Implementation of Lazy Agents in the Functional
Language EBG

Tony Clark
Department of Computing
University of Bradford, West Yorkshire, BD7 1DP, UK
a.n.clark@scm.brad.ac.uk

July 15, 1999

Abstract

EBG is a lazy functional programming language that compiles to the
Java Virtual Machine Language. The aims of EBG are to provide the
benefits of both FP and Java. This paper describes the design and imple-
mentation of agents in EBG that provides an interface to the underlying
multi-processing facilities of Java.

1 Introduction

EBG [Cla99a] is a higher-order lazy functional programming language that com-
piles to the Java Virtual Machine [Ven98]. EBG aims to provide all of the ad-
vantages of FP including pattern matching, first class functions and automatic
type checking [Fie89], in addition to the advantages of Java [Arn98] including
portability, multi-processing, networking and graphical user interfaces.

This paper describes the design and implementation of agents in EBG.
Agents provide an EBG-level interface to the multi-processing facilities of Java
and are a step on the path to a longer term goal of providing programming fa-
cilities for functional multi-agent systems [Jen98]. Agents are based on both the
Actor model of computation [Agh86] [Agh91] and models processes as stream
consumer-producer functions [Tho90] [O’D85].

An agent is a function that processes a stream of input messages and pro-
duces a stream of output messages. Agents execute concurrently and commu-
nicate by passing messages. A message is sent from a source agent to a target
agent. A source agent sends a message to its output stream and then continues
without waiting for a reply. The message is transferred to the target agent’s
input stream.

Messages are consumed at an agent by processing the elements of its input
stream in the order that they arrive. When an agent requests an input the next

expressions M, N,... E:u= V variables v, w

NV.E functions \v.M
EE applications M N
KE* structures kM

|
|
|
case E o en selection ,a
E of A* end lecti M, a
| C agent command
| «
|

commands C = send message
sk1p no operation
| E; E sequence
| mcase A* end message dispatch
case arms a A:= P—E case arm p — M
patterns p P:=V variable pattern v
| KV* structure pattern ko

Figure 1: Agent Calculus

available message is removed. If no messages are available then the agent blocks
until the next message is received.

This paper is structured as follows. Section 2 defines an agent calculus that
represents the essential features of the agent model of computation. The se-
mantics of the calculus is defined as an equivalence relation on agent terms and
as such provides scope for reasoning about agent properties without reference
to implementation details. Section 3 refines the semantics so that it is compu-
tational by adding control features in the form of a state transition machine.
Section 4 describes how the calculus is implemented in EBG as an agent API
and section 5 describes how the mechanisms are implemented in Java as part of
the EBG run-time system.

2 An Agent Calculus

An agent is implemented as a program written in an agent calculus (see figure
1) which is A-calculus extended with structures, pattern matching and agent
commands. The commands allow messages to be sent (« M) and received
(mcase...end). Agent messages are sequenced using the operator ; whose
left and right identity is the empty command skip. The calculus has no spe-
cial syntax for creating new agents, this is achieved by sending messages to a
distinguished operating system agent.

2.1 A Theory of Agents

The standard notion of term equivalence (=) [Han94] is extended for the agent
calculus. The definition has two parts: equivalence between expressions and
equivalence between systems of agents. Equivalence between expressions is de-

(A.M)N = M[v := N] (1)
M=MN=N

skip; M = M = M;skip (5)

M=N M:MIN,:]\,]’
Av.M = dv.N (3) M;N = M"; N (7)
My = M. M, = M, VY
KM, .. M, = kM, ..M, (4) cM=cM (8)
M =M
case M of a end = case M’ of a end 9)
case kM of @, ko — N a, end = N[:= M| (10)

Figure 2: Equivalence of Agent Terms
M =M
TG, m, M)} = (G, m, M) (11)
¥ =3 =3
Y,UE, =% U] (12)
{(sz :m,mcase a; kU - N as end)} = {(i,m, N[0 := M])} (13)
{(il,ml, ((—]{37172M), N), (7:2,777,2, O)} = {(il,ml,N), (7:2,777/2 'H'[k'?ﬂgM] O)}

3

_ i (
{(i,kM : m,mcase a else N end)} = {(i, kM : m, N)} no match (
(

{(i,m, mcase a end)} = {(i,m,skip)} no match

Figure 3: System Semantics

fined by the theory given in figure 2 in addition to being reflexive, symmetric
and transitive. Note that expression equivalence does not state anything about
agent command equivalence except where the equivalence involves that of sub-
expressions.

Agent systems are sets of agents. An agent (i, m, M) consists of a unique
identifier i, a message queue m and an agent command M. System equivalence
is given by the theory in figure 3 (in addition to being reflexive, symmetric and
transitive) and is defined in terms of expression equivalence (rule 11). Message
passing transfers a message from one agent to another (14). The message is
added to the target agent’s queue and is subsequently processed on demand.
When processed, a message may match a pattern (13) or fail. When it fails,
if there is a default arm (15) then the agent continues otherwise it terminates
(16).

The basic calculus can be extended with built-in agents and messages. These

are similar to the §-rule extensions to a basic A-theory. A distinguished operating
system agent o implements an interface between the calculus and its environ-
ment. For example, dynamic agent creation is performed by:

{(i,m, (« io(new M)); N)} = {(i,m +[(0.,4)], N), (4, [, M)}

Term equivalences can be used to prove both agent and system properties. A
typical example is to establish that two agents are (or are not) equivalent. When
establishing agent equivalences we must ensure that all possible system cases
are covered. Conversely, equivalence is denied by showing that there exists a
system in which the agents behave differently.

Theorem 1 Let A; = mcase py — M ps — N end and let A> = mcase p; —
M else mcase p; — N end, then Ay and As are equivalent agents.

Proof 1 We must establish that ¥ U {(i,m, A1)} = X U {(i,m, As)} for any
system X, identifier i and message queue m. We proceed by cases with respect
to the behaviour of the system. Suppose that m = [] and that no message is
ever produced by X for agent i, then Ay and As have equivalent behaviours.
Now suppose that m = [| and ¥ produces a message, or that m is initially non-
empty. If the message matches pi then both Ay and Ay become M by rule 13.
Alternatively, if the message matches ps then both Ay and As become N by rule
18 and rules 18 and 15 respectively. Finally, if the message fails to match py
and py then both Ay and A, become skip by rule 16. Therefore the agents are
behaviourally equivalent in all possible systems as required.

Theorem 2 Let Ay = («+ M);mcase p — (« N) end and let Ay = mcase p —
(+ M);(+ N) end then A, and As are equivalent agents.

Proof 2 The theorem is false. To show that it is false we construct a system
in which the two agents exhibit different behaviours. Let {(i,[], A)} be a system
and let M be a message from agent i to itself that matches pattern p. When
A = Ay the system produces an output message N and becomes skip. When
A = As the system exhibits no behaviour. Therefore, the agents exhibit different
behaviours with respect to the same system.

2.2 CPS for Agents

Agent commands may be implemented by a translation to basic A-terms using
a continuation passing style (CPS) [Plo75], see figure 4. Each agent command
is a function expecting an input stream m and a continuation k. The command
can consume elements of the input stream. When it is complete, the command
passes the rest of the input stream to the continuation. The initial continuation
is Amn.[] which, when invoked, causes the agent to terminate. The skip command
simply invokes the continuation (17). Messages are sent by adding them to the
head of the output stream (18). Commands are sequenced by supplying the

first M with a continuation to perform the second N with respect to the rest

[skip] = Amk.km (17)
[« N] = Amk.N : (km) (18)
[M; N] = dmk.MmAm.Nkm (19)

[mcase @ end] = Amk.
case m of
z:m —
(case = of a end)km/
else <>
end

Figure 4: Translation to CPS

of the input stream (19). The next message is found by matching it against
a collection of message patterns (20); if there are no input messages then the
agent blocks by producing the special value <>. An agent is supplied with its
complete input stream; for an agent to produce <> there must be no messages
either pending or sent to the agent in the future. The translation can be used
to validate rules 5 and 6.

Theorem 3 skip; M = M = M;skip

Proof 3 skip; M= Amk. skip m Am.Mmk
= mk.Mmk =M
= Amk.MmAm.km
= Amk.MmAm. skip m k
= M;skip

Theorem 4 M;(N;0) = (M;)N;O

Proof 4 M;(N;0)= Amk.MmAm.(N;O)mk
= dmk.MmAm.NmAm.Omk
= dmk.(M; N)mAm.Omk
= (M;N);: O

2.3 Agent Types

An agent is an expression whose type is an agent command. The type of agent
commands is a = [u] = ([u] — [p]) — [u], the type of messages is p and
the type of agent identifiers is 1. A type theory associates each expression
M with a type 7 when A F M : 7 such that A associates free variables of
M with types. The theory is standard [Car84] except for the agent commands:

AFM:p AFM:a AFN:a .
A« M:a (21) AFM;N:a (22) Afbskip:a (23)

Alvy & v = o3 7| F M«
A F mcase a; kvivavs - M as end : « (24)

3 Agent Computations

The agent theory is not directed and therefore does not indicate how agent cal-
culations will take place in EBG. Intra-agent calculations will be deterministic
given complete information about the agent’s input stream. It will not be pos-
sible to impose a deterministic order on inter-agent calculations since we will
abstract away from the details of the message delivery service. We distinguish
between system execution (underspecified with respect to execution ordering)
and agent execution (totally specified with respect to execution ordering). Agent
execution must deal with blocking on input streams and forcing lazily generated
output streams. This section refines the agent theory using a state transition
machine semantics. The transition machine has been implemented as a func-
tional program in EBG.

3.1 System Execution

An agent is represented as an SECD machine [Lan64] extended with components
for the agent’s unique identifier and message queue. A system is a set of agents
and system behaviour is defined as a relation between sets of agent machine
states.

An agent is either active or terminated. A terminated agent is one which has
irretrievably ceased to process messages and serves as a sink for all messages
it receives. An agent state is (i,m,y) where i is a unique agent identifier,
m is the agent’s message queue and « is an SECD state. An SECD state is
either (s,e,c¢,d) or (). A terminated agent is (i,m,()) and an active agent is
(i,m, (s,e,c,d)) (written (i,m, s, e, c,d)).

Let ¥ be a set, or system, of agent states. System execution is defined by a
pair of relations, = and —», such that ¥ = ¥’ is system execution step and
o — o' is an agent execution step.

System execution steps are defined in figure 5. System execution consists
of component agent execution (25). Each of the component agents may exe-
cute concurrently with all other agents (26). Time is relative to an agent, i.e.
component agents do not all execute in lock step (27).

Axiom 28 delivers messages from one agent to another. A source agent (i)
sends a message x by performing the machine instruction < x. The target agent
identifier (i2) is on the source agent’s stack. A message (i1, 12,) is delivered by
removing it from the source agent and adding it to the end of the target agent’s
message queue.

E]:>E’1

og—a
Sy = 3
SU{o}=>XU{o’} (25) 2> 23 =3 (27)

YU {(i1,m1, (i2: s,e, ¢ 2 : ¢,d)), (i2,m2,7)} =
YU {(i1,m1, (s,e,c,d)), (2, ma #[(i1,42,2)],7)}

Figure 5: System Execution

(i,m,()) — (i,m, ()
(i,m,s,e,v:c,d) — (i,m,][],e',[M], (s, e, c,d)) when e(v) = (&', M)

(29)

, (30)
(i,m,s,e,(AM) :ec,d) — (i,m, (v,e, M) : s,e,¢,d) (31)
(i,m,s,e,(MN):¢,d) — (i,m,s,e,M : (N):Q:¢,d) (32)
(i,m,s,e,(M):¢c,d) — (i,m, (e, M) : s,e,c,d) (33)

(i,m,x: (v,e',M):s,e,@Q:c,d) — (i,m,[],e'[v e x],[M],(s,e,c,d)) (34)
(i,m,s,e,(M,a) :c,d) — (i,m,s,e,M :a:c,d) (35)

(i,m, k% : s,e, (k0 = M :a) : ¢,d) — (i,m,][],e[0 — &],[M], (s,e,c,d)) (36)
(i,m,kz : s,e,(k'0 - M :a) :z,d) — (i,m,kZ :s,e,a:c,d) k#k' (37)
(i,m,s,e,kM : ¢,d) —> (i,m, k(e, M) : s,e,c,d) (38)

(7:7m’7m : it] (S7e7c7 d)) H (i’m/’m : S)e)c7 d) (39)

Figure 6: Agent Execution

3.2 Agent Execution

Expressions in the agent calculus denote a closure (v,e, M), a structure kZ
or an input message stream. A closure is created when a A-function Av.M
is evaluated and it captures the current machine environment e. A structure
consists of a constructor k£ and a sequence of thunks #. A thunk (e, M) associates
an expression M with an environment e containing bindings for all the free
variables in M. An environment e is a partial function from variables to thunks
and is extended with a binding between v and = producing e[v —] in the usual
way. The term k(e, M) denotes the structure k(e, My)(e, Ms) ... (e, M,). The
term e[0 — Z]) denotes the environment e[vy — @1, ..., 0, = Ty)].

Agent execution is defined by the transition function given in figure 6. Agent
states use machine instructions, they are: (M) to delay the evaluation of M;
@ to apply an operator to an operand; and, a to try each case arm in turn.
A terminated agent (29) cannot perform any computation. The agent calculus

(i,m,(e',M) : hd:s,e,Q:c,d) — (i,m,[],e',[M],(hd : s,e,@Q:¢c,d)) (40)

(i,m,(e',M):tl:s,e,@Q:c,d) — (i,m,[),e,[M],(t:s,e,@:c,d) (41)

(i,m,(x:_):hd:s,e,Q:c,d) — (i,m,z:s,e,¢,d) (42)
(i,m,(-:x):tl:s,e,@Q:¢,d) — (i,m,x : s,¢e,¢,d) (43)

(i,mq H#[z] +mo,$n: hd:s,e,@Q:c,d) —
(i, my H#[z] #meo,z: s,e,¢,d) when #m; =n
(i,my H#[z] 4 mo,8n: hd: s,e,Q:¢c,d) when #my + #ms <n

(i,m,8n : tl:s,e,Q:¢c,d) — (i,m,$n+1:s,¢e,¢,d) (45)

Figure 7: Handling Message Streams

uses a normal order execution scheme; therefore variables are bound to delayed
expressions (thunks) in the current environment and must be forced (30) when
they are required. Function expressions produce closures (31). Application
evaluates the operator and delays the operand (32 and 33); when the operator
is applied a fresh context is created (34) the result is returned to the original
context (39). Pattern driven selection amongst alternatives is driven by the
constructor (35 36 and 37). Structure creation delays the evaluation of the
component expressions (38).

3.3 Agent Streams

An agent is a function that processes streams of messages. The streams are
generated lazily and messages are added to a target agent’s input stream as
they are produced by the source agents. Output streams are built using the
usual list constructor _: _.

Input streams are represented using a special value $n where n is an integer;
the meaning of the value is given in terms of the message queue component, of
an agent state. Taking the head of an input stream produces the message at
the head of m after dropping n messages. Taking the tail of an input stream
produces a value $n + 1.

Message stream manipulation is performed using the list accessor operators
hd and tl as defined in figure 7. The operators are strict and must force their
arguments to produce cons-pairs or streams (40 and 41). If the accessors are
applied to ordinary cons-pairs (42 and 43) then they produce the appropriate
component. If hd is applied to a message stream (44) then, if there is a message
currently available it is returned, otherwise the agent cannot satisfy the appli-
cation and it blocks. If ¢l is applied to a message stream (45) then the result is
a new message stream with an increased message index.

An agent sends messages by producing a sequence of pairs (i,z) where i

(i,m, [l e, 11, 0) — (,m, ()
(i,m, [(e', M) : x].e, [, () — (i,m,[(¢'. M), z].e.], ()
(i,m, (e, M) :s, (], () — (i,m, s,e,[M], ()

(i,m, (z1,22) : s,¢,[],()) — (i,m,z1 : s,e,[« xa],())

3

Figure 8: Sending Messages

is the identifier of the target agent and x is an arbitrary data value. Agents
execute lazily and therefore produce a sequence x1 : x5 where 1, x5 are thunks.
Figure 8 shows the transition machinery necessary for sending messages. All of
the transitions refer to completed agent computations; therefore the control is
empty [] and the stream of output messages is on the stack (47). The head of the
output message stream is forced (47 and 48). The target of the head message
is forced (49) leaving the target on the stack ready for a system transition (28).
When an agent ceases to produce messages it is terminated (46).

4 Agent Primitives

EBG provides an agent API that implements the agent calculus using a CPS
encoding. The novel agent language mechanisms involve the underlying imple-
mentation of EBG and the API operators simply manage input streams and
agent continuations. This section describes the implementation of the API op-
erators and shows how synchronous message passing is layered on top of the
basic asynchronous mechanism.

Agents communicate by sending messages. A message may be asynchronous,
meaning that the source agent does not expect a return value, or may be syn-
chronous meaning that the source agent waits for a return value. A message
contains data and is named when the data is associated with a string (usu-
ally used for dispatching to a message handler in the target), otherwise it is
anonymous. The EBG type message is:

type message =

Message string $;33 Asynchronous, named.
| Message0O $;33 Asynchronous, anonymous.
| Call string int $;;; Synchronous, named.
| Call0 int $;33 Synchronous, anonymous.
| Return int §$; ;33 Return value.

Agent identifiers are used to refer to agents in message packets. An agent
identifier is implemented as an integer. A message packet (of type p in section
2.3) is a triple (src,tgt,msg) where src is the identifier of the source agent, tgt
is the identifier of the target agent and msg is the message. The type packets
([u]) of message packets is defined in EBG as follows:

type agentld = int;

type packet = (agentId,agentId,message);
type packets = list packet;

Agents are extended in the API with extra arguments. The 6 agent arguments,
in order, are: the agent’s own identifier; an input stream; a continuation; the
most recent result of a synchronous message; a value used to coordinate call and
return; and, the agent identifier of the operating system agent. The type agent
(e in section 2.3) is defined in EBG as follows:

type messageld = int;
type replace = agentId packets $ messageld agentId -> packets;
type agent = agentId packets replace $ messageld agentId -> packets;

The agent command < is implemented using the API operator comm. In the
case of asynchronous messages the operator returns the message. Synchronous
messages use the wait operator:

comm :: agentId message -> agent;
comm tgt msg = \self in cont value coord os.
case msg of
Message name data -> (self,tgt,msg):(cont self in value coord os);

MessageO data -> (self,tgt,msg):(cont self in value coord os);

Return id data -> (self,tgt,msg):(cont self in value coord os);

Call name id data -> (self,tgt,msg):(wait id self in cont coord os []);

Call0 id data -> (self,tgt,msg):(wait id self in cont coord os [])
end;

The comm operator uses wait to buffer input packets until the required return
value is received. The operator is supplied with 7 values, the first being a
message identifier id and the last being a message buffer buf.

An agent sends a synchronous message by producing a message Call name
id data. The id component is a message identifier supplied to the target of
the message. The target produces a return value by sending a message Return
id value. The source agent uses the id value to match the return value with
the original call.

During the call, the source agent is still active and may receive messages
which are buffered by adding them to the sequence buf. There are many differ-
ent possible strategies for handling call and return. The wait operator:

wait :: messageld agentId packets replace messageld agentId packets -> agent;
wait id self in cont coord os buff =
case in of
(src,_,Return id’ data) : in’ ->
case id = id’ of
True -> cont self (buff ++ in’) data coord os;
False -> wait id self in’ cont coord os (buff ++ [head in])
end;
else wait id self in’ cont coord os (buff ++ [head in])
end;

causes the source agent to continually buffer messages until the target agent
returns a value. Once the value is received, the buffered messages are handled
in the order that they were received by adding them back into the input stream.

10

In addition to a stream of message packets, an agent is supplied with values
that are used to manage messages and values. Each of these life-support values
are accessed using the primitives self, result, seqVal, incSeq and opSys.
They have similar definitions for example:

self :: (agentId -> agent) -> agent;
self fun = \self in cont value coord os.
(fun self) self in cont value coord os;

The next message is consumed by the operator message such that the agent
calculus mcase @ end is implemented as message \m. case m of G end:

message :: (packet -> agent) -> agent;
message fun = \self in cont value coord os.
case in of
message : in’ ->
(fun message) self in’ cont value coord os;
else []
end

Message passing is ultimately performed using the primitive comm. It is conve-
nient to provide higher level primitives that distinguish between different types
of messages. These primitives package up the information and then call comm:

send :: agentId string $ -> agent;
send target name data = comm target (Message name data);

call :: agentld string $ -> agent;
call target name data = seqVal \seq.
incSeq $then
comm target (Call name seq data);

send sends an asynchronous message; call sends a synchronous message. send0

and callO use Message0O and CallO message constructors but are otherwise

the same as send and call. Note how synchronous message passing uses the

seqVal and incSeq primitives to associate each message with a unique message

identifier that will be used to recognise the return value when it is received.
Agent control is provided using a command sequencing primitive then (; in

the calculus) and an empty command skip:

skip :: agent;

skip self in cont value coord os = cont self in value coord os;

then :: agent agent -> agent;
then c1 ¢2 = \self in cont value coord os.
cl self in
(\self in value coord os.
c2 self in cont value coord os)
value coord os;

Agents are created using the command agent that is applied to an EBG function
of type agent. Agents are created by sending the operating system agent a new
message. The message is synchronous and the return value will be the agent
identifier of the newly created agent:

11

class MessageStream extends Thunk
{

abstract class Thunk extends Value .
private Queue queue;

{

ivat 1 he = 11;
private Value cache = null; public MessageStream(Queue queue)

this. = ;
public abstract Value value(); 1 1§-queune queue; }

public Value force() public Value value()

{
{ it (cache — mall) while(queue.isEmpty()) {
Th d.yield();
Value value = value(); 3 read.yieldO);
cache = value.force();
return cache: Value m = (Value)queue.next();
} else return cache; queue .drop() ;
3 MessageStream ms = new MessageStream(queue);
} return cons(m,ms);
¥
}
Figure 9: Implementation of Message Stream
agent :: agent -> agent;

agent behaviour = opSys \os. call os "new" behaviour;

5 Java Implementation

The novel agent execution mechanisms are implemented by the underlying EBG
run-time system. Two new types of EBG value are required: message streams
and agents. This section describes how these values are implemented based on
EBG thunks and Java threads.

The EBG compiler delays function arguments by translating them to (in-
stantiations of) sub-classes of Thunk. A thunk has a method value that delivers
the value of the EBG expression when it is called. EBG evaluates lazily, each
thunk has a cache that holds the value after it has been forced the first time.
Thunk is defined in figure 9.

The input stream of an agent is a delayed value that is produced gradually
as system computation proceeds. The act of forcing an input stream causes the
next message to be requested from an agent’s queue. If the queue is currently
empty then the request is blocked until a message is received. Agent blocking
does not affect system computation since each agent is implemented as a sep-
arate Java thread. Input message streams are based on Thunk in figure 9; the
cache guarantees referential transparency.

Figure 10 shows how agents are implemented as part of the EBG run-time
system. The system distinguishes between three types of agent: functional
agents that are based on EBG closures; operating system agents that provide
an interface to the system environment; and, Java agents (not shown) that
provide a transparent interface between EBG and Java programs.

All agents are based on the abstract class Agent. Each agent has a unique
ident and a message queue. The lookup table agents is global and associates

12

abstract class Agent extends Thread
{
protected AgentId ident;

static Hashtable agents;
protected Queue queue;

public Agent(AgentId ident)
{ this.ident = ident; }

public void send(Value m)

{

AgentId tgt = target(m);

Agent agent;

agent = (Agent)agents.get(tgt);
agent.receive(m);

}

public void receive(Value m)
{ queue.add(m); }

AgentId newFunAgent(Closure f)

{

AgentId i = new AgentId();
FunAgent a = new FunAgent(i,f);
agents.put(i,a);

a.start();

return i;

class FunAgent extends Agent
{

Closure fun;

public FunAgent(AgentId i,Closure f)
{

super(i);

this.fun = £f;

}

public void run()
{

MessageStream in;

in = new MessageStream(queue);
Value out = fun.apply(in);

while(isCons(out)) {
Value m = head(out);
send(m) ;
out = tail(out);
yield();
}
}
}

class OperatingSystem extends Agent
{

public OperatingSystem(AgentId i)
{ super(i); 2

public void run()

{

while(!queue.isEmpty()) {
handlePackage();
yield();

}

System.exit(0);

}

void handlePackage ()
{
Value m = (Value)queue.next();
queue.drop() ;
AgentId src = messageSource(m);
Value data = messageData(m);
if (isMess(data))
async(src,data);
else sync(src,data);

}

void sync(AgentId src,Value call)
{

String name = callName(call);
Value seq = callSeq(call);

Value data = callData(call);
Value res = async(src,name,data);
Value ret = ret(seq,res);

send (message(ident,src,ret));

Value async(AgentId src,Value m)
{

String name = messName(m);
Value data = messData(m);
return async(src,name,data);

}

Value async(AgentId src,String n,Value v)
{

if(n.equals("print"))

return handlePrint(v);

else if(n.equals("new"))

return newFunAgent((Closure)v.force());
else throw new Error("message? " + n);

}

Value handlePrint(Value value)
{
value.print(stdout);
return value;
}
}

Figure 10: Implementation of Agent

13

I e e L e

agentid

‘ environment

/ closure

code

Figure 11: Agent Structure

identifiers and agents. An agent sends and receives messages using send and
receive respectively.

The EBG compiler translates A-functions to (instantiations of) sub-classes of
Closure. Each sub-class of Closure must define a method apply that delivers
the result of applying the A-function when it is supplied with an argument. A
FunAgent is based on an EBG closure. When the agent’s thread is started,
the closure is applied to an input stream® and produces an output stream. The
output stream is continually forced and the messages are then sent to the target
agents. If the output stream becomes [] then the agent terminates and its
thread dies.

An OperatingSystem agent implements system messages. It continually
monitors its queue and dispatches on the name of the messages as they ar-
rive. Asynchronous messages are handled by async. Synchronous messages are
handled by sync. The class shows the implementation of messages print and
new.

Figure 11 shows part of the data structures occurring in an EBG run-time
system. The table agents associates agent identifiers with agents. The closure
of a functional agent refers to the agent’s identifier and message stream via its
environment containing bindings for variables.

IThe 6 arguments described in section 4 have been simplified here for the purposes of
exposition.

14

6 Conclusion and Related Work

The long term goal of this work is to provide a programming environment that
offers the advantages of both FP and Java. This paper has described the design
and implementation of Agents in EBG that provide a programming interface
between lazy higher-order functions and multi-processing. Agents have been
implemented in EBG and current plans include using agents as part of a pro-
posed EBG development environment written in EBG and to extend agents
with facilities for networking.

The stream-based model of agents developed for EBG is based on existing
work which aims to provide program state, multi-processing and interactive
features in non-strict functional languages [Wad90] [Tho90] [Car98]. Agents
offer lightweight processes and therefore the constructs in the agent calculus are
limited (by the type system) as to where they occur and (by CPS) when they
are executed. Other approaches to processes in non-strict FP, e.g. [Hal98], offer
fine grain parallelism at all levels of a program using par and seq expressions.
The design of Agents in EBG has been presented computationally using a term
equivalence relation and a virtual machine. An alternative approach uses a
process algebra as the semantics for EBG agents by translating an extended
A-calculus to the m-calculus [Mil93] [San99] [Cla99b].

There are a number of languages, currently in development, that aim to offer
the advantages of both FP and Java. MLJ [Ben98] translates Standard ML to
the Java Virtual Machine language and [Bot98a] [Bot98b] compiles Scheme to
the Java VM. Both SML and Scheme are strict languages, but some of the
issues in compilation are the same as EBG, for example the use of the abstract
class Closure. Wakeling [Wak97] describes how Haskell can be compiled to the
Java Virtual Machine running an implementation of the G-machine. EBG is a
simpler language than Haskell and uses a single stack (the Java VM run-time
stack) whereas the G-machine uses a pointer stack that is reportedly a problem
when implemented in the Java VM as a large array [Wak98]. Pizza [0de97] and
GJ [Bra98] aim to provide the benefits of parametric types by extending Java
although they do not address lazy evaluation and higher-order functions.

References

[Agh86] Agha, G. (1986): Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press.

[Agh91] Agha, G. (1991): The Structure and Semantics of Actor Languages.
In proceedings of REX School/Workshop on Foundations of Object-
Oriented Languages, LNCS 489, Springer-Verlag.

[Arn98] Arnold, K. & Gosling J. (1998): The Java Programming Language.
Addison-Wesley.

15

[Ben9g]

[Bot98al

[Bot98b]

[Bra9g|

[Car84]

[Car98]

[Cla99a]

[Clag9b]

[Fie89]

[Jen98]

[Hal9g)]

[Han94]

[Lan64]

Benton, N., Kennedy, A. & Russell, G. (1998): Compiling Standard
ML to Java Bytecodes. In the proceedings of the 3rd ACM SIGPLAN
Conference on Functional Programming, Baltimore.

Bothner P. (1998): Kawa - Compiling Dynamic Languages to the
Java VM. Presented at the 1998 Usenix Conference in New Orleans.

Bothner P. (1998): Kawa: Compiling Scheme to Java. Presented at
the 1998 Lisp Users Conference in Berkeley, CA.

Brache G., Odersky M., Stoutamire D. & Wadler P. (1998): Making
the future safe for the past: Adding Genericity to the Java Pro-
gramming Language. In the proceedings of the 13th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, (OOPSLA 98).

Cardelli L. (1984): Basic Polymorphic Type Checking. Science of
Computer Programming, 8(2), 147 72.

Carlsson M. & Hallgren T. (1998): Fudgets Purely Functional Pro-
cesses with Applications to Graphical User Interfaces. PhD Thesis,
Department of Computing Science, Chalmers University of Technol-

ogy.
Clark, A. N. (1999): EBG: A Lazy Functional programming Lan-

guage Implemented on the Java Virtual Machine. Technical Report
submitted to the Computer Journal.

Clark, A. N. (1999): Specification and Implementation of a Multi-
Agent Calculus based on Higher-Order Functions. Technical Report.

Field, A. J. & Harrison, P. G. (1989): Functional Programming.
Addison-Wesley Publishing Company.

Jennings, N. R., Sycara, K & Wooldridge M. (1998): A Roadmap of
Agent Research and Development. Autonomous Agents and Multi-
Agent Systems, 1, 7 — 38.

Hall, J. G, Baker-Finch, C., Trinder, P. & King, D. J. (1998): To-
wards an Operational Semantics for a Parallel Non-strict Functional
Language. In the proceedings of the International Workshop on the
Implementation of Functional Languages, IFL 98.

Hankin C. (1994): Lambda Calculi a Guide for Computer Scientists.
Clarendon Press, Oxford University Press.

Landin, P. J. (1964): The Mechanical Evaluation of Expressions. The
Computer Journal, 6, pp. 308 — 320.

16

[Mil93]

[0’D85]

[0de97]

[Plo75]

[San99]

[Tho90]

[Ven98]
[Wak97]

[Wak98]

[Wad90]

Milner R. (1993): The Polyadic n-Calculus: A Tutorial. In F. L.
Hamer, W. Brauer and H. Schwichtenberg, editors, Logic and Alge-
bra of Specification. Springer-Verlag, 1993.

O’Donnell, J. T. (1985): Dialogues: A Basis for Constructing Pro-
gramming Environments. SIGPLAN Notices 20(7):19 27.

Odersky M. & Wadler P. (1997): Pizza into Java: Translating theory
into practice. Symposium on Principles of Programming Languages,
pp 146 — 159.

Plotkin G. (1975): Call-by-name, call-by-value, and the A-calculus.
Theoretical Computer Science. 1, pp 125 — 159.

Sangiorgi D. (1999): Interpreting functions as m-calculus processes:
a tutorial. INRIA Technical Report RR-3470.

Thomson, S. (1990): Interactive Functional Programming. In Re-
search Topics in Functional Programming, ed. Turner, D. A.
Addison-Wesley.

Venners B. (1998): Inside the Java Virtual Machine. McGraw-Hill.

Wakeling, D. (1997): A Haskell to Java Virtual Machine Code Com-
piler. In the proceedings of the 9th International Workshop on the
Implementation of Functional Languages, Springer Verlag, 1997, pp.
39 — 52, LNCS 1467.

Wakeling, D. (1998): Mobile Haskell: Compiling Lazy Functional
Programs for the Java Virtual Machine. In the proceedings of the
1998 Conference on Programming Languages, Implementations, Log-
ics and Programs (PLILP 98). Springer Verlag 1998 pp. 335 352,
LNCS 1490.

Wadler, P. (1990): Comprehending Monads. In Proc. 19th Sympo-
sium on Lisp and Functional Programming, Nice, ACM.

17

