CT L∗ equivalence). TS ≤ TS ′ iff TS , si � g→ TS ′, s′i �
g, for any ∃CT L∗ formula g.

As an example, consider that in TS ′ from Figure 9, the state labelled by s1 satisfies
the formula F3 (again, using labels of states as variables for propositional formulas),
while the state labelled by s1 in the left branch of TS does not. Because ∃CT L∗ de-
scribes properties that are quantified over some possible behaviors, and since every
behavior of TS is a behavior of TS ′, some properties satisfied by TS must also hold
true in TS ′. However, when an ∃CT L∗ formula is not satisfied in TS , it may or may not
be satisfied in TS ′. It is crucial that the behaviour inclusion of the simulated structure

19See (Baier and Katoen, 2008, p.520).
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in the simulating structure concerns existentially quantified formulas, i.e. expressing
liveness properties.

6.4 Inexact Copies
We use the simulation relation to characterize the relation of being an inexact copy. A
computational artefact P′ is an inexact copy of P if the TS ′ corresponding to S (P′)′

displays all the universally valid behaviours of the TS corresponding to S (P). We thus
propose to identify relation R′ in equation 3 for inexact copies with ≤.

Theorem 8 (Inexact Copy as Simulation). TS ′ is an inexact copy of TS if and only if
TS ≤ TS ′.

Proof. Recall that we understand inexact copy at the level of specification as inclusion
of prescribed behaviours. In view of Theorem 5, the set of all universally valid be-
haviours of the copied structure which are manifested by the copying structure, can be
identified by the set of safety properties of the copying structure, namely with

∀G′ := {g′ | TS ′, s′i �∀CT L∗ g′}

Now the following inclusion relation holds:

∀G′ ⊆ G := {g | TS , si �CT L∗ g}

The inclusion above expresses the fact that all safety properties of TS ′ are proper-
ties of TS , but it does not say anything of properties that are not satisfied by TS ′.

For the left to right direction: assume that TS ′ is an inexact copy of TS , in the
sense of having all of its universally valid behaviours. This must be more precisely
intended as saying that for every property that is always manifested by every behaviour
of TS ′, then such behaviour is manifested by TS as well. Then if the specifica-
tion modelled by TS ′ as G′ is a subset of G for TS for the safety properties, then
TS ′, s′i � g → TS , si � g, for any ∀CTL* formula g, then by Theorem 5 it holds
TS ≤ TS ′.

For the right to left direction: Assume there is a behaviour expressed as a formula
g that is always displayed by every execution of P; then by definition TS , s � g and
g is a ∀CT L∗ formula. Assume moreover that there is some execution of P′ that does
not satisfy g, then by definition ∃s′ ∈ TS ′ such that TS ′, s′ � ¬g. By our assumption
TS ≤ TS ′ then by Theorem 4 the paths leading to behaviours of TS are paths leading
to behaviours of TS ′, i.e. traces(TS ) ⊆ traces(TS ′). Hence, TS has a state satisfying
¬g, and also some path leading to g: therefore, it is not possible that a property satisfied
by every behaviour of P be not a property of P′, and hence if TS ′ simulates TS then it
is an approximate copy of it.

�
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6.5 Inexact Copy Constraints
We analyse here which of the constraints analysed so far are satisfied by inexact copies
in terms of the ≤ relation.

Non-vacuousness. As above, the non-vacousness of ≤ is assured by Theorem 8.
Informativeness. Simulation contributes to specifying the nature of K in that,

given TS representing I(P) and TS ′ representing I(P′)′, If TS ≤ TS ′ then there is
a computable function f such that if TS ′ |= g then also TS |= g, for some ∀CT L∗

formula g expressing a safety property satisfied f . Clearly, the informativeness of ≤
over K offers more constraints than ≡ over K.

Partial Exclusivity. The same observation as for bisimulation applies to simula-
tion.

Minimality. The same observation as for the Identity and Exact Copy Criteria
applies here.

Noncircularity. Simulation does not presuppose the relation of being an inexact
copy. Indeed, given two artefacts P, P′ and supposing TS ≤ TS ′ (where TS represents
P and TS ′ represents P′), it does not necessarily mean that P′ is an inexact copy of
P. In the case where P′ is an exact copy of P, or P′ is identical to P, then TS ≡ TS
from which it also follows TS ≤ TS ′. Note however that being an inexact copy will
not imply being either an exact copy or an identical artefact.

Non-totality. Simulation is a pre-order and as such is transitive but not symmetric.
For any two S (P), S (P′)′ with P, P′ ∈ K, the relation ≤ will hold in one direction but
not in the other, hence ≤⊂ K × K.

K-maximality. P′ is an inexact copy of P when P′ manifests all but not only the
behaviours of P; as such, by definition, P′ simulates P. However, one may define a
wider relation P � P′ defining any additional property of P′ which is not a property of
P, such as a liveness property on TS ′. If P � P′ then P ≤ P′ but not viceversa, hence
maximality fails.

Uniqueness. Our criterion of interpretation for inexact copies is defined as be-
havioural inclusion analysed at the level of specifications, such that if P′ is an inexact
copy of P, then S (P) ⊂ S (P′). This inclusion is analysed at the level of TS s, and given
two such structures TS ,TS ′ behavioural inclusion corresponds to simulation. Any
other relation on structures preserving this criterion is either wider (e.g. bisimulation
which implies simulation) or narrower (e.g. ∀CTL equivalence which is implied by
simulation). As such, no other independent relation for inexact copies exists.

Equivalence. Simulation satisfies reflexivity and transitivity but, as a pre-order, it
does not satisfy symmetry, hence it is not an equivalence relation.

Congruence. By definition of P ≤ P′, all that is true of the simulated artefact P
will be true of the simulating artefact P′ but not viceversa. Hence, congruence is not
satisfied by simulation.

This analysis shows that the relation holding between inexact copies is weaker than
identity, as Maximality, Equivalence and Congruence do not hold.
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6.6 Approximate Copy
For the notion of approximate copy, recall that it refers to two distinct computational
artefacts P and P′, with different specifications S (P), S (P′)′ such that P′ is an approxi-
mate copy of P when P′ manifests some of the behaviours of P, i.e. S (P)∩ S (P′)′ , ∅.
This leaves in turn the possibility that each artefact presents behaviours not included in
the other. To formalise this notion, we need to introduce a new set of relations, starting
from the definition of simulation as a relation on states of a single TS :20

Definition 9 (Simulation as a Relation on States). Given a TS , a simulation on states
of TS is a binary relation ≤⊆ S × S such that for all ≤ (si, s j)

1. si and s j have the same label, and

2. if there is a successor state s′i of si, then there is a successor s′j of s j such that
≤ (s′i , s

′
j).

Recall that the quotient set of a set S , denoted S/ ∼, is the partition of S with
respect to a relation ∼, such that two elements a, b ∈ S belong to the same partition if
and only if they satisfy the relation ∼ at hand. In particular, we consider the simulation
quotient of a TS , denoted by TS/≤ as the partition of a TS according to the simulation
relation, i.e. a partition of paths of TS such that a path is in the partition if and only if
TS simulates it. Formally:21

Definition 10 (Simulation Quotient System). Given a TS , the simulation quotient tran-
sition system TS/ ≤ is a set theoretic structure TS/ ≤= (S/ ≤, {τ},T≤, I≤, F≤, AP, L≤)
where:

• S/≤ is the set of states obtained by partition according to the simulation relation
by TS ;

• {τ} is any set of finite transitions’ labels;

• T≤ is the quotiented transition relation such that if Ta∈A(s, s′) then Tτ([s]≤, [s′]≤),
where A is the original finite set of transitions’ labels of TS ;

• I≤ = {[s]≤ | s ∈ I} is the set of states obtained by the partition according to
simulation by TS on its initial states, where I is the original finite set of initial
states of TS ;

• F≤ = {[s]≤ | s ∈ F} is the set of states obtained by the partition according to
simulation by TS on its final states, where F is the original finite set of final states
of TS ;

• AP is a finite set of states’ labels;

• L≤ is the function labelling states such that L≤([s]≤) = L(s).
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Figure 10: Elements of TS ′/≤ from Figure 8, π on the left and π′ on the right.

It is obvious that the elements of a simulation quotient are all the behaviours that
a system can simulate and therefore all its own behaviours. As an example, examine
Figure 10, showing the elements of TS ′/≤ from the TS ′ in Figure 8, i.e. its paths π, π′.

Consider now a new TS ′′ such that π ≤ TS ′′, see Figure 11. According to our intu-
ition, P′ is an approximate copy of P when P′ manifests some of, and potentially more
than, the behaviours of P, while also P is in the same relation to P′. The simulation
from Figure 12 instantiates it precisely, as it allows TS ′′ to have more behaviours than
TS , and it also allows TS to have more behaviours than TS ′′, as the latter simulates
only some of its own behaviours.

This relation is captured precisely as follows:

Theorem 9 (Approximate copy). TS ′ is an approximate copy of TS , denoted by TS ≈
TS ′ iff ∃π′ ∈ TS ′/ ≤ such that π′ ≤ TS .

Proof. Let us denote with G′/≤ the consequence set of TS ′/≤, i.e.

G′/≤:= {g′ | TS ′/≤, π′ �CT L∗ g′}

Then, the relation of approximate copy expressed as a relation between the sets of
properties of TS ,TS ′ is given by

G ⊂ G′/≤:= {g | T (S ) �CT L∗ g} ⊂ {g′ | TS ′/≤, π′ �CT L∗ g′}

and the Theorem is reformulated by saying that

G ⊂ G′/≤ iff ∃π′ ∈ TS ′/ ≤ such that π′ ≤ TS

We now prove this double implication.

20See (Baier and Katoen, 2008, p.506).
21See (Baier and Katoen, 2008, p.508).
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Figure 11: TS ′′ on the right simulates π on the left.

From left to right: if the specification modelled by TS as G is a proper subset of
G′/≤ for TS ′/≤, then:

1. ∃g ∈ G such that ∃π ∈ TS such that π �∀CT L∗ g ∧ ∃π′ ∈ TS ′/ ≤ such that π′ � g

2. ∃g′ ∈ G′/ ≤ such that ∃π′ ∈ TS ′/ ≤ such that π′ �∀CT L∗ g′ ∧ ∀π ∈ TS π 2 g′

Then by Theorem 5, the first condition above presents a witness for ∃π ∈ TS ′/ ≤
such that π ≤ TS .

From right to left: recall that we informally define approximate copies as satisfying
two conditions

1. they share some behaviours;

2. they do not share every behaviour (in either direction).

Then, if there is a path in the simulation quotient of TS ′ which is simulated by TS ,
then by Definition 8 every state in such a path has an equivalent state in TS . Then this
path expresses exactly the common behaviors of TS and TS ′, satisfying the first of the
conditions above. But this does not say anything about behaviours that are not satisfied
by TS (which could be satisfied by TS ′) or about behaviours that are satisfied by TS ′

(but are not by TS , as the simulation involves only a path of the former). Hence, also
the second condition above is satisfied and the two structures are one an approximate
copy of the other. �

It should be noted that by the right to the left direction above, ≈ is a symmet-
ric relation and thereby also S (P′)′ simulates a non-empty subset of the simulation
partitions of S (P). This also captures the idea, highlighted in the philosophy of tech-
nology (for instance in Carrara and Soavi (2010)), that when P′ is a copy of P, I(P′)′

presents some similarities with I(P), that is, the behaviours corresponding to the simu-
lated partitions. Notice however that theorem 9 focuses on prescribed behaviours at the

28



0start

1

2 3

a

b c

0start

1

2 3

a

b

b

c

Figure 12: TS ′′ on the right approximates TS on the left.

formal specification LoA, not on implemented observable behaviours. This allows to
avoid common problems connected to the similarity relations, in particular their high
context-dependency (Goodman, 1972). Determining whether two computational arte-
facts are similar on the basis of the similarity of observed behaviours may not always
turn to be revealing in that some of the resulting behaviours may depend on contextual
factors, especially the operating environment.

6.7 Approximate Copy Constraints
We analyse here which of the constraints for the identity criteria are satisfied by ap-
proximate copies in terms of the ≈ relation, expressed in turn as simulation between a
computational artefact and an element of the simulation quotient of another artefact.

Non-vacuousness. As above, Theorem 9 shows that ≈ is a significant determinable
to evaluate approximate copies of computational artefacts.

Informativeness. Simulation over a partition contributes to specifying the nature
of K in that, given a TS representing I(P) and TS ′ representing I(P′)′, if TS ≈ TS ′

then for some computable function f valid according to K, if TS ≈ TS ′ then TS |= g
iff TS ′ |= g for at least one CTL* formula g expressing a property satisfied by the
function f . Clearly, the informativeness of ≈ over K offers more constraints than ≤
over K.

Partial Exclusivity. The same applies as for the inexact copy relation above.
Minimality. The same observations made above for identity, exact and inexact

copies applies here.
Noncircularity. Simulation over partition does not presuppose the relation of being

an approximate copy. Indeed, given two artefacts P, P′ where P′ is an exact copy of
P, or P′ is identical to P, then P ≡ P′, which implies P ≤ P′ which in turn implies
P ≈ P′. Note however that being an approximate copy will not imply being an inexact
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copy, which in turn will not imply being either an exact copy or an identical artefact.
Non-totality. The same applies as for the inexact copy relation above.
K-maximality. P′ is an approximate copy of P when P′ manifests some but not

only the behaviours of P; as such, by definition, P ≈ P′. However, one may define a
wider relation defining any additional property of P′ which is not a property of P, such
as for the case of simulation P ≤ P′. If P ≤ P′ then P ≈ P′ but not viceversa, hence
maximality fails.

Uniqueness. Our criterion of interpretation for approximate copies is defined as
partial behavioural inclusion analysed at the level of specifications, such that if P′ is an
approximate copy of P, then S (P)∩S (P) , ∅. This inclusion is analysed at the level of
TS , and given such two structures TS ,TS ′ partial behavioural inclusion corresponds
to simulation over partition. Any other relation on structures preserving this criterion
is wider (e.g. simulation which implies simulation over partition). As such, no other
independent relation for approximate copies exists.

Equivalence. Simulation over partition satisfies reflexivity and symmetry. As ex-
plained below, simulation over partition does not satisfy transitivity. Hence it is not an
equivalence relation.

Congruence. By definition of P ≈ P′, not all that is true of the approximated arte-
fact P will be true of the approximating artefact P′, nor viceversa. Hence, congruence
is not satisfied by simulation over partition.

This analysis shows that, as in the case of the relation of being an inexact copy, the
relation of being an approximate copy does not satisify Maximality, Equivalence and
Congruence. Approximate copies do not satisfy transitivity or, more precisely, they
satisfy intransitivity:

¬∀x∀y∀z((yf x) ∧ (zf y)→ (zf x)) (4)

To see this, reconsider the example from Figure 12, which proves that TS ′′ on the
right is an approximate copy of TS on the left. Now it is not difficult to design a new
TS ′′′, of which TS is an approximation, but which is not approximated by TS ′′, see
Figure 13. However, this does not need to be the case, as a similarly easy example
show instead a TS ′′′′ approximated by both TS and TS ′′, see Figure 14.
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Figure 13: An example of non transitive approximation: TS at the bottom approxi-
mates TS ′′ on the top right, which approximates TS ′′′ on the top left, whil TS does
not approximate TS ′′′.
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Figure 14: An example of transitive approximation: TS at the bottom approximates
TS ′′ on the top right and TS ′′′ on the top left.

7 Future Developments and Applications
This paper addressed the ontological question on identity criteria put forward by Frege
(1953) for computational artefacts. We argued that the identity relation x = y between
computational artefacts x and y can be defined in terms of a bisimulation equivalence,
in that such formal relation satisfies all the constraints required by identity criteria
for natural objects and technical artefacts. The paper also addressed the ontological
question with respect to the copy relation between computational artefacts x and y, by
defining it in terms of a simulation preorder. The exact-inexact-approximate copy rela-
tions have been here understood as progressive weakenings of the identity relation, on
the basis of the constraints being satisfied or violated by the different copy relations.
The choice of analysing identity of computational artefacts at the formal specification
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level turns out to be useful also to address the epistemological question on identity and
copy. Indeed, establishing whether S (x) ≡ S (y) or S (x) ≤ S (y) for computational arte-
facts x and y, can be algorithmically checked. It is known that checking bisimulation
equivalence or simulation order are polinomyally solvable problems, while checking
trace equivalence is a PSPACE-complete problem. Clearly, complexity issues arising
from such decision problems should be analysed for non-trivial system specifications
and for the relevant behaviours.

Defining a mechanical solution to the problem of whether a given computational
artefact is or is not a – approximate or even inexact – copy of an original one is com-
pelling in computer ethics (Johnson and Miller, 2008), especially in connection with
the issue of defining copyright, or patent infringement. Indeed, defining copies at the
program specification level is helpful in those many cases in which infringement has to
be evaluated among programs written in different programming languages (Rapaport,
2017).

And the epistemological question for the copy relation is also connected to the
problem of determining whether second-order properties, including safety and reliabil-
ity, are preserved through copies. Our distinction among exact, inexact, and approx-
imate copies, and the corresponding formal relation between bisimulation and CT L∗

equivalence, and between simulation and ∀CT L∗ equivalence, provides a conceptual
and formal framework wherein the problem can be advanced and examined.
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Kröger, F. and S. Merz (2008). Temporal Logic and State Systems. Springer.

Lewis, D. (1986). On the plurality of worlds. Oxford: Basil Blackwell.

Lewis, D. (1991). Parts of classes. Oxford: Basil Blackwell.

Lombard, L. B. (1986). Events: A metaphysical study. London: Routledge & Kegan
Paul Books.

Lowe, E. J. (1989). What is a criterion of identity? The Philosophical Quarterly
(1950-) 39(154), 1–21.

Lowe, E. J. (1997). Objects and criteria of identity. In B. Hale and C. Wright (Eds.),
A Companion to the Philosophy of Language, pp. 990–1012. Oxford: Blackwell
Publishers Ltd.

Lowe, E. J. (1998). The possibility of metaphysics: Substance, identity, and time.
Clarendon Press.

Meijers, A. A. (2000). The relational ontology of technical artifacts. In P. Kroes and
A. Meijers (Eds.), The empirical turn in the philosophy of technology. Amsterdam:
Elsevier.

Middelburg, C. A. (2016). A short introduction to process theory.
CoRR abs/1610.01412.

Milner, R. (1971). An algebraic definition of simulation between programs. In Pro-
ceedings of the 2Nd International Joint Conference on Artificial Intelligence, IJ-
CAI’71, San Francisco, CA, USA, pp. 481–489. Morgan Kaufmann Publishers Inc.

Noonan, H. and B. Curtis (2017). Identity. In E. N. Zalta (Ed.), The Stanford En-
cyclopedia of Philosophy (Spring 2017 ed.). Metaphysics Research Lab, Stanford
University.

Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd ed.). New York,
NY, USA: Cambridge University Press.

Primiero, G. (2016). Information in the Philosophy of Computer Science. In L. Floridi
(Ed.), The Routledge Handbook in the Philosophy of Information, pp. 90–106. Rout-
ledge.

Primiero, G. and F. Raimondi (2015). Software theory change for resilient near-
complete specifications. In E. M. Shakshuki (Ed.), Proceedings of the 6th Interna-
tional Conference on Ambient Systems, Networks and Technologies (ANT 2015), the
5th International Conference on Sustainable Energy Information Technology (SEIT-
2015), London, UK, June 2-5, 2015, Volume 52 of Procedia Computer Science, pp.
988–995. Elsevier.

35



Quine, W. V. (1948). On what there is. The Review of Metaphysics 2(1), 21–38.

Quine, W. V. O. (1990). Pursuit of truth. Harvard University Press.

Rapaport, W. J. (2017). Philosophy of computer science. Draft.

Stone, R. B. and K. Wood (1999). Development of a functional basis for design. ASME.
J. Mech. Des 122, 359–370.

Turner, R. (2014). Programming languages as technical artifacts. Philosophy & tech-
nology 27(3), 377–397.

Turner, R. and N. Angius (2017). The philosophy of computer science. In E. N. Zalta
(Ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 ed.). Metaphysics Re-
search Lab, Stanford University.

Tzouvaras, A. et al. (1993). Significant parts and identity of artifacts. Notre Dame
Journal of Formal Logic 34(3), 445–452.

Vermaas, P. E. and W. Houkes (2003). Ascribing functions to technical artefacts: A
challenge to etiological accounts of functions. The British Journal for the Philosophy
of Science 54(2), 261–289.

Wiggins, D. (2001). Sameness and substance renewed. Cambridge University Press.

Williamson, T. (1990). Identity and discrimination. Oxford: Basil Blackwell.

Wright, C. (1983). Frege’s conception of numbers as objects. Aberdeen: Aberdeen
University Press.

36


