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All metaheuristic optimization algorithms require some initialization, and the initializa-
tion for such optimizers is usually carried out randomly. However, initialization can have
some significant influence on the performance of such algorithms. This paper presents a
systematic comparison of 22 different initialization methods on the convergence and ac-
curacy of five optimizers: differential evolution (DE), particle swarm optimization (PSO),
cuckoo search (CS), artificial bee colony (ABC) algorithm and genetic algorithm (GA). We
have used 19 different test functions with different properties and modalities to compare
the possible effects of initialization, population sizes and the numbers of iterations. Rigor-
ous statistical ranking tests indicate that 43.37% of the functions using the DE algorithm
show significant differences for different initialization methods, while 73.68% of the func-
tions using both PSO and CS algorithms are significantly affected by different initialization
methods. The simulations show that DE is less sensitive to initialization, while both PSO
and CS are more sensitive to initialization. In addition, under the condition of the same
maximum number of function evaluations (FEs), the population size can also have a strong
effect. Particle swarm optimization usually requires a larger population, while the cuckoo
search needs only a small population size. Differential evolution depends more heavily on
the number of iterations, a relatively small population with more iterations can lead to
better results. Furthermore, ABC is more sensitive to initialization, while such initializa-
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tion has little effect on GA. Some probability distributions such as the beta distribution,
exponential distribution and Rayleigh distribution can usually lead to better performance.
The implications of this study and further research topics are also discussed in detail.

Keywords: Initialization, Differential Evolution, Particle Swarm Optimization, Cuckoo
Search, Probability Distribution.

Acronyms

CEC Congress of Evolutionary Computation
CS Cuckoo Search
DE Differential Evolution
DE-a Adaptive Variant of DE
GA Genetic Algorithm
LHS Latin Hypercube Sampling
PSO Particle Swarm Optimization
PSO-w PSO with an Inertia Weight

1. Introduction

Many real-world optimization problems are very complex, subject to multiple nonlin-
ear constraints. Such nonlinearity and multimodality can cause difficulties in solving these
optimization problems. Both empirical observations and numerical simulations suggest
that the final solution may depend on the initial starting points for multimodal optimiza-
tion problems [1, 2]. This is especially true for gradient-based methods. In addition, for
problems with non-smooth objective functions and constraints, gradient information may
not be available. Hence, most traditional optimization methods struggle to cope with such
challenging issues. A good alternative is to use metaheuristic optimization algorithms, such
as particle swarm optimization (PSO) and cuckoo search (CS). These metaheuristic opti-
mizers are gradient-free optimizers, which do not require any prior knowledge or rigorous
mathematical properties, such as continuity and smoothness [1, 3].

In the past decade, various studies have shown that these metaheuristic algorithms are
effective in solving different types of optimization problems, including noisy and dynamic
problems [1, 4, 5, 6]. For example, engineering design problems can be solved by an
improved variant of the PSO [7] and the connectivity of the internet of things (IoT) can be
enhanced by a multi-swarm optimization algorithm [8]. In addition, the optimized energy
consumption model for smart homes can be achieved by differential evolution (DE) [9],
while the optimal dam and reservoir operation can be achieved by a hybrid of the bat
algorithm (BA) and PSO [10]. A fuzzy-driven genetic algorithm [11] was used to solved a
sequence segmentation problem, and a fuzzy genetic clustering algorithm was used to solve
a dataset partition problem [12].
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Almost all algorithms for optimization require some forms of initialization, where some
educated guess or random initial solutions are generated. Ideally, the final optimal solutions
found by algorithms should be independent on their initial choices. This is only true for a
few special cases such as linear programs and convex optimization; however, a vast majority
of problems are not linear or convex, thus such dependency can be a challenging issue. In
fact, most algorithms will have different degrees of dependency on their initial setting,
and the actual dependency can be problem-specific and algorithm-specific [13, 14]. For
large-scale and multimodal problems, the effect of initialization is more obvious, and many
algorithms may show differences in the probability of finding global optima on different
initialization [15].

However, it still lacks a systematical study of initialization and how the initial dis-
tributions may affect the performance of algorithms under a given set of problems. The
good news is that researchers start to realize the importance of initialization and have
started to explore other possibilities with the aim to increase the diversity of the initial
population [13]. For example, based on the guiding principle of covering the search space
as uniformly as possible, some studies have preliminarily explored certain ideas of different
initialization methods, including quasi-random initialization [16, 17, 18, 19], chaotic sys-
tems [20, 21], anti-symmetric learning methods [22], and Latin hypercube sampling [23, 24].
In some cases, these studies have improved the performance of algorithms such as PSO and
genetic algorithms (GA), but there are still some serious issues. Specifically, quasi-random
initialization is simple and easy to implement, but it suffers from the curse of dimension-
ality [19]; for chaos-based approaches, random sequences are generated by a few chaotic
maps and fewer parameters (initial conditions), but they can inevitably have very sensi-
tive dependence upon their initial conditions under certain conditions [25]. In addition, in
the anti-symmetric learning method, twice the number of the population as the solution
cohorts are used so as to select the solutions for the next generation, which doubles the
computational cost. Though the Latin hypercube sampling is very effective at low dimen-
sions, its performance can deteriorate significantly for higher-dimensional problems. We
will discuss this issue in more detail later in this paper.

On the other hand, some researchers attempted to design some specific type of ini-
tialization in combination with a certain type of algorithm so as to solve a particular
type of problems more efficiently. For example, Kondamadugula et al. [14] used a special
sampling evolutionary algorithm and random sampling evolutionary algorithm to estimate
parameters concerning digital integrated circuits; Li et al. [26] applied knowledge-based
initialization to improve the performance of the genetic algorithm for solving the traveling
salesman problem; Li et al. [27] used the degrees of nodes to initialization for network disin-
tegration problem, and Puralachetty et al. [28] proposed a two-stage initialization approach
for a PID controller tuning in a coupled tank-liquid system. However, these approaches
do have some drawbacks. Firstly, such initialization requires sophisticated allocation of
points, which may not be straightforward to implement and can thus increase the compu-
tational costs. Secondly, they may be suitable only for a particular type of problems or
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algorithms. Thirdly, such initialization is largely dependent on the experience of the user.
Finally, there is no mathematical guidance about the ways of initialization in practice.

This motivates us to carry out a systematic study of different initialization methods and
their effects on the algorithmic performance. The choice of 22 probability distributions are
based on rigorous probability theory with the emphasis on different statistical properties.
In addition, we have used five different metaheuristic optimization algorithms for this
study, and they are differential evolution (DE), particle swarm optimization (PSO), cuckoo
search (CS), artificial bee colony (ABC) algorithm and genetic algorithm (GA). There are
over 100 different algorithms and variants in the literature [1, 2, 24], it is not possible to
compare a good fraction of these algorithms. Therefore, the choice of algorithm has to
focus on different search characteristics and representativeness of algorithms in the current
literature. Differential evolution is a good representative of evolutionary algorithms, while
particle swarm optimization is considered as the main optimizer of swarm intelligence
based algorithms. In addition, the cuckoo search uses a long-tailed, Lévy flights-based
search mechanism that has been shown to be more efficient in exploring the search space.
Furthermore, artificial bee colony is used to represent the bee-based algorithms, while the
genetic algorithm has been considered as a cornerstone for a vast majority of evolutionary
algorithms.

Based on the simulations and analyses below, we can highlight the features and contri-
butions of this paper as follows:

1. Numerical experiments show that, under the same condition of the maximum number
of fitness evaluations(FEs), some algorithms require a large number of populations
to reach the optimal solution, while others can find the optimal solution through
multiple iterations under a small number of populations. In this paper, we make some
recommendations concerning the number of the initial population and the maximum
number of iterations of the five algorithms.

2. The initialization of 22 different probability distributions and their influence on the
performance of the algorithm are studied systematically. It is found that some algo-
rithms such as the differential evolution are not significantly affected by initialization,
while others such as the particle swarm optimization are more sensitive to initializa-
tion. This may be related to the design mechanisms of these algorithms themselves,
which is also an important indicator to measure the robustness of algorithms.

3. For the five algorithms under consideration, we have used a statistical ranking tech-
nique, together with a correlation test, to gain insight into the appropriate initializa-
tion methods for given benchmark functions.

Therefore, the rest of this paper is organized as follows. Section 2 briefly introduces
the fundamentals of the three metaheuristic optimizers with some brief discussions of the
other two optimizers, followed by the discussion of motivations and details of initialization
methods in Section 3. Experimental results are presented in Section 4, together with the
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comparison of different initialization methods on some benchmark functions, including com-
monly used benchmarks and some recent CEC functions. Further experiments concerning
key parameters of different algorithms are also carried out. Then, Section 5 discusses the
correlation between the distributions of the initial population and their corresponding final
solutions. Finally, Section 6 concludes with discussions about further research directions.

2. Metaheuristic Optimizers

Though traditional optimization algorithms can work well for local search, metaheuris-
tic optimization algorithms have some main advantages for global optimization because
they usually treat the problem as a black-box and thus can be flexible and easy to use [29].
Furthermore, such optimizers do not have strict mathematical requirements (e.g., differen-
tiability, smoothness), so they are suitable for problems with different properties, including
discontinuities and nonlinearity. Various studies have shown their effectiveness in different
applications [29, 30, 31].

The initialization of a vast majority of metaheuristic optimization algorithms has been
done by using uniform distributions. Although this approach is easy to implement, em-
pirical observations suggest that uniform distributions may not be the best option in all
applications. It is highly needed to study initialization systematically using different proba-
bility distributions. As there are many optimization algorithms, it is not possible to study
all of them. Thus, this paper will focus on five algorithms: differential evolution (DE),
particle swarm optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) and
genetic algorithm (GA). These algorithms are representative, due to the different search
mechanisms and their richer characteristics.

2.1. Differential Evolution

Differential evolution (DE) is a representative evolutionary and heuristic algorithm [32],
which has been used in many applications such as optimization, machine learning and
pattern recognition [33]. Though differential evolution has a strong global search capability
with a relatively high convergence rate for unimodal problems, the performance of DE can
depend on its parameter setting. For highly nonlinear problems, its convergence rate can
be low. To overcome such limitations, various mutation strategies and adaptive parameter
control for F have been proposed to improve its performance[34]. In the DE algorithm, each
individual is a candidate solution or a point in the D-dimensional search space, and the i-th
individual can be represented as xi � pxi,1, xi,2, � � � , xi,Dq. In essence, different mutation
strategies typically generate a mutation vector pvi,1, vi,2, � � � � � � , vi,Dq by modifying the
current solution vector in different ways.

Crossover is another strategy of modifying a solution. For example, the binomial
crossover is a component-wise modification, controlled by a crossover parameter CR, which
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takes the following form:

ui,j �
"
vi,j , if randp0, 1q   CR or j � jrand,
xi,j , otherwise,

(1)

where xi,j is the j-th dimension of the i-th individual solution. The updated vector can be
expressed as vi,j after the mutation step, and ui,j corresponds to the j-th dimension of the
i-th individual after crossover.

Among various variants of DE, Qin et al. [35] proposed a self-adaptive DE (SaDE)
variant with four mutation strategies in its pool, which can be selected at different gen-
erations by a given criterion. More specifically, according to the success and failure of
each mutation, a fixed learning period (LP) was used to update the probability of each
mutation strategy being selected for the next generation. In addition, F was drawn from a
normal distribution with a mean of 0.5 and standard deviation of 0.3; that is Np0.5, 0.32q.
Similarly, CR was drawn from a normal distribution NpCRmk, 0.1q, where CRmk was
calculated from previous LP generations. Though the performance of SaDE was good, its
complexity had increased.

For the ease of implementation and comparison in this paper, we use a simplified
adaptive DE (DE-a). Based on the idea of the SaDE algorithm, a simple adaptive DE
(DE-a) algorithm is proposed in this paper. In the mutation pool, we use five mutation
strategies as follows:

• DE/rand/1 [32]
vi,j � xr1,j � F � pxr2,j � xr3,jq, (2)

• DE/best/1
vi,j � xbest,j � F � pxr1,j � xr2,jq. (3)

• DE/current-to-best/1 [34]

vi,j � xi,j � F � pxbest,j � xi,jq � F � pxr2,j � xr3,jq. (4)

• DE/best/2
vi,j � xbest,j � F � pxr1,j � xr2,jq � F � pxr3,j � xr4,jq. (5)

• DE/rand/2
vi,j � xr1,j � F � pxr2,j � xr3,jq � F � pxr4,j � xr5,jq. (6)

where F P r0, 2s is a parameter for mutation strength, and xbest,j is the j-th dimension
of the current best solution. Here, xr1,j , xr2,j , xr3,j , xr4,j and xr5,j represent 5 different
individuals, which are selected randomly from the current population.

Both parameters CR and F are initialized to a set of discrete values. That is, CR P
r0.4, 0.5, 0.6, 0.7, 0.8s and F P r0.5, 0.6, 0.7, 0.8, 0.9s. The current mutation strategy and
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parameter settings are not updated if better solutions are found during the iterations.
Otherwise, mutation strategies and parameters are randomly selected from the above sets
or ranges. Our simplified variant becomes easier to implement and the performance is
much better than the original DE, as observed from our simulations later. Therefore, we
will use this variant for later simulations.

2.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a well-known swarm intelligence optimizer with
good convergence [36], which is widely used in many applications [37]. However, it can have
premature convergence for some problems, and thus various variants have been developed
to remedy it with different degrees of improvement. Among different variants, an improved
PSO with an inertia weight (PSO-w), proposed by Shi and Eberhart [38], is efficient and
its main steps can be summarized as the following update equations:

vt�1
i � w � vti � c1r

t
1ppti � xtiq � c2r

t
2pptg � xtiq (7)

xt�1
i � xti � vt�1

i (8)

where vti and xti are the velocity vector and position vector, respectively, for particle i at
iteration t. Here, pti is the individual best solution of i-th individual in the previous t
iterations, and ptg is the best solution of the current population. In Eq. (7), c1 and c2

are the two learning parameters, while rt1 and rt2 are two random numbers at the current
iteration, drawn from a uniform distribution. In a special case when the inertia weight
w � 1, this variant becomes the original PSO.

The value of w can affect the convergence rate significantly. If w is large, the algorithm
can have a faster convergence rate, but it can easily fall into local optima, leading to
premature convergence. Studies showed that a dynamically adjusted w with iteration t
can be more effective. That is

w � wmax � pwmax � wminq � t
Tmax

(9)

where Tmax represents the maximum number of iterations, wmin and wmax are the minimum
inertia weight and the maximum inertia weight, respectively. we will use PSO-w in the
later experiments.

2.3. Cuckoo Search

Cuckoo search (CS) algorithm is a metaheuristic algorithm, developed by Xin-She Yang
and Suash Deb [39], which was based on the behavior of some cuckoo species and their
interactions with host species in terms of brooding parasitism. CS also uses Lévy flights
instead of isotropic random walks, which can explore large search spaces more efficiently. As
a result, CS has been applied in many applications such as engineering design [40], neural
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networks [41], semantic Web service composition [42], thermodynamic calculations [43] and
so on.

Briefly speaking, the CS algorithm consists of two parts: local search and global search.
The current individual xti is modified to a new solution xt�1

i by using the following global
random walk:

xt�1
i � xti � α` Lps, λq, (10)

where α is a factor controlling step sizes, and s is the step size. L is a random vector drawn
from a Lévy distribution [29]. That is

Lps, λq � λΓpλq sinpπλ{2q
π

� 1

s1�λ
(11)

Here, ‘�’ means that L is drawn as a random-number generator from the distribution on
the right-hand of the equation. Γ is the Gamma function, while 1   λ ¤ 3 is a parameter.
One of the advantages of using Lévy flights is that it has a small probability of long
jumps, which enables the algorithm to escape from any local optima and thus increases its
exploration capability [1, 44]. The local search is mainly carried out by

xt�1
i � xti � αsbHppa � εq b pxtj � xtkq (12)

where Hpuq is the Heaviside function. This equation modifies the solution xti using two
other solutions xtj and xtk. Here, the random number ε is drawn from a uniform distribution
and s is the step size. A switching probability pa is used to switch between these two search
mechanisms, intending to balance global search and local search.

2.4. Other Optimizers

There are other optimizers that can be representative for the purpose of comparison.
The genetic algorithm (GA) has been a cornerstone of almost all modern evolutionary
algorithms, which consists of crossover, mutation and selection mechanisms. The GA has
a wide range of applications such as pattern recognition [45], neural networks and control
system optimization [46] as well as discrete optimization problems [47]. The literature on
this algorithm is vast, thus we will not introduce it in detail here.

On the other hand, the artificial bee colony (ABC) algorithm was inspired by foraging
behaviour of honey bees [48], and this algorithm has been applied in many applications [49,
50, 51]. A multi-objective version also exists [52]. Due to the page limit, we will not
introduce this algorithm in detail. Readers can refer to the relevant literature [53].

We will use the above five algorithms in this paper for different initialization strategies.

3. Initialization Methods

The main objective of this paper is to investigate different probability distributions for
initialization and their effects on the performance of the algorithms used.
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3.1. Motivations of this work

Both existing studies and empirical observations suggest that initialization can play an
important role in the convergence speed and accuracy of certain algorithms. A good set of
initial solutions, especially, when the initial solutions that are near the true optimality by
chance, can reduce the search efforts and thus increase the probability of finding the true
optimality. As the location of the true optimality is unknown in advance, initialization
is largely uniform in a similar manner as those for Monte Carlo simulations. However,
for problems in higher dimensions, a small initial population may be biased and could
lie sparsely in unpromising regions. In addition, the diversity of the initial population is
also important, and different distributions may have different sampling emphasis, leading
to different degrees of diversity. For example, some studies concerning genetic algorithms
have shown some effects of initialization [54, 55].

Many initialization methods such as the Latin hypercube sampling (LHS) in the lit-
erature are mainly based on the idea of uniform spreading in the search space. They are
easy to implement and can work well sometimes. For example, the two-dimensional land-
scape of the Bukin function is shown in Fig. 1. When the search space is in the area of
r�15,�5s � r�6, 3s, the PSO-w algorithm with an initial population obeying a uniform
distribution can find the optimal solution in a few iterations. The distribution of the par-
ticles is shown in Fig. 2. For comparison, another run with an initial beta distribution
has also been carried out as shown in Fig. 3. Specifically, the � indicates the real optimal
solution at (-10,1), while the dots show the locations of the current population and (
)
indicates the best solution in current population. Fig. 2(a) shows the initial population
with a uniform distribution in the search domain, while these population converged near
the optimal solution after 5 iterations by the PSO-w algorithm, as shown in Fig. 2(b) where
the current best solution of the population is close to the real optimal solution. However,
the initial population (as shown in Fig. 3(a)) drawn from a beta distribution could fall into
a local optimum after 5 iterations as shown in Fig. 3(b). This clearly shows the effect and
importance of initialization.
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Figure 1: The landscape of Bukin Function N.6.
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Figure 2: (a) The initial population drawn from a uniform distribution where the blue dots are the locations
of the initial population, and the red 
 indicates the best solution found by the current population. The
real optimal solution of this function is represented by �. (b) Distribution of the same population after 5
iterations by PSO-w, the population converges near the real optimal solution.
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Figure 3: (a) Initial population drawn from a beta distribution where the locations are marked with dots
and the true optimality is marked with �. (b) The best solution 
 found by PSO-w after 5 iterations is
far from the true optimal solution, indicating premature convergence.
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For the above function, initialization by a uniform distribution seems to give better
results. However, for another function, uniform distributions may give worse results, even
though uniform distributions are widely used. As an illustrative example, the best solution
of the Michalewicz function is fmin � �1.801 in two-dimensional space at [2.20319,1.57049]
(see Fig. 4). If the initialization was done by a uniform distribution, it can lead to premature
convergence as shown in Fig. 5, while the initialization by a beta distribution can lead to
the global optimal solution after 5 iterations as shown in Fig. 6. Clearly, this shows that
uniform distributions are not the best initialization method for all functions. For the same
algorithm (such as PSO-w), different initialization methods can lead to different accuracies
for different problems. This suggests that different initialization methods should be used
for different problems. We will investigate this issue further in a more systematically way.
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Figure 4: The landscape of the Michalewicz Function.
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Figure 5: (a) Initial population drawn from a uniform distribution. (b) The location of the best solution 

found by PSO-w after 5 iterations is far from the true optimal solution �, leading to premature convergence.

In order to study the effect of initialization systematically, we will use a diverse range of
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Figure 6: (a) Initial population drawn from a beta distribution. (b) The best solution 
 found by PSO-w
after 5 iterations is close to the true optimal solution �.

different initialization methods such as Latin hypercube sampling and different probability
distributions. We now briefly outline them in the rest of this section.

3.2. Details of initialization methods

Before we carry out detailed simulations, we now briefly outline the main initialization
methods.

3.2.1. Latin hypercube sampling

Latin hypercube sampling (LHS) is a spatial filling mechanism. It creates a grid in the
search space by dividing each dimension into equal interval segments, and then generates
some random points within some interval. It utilizes ancillary variables to ensure that each
of the variables to be represented is in a fully stratified feature space [56]. For example,
if three sample points are needed in a two-dimensional (2D) parameter space, the three
points may have four location scenarios (shown in Fig. 7). Obviously, these three points
can also be scattered in the diagonal subspace of the 2D search space.
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Figure 7: A 2D example of the LHS where three sampling points are distributed in four possible scenarios.
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In the LHS, a set of samples are distributed so that they can sparsely distribute in the
search space so as to effectively avoid the problem of over aggregation of sampling points.
Studies show that such sampling can provide a better spread than uniform distributions,
but it does not show a distinct advantage for higher-dimensional problems. So we will
investigate this issue further.

3.2.2. Beta distribution

A beta distribution is a continuous probability distribution over the interval (0,1). Its
probability density function (PDF) is given by

ppx; a, bq � Γpa� bq
Γpaq � Γpbqx

a�1p1� xqb�1, (13)

where Γpaq is the standard Gamma function. This distribution has two shape parameters
(a ¡ 0, b ¡ 0) that essentially control the shape of the distribution. Its notation is usually
written as X � Bepa, bq. Its expected value is µ � a

a�b and its variance is ab
pa�bqpa�b�1q .

3.2.3. Uniform distribution

Uniform distributions are widely used in initialization, and a uniform distribution
Upa, bq on an interval ra, bs is given by

ppxq �
"

1
b�a , a   x   b,

0, otherwise,
(14)

where a and b are the limits of the interval. Its expectation or mean is a�b
2 , and its variance

is pb�aq2

12 .

3.2.4. Normal distribution

Gaussian normal distributions are among the most widely used distributions in various
applications, though they are not usually used in initialization. The probability density
function of this bell-shaped distribution can be written as

ppxq � 1?
2πσ

expp�px� µq2
2σ2

q, (15)

with the mean of µ and the standard deviation σ. This distribution is often written as
N(µ, σ2) where its mean determines the central location of the probability curve and its
standard deviation σ determines the spread on both sides of the mean [29, 57]. Normal dis-
tributions can be approximated by other distributions and can be linked closely with other
distributions such as the log-normal distribution, Student-t distribution and F -distribution.
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3.2.5. Logarithmic normal distribution

Unlike the normal distribution, the Logarithmic normal distribution is an asymmetrical
distribution. Its probability density function is

ppxq � 1

xσ
?

2π
exp

�
� plnx� µq2

2σ2

�
. (16)

A random variable X obeying this distribution is often written as lnX � Npµ, σ2q. Its
expectation and variance are exprµ� σ2{2s and rexppσ2q � 1sexpr2µ� σ2s, respectively.

3.2.6. Exponential distribution

An exponential distribution is asymmetric with a long tail, and its probability density
function can be written as

ppxq �
"
λe�λx, x ¥ 0,
0, x   0,

(17)

where λ ¡ 0 is a parameter. Its mean and standard deviation are 1{λ and 1{λ2, respectively.

3.2.7. Rayleigh distribution

The probability density function of the Rayleigh distribution can be written as

ppxq � x

σ2
e�

x2

2σ2 , x ¡ 0, (18)

whose mean and variance are
a

π
2 and 4�π

2 σ2 � 0.429σ2, respectively [58].

3.2.8. Weibull distribution

The Weibull distribution has a probability density function [57]

fpx;λ, kq �
#

k
λ

�
x
λ

�k�1
e�px{λq

k

, x ¥ 0,
0, x   0,

(19)

where λ is a scale parameter, and k is a shape parameter. This distribution can be con-
sidered as a generalization of a few other distributions. For example, k � 1 corresponds to
an exponential distribution, while k � 2 leads to the Rayleigh distribution. Both its mean
and variance are λΓp1� 1

k q and λ2rΓp1� 2
k q � Γp1� 1

k q2s, respectively.
Based on the above different probability distributions, we will carry out various numer-

ical experiments in the rest of this paper.
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4. Numerical Experiments

4.1. Experimental settings

In order to investigate the possible influence of different initialization methods on the
five algorithms (PSO-w, DE-a, CS, ABC, GA), a series of experiments have been carried
out first using a set of nine benchmark functions as shown in Table 1. The experiments will
focus first on the PSO-w, DE-a and CS, and then similar tests will be carried out for the
ABC and GA. These benchmark functions are chosen based on their different properties
such as their modal shapes and numbers of local optima. More specifically, f1, f3, f6, and
f8 are continuous, unimodal functions, while f2, f4, f5, f7 and f9 are multimodal functions.
For example, the global minimum of f1 lies in a narrow, parabolic valley, which can be
difficult for many traditional algorithms. Functions f2, f4, f5, and f9 have many local
minima that are widespread. The bowl-shaped function f3 has D local minima with only
one global optimum, while the Easom function has several local minima, and its global
minimum lies in a small area in a relatively large search space. In addition, we will use 10
more recent benchmarks from CEC2014 and CEC2017 to be discussed in detail later.

Table 1: Basic Benchmark Functions.
Name Function Search Range xopt Opt

Rosenbrock f1pXq �
°D�1

i�1 r100pxi�1 � x2i q
2
� pxi � 1q2s r�5, 5sD p1, 1, � � � , 1q 0

Ackley f2pXq � �20 expp�0.2
b

1
D

°D
i�1 x

2
i q

� expp 1
D

°D
i�1 cosp2πxiqq � 20 � e r�10, 10sD p0, 0, � � � , 0q 0

Sphere f3pXq �
°D

i�1 x
2
i r�5, 5sD p0, 0, � � � , 0q 0

Rastrigin f4pXq �
°D

i�1 rx2i � 10 cosp2πxiq � 10s r�5.12, 5.12sD p0, 0, � � � , 0q 0

Griewank f5pXq � 1
4000

°D
i�1 x

2
i �

±D
i�1 cosp

xi?
i
q � 1 r�600, 600sD p0, 0, � � � , 0q 0

Zakharov f6pXq �
°D

i�1 x
2
i � p 1

2

°D
i�1 ixiq

2 � p 1
2

°D
i�1 ixiq

4 r�100, 100sD p0, 0, � � � , 0q 0

Alpine f7pXq �
°D

i�1 |xi sinpxiq � 0.1xi| r�10, 10sD p0, 0, � � � , 0q 0

Easom f8pXq � r�
±D

i�1 cospxiqs expp�
°D

i�1 pxi � πq2q r�100, 100sD pπ, π, � � � , πq -1

Schwefel f9pXq � 418.98288727243369 � n �
°D

i�1 xi sinp
a
|xi|q r�500, 500sD 420.96857 � p1, 1, � � � , 1q 0

For a fair comparison, we have set the same termination condition for all the algorithms
with the maximum number of function evaluations (FEs) of 600000, each algorithm with
certain initialization has 20 independent runs. For all the test functions, the dimensionality
is set to D � 30. As there are so many sets of data generated, we have summarized the
results as the ‘Best’, ‘Mean’, ‘Var’ (variance) and ‘Dist’. Here, ‘Dist’ corresponds to the
mean distance from the obtained solution xfind to the true global optimal solution xopt.
That is

Dist �
°TN
i�1

°D
j�1

���xfind
i,j � xj

opt
���

TN
, (20)

where TN � 20 denotes the total number of runs in each set of experiments. This distance
metric not only measures the distance of the results, but also measures the stability of the
obtained solutions.

For the algorithm-dependent parameters, after some preliminary parametric studies,
we have set CR and F to r0.4, 0.5, 0.6, 0.7, 0.8s and r0.5, 0.6, 0.7, 0.8, 0.9s, respectively, for
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DE-a. In the PSO-w, learning factors c1 and c2 are set to 1.5, and the inertia weight
w � 0.8. For the CS, we have used pa � 0.25 and λ � 1.5. In addition, the population size
(NP ) will be varied so as to see if it has any effect on the results.

4.2. Influence of population size and number of iterations

Before we can compare different initialization methods in detail, we have to figure out
if there is any significant effect due to the number of the population (NP ) used and the
maximum number of iterations T . Many studies in the existing literature used different
population sizes and numbers of iterations [59]. Though the total number of function
evaluations for all functions and algorithms is set to 600 000, the maximum iteration T
will vary with NP . Obviously, a larger NP will lead to a smaller T .

In order to make a fair comparison, all the algorithms are initialized by the same
random initialization. Four functions with D � 30 are selected randomly to reduce the
computational efforts. We have carried out numerical experiments and the results are
summarized in Tables 2 to 4.

Table 2: Influence of the population size and maximum iteration number on the DE-a algorithm.

Fun value
NP=100
T=6000

NP=200
T=3000

NP=300
T=2000

NP=600
T=1000

NP=1000
T=600

NP=2000
T=300

NP=3000
T=200

Rosenbrock

Best 0 5.09e-19 1.39e-09 2.53 12.225 19.929 22.198
Mean 0.0987 0.1993 0.1993 7.2212 13.632 21.224 23.878
Var 1.5057 0.7947 0.7947 215.2 1.2934 1.9251 1.2532
Dist 0.2 0.0999 0.1003 5.6464 14.933 22.638 25.277

Sphere

Best 5.67e-197 9.71e-105 8.64e-70 7.19e-36 1.02e-22 9.05e-11 1.63e-07
Mean 1.78e-187 1.57e-96 4.45e-65 7.74e-33 1.92e-19 1.72e-09 2.74e-06
Var 0 3.63e-191 1.99e-128 2.88e-64 5.98e-37 1.18e-17 2.39e-11
Dist 2.0039e-48 2.01e-48 1.48e-32 2.34e-16 9.17e-10 1.44e-4 5.88e-3

Rastrugin

Best 6.9647 18.271 91.987 113.07 112.94 130.32 140.17
Mean 43.547 96.429 113.77 122.2 131.08 142.57 151.7
Var 1108.7 558.39 95.447 48.535 77.995 41.862 64.614
Dist 14.371 19.502 21.89 23.979 24.69 26.31 27.254

Griewank

Best 0 0 0 0 0 7.21e-12 7.07e-09
Mean 1.11e-03 1.11e-03 2.22e-03 0 3.53e-03 1.11e-03 1.11e-03
Var 7.34e-06 7.34e-06 1.21e-05 0 8.69e-05 7.34e-06 7.35e-06
Dist 1.1368 1.1368 2.2735 8.60e-07 0.9227 1.1371 1.1572

Table 2 shows the experimental results of the DE-a algorithm with different NP and T .
When NP � 100 and T � 6000, DE-a shows better performance in most cases. That means
the accuracy of the DE-a algorithm depends more heavily on the number of iterations, and
it manages to find the optimal solution with a small population size.

Table 3 summarizes the results for the PSO-w algorithm. We can see that the PSO-w
algorithm performs well on the Rosenbrock, Rastrugin and Griewank functions when the
size of population is 3000 and the number of iterations is 200. Only for the Sphere function,
the PSO-w has the highest search accuracy when NP � 600 and T � 1000. The results
show that the accuracy of the PSO-w may depend more on its population size.
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Table 3: Influence of the population size and maximum iteration number on the PSO-w algorithm.

Fun value
NP=100
T=6000

NP=200
T=3000

NP=300
T=2000

NP=600
T=1000

NP=1000
T=600

NP=2000
T=300

NP=3000
T=200

Rosenbrock

Best 27.141 17.382 7.7837 17.936 13.534 16.019 14.754
Mean 36.055 28.803 24.005 21.842 18.815 19.304 18.085
Var 264 161.56 18.62 5.035 7.1071 6.5569 2.1004
Dist 27.465 26.791 25.076 23.145 20.193 20.678 19.607

Sphere

Best 2.46e-04 1.69e-08 9.77e-16 1.33e-36 4.56e-28 3.91e-18 4.12e-14
Mean 2.32e-03 2.35e-07 1.14e-11 5.68e-34 2.84e-27 1.30e-17 1.44e-13
Var 3.51e-06 1.30e-13 1.35e-21 1.14e-66 4.69e-54 6.21e-35 6.36e-27
Dist 1.91e-01 1.78e-03 7.72e-06 6.91e-17 2.18e-13 1.54e-08 1.59e-06

Rastrugin

Best 28.59 17.913 22.884 19.899 12.935 12.935 8.9567
Mean 44.819 35.542 33.732 32.187 25.073 22.287 18.26
Var 91.411 98.105 41.561 68.803 85.093 48.604 30.551
Dist 27.43 23.591 23.187 21.74 18.805 17.91 15.081

Griewank

Best 5.36e-05 5.12e-09 2.92e-14 0 0 2.22e-16 0
Mean 1.14e-03 3.25e-03 5.77e-03 2.34e-03 3.69e-04 3.70e-04 3.69e-04
Var 5.25e-06 1.28e-04 2.76e-04 1.09e-04 2.74e-06 2.73e-06 2.73e-06
Dist 1.177 1.2848 1.4333 5.02e-01 3.79e-01 3.79e-01 3.79e-01

Table 4 shows that the CS algorithm has better performance under a small population
and repeatedly iterations. Compared with DE, CS can find the optimal solution with
a smaller size of population. This may be related to the design mechanism of the CS
algorithm, which increases the diversity in the iteration process of the algorithm. This is
one of the advantages of the CS algorithm.

Based on the above experiments, it is recommended that the population size and the
number of maximum iterations be set as shown in Table 5. Thus, these parameter settings
will be used in all the subsequent experiments.

4.3. Numerical results

In order to compare the possible effects of different initialization strategies for the
first three algorithms (PSO-w, DE-a and CS), 22 different initialization methods have
been tested, including 9 different distributions with different distribution parameters. As
before, we have used different benchmarks with D � 30 and have run each algorithm
independently for 20 times. Tables 6, 7 and 8 show the comparison results of the ‘Best’,
‘Mean’, ‘Var’ and ‘Dist’ obtained by the three algorithms.

As presented in these three tables, for nine benchmark functions and three different
algorithms, four indicators with 22 different initialization methods have been tested and
analyzed. It can be seen that initialization methods can have a great influence on the results
of these algorithms. For some functions, some initialization methods are significantly better
than others.

But for other functions, a quick look seems to give the impression that the results are
not quite consistent. For example, it seems that some initialization methods can find the
‘Best’ fitness values with a higher accuracy, but their ‘Mean’ fitness values are less accurate.
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Table 4: Influence of the population size and maximum iteration number on the CS algorithm.

Fun value
NP=30

T=20000
NP=60

T=10000
NP=100
T=6000

NP=200
T=3000

NP=300
T=2000

NP=600
T=1000

NP=1000
T=600

Rosenbrock

Best 0 3.18e-13 2.76e-01 7.01 12.55 31.904 92.556
Mean 3.22e-30 4.05e-09 2.6204 11.9608 16.78 33.51 105.21
Var 1.04e-58 2.67e-16 1.5332 7.8448 7.1492 8.1804e-01 83.05
Dist 5.55e-17 1.90e-05 4.3424 12.113 15.364 27.867 27.592

Sphere

Best 1.91e-139 4.48e-62 1.27e-32 5.91e-14 1.23e-08 1.42e-03 7.60e-02
Mean 1.41e-136 2.54e-61 3.63e-32 9.10e-14 2.22e-08 2.03e-03 1.36e-01
Var 1.47e-271 7.27e-122 1.86e-64 7.30e-28 5.04e-17 1.86e-07 5.14e-04
Dist 3.16e-68 2.03e-30 8.20e-16 1.30e-06 6.50e-04 1.97e-01 1.62

Rastrugin

Best 0 12.791 24.333 47.727 55.124 77.96 89.599
Mean 9.45e-01 16.8 34.625 57.695 68.146 89.385 102.36
Var 8.83e-01 7.4984 16.161 36.615 33.234 38.407 54.137
Dist 9.45e-01 14.626 22.947 30.64 33.247 36.986 40.746

Griewank

Best 0 0 0 2.71e-11 1.28e-06 2.48e-02 2.57e-02
Mean 0 0 0 1.67e-10 2.49e-06 3.19e-02 3.66e-02
Var 0 0 0 1.48e-20 2.72e-12 3.27e-07 2.05e-05
Dist 5.28e-07 5.46e-07 5.19e-07 2.81e-04 3.60e-02 1.3211 4.5692

Table 5: Parameter settings for DE-a, PSO-w and CS.
algorithm NP T
DE-a 100 6000
PSO-w 3000 200
CS 30 10000

To make sense of the results, we have carried out some statistical analyses, including the
Friedman ranking test [60], and the results are presented in the next subsection.

4.4. Comparison and Friedman rank test

Four indicators (‘Best’, ‘Mean’, ‘Var’, and ‘Dist’) are used to analyze the results of
each algorithm from different perspectives. In order to compare the effects of the 22
initialization approaches, a useful non-parametric test, known as the Friedman rank test,
is used for statistical analyses.

Let us start with function f1 in Table 6. For the Friedman rank test to compare different
initialization methods, the null hypothesis is that the effects of initialization methods for
DE-a are all equal, while its alternative hypothesis is that at least one of the initialization
methods may differ from at least one of the others. That is

H0 : I1 � I2 � I3 � � � � � I22

H1 : Not all the initialization effects are equal.
(21)

In essence, the Friedman rank test begins by ordering the ranks of the initialization
methods for test indicators. For indicator ‘Best’, as can be seen from Fig. 6, different
initializations produce the same results. So the first row of Table 9 is 11.5 � p1� 2� � � � �
21� 22q{22. Calculate the rank values for each row with this method (Different values are
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sorted by traditional sorting methods). The rank values of different initialization methods
for f1 are listed in Table 9.

For such Friedman rank test, we usually focus on the mean rank of different indicators.
In the ‘mean’ row in Table 9, we can see that the minimum value is 4.38 and there are three
such values. For the ease of observation, the order or rank of initialization corresponding
to these three values is 1. The second smallest is 7.38 that repeated five times, so their
rank is 2. In this way, the orders of the initialization performance for all different functions
and their corresponding two-side p-values are given in Table 10.

It can be seen clearly in Table 10 that different initialization methods may have different
effects on different functions. Apart from functions f2, f8 and f9, all the p-values of other
six functions are far less than 0.05, so the null hypothesis should be rejected at the α � 0.05
level. This means that the initialization will affect 2/3 of the functions, and only three
functions (f2, f8 and f9) are less influenced by initialization when the DE-a algorithm is
used.

For the DE-a algorithm, it is easy to see in Table 10 which initialization method is more
suitable for certain functions. Now the question is that which initialization method(s) may
be better for the DE-a algorithm? We use the above results in Table 10 and treat the
nine functions as observation samples. By comparing 22 different initialization methods
using the Friedman rank test, the results are summarized in Table 11. The p-value is
0.617, which is much greater than 0.05, so we cannot reject the null hypothesis at the
α � 0.05 level. This means that the performance of the DE-a is not particularly sensitive
to the initialization on most test functions, which implies that DE is a relatively stable and
robust algorithm.

Similar to the analysis for the DE-a algorithm, we now use Friedman rank tests for
the PSO-w. The sorted results of nine functions are shown in Table 12. The p-values for
functions f1, f8 and f9, are 0.344, 0.459, 0.984, respectively, which means that we cannot
reject the null hypothesis. This indicates that different initialization methods have no
obvious effect on these three functions. However, for functions f3, f4, f6 and f7, when
the initial population distribution obeys Bep3, 2q, the accuracy of the solution is higher.
In this case, its ‘Best’, ‘Mean’, ‘Var’ and ‘Dist’ values are all better than those by other
distributions.

Considering all the benchmark functions, the overall ranks for the PSO-w algorithm are
summarized in Table 13. The null hypothesis is that the effects of initialization methods for
the PSO-w are equally well. The p-value is 0.001, which is less than 0.05, so we can reject
the null hypothesis at the α � 0.05 level. Thus, we can conclude that the performance
of the PSO-w is sensitive to the initialization methods on test functions, and the three
best initialization methods for the PSO-w algorithm are Random, Bep2.5, 2.5q and LHS,
respectively.

Similarly, we have carried out some analysis for the results by the CS. Table 14 shows
the rank results of different initialization methods for the CS over functions f1� f9. Apart
from functions f8 and f9, the p-values of all other functions are far less than 0.05, which
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indicates that the CS algorithm is significantly affected by initialization. For most test
functions, the most commonly used pseudo-random method is not the best initialization
method. For example, the solution of f6 under the beta distribution has the highest
accuracy and stability.

In Table 15, the effect of different initialization methods on the CS is sorted. The null
hypothesis is that the initialization methods for the CS are equally effective. The p-value
is 0.00276, which is far less that 0.05, so we can confidently reject the null hypothesis at
the α � 0.05 level. In other words, the selection of initial population has a great influence
on the CS algorithm. It seems that the best initialization method is the Beta distribution,
followed by Rayleigh and Uniform distributions.

4.5. Test problems from CEC2014 and CEC2017 suites

In this section, some well-known single objective real-parameter numerical optimization
problems from the CEC2014 and CEC2017 benchmark suites have also been tested. The
CEC2014 test suite [61] contains 30 test problems where f1 to f3 are unimodal functions, f4

to f6 are multi-modal, f7 to f22 are hybrid, and f23 to f30 are compositions. The CEC2017
suite contains mainly single objective real parameter bound-constrained numerical opti-
mization benchmark problems [62]. The 30 benchmark functions are divided into four
categories: unimodal functions (F1-F3), multimodal functions (F4-F10), hybrid functions
(F11-F20) and composition functions (F21-F30). All these problems are the minimization of
the objective function with in the regular domain of r�100, 100sD where D is the dimension
of the problem. Obviously, it is time-consuming to test all these functions. In order to
focus on the main objectives of this paper, we have selected some representative functions
with different properties. These 10 selected benchmarks are seven from CEC2014 functions
and three from the CEC2017 suite (see Table 16).

Each algorithm has been run independently 20 times for each initialization method,
and the stopping criterion is the same for all runs with 600000 fitness evaluations. The
population size NP and the maximum number of iterations T of DE-a are set to 300 and
2000, respectively. For the PSO-w, the NP is 2000 and the T is 300. The NP is set to
100 and the T is set to 6000 for CS. The parameters involved in three algorithms are the
same as the previous settings. There is no explicit reference about the optimal solutions
of CEC2014 and CEC217 suites, so the indicator ‘Dist’ is not presented in this part. The
experimental results of these 30 dimensions are shown in Tables 17 to 19:

From these tables, we can see that the CEC2014 and CEC2017 benchmark problems
are indeed more difficult and challenging than the problems considered in the previous
subsection. In other words, different search areas have different characteristics and most of
the CEC problems have many local optima. More detailed results regarding the quality of
the solutions obtained are shown in Table 17, Table 18, and Table 19. From these results,
it is clear that the performance of these algorithms for most functions were influenced by
different initialization methods, but for a few functions, the performance is less affected by
different initialization methods.
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For all the results of these ten test functions, the Friedman test has used to rank
all initialization methods of each algorithm. For the DE-a, the p values of ten functions
are 0.191, 0.012, 0.822, 0.742, 0.912, 0.004, 0.0726, 0.858, 0.827, and 0.006, respectively.
For the PSO-w, the p values of ten functions are 0.021, 0.024, 0.743, 0.001, 0.031,0.009,
0.004, 0.196, 0.001, and 0.001, respectively. For the CS, the p values of ten functions are
0.005, 0.036, 0.091, 0.006, 0.023, 0.006, 0.0001, 0.061, 0.275, and 0.013, respectively. The
Friedman tests of all three algorithms are summarized in Table 20. The p value of the DE-a
is 0.3045, which is greater than 0.05, so we cannot reject the null hypothesis at the α � 0.05
level. It can be considered that various initialization methods have little influence on the
DE-a algorithm. The p values of both the PSO-w and CS are all less than 0.05, this means
that the effects of different initialization methods are significantly different. The robustness
of three algorithms is completely consistent with the previous experimental results, which
again shows that initialization is important and their detailed study is necessary.

Furthermore, the top three most suitable initialization methods are: Bep2, 3q, Random
and Bep3, 2q for the PSO-w algorithm. For the CS, Ep0.5q, Raylp0.1q, Ep0.1q perform bet-
ter in solving the CEC2014 and CEC2017 problems. Although initialization has little effect
on the DE-a algorithm, some methods are still preferred. The recommended initialization
methods are lognp0, 0.5q, lognp0, 1q, and Weibp1, 1.5q. This seems to be slightly inconsis-
tent with the earlier conclusion. The reason may be that these CEC2014 and CEC2017
problems are much more complex and multimodal. It can be expected that a combination
of different initialization methods may be useful to enhance the diversity of the population.

Based on all the experimental results, for the 19 test functions in this paper, we can
say that 43.37% of the functions using the DE-a algorithm show significant differences for
different initialization methods, while 73.68% of the functions using the PSO-w and the CS
are significantly affected by different initialization methods. In other words, initialization
methods may have some effects on the performance of the algorithm, whether it is for less
complex functions or more complex problems.

21



Table 6: Comparison of DE-a for functions f1-f9 with different initialization methods.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0.9967 0.7973 0.7973 0.5980 0.7973 0.7973 0.5980 0.5980 0.3987 0.1993 0.3987
Var 3.1368 2.6767 2.6767 2.133 2.6767 2.6767 2.133 2.133 1.5057 0.79466 1.5057
Dist 0.4999 0.3999 0.3999 0.2999 0.3999 0.3999 0.2999 0.2999 0.2 0.09999 0.2

f2

Best 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66E-15 2.66E-15
Mean 6.04e-15 5.68e-15 5.86e-15 5.86e-15 5.68e-15 5.86e-15 5.51e-15 6.04e-15 5.33e-15 5.86e-15 5.51e-15
Var 6.31e-31 1.69e-30 1.20e-30 1.20e-30 1.69e-30 1.20e-30 2.13e-30 6.31e-31 2.49e-30 1.20e-30 2.13e-30
Dist 5.63e-14 5.28e-14 5.50e-14 5.47e-14 5.37e-14 5.71e-14 5.28e-14 5.61e-14 5.11e-14 5.44e-14 5.23e-14

f3

Best 2.35e-194 3.08e-197 4.91e-195 8.12e-195 3.43e-195 1.69e-195 2.40e-195 7.07e-194 2.62e-191 1.62e-193 3.66e-193
Mean 2.73e-189 2.67e-185 6.97e-186 3.27e-187 1.87e-187 1.03e-187 4.39e-188 1.42e-187 2.16e-185 8.86e-187 1.19e-186
Var 0 0 0 0 0 0 0 0 0 0 0
Dist 1.33e-94 5.54e-93 4.13e-93 1.22e-93 1.11e-93 4.91e-94 4.77e-94 7.61e-94 5.34e-93 1.93e-93 2.05e-93

f4

Best 5.9698 3.9798 4.9748 6.9647 6.9647 4.9748 6.9647 2.9849 5.9698 7.9597 4.9748
Mean 42.146 36.604 30.935 44.655 48.159 19.308 45.89 34.506 39.749 34.128 42.129
Var 877.55 1124.6 998.76 1243.8 1229.1 349.48 896.15 943.9 819.12 661.84 1006.8
Dist 13.865 11.948 13.167 13.421 14.901 10.458 16.187 12.368 14.037 14.138 13.541

f5

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 4.31e-03 4.56e-03 6.04e-03 6.16e-03 4.19e-03 3.82e-03 5.67e-03 5.67e-03 3.82e-03 3.57e-03 4.68e-03
Var 3.38e-05 1.94e-05 5.58e-05 8.77e-05 4.15e-05 4.05e-05 4.99e-05 3.78e-05 3.73e-05 6.40e-05 2.81e-05
Dist 3.5522 4.3823 4.6998 4.5174 3.0828 2.9011 4.3142 4.5029 3.1007 2.2772 4.0719

f6

best 7.14e-04 1.69e-04 7.76e-05 8.13e-03 2.52e-03 1.06e-03 1.81e-04 7.29e-04 2.88e-03 7.33e-03 9.60e-04
Mean 0.7707 0.2982 0.1959 0.8781 0.6424 0.8083 0.6176 0.7647 0.6395 1.1053 0.3683
Var 2.9675 1.2030 0.2235 1.8932 1.3720 2.2181 3.4087 1.8174 1.1824 7.0834 0.2632
Dist 2.2541 1.0356 1.1638 2.9246 2.5203 2.5707 2.0005 2.7499 2.5098 3.1681 2.1418

f7

Best 6.41e-179 2.30e-171 3.37e-202 9.60e-158 1.26e-175 3.15e-190 3.18e-157 6.17e-175 6.19e-191 1.62e-186 2.66e-193
Mean 2.69e-16 4.97e-16 3.28e-16 1.81e-16 5.25e-16 1.25e-16 5.75e-16 2.75e-16 2.25e-16 3.22e-16 2.78e-16
Var 1.92e-31 3.20e-31 1.60e-31 4.55e-32 5.29e-31 8.40e-32 1.76e-31 9.26e-32 6.79e-32 1.68e-31 1.21e-31
Dist 3.3825 5.0903 4.4269 3.0651 5.8807 2.455 5.6116 3.9507 3.7535 3.8837 4.34

f8

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0 0 0 0 0 0 0 0 0 0 0
Var 0 0 0 0 0 0 0 0 0 0 0
Dist 1373.1 1317.2 1350.1 1333.4 1343.6 1354.2 1353.9 1256.2 1343.2 1315.9 1333.6

f9

Best -3.64e-12 -3.64e-12 118.44 -3.64e-12 -1208.1 -1330.4 -3.64e-12 -83319 -9507.6 -2585.2 -3167.7
Mean 159.89 324.72 379 342.48 1716.7 2918.7 225.03 -22174 -3801 1872.5 732.47
Var 18125 64990 42231 46360 2.92e+06 4.24e+06 38244 2.89e+08 7.38e+06 3.89e+06 3.45e+06
Dist 976.72 1928.1 2315.2 2036.6 34256 24285 1374.6 60249 34954 8528.4 22632

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0.5980 0.7973 1.3953 0.3987 0.1993 0.3987 0.7973 0.3987 0.1993 0.7973 0.7973
Var 2.133 2.6767 3.806 1.5057 0.7947 1.5057 2.6767 1.5057 0.79466 2.6767 2.6767
Dist 0.2999 0.3999 0.6999 0.2 0.09999 0.2 0.3999 0.2 0.09999 0.3999 0.3999

f2

Best 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 6.22e-15 2.66e-15 6.22e-15
Mean 5.86e-15 5.68e-15 6.04e-15 5.86e-15 5.51e-15 5.51e-15 5.68e-15 5.68e-15 6.22e-15 6.04e-15 6.22e-15
Var 1.20e-30 1.69e-30 6.31e-31 1.20e-30 2.13e-30 2.13e-30 1.69e-30 1.69e-30 0 6.31e-31 0
Dist 5.55e-14 5.34e-14 5.71e-14 5.39e-14 5.35e-14 5.36e-14 5.27e-14 5.43e-14 5.79e-14 5.66e-14 5.70e-14

f3

Best 1.72e-192 3.16e-193 2.30e-194 2.25e-194 1.10e-194 1.73e-194 1.95e-193 1.29e-194 1.18e-195 2.14e-195 6.84e-195
Mean 4.73e-187 1.06e-185 8.21e-187 4.64e-188 1.06e-184 6.70e-188 1.53e-186 4.18e-188 2.44e-187 9.04e-188 3.05e-185
Var 0 0 0 0 0 0 0 0 0 0 0
Dist 1.36e-93 5.21e-93 1.25e-93 3.99e-94 1.09e-92 4.95e-94 1.54e-93 3.80e-94 8.66e-94 6.81e-94 6.29e-93

f4

Best 4.9748 2.9849 4.9748 2.9849 5.9698 5.9698 4.9748 5.9698 4.9748 3.9798 4.9748
Mean 42.129 33.681 25.801 36.415 35.321 41.014 31.766 33.768 40.713 35.916 44.553
Var 1148 790.32 782.65 1050.8 1068.3 983.76 1127.1 1090.5 1115.5 1184 1290.4
Dist 14.202 12.842 12.735 13.968 12.871 14.386 12.713 13.309 13.435 13.335 14.058

f5

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 6.40e-03 4.44e-03 3.70e-03 2.46e-03 6.16e-03 2.96e-03 2.34e-03 3.82e-03 5.18e-03 6.16e-03 3.08e-03
var 5.19e-05 2.91e-05 2.46e-05 2.30e-05 5.78e-05 2.28e-05 1.82e-05 4.12e-05 2.93e-05 4.31e-05 3.25e-05
Dist 4.6522 3.7506 3.3293 2.106 4.5919 2.5793 1.9941 2.5779 4.1793 4.9742 2.4003

f6

Best 3.23e-03 1.09e-03 3.89e-03 5.40e-04 1.19e-03 3.29e-03 5.35e-04 2.03e-03 3.35e-03 5.32e-04 5.10e-04
Mean 1.0868 0.3263 0.3506 0.0958 0.6177 0.2773 0.7498 0.9980 0.6868 3.3764 0.6231
Var 3.8065 0.4366 0.3968 0.0149 2.1068 0.2543 0.9155 4.2390 3.0450 128.9300 1.0124
Dist 3.1982 1.5674 1.9328 1.0814 2.3737 1.7252 2.9348 3.0664 2.3291 3.7989 2.5342

f7

Best 1.23e-151 1.19e-166 6.09e-174 1.75e-182 1.64e-150 5.93e-190 3.33e-168 5.81e-173 3.47e-168 4.69e-175 7.21e-187
Mean 4.11e-16 4.27e-16 2.69e-16 2.03e-16 3.86e-16 1.50e-15 2.86e-16 3.05e-16 3.58e-16 1.61e-16 3.14e-16
Var 2.80e-31 3.79e-31 1.63e-31 9.48e-32 1.72e-31 7.74e-30 1.89e-31 9.61e-32 1.93e-31 6.00e-32 1.05e-31
Dist 4.5089 4.716 4.3668 3.5245 4.3919 8.8051 4.1528 4.1528 4.554 3.1052 4.0508

f8

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0 0 0 0 0 0 0 0 0 0 0
Var 0 0 0 0 0 0 0 0 0 0 0
Dist 1348.7 1319.5 1317 1340.6 1317.1 1295.9 1386.8 1322 1354.3 1310.2 1333.8

f9

Best -3.64e-12 118.44 -3.64e-12 -3.64e-12 -3.64e-12 236.88 -3.64e-12 -13182 -4568.3 -3.64e-12 -3.64e-12
Mean 265.5 484.61 2642 370.12 1599.4 983.04 1034.8 -6474.3 1346.3 222.07 318.8
Var 39026 88492 3.88e+06 66401 3.02e+06 6.10e+05 2.86e+06 1.40e+07 6.37e+06 53850 48821
Dist 1566.4 2904.8 12783 2197.8 4777.1 6005 3977.6 40105 25694 1293.4 1891.9
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Table 7: Comparison of PSO-w for functions f1-f9 with different initialization methods.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1

Best 1.90e-08 16.383 17.351 14.452 17.431 16.145 17.047 14.375 15.049 1.9259 8.11e-05
Mean 12.924 18.405 18.932 18.724 19.349 18.744 21.668 20.457 18.064 15.289 14.776
Var 614.41 1.5182 1.3712 2.8465 2.5575 3.8338 189.06 134.23 2.7577 32.079 37.001
Dist 4.0164 20.043 20.546 20.248 20.682 20.308 20.005 18.914 19.624 16.927 16.334

f2

Best 4.75e-07 5.49e-07 3.59e-07 6.52e-07 7.02e-07 7.75e-07 4.56e-07 7.76e-07 1.09e-06 4.39e-07 4.40e-07
Mean 1.53e-01 1.07e-01 4.70e-02 8.50e-04 3.66e-03 3.20e-02 1.16e-01 7.52e-02 6.06e-02 5.96e-02 1.89e-01
Var 1.37e-01 1.28e-01 4.37e-02 8.82e-06 6.29e-05 2.04e-02 1.26e-01 1.13e-01 6.65e-02 6.65e-02 2.21e-01
Dist 3.09e-01 2.79e-01 9.16e-02 4.78e-03 1.96e-02 4.92e-02 2.68e-01 2.28e-01 1.47e-01 1.42e-01 5.06e-01

f3

Best 4.77e-14 4.50e-14 8.96e-14 6.51e-14 8.40e-14 6.46e-14 1.02e-13 4.78e-14 6.51e-14 5.85e-14 7.13e-14
Mean 1.49e-13 1.26e-13 1.98e-13 1.39e-13 1.42e-13 1.72e-13 2.09e-13 1.81e-13 1.50e-13 1.57e-13 1.74e-13
Var 6.53e-27 2.35e-27 7.91e-27 3.49e-27 1.37e-27 3.42e-27 1.63e-26 8.98e-27 3.88e-27 3.65e-27 5.97e-27
Dist 1.68e-06 1.53e-06 1.92e-06 1.60e-06 1.63e-06 1.79e-06 1.97e-06 1.81e-06 1.67e-06 1.70e-06 1.82e-06

f4

Best 16.915 6.9659 17.91 9.9548 10.947 12.938 15.923 13.931 12.936 15.92 13.931
Mean 27.668 16.933 28.767 22.39 24.428 21.397 22.79 23.14 21.165 27.765 25.275
Var 43.693 35.101 62.087 39.554 37.565 41.602 28.926 42.563 25.969 35.863 47.994
Dist 19.907 14.339 20.704 17.617 18.361 16.823 17.618 17.468 16.475 19.509 18.91

f5

Best 1.43e-10 1.48e-10 2.01e-10 2.99e-10 1.62e-10 1.36e-10 4.01e-10 2.38e-10 2.22e-10 9.77E-11 2.41E-10
Mean 8.99e-03 8.62e-03 8.00e-03 1.12e-02 8.62e-03 9.85e-03 9.36e-03 1.02e-02 1.03e-02 9.11e-03 9.59e-03
Var 6.34e-05 3.09e-05 9.18e-05 1.28e-04 7.49e-05 1.12e-04 8.82e-05 9.96e-05 1.07e-04 1.14e-04 1.31e-04
Dist 7.3018 7.0998 5.8384 7.0651 6.3561 6.5636 7.0443 7.454 6.9119 6.0607 6.2669

f6

Best 9.18e-05 4.88e-06 6.42e-05 4.53e-05 7.86e-05 3.58e-05 5.92e-05 7.84e-05 4.38e-05 1.87e-04 1.82e-04
Mean 9.54e-04 1.57e-04 1.35e-03 4.32e-04 3.94e-04 8.71e-04 9.79e-04 9.28e-04 6.74e-04 1.30e-03 1.78e-03
Var 1.05e-06 2.82E-08 1.29e-06 6.05e-08 8.45e-08 1.41e-06 1.08e-06 1.01e-06 3.98e-07 1.46e-06 1.28e-05
Dist 1.19e-01 4.75e-02 1.46e-01 8.63e-02 8.08e-02 1.15e-01 1.23e-01 1.19e-01 1.05e-01 1.47e-01 1.40e-01

f7

Best 1.29e-02 1.76e-03 1.78e-02 3.82e-03 5.48e-03 5.26e-03 6.30e-03 9.67e-03 3.52e-03 1.23e-02 1.30e-02
Mean 6.99e-02 1.85e-02 4.51e-02 2.58e-02 3.26e-02 2.32e-02 5.06e-02 3.72e-02 3.13e-02 5.30e-02 5.97e-02
Var 3.52e-03 1.58e-04 6.32e-04 4.34e-04 3.76e-04 3.02e-04 3.33e-03 3.05e-04 6.72e-04 4.64e-03 1.54e-03
Dist 39.429 14.155 35.415 19.585 21.599 19.558 26.302 23.057 19.963 29.271 32.17

f8

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0 0 0 0 0 0 0 0 0 0 0
Var 0 0 0 0 0 0 0 0 0 0 0
Dist 1091.3 1012.2 1158.5 1514.6 5500.2 4678.4 2247.6 6917.9 9429.8 3703 4829.9

f9

Best 2053.3 2112.8 2546.5 2151.6 -6422.2 -3147.9 4490.9 -1.04e+05 -13842 -2612.6 -18992
Mean 2811.1 3320.5 3670.8 2859.7 -2435.2 -1415.8 5569 -51602 -10275 57.926 -7186.7
Var 1.70e+05 4.02e+05 1.91e+05 1.54e+05 2.11e+06 1.65e+06 2.69e+05 4.07e+08 3.66e+06 1.91e+06 1.25e+07
Dist 6586.7 9418.9 14068 9433.5 37369 30269 17740 98148 37286 18758 31444

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1

Best 16.449 13.908 13.012 17.453 7.95e-04 13.064 2.46e-01 6.1102 1.3975 14.909 16.213
Mean 19.28 18.472 17.983 18.637 16.005 19.003 20.822 18.077 20.893 18.03 18.369
Var 1.6701 3.7361 6.84837 1.3217 25.016 4.4588 358.48 13.88 183.51 3.565 2.2941
Dist 20.954 19.898 19.395 20.132 17.446 20.556 15.883 19.229 19.228 19.393 19.624

f2

Best 4.60e-07 5.37e-07 5.14e-07 3.88e-07 3.89e-07 5.01e-07 3.82e-07 3.92e-07 4.43e-07 4.80E-07 6.11E-07
Mean 1.36e-01 6.11e-02 4.66e-02 4.67e-02 8.24e-02 1.88e-01 1.94e-03 1.52e-01 1.97e-01 6.15e-02 2.26e-05
Var 1.70e-01 6.64e-02 4.34e-02 4.34e-02 1.36e-01 2.46e-01 5.95e-05 1.37e-01 1.87e-01 6.70e-02 1.42e-09
Dist 3.71e-01 1.48e-01 8.26e-02 8.35e-02 2.77e-01 5.62e-01 1.06e-02 3.07e-01 5.34e-01 1.59e-01 1.35e-04

f3

Best 9.53e-14 4.69e-14 8.81e-14 4.12e-14 6.00e-14 3.43e-14 4.76e-14 7.89e-14 8.11e-14 4.34e-14 7.52e-14
Mean 1.61e-13 1.53e-13 1.66e-13 1.38e-13 1.63e-13 1.71e-13 1.48e-13 1.65e-13 1.68e-13 1.66e-13 1.21e-13
Var 3.76e-27 5.19e-27 2.13e-27 4.08e-27 4.76e-27 5.07e-27 4.41e-27 4.80e-27 6.63e-27 5.33e-27 1.70e-27
Dist 1.76e-06 1.67e-06 1.76e-06 1.59e-06 1.73e-06 1.74e-06 1.64e-06 1.74e-06 1.78e-06 1.77e-06 1.53e-06

f4

Best 12.934 20.931 14.929 10.959 14.006 26.864 17.91 14.935 11.94 11.944 15.921
Mean 25.526 38.759 21.196 19.801 25.846 38.663 29.556 23.736 22.745 20.113 22.641
Var 60.968 113.88 21.165 28.328 53.31 63.94 63.415 25.204 61.3 24.206 34.464
Dist 18.662 23.836 16.721 16.122 19.268 23.936 20.801 17.967 17.626 16.326 17.47

f5

Best 1.13e-10 3.15e-10 1.47e-10 2.58e-10 2.43e-10 3.14e-10 2.19e-10 2.86e-10 1.38e-10 1.19e-10 2.52e-10
Mean 6.64e-03 7.14e-03 9.11e-03 1.29e-02 1.22e-02 1.08e-02 1.41e-02 8.37e-03 9.96e-03 8.74e-03 1.24e-02
Var 1.32e-04 7.52e-05 5.68e-05 1.95e-04 1.62e-04 1.44e-04 1.86e-04 1.77e-04 2.39e-04 9.21e-05 1.90e-04
Dist 4.153 5.4522 6.5607 8.0532 7.823 6.8695 8.2484 5.5116 6.1723 5.7461 7.3272

f6

Best 1.04e-04 7.86e-05 4.82e-05 2.44e-05 1.76e-04 2.22e-04 5.56e-05 4.07e-05 4.57e-05 2.27e-05 7.34e-05
Mean 7.91e-04 4.89e-03 7.57e-04 1.86e-04 1.47e-03 3.98e-03 1.04e-03 4.37e-04 7.40e-04 4.28e-04 3.26e-04
Var 7.00e-07 4.87e-05 3.41e-07 2.93e-08 1.48e-06 2.01e-05 8.13e-07 7.49e-08 7.59e-07 1.45e-07 5.26e-08
Dist 1.07e-01 2.59e-01 1.09e-01 5.41e-02 1.56e-01 2.41e-01 1.28e-01 8.73e-02 1.06e-01 8.21e-02 7.31e-02

f7

Best 4.07e-03 2.29e-02 2.09e-03 2.17e-03 9.49e-03 1.61e-02 7.42e-03 1.11e-02 1.20e-02 7.28e-03 6.92e-03
Mean 3.42e-02 6.99e-02 2.67e-02 2.77e-02 3.65e-02 7.81e-02 5.73e-02 2.87e-02 4.88e-02 3.32e-02 2.88e-02
Var 8.60e-04 1.34e-03 3.08e-04 8.30e-04 6.89e-04 2.96e-03 2.39e-03 6.56e-04 1.36e-03 8.67e-04 2.02e-04
Dist 21.761 44.023 18.272 17.403 31.41 51.998 32.112 22.349 25.514 20.956 20.691

f8

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0 0 0 0 0 0 0 0 0 0 0
Var 0 0 0 0 0 0 0 0 0 0 0
Dist 2144.8 2460.6 3292.1 1221.1 3123.6 2346.7 3268.4 6778.9 4051.7 1487 1562.7

f9

Best 3851.7 2151.8 -3501.2 2211.4 478.1 2526.7 495.23 -19232 -8430.5 1934.6 1638.4
Mean 5721.5 2866.3 -686.19 3238.6 2372.5 2988.6 2509.5 -13907 -4593.5 2693.6 2569.2
Var 1.08e+06 2.47e+05 2.19e+06 3.00e+05 1.41e+06 93053 1.04e+06 6.64e+06 3.64e+06 1.48e+05 1.84e+05
Dist 18835 11125 25640 9832.4 14121 15581 17327 48313 30333 9012.9 7984
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Table 8: Comparison of CS for functions f1-f9 with different initialization methods.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1

Best 7.49e-25 2.51e-12 4.78e-12 5.09e-12 4.43e-13 3.88e-12 5.26e-12 1.25e-23 9.93e+05 5.85e-23 9.71e-29
Mean 6.52e-03 9.11e-10 4.08e-08 1.99e-01 1.99e-01 1.52e-08 4.30e-09 3.00e-07 1.10e+06 2.02e-01 1.39e-04
Var 6.24e-04 5.33e-18 2.01e-14 7.95e-01 7.95e-01 2.58e-15 1.35e-16 1.08e-12 2.58e+09 7.94E-01 1.89E-07
Dist 4.93e-02 1.29e-05 7.41e-05 1.00e-01 1.00e-01 5.69e-05 3.88e-05 1.34e-04 1.16e+02 1.28e-01 2.42e-03

f2

Best 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 1.70e+01 2.66e-15 2.66e-15
Mean 9.31e-02 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 9.31e-02 2.66e-15 1.71e+01 2.66e-15 4.66e-02
Var 8.22e-02 0 0 0 0 0 8.22e-02 0 7.48e-03 0 4.34e-02
Dist 1.64e-01 3.15e-14 3.22e-14 3.20e-14 3.13e-14 3.17e-14 1.64e-01 3.22e-14 2.84e+02 3.12e-14 8.21e-02

f3

Best 5.16e-69 5.03e-70 3.44e-69 3.26e-69 1.78e-69 9.30e-70 3.90e-69 3.10e-69 625 1.27e-68 8.41e-69
Mean 4.59e-67 9.48e-68 1.43e-67 1.83e-67 5.45e-67 2.18e-67 1.91e-67 4.46e-67 680 5.06e-67 2.31e-67
Var 1.88e-132 1.98e-134 9.08e-134 5.36e-134 1.80e-132 1.59e-133 1.10e-133 3.59e-133 894.74 1.04e-132 5.64e-134
Dist 1.81e-33 1.01e-33 1.27e-33 1.56e-33 2.09e-33 1.66e-33 1.52e-33 2.29e-33 136 2.38e-33 1.84e-33

f4

Best 3.3086 2.9396 3.7509 2.0714 5.7085 2.0919 0.27923 4.5855 743.94 7.8894 7.0934
Mean 8.5715 6.2083 8.9598 8.4141 10.208 8.6322 7.9627 10.67 819.93 12.461 11.592
Var 8.845 6.8603 9.6093 7.8935 12.2 10.466 11.069 5.7495 982.17 5.9648 7.5269
Dist 7.3607 5.1551 7.7512 7.3389 8.9385 7.5962 7.0386 9.3112 145.97 10.095 10.356

f5

Best 0 0 0 0 0 0 0 0 2071 0 0
Mean 7.39e-04 4.93e-04 0 0 3.69e-04 0 3.69e-04 0 25.5 0 7.39e-04
Var 5.18e-06 4.86e-06 0 0 2.74e-06 0 2.74e-06 0 28030 0 5.18e-06
Dist 7.57e-01 4.29e-01 5.37e-07 5.54e-07 3.79e-01 5.51e-07 3.79e-01 5.79e-07 16350 5.60e-07 7.58e-01

f6

Best 7.74e-04 1.70e-04 5.83e-04 1.93e-03 4.82e-03 4.74e-03 3.50e-03 3.64e-03 4.73e+16 2.61e-03 3.75e-03
Mean 1.46e-02 1.40e-03 1.54e-02 1.33e-02 7.30e-02 8.48e-02 6.46e-02 5.06e-02 1.63e+17 4.02e-02 1.20e-01
Var 1.56e-04 8.78e-07 3.87e-04 9.05e-05 1.42e-02 7.70e-03 1.40e-02 2.82e-03 3.98e+33 1.41e-03 4.09e-02
Dist 4.78e-01 1.52e-01 4.30e-01 4.68e-01 9.64e-01 1.14 9.09e-01 8.81e-01 3.00e+03 7.52e-01 1.18

f7

Best 3.26e-03 1.45e-04 9.22e-02 3.62e-01 3.53e-01 5.04e-01 7.64e-01 1.50 1.11e+02 6.13e-01 8.81e-01
Mean 5.12e-01 3.98e-01 5.68e-01 8.89e-01 1.82 1.89 1.66 2.39 1.23E+02 1.79 1.91
Var 1.17e-01 1.35e-01 1.17e-01 2.61e-01 9.15e-01 4.46e-01 3.13e-01 2.63e-01 5.00e+01 3.30e-01 2.97e-01
Dist 5.13e+01 3.28e+01 5.30e+01 5.77e+01 9.44e+01 9.15e+01 8.32e+01 1.16e+02 2.99e+02 1.27e+02 1.22e+02

f8

Best -1.65e-01 -2.52e-01 -1.70e-01 -2.89e-01 -2.12e-01 -1.45e-01 -1.49e-01 -9.56e-02 -1.76e-01 -1.44e-01 -1.26e-01
Mean -8.40e-02 -9.80e-02 -8.44e-02 -8.85e-02 -9.34e-02 -7.81e-02 -7.59e-02 -6.32e-02 -7.99e-02 -7.47e-02 -6.86e-02
Var 8.11e-04 1.62e-03 1.41e-03 2.67e-03 1.72e-03 1.09e-03 7.88e-04 2.26e-04 1.33e-03 7.58e-04 5.41e-04
Dist 1.70e+03 1.51e+03 1.82e+03 1.78e+03 1.85e+03 1.86e+03 1.83e+03 1.79e+03 1.85e+03 1.93e+03 1.84e+03

f9

Best 3.95e-04 385.34 724.82 9.0398 -38.177 243.62 143.57 -25579 -4394.8 3.82e-04 3.82e-04
Mean 280.18 722.53 1174.2 613.81 1459.4 820.01 749.11 -4934.2 -266.16 51.42 307.49
Var 53694 55598 86599 93668 3.50e+05 1.22e+05 89298 3.88e+07 3.81e+06 24883 3.10e+05
Dist 1222.4 3459.5 5595.9 3023.7 13250 4955.3 3812.9 38282 30198 229.96 1692.6

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1

Best 4.24e-12 1.00e-11 8.65e-12 1.25e-12 1.44e-25 7.96e-12 2.28e-25 1.18e-21 1.01e-13 1.38e-12 3.11e-12
Mean 5.47e-10 1.99e-01 1.99e-01 6.55e-10 1.37e-01 1.99e-01 1.07e-02 5.04e-04 9.87e-02 1.99e-01 1.99e-01
Var 1.14e-18 7.95e-01 7.95e-01 1.63e-18 3.72e-01 7.95e-01 2.25e-03 5.07e-06 1.89e-01 7.95e-01 7.95e-01
Dist 1.72e-05 1.00e-01 1.00e-01 1.25e-05 2.34e-01 1.00e-01 7.05e-02 1.30e-02 2.15e-01 1.00e-01 1.00e-01

f2

Best 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15 2.66e-15
Mean 4.66e-02 4.66e-02 4.66e-02 5.78e-02 2.66e-15 5.78e-02 5.78e-02 4.66e-02 2.66e-15 9.31e-02 2.66e-15
Var 4.34e-02 4.34e-02 4.34e-02 6.67e-02 0 6.67e-02 6.67e-02 4.34e-02 0 8.22e-02 0
Dist 8.21e-02 8.21e-02 8.21e-02 1.31e-01 3.16e-14 1.31e-01 1.31e-01 8.21e-02 3.21e-14 1.64e-01 3.16e-14

f3

Best 3.27e-69 7.05e-69 3.35e-70 2.84e-70 2.82e-69 1.38e-69 3.33e-69 3.47e-69 2.32e-69 6.93e-69 5.24e-70
Mean 3.29e-67 7.26e-67 1.51e-67 1.06e-67 1.03e-66 7.00e-67 1.78e-67 4.17e-67 1.29e-66 1.85e-67 1.18e-67
Var 1.86e-133 2.26e-132 3.04e-134 5.92e-134 1.13e-131 1.90e-132 1.46e-133 2.45e-133 1.76e-131 1.27e-133 1.24e-134
Dist 2.01e-33 2.71e-33 1.47e-33 1.01e-33 2.59e-33 2.65e-33 1.46e-33 2.37e-33 2.44e-33 1.51e-33 1.32e-33

f4

Best 6.9979 6.6867 3.886 5.1891 5.5713 6.5398 2.8385 4.268 2.9355 2.1314 1.4139
Mean 10.761 11.877 9.3383 8.1427 10.574 11.839 7.9303 10.917 9.9632 7.3846 8.8921
Var 4.4353 6.3303 8.5221 3.2042 10.417 6.4774 6.2093 11.118 9.9866 6.608 10.793
Dist 9.1505 10.289 8.0989 7.0184 8.9637 10.381 6.834 9.4743 8.6558 6.575 7.8213

f5

Best 0 0 0 0 0 0 0 0 0 0 0
Mean 0 0 0 0 0 0 0 0 3.69e-04 3.69e-04 0
Var 0 0 0 0 0 0 0 0 2.74e-06 2.74e-06 0
Dist 5.39e-07 5.29e-07 5.37e-07 5.48e-07 5.84e-07 5.47e-07 5.50e-07 5.22e-07 3.79e-01 3.79e-01 5.65e-07

f6

Best 8.88e-04 5.10e-03 2.52e-03 6.73e-04 1.79e-03 2.01e-03 1.58e-03 3.00e-03 3.98e-03 9.87e-04 2.70e-03
Mean 4.04e-02 6.87e-02 3.49e-02 4.46e-03 3.41e-02 1.07e-01 5.22e-02 3.59e-02 4.57e-02 1.61e-02 1.46e-02
Var 1.16e-03 7.29e-03 1.25e-03 1.61e-05 7.68e-04 2.57e-02 5.11e-03 1.61e-03 1.58e-03 2.89e-04 1.81e-04
Dist 7.96e-01 9.85e-01 6.99e-01 2.58e-01 7.53e-01 1.13 8.43e-01 7.03e-01 8.26e-01 4.88e-01 4.69e-01

f7

Best 2.75e-01 1.63e-02 5.31e-01 2.51e-03 6.82e-01 1.28e-03 6.44e-01 8.43e-01 4.79e-01 9.15E-02 1.06E-02
Mean 1.22 1.31 2.06 6.86e-01 1.88 1.22 1.97 2.37 2.17 9.86 9.49e-01
Var 3.07e-01 3.52e-01 7.59e-01 2.90e-01 4.29e-01 2.14e-01 8.69e-01 5.54e-01 6.51e-01 2.29e-01 3.14e-01
Dist 7.26e+01 1.58e+02 9.52e+01 4.94e+01 1.26e+02 1.44e+02 1.06e+02 1.21e+02 9.47e+01 6.20e+01 5.93e+01

f8

Best -1.24e-01 -2.16e-01 -1.34e-01 -2.31e-01 -1.44e-01 -1.92e-01 -1.64e-01 -1.49e-01 -1.48e-01 -1.42e-01 -2.43e-01
Mean -7.16e-02 -8.33e-02 -6.78e-02 -7.88e-02 -7.21e-02 -6.99e-02 -8.58e-02 -7.88e-02 -7.05e-02 -7.94e-02 -1.01e-01
Var 6.77e-04 2.24e-03 7.63e-04 1.70e-03 7.19e-04 1.30e-03 1.11e-03 1.07e-03 9.00e-04 1.06e-03 3.08e-03
Dist 1.82e+03 1.73e+03 1.89e+03 1.74e+03 1.80e+03 1.83e+03 1.81e+03 1.80e+03 1.84e+03 1.74e+03 1.60e+03

f9

Best 520.68 1793.7 175.86 437.43 3.82e-04 1594 3.82e-04 -12349 -1523.4 459.12 182.46
Mean 968.22 2160.1 578.87 810.59 50.817 1998.4 295.42 -2165.4 615.8 771.45 791.25
Var 71115 46239 98524 66299 13395 53307 1.12e+05 1.71e+07 5.24e+05 53597 94734
Dist 4857.6 11135 2806.9 3851.3 203.1 11048 1385.4 33789 8227.6 3437.3 3903.5
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Table 9: Friedman rank values of different initialization methods for f1.

Rank Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
Best 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5
Mean 21 16.5 16.5 10.5 16.5 16.5 10.5 10.5 6 2 6
Var 21 16.5 16.5 10.5 16.5 16.5 10.5 10.5 6 2 6
Dist 21 16.5 16.5 10.5 16.5 16.5 10.5 10.5 6 2 6
sum 74.5 61 61 43 61 61 43 43 29.5 17.5 29.5
mean 18.63 15.25 15.25 10.75 15.25 15.25 10.75 10.75 7.38 4.38 7.38

Rank Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
Best 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5
Mean 10.5 16.5 22 6 2 6 16.5 6 2 16.5 16.5
Var 10.5 16.5 22 6 2 6 16.5 6 2 16.5 16.5
Dist 10.5 16.5 22 6 2 6 16.5 6 2 16.5 16.5
sum 43 61 77.5 29.5 17.5 29.5 61 29.5 17.5 43 43
mean 10.75 15.25 19.38 7.38 4.38 7.38 15.25 7.38 4.38 15.25 15.25

Table 10: Ranks of different initialization methods for DE-a over functions f1 � f9.

Fun p�value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
f1 0.000 5 4 4 3 4 4 3 3 2 1 2
f2 0.957 17 5 14 13 9 20 4 16 1 12 2
f3 0.008 3 11 11 8 7 2 1 9 18 12 15
f4 0.002 13 6 5 18 19 1 17 4 11 10 11
f5 0.000 10 9 15 18 11 6 14 13 6 8 11
f6 0.000 11 3 1 16 12 14 6 13 10 20 5
f7 0.000 9 18 11 5 18 1 19 7 2 10 6
f8 0.459 21 7 17 10 15 19 18 1 14 4 11
f9 0.337 1 6 8 5 15 17 2 9 9 13 10

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
f1 3 4 6 2 1 2 4 2 1 4 4
f2 15 6 19 10 7 8 3 11 22 18 21
f3 12 17 10 4 16 6 13 2 5 3 14
f4 15 2 3 7 9 14 6 9 12 8 16
f5 19 9 5 2 16 3 1 7 12 17 4
f6 19 4 7 2 9 5 8 18 15 17 6
f7 18 20 13 4 15 17 14 12 16 3 8
f8 16 8 5 13 6 2 22 9 20 3 12
f9 3 12 18 7 14 16 11 9 14 3 4

Table 11: Friedman ranks of different initialization methods for DE-a.

Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
18 3 14 19 21 11 9 7 4 10 5

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
22 12 16 1 15 2 13 6 20 8 17
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Table 12: Ranks of different initialization methods for PSO-w over functions f1 � f9.

Fun p�value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
f1 0.344 2 11 17 13 21 19 22 16 8 4 1
f2 0.02 18 17 5 4 6 8 14 16 13 9 20
f3 0.000 10 1 21 4 5 15 22 18 9 7 20
f4 0.000 18 1 19 6 8 7 12 11 4 16 15
f5 0.002 9 8 3 17 4 10 15 16 14 5 12
f6 0.000 16 1 17 5 7 11 15 13 8 18 19
f7 0.000 20 1 16 4 8 3 14 11 7 18 19
f8 0.459 2 1 3 6 19 17 9 21 22 15 18
f9 0.984 3 17 20 4 18 7 21 11 8 12 13

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
f1 20 10 5 14 3 18 12 6 15 7 9
f2 19 10 7 3 12 22 1 15 21 11 2
f3 16 8 14 2 12 11 6 17 19 13 3
f4 14 21 5 2 17 22 20 10 13 3 9
f5 1 7 6 22 19 18 20 11 13 2 21
f6 12 21 10 2 20 22 14 6 9 3 4
f7 9 21 2 5 13 22 17 10 15 12 6
f8 8 11 14 4 12 10 13 20 16 5 7
f9 22 14 15 19 5 16 6 9 10 1 2

Table 13: Friedman ranks of different initialization methods for PSO-w.

Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
9 2 15 4 8 10 21 19 7 12 20

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
16 17 6 5 14 22 13 11 18 1 3

Table 14: Ranks of different initialization methods for CS over functions f1 � f9.

Fun p�value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
f1 0.000 8 2 9 18 14 6 7 5 22 16 4
f2 0.000 19 3 10 7 2 6 20 9 22 1 11
f3 0.000 16 1 5 6 14 8 9 13 22 20 11
f4 0.001 7 3 10 5 16 8 6 13 22 18 21
f5 0.000 20 19 3 10 15 9 16 13 22 11 21
f6 0.000 4 1 3 5 19 20 16 15 22 11 21
f7 0.000 2 1 3 6 13 12 10 17 22 14 16
f8 0.709 2 1 8 4 11 21 13 15 14 18 19
f9 0.196 3 8 21 6 18 19 10 11 12 2 5

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
f1 3 19 20 1 12 21 11 10 13 15 17
f2 12 13 14 16 4 17 18 15 8 21 5
f3 12 21 4 2 18 17 7 15 19 10 3
f4 14 17 11 4 15 19 1 20 12 2 9
f5 5 2 4 7 14 6 8 1 17 18 12
f6 9 18 10 2 8 17 13 12 14 6 7
f7 8 11 18 4 19 9 20 21 15 5 7
f8 16 5 22 6 12 17 7 9 20 10 3
f9 17 22 7 15 1 20 4 13 14 9 16

Table 15: Friedman ranks of different initialization methods on the CS.

Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
6 1 4 3 17 11 13 15 22 16 20

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
9 18 12 2 10 21 7 14 19 8 5
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Table 16: CEC2014 and CEC2017 single objective optimization problems.
Type No. Function Opt
Unimodal f1 Rotated High Conditioned Elliptic Function 100

Multimodal
f7 Shifted and Rotated Griewanks Function 700
f13 Shifted and Rotated HappyCat Function 1300

Hybrid
f18 Hybrid Function 2 (N=3) 1800
f20 Hybrid Function 4 (N=4) 2000

Composition
f23 Composition Function 1 (N=5) 2300
f25 Composition Function 3 (N=3) 2500

Multimodal F8 Shifted and Rotated Non-Continuous Rastrigins function 800
Hybrid F14 Hybrid Function 4 (N=4) 1400
Composition F22 Composition Function 2 (N=3) 2300
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Table 17: Comparison of DE-a for CEC functions with different initialization methods.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1

Best 1.84e+06 1.25e+06 1.59e+06 2.11e+06 1.50e+06 2.32e-06 2.10e+06 2.15e+06 2.00e+06 1.86e+06 1.95e+06
Mean 3.19e+06 2.74e+06 3.56e+06 3.52e+06 3.43e+06 3.55e+06 3.80e+06 3.74e+06 3.79e+06 3.31e+06 3.58e+06
Var 1.47e+12 1.145e+12 1.46e+12 1.65e+12 1.38e+12 1.11e+12 1.42e+12 1.21e+12 2.15e+12 1.28eE+12 1.86e+12

f7

Best 700 700 700 700 700 700 700 700 700 700 700
Mean 700.01 700.00 700.00 700.01 700.00 700.01 700.00 700.00 700.00 700.00 700.01
Var 5.60e-05 2.52e-05 5.10e-05 6.36e-05 3.61e-05 3.38e-05 3.16e-05 5.12e-05 3.27e-05 3.59e-05 7.44e-05

f13

Best 1300.19 1300.20 1300.21 1300.20 1300.22 1300.19 1300.20 1300.21 1300.15 1300.15 1300.19
Mean 1300.26 1300.27 1300.27 1300.27 1300.27 1300.256 1300.27 1300.26 1300.26 1300.26 1300.28
Var 1.81e-03 1.35e-03 1.66e-03 1.53e-03 1.53e-03 1.18e-03 1.51e-03 9.34e-04 2.14e-03 2.04e-03 1.52e-03

f18

Best 1866.1 1888.3 1867.5 1870.2 1864 1883.6 1885.5 1881.5 1836.6 1894.1 1877
Mean 2105.6 1984 2023.5 1966.4 2071.5 2199.6 2012.3 14458 1958.6 2202.2 1974.8
Var 1.60e+05 13063 51432 10016 96318 4.55e+05 15738 3.10e+09 3500.4 6.84e+05 7250.3

f20

Best 2037.16 2038.13 2033.42 2034.92 2042.43 2036.96 2043.04 2036.83 2037.90 2037.88 2039.17
Mean 2048.25 2048.19 2049.18 2049.54 2050.26 2050.48 2051.85 2048.66 2050.31 2048.58 2049.95
Var 36.18 52.19 51.87 41.27 36.47 34.04 17.77 31.20 33.69 28.20 25.30

f23

Best 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24
Mean 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24
Var 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18-25 2.18e-25 2.18e-25 2.18e-25 2.18-25 2.18-25 2.18e-25

f25

Best 2703.26 2702.77 2702.78 2702.80 2702.82 2702.97 2703.03 2702.75 2702.92 2703.20 2702.91
Mean 2704.02 2703.80 2703.99 2704.12 2703.62 2703.95 2704.11 2703.92 2704.12 2704.18 2703.76
Var 3.39e-01 2.11e-01 7.17e-01 3.74e-01 1.93e-01 4.05e-01 4.08e-01 4.89e-01 6.52e-01 3.33e-01 2.94e-01

F8

Best 942.05 945.78 947.19 957.68 944.1 948.11 939.79 939.35 918.84 919.51 939.27
Mean 961.36 961.92 964.58 967.55 964.98 964.55 964.48 963.77 963.84 962.48 962.33
Var 100.89 59.664 79.826 73.786 167.79 54.317 154.33 165.39 223.97 214.74 113.96

F14

Best 1457 1463.3 1466.5 1466.1 1458.4 1467.1 1466.6 1460.5 1466.6 1457.8 1463
Mean 1473.8 1474.8 1474.3 1476.8 1475.4 1478.2 1477.7 1474.9 1476.2 1474.8 1478.8
Var 52.13 37.66 19.04 37.37 36.14 33.11 33.88 51.01 30.92 66.27 64.09

F22

Best 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300
Mean 2300.2 2300.1 2300.1 2300.1 2300.1 2300.1 2300 2300 2300.1 2300 2300.1
Var 5.79e-01 3.01e-01 3.01e-01 3.13e-01 3.01e-01 3.01e-01 1.41e-25 1.52e-25 3.03e-01 1.74e-25 3.01e-01

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1

Best 1.78e+06 2.01e+06 1.87e+06 1.62e+06 2.11e+06 1.19e+06 2.08e+06 1.78e+06 1.98e+06 1.44e+06 1.25e+06
Mean 3.94e+06 3.62e+06 3.22e+06 3.41e+06 3.46e+06 3.44e+06 3.42e+06 3.26e+06 3.59e+06 3.58e+06 3.20e+06
Var 2.64e+12 8.27e+11 1.23e+12 1.56e+12 8.22e+11 2.11e+12 1.17e+12 1.23e+12 1.62e+12 2.35e+12 1.39e+12

f7

Best 700 700 700 700 700 700 700 700 700 700 700
Mean 700.00 700.01 700.01 700.01 700.00 700.01 700.01 700.01 700.00 700.01 700.00
Var 3.85e-05 1.39e-04 8.51e-05 1.17e-04 4.02e-05 7.73e-05 5.43e-05 7.84e-05 4.18e-05 4.46e-05 5.00e-05

f13

Best 1300.17 1300.18 1300.20 1300.19 1300.16 1300.16 1300.18 1300.17 1300.20 1300.20 1300.20
Mean 1300.27 1300.25 1300.27 1300.26 1300.26 1300.26 1300.25 1300.25 1300.26 1300.26 1300.28
Var 1.92e-03 1.85e-03 1.34e-03 1.28e-03 1.97e-03 2.15e-03 2.66e-03 2.07e-03 1.34e-03 1.58e-03 2.05e-03

f18

Best 1855.9 1854.5 1867.8 1857.5 1872.6 1850 1887.2 1881.2 1835 1851.4 1856.6
Mean 2054.1 1936.1 1993.3 1958.8 2031.2 1962.6 1970.6 2043.3 1948.6 1958 3449
Var 68834 6992.8 28191 3191.8 69288 21981 5744.2 97484 4970.3 5558.5 4.29E+07

f20

Best 2035.72 2044.01 2029.32 2034.46 2036.93 2033.82 2034.80 2041.47 2040.84 2035.73 2041.37
Mean 2049.25 2052.33 2048.86 2048.19 2051.34 2049.18 2048.36 2048.28 2051.39 2049.50 2049.10
Var 31.46 11.49 49.09 62.84 37.90 50.68 37.71 16.13 38.44 45.16 44.02

f23

Best 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24
Mean 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24 2615.24
Var 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18-25 2.18e-25 2.18e-25 2.18e-25 2.18-25 2.18-25 2.18e-25

f25

Best 2702.83 2702.83 2703.16 2702.92 2703.19 2702.61 2703.25 2702.83 2703.03 2703.13 2703.13
Mean 2704.11 2703.92 2704.15 2703.79 2703.98 2703.34 2704.06 2703.77 2703.93 2703.89 2703.92
Var 5.91e-01 5.75e-01 4.34e-01 3.44e-01 3.78e-01 3.65e-01 2.39e-01 3.29e-01 2.56e-01 2.14e-01 3.26e-01

F8

Best 944.34 941.11 949.11 932.02 948.63 943.51 936.27 940.6 945.19 941.23 948.74
Mean 963.73 961.87 963.83 960.52 965.03 962.46 960.09 965.05 966.09 963.98 964.64
Var 86.325 120.04 63.67 135.94 77.99 129.63 154.77 140.02 80.76 74.60 103.69

F14

Best 1466.6 1466 1462.9 1462.7 1464.6 1453.3 1461.6 1462.9 1463.5 1460.6 1456.4
Mean 1474.2 1475.4 1474.4 1476.6 1475.9 1475.7 1473.9 1474.9 1475 1474.1 1475.6
Var 21.49 28.57 26.34 37.29 32.21 70.68 51.38 48.05 36.61 42.83 57.64

F22

Best 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300
Mean 2300.2 2300 2300.2 2300 2300.2 2639.6 2300 2300 2300 2300.1 2300.1
Var 5.70e-01 1.52e-25 5.70e-01 1.96e-25 5.70e-01 2.30e+06 1.85e-25 1.31e-25 1.85e-25 3.01e-01 3.03e-01
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Table 18: Comparison of PSO-w for CEC functions with different initialization methods.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1

Best 3.09e+05 2.08e+05 45809 3.20e+05 2.05e+05 2.81e+05 1.95e+05 1.70e+05 1.93e+05 2.46e+05 2.18e+05
Mean 5.11e+06 3.17e+06 1.73e+06 2.53e+06 2.41e+06 2.50e+06 4.62e+06 1.73e+06 2.81e+06 1.63e+06 2.62e+06
Var 3.43e+13 1.11e+13 2.81e+12 3.49e+12 4.12e+12 8.05e+12 2.83e+13 2.35e+12 2.69e+13 1.89e+12 6.83e+12

f7

Best 700 700 700 700 700 700 700 700 700 700 700
Mean 700.02 700.02 700.01 700.01 700.02 700.02 700.01 700.02 700.02 700.01 700.02
Var 3.69e-04 2.34e-04 2.64e-04 1.34e-04 1.64e-04 3.55e-04 1.54e-04 2.15e-04 2.44e-04 1.45e-04 2.69e-04

f13

Best 1300.2 1300.2 1300.2 1300.3 1300.3 1300.3 1300.2 1300.3 1300.2 1300.2 1300.2
Mean 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4
Var 7.83e-03 1.14e-02 8.75e-03 6.54e-03 1.12e-02 1.12e-02 1.59e-02 7.42e-03 8.69e-03 7.69e-03 9.06e-03

f18

Best 1866.1 1888.3 1867.5 1870.2 1864 1883.6 1885.5 1881.5 1836.6 1894.1 1877
Mean 2105.6 1984 2023.5 1966.4 2071.5 2199.6 2012.3 14458 1958.6 2202.2 1974.8
Var 1.60e+05 13063 51432 10016 96318 4.55e+05 15738 3.10e+09 3500.4 6.84e+05 7250.3

f20

Best 2050.3 2076 2066.1 2093 2090 2119.3 2084.9 2108.9 2103.6 2107.4 2068.1
Mean 2155.6 4383.9 2170.6 2199.4 2212.9 2180.2 2176.3 2174.8 2188.7 2184.7 2175.6
Var 2155.7 9.94e+07 3548 5516.9 6635.3 2236.4 3755.2 2517.2 2758.6 5166.8 1918.3

f23

Best 2500 2500 2500 2500 2615.4 2500 2500 2615.4 2500 2500 2615.4
Mean 2500 2500 2500 2500 2615.7 2610 2528.9 2615.7 2586.9 2592.7 2615.8
Var 3.09E-09 2.91E-09 3.21E-09 3.70E-09 2.19e-02 670.33 2639.8 5.182e-02 2646.8 2261.1 1.31e-01

f25

Best 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700
Mean 2700 2700 2700 2700 2707.4 2704.4 2710.1 2702.6 2702.2 2702.7
Var 4.21e-12 1.96e-12 3.68e-13 1.17e-11 18.138 20.167 3.82e-08 15.2 14.12 9.8308 15.881

F8

Best 888.55 900.49 872.63 866.66 888.55 887.56 885.57 898.50 883.58 906.47 900.49
Mean 933.62 933.48 928.55 932.13 934.52 935.56 929.19 931.33 935.07 951.04 941.56
Var 513.41 570.29 745.33 773.66 552.95 576.55 595.09 483.40 578.83 589.91 450.36

F14

Best 1.47e+03 1.47e+03 1.48e+03 1.46e+03 1.48e+03 1.48e+03 1.48e+03 1.49e+03 1.48e+03 1.46e+03 1.50e+03
Mean 1.96e+03 2.01e+03 1.55e+03 1.53e+03 2.44e+03 2.07e+03 1.55e+03 3.14e+03 1.54e+03 1.54e+03 1.58e+03
Var 3.68e+06 4.59e+06 3.89e+03 1.30e+03 1.59e+07 5.46e+06 2.75e+03 2.05e+07 2.08e+03 1.99e+03 7.95e+03

F22

Best 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03
Mean 2.30e+03 2.30e+03 2.30e+03 2.47e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.61e+03 2.30e+03 2.30e+03
Var 2.01 2.40 1.97 5.85e+05 2.57 0.82 0.80 2.15 9.85e+05 2.96 2.13

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1

Best 2.88e+05 2.33e+05 2.04e+05 56405 3.23e+05 1.93e+05 1.86e+05 95827 1.64e+05 74981 2.49e+05
Mean 2.96e+06 1.53e+06 2.52e+06 3.51e+06 2.22e+06 2.29e+06 2.65e+06 1.86e+06 1.98e+06 3.25e+06 3.41e+06
Var 1.11e+13 2.39e+12 3.64e+12 1.11e+13 2.87e+12 3.99e+12 9.50e+12 3.63e+12 3.84e+12 1.71e+13 2.23e+13

f7

Best 700 700 700 700 700 700 700 700 700 700 700
Mean 700.02 700.01 700.01 700.01 700.02 700.01 700.01 700.02 700.01 700.01 700.01
Var 3.36e-04 2.06e-04 1.75e-04 1.93e-04 4.02e-04 7.84e-05 8.82e-05 3.44e-04 1.71e-04 2.37e-04 1.03e-04

f13

Best 1300.2 1300.2 1300.2 1300.3 1300.2 1300.2 1300.2 1300.2 1300.3 1300.3 1300.2
Mean 1300.4 1300.3 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4 1300.4
Var 8.16e-03 8.75e-03 1.01e-02 7.84e-03 1.17e-02 1.15e-02 8.54e-03 8.97e-03 9.26e-03 5.34e-03 1.12e-02

f18

Best 1855.9 1854.5 1867.8 1857.5 1872.6 1850 1887.2 1881.2 1835 1851.4 1856.6
Mean 2054.1 1936.1 1993.3 1958.8 2031.2 1962.6 1970.6 2043.3 1948.6 1958 3449
Var 68834 6992.8 28191 3191.8 69288 21981 5744.2 97484 4970.3 5558.5 4.29E+07

f20

Best 2094.5 2081.9 2078 2068.4 2080 2091 2089.2 2110.1 2062.6 2070.5 2065.2
Mean 2182.1 2200.1 2194.8 4627.2 2174.5 2193.8 2169.4 2174 2153.8 2164.9 2192.8
Var 3888.9 4664 2587.6 1.22e+08 2677.6 4364.7 1978.1 4444.5 2943.2 3629.6 3892.2

f23

Best 2500 2500 2500 2500 2500 2500 2615.4 2615.4 2500 2500 2500
Mean 2500 2500 2586.8 2500 2598.4 2500 2615.7 2615.7 2609.8 2500 2500
Var 8.84e-09 8.83e-10 2643.6 3.47e-09 1798.8 1.06e-09 3.9262e-02 5.20e-02 668.29 2.72e-09 7.06e-09

f25

Best 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700
Mean 2700 2700 2702.2 2700 2700.7 2700 2702 2710.6 2705.1 2700 2700
Var 6.44e-11 3.05e-13 11.943 1.39e-12 3.2384 8.57e-13 10.414 14.051 7.8027 4.27e-12 6.92e-12

F8

Best 881.59 908.45 905.47 892.53 894.52 920.53 902.49 898.06 881.59 883.58 900.49
Mean 928.45 951.24 938.39 946.45 939.50 953.56 939.54 932.66 931.84 931.64 935.43
Var 482.66 818.25 473.99 578.76 846.19 503.99 303.78 593.32 761.96 470.65 453.12

F14

Best 1.49e+03 1.50e+03 1.49e+03 1.46e+03 1.49e+03 1.48e+03 1.49e+03 1.48e+03 1.49e+03 1.46e+03 1.48e+03
Mean 1.54e+03 1.55e+03 2.25e+03 2.30e+03 2.26e+03 2.84e+03 4.14e+03 2.12e+03 3.25e+03 1.54e+03 1.55e+03
Var 1.22e+03 1.49e+03 9.58e+06 1.15e+07 1.05e+07 3.12e+07 8.67e+07 6.98e+06 5.79e+07 1.47e+03 1.39e+03

F22

Best 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03
Mean 2.30e+03 4.25e+03 2.30e+03 2.30e+03 2.30e+03 4.02e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03 2.30e+03
Var 3.22 5.18e+06 3.30 13.27 1.42 5.92e+06 4.31 2.12 2.52 1.48 2.70
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Table 19: Comparison of CS for CEC functions with different initialization methods.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1

Best 2.92e+05 4.00e+05 3.46e+05 4.97e+05 3.72e+05 4.81e+05 5.12e+05 3.72e+05 7.01e+08 3.82e+05 3.54e+05
Mean 6.46e+05 7.53e+05 7.45e+05 7.67e+05 7.16e+05 7.10e+05 7.40e+05 6.48e+05 6.57e+09 5.34e+05 6.32e+05
Var 3.21e+10 2.56e+10 2.24e+10 2.82e+10 3.33e+10 2.79e+10 2.51e+10 2.15e+10 3.21e+19 6.96e+09 1.48e+10

f7

Best 700 700 700 700 700 700 700 700 1965.7 700 700
Mean 700 700 700 700 700 700 700 700 3159.2 700 700
Var 6.65e-25 2.77e-24 1.75e-24 3.70e-22 5.03e-23 2.97e-22 6.64e-23 1.56e-24 2.63e+05 1.34e-22 5.55e-21

f13

Best 1300.2 1300.3 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2 1317.7 1300.2 1300.2
Mean 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1328.9 1300.3 1300.3
Var 1.39e-03 8.42e-04 1.84e-03 1.42e-03 1.12e-03 1.56e-03 1.72e-03 7.30e-04 28.63 1.41e-03 9.28e-04

f18

Best 1843.3 1830.3 1842.2 1834.6 1838.3 1832.9 1827.6 1833.4 2.91e+10 1830 1833.6
Mean 1859.6 1850.9 1856.4 1851.4 1856.4 1853.5 1853.4 1854.7 7.62e+10 1850.3 1854.9
Var 145.62 143.06 136.53 89.423 108.16 169.72 93.004 120.63 4.19e+20 104.59 94.003

f20

Best 2033.5 2030.3 2036.6 2026 2032.7 2032.7 2034.2 2037.4 1.25e+05 2036.5 2033.7
Mean 2043.8 2042.7 2046.1 2043.1 2041.7 2042.8 2043.9 2045.1 1.54e+09 2043.8 2044.9
Var 22.967 34.75 46.147 52.618 17.839 32.583 39.687 36.689 2.96e+18 33.398 30.237

f23

Best 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 12419 2615.2 2615.2
Mean 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 26820 2615.2 2615.2
Var 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 5.50e+07 2.18e-25 2.18e-25

f25

Best 2703.9 2703.6 2703.6 2703.8 2704.1 2703.8 2703.6 2703.7 3171.9 2703.9 2704
Mean 2704.8 2704.4 2704.6 2704.6 2705.1 2704.8 2704.9 2705.1 4143 2705 2705.1
Var 0.28 0.25 0.46 0.35 0.28 0.23 0.45 0.76 2.16e+05 0.39 0.38

F8

Best 924.24 913.1 905.61 874.39 887.55 883.15 891.24 904.51 1593.5 865.49 888.58
Mean 947.46 937.15 938.27 919.17 914.73 912.46 922.11 928.04 1943.7 916.34 918.49
Var 287.24 272.62 251.48 341.25 213.17 108.03 255.46 287.42 34289 354.4 311.77

F14

Best 1446.1 1451.1 1442.6 1447.1 1446.5 1442.6 1447 1446.2 1453 1446.9 1446.7
Mean 1455.5 1459.5 1455.9 1456.7 1459.7 1456.5 1455.9 1457.2 8.427e+09 1456.2 1457
Var 44.31 34.55 62.52 34.97 56.84 64.83 29.23 39.89 1.07e+20 38.85 55.49

F22

Best 2300 2300 2300 2300 5509.9 2396 2300.1 2301.5 4151 2300.1 2301.1
Mean 2300 2300 2677.2 2300.8 6055.2 5536.8 4460.7 4935.1 6349.5 5910.6 5578
Var 1.96e-13 3.23e-13 1.34e+06 1.61 83776 1.82e+06 3.21e+06 3.07e+06 1.58e+06 7.54e+05 2.01e+06

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1

Best 4.36e+05 6.13e+05 4.44e+05 4.05e+05 3.06e+05 4.20e+05 3.45e+05 4.01e+05 4.80e+05 5.17e+05 5.67e+05
Mean 7.74e+05 8.59e+05 7.08e+05 7.17e+05 5.86e+05 7.04e+05 6.44e+05 6.88e+05 7.00e+05 7.96e+05 8.06e+05
Var 3.21e+10 2.56e+10 2.24e+10 2.82e+10 3.33e+10 2.79e+10 2.51e+10 2.15e+10 3.21e+19 6.96e+09 1.48e+10

f7

Best 700 700 700 700 700 700 700 700 700 700 700
Mean 700 700 700 700 700 700 700 700 700 700 700
Var 1.93e-24 4.76e-23 8.45e-23 1.50e-22 3.28e-21 6.39e-23 1.25e-21 4.44e-23 1.53e-22 1.13e-20 1.84e-22

f13

Best 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2 1300.2
Mean 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3 1300.3
Var 1.30e-03 1.25e-03 1.71e-03 1.17e-03 9.58e-04 8.29e-04 2.46e-03 1.64e-03 2.04e-03 1.18e-03 1.05e-03

f18

Best 1832.2 1832.9 1840.3 1837.6 1838.6 1836 1836.5 1828.7 1838.8 1840.1 1835.5
Mean 1852.7 1851.6 1851.7 1859.6 1855.6 1859.7 1855.9 1851.6 1855.5 1856.9 1851.4
Var 168.69 84.948 79.543 193.97 144.25 127.88 152.01 140.67 139.09 124.63 96.454

f20

Best 2034.2 2032.3 2033.2 2031.4 2034.7 2034.4 2034.4 2026.8 2028.9 2030.7 2034.8
Mean 2041.5 2043.7 2042.9 2044.9 2044.3 2041.8 2044.3 2042.4 2043.6 2044 2043.5
Var 26.93 27.444 40.999 32.61 57.805 27.786 37.643 42.141 32.321 51.707 39.462

f23

Best 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2
Mean 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2 2615.2
Var 2.18e-25 2.07e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25 2.18e-25

f25

Best 2703.8 2703.4 2704.1 2703.9 2704.3 2703.2 2703.9 2704.1 2703.5 2703.5 2703.8
Mean 2704.7 2703.9 2704.9 2704.8 2705 2703.9 2704.7 2705 2704.8 2704.8 2704.7
Var 0.2876 0.1534 0.3632 0.3239 0.2161 0.0997 0.2584 0.2986 0.2694 0.4495 0.2606

F8

Best 886.82 884.55 881.53 902.53 888.96 871.05 896.85 865.81 892.52 892.77 883.74
Mean 917.25 925.93 915.66 926.21 923.64 914.05 919.95 913.91 915.83 920.02 919.88
Var 232.06 406.49 368.09 171.7 391.17 330.79 363.33 342.47 173.41 140.17 353.47

F14

Best 1445.9 1443.5 1445.8 1448 1439.1 1447.7 1442.7 1448.4 1442.7 1448.1 1449.5
Mean 1457 1458.6 1454.9 1459.3 1455.8 1456.3 1452.4 1457.5 1455.8 1455.8 1457
Var 34.19 40.95 38.71 58.42 84.53 39.29 37.57 32.53 44.76 25.117 18.55

F22

Best 2300.2 5476.3 2301 2300 2309.9 5289.8 2302.5 2303.1 2302.5 2300 2300
Mean 4251 5851.4 4626.8 2493.3 5714 5744.1 4728.8 5884 5435.1 3045.9 2304.2
Var 3.13e+06 44081 3.05e+06 7.47e+05 1.40e+06 45164 3.28e+06 7.72e+05 1.86e+06 2.26e+06 112.71
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Table 20: Friedman ranks of different initialization methods for three algorithms.

DE

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.30 9 5 11 22 8 12 21 2 20 1 14

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
15 4 16 7 18 17 3 6 13 10 19

PSO-w

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.04 3 16 1 5 22 21 10 18 14 15 17

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
8 4 13 12 19 9 11 20 6 2 7

CS

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.01 7 4 18 10 14 12 13 15 22 5 17

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
1 3 11 20 19 2 21 8 6 16 9
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5. Discussions

Based on the above extensive simulations and tests, we can now investigate any possible
correlation between the average distance of the initial population from the true optimal
solution and the performance of final solutions found by algorithms. We also discuss their
implications. In addition, we will give the initialization suggestions for the other two
algorithms: ABC and GA.

5.1. Correlations and discussions

We now conduct some further analyses and discussions to demonstrate the influence
of the initial population with different distributions on the results of algorithms. To be-
gin with, we first define the average distance ∆ between the initial population and the
corresponding real optimal solution as

∆ �
°NP
i�1

°D
j�1

��xi,j � xj
opt
��

NP
(22)

where xi,j indicates the j-th dimension of the i-th individual, NP represents the total
population size, and xj

opt represents the j-th dimension of the true optimal solution.
In order to explore the relationship between the initial distribution and the performance

of an algorithm (in terms of the final solution obtained), we investigate if the average dis-
tance between the generated initial population and the true optimal solution (∆) has any
positive correlation to the distance between the obtained final solution from the true opti-
mal solution. Each initialization method for each algorithm runs 20 times independently,
so as to avoid any potential bias of the experiment. Let ∆ be the mean value of ∆ in
20 experiments. The previously defined ‘Dist’ represents the average distance between
the optimal solution obtained by the algorithm and the real optimal solution in NT (here
NT � 20) experiments. Then, we carry out some analyses to see if there is any connection
between ∆ and ‘Dist’. The results are summarized in Table 21 to Table 23.

As seen from Tables 21 to 23, ∆ and ‘Dist’ have no significant correlation. For the ease
of observation, the relationship between the ∆ and ‘Dist’ of the partial functions is given
in Figs. 8 to 10. It is worth noting that, due to the larger value of lognp0.69, 0.25q used in
the CS algorithm, we can essentially consider such an extreme value as an outlier and thus
remove it in the correlation test.

From a statistical perspective, the correlation tests have been undertaken, with the
results shown in Fig. 24. Using a significance level of 0.01, when p   0.01 means that
the ∆ and ‘Dist’ of the corresponding function has a significant correlation, mark with
��. Another symbol � means that the ∆ and ‘Dist’ may have a weak correlation. The
results show that except for one function f9, there is no significant correlation for the DE-a
algorithm. For the PSO-w, the ∆ and ‘Dist’ of f3 may have a weak correlation, and those
of f8 and f9 have significant correlations between ∆ and ‘Dist’. For other functions, there
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Figure 8: The relationship of ∆ and ‘Dist’: (a) f4 of DE-a. (b)f6 of DE-a. (c)f7 of DE-a. The x-axis
represents ∆ : the average value of ∆ (the average distance between the initial population and the real
optimal solution) in 20 experiments, and the y-axis represents ‘Dist’ : average value of the distance between
the best obtained solution and the real optimal solution in 20 experiments. It shows that there is no obvious
correlation.
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Figure 9: The relationship of ∆ and ‘Dist’: (a)f4 of PSO-w. (b)f6 of PSO-w. (c)f7 of PSO-w. The x-axis
represents ∆, and the y-axis represents ‘Dist’. It can be seen that there is no obvious correlation.
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Figure 10: The relationship of ∆ and ‘Dist’: (a)f4 of CS. (b)f6 of CS. (c)f7 of CS. Among these three
figures, f4 has no significant correlation, while f6 and f7 may have some weak positive correlation.
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Table 21: The result of ∆ and Dist on DE-a.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1
∆ 49.68 55.83 71.94 77.85 281.77 241.58 121.80 362.31 436.91 170.55 216.18
Dist 0.20 0.20 0.60 0.50 0.30 0.60 0.80 0.20 0.20 0.20 0.20

f2
∆ 112.27 101.99 112.42 150.39 536.64 478.01 237.95 751.80 933.73 389.20 473.33
Dist 5.33e-14 5.32e-14 5.50e-14 0.08 0.08 5.19e-14 5.77e-14 5.61e-14 5.76e-14 5.64e-14 5.19e-14

f3
∆ 56.40 50.77 55.97 75.09 267.53 240.01 119.68 369.47 466.27 194.37 238.51
Dist 9.39e-94 9.69e-94 8.54e-94 5.78e-94 5.78e-94 2.18e-93 6.32e-94 1.09e-93 2.28e-93 1.36e-93 3.34e-94

f4
∆ 57.35 52.26 57.83 76.71 275.66 245.93 122.35 382.70 478.07 199.97 242.47
Dist 13.58 15.47 12.25 12.70 12.89 15.04 13.57 13.90 12.76 14.65 12.51

f5
∆ 6.77e+03 6.11e+03 6.76e+03 8.96e+03 3.22e+04 2.89e+04 1.43e+04 4.44e+04 5.62e+04 2.33e+04 2.86e+04
Dist 2.64 4.08 3.14 2.65 2.67 1.63 3.68 2.98 4.03 4.76 3.87

f6
∆ 1.12e+03 1.02e+03 1.12e+03 1.50e+03 5.36e+03 4.77e+03 2.39e+03 7.44e+03 9.33e+03 3.88e+03 4.74e+03
Dist 1.06 0.61 1.60 2.28 2.16 2.39 4.44 1.77 3.84 2.62 2.19

f7
∆ 112.21 101.87 111.88 149.37 532.96 479.66 239.24 739.01 932.91 389.61 473.91
Dist 5.40 2.43 4.10 4.44 3.69 3.91 3.15 3.47 4.09 5.41 3.78

f8
∆ 1.09e+03 1.02e+03 1.16e+03 1.49e+03 5.43e+03 4.79e+03 2.41e+03 7.46e+03 9.25e+03 3.81e+03 4.64e+03
Dist 1.43e+03 1.35e+03 1.37e+03 1.31e+03 1.36e+03 1.35e+03 1.33e+03 1.35e+03 1.35e+03 1.37e+03 1.36e+03

f9
∆ 9.69e+03 1.26e+04 1.56e+04 1.28e+04 3.35e+04 2.60e+04 1.60e+04 3.43e+04 3.39e+04 1.32e+04 1.86e+04
Dist 1.44e+03 1.59e+03 2.76e+03 1.77e+03 3.76e+04 2.77e+04 1.28e+03 5.79e+04 3.51e+04 1.20e+04 2.49e+04

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1
∆ 120.89 150.23 166.66 69.82 151.70 142.42 149.66 334.02 211.59 77.96 77.99
Dist 0.30 0.50 0.30 0.40 0.40 0.30 0.40 0.20 0.50 0.20 2.42e-15

f2
∆ 220.39 241.23 335.92 126.67 337.15 224.77 318.54 691.83 429.84 150.48 150.01
Dist 5.41e-14 5.46e-14 4.94e-14 5.75e-14 5.35e-14 5.17e-14 5.62e-14 5.46e-14 5.46e-14 5.77e-14 5.30e-14

f3
∆ 110.39 120.58 166.38 62.85 169.67 112.37 158.61 347.37 213.49 74.80 75.00
Dist 5.82e-94 6.52e-94 1.31e-93 6.80e-94 1.23e-93 1.07e-93 8.57e-94 1.28e-94 6.02e-94 4.70e-94 7.76e-94

f4
∆ 113.31 123.09 172.12 64.60 172.07 115.14 163.03 351.33 221.10 77.04 76.79
Dist 15.36 12.66 14.31 16.23 13.23 12.92 14.06 10.91 13.75 12.58 15.34

f5
∆ 1.32e+04 1.44e+04 2.00e+04 7.58e+03 2.03e+04 1.35e+04 1.91e+04 4.10e+04 2.54e+04 8.98e+03 8.99e+03
Dist 1.87 3.23 4.83 3.97 1.72 3.54 4.36 3.07 3.44 4.14 1.68

f6
∆ 2.21e+03 2.41e+03 3.32e+03 1.26e+03 3.37e+03 2.25e+03 3.19e+03 6.81e+03 4.27e+03 1.49e+03 1.50e+03
Dist 4.17 2.03 2.81 1.37 1.73 1.58 2.95 2.17 2.23 2.75 3.63

f7
∆ 220.73 240.91 333.45 126.38 339.20 224.52 316.49 687.03 427.83 150.72 149.99
Dist 5.15 3.91 3.53 2.88 4.40 6.25 4.04 4.74 4.56 4.04 5.20

f8
∆ 2.23e+03 2.50e+03 3.35e+03 1.27e+03 3.31e+03 2.34e+03 3.12e+03 6.85e+03 4.29e+03 1.50e+03 1.50e+03
Dist 1.34e+03 1.37e+03 1.37e+03 1.30e+03 1.37e+03 1.34e+03 1.35e+03 1.39e+03 1.31e+03 1.32e+03 1.37e+03

f9
∆ 1.73e+04 2.46e+04 1.88e+04 1.33e+04 1.26e+04 2.39e+04 1.46e+04 3.15e+04 2.15e+04 1.28e+04 1.28e+04
Dist 1.86e+03 2.71e+03 1.14e+04 2.47e+03 796.78 9.39e+03 5.82e+03 3.84e+04 2.44e+04 1.60e+03 1.74e+03

are no noticeable correlations. For the CS, there are six functions that may have some
correlations between ∆ and ‘Dist’.

As demonstrated by our experiments, the relationship between ∆ and ‘Dist’ for the
DE-a algorithm is not very significant. The difference between the final solutions obtained
by different initialization methods is due to the distribution characteristics of the initial
population. In most cases, the PSO-w algorithm is not sensitive to the distribution range
of the initial population. The average distance between the initial population and the real
optimal has no positive correlation with the final solutions. The ∆ has a great influence on
the performance of the CS algorithm. The closer the initial points are to the real optimal
solution, the better the algorithm result. This may be part of the reason why the CS
algorithm is sensitive to initialization. This is also in good agreement with the previous
experimental results. On the influence of initialization on the performance of the three
algorithms, we can conclude that CS ¡ PSO ¡ DE.
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Table 22: The result of ∆ and Dist on PSO-w.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1
∆ 49.747 56.00 71.59 77.96 281.06 240.68 121.98 359.49 437.16 171.58 217.81
Dist 2.55 19.89 20.26 18.88 20.69 19.93 19.38 18.62 20.02 17.10 15.12

f2
∆ 120.28 150.15 167.03 69.78 151.88 142.40 149.09 333.41 209.28 78.02 78.00
Dist 20.40 19.59 19.87 19.63 17.26 19.96 16.49 17.79 20.01 20.02 20.15

f3
∆ 56.23 50.89 56.29 74.98 268.60 239.30 119.66 373.32 467.00 194.48 236.53
Dist 1.90e-06 1.58e-06 1.70e-06 1.73e-06 1.71e-06 1.61e-06 1.80e-06 1.90e-06 1.83e-06 1.73e-06 1.87e-06

f4
∆ 56.25 50.92 56.29 75.03 268.84 239.34 119.67 372.52 467.11 194.41 236.46
Dist 20.35 14.14 20.71 17.02 17.67 15.93 17.12 17.87 16.28 22.05 19.11

f5
∆ 6.75e+03 6.11e+03 6.75e+03 9.00e+03 3.22e+04 2.87e+04 1.44e+04 4.48e+04 5.60e+04 2.34e+04 2.84e+04
Dist 6.25 5.78 5.22 6.87 5.15 7.94 4.67 5.47 7.24 8.22 6.36

f6
∆ 1.12e+03 1.02e+03 1.12e+03 1.50e+03 5.37e+03 4.79e+03 2.39e+03 7.46e+03 9.34e+03 3.89e+03 4.73e+03
Dist 0.15 0.03 0.16 0.08 0.10 0.10 0.09 0.08 0.09 0.19 0.15

f7
∆ 112.52 101.83 112.55 150.02 537.84 478.52 239.50 748.06 934.13 389.29 472.24
Dist 39.44 14.34 37.13 17.29 22.75 18.77 24.64 22.36 16.92 30.09 28.27

f8
∆ 1.09e+03 1.02e+03 1.16e+03 1.50e+03 5.41e+03 4.79e+03 2.39e+03 7.41e+03 9.25e+03 3.82e+03 4.67e+03
Dist 1.10e+03 1.02e+03 1.14e+03 1.47e+03 5.44e+03 4.87e+03 2.45e+03 7.09e+03 9.22e+03 3.74e+03 4.41e+03

f9
∆ 9.68e+03 1.26e+04 1.56e+04 1.28e+04 3.34e+04 2.60e+04 1.60e+04 3.38e+04 3.41e+04 1.32e+04 1.87e+04
Dist 6.22e+03 9.97e+03 1.39e+04 8.69e+03 4.01e+04 2.98e+04 1.84e+04 1.03e+05 3.65e+04 1.83e+04 3.03e+04

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1
∆ 120.28 150.15 167.03 69.78 151.88 142.40 149.09 333.41 209.28 78.02 78.00
Dist 20.40 19.59 19.87 19.63 17.26 19.96 16.49 17.79 20.01 20.02 20.15

f2
∆ 220.66 240.79 333.92 126.32 338.74 224.82 317.97 690.47 427.24 149.94 150.00
Dist 3.36e-04 0.36 0.26 0.23 0.56 0.43 0.11 0.32 0.50 0.09 0.17

f3
∆ 110.38 120.43 166.65 63.18 169.11 112.39 158.93 344.79 213.83 74.99 75.00
Dist 1.58e-06 1.65e-06 1.77e-06 1.47e-06 1.85e-06 1.79e-06 1.73e-06 1.86e-06 1.76e-06 1.73e-06 1.69e-06

f4
∆ 110.39 120.39 167.03 63.18 169.16 112.39 158.89 345.13 214.05 75.02 75.00
Dist 18.56 23.09 17.42 15.13 20.80 23.34 18.07 18.01 16.22 16.27 16.92

f5
∆ 1.32e+04 1.44e+04 2.00e+04 7.58e+03 2.03e+04 1.35e+04 1.91e+04 4.14e+04 2.57e+04 9.01e+03 9.00e+03
Dist 7.27 7.29 5.73 8.25 9.39 8.74 7.24 5.19 7.47 7.51 6.13

f6
∆ 2.21e+03 2.41e+03 3.34e+03 1.26e+03 3.38e+03 2.25e+03 3.18e+03 6.89e+03 4.28e+03 1.50e+03 1.50e+03
Dist 0.12 0.23 0.11 0.07 0.16 0.22 0.15 0.10 0.11 0.07 0.06

f7
∆ 220.64 240.79 333.92 126.25 338.46 224.74 317.27 690.00 427.88 149.96 149.99
Dist 25.05 43.34 22.18 18.09 31.77 45.85 29.09 19.63 23.20 16.61 18.17

f8
∆ 2.23e+03 2.50e+03 3.34e+03 1.27e+03 3.32e+03 2.34e+03 3.15e+03 6.86e+03 4.26e+03 1.50e+03 1.50e+03
Dist 2.19e+03 2.51e+03 3.80e+03 1.26e+03 3.18e+03 2.33e+03 3.11e+03 6.87e+03 4.18e+03 1.55e+03 1.51e+03

f9
∆ 1.74e+04 2.46e+04 1.88e+04 1.32e+04 1.26e+04 2.39e+04 1.46e+04 3.13e+04 2.15e+04 1.28e+04 1.28e+04
Dist 1.98e+04 1.19e+04 2.69e+04 1.01e+04 1.48e+04 1.62e+04 1.77e+04 4.58e+04 3.00e+04 9.07e+03 8.05e+03

5.2. Experiments on ABC and GA

The above experiments and analyses have focused on the three algorithms, and the
conclusions have been drawn accordingly. In order to see if these conclusions are still valid
for other algorithms, we have carried out more tests on two other algorithms: the artificial
bee colony (ABC) algorithm [48] and the genetic algorithm (GA) [45].

By using the same 22 initialization methods mentioned above, we have carried out
some numerical experiments on the original ABC algorithm for all 19 test functions with
the dimensionality of D � 30. To make a fair comparison, the parameters of NP and limit
are set to 50 and D �NP respectively [63, 64]. Experiments of each initialization method
have been executed independently for 20 times, and the maximum number of function
evaluations (FEs) is set to 150000. In our experimental studies, the ‘Best’, ‘Mean’, ‘Var’
and ‘Dist’ values were recorded for the 9 basic functions to measuring the performance of
the algorithm for each initialization method. In addition, the ‘Best’, ‘Mean’, ‘Var’ values
were also recorded for the 10 CEC functions. Then, the experimental results are sorted
out and analyzed in the same ways as discussed in the previous section, and the results of
Friedman rank test of different initialization methods are given in Table 25.
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Table 23: The result of ∆ and Dist on CS.

Fun Value Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q

f1
∆ 49.73 56.26 71.94 78.38 281.48 241.61 122.37 353.43 437.41 172.19 218.41
Dist 9.86e-04 1.22e-05 1.87e-05 3.16e-05 0.20 0.10 0.10 0.15 114.56 0.21 0.02

f2
∆ 113.18 101.92 112.73 149.55 537.84 478.92 240.10 751.52 929.21 392.43 476.58
Dist 0.29 0.08 3.19e-14 0.0821 0.1307 0.08 3.23e-14 3.17e-14 276.49 0.18 0.08

f3
∆ 56.28 50.79 56.12 75.29 270.07 242.34 120.46 361.59 469.61 193.96 239.33
Dist 1.68e-33 9.69e-34 1.07e-33 1.23e-33 1.94e-33 1.38e-33 1.71e-33 3.11e-33 138.75 1.45e-33 2.11e-33

f4
∆ 57.77 52.27 57.58 77.14 275.17 244.98 122.82 379.29 478.37 199.52 238.07
Dist 7.47 6.71 7.20 7.94 9.39 7.99 8.24 9.19 145.21 10.08 9.19

f5
∆ 6.79e+03 6.07e+03 6.75e+03 9.01e+03 3.18e+04 2.88e+04 1.44e+04 4.53e+04 5.57e+04 2.34e+04 2.85e+04
Dist 5.49e-07 0.47 5.58e-07 5.28e-07 5.39e-07 5.63e-07 5.44e-07 5.56e-07 1.66e+04 5.56e-07 5.65e-07

f6
∆ 1.13e+03 1.02e+03 1.13e+03 1.50e+03 5.42e+03 4.80e+03 2.41e+03 7.45e+03 9.34e+03 3.88e+03 4.68e+03
Dist 0.41 0.14 0.50 0.55 1.03 1.21 0.72 1.08 3000 1.05 0.83

f7
∆ 112.33 102.37 114.10 150.21 535.35 473.63 240.64 745.48 935.03 392.70 470.15
Dist 52.99 32.62 48.38 62.53 92.89 93.18 74.23 127.28 297.82 130.38 136.33

f8
∆ 1089.3 1019.1 1165.5 1510.4 5379.6 4753 2398.2 7335.7 9233.2 3834.6 4611.2
Dist 1652.9 1484 1744.2 1771 1790.2 1913.5 1928 1859.1 1918.7 1913.9 1654.5

f9
∆ 9669.3 12671 15598 12716 33576 26275 16028 33901 33986 13126 18727
Dist 1486.8 4068.6 6337.3 3297.6 11811 5084 3071.5 48085 23146 415.86 9495.9

Fun Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS

f1
∆ 119.31 150.81 166.93 70.51 151.75 142.37 149.90 330.09 208.52 78.20 77.98
Dist 0.10 0.20 0.10 1.87e-05 0.02 0.20 1.01 0.11 0.10 1.59e-05 4.34e-05

f2
∆ 221.56 241.44 332.23 126.70 339.83 224.47 313.59 693.58 425.49 149.70 150.08
Dist 0.13 0.08 3.18e-14 0.08 3.21e-14 3.09e-14 3.18e-14 0.08 3.25e-14 3.09e-14 3.15e-14

f3
∆ 109.79 120.15 165.66 63.07 169.69 112.01 157.64 348.43 211.76 75.20 74.97
Dist 1.68e-33 2.45e-33 1.01e-33 1.20e-33 1.77e-33 3.33e-33 1.71e-33 1.73e-33 1.61e-33 1.29e-33 1.66e-33

f4
∆ 112.79 123.01 170.93 64.89 172.29 114.89 162.25 351.19 214.81 76.44 76.77
Dist 8.68 10.10 6.69 6.83 9.65 9.63 9.35 8.73 8.33 7.11 8.51

f5
∆ 1.33e+04 1.44e+04 2.01e+04 7.59e+03 2.03e+04 1.35e+04 1.89e+04 4.12e+04 2.57e+04 9.04e+03 9.00e+03
Dist 5.48e-07 0.31 5.42e-07 5.31e-07 5.23e-07 5.37e-07 5.57e-07 0.76 5.50e-07 5.60e-07 0.38

f6
∆ 2.19e+03 2.41e+03 3.35e+03 1.25e+03 3.39e+03 2.25e+03 3.21e+03 6.89e+03 4.23e+03 1.50e+03 1.50e+03
Dist 0.76 0.95 0.72 0.29 0.69 1.09 0.83 0.89 0.82 0.41 0.43

f7
∆ 221.64 240.06 339.18 127.31 340.17 224.67 315.12 691.94 422.38 150.08 150.06
Dist 87.03 159.94 91.07 51.97 119.77 142.70 108.97 116.65 100.92 64.26 57.20

f8
∆ 2215.8 2498.2 3377.4 1272.6 3337.9 2343.3 3107.9 6838.5 4289.5 1504.8 1501.4
Dist 1863.4 1882.5 1793.1 1721.3 1826.3 1784.9 1864.2 1802.4 1869.5 1745.2 1783

f9
∆ 17351 24632 18814 13227 12749 23862 14486 31290 21511 12858 12815
Dist 4601 9859.8 3021.2 3756.6 697.04 10847 970.16 32208 9003.2 3756.6 2992.8

From Table 25, we can see that, for all 9 basic functions or CEC functions, the ex-
perimental results are basically the similar as before. Both the p-values are far less than
0.05, so the null hypothesis can be rejected, which indicates that ABC is greatly affected
by initialization. For the ABC, the initialization methods: Bep2.5, 2.5q, Raylp0.4q, LHS,
Bep3, 2q seem to lead to better performance.

Similarly, we have carried out the same numerical experiments on the GA. It is worth
pointing out that there are many GA variants, and the variant used in this paper is to
keep half of the population with better fitness to be passed onto the next generation.
The mutation probability has been set to 0.1. The maximum number of iterations and
the population size are 100 and 3000, respectively. Each initialization method has been
executed independently for 20 times for all 19 test functions withD � 30. The experimental
results are summarized in Table 26.

As indicated by the results in Table 26, the Friedman rank test shown that for the 9
basic functions, the p-value is 0.878, which is greater than 0.05. Thus, we can essentially
conclude that, for these problems, different initialization methods have little influence on
the GA algorithm. For the complex CEC functions, the p value is far less than 0.05.
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Table 24: Correlation test.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8 f9

DE-a
r -0.163 0.003 0.368 -0.328 0.050 0.214 -0.054 0.117 0.872**
p 0.47 0.988 0.092 0.136 0.825 0.338 0.813 0.604 0.000

PSO-w
r -0.184 -0.179 0.469* -0.104 -0.108 -0.056 -0.243 0.998** 0.752**
p 0.411 0.425 0.028 0.646 0.633 0.803 0.275 0.000 0.000

CS
r 0.774** -0.071 0.588** -0.466* 0.126 0.727** 0.598** 0.397 0.774**
p 0.000 0.759 0.004 0.033 0.586 0.000 0.004 0.074 0.000

Table 25: Friedman ranks of different initialization methods for the ABC algorithm.

basic

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.00 1 3 5 7 17 12 9 16 21 15 18

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
13 22 8 2 14 20 10 19 11 6 4

CEC

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.00 4 1 7 6 21 20 9 16 22 11 17

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
12 18 8 2 10 15 14 19 13 5 3

This shows that the GA is affected by initialization methods when problems are complex.
However, the most appropriate initialization methods for the GA are Bate distribution,
LHS, random, Uniform distribution.

5.3. Findings and implications

The main contribution of this work is to study systematically the influence of different
initialization approaches on algorithms, so as to gain some insight on this topic. Based on
the extensive simulations and statistical tests, we can now discuss our findings and their
implications.

One surprise finding is that some algorithms are more sensitive to initialization than
others. However, such sensitivity can also be problem-dependent. For example, differential
evolution is not quite sensitive to initialization, while particle swarm optimization, cuckoo
search and artificial bee colony algorithm are greatly affected by initialization. In addition,
the genetic algorithm is less sensitive to initialization for many easy and smooth functions,
but it becomes more sensitive to initialization for highly complex functions. Another
surprise finding is that the commonly used technique in terms of uniform distributions
for initialization is not necessarily the best approach. For example, for the PSO, our
recommendation is to use the random, beta distribution and LHS as the main initialization
methods. But for the CS, the preferred initialization methods are the beta distribution,
exponential distribution, and Rayleigh distribution.

In addition, the population size can also have a significant effect. For the PSO, a larger
population size is usually required, while a smaller population with more iterations can
give better results for the DE. However, only a very small population size is sufficient for
the CS. Furthermore, the above conclusions may also depend on the objective landscapes
and thus may be problem-dependent, the correlation between the initialization methods
and the premature convergence is very weak. Consequently, as long as the diversity of the

37



Table 26: Friedman ranks of different initialization methods for the GA algorithm.

basic

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.88 2 12 9 17 19 22 1 8 6 4 7

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
5 10 20 21 3 14 15 18 11 13 16

CEC

p Bep3, 2q Bep2.5, 2.5q Bep2, 3q Up0, 1q Np0, 1q Np0.5, 1q Np0.5, 0.5q lognp0, 1q lognp.69, .25q lognp0, 0.5q lognp0, 2{3q
0.00 3 5 4 2 22 21 8 18 20 17 16

Ep0.5q Ep0.1q Ep0.8q Raylp0.4q Raylp0.8q Raylp0.1q Weibp1, 1.5q Weibp1.5, 1q Weibp1, 1q random LHS
9 15 11 7 10 14 12 19 13 1 6

population is high enough and the iterations are long enough, the optimal solutions can be
found by all the algorithms.

Though these findings are preliminary, they do have some interesting implications.
Firstly, for a given new algorithm, some parametric study is always needed to see if it is
sensitive to initialization and its population size. Secondly, different initialization methods,
especially a combination of uniform distributions and long-tailed distributions such as the
exponential distribution and Rayleigh distribution should be explored. Finally, different
types of benchmark problems with different properties should be used to validate new
algorithms, especially those with multimodal and optima-shifted functions.

Despite the above findings, we have not focused on how the selection mechanism of an
algorithm may influence the diversity of the population in later iterations. In addition,
almost all real-world problems have nonlinear constraints. We have not considered if the
handling of constraints may affect the above findings. These will form the topics for further
research.

6. Conclusions

Initialization has some significant influence on the performance of an algorithm for a
given set of problems. In the current literature, the widely used initialization methods are
the random methods, uniform distributions and LHS. However, there is no systematic com-
parison for different initialization techniques. In this paper, we have compared 22 different
initialization methods based on different probability distributions for five algorithms over
a set of 19 diverse benchmark functions. Based on our simulations and analyses, we can
draw some conclusions:

• The accuracy of the metaheuristic algorithm is closely related to two parameters: the
population size and the maximum number of iterations. However, the dependence of
different algorithms on their population sizes is different. Under the same conditions
(the same total number of function evaluations), the DE-a algorithm usually requires
a small population size with a larger number of iterations. A clear advantage of the
CS is that it requires even a smaller population size, typically less than 100. On the
other hand, the population size for the PSO-w should be larger, in comparison with
both the DE and CS.
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• The DE-a algorithm is not particularly sensitive to initialization, which means that
DE is more robust. On the other hand, the PSO-w performs differently for different
initialization methods, and the most appropriate initialization methods are random,
beta distribution, and LHS. This may explain why many PSO variants performed
well for uniform random initialization in the literature. Similarly, the CS is also sen-
sitive to different initialization methods, and the most suitable methods for general
problems are the beta distribution, followed by the Rayleigh and uniform distribu-
tions. For more complex problems, the most suitable initialization methods of the CS
algorithm are the exponential distribution and Rayleigh distribution. Similarly, the
ABC algorithm is sensitive to initialization, while the GA is less sensitive. However,
such sensitivity can be problem-dependent. For example, the sensitivity of the GA
is low for easy and smooth functions, while this sensitivity increases significantly for
highly complex functions.

• The average distance between the initial population and the real optimal solution
does not have any significant correlation with the quality of the final solution for the
algorithms. That is to say, the final solutions obtained are not usually affected by the
locality of the optimal solutions. Thus, as long as the diversity of the population is
high and the number of iterations is large, all these algorithms are capable of finding
the optimal solutions.

The above conclusions are preliminary, and different algorithms can have different per-
formance for different initialization methods and for different problems. Thus, there is
a strong need to figure out what is the best initialization method for a given algorithm
for a given set of problems. The present work paves a way for further investigation for
a vast number of algorithms exist in the current literature. However, there are still some
issues that need to be addressed so as to gain further insight into different algorithms and
different initialization strategies. These can form the topics for further research.

• For more complex problems, two or more distribution methods can be used as a
hybrid, so as to enhance the overall diversity of the population. This should be tested
using rigorous statistical techniques to see if they can indeed affect the statistical
properties of the population of an algorithm at different stages of iterations.

• In all our tests, we have used the benchmark problems with simple bounds on reg-
ular domains. It would be useful to test more complicated problems with nonlinear
constraints on irregular search domains to see if the same conclusions still hold. Such
problems can be drawn from real-world applications.

• An automatic and self-adaptive method can be developed to automatically find the
most suitable initialization method(s) for a given type of problems with a given al-
gorithm. This may be attempted by following a similar approach as the self-tuning
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algorithm framework [65]. It is hoped that this work can inspire more studies con-
cerning algorithm performance, robustness and different initialization techniques.
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