
An Argument-based Approach to
Reasoning with Clinical Knowledge

Nikos Gorogiannisa, Anthony Huntera, Matthew Williamsa,b

aDepartment of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
bMount Vernon Hospital, Northwood, Middlesex, HA6 2RN, UK

Abstract

Better use of biomedical knowledge is an increasingly pressing concern for tackling
challenging diseases and for generally improving the quality of healthcare. The quan-
tity of biomedical knowledge is enormous and it is rapidly increasing. Furthermore, in
many areas it is incomplete and inconsistent. The development of techniques for repre-
senting and reasoning with biomedical knowledge is therefore a timely and potentially
valuable goal. In this paper, we focus on an important and common type of biomedical
knowledge that has been obtained from clinical trials and studies. We aim for (1) a
simple language for representing the results of clinical trials and studies; (2) transpar-
ent reasoning with that knowledge that is intuitive and understandable to users; and (3)
simple computation mechanisms with this knowledge in order to facilitate the devel-
opment of viable implementations. Our approach is to propose a logical language that
is tailored to the needs of representing and reasoning with the results of clinical trials
and studies. Using this logical language, we generate arguments and counterarguments
for the relative merits of treatments. In this way, the incompleteness and inconsistency
in the knowledge is analysed via argumentation. In addition to motivating and formal-
ising the logical and argumentation aspects of the framework, we provide algorithms
and computational complexity results.

Key words: knowledge representation, argumentation, inconsistency, clinical
knowledge, biomedical knowledge

1. Introduction

Within many scientific fields, especially those employing imprecise measurements,
statistics or imperfect modelling, it is common for incomplete and inconsistent knowl-
edge to arise. Medicine and more specifically the provision of healthcare, is a prime
example of such a field with the added complication that knowledge is discovered con-
tinuously and in very high volume. For example, according to Index Medicus [15],
within the last year there were approximately 1200 peer-reviewed publications in the

Email addresses: n.gkorogiannis@cs.ucl.ac.uk (Nikos Gorogiannis),
a.hunter@cs.ucl.ac.uk (Anthony Hunter), matt.williams@nhs.net (Matthew Williams)

Preprint submitted to Elsevier 13th July 2012



form of reviews, meta-analyses or reports on clinical trials, on the subject of breast
cancer. This information is, of course, invaluable in medical practice, and therefore,
practitioners would have to read and understand huge volumes of information. Since
this is clearly not practical, experts try to distill and reconcile the state-of-the-art pub-
lished results into a definitive and coherent form, producing systematic reviews and
meta-analyses. However, these necessarily suffer from the same weaknesses that pri-
mary publications do, i.e., that reviews and even more so meta-analyses take time to
perform and therefore lag behind the state-of-the-art they are intended to capture; and
that they do not scale well with the increasing rate of publication of new results, as they
require a substantial amount of painstaking work by experts. For these reasons, systems
that help with summarising and analysing such volumes of information in an efficient
way, are appealing. Research on constructing and studying such systems, which we
will loosely call decision support systems, has been ongoing and several systems are
being developed [16]. However, none of these address the particular area of interest in
this paper or the requirements we set out later in this section.

The area that our paper focuses on is the knowledge reported by clinical trials and
studies, two of the primary methods for generating new clinical knowledge. Such pub-
lications form a significant input to the process of delivering healthcare, either through
the setting of clinical guidelines or through directly informing the practitioner who
makes healthcare-related decisions. The adoption of evidence-based medicine, i.e., the
increasing requirement on guiding medical practice on the basis of the best available
evidence of clinical effectiveness, makes the task of absorbing and understanding the
literature even more pressing for clinicians. To our knowledge few, if any, decision
support systems provide help in this area. Our contribution is an attempt to formalise
some of the problems encountered in this process and to suggest a solution in the form
of a framework for reasoning about clinical studies, and for constructing arguments for
and against the use of treatments with specific patient classes and in relation to specific
clinical outcome indicators.

The basic unit of knowledge in our framework is the result of a clinical study or
trial. To elucidate what such a result represents, we describe in general terms how a
typical (two-arm randomised) clinical trial comparing two treatments is performed. A
group of people conforming to well-defined entry criteria (e.g., premenopausal women
with post-operative early-stage breast cancer) is sampled and that sample is randomly
split into two roughly equal groups. Group one is administered treatment T1 which is
usually either a form of placebo, or the treatment held as the standard of care at the time
of the trial. Group two is given treatment T2, a new treatment whose efficacy against
T1 the trial intends to establish. After all the members of both groups have either been
treated for a predefined period of time (e.g., 5 years), or for whom a well-defined event
has occurred (e.g., reappearance of disease or death), the trial ends and the efficacy
of the two treatments is compared on the basis of a statistical indicator (e.g., relative
risk) measuring a specific clinical outcome (e.g, disease-free survival). Below, we give
as an example of such a clinical study result an excerpt from [10], a report on a trial
comparing two treatments for patients with a particular kind of breast cancer.

[. . .] patients with axillary lymph node-negative, estrogen receptor-positive
breast cancer [. . .] chemotherapy plus tamoxifen resulted in significantly

2



better disease-free survival than tamoxifen alone (90% for methotrexate,
fluorouracil, and tamoxifen (MFT) versus 85% for tamoxifen (P = .01);
[. . .]

We will return to this example in the next section.
Having a language for formally expressing such results allows the creation of repos-

itories of results and opens up the way for exploiting such repositories. We envisage
the following ways in which such a system would be of benefit.

• A clinician can easily find publications related to a specific patient, a disease, or
a treatment.

• A medical scientist can locate areas of inconsistency within the literature and
thus locate research-worthy scientific topics.

• A health authority professional can construct arguments for and against the use of
a treatment, as part of an evidence-based process of creating clinical guidelines.

• A doctor can generate argument and counter-argument structures that are useful
in communicating to the patient the pros and cons of a treatment regimen. In
this way, the patient and their preferences can be more directly involved in the
decision making process.

For these benefits to arise, however, any approach aiming to address the problem set
out above will have to satisfy certain requirements. We list below those requirements
that we feel are essential; the list below is, of course, not exhaustive, but we believe
that the following points deserve special mention.

Simple language. The language used to express knowledge should be simple and eas-
ily understandable by the user, even if the same knowledge can be expressed in
richer, more powerful or better known formal languages.

Transparent reasoning. The complexity, uncertainty and potential conflicts inherent
in clinical knowledge makes the success of systems that generate a single, “cor-
rect” decision, highly unlikely. Hence, systems that analyse the available knowl-
edge and present the different possible results to the user, are preferable. This
also leads to the requirement that the process by which the system constructs any
structure, be it an argument, set of arguments and counter-arguments, or a logical
conclusion, is simple, transparent and verifiable by the user.

Simple computation. As this framework is intended to be the basis of real, functional
systems, and the computational complexity of reasoning is usually high, we
should aim to restrict the language as much as possible so as to allow for op-
timising the corresponding algorithms.

These requirements have a number of consequences as to the characteristics of possible
solutions. The first and third requirements imply a preference for a specialised and
simplified language which rules out more expressive languages such as, e.g., first-order
logic. In addition, there should be a fairly straightforward process for integrating a new

3



piece of information in a repository of results, allowing the scaling up of the system to
a potentially large amount of data.

We also feel that the second desideratum naturally leads to systems that model
domain-specific common-sense reasoning rather than systems that, as far as their users
are concerned, ‘magically’ produce the ‘right’ answer. While a lot of clearly significant
work exists on non-monotonic, default, paraconsistent and other logics, we feel that by
aiming to represent some of the ways clinicians use knowledge produced by clinical
studies, we are naturally led to a simple, monotonic, credulous logic.

Of course, using a monotonic, credulous logic will naturally give rise to inconsis-
tency. For the purposes of analysis, such inconsistency is perhaps best suited to an
argumentation framework, again reflecting how experts discuss and analyse results in
order to arrive at a course of action, or a resolution of conflicting studies. For these
reasons, we will develop an argumentation system as part of our approach, that allows
users to examine and analyse conflicting sets of clinical study results. Argumentation
is an emerging and promising research are providing methods for handling conflicting
information (for reviews see [7, 20, 5, 6]).

The structure of the rest of this paper is as follows. We begin by discussing our
proposed language for capturing results of clinical studies in Section 2. Then, in Sec-
tion 3 we will develop the logic 〈R,
〉 that aims at representing some of the inferences
experts draw from such knowledge. The decidability of inference in this logic, as well
as some algorithmic aspects are examined in Section 4. An upper bound for the com-
putational complexity of inference is presented in Section 5. Using this logic as a basis,
an argumentation system is defined in Section 6, along with an examination of several
decision problems and structural properties. We conclude and discuss further avenues
of study in Section 7.

2. A Language for Clinical Trial Results

To motivate our discussion of the language required for expressing clinical trial
results, we will use the excerpt from [10], presented in the previous section and shown
below, as a running example. We also note here that even though the terms clinical
study and clinical trial are not equivalent, lacking a term that subsumes both we will
use them interchangeably from now on.

[. . .] patients with axillary lymph node-negative, estrogen receptor-positive
breast cancer [. . .] chemotherapy plus tamoxifen resulted in significantly
better disease-free survival than tamoxifen alone (90% for methotrexate,
fluorouracil, and tamoxifen (MFT) versus 85% for tamoxifen [P = .01];
[. . .]

Clearly, the patients are the central subjects of clinical studies and therefore it is
crucial to be able to describe succinctly and unambiguously the patient class involved in
a clinical trial. This requirement already enjoys widespread interest, particularly in the
development and use of medical ontologies, such as SNOMED [17]. Such ontologies
provide a language for capturing patient characteristics (among other things) as well as
logical machinery for answering queries such as whether one patient class is a subset

4



of another. Logics employed by ontologies are typically description logics, and these
provide the necessary inference tools (see [2] which includes a chapter on medical
ontologies).

However, in the quest for computational efficiency, multiple description logics have
been defined by subtly varying their expressiveness and, by implication, the complexity
of the related decision problems. As such, choosing a particular description logic can
be an unnecessary constraint when we want to discuss a general system in which the
ontology is but one part. For these reasons we will treat patient classes as simple
sets, effectively using them as a boolean algebra. Therefore, for simplicity we will
use a propositional logic whose letters correspond to basic patient characteristics. Our
results will be largely generalisable to description logics as well, and we discuss this in
Section 7.

Definition 1. Let LP be the language of a propositional logic with the usual connec-
tives ∨,∧,¬,⇒, a symbol for falsum ⊥, and an inference relation `. The propositional
letters of LP represent patient characteristics. A patient class is any formula φ ∈ LP.

We will use the lower case Greek letters φ, ψ, χ, . . . to denote patient classes from
now on. We will also assume that ` implicitly uses as premises the knowledge available
on the structure of the patient classes. So, for example, if the patient classes φ, ψ ∈ LP

are disjoint (e.g., with φ standing for the class of men and ψ for the class of women),
we expect that φ ∧ ψ ` ⊥. We will also denote the length of a patient class φ as |φ|, and
we will understand this as the number of occurrences of propositional letters in φ.

In the excerpt above, the phrase “patients with axillary lymph node-negative, es-
trogen receptor-positive breast cancer” delineates the patient class in question. Us-
ing LN− to denote “axillary lymph node-negative”, ER+ to denote “estrogen receptor-
positive” and BC to denote “breast cancer”, this patient class would be written as
LN− ∧ ER+ ∧ BC and its length would be 3.

The next component of our language is a way to denote specific treatments. Again,
medical ontologies cater for this task by providing complex categories and relationships
between treatments, regimes, substances used, and other characteristics. We would like
to focus on the interrelationships between treatments and therefore, for simplicity, we
will elide such complexity and assume that there is a set T whose elements represent
specific treatments. So, for example a course of tamoxifen for 5 years would be a
different element of T than a course of tamoxifen for 2 years. In the excerpt above, the
phrases “methotrexate, fluorouracil, and tamoxifen” and “tamoxifen”, denoted as MFT
and TAM respectively, would be elements of T . Note that even though the excerpt
does not make this explicit, these are specific treatments with specific dosage, regime,
duration, etc.

We also need to represent the criteria of comparison used in a clinical trial (see,
e.g., [8] for details on the statistical methods employed in clinical trials). Results from
clinical trials compare treatments in terms of clinical outcome indicators. These are
statistical measures aiming to encompass an important aspect of the effect of the treat-
ment. In the example, the outcome indicator used is “disease-free survival” which is
measured as the percentage of patients that are alive and disease-free after a fixed pe-
riod of time, usually 5 years. We will assume that there is a set COI of clinical outcome
indicators, and in the example DFS ∈ COI would denote disease-free survival.

5



Finally, we need a way to capture the result of the comparison. Such comparisons
can be very information-rich, as is the case in the excerpt above: “90% for methotrex-
ate, fluorouracil, and tamoxifen (MFT) versus 85% for tamoxifen [P = .01]”. Here, the
percentages of patients for disease-free survival are presented with respect to the treat-
ment administered, accompanied by a P value, which is a statistical indicator of how
reliable the result of the comparison is. We would like to focus on qualitative com-
parisons, thereby simplifying the available information, but also aiming to capture a
common-sense way of reasoning with it. To this end, we allow for two possibilities for
the comparison of two treatments T1,T2 ∈ T in terms of the clinical outcome indicator
I ∈ COI used:

• One treatment, say T1, is unambiguously (i.e., statistically significantly) better
than T2 with respect to I. We will represent this as T1 >I T2.

• The trial was unable to show statistically significant differences between the two
treatments with respect to I. We denote this by T1 ∼I T2 (which will be treated
as equivalent to T2 ∼I T1).

Therefore, we define these formulae as follows.

Definition 2. Let T1,T2 ∈ T be distinct treatments (T1 , T2) and I ∈ COI. Then,
any formula of the form T1 >I T2 or of the form T1 ∼I T2 is a treatment comparison
formula. The set of all treatment comparison formulae will be denoted by TF .

We should note that the failure of a study to demonstrate superiority of one treat-
ment over another, when interpreted in a strict statistical sense means that there is no
evidence to suggest superiority as opposed to the common-sense interpretation that
there is evidence of equivalence. A corollary of the strict statistical interpretation is
that we should not be encoding non-statistically significant results at all. However,
many clinicians are interested in inferences that could be drawn from the common-
sense interpretation of such results, even though strictly speaking incorrect, e.g., when
a clinical trial employing a very large number of patients yields a statistically insignif-
icant result. For these reasons we adopt an agnostic approach where encoding and
reasoning with such knowledge is allowed but not enforced.

Putting all these components together, we define the language R as follows.

Definition 3. Let φ be a patient class and t a treatment comparison formula. Then, the
language R consists of any formula of the form φ→ t. A rule is any formula α ∈ R.

Note that we call such formulae rules, reflecting the common-sense interpretation
that if a patient belongs to the patient class φ and a trial has concluded φ → t, then
this result is relevant to this patient. From now on we will use the lower case Greek
letters α, β, γ, . . . to denote rules, and upper case roman letters A, B,C, . . . to denote
finite subsets of R. Using this language, the result reported in the excerpt from [10]
would be encoded as follows.

LN− ∧ ER+ ∧ BC → MFT >DFS TAM

For reasons that will become apparent in the next sections, we will visualise a
set of rules using a labelled graph where the nodes are the treatments and the edges

6



correspond to rules and are labelled by the patient class of the associated rule. Below
is the graph for the rule above.

MFT TAM
LN+ ∧ ER+ ∧ BC

We will also define the length of a rule φ → t as the length of its patient class, i.e.,
|α| = |φ|. We do this since the length of any treatment comparison formula is constant.
The number of elements of a set S is denoted by |S | and the total length of a set of rules
A is defined to be the sum of the lengths of all formulae in A, and denoted by ‖A‖.

This language allows for expressing judgements of the type “for patient class φ,
treatment T1 is better than treatment T2 with respect to clinical outcome indicator I”.
However, judgements involving different clinical outcome indicators are orthogonal
and cannot interact in any way.1 Therefore, for simplicity, we will assume that any
given set of rules contains rules referring to the same clinical outcome indicator. If this
is not the case, it is trivial to split the set in question into subsets where this condition
holds. Then, each subset can be treated separately. For these reasons we will also omit
the notation for clinical outcome indicators entirely.

A final observation is that there is no negation in R. The main reason behind this
is that clinical studies, generally, report positive results or their absence, none of which
is equivalent to the negation of a positive result. In other words, normally a study
cannot conclude that for the patient class φ, treatment T1 is not better than treatment
T2, without at the same time concluding something stronger, i.e., that treatment T2 is
better than T1, or that there is no significant evidence for either comparison. For these
reasons and in order not to introduce something that would invalidate our desideratum
about a simple language we decided against including negation. We will return to the
issue of negation in Section 6, when we consider conflicts.

3. A Logic for Clinical Knowledge

Having defined a language for encoding the results of clinical trials, we are now
able to approach the second desideratum which is the ability to reason with such results.
Given a set of rules that represents a set of clinical trial results, the intention is to
provide a way to construct the intuitive consequences of that set. We emphasise that
we aim to define a simple, credulous logic, since we do not want to restrict ourselves
only to the statistically valid inferences, which would be impossible to generate at this
level of abstraction. Instead, we aim to capture some of the common-sense reasoning
that clinicians employ, especially in the absence of directly relevant, statistically valid,
results. To this end, we define an entailment relation 
 on the language R. We will do
this by setting out inference rules that capture an appropriate notion of consequence.

The first inference rule captures equivalence of rewriting treatment comparison for-
mulas involving ∼, and is straightforward.

1There can be interactions due to integrity constraints inherent in the meaning of the clinical outcome
indicators. However, for simplicity, we will ignore such cases.

7



φ→ T1 ∼ T2 EQ
φ→ T2 ∼ T1

The first non-trivial inference rule we propose is one of specialisation. The mo-
tivation behind this inference rule comes from the process by which a doctor decides
which of the available results are relevant to a patient to be treated. The patient could be
potentially described as belonging to a patient class φ which includes all the observed
characteristics. If there is no result that directly references the patient class φ then it is
usual to consider as potential candidates all results whose patient class is a superclass
of φ. We will, therefore, formalise this principle in the following inference rule.

ψ→ t
SP (given φ ` ψ)

φ→ t

It can be easily seen that this inference rule will easily lead to contradictory results
given a large enough rule set. To see this, suppose that a patient belongs to the patient
class φ and that we have obtained the following results:

ψ→ T1 > T2 χ→ T2 > T1

where φ ` ψ and φ ` χ. Using SP we can infer both φ → T1 > T2 and φ → T2 >
T1, an intuitively contradictory statement. We will indeed define such situations as
contradictory in Section 6, but we will refrain from trying to guess which rule is the
‘right’ one, a task which has been studied in the literature (e.g., [3]) and is related
to the specificity principle, i.e., that if we know that χ ` ψ then we should conclude
φ → T1 > T2 and not φ → T2 > T1. The reason we do not follow this line of enquiry
is that (a) it would yield a non-monotonic logic which we have ruled out in our list of
desiderata in Section 1 and (b) there are cases where a clinician would decide in favour
of the more ‘general’ rule, i.e., χ→ T2 > T1, e.g., if they believe that the clinical study
resulting in this rule is somehow more credible or reliable than the one providing the
other rule. One such occurrence that is common has to do with the statistical power of
the clinical study, which is related to the number of participants.

Another important inference rule is disjunction introduction which can be thought
of as the dual of specialisation. The motivation behind it is that if the same result has
been obtained by comparing two treatments on two different patient classes, then it is
reasonable to expect that the same holds for the union of the two patient classes.

φ→ t ψ→ t
DI

φ ∨ ψ→ t

Finally, it is reasonable to expect that given a set of results on the same patient class,
we can use transitivity to infer relationships between treatments. For example, if we
know that φ → T1 > T2 and φ → T2 > T3 then we could infer that φ → T1 > T3. This
deductive process is an abstraction of the reasoning used in the following example.
Suppose that for a patient class φ suffering from a particular disease, there exists a
treatment that is accepted as the standard of care, say T2. Treatment T2 has been tested
in the past against placebo, T3, and has been established as better according to some
outcome, i.e., φ → T2 > T3. A new treatment T1 is being trialled against T2 and it
turns out that it performs better, i.e., φ → T1 > T2. Now, in the case where the disease

8



in question is very serious, it is not ethical to perform a trial comparing T1 against
placebo, since then an inferior treatment (i.e., no treatment) would be knowingly given
to patients of the disease. Therefore, we cannot possibly know directly whether φ →
T1 > T3, and yet we infer from the two separate trials that this is indeed the case.

We formalise the transitivity inference rule below. Since we use two relations, >
and ∼, we obtain a set of four inference rules.

φ→ T1 > T2 φ→ T2 > T3

φ→ T1 > T3

φ→ T1 > T2 φ→ T2 ∼ T3

φ→ T1 > T3

φ→ T1 ∼ T2 φ→ T2 > T3

φ→ T1 > T3

φ→ T1 ∼ T2 φ→ T2 ∼ T3

φ→ T1 ∼ T3

We will use symbols such as ◦, •, � as meta-variables, for the symbols > and ∼ in
treatment comparison formulae. Using these, we will refer to the following inference
rule as the transitivity rule, encompassing all four of the above possibilities.

φ→ T1 ◦ T2 φ→ T2 • T3
TR

φ→ T1 � T3

Of course, � must represent a symbol in accordance with ◦ and •, as above.
We should point out that specialisation, disjunction introduction and transitivity are

inference rules that do not necessarily draw statistically valid inferences. The reason
is that the presence of a confounding variable in the patient samples involved can in-
validate the conclusion. By way of example, consider a clinical trial result of the form
φ→ T1 > T2 and a patient class ψ such that ψ ` φ, thereby allowing the application of
the specialisation rule. However, it could be that the relative sizes of the populations
of φ and ψ are so different such that almost no patient of ψ took part in the trial on
the patient class φ. This means that it is actually possible that ψ → T2 > T1, or that
ψ→ T1 ∼ T2 is the case. Similar arguments exist for disjunction introduction and tran-
sitivity (see, e.g., [4]). As explained earlier, consequences derived using these inference
rules are defeasible conclusions, intended to allow users to find potential ramifications
of clinical study results.

For simplicity, whenever we apply an inference rule we will allow in-place rewrit-
ing of the patient class in the conclusion to any `-equivalent one, as illustrated in Ex-
ample 1. This is equivalent to applying SP after a given inference rule.

Having set out these inference rules, we can define entailment.

Definition 4. A proof of a rule α from a set of rules A is a finite sequence of rules
α1, . . . , αn such that αn = α and for any i ≤ n either αi ∈ A, or there exist an inference
rule and an index j < i (in the case of SP and EQ), or indices j, k < i (in the case of DI
and TR) such that applying the rule in question to α j, or to α j, αk respectively, yields
αi.

Using the notion of proof we define entailment.

Definition 5. Rule entailment is a relation 
 ⊆ 2R × R, defined as follows.

A 
 α iff there exists a proof of α from A

9



Let A, B,C be sets of rules. We generalise 
 to a relation between sets of rules in
the obvious way: A 
 B iff for all β ∈ B it is the case that A 
 β. It is trivial to show
that this relation is transitive, i.e., if A 
 B and B 
 C then A 
 C. It is also reflexive,
i.e., A 
 A, and monotonic in the sense that if A 
 B then it is also the case that C 
 B
for any C ⊇ A.

Two rules α, β ∈ R are equivalent whenever it is the case that α 
 β and β 
 α.
Two sets of rules A, B are equivalent if A 
 B and B 
 A. It is evident that two rules
are equivalent precisely when each one can be derived from the other by application of
EQ and SP only.

In what follows, a structure that functions as a witness for rule entailment that is
different to that of a proof, will be useful. This structure is a proof tree.

Definition 6. Let A be a set of rules and α a rule. A proof tree for α on A is a tree
structure whose leaves are members of A, and its internal nodes represent applications
of the inference rules, yielding a new rule as a consequence. The consequence of the
root node is α.

It should be clear that A 
 α iff there is a proof tree for α on A.

Example 1. Let A be the following set of rules (left) and its corresponding graph
(right). P and Q are patient characteristics, i.e., propositional letters in LP.

A =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3

 T1 T2 T3
P

P ∧ Q

¬Q

We demonstrate a proof for A 
 P→ T1 > T3.

¬Q→ T2 > T3 SPP ∧ ¬Q→ T2 > T3 P ∧ Q→ T2 > T3 DIP→ T2 > T3 P→ T1 > T2 TRP→ T1 > T3

Note the use of in-place rewriting of the patient class in the application of DI, i.e., the
use of the fact that ` (P ∧ ¬Q) ∨ (P ∧ Q) ⇐⇒ P in rewriting the conclusion of the
application of DI accordingly.

4. Rule Entailment as a Decision Problem

We have effectively defined a simple, monotonic logic 〈R,
〉 that, by applying
inference rules that reflect important ways of common-sense reasoning employed by
clinicians, can be used for working out the consequences of a given set of rules. The
obvious next step is to look at this logic from an algorithmic viewpoint. We will call
RULE-ENTAILMENT the decision problem of ascertaining whether it is the case that
A 
 α. In other words if A is a finite set of rules and α is a rule, a yes-instance for
RULE-ENTAILMENT is a pair A, α if A 
 α and a no-instance otherwise.

Proposition 7. RULE-ENTAILMENT is decidable.

10



Proof. Assuming that there are p propositional letters in LP, we obtain that there are
2p `-equivalence classes of LP formulae. By fixing an arbitrary representative formula
for each `-equivalence class (effectively a canonical normal form) any patient class can
be rewritten in this normal form. Let the function that rewrites a patient class into its
normal form be ·N .

Given a finite set of treatments T , there are at most n = 2p · |T |2 · 2 many 
-
equivalence classes of rules. A normal form for rules clearly exists, extending the
propositional one. We will denote the set of 
-equivalence classes by RN and extend
the function ·N to rules and sets of rules. We can modify the inference rules given
previously so that the conclusion is always rewritten in normal form, obtaining 
N , a
new entailment relation. Clearly, A 
 α iff AN 
N αN .

Given a finite set of rules A, there is only a finite number of non-repeating sequences
of rules from AN since the maximum length of such a sequence cannot be greater than
|RN | = n. Any such sequence can be checked as to whether it constitutes a proof of αN

for some rule α. Therefore, checking whether AN 
N αN is decidable, and thus, so is
checking whether A 
 α.

Since RULE-ENTAILMENT is decidable, it is reasonable to enquire about what
algorithms can be constructed for it, as well as about its computational complexity. To
address these questions we will focus on proof trees as witnesses of entailment rather
than proofs, and on their properties. To this end, we will define special forms of proof
trees and show that if a proof tree exists, then a proof tree of a particular form also
exists. We start with the notion of an ordered proof tree.

Definition 8. A proof tree is ordered iff in every branch from the root to the leaves, the
sequence of applications of inference rules consists of:

1. Zero or more DI nodes, followed by,
2. zero or more TR nodes, followed by,
3. zero or one SP node, followed by,
4. zero or one EQ node.

Example 2. Returning to Example 1, we can see that there is an ordered proof tree for
P→ T1 > T3 on A. We recall that:

A =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3

 T1 T2 T3
P

P ∧ Q

¬Q

Then, the following ordered proof tree for P→ T1 > T3 on A exists.

P→ T1 > T2 SP
P ∧ Q→ T1 > T2 P ∧ Q→ T2 > T3

TR
P ∧ Q→ T1 > T3

P→ T1 > T2 SP
P ∧ ¬Q→ T1 > T2

¬Q→ T2 > T3
SP

P ∧ ¬Q→ T2 > T3
TR

P ∧ ¬Q→ T1 > T3
DI

P→ T1 > T3

In this case, an ordered proof tree exists. The natural question to ask is whether this
is always the case. The following result addresses this question.

11



Proposition 9. An ordered proof tree for α on A exists iff A 
 α.

Proof. The left-to-right direction is obvious. For the other direction, we prove the
desired result by showing that applications of inference rules commute in certain di-
rections. Thus, an arbitrary proof tree for α on A can be rewritten into an ordered one.
We start by showing that EQ can be “pushed down” towards the leaves.

Suppose A = {ψ→ T2 ∼ T1}, and that φ ` ψ. Then if the following proof tree on
the left can be rewritten as the one on the right.

ψ→ T2 ∼ T1
SP

φ→ T2 ∼ T1 EQ
φ→ T1 ∼ T2

ψ→ T2 ∼ T1 EQ
ψ→ T1 ∼ T2

SP
φ→ T1 ∼ T2

Suppose A = {φ→ T2 ∼ T1, ψ→ T2 ∼ T1}. Again, the proof tree on the left can be
replaced by the one on the right.

φ→ T2 ∼ T1 ψ→ T2 ∼ T1
DI

φ ∨ ψ→ T2 ∼ T1 EQ
φ ∨ ψ→ T1 ∼ T2

φ→ T2 ∼ T1 EQ
φ→ T1 ∼ T2

ψ→ T2 ∼ T1 EQ
ψ→ T1 ∼ T2

DI
φ ∨ ψ→ T1 ∼ T2

Finally, consider A = {φ→ T3 ∼ T2, φ→ T2 ∼ T1}. The proof tree on the left can
be rewritten as the one on the right.

φ→ T3 ∼ T2 φ→ T2 ∼ T1
TR

φ→ T3 ∼ T1 EQ
φ→ T1 ∼ T3

φ→ T3 ∼ T2 EQ
φ→ T2 ∼ T3

φ→ T2 ∼ T1 EQ
φ→ T1 ∼ T2

TR
φ→ T1 ∼ T3

Also, it is easy to see that any branch consisting exclusively of applications of EQ
can be simplified to one of length at most one. At this stage, we have shown that a
proof tree can be transformed into one where at most one application of EQ appears
only at the end of each root-to-leaves branch.

Next, we show that SP can be “pushed down” over TR and DI. Suppose A =

{ψ→ T1 > T2, ψ→ T2 > T3} and that φ ` ψ. Then the following proof trees are equiv-
alent.

ψ→ T1 > T2 ψ→ T2 > T3
TR

ψ→ T1 > T3
SP

φ→ T1 > T3

ψ→ T1 > T2
SP

φ→ T1 > T2

ψ→ T2 > T3
SP

φ→ T2 > T3
TR

φ→ T1 > T3

The remaining combinations of > and ∼ allowed by TR are handled in an identical
manner.

Similarly, suppose that A = {ψ→ t, χ→ t} for some treatment comparison formula
t and that φ ` ψ∨χ. Then, the following proof trees for φ→ t on A are equivalent, given
that from φ ` ψ∨χ and propositional logic we can show that ` φ⇔ ((φ∧ψ)∨ (φ∧χ)).

ψ→ t χ→ t
DI

ψ ∨ χ→ t
SP

φ→ t

ψ→ t
SP

φ ∧ ψ→ t
χ→ t

SP
φ ∧ χ→ t

DI
φ→ t

12



Note the use of re-writing of a patient class in a logically equivalent one.
These cases demonstrate that applications of SP can be “pushed down” below ap-

plications of DI and TR. Also, any branch consisting of SP nodes can be transformed
into one with only a single application of SP, due to the transitivity of `. At this stage
we have shown that an arbitrary proof tree can be transformed into one where on any
root-to-leaves branch one encounters applications of TR and DI, followed by at most
one application of SP, followed by at most one application of EQ.

Finally, we show that TR can be “pushed down” over DI. Let A be as follows.

A = {φ→ T1 > T2, ψ→ T1 > T2, φ ∨ ψ→ T2 > T3}

Consider the following proof tree for φ ∨ ψ→ T1 > T3 on A.
φ→ T1 > T2 ψ→ T1 > T2

DI
φ ∨ ψ→ T1 > T2 φ ∨ ψ→ T2 > T3

TR
φ ∨ ψ→ T1 > T3

We can construct the following proof tree for φ ∨ ψ→ T1 > T3 on A.

φ→ T1 > T2

φ ∨ ψ→ T2 > T3
SP

φ→ T2 > T3
TR

φ→ T1 > T3

ψ→ T1 > T2

φ ∨ ψ→ T2 > T3
SP

ψ→ T2 > T3
TR

ψ→ T1 > T3
DI

φ ∨ ψ→ T1 > T3

Again, other combinations of > and ∼ are identical. Note that the new occurrences of
SP can be dealt with as previously noted. This completes the proof.

Now that we have proved that A 
 α iff an ordered proof tree for α on A exists, we
can make several observations on such proof trees. First we note that, since disjunction
introduction applications are found only at the top of the proof tree, their effect is
equivalent to constructing a single, long disjunction, which is also the consequence of
the proof tree. This observation leads us to define a new inference rule that will replace
all such applications of DI. We call this new rule DI-n, since it is an n-ary version of
DI.

φ1 → t . . . φn → t
DI-n∨n

i=1 φi → t

It should be clear that DI-n is sound in the sense that any application of DI-n can be
replaced by several applications of DI.

The second observation on ordered proof trees is that applications of TR are also
grouped together at the top of each sub-tree hanging off a disjunction introduction node.
Clearly, each such sub-tree corresponds to a kind of path on the set of treatments. We
formalise this intuitive notion here, which will be useful in what follows. Before doing
that, we will define a function Tr that returns the set of treatments employed in a finite
sequence of rules (below, ◦ stands for > or ∼).

Tr(〈φ→ T1 ◦ T2〉) = {T1,T2} for any φ ∈ LP and distinct T1,T2 ∈ T

Tr(〈α1, . . . , αn, αn+1〉) = Tr(〈α1, . . . , αn〉) ∪ Tr(〈αn+1〉) for n ≥ 1

13



Definition 10. Let S be a finite sequence of rules and Ts,Te two treatments. We will
say that S is a simple path from Ts to Te (and write SP(S ,Ts,Te)) iff S is a simple
∼-path from Ts to Te, or S is a simple >-path from Ts to Te.

We define inductively whether a sequence S is a simple ∼-path from Ts to Te (writ-
ten SP∼(S ,Ts,Te)).

SP∼(〈α〉 ,Ts,Te) iff

α = φ→ Ts ∼ Te or
α = φ→ Te ∼ Ts

SP∼(〈α1, . . . , αn, αn+1〉 ,Ts,Te) iff


Te < Tr(〈α1, . . . , αn〉) and ∃Tm s.t.
SP∼(〈αn+1〉 ,Tm,Te) and,
SP∼(〈α1, . . . , αn〉 ,Ts,Tm)

We also define inductively whether a sequence S is a simple >-path from Ts to Te,
written SP>(S ,Ts,Te).

SP>(〈α〉 ,Ts,Te) iff α = φ→ Ts > Te

SP>(〈α1, . . . , αn, αn+1〉 ,Ts,Te) iff



Te < Tr(〈α1, . . . , αn〉) and ∃Tm s.t.
SP>(〈αn+1〉 ,Tm,Te) and,
SP(〈α1, . . . , αn〉 ,Ts,Tm)

or,
SP∼(〈αn+1〉 ,Tm,Te) and,
SP>(〈α1, . . . , αn〉 ,Ts,Tm)

Finally, we will say that a sequence of rules S is a simple path (respectively simple ∼-
path or simple >-path) whenever there exist treatments Ts,Te such that S is a simple
path from Ts to Te (respectively simple ∼-path from Ts to Te or simple >-path from Ts

to Te).

Note that this definition allows the starting and ending treatments to be the same,
but forbids repetition of treatments within the path. Since no cycling is allowed inside
a path there is only one way to order a set of rules into a path when the start and end
treatments are designated. We will make use of this fact and somewhat abuse notation
by treating simple paths as sequences but also as sets of rules.

Example 3. Consider the following set of rules A′.

A′ =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 ∼ T3

 T1 T2 T3
P

P ∧ Q

¬Q

Note that we indicate the use of ∼ with a dashed, non-directed edge, in agreement with
the interpretation of ∼.

It is easy to see that 〈¬Q→ T2 ∼ T3〉 is a simple ∼-path from T2 to T3 and that
〈P→ T1 > T2, P ∧ Q→ T2 > T3〉 and 〈P→ T1 > T2,¬Q→ T2 ∼ T3〉 are both simple
>-paths from T1 to T3.

14



Now we can return to our earlier observation and refine it. We can see that the use of
applications of transitivity in ordered proof trees effectively corresponds to transitively
inferring a rule on the basis of a simple path. Then, intuitively, the application of SP
and EQ serves the purpose of transforming the original rules so that TR can be applied
consecutively, building up a simple path. We define the following inference rule, which
we call compound transitivity and denote it by CTR-n, and show how this rule captures
exactly this process,

φ1 → T1 ◦1 T ′1 . . . φn → Tn ◦n T ′n
CTR-n∧n

i=1 φi → T1 • T ′n

where the sequence S =
〈
φ1 → T1 ◦1 T ′1, . . . , φn → Tn ◦n T ′n

〉
forms a simple •-path

from T1 to T ′n, i.e., if S forms a simple >-path then • will stand for >, otherwise • will
stand for ∼.

Proposition 11. The compound transitivity rule is sound.

Proof. Suppose S =
〈
φ1 → T1 ◦1 T ′1, . . . , φn → Tn ◦n T ′n

〉
forms a simple •-path from

T1 to T ′n. For simplicity, we will assume that T ′i = Ti+1 for i < n so that applying EQ is
not necessary. Then, we can construct the following proof tree.

φ1 → T1 ◦1 T ′1 SP∧k
i=1 φi → T1 ◦1 T ′1

φ2 → T2 ◦2 T ′2 SP∧k
i=1 φi → T2 ◦2 T ′2 TR∧k

i=1 φi → T1 •1 T ′2 . . .
TR

... . . . TR∧k
i=1 φi → T1 •n−1 T ′n

It should be clear by Definition 10 and the conditions of the transitivity rule that •n−1
should match •, therefore establishing that the application of CTR-n is sound in this
case.

It should also be easy to see that relaxing the assumption that T ′i = Ti+1 for i <
n does not affect the soundness of CTR-n: indeed, it would at most necessitate the
introduction of applications of EQ in the proof tree at the appropriate points just before
the application of SP.

By using DI-n and CTR-n instead of DI and TR we can define a new kind of proof
tree that will lead us to a characterisation result as well as a complexity result for rule
entailment. This form of proof tree we call n-ordered and is as follows.

Definition 12. A proof tree is called n-ordered iff on any branch from the root to the
leaves, there is at most one application of inference rules in the following order: SP,
DI-n, CTR-n.

Example 4. Continuing our running example, we show that there is an n-ordered proof
tree for P→ T1 > T3 on A. We recall that

A = {P→ T1 > T2, P ∧ Q→ T2 > T3, ¬Q→ T2 > T3} .

Then, the following n-ordered proof tree for P→ T1 > T3 on A exists.

15



P→ T1 > T2 P ∧ Q→ T2 > T3
CTR-nP ∧ Q→ T1 > T3

P→ T1 > T2 ¬Q→ T2 > T3
CTR-nP ∧ ¬Q→ T1 > T3 DI-nP→ T1 > T3

Similarly to the case of ordered proof trees, we can ask the question of whether
an n-ordered proof tree exists whenever an arbitrary proof tree exists. The following
proposition settles this question.

Proposition 13. There exists an n-ordered proof tree for α on A iff A 
 α.

Proof. The left-to-right direction is obvious. For the other direction, we first obtain the
corresponding ordered tree by Proposition 9.

Let A be a set of rules such that a proof tree for a rule ψ → Ts • Te on A exists in
which any branch from the root to the leaves contains one or more TR nodes followed
by at most one EQ node, and then followed by at most one SP node. It should then be
clear that a permutation of a subset of A forms a simple •-path from Ts to Te. Let this
sequence of rules be

〈
φ1 → T1 ◦1 T ′1, . . . , φn → Tn ◦n T ′n

〉
, with T1 = Ts and T ′n = Te

(if the first or last rule employs ∼ then it could be that T ′1 = Ts or Tn = Te, but for
simplicity and without loss of generality we will assume the former pair of equations).
Note also that applications of SP must specialise all φi to the same patient class ψ for
TR to be applicable, and therefore it must be that ψ ` φi for all i ≤ n. This means we
can construct the following proof tree on A.

φ1 → T1 ◦1 T ′1 . . . φn → Tn ◦n T ′n
CTR-n∧

i≤n φi → T1 • T ′n SP
ψ→ Ts • Te

This is sound because ψ ` φi for all i ≤ n entails that ψ `
∧

i≤n φi. By applying this
result to an ordered proof tree, we can transform it to one that on any of its branches,
one encounters from the root to the leaves, one or more DI nodes, at most one SP node
and at most one CTR-n node.

We then prove that specialisation can be “pushed up” this transformed proof tree
over DI. Suppose that we have the proof tree on the left and that φ ` χ. Then we can
construct the proof tree on the right, given that φ ` χ entails φ ∨ ψ ` χ ∨ ψ.

χ→ t
SP

φ→ t ψ→ t
DI

φ ∨ ψ→ t

χ→ t ψ→ t
DI

χ ∨ ψ→ t
SP

φ ∨ ψ→ t

Finally, we can merge successive applications of SP into a single application, as well
as replace successive applications of DI with a single DI-n node. This completes the
proof.

This result establishes the completeness of SP, DI-n and CTR-n with respect to the
original inference rules. It also addresses an algorithmic issue related to the application
of SP: in effect, SP is an inference rule that can yield multiple, different consequences if
applied repeatedly to the same premise. This amounts to a non-deterministic choice of a
consequence in algorithmic terms, and obscures the true complexity of rule entailment.
By showing that we only ever need one application of SP, the one at the top of the

16



proof tree, we have fixed both the premises as well as the required consequence of the
application of SP, avoiding in this way the non-deterministic choice.

A notational convenience we will use relates to the patient class appearing in the
consequence of the application of CTR-n: let S = 〈φ1 → t1, . . . , φn → tn〉 be a simple
path; we call

∧
i≤n φi the patient class of S and denote it by PCS .

The following result characterises rule entailment on the basis of the existence of
simple paths.

Theorem 14. Let A be a set of rules and φ→ Ts ◦ Te a rule. Then,

A 
 φ→ Ts ◦ Te iff φ `
∨
S∈P

PCS where

P = { S ⊆ A | S is a simple ◦-path from Ts to Te }

Proof. From Proposition 13 we know that A 
 φ→ Ts◦Te iff there is a n-ordered proof
tree for φ → Ts ◦ Te on A. By Definition 12, we know that there is a set P of simple
◦-paths from Ts to Te, namely the premises of applications of CTR-n. The patient class
of each such simple ◦-path is PCS for S ∈ P, again by the definition of CTR-n. The
application of DI-n collects all these patient classes into

∨
S∈P PCS → Ts ◦ Te, and

finally, the application of SP requires that φ `
∨

S∈P PCS .

Having obtained Theorem 14, we are in a position to develop an algorithm for 
-
entailment, by searching through all possible simple paths between the treatments in
the query formula within a set of premises.

Algorithm 1 A 
? φ→ Ts ◦ Te

ψ← ⊥
for all simple ◦-paths S from Ts to Te in A do

ψ← ψ ∨ PCS

if φ ` ψ then
return yes

end if
end for
return no

Theorem 15. Algorithm 1 is sound and complete.

Proof. With respect to soundness, it should be clear that Algorithm 1, whenever it
returns a positive answer, it does so having checked conditions witnessing the existence
of a proof tree of the form delineated in Proposition 13. Conversely, with respect to
completeness, Proposition 13 establishes that A 
 α iff there is a proof tree of the
appropriate form for α on A. Algorithm 1 clearly searches all such proof trees.

5. The Complexity of Rule Entailment

We can now turn to the complexity of rule entailment. We recall that the class Π
p
2 of

the polynomial hierarchy [21, 14] can be defined in terms of oracle Turing Machines as

17



follows. Given a complexity class C, a C-oracle can be thought of as a sub-routine that
can decide any decision problem in C in constant time. A C-oracle Turing Machine
is a Turing Machine that makes queries to a C-oracle during its execution. The class
of all decision problems decidable in the complexity class D by a C-oracle Turing
Machine is denoted by DC. Therefore, if, for example, a Turing Machine exists that
decides a problem A in polynomial time given access to a NP-oracle, then A ∈ PNP.
Then, the class Π

p
2 can be defined as the complement of the class of problems decidable

in non-deterministic polynomial time given access to a NP-oracle, or in other words,
Π

p
2 = coNPNP.

Proposition 16. RULE-ENTAILMENT is in Π
p
2 .

Proof. Let A =
{
βi = φi → Ti ◦i T ′i

∣∣∣ i ≤ n
}

be a set of rules and let also α = ψ →
Ts • Te. We want to decide whether A 
 α. The size of the input is linear in ‖A‖ + |ψ|.

From Theorem 14, we know that:

A 
 ψ→ Ts • Te iff ψ `
∨
S∈P

PCS

where P stands for the set of all simple •-paths from Ts to Te in A. We will use
p1, . . . , pk to denote the propositional letters of the language of patient classesLP. Note
that for a given set of rules A we need up to ‖A‖ propositional letters, thus k ≤ ‖A‖. We
can then rewrite the right-hand part as follows, denoting by M a valuation on p1, . . . , pk.

∀M, if M |= ψ, then ∃S ∈ P, such that M |= PCS

This is equivalent to

∀M, if M |= ψ, then ∃B ⊆ A s.t. B is a simple •-path from Ts to Te and M |= PCB.

First we show that given a valuation M and a set of rules B ⊆ A,

B is a simple •-path from Ts to Te and M |= PCB. (*)

can be checked in time polynomial in ‖A‖. It is well known that given a valuation M
and a formula χ, checking whether M |= χ takes at most polynomial time in the sizes
of M and χ. Also, note that for any B ⊆ A it is the case that |PCB| ≤ ‖A‖, and recall
that k ≤ ‖A‖. Thus, checking M |= PCB takes at most polynomial time in ‖A‖.

Moreover, given a set of rules B ⊆ A, we can check whether B constitutes a simple
•-path from Ts to Te in time polynomial in |B|, akin to checking whether a set of edges
in a graph constitutes a path between two given vertices. Since |B| ≤ |A|, this establishes
that (*) can be checked in polynomial time in ‖A‖.

Therefore, given a valuation M, we can check whether there exists B ⊆ A that
satisfies (*) in non-deterministic polynomial time (in ‖A‖). Recall once again that
checking M |= χ can be checking in time polynomial in ‖A‖ + |ψ|. Thus, checking
whether for any valuation M that satisfies ψ there exists a set of rules B ⊆ A as above,
is in coNPNP (in ‖A‖ + |ψ|), completing the proof.

18



6. Argumentation with Clinical Knowledge

We have seen how the logic 〈R,
〉 allows the drawing of inferences from a set
of rules that, while not necessarily statistically valid, are intended to reflect the ways
experts might reason with clinical knowledge. Such inferences may help us to under-
stand incomplete sets of rules, but may not help when such sets are inconsistent. In this
context, argumentation can help in identifying the pros and cons of such inferences, in
the form of arguments and counter-arguments. Therefore, in this section we will (a)
define an argumentation system, (b) investigate notions of attacks between arguments,
(c) examine the complexity of some relevant decision problems, and (d) show how no-
tions of defeasible inference from the argumentation literature such as warrant, can be
defined within this framework.

We have already noted that there is no negation in R, and that one of our aims is
to employ R within an argumentation approach, which obviously rests upon a notion
of conflict. Without negation, this notion needs to be explicitly defined and we do
this now. We define contradiction, a symmetric relation between subsets of R, i.e.,
./ ⊆ 2R × 2R, as follows.

Definition 17. Two sets A, B ⊆ R are contradictory, denoted as A ./ B, whenever there
exist a consistent patient class φ (φ 0 ⊥) and two treatment comparison formulae f , g
such that A 
 φ→ f , B 
 φ→ g and for some T1,T2 ∈ T , it is the case that:

• f = T1 > T2 and g = T2 > T1, or

• f = T1 > T2 and g = T1 ∼ T2, or g = T2 ∼ T1.

Whenever the sets involved are singletons we will omit the set delimiters, e.g., if
{α} ./ {β} we will write α ./ β. A single set of rules A is called contradictory iff A ./ A.

Example 5. Consider the following set of rules B, extending the set A we have seen in
previous examples.

B =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

It should be clear that B 
 P→ T1 > T3 and, by the last rule in B, B 
 P→ T3 >
T1. Therefore, B is contradictory.

Proposition 18. Checking whether α1 ./ α2 is NP-complete.

Proof. NP-hardness is immediate by reducing propositional satisfiability of ψ to check-
ing whether (ψ→ T1 > T2) ./ (> → T2 > T1).

Let α1 = φ1 → f1, α2 = φ2 → f2 be two rules. According to the definition they
are contradictory iff there is a patient class ψ and treatment comparison formulae g1, g2
such that α1 
 ψ → g1 and α2 
 ψ → g2 and g1, g2 are as in Definition 17. Clearly,
only EQ and SP can be used for proving these entailments. Only the application of

19



EQ affects the treatment comparison formulae, and it should be clear that a constant-
time check is enough to ascertain whether from f1 and f2 one can derive appropriate
formulae g1, g2 that satisfy Definition 17. In order to apply SP we need to check that
ψ ` φ1 and ψ ` φ2, so it suffices to check whether φ1 ∧ φ2 0 ⊥, as the most general
specialisation of φ1 and φ2. This establishes that checking whether α1 ./ α2 is within
NP.

We have shown that checking whether two rules are contradictory can be done by
using an algorithm for propositional satisfiability. By extension, we pose the question
of how we can check whether a set of rules is contradictory. In a sense, the follow-
ing definition in relation to contradiction mirrors that of Definition 10 in relation to
entailment, and it will provide us with a means to the desired algorithm.

Definition 19. A set of rules A is a simple >-cycle iff there exists a treatment T0 such
that all the members of A can be arranged into a simple >-path S from T0 to T0 with
PCS 0 ⊥.

Example 6. The set of rules B is as follows.

B =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

It can be seen that {P→ T1 > T2, ¬Q→ T2 > T3, P→ T3 > T1} is a simple >-
cycle on account of the fact that P ∧ ¬Q is consistent.

As before, it is reasonable to enquire whether the existence of a cycle within a set
is equivalent to that set being contradictory. The following proposition shows that this
is the case.

Proposition 20. A set of rules A is contradictory iff there is a subset B ⊆ A such that
B is a simple >-cycle.

Proof. Right-to-left: by assumption there is a treatment T0 ∈ T such that B can be
arranged into a sequence 〈φ1 → f1, . . . , φn → fn〉 that forms a simple >-path from T0
to T0. Let S = 〈φ1 → f1, . . . , φn−1 → fn−1〉 (it is clear that for the premise to be true n
must be greater than 1). By Definition 19 it follows that

∧
i≤n φi 0 ⊥. By Definition 10,

there are two cases:

1. either S is a simple path from T0 to some treatment Tn and 〈φn → fn〉 is a simple
>-path from Tn to T0,

2. or, S is a simple >-path from T0 to some treatment Tn and 〈φn → fn〉 is a simple
∼-path from Tn to T0,

In all cases, by applying SP to φn → fn we obtain
∧

i≤n φi → fn.
In case (1), the application of CTR-n on S yields either

∧
i<n φi → T0 > Tn or∧

i<n φi → T0 ∼ Tn, and both rules can be specialised to
∧

i≤n φi → T0 > Tn or

20



∧
i≤n φi → T0 ∼ Tn respectively. Clearly, fn must be equal to Tn > T0 and this com-

pletes the proof for this case.
In case (2), applying CTR-n on S yields

∧
i<n φi → T0 > Tn which can be spe-

cialised to
∧

i≤n φi → T0 > Tn. But then fn must be equal to Tn ∼ T0 or to T0 ∼ Tn and
in either cases we have a contradiction.

Left-to-right: by assumption, A ./ A, which in turn means that there exist a patient
class χ and distinct treatments T1,T2 ∈ T such that A 
 χ→ T1 ◦T2, A 
 χ→ T2 •T1
and ◦, • stand for a combination that makes these two rules contradictory. Consider the
two ordered proof trees obtained as in Proposition 9. Let φ1, . . . , φn and ψ1, . . . , ψm be
the patient classes that the specialisation rules result in, in the two proof trees. By the
structure of the proof trees and the assumptions above, it follows that ` χ ⇔

∨
i≤n φi

and ` χ⇔
∨

j≤m ψ j, hence `
∨

i≤n φi ⇔
∨

j≤m ψ j. Therefore, it must be that there exist
k ≤ n and l ≤ m such that φk ∧ ψl 0 ⊥, since χ 0 ⊥. The indices k and l correspond to
two sub-trees of the two proof trees that only contain applications of TR, SP and EQ,
with leaves B,C ⊆ A respectively, such that B 
 φk → T1 ◦ T2 and C 
 ψl → T2 • T1.
It should then be clear that B ∪ C can be arranged into a simple >-path from T1 to T1,
thus completing the proof.

Proposition 20 implicitly points at an algorithm for checking whether a set of rules
is contradictory. By examining this link we can conclude that the complexity of this
decision problem turns out to be potentially lower than that of entailment, as the next
result shows.

Proposition 21. Let A be a set of rules. Checking whether A is contradictory is NP-
complete.

Proof. Proof of NP-hardness is implied by Proposition 18. We show membership of
the problem in NP by supplying a non-deterministic polynomial time algorithm. Given
Proposition 20, in order to check whether A is contradictory we can check whether
A contains a simple >-cycle. To do that, one needs to non-deterministically guess a
subset of A, check that it is a path from a treatment to itself, and check the consistency
of its patient classes. This is possible by:

1. non-deterministically guessing a valuation M for LP, a subset B ⊆ A and a treat-
ment T0,

2. checking whether B is a simple >-path from T0 to T0,
3. and checking whether M |= PCB.

As we have argued earlier, steps 2 and 3 can be performed in polynomial time in ‖A‖,
and therefore the problem is in NP.

Example 7. We recall the set of rules B as in previous examples.

B =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

21



We have seen that

C =


P→ T1 > T2,

¬Q→ T2 > T3

P→ T3 > T1


T1 T2 T3

P

¬Q

P

is a simple >-cycle. The following set is also a simple >-cycle

D =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

P

on account of the fact that P ∧ Q 0 ⊥. Moreover, both C and D are minimal contra-
dictory sets in the sense that the removal of any of their members would make them
non-contradictory.

Therefore, and in anticipation of constructing counter-arguments, we may ask if it
is the case that a minimal contradictory set not only contains a cycle, but actually is
one. Again, the answer is positive as shown in the next proposition.

Proposition 22. Let A be a contradictory set of rules. It is the case that for all β ∈ A,
A \ {β} is non-contradictory iff A is a simple >-cycle.

Proof. Right-to-left: if A is a simple >-cycle, then it is obvious that the removal of any
of its members will cause A to cease being a simple >-cycle. By Proposition 20 we
obtain that A \ {β} for any β ∈ A, is non-contradictory.

Left-to-right: assuming that A is a contradictory set of rules, the application of
Proposition 20 yields a subset B ⊆ A such that B is a simple >-cycle. If B = A then we
are done, so we assume that B ⊂ A. By applying Proposition 20 again we obtain that B
is contradictory. The assumption that for all β ∈ A, A \ {β} is non-contradictory leads
us to a contradiction, completing the proof.

We are now ready to define the notion of an argument within our framework. Given
that several different conclusions are possible from a given set of rules A, as is usual in
some deduction-based argumentation systems, we will include the designated conclu-
sion as a component of an argument. In this way, we are able to distinguish between
arguments that may have the same premises but different conclusions. Also, from now
on we will be concerned with arguments constructed on the basis of a designated set of
rules. We will denote this finite set of rules as K.

Definition 23. An argument is a pair 〈A, α〉, where A is a finite set of rules (the support
of the argument) and α is a rule (the claim of the argument), such that:

1. A 
 α (entailment).

22



2. A is not contradictory (non-contradiction).
3. There is no β ∈ A such that A \ {β} 
 α (minimality).

The set of all arguments is denoted by A. The set of all arguments whose support is a
subset of K is denoted byAK .

Example 8. Recall the set of rules B as in previous examples. We will use this set as
the designated set of rules K out of which all arguments are to be constructed.

K =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3,

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

It should be clear that the following pairs are arguments.

〈{P→ T3 > T1, P→ T1 > T2} , P→ T3 > T2〉

〈{P ∧ Q→ T2 > T3, ¬Q→ T2 > T3} , P→ T2 > T3〉

〈{P→ T1 > T2, ¬Q→ T2 > T3} , P ∧ ¬Q→ T1 > T3〉

Proposition 24. Let 〈A, φ→ T1 ◦ T2〉 be an argument. Then, there is a non-empty set P
of subsets of A such that each S ∈ P is a simple ◦-path from T1 to T2, and A =

⋃
S∈P S .

Proof. By assumption, A 
 φ → T1 ◦ T2 and therefore, using Theorem 14 we obtain
that there is a set P of subsets of A with the following property:

P =
{
S ⊆ A

∣∣∣ S is a simple ◦-path from T1 to T2
}

This set P satisfies by construction the property that any of each members is a simple
◦-path from T1 to T2. It remains to show that A =

⋃
S∈P S . Let A′ =

⋃
S∈P S , which is

obviously a subset of A. By applying Theorem 14 again on P we obtain that A′ 
 φ→
T1 ◦ T2. But by assumption, A minimally entails φ → T1 ◦ T2 thus it cannot be that
A′ ⊂ A. Therefore A = A′, completing the proof.

A valid question is whether our inclusion of the minimality condition in Defini-
tion 23 obviates the requirement for a non-contradictory support. In other words, if
A 
 α and for all β ∈ A it is the case that A \ β 6
 α, then can we conclude that A is
non-contradictory? The following example refutes this conjecture.

Example 9. Consider the following set of rules.

A =



P→ T1 > T2

¬P→ T1 > T3

Q→ T2 > T3

Q→ T3 > T2

¬P→ T2 > T4

P→ T3 > T4



T1

T2 T3

T4

P ¬P
Q

Q
¬P P

23



It should be clear that A is contradictory, since it includes a simple >-cycle (Q →
T2 > T3, Q → T3 > T2). Also, it is easy to see that A 
 Q → T1 > T4, and that there
is no strict subset B ⊂ A such that B 
 Q→ T1 > T4.

Having defined what an argument is, we naturally come to the issue of what is the
complexity of the decision problem of checking whether a pair 〈A, α〉 is an argument.
The following result establishes an upper bound, given the upper bound for rule entail-
ment. We recall that the complexity class ∆

p
3 includes decision problems that can be

solved using a polynomial number of queries to a Π
p
2 (or, equivalently to a Σ

p
2 ) oracle.

Corollary 25. Checking whether 〈A, α〉 constitutes an argument is in ∆
p
3 .

Proof. 1. We need to check that A 
 α, which by Proposition 16 is in Π
p
2 .

2. We need to check that A is non-contradictory, a problem which by Proposition 21
is coNP-complete.

3. Finally, we need to check that for any β ∈ A, A \ {β} 6
 α. This can be done by
issuing |A| queries to a Π

p
2 oracle, therefore this problem is in ∆

p
3 .

We now turn to studying notions of attack between arguments. There are several
possible definitions of attack; we could define attack as two arguments having contra-
dictory claims; or we would define it by expecting one argument to have a claim that
contradicts one of the premises of another argument. We will opt for the latter option
which is a more general notion, and allows for demonstrating a specific kind of attack
commonly called undercutting.

Definition 26. Let A = 〈A, α〉 and B = 〈B, β〉 be two arguments. We say that A is an
undercut of B iff there exists γ ∈ B such that α ./ γ. In this case we will also say that
A undercuts B and that A undercuts B at γ.

When 〈A, α〉 is an argument and α ./ γ for some rule γ we will also say that A
undercuts γ. An example of arguments and undercuts is given next.

Example 10. Recall the set of rules K.

K = {P→ T1 > T2, P ∧ Q→ T2 > T3, ¬Q→ T2 > T3, P→ T3 > T1}

We set out below arguments and list the cases where one undercuts another below.

A = 〈{P→ T3 > T1, P→ T1 > T2}, P→ T3 > T2〉

B = 〈{P ∧ Q→ T2 > T3, ¬Q→ T2 > T3}, P→ T2 > T3〉

C = 〈{P→ T1 > T2, ¬Q→ T2 > T3}, P ∧ ¬Q→ T1 > T3〉

We can see that A undercuts B at P∧Q→ T2 > T3; A undercuts B at ¬Q→ T2 > T3;
A undercuts C at ¬Q→ T2 > T3; and that B undercuts neither A nor B.

The complexity of checking whether an argument undercuts another is potentially
lower than that of deciding entailment, as the next result demonstrates.

24



Proposition 27. Let A, B be two arguments. Checking whether A undercuts B is NP-
complete.

Proof. Let φ be a propositional formula. Let α = φ→ T1 > T2 and β = > → T2 > T1.
It is easy to see that A = 〈{α} , α〉 and B = 〈{β} , β〉 are arguments. Moreover, A
undercuts B iff φ 0 ⊥, establishing NP-hardness.

Let α = φ → f be the claim of A, and B the support of B. We give a non-
deterministic polynomial-time algorithm for checking that there exists γ ∈ B such that
α ./ γ. First, a valuation v of all propositional letters p1, . . . , pn appearing in α and B is
chosen. A rule γ ∈ B with γ = ψ→ g is also chosen non-deterministically.2 We check
that the valuation v satisfies φ ∧ ψ, something that can be done in time polynomial
in |φ| + |ψ| (note that |ψ| ≤ ‖B‖). We finally check that f , g are as in Definition 17,
requiring constant time and return the result of the comparison as the answer to the
decision problem. This completes the proof of membership in NP.

Proposition 20 establishes a relationship between a structural property of a set of
rules, i.e., whether it contains a simple >-cycle, and whether that set is contradictory.
Extending this line of enquiry leads us to the question of whether there is a similar
result relating structural properties of an argument A and a claim γ, to the fact that A
undercuts γ. The following example illustrates such a situation.

Example 11. Recall the set of rules K.

K =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3,

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

Consider the rule α = P→ T1 > T2 and the following argument.

D = 〈{P ∧ Q→ T2 > T3, ¬Q→ T2 > T3, P→ T3 > T1} , P→ T2 > T1〉

It should be clear that D undercuts α and that its support contains two distinct simple
>-paths from T2 to T1, and that, therefore, the union of the support of D with {α} will
contain two distinct simple >-cycles.

So, given an argument 〈A, α〉 that undercuts a rule γ, the conjecture illustrated in the
last example is that a particular relationship holds between the support A and γ, namely
that A ∪ {γ} will consist entirely of simple >-cycles. The following result verifies this
conjecture.

Proposition 28. Let A = 〈A, α〉 be an argument and β be a rule such that A undercuts
β. Then, there exist a number n ≥ 1 and a collection of sets of rules {Ci ⊆ R | i ≤ n },
such that the following hold:

2In fact, the domain of this choice is not exponential in the size of the problem so this can also be achieved
by using disjunction instead of non-determinism.

25



1. Every Ci is a simple >-cycle, for i ≤ n.
2. For any i ≤ n, it is the case that β ∈ Ci.
3. A ∪ {β} =

⋃
i≤n Ci.

Proof. We define {Ci | i ≤ n } to be the set of all simple >-cycles contained in A ∪ {β}.
We need to show that this collection is non-empty and that it satisfies the second and
third conditions set above.

To show that the set {Ci | i ≤ n }, as defined, is non-empty it suffices to show that
A∪ {β} is contradictory, since then Proposition 20 would assert the existence of at least
one simple >-cycle. By assumption, since α ./ β, there exist φ ∈ LP and f , g ∈ TF
as in Definition 17 such that α 
 φ → f and β 
 φ → g. Since A is an argument,
it follows that A 
 α and therefore A 
 φ → f , by the transitivity of 
. Therefore,
A ∪ {β} is contradictory.

By the assumption that A is an argument, A is non-contradictory and, therefore,
by applying Proposition 20, we obtain that there is no simple >-cycle contained in A.
Thus, any simple >-cycle in A ∪ {β} will have to involve β, and therefore, the second
condition holds.

Suppose α = ψ → T1 > T2. Then, β must be of the form χ → T2 > T1 or
χ → T1 ∼ T2 or χ → T2 ∼ T1. Consider the n-ordered proof tree for α on A obtained
through Proposition 13. Every set of rules S used in each application of CTR-n must
be a simple >-path from T1 to T2, and therefore, S ∪ {β} is a simple >-path from T1 to
T1. In addition, ψ∧ χ is consistent by the assumption that α ./ β, and therefore S ∪ {β}
is a simple >-cycle. When α is of the form ψ → T1 ∼ T2, we can prove in an identical
manner that S ∪ {β} is a simple >-cycle.

Let us suppose then that the third condition does not hold, i.e., that there is γ ∈
A ∪ {β} such that for all i ≤ n, γ < Ci. By the second condition we can conclude that
γ , β and therefore it must be that γ ∈ A. But then, by the minimality condition,
γ must belong to a simple >-path S ⊆ A as above, and therefore γ ∈ S ∪ {β}, a
contradiction.

We now turn to the generation of undercuts to a given argument. As usual in argu-
mentation, we may have to consider different undercuts as somehow equivalent, in that
they may be distinct arguments, but differing only in ways that we consider unimpor-
tant. The example below demonstrates the redundancy due to varying the claim of an
undercut.

Example 12. Again, consider the set of rules K.

K = {P→ T1 > T2, P ∧ Q→ T2 > T3, ¬Q→ T2 > T3, P→ T3 > T1}

The following is obviously an argument inAK , as we have previously seen.

B = 〈{P ∧ Q→ T2 > T3,¬Q→ T2 > T3} , P→ T2 > T3〉

We have also seen how A (shown below) is an undercut of B. The arguments A′ and
A′′ have the same support as A and also undercut B at P∧Q→ T2 > T3. Note that we

26



assume that the language LP contains the propositional letter R in addition to those
we have used before.

A = 〈{P→ T3 > T1, P→ T1 > T2} , P→ T3 > T2〉

A′ = 〈{P→ T3 > T1, P→ T1 > T2} , P ∧ Q→ T3 > T2〉

A′′ = 〈{P→ T3 > T1, P→ T1 > T2} , P ∧ R→ T3 > T2〉

As the above example shows, when we ask the question which are the possible
undercuts to a given argument, we can generate a large number of seemingly redundant
arguments which share the same support but have increasingly narrow patient classes
in their claims. Indeed, the number of such arguments will in general be exponential
to the number of propositional letters in LP. Therefore, we would like to single out
the most general representative undercuts for a given argument. We do this with the
following definition and by noting that in the entailment A 
 α in an argument 〈A, α〉,
it is the specialisation step in the corresponding n-ordered tree that allows for such
redundancy.

Definition 29. Let A = 〈A, α〉 be an argument inAK . We will call A maximally liberal
iff there is no argument 〈A, β〉 such that β 
 α and α 6
 β. The set of all maximally
liberal arguments within AK will be denoted byAL

K .

Note that the only inference rule that can be applied to a single rule is SP. Therefore,
if A = 〈A, φ→ t〉 is an argument and A′ = 〈A, ψ→ t〉 is a maximally liberal argument,
then it must be that φ ` ψ.

Corollary 30. Let A = 〈A, φ→ T1 ◦ T2〉 be an argument, and let

P = { S ⊆ A | S is a simple ◦-path from T1 to T2 } .

Then A is maximally liberal iff ` φ⇔
∨

S∈P PCS .

Proof. It should be clear by the construction of the relevant n-ordered proof tree on
A that the most general patient class for the entailed rule is

∨
S∈P PCS . Thus, it fol-

lows from Definition 29 that if ` φ ⇔
∨

S∈P PCS then A must be maximally liberal.
Conversely, if A is maximally liberal then φ is the most general patient class, thus
` φ⇔

∨
S∈P PCS .

Putting together Proposition 24 and Corollary 30, it is easy to see that given a
set P of simple ◦-paths from T1 to T2 there is only one patient class modulo propo-
sitional equivalence such that

〈⋃
S∈P S , α

〉
is a maximally liberal argument, namely

α =
∨

S∈P PCS → T1 ◦ T2 (to ensure the minimality of the support we assume that
all paths S ∈ P have non-equivalent patient classes). This entails that we can omit
the claim of a maximally liberal argument as it can be inferred from the support. For
notational convenience we will at times replace the claim with ∗.

Our intention, then, is to concentrate our attention only on the maximally liberal
undercuts of a given argument, thereby reducing the redundancy of such a set. But
have we addressed all forms of redundancy that exist within the set of undercuts of an
argument? We present a counter-example below.

27



Example 13. Recall the set of rules K.

K = {P→ T1 > T2, P ∧ Q→ T2 > T3, ¬Q→ T2 > T3, P→ T3 > T1}

Consider again the rule P→ T1 > T2 and the argument D.

D = 〈{P ∧ Q→ T2 > T3,¬Q→ T2 > T3, P→ T3 > T1} , P→ T2 > T1〉

D1 = 〈{P ∧ Q→ T2 > T3, P→ T3 > T1} , P ∧ Q→ T2 > T1〉

D2 = 〈{¬Q→ T2 > T3, P→ T3 > T1} , P ∧ ¬Q→ T2 > T1〉

We can see that D, D1 and D2 all undercut the rule P→ T1 > T2, and that they are
all maximally liberal. Also, observe that the supports of D1 and D2 are strict subsets
of the support of D. In some sense, D undercuts P → T1 > T2 in a way that can be
broken down to the ways D1 and D2 undercut P→ T1 > T2. This is because the claim
of D is too general and therefore requires more rules from K.

Following on from the example, the next definition aims to capture those maximally
liberal arguments that have a minimal support in order to undercut a particular rule.

Definition 31. Let A = 〈A, α〉 be a maximally liberal argument in AL
K and let γ be

a rule. We say that A canonically undercuts γ iff (a) A undercuts γ and (b) for any
argument 〈B, β〉 ∈ AL

K that undercuts γ, it is the case that B 1 A. As usual, we say that
A canonically undercuts B = 〈B, β〉, or that A is a canonically undercut of B iff there
exists γ ∈ B such that A canonically undercuts γ.

The relationUK is defined as follows:

UK =
{

(A,B)
∣∣∣ A,B ∈ AL

K and A is a canonical undercut of B
}

It is easy to see thatUK in general is not symmetric nor transitive.

Example 14. Recall the set of rules K.

K =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3,

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

It is easy to see that the canonical undercuts of the rule P → T1 > T2 are the
following.

〈 {P ∧ Q→ T2 > T3, P→ T3 > T1} , P ∧ Q→ T2 > T1〉

〈 {¬Q→ T2 > T3, P→ T3 > T1} , P ∧ ¬Q→ T2 > T1〉

Once again, we see that there is an intuitive link between the structure of canonical
undercuts and the rule they canonically undercut. The following result confirms this
intuition.

28



Proposition 32. Let A = 〈A, α〉 be an argument in AL
K and γ a rule. Then, A canoni-

cally undercuts γ iff A ∪ {γ} is a simple >-cycle.

Proof. Right-to-left: on the basis that A ∪ {γ} is a simple >-cycle and the fact that A
is an argument, it is easy to show that α ./ γ and that, therefore, A undercuts γ. Now
assume that there is B ⊂ A and β ∈ R such that 〈B, β〉 is in AL

K and undercuts γ. By
applying Proposition 28 we obtain that there must be C ⊆ B such that C ∪ {γ} forms a
simple >-cycle, a contradiction. Therefore, A canonically undercuts γ.

Left-to-right: let α = φ→ T1 ◦T2, γ = ψ→ t and let P be the set of simple ◦-paths
from T1 to T2 in A. Clearly, |P| ≥ 1. From Corollary 30 we know that ` φ⇔

∨
S∈P PCS ,

and by assumption φ ∧ ψ 0 ⊥, thus ψ ∧
∨

S∈P PCS 0 ⊥. This means that there exists
S ψ ∈ P such that PCS ψ

∧ ψ 0 ⊥.
Now, assume that P > 1. For some S ′ ∈ P, suppose that PCS ′ ∧ ψ ` ⊥ is true, and

let

A′ =
⋃

S∈P\{S ′}

S

P′ =
{
S ⊆ A′

∣∣∣ S is a simple ◦-path from T1 to T2
}

A′ =

〈
A′,

∨
S∈P′

PCS → T1 ◦ T2

〉
.

Effectively, A′ is A without the rules that exist only in S ′ and, as P > 1, A′ , ∅ and
P′ , ∅. From Corollary 30, it should be clear that A′ is a maximally liberal argument.
By assumption it must be that S ψ , S ′, thus S ψ ∈ P′, therefore

∨
S∈P′ PCS ∧ ψ 0 ⊥.

Thus A′ is also an undercut of γ, contradicting the assumption that A is a canonical
undercut of γ.

Hence, it must be that PCS ∧ψ 0 ⊥ for all S ∈ P. Note that, as |P| > 1 it is the case
that for any S ∈ P, S ⊂ A. Therefore, for any S ∈ P, using Corollary 30 we obtain
that 〈S ,PCS 〉 is a maximally liberal argument that undercuts γ, again contradicting the
assumption that A is a canonical undercut of γ.

Therefore it must be that |P| = 1. From Proposition 28 we know that there is at
least one simple >-cycle in A ∪ {γ} thus A ∪ {γ} is a simple >-cycle, completing the
proof.

We can now turn our attention to structures that aggregate arguments and canonical
undercuts together, expressing aspects of the conflict intrinsic within a set of rules. The
main such structure we will examine is the argument tree, a structure that summarises
a supporting argument for a particular claim, its canonical undercuts and the canonical
undercuts of those, recursively. To define this structure we need some auxiliary defi-
nitions first. The following one concerns effectively a branch of an argument tree, and
precludes infinite recursion by forcing arguments to use rules in their support that no
previous argument in the branch has used.

Definition 33. Let 〈A1, α1〉 , . . . , 〈An, αn〉 be a sequence of arguments. This sequence
is non-repeating iff for every i ≤ n it is the case that Ai 1

⋃
j<i A j.

29



Before defining argument trees, we quickly recall definitions relevant to trees in
general. Let N be a set, the set of nodes, and T a binary relation over N. The tuple
〈N,T 〉 is called a tree iff T forms a directed acyclic graph such that for all nodes n there
exists at most one node m such that (m, n) ∈ T , and there exists exactly one node nr,
the root, such that there is no node m with (m, nr) ∈ T . A sequence of nodes n1, . . . , nk

such that n1 = nr and for any i < k, (ni, ni+1) ∈ T is called a branch.

Definition 34. An argument tree is a tuple 〈N,T, f 〉 where 〈N,T 〉 is a tree and f is a
function from N to arguments in AL

K such that:

• For all n1, n2 ∈ N, if (n1, n2) ∈ T then ( f (n2), f (n1)) ∈ UK .

• For any branch n1, . . . , nk, the sequence f (n1), . . . , f (nk) is non-repeating.

We will say that an argument tree 〈N,T, f 〉 supports a rule γ iff α 
 γ where
f (nr) = 〈A, α〉 and nr is the root of the tree.

Example 15. Given the set of rules K,

K =


P→ T1 > T2,

P ∧ Q→ T2 > T3,

¬Q→ T2 > T3,

P→ T3 > T1


T1 T2 T3

P
P ∧ Q

¬Q

P

there is the following argument tree supporting P ∧ Q→ T1 > T3.

〈{P→ T1 > T2, P ∧ Q→ T2 > T3} , P ∧ Q→ T1 > T3〉

↑

〈{P ∧ Q→ T2 > T3, P→ T3 > T1} , P ∧ Q→ T2 > T1〉

↑

〈{P→ T1 > T2,¬Q→ T2 > T3} , P ∧ ¬Q→ T1 > T3〉

The arrows denote that the argument below the arrow is a canonical undercut of the
argument above the arrow.

We can see in the example that by its definition, an argument tree does not need to
list all the possible interactions between the arguments contained in it, nor does it have
to contain all arguments that are relevant. The next definition allows us to express such
a condition.

Definition 35. An argument tree 〈N,T, f 〉 is full iff there exists no argument tree
〈N′,T ′, f ′〉 such that N ⊂ N′, T ⊂ T ′ and for all n ∈ N, f (n) = f ′(n).

Example 16. Recall the set of rules K. For convenience we add labels to the rules,
and use the labels in the graph on the right, instead of the patient classes.

30



K =


α : P→ T1 > T2,

β : P ∧ Q→ T2 > T3,

γ : ¬Q→ T2 > T3,

δ : P→ T3 > T1


T1 T2 T3

α

β

γ

δ

Continuing the previous example, the following argument tree supporting P∧Q→
T1 > T3 is full.

〈{α, β} , P ∧ Q→ T1 > T3〉

〈{β, δ} , P ∧ Q→ T2 > T1〉

〈{α, γ} , P ∧ ¬Q→ T1 > T3〉

〈{α, δ} , P→ T3 > T1〉

〈{γ, δ} , P ∧ ¬Q→ T2 > T1〉

In line with the literature on argumentation [19, 13], we will define a notion of
defeat which works alongside the notion of warrant. Such notions allow us to reason
about the collective defeat status of a statement that is supported by some argument
from a set of rules.

Definition 36. A node n in an argument tree 〈N,T, f 〉 is undefeated (i.e., not defeated)
whenever every node m such that (n,m) ∈ T is defeated.

Note that if a node n is a leaf-node, i.e., there is no m such that (n,m) ∈ T then n is
trivially undefeated.

Example 17. Returning to the last example, the argument tree with markings indicat-
ing that a node is defeated (D) or undefeated (U) is shown below.

〈{α, β} , P ∧ Q→ T1 > T3〉 (U)

〈{β, δ} , P ∧ Q→ T2 > T1〉 (D)

〈{α, γ} , P ∧ ¬Q→ T1 > T3〉 (U)

〈{α, δ} , P→ T3 > T1〉 (D)

〈{γ, δ} , P ∧ ¬Q→ T2 > T1〉 (U)

If the root node of a full argument tree is undefeated means that there exists an
argument supporting the claim of the root node (and its consequences) that survives all
attacks from its canonical undercuts, and that therefore, is warranted with respect to
the set of rules K. We capture this common definition of warrant below.

Definition 37. A rule γ is warranted (w.r.t. K) iff there exists a full argument tree
〈N,T, f 〉 that supports γ and whose root node is undefeated.

In the last example, the root node is undefeated, therefore, the rule supported by
the argument tree is warranted. Below we look at another example.

31



Example 18. Consider the following graph. For simplicity we omit the exact form of
the rules and we simply assume that all combinations of patient classes are consistent.

T1

T2

T3

T4

α

β

γ

δ

ε

Let α′ be the rule employing > that is contradictory to α, e.g. α′ = φ→ T2 > T1 if α =

φ → T1 > T2. There is exactly one full argument tree supporting α, shown below on
the left, and one full argument tree supporting α′, shown below on the right. Note that
here we use the symbol ∗ as a shorthand for the claim of a canonical undercut, since
as explained earlier, this can be deduced on the basis of the start and end treatments,
and the patient classes of the support.

〈{α} , α〉 (U)

〈{β, γ} , ∗〉 (D)

〈{δ, ε} , ∗〉 (U)

〈{β, γ} , α′〉 (D)

〈{α} , ∗〉 (U) 〈{δ, ε} , ∗〉 (U)

As can be seen, α is warranted and α′ is not warranted.

Whilst warrant is a useful argumentation-theoretic notion, it is obviously neces-
sary for the medical expert to decide on its validity in this context. We therefore only
propose it as a guide to the user.

7. Discussion and Conclusions

In summary, we have first defined a language that is capable of capturing some of
the most important aspects of clinical study results, and representing those as rules.
We then defined the logic 〈R,
〉, attempting to model some of the important ways
by which practitioners reason with clinical knowledge. This logic allows the drawing
of inferences from sets of rules that are incomplete and/or inconsistent. We looked
at the decision problem of entailment and provided upper bounds for its worst-case
complexity, as well as a characterisation result that can be used as the basis for the
construction of theorem-proving algorithms. To aid in analysing conflicting sets of
rules, we proceeded to define an argumentation system on top of this logic. We looked
at structural properties as well as the computational complexity of several relevant
decision problems and examined how concepts from the argumentation literature such
as argumentation trees and the notion of warrant can be used with our approach. We
feel that systems built around this approach will be of significant value to practitioners.

32



We motivated our choice to define a logic such as 〈R,
〉 and to use an argumen-
tation approach, in the introduction. Here, we look at other approaches to similar
problems.

There are similarities between the way we formalise the argumentation system here
and the approach of [9]. An assumption-based framework (ABF) is a structure consist-
ing of a logic along with a set of formulae called assumptions and a mapping of for-
mulae to formulae that effectively produces something akin to the negation of its input
(its contrary). While there is a similarity between our approach and ABFs in that we
define a logic that could plausibly be used in an ABF, there are important differences.
First, as is, the language R does not allow the definition of a mapping of a formula to
its contrary, since the negation would potentially require a disjunction of rules (e.g.,
the negation of φ → T1 > T2 would be φ → T2 > T1 or φ → T1 ∼ T2). Moreover, the
definition of attack in [9] sets the claim of the attacking argument to be the contrary of
the assumption being attacked. This is not appropriate in our approach for the reasons
cited earlier regarding the contrary mapping, but also due to the way the patient classes
interact with each other. For example, given a set of clinical trial results, we may only
be able to prove P ∧ Q → T2 > T1 when attacking P → T1 > T2, though the former
should still be considered a potentially adequate attack for the latter.

The requirement for transparent reasoning coupled with that for a simple language
naturally leads to a monotonic, credulous logic as we argued in the introduction. A dif-
ferent approach that has been studied in the past, is direct inference, the aim of which is
to somehow assign degrees of belief to statements, given a set of statistical statements
such as a set of clinical trial results. So, for example, the statement “if patient a takes
treatment T1, then a’s disease-free survival will improve” would be assigned a belief
degree based on an interpretation of a set of clinical trial results such as the one we pre-
sented in the introduction. Within this context, [3] represents perhaps one of the most
important contributions in this line of research. Although potentially applicable in our
context, direct inference fails to satisfy our requirement for transparent reasoning. In
addition, practitioners employ clinical knowledge in a very different, non-probabilistic
way, thereby making user acceptance of such a system more difficult.

Other argumentation-based approaches to common-sense reasoning with applica-
tions in the medical domain exist, such as [22] on drug prescription, and [1, 11, 18, 12]
on the execution of clinical guidelines. The focus of these approaches is different to
the one presented here, since they are aimed at capturing medical guidelines directly in
their rules while in this paper we capture clinical trial results as rules. Another obvi-
ous difference is that these systems generally rely on first-order logic for representing
knowledge, failing therefore to satisfy the requirement for a simple language. Another
difference is that in these approaches there is an implied requirement to manually cre-
ate the arguments that reflect new pieces of information to be handled by the system,
while in our approach this is simplified to the addition of the new results as additional
rules.

Previous work presented in [23] utilised an argumentation system similarly to this
paper, and although its adoption of Defeasible Logic Programming does not allow the
use of new inference rules as presented here, we did draw upon its proposed integration
of ontologies with argumentation in our definition of the language R. Moreover, R
allows expressing directly a superiority result comparing two treatments, i.e., with a

33



treatment comparison formula of the form T1 > T2, whereas in [23] it was generally
assumed that the clinical studies involved would compare a treatment against placebo,
or no treatment.

There are several possible avenues for further research. We have used proposi-
tional logic to express patient classes for simplicity and we have already hinted at the
possibility for integrating a description logic that is in use with medical ontologies, an
obvious candidate being the underlying logic used in [17]. In addition, it would be
interesting to explore extensions of the language where the treatments are themselves
parts of an ontology as well.

Further research is also required with respect to the complexity of some of the
decision problems we examined in this paper. We have provided upper bounds for
the worst-case complexity of entailment, one of the most central components of our
framework, placing it within Π

p
2 , a class generally considered intractable. Clearly, a

more accurate result regarding completeness would be desirable, or, otherwise, a proof
that the actual complexity is lower. Based on such results, algorithms and heuristics
can be sought, as well as an investigation of average-case complexity.

Another important line of research is the investigation of how a practitioner or
a patient can express their values. For example, a doctor may use preferences for
expressing that a particular trial is not of adequate statistical power and, therefore, its
conclusion may not defeat another, more powerful study’s conclusion. Alternatively, a
patient at high risk of a terminal cancer may accept strong side-effects that come with a
treatment that significantly improves their survival probability. Expressing these values
or preferences in our system would greatly improve the usefulness of argumentation.

Finally, from a practical point of view, the utility and usability of our proposal need
to be evaluated in a user context. This will necessitate an implementation of some of
the key aspects of the framework, the creation of test cases for use in an evaluation
study and the recruitment of clinicians other than the one involved in the writing of this
paper for participating in the study. We are now at the planning stages of this work.

References

[1] K. Atkinson, T.J.M. Bench-Capon, and S. Modgil. Argumentation for Decision
Support. In Database and Expert Systems Applications, 17th International Con-
ference, DEXA 2006, volume 4080 of Lecture Notes in Computer Science, pages
822–831. Springer, 2006.

[2] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. The description logic handbook: theory, implementation, and applica-
tions. Cambridge University Press, New York, NY, USA, 2003.

[3] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge
bases to degrees of belief. Artificial Intelligence, 87(1-2):75–143, 1996.

[4] S.G. Baker and B.S. Kramer. The transitive fallacy for randomized trials: If
A bests B and B bests C in separate trials, is A better than C? BMC Medical
Research Methodology, 2(13), 2002.

34



[5] T.J.M. Bench-Capon and P.E. Dunne. Argumentation in artificial intelligence.
Artificial Intelligence, 171(10-15):619–641, 2007.

[6] Ph. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.

[7] C.I. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument. ACM
Computing Surveys, 32(4):337–383, 2000.

[8] T.J. Cleophas, A.H. Zwinderman, and T.F. Cleophas. Statistics Applied to Clinical
Trials. Springer, 3rd edition, 2006.

[9] P.M. Dung, R.A. Kowalski, and F. Toni. Dialectic proof procedures for
assumption-based, admissible argumentation. Artificial Intelligence, 170(2):114–
159, 2006.

[10] B. Fisher, J. Dignam, N Wolmark, A. DeCillis, B. Emir, D.L. Wickerham,
J. Bryant, N.V. Dimitrov, N. Abramson, J.N. Atkins, H. Shibata, L. Deschenes,
and R.G. Margolese. Tamoxifen and chemotherapy for lymph node-negative, es-
trogen receptor-positive breast cancer. Journal of the National Cancer Institute,
89(22):1673–1682, 1997.

[11] J. Fox and S. Das. Safe and Sound: Artificial Intelligence in Hazardous Applica-
tions. MIT Press, 2000.

[12] J. Fox, D. Glasspool, D. Grecu, S. Modgil, M. South, and V. Patkar.
Argumentation-Based Inference and Decision Making–A Medical Perspective.
IEEE Intelligent Systems, 22(6):34–41, 2007.

[13] A.J. Garcı́a and G.R. Simari. Defeasible Logic Programming: An Argumentative
Approach. Theory and Practice of Logic Programming, 4(1-2):95–138, 2004.

[14] C. Umans M. Schaefer. Completeness in the Polynomial-Time Hierarchy: A
Compendium. SIGACT News, September 2002.

[15] U.S. National Library of Medicine. http://www.pubmed.gov/.

[16] OpenClinical. http://www.openclinical.org/aisinpractice.html.

[17] International Health Terminology Standards Development Organisation. System-
atized Nomenclature of Medicine-Clinical Terms. http://www.ihtsdo.org/

snomed-ct/.

[18] V. Patkar, C. Hurt, R. Steele, S. Love, A. Purushotham, M. Williams, R. Thom-
son, and J. Fox. Evidence-based guidelines and decision support services: A
discussion and evaluation in triple assessment of suspected breast cancer. British
Journal of Cancer, 95(11):1490–1496, 2006.

[19] H. Prakken and G. Sartor. Argument-Based Extended Logic Programming with
Defeasible Priorities. Journal of Applied Non-Classical Logics, 7(1):25–75, 1997.

35

http://www.pubmed.gov/
http://www.openclinical.org/aisinpractice.html
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org/snomed-ct/


[20] H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation.
In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, vol-
ume 4, pages 219–318. Kluwer, 2002.

[21] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

[22] R. Walton, C. Gierl, P. Yudkin, H. Mistry, M. Vessey, and J. Fox. Evaluation
of Computer Support for Prescribing (CAPSULE). British Medical Journal,
315:791–795, 1997.

[23] M. Williams and A. Hunter. Harnessing Ontologies for Argument-Based
Decision-Making in Breast Cancer. In Proceedings of the 19th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2007), volume 2,
pages 254–261, 2007.

36


	Introduction
	A Language for Clinical Trial Results
	A Logic for Clinical Knowledge
	Rule Entailment as a Decision Problem
	The Complexity of Rule Entailment
	Argumentation with Clinical Knowledge
	Discussion and Conclusions

