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Highlights 

 

A method to analyze spatial-temporal characteristics of district loads was developed. 

 

PCA was used to identify the buildings greatly affecting district load management. 

 

The features of electric loads of heating on a university campus were analyzed. 

 

Building type and operation mode greatly affect the load level and volatility. 

 

 

 

 

 

Abstract 

Accurate grasp of district power demand is of great significance to both sizing of 

district power supply and its operation optimization. In this study, an index system 

has been established and visualized through a Geographic Information System, for 

revealing both temporal and spatial characteristics of district power loads caused by 

heating/cooling systems, including load level and fluctuation characteristics, spatial 

distribution of electric loads, and load coupling relationships between individual 

buildings and the district. Principal component analysis was applied to identify the 

buildings with significant impact on district load management. Using this method, 

the spatial-temporal characteristics of electric loads caused by heating in one 

university campus in China were analyzed. The results showed that building type 

and the operation modes had great effects on the level and volatility of the district 

electric load caused by heating. Buildings with high load levels and strong coupling 

with the peak district electric load, such as academic buildings, often had a major 
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impact on the power demand of the district. Therefore, they were considered as key 

targets for energy-saving renovation and operation optimization. Buildings with 

large load fluctuation, such as teaching buildings, could contribute to the peak load 

shaving by adjusting the heating systems’ operation. 

 

Keywords: district electric load for heating and cooling; spatial-temporal 

characteristics; load coupling; campus buildings; GIS 

 

1. Introduction 

With the large-scale construction of sustainable communities, district energy 

planning has become increasingly important. Rational design and optimal operation 

of district power systems generally need an accurate grasp of characteristics of 

district power load [1]. In a certain district, there may exist many types of buildings, 

with significantly different characteristics of energy load. In particular, the power 

loads for heating and cooling have dynamic characteristics dependent on season and 

time of day [2]. The dynamic characteristics of power loads for a district is not a 

simple addition of load characteristics of individual buildings, but an orderly 

coupling considering both time and space [3]. To better support district power 

supply capacity allocation and power dispatch, it becomes fundamental of 

identifying key indicators and developing appropriate analysis methods to capture 

both spatial and temporal characteristics of district power load, as well as the 

coupling relationships between the load of single buildings and the total district load 

[4]. 
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Existing studies on district heating and cooling loads and energy consumption 

have investigated several analytical indicators using either field measured data or 

simulation results, but more efforts on improving the indices system are still highly 

needed. For example, using three indicators, namely, water consumption, electricity 

consumption and natural gas consumption, Zhou et al. [5] scrutinized data collected 

between 2006 and 2010 from 98 universities in Guangzhou, and allocated 

investigated universities with various types regarding to their energy consumption 

characteristics. Noussan et al. [4] analyzed annual and monthly average heating 

loads, and hourly heating intensity of one district heating system, to reveal its main 

characteristics for heating load variation. Based on the simulation results, Xu et al. 

[6] have used two indices, namely, load rate and peak-valley difference ratio, to 

evaluate the performance of load leveling by different floor area ratios for office 

buildings, shopping malls and hotels. Cai et al. [7] monitored the cooling energy 

consumption of a certain district in Shanghai, and suggested a coincidence factor of 

about 0.5 for that district. Zhang et al. [8] used the DeST simulation package to 

model the hourly cooling load of 9 types of buildings located in the Guangzhou 

University Community, and adopted the coincidence factor to analyze the time 

difference in the peak loads among various types of buildings. Zhou et al. [3] 

utilized peak load, mean standard deviation and load ratio when analyzing the 

measured cooling capacity of a residential community in Shanghai, from 

perspectives like peak shaving, wave reduction and load sizing. From the study, they 

found that with more buildings involved, the district load exhibited less volatility, 
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and the peak district load became smaller. Guan et al. [9] have analyzed the 

characteristic of daily, monthly and yearly energy use of university campus 

buildings, and calculated the coincidence factor of electric load, water load and 

heating load for a university campus in Norway using hourly measured field data. To 

measure diversity, Weissmanna et al. [10] have developed the peak load ratio (PLR) 

index to represent the reduction in peak load of a district system from a simple sum 

up of peak loads from individual buildings. For a theoretical analysis, a total of 144 

load profiles of residential buildings were created in the dynamic building 

simulation package IDA ICE, and the PLR reached 15%. Lu et al. [11] established a 

model to verify that the power supply can be adjusted according to HVAC's hourly 

load for a better grid load balancing. Using a robust database of monthly 

consumption, Derenski et al. [12] examined electricity and natural gas consumption 

intensity for hundreds of schools in Los Angeles County, and its relationships to key 

structural and categorical characteristics, including size, geography and school type. 

Corgnati et al. [13] have used a statistical model to predict energy consumption of 

120 schools in Turin, Italy, in order to establish performance indicators on heating 

energy consumption as baseline values for heating supply contracts.  

A building energy management system contains large amount of operational 

information for buildings, and GIS (Geographic Information System) is an effective 

tool for analyzing building loads and energy consumption characteristics in district 

and urban scales. Luca et al. [14] investigated the electricity consumption of big 

consumers in southern Canton Ticino, Switzerland, to verify if there was a 
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significant district cooling demand, and the possible district cooling connections 

between the consumers and the utilities were selected and mapped by GIS, as well 

as density of electricity consumption and peak power. Giuliano Dall’O et al. [15] 

have developed a database for building energy consumption and mapped the energy 

consumption of an Italian city on a GIS platform. Howard et al. [16] selected New 

York as a case study and established a statistical model based on a government 

database. The model was capable of estimating air-conditioning and domestic hot 

water loads for different building types in the city. The GIS platform can show the 

spatial differences of building loads in the urban scale, and can also be used to guide 

formulation of energy policies with contributions from model predictions. Utilizing 

the multi-linear regression function of ARC GIS, Ma et al. [17] inserted missing 

values in the building information database and managed building information, such 

as shape coefficient and energy consumption per unit area, on the GIS platform. 

Quan et al. [18] used the GIS platform for data processing and building energy 

system modeling. In their study, Manhattan was used as a case study to analyze the 

regional spatial and temporal differences in building energy usage. 

According to the above literatures, existing studies indicated that: 1) from the 

perspective of data sources, building information data used in existing studies were 

either simulation data or monthly measured data, and there was a lack of 

high-resolution data such as daily and hourly data. Therefore, it is impossible to 

perform in-depth analysis on dynamic characteristics of buildings; 2) in terms of 

index systems and analysis methods, existing indices were very simple and unitary, 
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and could not address the regional load characteristics amongst district buildings at 

the full scale. Most existing studies focused on the magnitude of the building load 

only, such as monthly load characteristics, i.e. maximum value, minimum value, 

average value and standard deviation, and very few studies have analyzed 

coincidence factors. Additionally, no index system and methods are currently 

available to reveal the coupling relationship between the loads of single buildings 

and the total district load, as well as the contribution of single buildings to the 

district scale. Moreover, existing studies using GIS systems were mainly for 

establishing district building performance database and for analyzing and displaying 

building attribute data. They did not effectively combine comprehensive analysis of 

district building load characteristics and space-time visualization; 3) building types 

investigated in existing studies were mainly from residential communities, so the 

analyses could not well reflect the diversity in building types, as well as its impact 

on the district load.  

To address the above mentioned issues, this study established a GIS-based index 

system, aiming to comprehensively reveal the temporal dynamic characteristics, 

load fluctuation characteristics and spatial distribution characteristics of district load, 

as well as coupling relationships of power loads for heating and cooling between 

individual buildings and the entire district. Using the principal component analysis 

method, the multi-criteria index system can well identify buildings that have 

significant impact on the district power operation. The work mentioned here can be 

used to serve energy-saving renovations, optimal operation and management of 
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space heating and cooling systems, as well as district power dispatches. Finally, 

considering the high variation of university buildings, a university campus has been 

selected as a case study, and the developed index system was used to analyze 

spatial-temporal characteristics of the power load of space heating for all buildings 

in the campus, based on field monitored data from the campus energy monitoring 

platform. 

 

2. Development of the Spatial-temporal Characteristics Analysis Method for 

Managing Power Loads of space heating/cooling in District Buildings 

Fig. 1 shows the proposed analysis method regarding to spatial-temporal 

characteristics of power loads for heating/cooling district buildings. Firstly, from the 

perspective of time dynamic characteristics, load fluctuation characteristics and 

coupling relationships between the loads of single buildings and the total district load, 

an index system for analyzing the power load characteristics of heating and cooling 

systems for buildings within the district was established. Using this index system, 

both power load characteristics of space heating/cooling in individual buildings and 

the coupled power load characteristics of individual buildings within the entire district 

can be analyzed. Using the GIS platform, the spatial distribution characteristics of 

district loads could be clearly visualized. The differences in both time and space 

among various types of buildings can be very useful for power deployment within the 

district. Finally, using the principal component analysis method, buildings with 

significant contributions to the overall district load would be identified, according to 

their load characteristics. 
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Fig. 1. Spatial-temporal characteristics analysis method of power loads for 

heating/cooling in district buildings 

 

2.1. An index system for analyzing power load characteristics of space 

heating/cooling in district buildings 

An index system representing characteristics of district power loads for space 

heating/cooling is shown in Table 1, based on a comprehensive literature review [3-12, 

19]. When analyzing power load characteristics, load level needs to be firstly 

identified. Mean hourly power load is a basic index to assess the power load 

magnitude, while peak load is important for determining district power supply 

capacity. Seasonal power consumption intensity is an important index for evaluating 

energy consumption of space heating. Therefore, in this system, load level was 

determined by three indices, namely, daily peak load, daily average load and seasonal 

power consumption intensity. Besides load level, another main feature of power loads 

is load fluctuation, as it can provide useful information for equipment operation 

optimization, power grid dispatching and peak load shaving. Four indices, i.e. daily 
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peak-to-valley difference ratio, daily load rate, weekly imbalance rate and seasonal 

load rate, therefore, would be identified to analyze load fluctuations at different time 

periods. Daily peak-to-valley difference rate could be used to represent load 

fluctuation within a day, with a larger value for a greater load fluctuation. Daily load 

rate reflects the balance of load distributions during the day, with a larger value for 

more evenly distributed load during the day. Weekly imbalance rate depicts changes in 

daily peak load during the week, with a greater value for a smaller load fluctuation 

during the week. Seasonal load rate could be used to analyze volatility of hourly load 

throughout the heating/cooling season, with a larger value for a smaller seasonal load 

fluctuation. The above two types of indices can reflect load size and its variation 

features for both individual buildings and the whole district from the perspective of 

time dimensions. Besides this, it is also important to decouple the relationships 

between the loads of individual buildings and the total district load. Coincidental rate 

and diversity factor are two important indices to reflect the degree of load coupling of 

individual buildings and the district. The coincidental rate is the ratio of individual 

building load at the moment of district peak load to its own peak load. It is used to 

characterize the consistency between the peak load moment of each building and the 

district peak load moment. The larger the value is, the more consistent the two peak 

load moments are, giving a higher degree of the coupling between the two. The 

diversity factor is the ratio of the total peak load of each building to the district peak 

load. The smaller the value is, the more concentrated the peak load time of each 

building is, and the greater the fluctuation of district load is. Regarding to this index, a 
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higher value indicates the energy consuming behavior in each building varies larger in 

time, with smaller district load fluctuations accordingly. 

 

Table 1: An index system to analyze power load characteristics of space 

heating/cooling in district buildings 

Categories No. Indices  Index definitions 

 

 

 

Load level 

I Daily peak load  
Maximum hourly power load in the typical 

day of the heating/cooling seasons 

II 
Daily Average 

Load 

Mean hourly power load in the typical day of 

the heating/cooling seasons   

III 

Seasonal power 

consumption 

intensity  

Total power consumption per unit area 

during the heating/cooling  seasons 

Load 

fluctuations 

IV 

Daily 

peak-to-valley 

difference rate 

The ratio of the difference between the 

maximum and the minimum hourly power 

loads to the maximum hourly value in the 

typical day 

V Daily load rate  
The ratio of mean hourly load to the 

maximum hourly load in the typical day 

VI 
Weekly 

imbalance rate  

Ratio of the average of the daily maximum 

hourly power load to the maximum hourly 

power load in the typical week 

VII 
Seasonal load 

rate  

Ratio of average hourly power load to the 

maximum value of the heating/cooling 

seasons 

 

Load 

coupling 

relationship  

VIII 
Coincidental 

rate  

The ratio of individual building load at the 

moment of district peak load to its own peak 

load. 

IX Diversity factor   

Ratio of the sum of the maximum hourly 

power load of each building to the maximum 

hourly power load of the district 

 

2.2. Analysis on spatial characteristics of power loads of space heating/cooling in 

district buildings using the GIS system 

GIS systems are a kind of data management system with professional spatial 

forms. The GIS technology integrates map visualization effects and geographic 

analysis functions with general database operations, to provide functions like data 
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storage and query, statistics, analysis, display and forecasting. Spatial location data, 

attribute feature data and time domain feature data constitute the three basic elements 

of geospatial analysis. Making the best use of a large number of buildings within a 

district and the huge amount of field monitored power load data for space 

heating/cooling, it is a robust way to establish a district building model within the GIS 

system, which can instantaneously display time-domain characteristics of power loads 

and provide basic information for district power dispatch and operations. 

 

2.3. Selection of key buildings using principal component analysis 

The indices proposed in this study for identifying power load characteristics of 

space heating/cooling included load level, load fluctuation and coupling relationships 

between the loads of single buildings and the total district load. The three types of 

indices have their own emphases and the information reflected by the indices must be 

analyzed together so as to fully reveal actual characteristics of district loads. Using the 

principal component analysis method [20], a set of complex correlation variables (i.e. 

the above load characteristic indices) were converted into a few independent variables 

through linear combinations. In this way, information provided by these indices could 

be maximized by eliminating overlapped information and leaving major indices for a 

detailed analysis. 

 

3. Data Acquisition and Process  

3.1. Case study 
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The selected university campus was located in a climate with hot summer and 

cold winter in China. The annual precipitation level was high with limited solar 

radiation. Average annual temperature was varying between 15.9°C and 17.0°C. For 

summer, the outdoor design temperature was 31.6°C, with relative humidity of 64%, 

and for winter, the outdoor design temperature was -2.4°C, with relative humidity of 

76% [21]. It was a comprehensive university with a total of seven campuses located 

in different cities, and this study has selected one campus for the case study. The 

campus mainly contained four types of buildings, i.e. teaching buildings, research 

buildings, offices buildings and dormitories, with a total building area of 255,724m2. 

Detailed information about the investigated buildings is provided in Table 2. 

Electricity is the sole energy resource for all the space heating and cooling systems 

in these buildings. 

Table 2: Buildings under investigation 

Buildings 
Total area 

(m2) 

Year of 

constructio

n 

Heating and cooling 

systems 

Heating and 

cooling area 

(m2) 

Building 

types 

A 15269 2007 Split heat pump 10180 
Academic 

bldg. 

B 20511 2005 VRV 12780 
Academic 

bldg. 

C 37500 2001 Split heat pump/VRV 11880 
Academic 

bldg. 

D 21157 2006 Split heat pump 14750 
Teaching 

bldg. 

E 40795 2001 
Centralized all air 

System 
18799 

Teaching 

bldg. 

F 37500 2001 

Split heat 

pump/Centralized heat 

pump system 

11435 

Academic 

bldg. 

G 14000 2004 VRV 8250 Office bldg. 

H 46592 2006 VRV 24300 Academic 
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bldg. 

I 5600 2002 Split heat pump 2088 Dormitory 

J 5600 2002 Split heat pump 2088 Dormitory 

K 5600 2002 Split heat pump 2088 Dormitory 

L 5600 2002 Split heat pump 2088 Dormitory 

 

3.2. Data acquisition and processing methods 

The university has installed a building energy monitoring platform on the 

campus. From 2008, the electricity used for space heating and cooling has been 

monitored and recorded hourly for each building within the campus. This study used 

hourly electric load data of space heating collected within a whole winter period 

between October 2016 and March 2017. 

The processing of raw data exported from the energy monitoring platform 

revealed the following types of outliers [22]: 

(1) Short-term continuous zero values: this was often due to power-off caused by 

maintenance, monitoring equipment failures etc. ; 

(2) Individual zero value: a single zero value occurred in consecutive non-zero 

values, which may be due to data transmission failures; 

(3) Load glitches: a sudden increase or decrease of adjacent values, may be 

caused by a failure of monitoring equipment or data processing error; 

(4) Consecutive mutations: the value increases or decreases over a continuous 

period of time. 

The existence of abnormal values will cause deviations in the analysis results. 

Because of the large sample size of this study, it was impossible to filter outliers 

manually. To tackle this, the Local Outlier Factor (LOF) [23] method was adopted to 
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identify and process existing outliers in the raw data for this study. The LOF method 

is an outlier monitoring algorithm proposed by Breunig, on the basis of data density 

differences. When using this method, the reachability distance of two data points q, 

p, defined as reach_distk(q,p), is calculated by Equation (1), 

reach_distk(q,p)=max｛distk(p),dist(q,p)｝           (1) 

Where, distk(p) is the K distance between data point p and its kth nearest data; 

dist(q,p) is the Euclidean distrance; and dist(q,p)≤ distk(p).  

The reciprocal of the average reachable distance of the defined data q to data k is 

the local reachable density. Then the local reachable density of point q, namely lrdk 

(q), is, 

                 𝑙𝑟𝑑𝑘(𝑞) =
𝑘

∑ 𝑟𝑒𝑎𝑐ℎ—𝑑𝑖𝑠𝑡(𝑞,𝑝)𝑝∈𝐾𝑁𝑁(𝑞)
                    (2) 

Where KNN(q) is the k-adjacent set of point q. 

Finally, the outlier degree of point q, namely 𝐿𝑂𝐹(𝑞), is the average of the ratio 

of the k-adjacent reach density of q to the reachable density of point q, and the 

equation is as follows, 

                      𝐿𝑂𝐹(𝑞) =
∑

𝑙𝑟𝑑𝑘(𝑞)

𝑙𝑟𝑑𝑘(𝑝)𝑝∈𝐾𝑁𝑁(𝑞)

𝑘
                     (3) 

If the 𝐿𝑂𝐹 value is much bigger than 1, it means that the density of point q is 

very different from the overall data density, and data point q is considered as an 

outlier. The closer to 1 the 𝐿𝑂𝐹 value is, the more normal the point q is.  

Based on the calcuation results of outlier degree of the data in this case study, 

existing outliers in the raw data were identified by the rule that LOF is larger than 3. 

For those continuous zero values appearing in the data, they were replaced by the 
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energy use data under similar meteorological conditions. For other abnormal values, 

they were corrected by linear regressions. 

 

4. Data Storage and Calculation of District Power Loads of Campus Buildings 

in the GIS System 

As one type of GIS systems, ArcGIS has the capability of storing data, analyzing 

data and then visualizing the results. All kinds of data could be imported into the 

ArcGIS, and be categorized and stored with concept of layers. For example, the 

building with its geographic coordinates and geospatial information can be imported 

into the ArcGIS as one layer, and data regarding to the building’s performance and 

electricity use can be imported into the ArcGIS as another layer. These data can be 

considered as attributes for different buildings, expressed as attribute tables, where 

datasets could be integrated, transformed and aggregated. By joining or uniting 

datasets with common characteristics, data for the same kinds of buildings could be 

integrated into one single table. Data transformation and aggregation including 

calculation or statistics are necessary steps to analyze the collected preliminary data, 

and the processed results could be created as new attributes to be visualized through 

the ArcGIS.  

All geospatial information for the buildings within the selected university 

campus has been imported into the ArcGIS. After filtering collected data for heating 

consumption, hourly electricity consumption for space heating all campus buildings 

were imported and stored into the ArcGIS as well. In Fig. 2, the original hourly data 
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measured from October 2016 to March 2017 for the electric load of space heating 

were stored in the table and were then analyzed by ‘summary statistics’. Therefore, 

the electric load of space heating in any hour during the measurement period could 

be spatially displayed for all buildings in the ArcGIS. What is more, the indices 

discussed in Part 2.1 were also calculated by either built-in functions or simple 

programming in the ArcGIS based on the corrected data measured from the 

buildings. In this situation, both spatial distribution and dynamic variation of the 

electric loads of space heating for all campus buildings under investigation could be 

visualized, combined with the developed index system and GIS technic.  

 

 

Fig. 2. The storage and analysis interface of original data in the ArcGIS. 

 

5. Analysis of Spatial-temporal Characteristics of Space Heating Electric Load 
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for all Campus Buildings 

The GIS system stored all corrected raw hourly data of electricity consumption 

by individual buildings, for the whole winter period under investigation. As a case 

study to demonstrate the spatial-temporal characteristics of electric load of space 

heating in campus buildings, typical-day data were selected for the index analysis in 

this part. The date with maximum hourly electric load in the heating season was 

selected as a typical day, and the week with the typical day was defined as a typical 

week to represent the building’s maximum load level in the entire heating season. To 

exclude extreme values caused by extreme weather conditions and accidental factors, 

The slip averaging method is used to calculate the maximum load in the heating 

season, which was defined as the maximum of the rolling average of three-hourly 

loads [24]. 

The slip averaging method considers n data and uses the mean value of adjacent 

m data (m=2n+1), namely 𝑓𝑛, to replace the original data of 𝑦𝑛, and compose a new 

dataset noted as 𝑁𝑓, so as to effectively eliminate errors in the data, as shown in 

Equations (4) - (6) [24].  

                             N =｛yn｝                                          (4) 

                                   𝑓𝑛 =
1

2𝑛+1
∑ 𝑦𝑖

𝑖+𝑛
𝑖−𝑛                                       (5) 

                      Nf =｛fn｝                            (6) 

 

5.1. Characteristics of electric load levels for space heating 

The index system detailed in Section 2 was used to analyze the electric load 

characteristics of space heating for campus buildings, and results were visualized 
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using the GIS technology, as shown in Fig. 3 to Fig. 5.  

Fig. 3 depicts the campus buildings’ daily peak electric load for heating in the 

winter typical day. The daily peak electric loads of academic buildings were much 

higher than other building types, and for Buildings H, C, F, and B the values were 

418.7kW, 265.38kW, 259.85kW, and 254.44kW respectively; the Office Building G 

reached 209.41kW; The Teaching Buildings E and D had values lower than those of 

the first two types of buildings, with 154.79kW and 79.27kW respectively; the daily 

peak loads of dormitories were the lowest, with values between 98.19kW and 

53.19kW.  

Fig. 4 analyzes the campus buildings’ daily average electric load for heating in 

the winter typical day. It seems like that the average daily loads of different types of 

buildings differed significantly. Academic Buildings had a mean value of 164 kW; 

Office Building went up to 114.96kW; Teaching Buildings and Dormitories had 

lower mean values, which were 65 kW and 36 kW respectively. Both daily average 

electric load and peak load for heating are mainly related to the installed capacity, 

the hourly usage rate and the types of space heating systems, with the installed 

capacity also related to the floor area of the buildings. Larger floor area normally 

needs larger installed capacity. The centralized heat pump system includes both 

water and air systems, besides heating sources, and hence the electric load was 

higher than that of split heat pumps. The investigated academic buildings usually 

have larger floor area and centralized heat pump system, and these resulted in their 

higher daily average electric load and higher peak load. On site investigations also 
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found that the internal heat gain in winter in teaching buildings was high, due to 

their high occupancy density; and the students were also used to wear much clothes 

in winter; the two reasons led to the lower hourly usage rate in teaching buildings, 

and hence the two indices were found to be relatively lower for teaching buildings. 

Dormitories also had low values due to their smaller floor area and installed split 

heat pump systems. 

Fig. 5 depicts the seasonal electricity consumption intensity of campus buildings 

in winter. Academic buildings had the highest electricity use intensity in winter, with 

the mean value ranging between 28.91 and 16.96 (kW·h)/m2, followed by office 

buildings. The electricity consumption intensity of dormitories had values between 

19.17 and 13.88 (kW·h)/m2, lower than the first two types. The lowest value was 

found for teaching buildings, with electricity use intensity of 6.87 (kW·h)/m2 and 

3.55 (kW·h)/m2 for Buildings E and D, respectively. The difference in the electricity 

use intensity was obvious among different building types, but was relatively smaller 

among the same type of buildings. Reasons behind may be academic buildings had 

the longest operational time and high comfort level, controlled by occupants 

themselves, leading to their highest energy consumption. Electricity consumption 

from dormitories was low because students paid their electricity bills by themselves, 

which may lead to a more economical use of energy. Teaching buildings had the 

lowest energy consumption, which may because of their limited use of heat pumps 

and shorter usage in winter due to the winter holiday. Additionally, some 

departments, such as the logistics department, have installed central management 
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systems for heating their teaching buildings, and this measure effectively helped to 

avoid energy waste. 

In summary, according to the above three indices, the level of electric load of 

space heating was the highest for academic buildings, followed by office buildings. 

The electricity consumption intensity of teaching buildings was lower than that of 

dormitories, but its daily peak load and daily average load were higher than those of 

dormitories. This reflects that although the peak load of teaching building was high 

when being used, the electric consumption intensity for the entire space heating 

season was the lowest among all building types, due to the limited use in the winter 

vacation. Therefore, analysis based on electric consumption intensity only cannot 

effectively determine the building’s load level. The identification work should 

consider other indices as well. 

 

 

Fig. 3. Daily peak load of space heating in campus buildings in winter. 
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Fig. 4. Daily average load of space heating in campus buildings in winter. 

 

 

Fig. 5. Seasonal electricity consumption intensity of space heating in campus 

buildings in winter. 

 

5.2. Characteristics of space heating electric load fluctuation of campus buildings 

The characteristics of electric load fluctuation of space heating for campus 

buildings are shown in Fig. 6 to Fig. 9. 

The daily peak-to-valley difference rate was used to reflect the daily load 

fluctuation, with a bigger value for a greater load fluctuation. Fig. 6 analyzes the 
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daily peak-to-valley difference ratio of electric load of space heating for the 

investigated campus buildings. Ranked according to the index of daily 

peak-to-valley difference ratio, a descending order of the buildings in winter was 

obtained, i.e. domitories, teaching buildings, office buildings and academic 

buildings. The daily peak-to-valley difference rate of dormitories was close to 1.00, 

and Dormitories L, K, J, and I had values of 1.00, 1.00, 0.99 and 0.93, respectively. 

This is mainly because students would reduce the use of heat pumps by wearing 

more clothes in winter to reduce energy consumption and save money, leading to a 

winter peak-to-valley difference of nearly 1.00. The values for Teaching Buildings D 

and A were 0.88 and 0.85; Office Building G was 0.80; Academic Buildings F, E, H, 

C and B were 0.83, 0.79, 0.77, 0.71 and 0.56, respectively. The operational mode 

and outdoor air temperature had important influences on the peak-to-valley 

difference in buildings. Out-of-usage during the nighttime for teaching buildings 

caused sudden decrease in space heating electric load to nearly zero, hence resulting 

in a significant peak-to-valley difference. In dormitories the difference between the 

daily peaks and valleys in winter was high as well, and the electric load fluctuations 

of space heating in dormitories was varying with the time. 

The daily load rate reflects the uniformity of the daily load, with a larger value 

for a more uniform hourly load distribution within a day. Fig. 7 analyzes the daily 

electric load rate of heating systems in the campus buildings in winter. In all types of 

buildings, the daily electric load rate of academic buildings in winter was highest, 

with values between 0.74 and 0.57, whereas the fluctuation of electric load was 
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smallest. The value of Office Building G was 0.55; teaching buildings and 

dormitories were low as well, ranging between 0.53 and 0.42. Academic buildings 

showed high values, and teaching buildings and dormitories showed low daily load 

rates, and the reason is similar to that for the peak-to-valley difference rate. 

The weekly imbalance rate reflects the volatility of the maximum load for each 

day of the week. The greater the value is, the smaller the daily peak load fluctuation 

in this week is. Fig. 8 analyzes the weekly imbalance rate of electric load for space 

heating in the investigated campus buildings. The imbalance rate for research 

buildings was the highest, ranging from 0.85 to 0.71; Office Building G reached 

0.78; dormitories and teaching buildings were slightly lower, i.e. between 0.76-0.64 

and 0.74-0.65, respectively. The variance of daily loads in one week is related to the 

operation schedules in different days, and the load difference between weekdays and 

weekends has become an important factor affecting this index. Various types of 

campus buildings had different operational schedules. Academic buildings were 

always occupied with researchers and graduate students, and many of them had 

additional work during the weekends, so the load difference between weekdays and 

weekends was smaller than other building types, hence with small load fluctuation 

but high weekly imbalance rate. The load of teaching buildings was high in 

weekdays, but reduced significantly during weekends. Therefore, teaching buildings 

had lower weekly imbalance rate. 

The seasonal load rate reflects the electric load fluctuation for the entire space 

heating season. The larger the value is, the smaller the volatility is. Fig. 9 analyzes the 
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seasonal load rate of electric load for space heating in the investigated campus 

buildings. Office buildings and academic buildings had high seasonal load rates and 

small fluctuations in electric load of space heating. Among them, Office Building G 

had maximum seasonal load rate, which was 0.84, and Academic Buildings A, H, B, F 

and C had seasonal load rates of 0.83, 0.82, 0.82, 0.78 and 0.72, respectively. The 

winter load rates for Teaching Buildings E and D were 0.73 and 0.67, respectively, 

and the values for dormitories were between 0.62 and 0.54. The difference in seasonal 

load rates for the same type of buildings was not significant in winter. The seasonal 

load rate is related to the operation of space heating systems in the heating season, 

affected by both duration of usage and hourly load. Comparing to the other two types 

of buildings, both hourly usage rate and usage period of heat pumps in research 

buildings and office buildings were higher in winter. Researchers and students, 

especially postgraduates, often had shifts at night and long-time work even in the 

winter holiday period, with a requirement of using heat pumps to provide comfortable 

indoor environment. Some scientific research studies needed to be conducted 24 hours 

a day, resulting in long-time usage for space heating. All of these led to the relatively 

smaller fluctuations in hourly load of the space heating. Teaching buildings and 

dormitories had either low usage rate or short usage period or both during the winter 

vacation, resulting in a low seasonal load rate. 

Based on the above analyses, it can be found that the fluctuation of electric load 

for space heating is highly correlated with the operational modes of the building and 

its heating systems. Among the four types of campus buildings investigated, academic 
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buildings and office buildings had smaller daily, weekly and seasonal electric load 

fluctuations, comparing to teaching buildings and dormitories.                 

  

 

Fig. 6. Daily peak-to-valley difference ratio of space heating in campus buildings in 

winter. 

 

Fig. 7. Daily load rate of space heating in campus buildings in winter. 
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Fig. 8. Weekly imbalance rate of space heating in campus buildings in winter. 

 

 

Fig. 9. Seasonal load ratio of space heating in campus buildings in winter. 

 

5.3. Coupling characteristics of electric load of individual buildings to total district 

load 

The coincidental rate reflects the occurrence consistency of the peak electric 

load of space heating for individual buildings and the peak district electric load of 

space heating. The larger the value is, the more consistent occurrence of the peak 

load of individual buildings and the peak district load. As shown in Fig. 10, the 
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coincidental rates of Academic Buildings A, F, B, C and H were 0.94, 0.87, 0.86, 

0.75 and 0.67, respectively, in winter, and Office Building G reached 0.90. For 

Dormitories I, L, K and J, the values were 0.76, 0.60, 0.57 and 0.54, respectively. 

The lowest coefficients were found in Teaching Buildings E and D, which were 0.42 

and 0.30. This shows that the peak loads of academic buildings and office buildings 

make great contribution to the district peak load. The load reduction of these two 

types of buildings would have larger effect on reducing the district load and 

installation capacity of power grid. On the contrary, dormitories and teaching 

buildings helped to shave the peak district heating load. 

During the winter period, the measured peak load on the campus was 1874kWh, 

while the sum of peak loads from each building was 2121kWh, with a diversity 

factor of 1.13 for winter. 

  

Fig. 10. Coincidental rate of campus buildings in winter. 

 

6. Selection of Key Campus Buildings Using Principal Component Analysis 
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6.1. Analysis method 

Based on the analyzed electric load characteristics of space heating from campus 

buildings, the principal component analysis method was used to identify key 

buildings with big influences on the district load, and these buildings would deserve 

more attentions for energy-saving renovation, optimization of operations and district 

power dispatch. 

In the principal component analysis method, it is assumed that there are n 

samples and j variables (j<n), and the original data matrix, X=[X1, X2, X3, ..., Xj], 

consists of j vectors [19]. The covariance matrix of X is noted as Σ, and the 

eigenvalues of the covariance matrix are named λ𝑖. Arrange the eigenvalues in a 

descending order, i.e. λ1≥λ2≥λ3……≥λj≥0, and their corresponding eigenvectors are 

𝑒𝑖
`, i=1,2,…,j.  

Then a linear combination could be proposed, as defined in Equation (7), 

                        PCi=X𝑒𝑖
`     i=1,2,…,j            (7) 

PCi is the i𝑡ℎ principal component, and its value is the score of the i𝑡ℎ principal 

component. 𝑒1𝑖 , 𝑒2𝑖 , 𝑒3𝑖 ..., 𝑒𝑗𝑖  are the loads of the i𝑡ℎ principal components 

respectively, and these loads form the load vector 𝑒𝑖
` = (𝑒1𝑖, 𝑒2𝑖, 𝑒3𝑖. . . , 𝑒𝑗𝑖)𝑇. The 

principal components are arranged in a descending order corresponding to the values 

of the eigenvalue of λ𝑖, namely the first principal component, the second principal 

component, and the i𝑡ℎ principal component. 

Basic principles of the main component analysis method are: 1) using the z-score 

(zero-mean normalization) method, the values of X are normalized, so as to 
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eliminate the influences of dimensions and magnitudes; 2) finding the dimensionless 

correlation coefficient matrix R; 3) obtaining the eigenvalues, eigenvectors and 

contribution rates of R; 4) determining the number of principal components based on 

the amount of information contained in each principal component. The variance of 

the linearized combination is considered as an index to evaluate the amount of 

information contained within it. The larger the variance is, the more information the 

principal component contains. Therefore, PC1, PC2, ..., PCi are sorted in the 

descending order of variances, and are referred to as the first principal component, 

the second principal component, and the i𝑡ℎ principal component. The x% criterion 

judges the required number of principal components according to the threshold 

accumulated by the interpretation ratio of the principal components’ variances [25]. 

According to empirical evidence, when the threshold is 80%-85%, the extracted 

principal component can retain enough information in the original variables. In this 

study, the number of principal components was determined when the threshold value 

reached more than 80%; 5) explaining the meaning of the principal component 

factors, which are usually determined by indices with large weights; 6) calculating 

the score of each principal component, which is the main component score for each 

building. In the model used in this study, the samples were the buildings under 

investigation, and the variables were the indices, and the index values for each 

building formed the matrix X. For the overall evaluation of the building load 

characteristics, this study has adopted the Prcomp function in the R software to 

calculate the PC, which is a linear combination of evaluation indices. According to 
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the x% criterion, the number of main components extracted in winter was 2, with a 

cumulative value of proportion higher than 80%.  

 

6.2. Analysis results  

The load of each principal component and the score of each building were 

calculated from the index values, and the biplot of the principal components in 

winter is shown in Fig. 11. In this figure, the bottom axis and the left axis are the 

first and the second principal component score axes, respectively, and the top axis 

and the right axis represent the load values of the first and the second principal 

components. Letters A-L represent individual buildings under investigation. Its 

projections on the top axis and the right axis indicate the scores of the building as 

the first and the second principal components. The red Roman letters and arrows 

represent each index. The projections of the arrow on the bottom axis and the left 

axis are the load values of the indices in the first and the second principal 

components. A positive load indicates that the principal component is positively 

correlated with the index, and a negative value means the opposite. The influences 

of different indices on the principal components is measured by the absolute values 

of the load values of the indices, that is, the distance from the load value to the 

origin. The closer to the origin, the smaller the influence of the index value on the 

sample building’s score. ACCEPTED M
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Fig. 11. Biplot of principal components in winter. 

Fig. 11 shows the biplot of principal components to reveal the electric load 

characteristics of space heating for campus buildings in winter. It shows that the 

score of first principal component was positively correlated with the daily 

peak-to-valley difference rate, and was negatively correlated with other indices such 

as the seasonal load ratio and the weekly imbalance ratio. The greater the daily 

peak-to-valley difference rate was, the smaller the seasonal load ratio and the weekly 

imbalance rate were, the greater the load fluctuation was, and the greater the score of 

the first principal component was. Therefore, the first principal component could be 

used to reflect load fluctuations. Further analysis found that first principal 

component scores were also negatively correlated with daily peak load and daily 

average load. The larger the daily peak load and the daily average load were, the 

higher the load level was, and the smaller the score of the first principal component 

was. Considering the score of each building, Dormitories I, J, K, L and the Teaching 
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Building D had large load fluctuations and low load levels in winter. Academic 

Buildings B and H had low winter load fluctuations and high load levels. 

There was a negative correlation between the second principal component and 

the indices of seasonal electricity consumption intensity of heating systems in winter, 

as well as for the coincidental rate. The absolute load values of the two indicators 

were greater than the other indicators, which had greater impact on the second 

principal component. The higher the seasonal electricity consumption intensity was, 

the greater the coincidental rate was; the larger the contribution of the single 

building to the district load was, and the smaller the score of the second principal 

component was. Therefore, the second principal component could be used to reflect 

the contribution of each single building to the district power load. It can be seen that 

the Office Building G and Academic Buildings A and B contributed a lot to the 

district load in winter. The Dormitory I within the dormitory group contributed 

much to the electric load of space heating in winter, while Teaching Buildings D and 

E contributed less.   

Combining the first and second principal component scores, it could be found 

that the Teaching Building D had low power load in winter, large load fluctuation 

and little contribution to the district power load. Dormitories J, K and L had large 

load fluctuations and low load levels. Hourly load variance of domotories and 

teaching buildings are greatly different from academic buildings and office buildings. 

The peak hour of domitories usually ocuurs at night, and teaching buildings still 

have the relatively high loads in the evening or even at night, while academic 
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buildings and office buildings usually have large loads during the daytime. So 

domitories and teaching buildings play a role in load shift of the district. Comparing 

to other living quarters, the Dormitory I performed a large contribution to the 

electric load of district heating in winter, hence some regulations on electricity 

prices and student behavior management can be made to encourage the students in 

the Dormitory I to shift the energy use behaviors from daytime to the night. The 

Office Building G contributed greatly to the district electric load, as it had a high 

load level in both the whole winter period and every week, plus a significant daily 

load fluctuations. Energy-saving renovation in the building performance and space 

heating systems are the useful approaches to reduce the load level, while some 

energy storage technologies, such as phace change material, can be also used to to 

shift the large peak loads. For Academic Buildings B and H, their space heating load 

fluctuations were small, but the high load level had a large contribution to the 

district space heating electric load in winter. Hence, the improvement for both 

envelope performance and the efficiency of space heating system for the two 

buildings is meaningful for the reduction of district loads. Besides that, the operation 

of some experimental machines in these two buildings can be moved from the 

daytime to the night, to realize the effect of peak shaving and valley filling at a 

certain degree for the electric load of space heating, if there is no need for the staffs 

to work during the operation period.  

 

7. Discussion and Conclusions 
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An in-depth understanding on power load characteristics of space heating and 

cooling for various types of buildings has an important role in robust design of 

district power supply capacity and optimal operation of district energy supply 

systems. The Chinese government has paid a great amount of funding to construct 

energy use monitoring platforms for large commercial buildings and campus 

buildings. Unfortunately, the collected power load data have not been deeply 

analyzed yet, and therefore, the potential contributions from the installed monitoring 

platforms to both energy conservation management and energy efficiency retrofit 

have not been fully realized. In this study, an index system representing the 

characteristics of power loads of space heating and cooling has been developed, 

covering temporal dynamic characteristics of building loads, load fluctuation 

characteristics and load coupling relationships between individual buildings and the 

district load. An ArcGIS system has been used to store and visualize the spatial 

distribution characteristics of power loads of space heating and cooling. Using the 

principal component analysis method, buildings with significant contributions to the 

total district load were identified. Using this energy planning-oriented method, the 

spatial-temporal characteristics of loads for a district were revealed to help district 

power supply and dispatch of power grid. Key buildings with large loads or large 

load fluctuations were identified to implement further energy-saving measures or 

optimal operation strategies. Combined with this method and the energy use 

monitoring platform in Chinese universities, energy efficiency management in 

university campuses could be implemented more effectively in China.  
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As a case study, the spatial-temporal characteristics of power load of space 

heating for campus buildings in one Chinese university were analyzed. The results 

demonstrated that the method developed in this study was able to clearly and 

accurately reveal the spatial-temporal characteristics of electric loads of space 

heating for the campus buildings under investigation, and identify the contribution 

of each individual building to the total district load. Under this condition, through a 

thorough use of data collected by the energy use monitoring platform within the 

campus, the newly proposed method was considered as a very useful tool to reveal 

the load characteristics, and then provide support for energy efficiency management 

of campus buildings. Based on the analysis results of load characteristics in the case 

study, academic buildings had the highest load level, plus high peak load and 

coupling of district peak load. In this type of buildings, some experimental machines 

would run continuously and staff/students might also work beyond normal working 

hours. Therefore, the electric load fluctuation of space heating in such type of 

buildings was smaller, comparing to other types of buildings. High load level was 

also found in office buildings. Additionally, as most office buildings investigated in 

this study were not running during the nighttime, large load fluctuations were 

observed. Their peak loads have shown high degree of coupling with the district 

peak load. Due to these characteristics, academic buildings and office buildings had 

greater impact than other building types on both the total and peak electric loads of 

university campuses, and should be used as key candidates for implementing energy 

efficiency measures. High-performance envelope is an effective measure to reduce 
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the space heating energy consumption, and the use of efficient space heating systems 

are also suggested. Some other measures, such as phase change materials, are also 

helpful to shift the large peak loads in the two types of buildings above. Dormitories 

and teaching buildings were found to have smaller winter load levels but larger load 

fluctuations. Both types of buildings have obvious peak-regulating effect on the total 

district space heating electric load. Besides that, some regulations can be made from 

the administrative perspective to encourage the faculties and students to reduce the 

electric load of space heating at the peak time. 

To sum up, building types will importantly determine their level of power load, 

and the buildings’ operational mode and usage mode of heating systems have 

significant impact on their load fluctuations. Peak-shaving effect can be achieved by 

changing the energy usage modes of the buildings. Additionally, because the power 

load characteristics of space heating are different for various types of buildings, an 

appropriate building type ratio would be helpful on reducing the total load and load 

fluctuation of a district, hence very important for district energy planning. Fig. 12 

presents a comparative analysis of the hourly load of individual buildings and the 

hourly load of the total district on one winter day. It reflects the timely differences 

between individual buildings and the total district load. Between 7:00-10:00, the 

Dormitory J kept a very small space heating electric load with a slightly declining 

trend. The Office Building G, the Teaching Building E and the Academic Building H 

had their loads rising, and the hourly district load maintained the same trend as those 

of the Academic Building H and the Teaching Building E. After 10:00, the hourly 
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district load started to decline, but the load of the Academic Building H still kept 

rising. From 18:00-20:00, both Academic Building H and Dormitory J had loads 

with a slightly rising trend, while the load of both Teaching Building E and Office 

Building G decreased, hence keeping the district load steady. The daily load rate for 

the four Buildings H, G, E, and J were 0.51, 0.42, 0.46 and 0.30, respectively, with 

the daily district load rate of 0.52. It was found that the appearance moments of peak 

loads for various types of buildings were not the same, leading to a “filling valley” 

effect that can effectively reduce both district load fluctuations and peak load. The 

overall effect on the district load by individual buildings was related to both the load 

level and the load fluctuation of individual buildings. Additionally, analysis on 

district load characteristics should not be sorely based on simple cumulative analysis 

of data collected from single buildings, without considering temporal effect. If the 

district peak load is obtained by simple add up of peak load of individual buildings, 

the peak load estimation will be overestimated. 

 

Fig. 12. Comparison of the hourly load of various types of buildings and the total 

hourly total load of the district in winter. 
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Finally, using the GIS system, the spatial characteristics of district power load 

can be effectively stored and visualized. For regions with large load intensity and 

high peak load, effective scheduling is required when the power demand is large. 

Because the campus scale is still relatively small, this advantage will be more 

pronounced for larger administrative divisions or for cities. 
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