
Implementation of Lazy Agents in the FunctionalLanguage EBGTony ClarkDepartment of ComputingUniversity of Bradford, West Yorkshire, BD7 1DP, UKa.n.clark@scm.brad.ac.ukJuly 15, 1999AbstractEBG is a lazy functional programming language that compiles to theJava Virtual Machine Language. The aims of EBG are to provide thebene�ts of both FP and Java. This paper describes the design and imple-mentation of agents in EBG that provides an interface to the underlyingmulti-processing facilities of Java.1 IntroductionEBG [Cla99a] is a higher-order lazy functional programming language that com-piles to the Java Virtual Machine [Ven98]. EBG aims to provide all of the ad-vantages of FP including pattern matching, �rst class functions and automatictype checking [Fie89], in addition to the advantages of Java [Arn98] includingportability, multi-processing, networking and graphical user interfaces.This paper describes the design and implementation of agents in EBG.Agents provide an EBG-level interface to the multi-processing facilities of Javaand are a step on the path to a longer term goal of providing programming fa-cilities for functional multi-agent systems [Jen98]. Agents are based on both theActor model of computation [Agh86] [Agh91] and models processes as streamconsumer-producer functions [Tho90] [O'D85].An agent is a function that processes a stream of input messages and pro-duces a stream of output messages. Agents execute concurrently and commu-nicate by passing messages. A message is sent from a source agent to a targetagent. A source agent sends a message to its output stream and then continueswithout waiting for a reply. The message is transferred to the target agent'sinput stream.Messages are consumed at an agent by processing the elements of its inputstream in the order that they arrive. When an agent requests an input the next1

expressions M;N; : : : E ::= V variables v; wj �V:E functions �v:Mj EE applications MNj KE� structures k ~Mj case E of A� end selection (M; ~a)j C agent commandcommands C ::= j E send messagej skip no operationj E;E sequencej mcase A� end message dispatchcase arms a A ::= P ! E case arm p!Mpatterns p P ::= V variable pattern vj KV � structure pattern k~vFigure 1: Agent Calculusavailable message is removed. If no messages are available then the agent blocksuntil the next message is received.This paper is structured as follows. Section 2 de�nes an agent calculus thatrepresents the essential features of the agent model of computation. The se-mantics of the calculus is de�ned as an equivalence relation on agent terms andas such provides scope for reasoning about agent properties without referenceto implementation details. Section 3 re�nes the semantics so that it is compu-tational by adding control features in the form of a state transition machine.Section 4 describes how the calculus is implemented in EBG as an agent APIand section 5 describes how the mechanisms are implemented in Java as part ofthe EBG run-time system.2 An Agent CalculusAn agent is implemented as a program written in an agent calculus (see �gure1) which is �-calculus extended with structures, pattern matching and agentcommands. The commands allow messages to be sent (M) and received(mcase : : :end). Agent messages are sequenced using the operator ; whoseleft and right identity is the empty command skip. The calculus has no spe-cial syntax for creating new agents, this is achieved by sending messages to adistinguished operating system agent.2.1 A Theory of AgentsThe standard notion of term equivalence (=) [Han94] is extended for the agentcalculus. The de�nition has two parts: equivalence between expressions andequivalence between systems of agents. Equivalence between expressions is de-2

(�v:M)N =M [v := N] (1)M =M 0 N = N 0MN =M 0N 0 (2)M = N�v:M = �v:N (3)M1 =M 01 : : :Mn =M 0nkM1 : : :Mn = kM 01 : : :M 0n (4)
skip;M =M =M ; skip (5)M ; (N ;O) = (M ;N);O (6)M =M 0 N = N 0M ;N =M 0;N 0 (7)M =M 0 M = M 0 (8)M =M 0case M of ~a end = case M 0 of ~a end (9)case k ~M of ~a1 k~v ! N ~a2 end = N [~v := ~M] (10)Figure 2: Equivalence of Agent TermsM =M 0f(i;m;M)g = f(i;m;M 0)g (11)�1 = �01 �2 = �02�1 [�2 = �01 [�02 (12)f(i; k ~M : m;mcase ~a1 k~v ! N ~a2 end)g = f(i;m;N [~v := ~M])g (13)f(i1;m1; (ki1i2M);N); (i2;m2; O)g = f(i1;m1; N); (i2;m2++[ki1i2M]; O)g(14)f(i; k ~M : m;mcase ~a else N end)g = f(i; k ~M : m;N)g no match (15)f(i;m;mcase ~a end)g = f(i;m; skip)g no match (16)Figure 3: System Semantics�ned by the theory given in �gure 2 in addition to being reexive, symmetricand transitive. Note that expression equivalence does not state anything aboutagent command equivalence except where the equivalence involves that of sub-expressions.Agent systems are sets of agents. An agent (i;m;M) consists of a uniqueidenti�er i, a message queue m and an agent command M . System equivalenceis given by the theory in �gure 3 (in addition to being reexive, symmetric andtransitive) and is de�ned in terms of expression equivalence (rule 11). Messagepassing transfers a message from one agent to another (14). The message isadded to the target agent's queue and is subsequently processed on demand.When processed, a message may match a pattern (13) or fail. When it fails,if there is a default arm (15) then the agent continues otherwise it terminates(16).The basic calculus can be extended with built-in agents and messages. These3

are similar to the �-rule extensions to a basic �-theory. A distinguished operatingsystem agent o implements an interface between the calculus and its environ-ment. For example, dynamic agent creation is performed by:f(i;m; (io(new M));N)g = f(i;m++[(o; i; j)]; N); (j; [];M)gTerm equivalences can be used to prove both agent and system properties. Atypical example is to establish that two agents are (or are not) equivalent. Whenestablishing agent equivalences we must ensure that all possible system casesare covered. Conversely, equivalence is denied by showing that there exists asystem in which the agents behave di�erently.Theorem 1 Let A1 =mcase p1 !M p2 ! N end and let A2 =mcase p1 !M else mcase p2 ! N end, then A1 and A2 are equivalent agents.Proof 1 We must establish that � [f(i;m;A1)g = � [f(i;m;A2)g for anysystem �, identi�er i and message queue m. We proceed by cases with respectto the behaviour of the system. Suppose that m = [] and that no message isever produced by � for agent i, then A1 and A2 have equivalent behaviours.Now suppose that m = [] and � produces a message, or that m is initially non-empty. If the message matches p1 then both A1 and A2 become M by rule 13.Alternatively, if the message matches p2 then both A1 and A2 become N by rule13 and rules 13 and 15 respectively. Finally, if the message fails to match p1and p2 then both A1 and A2 become skip by rule 16. Therefore the agents arebehaviourally equivalent in all possible systems as required.Theorem 2 Let A1 = (M);mcase p! (N) end and let A2 =mcase p!(M); (N) end then A1 and A2 are equivalent agents.Proof 2 The theorem is false. To show that it is false we construct a systemin which the two agents exhibit di�erent behaviours. Let f(i; []; A)g be a systemand let M be a message from agent i to itself that matches pattern p. WhenA = A1 the system produces an output message N and becomes skip. WhenA = A2 the system exhibits no behaviour. Therefore, the agents exhibit di�erentbehaviours with respect to the same system.2.2 CPS for AgentsAgent commands may be implemented by a translation to basic �-terms usinga continuation passing style (CPS) [Plo75], see �gure 4. Each agent commandis a function expecting an input stream m and a continuation k. The commandcan consume elements of the input stream. When it is complete, the commandpasses the rest of the input stream to the continuation. The initial continuationis �m:[] which, when invoked, causes the agent to terminate. The skip commandsimply invokes the continuation (17). Messages are sent by adding them to thehead of the output stream (18). Commands are sequenced by supplying the�rst M with a continuation to perform the second N with respect to the rest4

[[skip]] = �mk:km (17)[[N]] = �mk:N : (km) (18)[[M ;N]] = �mk:Mm�m:Nkm (19)[[mcase ~a end]] = �mk:case m ofx : m0 !(case x of ~a end)km0else <>end (20)Figure 4: Translation to CPSof the input stream (19). The next message is found by matching it againsta collection of message patterns (20); if there are no input messages then theagent blocks by producing the special value <>. An agent is supplied with itscomplete input stream; for an agent to produce <> there must be no messageseither pending or sent to the agent in the future. The translation can be usedto validate rules 5 and 6.Theorem 3 skip;M =M =M ; skipProof 3 skip;M= �mk: skip m �m:Mmk= �mk:Mmk =M= �mk:Mm�m:km= �mk:Mm�m: skip m k=M ; skipTheorem 4 M ; (N ;O) = (M ;)N ;OProof 4 M ; (N ;O)= �mk:Mm�m:(N ;O)mk= �mk:Mm�m:Nm�m:Omk= �mk:(M ;N)m�m:Omk= (M ;N);O2.3 Agent TypesAn agent is an expression whose type is an agent command. The type of agentcommands is � = [�] ! ([�] ! [�]) ! [�], the type of messages is � andthe type of agent identi�ers is �. A type theory associates each expressionM with a type � when A ` M : � such that A associates free variables ofM with types. The theory is standard [Car84] except for the agent commands:
5

A `M : �A ` M : � (21) A `M : � A ` N : �A `M ;N : � (22) A ` skip : � (23)A[v1 7! �; v2 7! �; v3 7! �] `M : �A `mcase ~a1 kv1v2v3 !M ~a2 end : � (24)3 Agent ComputationsThe agent theory is not directed and therefore does not indicate how agent cal-culations will take place in EBG. Intra-agent calculations will be deterministicgiven complete information about the agent's input stream. It will not be pos-sible to impose a deterministic order on inter-agent calculations since we willabstract away from the details of the message delivery service. We distinguishbetween system execution (underspeci�ed with respect to execution ordering)and agent execution (totally speci�ed with respect to execution ordering). Agentexecution must deal with blocking on input streams and forcing lazily generatedoutput streams. This section re�nes the agent theory using a state transitionmachine semantics. The transition machine has been implemented as a func-tional program in EBG.3.1 System ExecutionAn agent is represented as an SECD machine [Lan64] extended with componentsfor the agent's unique identi�er and message queue. A system is a set of agentsand system behaviour is de�ned as a relation between sets of agent machinestates.An agent is either active or terminated. A terminated agent is one which hasirretrievably ceased to process messages and serves as a sink for all messagesit receives. An agent state is (i;m;) where i is a unique agent identi�er,m is the agent's message queue and is an SECD state. An SECD state iseither (s; e; c; d) or (). A terminated agent is (i;m; ()) and an active agent is(i;m; (s; e; c; d)) (written (i;m; s; e; c; d)).Let � be a set, or system, of agent states. System execution is de�ned by apair of relations,) and �!, such that �) �0 is system execution step and� �! �0 is an agent execution step.System execution steps are de�ned in �gure 5. System execution consistsof component agent execution (25). Each of the component agents may exe-cute concurrently with all other agents (26). Time is relative to an agent, i.e.component agents do not all execute in lock step (27).Axiom 28 delivers messages from one agent to another. A source agent (i1)sends a message x by performing the machine instruction x. The target agentidenti�er (i2) is on the source agent's stack. A message (i1; i2; x) is delivered byremoving it from the source agent and adding it to the end of the target agent'smessage queue. 6

� �! �0� [f�g) � [f�0g (25) �1) �01�2) �02�1 [�2) �01 [�02 (26) �) � (27)� [f(i1;m1; (i2 : s; e; x : c; d)); (i2;m2;)g)� [f(i1;m1; (s; e; c; d)); (i2;m2++[(i1; i2; x)];)g (28)Figure 5: System Execution(i;m; ()) �! (i;m; ()) (29)(i;m; s; e; v : c; d) �! (i;m; []; e0; [M]; (s; e; c; d)) when e(v) = (e0;M) (30)(i;m; s; e; (�vM) : c; d) �! (i;m; (v; e;M) : s; e; c; d) (31)(i;m; s; e; (MN) : c; d) �! (i;m; s; e;M : (N) : @ : c; d) (32)(i;m; s; e; (M) : c; d) �! (i;m; (e;M) : s; e; c; d) (33)(i;m; x : (v; e0;M) : s; e;@ : c; d) �! (i;m; []; e0[v 7! x]; [M]; (s; e; c; d)) (34)(i;m; s; e; (M; ~a) : c; d) �! (i;m; s; e;M : ~a : c; d) (35)(i;m; k~x : s; e; (k~v !M : ~a) : c; d) �! (i;m; []; e[~v 7! ~x]; [M]; (s; e; c; d)) (36)(i;m; k~x : s; e; (k0~v !M : ~a) : x; d) �! (i;m; k~x : s; e; ~a : c; d) k 6= k0 (37)(i;m; s; e; k ~M : c; d) �! (i;m; k(e; ~M) : s; e; c; d) (38)(i;m; x : ; ; ; (s; e; c; d)) �! (i;m; x : s; e; c; d) (39)Figure 6: Agent Execution3.2 Agent ExecutionExpressions in the agent calculus denote a closure (v; e;M), a structure k~xor an input message stream. A closure is created when a �-function �v:Mis evaluated and it captures the current machine environment e. A structureconsists of a constructor k and a sequence of thunks ~x. A thunk (e;M) associatesan expression M with an environment e containing bindings for all the freevariables in M . An environment e is a partial function from variables to thunksand is extended with a binding between v and x producing e[v 7! x] in the usualway. The term k(e; ~M) denotes the structure k(e;M1)(e;M2) : : : (e;Mn). Theterm e[~v 7! ~x]) denotes the environment e[v1 7! x1; : : : ; vn 7! xn].Agent execution is de�ned by the transition function given in �gure 6. Agentstates use machine instructions, they are: (M) to delay the evaluation of M ;@ to apply an operator to an operand; and, ~a to try each case arm in turn.A terminated agent (29) cannot perform any computation. The agent calculus7

(i;m; (e0;M) : hd : s; e;@ : c; d) �! (i;m; []; e0; [M]; (hd : s; e;@ : c; d)) (40)(i;m; (e0;M) : tl : s; e;@ : c; d) �! (i;m; []; e0; [M]; (tl : s; e;@ : c; d)) (41)(i;m; (x :) : hd : s; e;@ : c; d) �! (i;m; x : s; e; c; d) (42)(i;m; (: x) : tl : s; e;@ : c; d) �! (i;m; x : s; e; c; d) (43)(i;m1++[x] ++m2; $n : hd : s; e;@ : c; d) �!� (i;m1++[x] ++m2; x : s; e; c; d) when #m1 = n(i;m1++[x] ++m2; $n : hd : s; e;@ : c; d) when #m1 +#m2 < n (44)(i;m; $n : tl : s; e;@ : c; d) �! (i;m; $n+ 1 : s; e; c; d) (45)Figure 7: Handling Message Streamsuses a normal order execution scheme; therefore variables are bound to delayedexpressions (thunks) in the current environment and must be forced (30) whenthey are required. Function expressions produce closures (31). Applicationevaluates the operator and delays the operand (32 and 33); when the operatoris applied a fresh context is created (34) the result is returned to the originalcontext (39). Pattern driven selection amongst alternatives is driven by theconstructor (35 36 and 37). Structure creation delays the evaluation of thecomponent expressions (38).3.3 Agent StreamsAn agent is a function that processes streams of messages. The streams aregenerated lazily and messages are added to a target agent's input stream asthey are produced by the source agents. Output streams are built using theusual list constructor : .Input streams are represented using a special value $n where n is an integer;the meaning of the value is given in terms of the message queue component ofan agent state. Taking the head of an input stream produces the message atthe head of m after dropping n messages. Taking the tail of an input streamproduces a value $n+ 1.Message stream manipulation is performed using the list accessor operatorshd and tl as de�ned in �gure 7. The operators are strict and must force theirarguments to produce cons-pairs or streams (40 and 41). If the accessors areapplied to ordinary cons-pairs (42 and 43) then they produce the appropriatecomponent. If hd is applied to a message stream (44) then, if there is a messagecurrently available it is returned, otherwise the agent cannot satisfy the appli-cation and it blocks. If tl is applied to a message stream (45) then the result isa new message stream with an increased message index.An agent sends messages by producing a sequence of pairs (i; x) where i8

(i;m; [[]]; e; []; ()) �! (i;m; ()) (46)(i;m; [(e0;M) : x]; e; []; ()) �! (i;m; [(e0;M); x]; e; []; ()) (47)(i;m; (e;M) : s; ; []; ()) �! (i;m; s; e; [M]; ()) (48)(i;m; (x1; x2) : s; e; []; ()) �! (i;m; x1 : s; e; [x2]; ()) (49)Figure 8: Sending Messagesis the identi�er of the target agent and x is an arbitrary data value. Agentsexecute lazily and therefore produce a sequence x1 : x2 where x1, x2 are thunks.Figure 8 shows the transition machinery necessary for sending messages. All ofthe transitions refer to completed agent computations; therefore the control isempty [] and the stream of output messages is on the stack (47). The head of theoutput message stream is forced (47 and 48). The target of the head messageis forced (49) leaving the target on the stack ready for a system transition (28).When an agent ceases to produce messages it is terminated (46).4 Agent PrimitivesEBG provides an agent API that implements the agent calculus using a CPSencoding. The novel agent language mechanisms involve the underlying imple-mentation of EBG and the API operators simply manage input streams andagent continuations. This section describes the implementation of the API op-erators and shows how synchronous message passing is layered on top of thebasic asynchronous mechanism.Agents communicate by sending messages. A message may be asynchronous,meaning that the source agent does not expect a return value, or may be syn-chronous meaning that the source agent waits for a return value. A messagecontains data and is named when the data is associated with a string (usu-ally used for dispatching to a message handler in the target), otherwise it isanonymous. The EBG type message is:type message =Message string $;;; Asynchronous, named.| Message0 $;;; Asynchronous, anonymous.| Call string int $;;; Synchronous, named.| Call0 int $;;; Synchronous, anonymous.| Return int $; ;;; Return value.Agent identi�ers are used to refer to agents in message packets. An agentidenti�er is implemented as an integer. A message packet (of type � in section2.3) is a triple (src,tgt,msg)where src is the identi�er of the source agent, tgtis the identi�er of the target agent and msg is the message. The type packets([�]) of message packets is de�ned in EBG as follows:type agentId = int; 9

type packet = (agentId,agentId,message);type packets = list packet;Agents are extended in the API with extra arguments. The 6 agent arguments,in order, are: the agent's own identi�er; an input stream; a continuation; themost recent result of a synchronous message; a value used to coordinate call andreturn; and, the agent identi�er of the operating system agent. The type agent(� in section 2.3) is de�ned in EBG as follows:type messageId = int;type replace = agentId packets $ messageId agentId -> packets;type agent = agentId packets replace $ messageId agentId -> packets;The agent command is implemented using the API operator comm. In thecase of asynchronous messages the operator returns the message. Synchronousmessages use the wait operator:comm :: agentId message -> agent;comm tgt msg = \self in cont value coord os.case msg ofMessage name data -> (self,tgt,msg):(cont self in value coord os);Message0 data -> (self,tgt,msg):(cont self in value coord os);Return id data -> (self,tgt,msg):(cont self in value coord os);Call name id data -> (self,tgt,msg):(wait id self in cont coord os []);Call0 id data -> (self,tgt,msg):(wait id self in cont coord os [])end;The comm operator uses wait to bu�er input packets until the required returnvalue is received. The operator is supplied with 7 values, the �rst being amessage identi�er id and the last being a message bu�er buf.An agent sends a synchronous message by producing a message Call nameid data. The id component is a message identi�er supplied to the target ofthe message. The target produces a return value by sending a message Returnid value. The source agent uses the id value to match the return value withthe original call.During the call, the source agent is still active and may receive messageswhich are bu�ered by adding them to the sequence buf. There are many di�er-ent possible strategies for handling call and return. The wait operator:wait :: messageId agentId packets replace messageId agentId packets -> agent;wait id self in cont coord os buff =case in of(src,_,Return id' data) : in' ->case id = id' ofTrue -> cont self (buff ++ in') data coord os;False -> wait id self in' cont coord os (buff ++ [head in])end;else wait id self in' cont coord os (buff ++ [head in])end;causes the source agent to continually bu�er messages until the target agentreturns a value. Once the value is received, the bu�ered messages are handledin the order that they were received by adding them back into the input stream.10

In addition to a stream of message packets, an agent is supplied with valuesthat are used to manage messages and values. Each of these life-support valuesare accessed using the primitives self, result, seqVal, incSeq and opSys.They have similar de�nitions for example:self :: (agentId -> agent) -> agent;self fun = \self in cont value coord os.(fun self) self in cont value coord os;The next message is consumed by the operator message such that the agentcalculus mcase ~a end is implemented as message nm: case m of ~a end:message :: (packet -> agent) -> agent;message fun = \self in cont value coord os.case in ofmessage : in' ->(fun message) self in' cont value coord os;else []endMessage passing is ultimately performed using the primitive comm. It is conve-nient to provide higher level primitives that distinguish between di�erent typesof messages. These primitives package up the information and then call comm:send :: agentId string $ -> agent;send target name data = comm target (Message name data);call :: agentId string $ -> agent;call target name data = seqVal \seq.incSeq $thencomm target (Call name seq data);send sends an asynchronous message; call sends a synchronous message. send0and call0 use Message0 and Call0 message constructors but are otherwisethe same as send and call. Note how synchronous message passing uses theseqVal and incSeq primitives to associate each message with a unique messageidenti�er that will be used to recognise the return value when it is received.Agent control is provided using a command sequencing primitive then (; inthe calculus) and an empty command skip:skip :: agent;skip self in cont value coord os = cont self in value coord os;then :: agent agent -> agent;then c1 c2 = \self in cont value coord os.c1 self in(\self in value coord os.c2 self in cont value coord os)value coord os;Agents are created using the command agent that is applied to an EBG functionof type agent. Agents are created by sending the operating system agent a newmessage. The message is synchronous and the return value will be the agentidenti�er of the newly created agent: 11

abstract class Thunk extends Value{ private Value cache = null;public abstract Value value();public Value force(){ if(cache == null) {Value value = value();cache = value.force();return cache;} else return cache;}}
class MessageStream extends Thunk{ private Queue queue;public MessageStream(Queue queue){ this.queue = queue; }public Value value(){ while(queue.isEmpty()) {Thread.yield();}Value m = (Value)queue.next();queue.drop();MessageStream ms = new MessageStream(queue);return cons(m,ms);}}Figure 9: Implementation of Message Streamagent :: agent -> agent;agent behaviour = opSys \os. call os "new" behaviour;5 Java ImplementationThe novel agent execution mechanisms are implemented by the underlying EBGrun-time system. Two new types of EBG value are required: message streamsand agents. This section describes how these values are implemented based onEBG thunks and Java threads.The EBG compiler delays function arguments by translating them to (in-stantiations of) sub-classes of Thunk. A thunk has a method value that deliversthe value of the EBG expression when it is called. EBG evaluates lazily, eachthunk has a cache that holds the value after it has been forced the �rst time.Thunk is de�ned in �gure 9.The input stream of an agent is a delayed value that is produced graduallyas system computation proceeds. The act of forcing an input stream causes thenext message to be requested from an agent's queue. If the queue is currentlyempty then the request is blocked until a message is received. Agent blockingdoes not a�ect system computation since each agent is implemented as a sep-arate Java thread. Input message streams are based on Thunk in �gure 9; thecache guarantees referential transparency.Figure 10 shows how agents are implemented as part of the EBG run-timesystem. The system distinguishes between three types of agent: functionalagents that are based on EBG closures; operating system agents that providean interface to the system environment; and, Java agents (not shown) thatprovide a transparent interface between EBG and Java programs.All agents are based on the abstract class Agent. Each agent has a uniqueident and a message queue. The lookup table agents is global and associates12

abstract class Agent extends Thread{protected AgentId ident;static Hashtable agents;protected Queue queue;public Agent(AgentId ident){ this.ident = ident; }public void send(Value m){AgentId tgt = target(m);Agent agent;agent = (Agent)agents.get(tgt);agent.receive(m);}public void receive(Value m){ queue.add(m); }AgentId newFunAgent(Closure f){AgentId i = new AgentId();FunAgent a = new FunAgent(i,f);agents.put(i,a);a.start();return i;}}class FunAgent extends Agent{Closure fun;public FunAgent(AgentId i,Closure f){super(i);this.fun = f;}public void run(){MessageStream in;in = new MessageStream(queue);Value out = fun.apply(in);while(isCons(out)) {Value m = head(out);send(m);out = tail(out);yield();}}}

class OperatingSystem extends Agent{public OperatingSystem(AgentId i){ super(i); }public void run(){while(!queue.isEmpty()) {handlePackage();yield();}System.exit(0);}void handlePackage(){Value m = (Value)queue.next();queue.drop();AgentId src = messageSource(m);Value data = messageData(m);if(isMess(data))async(src,data);else sync(src,data);}void sync(AgentId src,Value call){String name = callName(call);Value seq = callSeq(call);Value data = callData(call);Value res = async(src,name,data);Value ret = ret(seq,res);send(message(ident,src,ret));}Value async(AgentId src,Value m){String name = messName(m);Value data = messData(m);return async(src,name,data);}Value async(AgentId src,String n,Value v){if(n.equals("print"))return handlePrint(v);else if(n.equals("new"))return newFunAgent((Closure)v.force());else throw new Error("message? " + n);}Value handlePrint(Value value){value.print(stdout);return value;}}Figure 10: Implementation of Agent13

agents

message

queue
funagent

agentid

environment

message stream

closure

code

Figure 11: Agent Structureidenti�ers and agents. An agent sends and receives messages using send andreceive respectively.The EBG compiler translates �-functions to (instantiations of) sub-classes ofClosure. Each sub-class of Closure must de�ne a method apply that deliversthe result of applying the �-function when it is supplied with an argument. AFunAgent is based on an EBG closure. When the agent's thread is started,the closure is applied to an input stream1 and produces an output stream. Theoutput stream is continually forced and the messages are then sent to the targetagents. If the output stream becomes [] then the agent terminates and itsthread dies.An OperatingSystem agent implements system messages. It continuallymonitors its queue and dispatches on the name of the messages as they ar-rive. Asynchronous messages are handled by async. Synchronous messages arehandled by sync. The class shows the implementation of messages print andnew.Figure 11 shows part of the data structures occurring in an EBG run-timesystem. The table agents associates agent identi�ers with agents. The closureof a functional agent refers to the agent's identi�er and message stream via itsenvironment containing bindings for variables.1The 6 arguments described in section 4 have been simpli�ed here for the purposes ofexposition. 14

6 Conclusion and Related WorkThe long term goal of this work is to provide a programming environment thato�ers the advantages of both FP and Java. This paper has described the designand implementation of Agents in EBG that provide a programming interfacebetween lazy higher-order functions and multi-processing. Agents have beenimplemented in EBG and current plans include using agents as part of a pro-posed EBG development environment written in EBG and to extend agentswith facilities for networking.The stream-based model of agents developed for EBG is based on existingwork which aims to provide program state, multi-processing and interactivefeatures in non-strict functional languages [Wad90] [Tho90] [Car98]. Agentso�er lightweight processes and therefore the constructs in the agent calculus arelimited (by the type system) as to where they occur and (by CPS) when theyare executed. Other approaches to processes in non-strict FP, e.g. [Hal98], o�er�ne grain parallelism at all levels of a program using par and seq expressions.The design of Agents in EBG has been presented computationally using a termequivalence relation and a virtual machine. An alternative approach uses aprocess algebra as the semantics for EBG agents by translating an extended�-calculus to the �-calculus [Mil93] [San99] [Cla99b].There are a number of languages, currently in development, that aim to o�erthe advantages of both FP and Java. MLJ [Ben98] translates Standard ML tothe Java Virtual Machine language and [Bot98a] [Bot98b] compiles Scheme tothe Java VM. Both SML and Scheme are strict languages, but some of theissues in compilation are the same as EBG, for example the use of the abstractclass Closure. Wakeling [Wak97] describes how Haskell can be compiled to theJava Virtual Machine running an implementation of the G-machine. EBG is asimpler language than Haskell and uses a single stack (the Java VM run-timestack) whereas the G-machine uses a pointer stack that is reportedly a problemwhen implemented in the Java VM as a large array [Wak98]. Pizza [Ode97] andGJ [Bra98] aim to provide the bene�ts of parametric types by extending Javaalthough they do not address lazy evaluation and higher-order functions.References[Agh86] Agha, G. (1986): Actors: A Model of Concurrent Computation inDistributed Systems. MIT Press.[Agh91] Agha, G. (1991): The Structure and Semantics of Actor Languages.In proceedings of REX School/Workshop on Foundations of Object-Oriented Languages, LNCS 489, Springer-Verlag.[Arn98] Arnold, K. & Gosling J. (1998): The Java Programming Language.Addison-Wesley. 15

[Ben98] Benton, N., Kennedy, A. & Russell, G. (1998): Compiling StandardML to Java Bytecodes. In the proceedings of the 3rd ACM SIGPLANConference on Functional Programming, Baltimore.[Bot98a] Bothner P. (1998): Kawa - Compiling Dynamic Languages to theJava VM. Presented at the 1998 Usenix Conference in New Orleans.[Bot98b] Bothner P. (1998): Kawa: Compiling Scheme to Java. Presented atthe 1998 Lisp Users Conference in Berkeley, CA.[Bra98] Brache G., Odersky M., Stoutamire D. & Wadler P. (1998): Makingthe future safe for the past: Adding Genericity to the Java Pro-gramming Language. In the proceedings of the 13th Annual ACMSIGPLAN Conference on Object-Oriented Programming Systems,Languages and Applications, (OOPSLA 98).[Car84] Cardelli L. (1984): Basic Polymorphic Type Checking. Science ofComputer Programming, 8(2), 147 { 72.[Car98] Carlsson M. & Hallgren T. (1998): Fudgets { Purely Functional Pro-cesses with Applications to Graphical User Interfaces. PhD Thesis,Department of Computing Science, Chalmers University of Technol-ogy.[Cla99a] Clark, A. N. (1999): EBG: A Lazy Functional programming Lan-guage Implemented on the Java Virtual Machine. Technical Reportsubmitted to the Computer Journal.[Cla99b] Clark, A. N. (1999): Speci�cation and Implementation of a Multi-Agent Calculus based on Higher-Order Functions. Technical Report.[Fie89] Field, A. J. & Harrison, P. G. (1989): Functional Programming.Addison-Wesley Publishing Company.[Jen98] Jennings, N. R., Sycara, K & Wooldridge M. (1998): A Roadmap ofAgent Research and Development. Autonomous Agents and Multi-Agent Systems, 1, 7 { 38.[Hal98] Hall, J. G, Baker-Finch, C., Trinder, P. & King, D. J. (1998): To-wards an Operational Semantics for a Parallel Non-strict FunctionalLanguage. In the proceedings of the International Workshop on theImplementation of Functional Languages, IFL 98.[Han94] Hankin C. (1994): Lambda Calculi a Guide for Computer Scientists.Clarendon Press, Oxford University Press.[Lan64] Landin, P. J. (1964): The Mechanical Evaluation of Expressions. TheComputer Journal, 6, pp. 308 { 320.16

[Mil93] Milner R. (1993): The Polyadic �-Calculus: A Tutorial. In F. L.Hamer, W. Brauer and H. Schwichtenberg, editors, Logic and Alge-bra of Speci�cation. Springer-Verlag, 1993.[O'D85] O'Donnell, J. T. (1985): Dialogues: A Basis for Constructing Pro-gramming Environments. SIGPLAN Notices 20(7):19 { 27.[Ode97] Odersky M. & Wadler P. (1997): Pizza into Java: Translating theoryinto practice. Symposium on Principles of Programming Languages,pp 146 { 159.[Plo75] Plotkin G. (1975): Call-by-name, call-by-value, and the �-calculus.Theoretical Computer Science. 1, pp 125 { 159.[San99] Sangiorgi D. (1999): Interpreting functions as �-calculus processes:a tutorial. INRIA Technical Report RR-3470.[Tho90] Thomson, S. (1990): Interactive Functional Programming. In Re-search Topics in Functional Programming, ed. Turner, D. A.Addison-Wesley.[Ven98] Venners B. (1998): Inside the Java Virtual Machine. McGraw-Hill.[Wak97] Wakeling, D. (1997): A Haskell to Java Virtual Machine Code Com-piler. In the proceedings of the 9th International Workshop on theImplementation of Functional Languages, Springer Verlag, 1997, pp.39 { 52, LNCS 1467.[Wak98] Wakeling, D. (1998): Mobile Haskell: Compiling Lazy FunctionalPrograms for the Java Virtual Machine. In the proceedings of the1998 Conference on Programming Languages, Implementations, Log-ics and Programs (PLILP 98). Springer Verlag 1998 pp. 335 { 352,LNCS 1490.[Wad90] Wadler, P. (1990): Comprehending Monads. In Proc. 19th Sympo-sium on Lisp and Functional Programming, Nice, ACM.

17

