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Abstract

We evaluate the accuracy of approximation to the distribution of the length
of the longest head run in a Markov chain with a discrete state space. An
estimate of the accuracy of approximation in terms of the total variation
distance is established for the first time.
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1 Introduction

Let {ξi, i≥1} be a sequence of random 0’s and 1’s (i.e., “tails” and “heads”). Then

Ln = max{k : ξi+1= ... = ξi+k= 1 (∃i≤n−k)} (1)

is the length of the longest head run (LLHR) among ξ1, ..., ξn.
Statistic Ln has applications in biology, reliability theory, finance, and nonpara-

metric statistics (see, e.g., [1, 2, 3, 17]). In particular, the reliability of a consecutive
k-out-of-n system with n components can be expressed via IP(Ln<k), where the
event {ξk = 1} represents failure of the kth component: the system fails if and only
if k consecutive components fail [1, 4, 6, 13].

The study of the distribution of LLHR has a long history. Apparently, the task
was first formulated by de Moivre [10], Problem LXXIV. Renewed interest to the
topic arose in connection with the Erdös–Rényi strong law of large numbers [5].
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A limit theorem for LLHR in the case of independent Bernoulli B(p) trials was
established by Goncharov [8]. The limiting distribution of LLHR was found in more
general situations as well, see [1, 12, 14, 19] and references therein. In particular,
a limit theorem for LLHR in a Markov chain with a finite state space X where
hitting a subset of X is considered a “success” is given in [12]. An estimate of the
rate of convergence and asymptotic expansions in the limit theorem for LLHR in a
two-state Markov chain have been established in [13]. Concerning LIL-type results,
see [16] and references therein.

An exact formula for IP(Ln < k) in terms of combinatorial coefficients in the
case of independent Bernoulli trials was found by Uspensky [18]. In the case of a
two-state Markov chain Fe et al. [6] present an exact formula for IP(Ln < k) in
terms of a specially constructed matrix of transition probabilities, and establish the
asymptotics of ln IP(Ln < k) as n → ∞ if k is fixed (see also Theorem 2 in [13]).

Note that Ln can be represented as a sample maximum in a sample of random
size νn , where νn is a certain renewal process (cf. [13, 14]). References concerning
extremes in samples of random size can be found, e.g., in [7, 9, 16].

It is known that the accuracy of approximation to the distribution of LLHR in
terms of the uniform distance is n−1lnn [13]. The result has been generalised to
the case of a Markov chain with a finite state space [14] as well as to the case of
m-dependent random variables [15]. Asymptotic expansions in the limit theorem
for LLHR in a two-state Markov chain [13] confirm that the rate n−1lnn cannot be
improved.

There is a simple relation between LLHR and the number Nn(k) of head runs
with lengths ≥k :

{Ln<k} = {Nn(k)=0}.

Note that the estimates of the accuracy of approximation to the distribution of
Nn(k) have been established in terms of the total variation distance (see [1, 2,
16] and references therein). However, the problem of evaluating the accuracy of
approximation to the distribution of LLHR in terms of the total variation distance
remained open for a long while.

In this paper we derive an estimate of order n−1lnn to the total variation dis-
tance between L(Ln) and the approximating distribution.
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2 Results

Let {Xi, i≥ 1} be a homogeneous Markov chain with a finite state space X and
transition probabilities ∥pij∥i,j∈X . We denote by

π̄ = ∥πi∥i∈X

the stationary distribution of the chain.
Given a subset A ⊂ X , let LLHR be defined by (1), where

ξi = 1I{Xi ∈ A}

(hitting A is considered a “success”). We set

U = ∥pij∥i,j∈A , π̄A=∥πi∥i∈A ,

and let

q(k) = π̄AU
k−1(E−U)1̄ (k≥1),

where 1̄ is a vector of 1’s and E is a unit diagonal matrix.
Let ζn, Zn be random variables (r.v.s) with distribution functions (d.f.s)

IP(ζn<k) = (1−q(k))n−k , IP(Zn<k) = exp(−nq(k)) (k≥1).

Recall the definition of the total variation distance between the distributions of r.v.s
X and Y :

d
TV
(X;Y ) ≡ d

TV
(L(X);L(Y )) = sup

A∈A
|IP(X∈A)− IP(Y ∈A)| ,

where A is a Borel σ-field.
The distribution of LLHR Ln can be well approximated by L(ζn) or L(Zn);

the accuracy of such approximation in terms of the uniform distance is known to be
of order n−1lnn . In Theorem 1 below we show that the result holds in terms of the
stronger total variation distance.

Theorem 1 Assume that
(P0) there is only one class C of essential states that consists of periodic sub-

classes C1, ..., Cd ;
(P1) A ∩ Ci ̸= Ø (1≤ i≤d);
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(P2) 0 <λ< 1, where λ is the largest eigenvalue of matrix U ;
(P3) if i ∈Cℓ for some ℓ∈{1, ..., d}, then

|pij(m)− dπj| ≤ um , H :=
∑
m≥1

um < ∞ (2)

if j∈A∩Ck and k−m=ℓ (mod d); if i ∈/C1 ∪ ...∪Cd , then (2) holds for all j∈A;
(P4) zi> 0 (∀i∈A), where z̄ = ∥zi∥i∈A is the corresponding to λ right eigen-

vector of matrix U .
Then there exists a positive constant C = C(λ, z̄, π̄A) such that

d
TV
(Ln;Zn) ≤ Cn−1lnn (n≥C). (3)

The result holds if Zn in (3) is replaced with ζn.

3 Proofs

Proof of Theorem 1 makes use of Theorem 2 from [14], which is presented below
(note that the argument of Theorem 2 in [14] is valid for any fixed d∈ IN). In the
particular case of a stationary Markov chain the result of Theorem 2 is given by
Theorem 2.1 in [12].

Theorem 2 Let {Xi, i≥ 1} be a homogeneous Markov chain with a discrete state
space X , transition probabilities ∥pij∥i,j∈X and stationary distribution π̄. Assume
conditions P(0) – P(4). Then there exists a positive constant c⋆ = c⋆(λ, z̄, π̄A) such
that as n>2k≥c⋆,

|IP(Ln<k)− IP(Zn<k)|
≤ c⋆λ

k + c⋆kλ
k exp

(
−nq(k)(1−c⋆kλ

k)
)
. (4)

Taking into account the obvious inequality

|ex − ey| ≤ |x− y|emax{x;y} (x, y∈ IR), (5)

we notice that (4) holds true if Zn is replaced with ζn.
In the case of independent observations inequalities of this kind with explicit

constants are presented in [15, 11]. In the case of a two-state Markov chain with
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α := p11 ∈ (0; 1), β := p00 < 1, a sharp bound of this kind is given in [13], Theorem
2: there exist constants q ∈ (0; 1), C < ∞ such that

sup
k>C

∣∣∣IP(Ln<k)− A(t0)/t
n+1
0

∣∣∣ ≤ Cqn (6)

for particular t0 and function A(t) obeying |A(t0)−1| ≤ C1γkα
k , |t0−1−γαk| ≤

C1k(γα
k)2 for some C1 < ∞, where γ = (1−α)(1−β)/α(2−α−β). In the case of in-

dependent Bernoulli B(α) trials (6) holds with q = α, C = (2+α−α2)/(1−α)(1−α2).

By a well-known property of the total variation distance,

2d
TV
(Ln;Zn) =

∑
k≥0

|IP(Ln=k)− IP(Zn=k)|. (7)

The idea of the prof is to split the sum in (7) into appropriate fragments and show
that the desired estimate holds for each fragment.

Recall that π̄A=∥πi∥i∈A, and set

c∗ = <π̄A; z̄ >(1−λ)/λz∗, c∗ = <π̄A; z̄ >(1−λ)/λz∗ ,

z̄∗ = inf{zj : j∈A} , z̄∗ = sup{zj : j∈A}.

Note that
0 < c∗ ≤ c∗ < ∞.

It is easy to see that
c∗λ

k ≤ q(k) ≤ c∗λk (8)

(cf. (8) in [14]). Let

k(n)=log n− log lnn+ log(c∗/2) .

Hereinafter log is to the base 1/λ, symbol c (with or without indexes) denotes
positive constants.

Using (4) and (8), we check that∑
k≤k(n)

|IP(Ln=k)− IP(Zn=k)| (9)

≤ IP(Ln≤k(n)) + IP(Zn≤k(n)) ≤ c1n
−1lnn.
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It remains to evaluate ∑
k>k(n)

|IP(Ln=k)− IP(Zn=k)|.

According to (4) and (8), there exists a positive constant c2 such that

|IP(Ln=k)− IP(Zn=k)| ≤ c2λ
k + c2kλ

ke−nλkc∗/2 (10)

as n>2k≥c2. Evidently,∑
k>k(n)

λk ≤ λk(n)/(1−λ) = 2n−1(lnn)/(1−λ)c∗. (11)

Thus, it remains to evaluate
∑

k>k(n) kλ
ke−nλkc∗/2 .

Note that function f(x) = xe−x decreases in [1;∞). Clearly, nλkc∗/2 ∈ [1; lnn]
as k(n)<k< log(nc∗/2) . Therefore,∑

k(n)<k<log(nc∗/2)

kλke−nλkc∗/2 ≤ n−1log(nc∗/2)
∑

k(n)<k<log(nc∗/2)

nλke−nλkc∗/2

≤ n−1log(nc∗/2)
∫ log(nc∗/2)

k(n)
nλxe−nλxc∗/2dx

≤ 2n−1log(nc∗/2)/ ln(1/λ)c∗. (12)

Since ∑
k≥m

kλk ≤ mλm/(1−λ)2 (m≥1),

we have ∑
k≥log(nc∗/2)

kλke−nλkc∗/2 ≤
∑

k≥log(nc∗/2)

kλk ≤ 2⌈log(nc∗/2)⌉/nc∗(1−λ)2 , (13)

where ⌈x⌉ denotes the smallest integer greater than or equal to x.
Combining estimates (9) – (13), we derive (3). The proof is complete. 2
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