
Measurement 253 (2025) 117810

Available online 10 May 2025
0263-2241/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data reconstruction leverages one-dimensional Convolutional Neural
Networks (1DCNN) combined with Long Short-Term Memory (LSTM)
networks for Structural Health Monitoring (SHM)

T.Q Minh a , Jose C. Matos a , Helder S. Sousa a, Son Dang Ngoc a, Thuc Ngo Van b,
Huan X. Nguyen c,d, Quyềền Nguyễn e,*
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A B S T R A C T

SHM data collected in systems often face data loss due to transmission errors, sensor damage, or environmental
impacts. Incomplete data can lead to erroneous assessments in evaluating structural safety in complex structures.
Although data reconstruction has been studied, challenges are present in data reconstruction: (i) SHM data
contains a large amount of noise; (ii) data structure is complex and doesn’t allow for simple linear or nonlinear
formulation; (iii) reconstructed data needs to be accurate and reliable. This study proposes a hybrid deep
learning approach combining the 1DCNN and LSTM network to reconstruct data within an SHM environment.
The proposed model uniquely leverages 1DCNN for efficient spatial feature extraction and LSTM for capturing
long-term temporal dependencies. Input data is strategically preprocessed through correlation-based sensor
clustering and time-shift enhancement techniques. A hybrid model used the SHM data measurements before data
loss to train models. The trained hybrid network can then reconstruct missing or erroneous data. The proposed
method is validated on real datasets from different structures in various scenarios and can be applied in practice,
achieving better performance and accuracy compared to other neural network-based methods. Quantitative
results show that the hybrid model reduces the Mean Absolute Error (MAE) by 10–15% and achieves Modal
Assurance Criterion (MAC) values exceeding 0.95, outperforming other baseline neural network models. These
results highlight the model’s practical applicability for accurate SHM data reconstruction under both single- and
multi-channel sensor failures.

1. Introduction

1.1. Data loss in SHM

A Structural Health Monitoring (SHM) system plays a significant role
in ensuring the safety and sustainability of bridges, especially complex
ones [1,2]. Using sensors and measuring devices, SHM provides real-
time bridge monitoring and allows condition assessment. Thus, signs
of surface deterioration or damage can be detected and, if properly
deployed, also inside the structure (e.g., cracks, deformation, corrosion).
In that scenario, early detection of an issue allows bridge management
responsible for identifying hazards and preventing potential incidents

[3]. Additionally, SHM integrated with predictive models can support
decisions on bridge interventions such as repair, maintenance, or
strengthening when necessary. For large bridge structures, any failure
can cause serious damage and consequences. Thus, the implementation
of SHM systems is essential.

An SHM system consists of many sensors and devices integrating
different technologies. They are installed at specific locations to collect
essential data for structural health diagnosis [4–6]. By combining
various sensors and measuring devices, the SHM system can provide a
comprehensive and detailed representation of the bridge’s condition,
thereby supporting the safe and optimized maintenance, management,
and operation of the bridge. The above results benefit from the real-time
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data source of the SHM system. The data of the SHM system plays an
essential role, being the foundation for analysis and evaluation [7,8].
Data from sensors is processed and analyzed by experts. From the
theoretical background and the analysis results, the condition of the
structure is discerned [9]. Maintenance and upgrade strategies that are
reasonable and effective, optimizing costs and resources, will be planned
based on structural assessments from the SHM system. In other words,
from the SHM system’s data, engineers will aim to preserve the bridge
structure in a safe condition state. Moreover, in case of any damage, the
losses will be minimized [10]. In addition, historical and real-time data
from the SHM system allows for the prediction of potential risks, thereby
promoting predictive maintenance [11,12]. Through data collection and
analysis, the SHM system not only helps maintain and enhance the safety
of existing bridges but also contributes to the sustainable development
of future transportation infrastructure [13].

SHM systems offer significant benefits in maintaining and managing
bridges, from reducing the risk of sudden collapses to optimizing
maintenance schedules. However, like any complex technology, SHM
also faces various challenges such as unavailable and incomplete data,
data management, timeliness, accuracy and source of truth, granularity
and quality, and validation, among other parameters [14]. In this re-
gard, data loss or errors, which is the most typical challenge, can be
caused by different reasons, such as sensor equipment failure over long-
term use or network connectivity issues. These problems are not just
technical glitches but can significantly impact the effectiveness and
safety of the SHM system. The SHM system heavily relies on the accu-
racy and continuity of the data collected from sensors and measuring
devices [15]. When data is incomplete, the actual condition assessment
of the bridge is severely affected, leading to ineffective maintenance
strategies. On the other hand, misinterpretation of data might lead to
delays in decision-making or even incorrect decisions in case of urgent
disturbances, increasing the risk of safety incidents and waste of
resources.

Several solutions have been proposed to address the issue of data loss
or errors in SHM systems. On one hand, SHM systems are being upgra-
ded with high-quality equipment [16]. On the other hand, regular in-
spections and calibrations are being conducted. In some cases,
organizations employ preventive measures to protect data, such as
backup storage, the use of secure data transmission protocols, and
setting up alerts. Implementing redundant systems offers an additional
layer of protection against data loss. For example, using multiple sensors
for the same measurement can help verify if the sensors are working
properly, verify the accuracy of the data, and identify any discrepancies.
Intervention measures are implemented when issues arise, such as
replacing sensors and repairing transmission lines. However, these so-
lutions consume a significant amount of resources. In many cases,
replacing or repairing components within the SHM system can be rela-
tively complex, or even impossible. Sensors embedded within the system
or deeply installed in the structure are difficult to repair or replace.
Additionally, most SHM systems consist of homogeneous devices, and
replacing them can lead to new issues.

Based on the above analysis, proposing data reconstruction solutions
is essential. Data reconstruction solutions not only help overcome cur-
rent limitations and shortcomings but also ensure the continuity and
reliability of data in SHM systems, thus allowing for optimized resource
management and system efficiency.

1.2. Data reconstruction: Related works

Over the past decades, numerous studies have attempted to propose
solutions to deal with data errors and address data reconstruction issues.
These solutions have applied diverse multidisciplinary technology and
theory and achieved significant milestones. They can be categorized into
four main groups: (i) data filtering/removal solution, (ii) statistical
probability solution, (iii) model-based solution, and (iv) artificial intel-
ligence solution.

The first group, data filtering/removal, is a simple method widely
used in practice. It aims to delete outliers in data to facilitate subsequent
analysis and achieve reliable results. The primary advantage of this so-
lution relies upon its simplicity and ease of implementation. It does not
require extensive computational resources and can be applied quickly to
clean the data, smoothing the process for further analysis. However,
excessive data removal can lead to the loss of important information and
impact the final analysis results, particularly when dealing with heavy-
tailed data distributions. Chen et al. [17] proposed a method for outlier
removal termed Hankel-structured robust principal component analysis
(HRPCA) to enhance the monitoring of structural dynamic responses.
After applying this method, the dataset has been restored and utilized
for monitoring. Also, Laencina et al. [18] reviewed several data removal
methods in cases of missing or erroneous data, highlighting the advan-
tages and disadvantages of these methods. Generally, the data removal
methods tend to result in information loss and reduced reliability.
However, they are highly effective in scenarios with abundant data and
limited computational resources.

In the second group, statistical techniques are used to calculate and
process missing or erroneous data. Missing or erroneous values can be
replaced using different methods such as mean imputation, linear
regression, or other statistical techniques [19]. These probabilistic sta-
tistical approaches are particularly effective with small datasets. They
can quickly process and clean the data, ensuring consistency and accu-
racy in subsequent analyses. However, when applied to SHM systems
with massive datasets (millions of data points per minute), these sta-
tistical methods become less effective. Processing such large amounts of
data requires significant computational resources, leading to high costs
and prolonged processing times. Furthermore, when dealing with such
huge volumes of data, simple statistical methods can easily underper-
form, reducing the accuracy of the final results [18].

For the third group, model-based solutions, the simulation tech-
niques are applied to create models that resemble real structures. Time
series data can be recovered and generated using the development of
numerical models. Shaikh and Nallasivam [20] used a finite element
model (FEM) to simulate the dynamic response of a box girder bridge.
While Zadel and Patnaik [21] modelled the dynamic response of a
reinforced concrete composite bridge using FEM. Additionally, many
other studies have used models to generate data for structural damage
detection [22–25]. Model-based methods for data reconstruction offer
certain efficiencies. However, the accuracy mostly depends on the
simulation techniques and computational resources. In other words,
they often omit some real-world conditions of the structure to simplify
calculations, which can sometimes cause discrepancies in data recon-
struction. The results may be acceptable for simple structures (such as
simple supported bridges or short-span bridges), but for long-span
bridges with complex structures (such as cable-stayed or suspension
bridges) or multiple-span composite bridges, the results are often inac-
curate. Additionally, the time-series data on structures are highly
dependent on continuously changing environmental inputs (e.g., traffic
density, wind loads, earthquakes, among others), causing the accurate
replication very challenging.

The last group regards the applications of artificial intelligence.
Recently the scientific revolution of Industry 4.0 has exponentially
evolved with the development of artificial intelligence (AI) and powerful
machine learning (ML) techniques. This has created favorable condi-
tions for SHM in general and specifically for SHM data reconstruction. AI
tools can learn from historical time-series data, recognize patterns,
reconstruct, and predict data with high accuracy [26–29]. Simulta-
neously, ML techniques can effectively handle heterogeneous and noisy
data, improving the reliability and quality of the reconstructed data. AI
and ML have unlocked new possibilities in data reconstruction tasks, by
automating data processing tasks, from noise filtering to analysis,
enhancing efficiency and minimizing errors.

Overall, it can be stated that the AI and ML solutions in sensor data
reconstruction tasks are very promising with high potential efficiency.

T.Q Minh et al.



Measurement 253 (2025) 117810

3

ML techniques are continuously being improved to keep up with the
ever-growing data development. As the core of the ML technique, the
Deep Learning (DL) algorithms are among the most promising for SHM
data reconstruction tasks. Chen et al. [30] proposed the application of a
deep learning and autoregressive (DL-AR) model to reconstruct strain
data for SHM, taking into account the influence of thermal effects. Their
results demonstrated that the proposed model achieved high perfor-
mance and accuracy. In another study [31], convolutional neural net-
works (CNN) were introduced and applied to predict the long-term
strain data of concrete structures. Furthermore, Lei et al. [32] presented
a method using deep convolutional generative adversarial networks to
reconstruct missing SHM data. Tang et al. [33] employed multivariate
variational mode decomposition (MVMD) and fully convolutional net-
works (FCN) to reconstruct continuous data from a reinforced concrete
arch and a real-world bridge. The results demonstrated the model’s
promising performance on acceleration data; however, its effectiveness
was limited when the sensor channels lacked correlation. Additionally,
the tested structures were relatively simple, indicating that the proposed
method requires further development to handle more complex structural
systems. Xin et al. [34] applied time-varying filtering-based empirical
mode decomposition (TVFEMD), an encoder-decoder (ED) architecture,
and a Long Short-Term Memory (LSTM) neural network to reconstruct
SHM data from a suspension bridge. Their method achieved promising
results; however, it did not take into account the spatial information
related to the sensor locations during the data reconstruction process.
Jiang et al. [35] used generative adversarial networks (GAN) to compute
missing data points. This method showed promising results when tested
with different scenarios. However, one of the limitations that needs to be
overcome is the complexity of the model and the long training time. Li
et al. [36] proposed a framework powered by multi-task Gaussian pro-
cess regression to reconstruct dam SHM data. Although for single data
reconstruction cases, the proposed framework has shown good perfor-
mance, data loss scenarios across multiple sensors have not been
considered. Recently, Wang et al. [37] proposed a hybrid model
combining Kalman smoothing (Ks) and Long Short-Term Memory
(LSTM) to impute missing wave height data. While this approach per-
formed effectively for the studied dataset (wave data), it has not yet
addressed the characteristics of SHM data, which involve both spatial
and temporal features. Zhu et al. [38] proposed a method combining
Wasserstein GAN with gradient penalty (WGAN-GP) and a U-Net
generator to reconstruct missing SHM data. Although the proposed
model achieves impressive results in data reconstruction, this study still
has some limitations, such as a complex training system, difficulty to
deploy in practice, the lack of ability to evaluate the reliability of
reconstructed data, and missing continued data not considered. Wan and
Ni [39] introduced a Bayesian multi-task learning framework for SHM
data reconstruction. This study is limited in scenarios involving a large
number of missing sensors, and various types of data loss cases have not
been extensively investigated. Additionally, many other studies have
demonstrated the potential and effectiveness of DL in SHM data recon-
struction [40–44]. Although deep learning-based approaches have
achieved certain successes in SHM data reconstruction, several aspects
still require improvement. First, enhancing the accuracy of recon-
structed data is essential, as higher accuracy leads to better performance
of SHM systems. Second, the proposed models should be adaptable to
various missing data scenarios, including single-point loss, multi-point
loss, and data loss at multiple sensor locations. In addition, the recon-
struction methods should be simplified and possess high interpretability
to improve the reliability of the results. It is also important for these
approaches to consider both the temporal and spatial characteristics of
SHM data. Finally, the applicability of the algorithms should be further
improved to handle more complex structural systems [45].

The present work proposes a hybrid model combining one-
dimensional convolutional neural networks (1DCNN) and Long Short-
Term Memory networks (LSTM) for sensor data reconstruction. This
approach offers potential solutions to the aforementioned challenges.

Firstly, 1DCNN-LSTM hybrid model uses the robust features of both
1DCNN and LSTM for time-series sensor data reconstruction tasks.
Specifically, 1DCNN excels in learning and extracting data features,
while LSTM can retrieve information over long periods, making it ideal
for time-series data. This helps enhance the accuracy of the recon-
structed data. Secondly, the model demonstrates flexibility across
various missing data scenarios, including single-point loss, multi-point
loss, and spatially distributed sensor loss. Moreover, compared to
more complex architectures, the 1DCNN-LSTM framework is relatively
lightweight and easily adaptable, contributing to improved interpret-
ability and reliability. Importantly, this approach considers both the
temporal and spatial characteristics of SHM data, which are crucial for
realistic reconstruction. Finally, the model shows promising potential
for application to complex structural systems, thereby enhancing its
practicality and generalization capability. This is evidenced through two
case studies: a laboratory-scale structure and a real-world large truss
bridge.

The main contributions of this study include:

(1) Strategic data preprocessing: A novel preprocessing approach that
leverages correlation-based sensor clustering and a time-shift
enhancement technique. Unlike conventional methods that only
use basic normalization or standardization, the preprocessing
strategy intelligently restructures input data based on sensor
correlations, thereby significantly reducing data complexity and
enhancing model robustness. The application of time-shift data
augmentation improves the model’s ability to generalize effec-
tively to unseen data scenarios, which is a substantial step for-
ward from existing hybrid models that generally overlook or
simplify preprocessing.

(2) Customized hybrid architecture: While previous studies typically
apply general-purpose CNN-LSTM models without objective
optimization, this study empirically determines the parameters
through extensive experiments and systematic evaluation. This
results in a highly efficient model that is particularly well-suited
to SHM data reconstruction tasks. Specifically, the proposed
model achieves up to a 15 % reduction in Mean Absolute Error
(MAE), maintains Modal Assurance Criterion (MAC) values above
0.95 in both laboratory and real-world scenarios

(3) Adaptability to complex data loss scenarios: The study systemati-
cally evaluates the proposed hybrid model in various real-world
data loss scenarios. The data tested range from laboratory struc-
tures to large real-world structures. Previous works have typically
considered simpler scenarios or limited datasets. This study
comprehensively validates and clearly demonstrates the model’s
capabilities in complex, real-world conditions.

(4) Demonstrated superior performance: The results demonstrate that
the proposed hybrid model outperforms state-of-the-art neural
network-based reconstruction methods, highlighting its effi-
ciency and reliability. Across various scenarios, the 1DCNN-LSTM
consistently achieved lower MAE, higher MAC values, and
smaller modal frequency errors, especially in complex multi-
channel data loss and high-noise environments. For example,
while other models showed MAC values dropping below 0.93
under challenging conditions, the proposed model maintained
MAC values above 0.98 in most single-channel cases and above
0.95 in moderate multi-channel loss scenarios.

This paper is organized into four main chapters: Introduction,
Research Methods and Approach, Case Studies, and Conclusion. The
Introduction starts to discuss the motivation and related research on
data reconstruction in SHM, and it is followed by the Research Methods
chapter that presents the details of the hybrid 1DCNN-LSTM model and
its implementation steps. Following, Case Studies are conducted and
presented, and finally, key findings and contributions are highlighted in
the Conclusion chapter.

T.Q Minh et al.
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2. Research methods and approach

2.1. Data gathering and preprocessing

Data in the SHM system takes the form of time series data, collected
by sensors positioned on the structures. This data is continuously gath-
ered in a specific chronological order; each data point is timestamped
and typically has a high sampling frequency to ensure detail and
accuracy.

Fig. 1 illustrates the data preparation process (or data preprocessing)
before training the model for the task of data reconstruction. The com-
plete raw data is collected from the sensors and stored. This data in-
cludes various information such as time, signals, number of channels,
and sensor labels, among others. In the first step of data preprocessing,
the data is separated to extract the main components, specifically the
time-varying signals, while other components are processed accordingly
to avoid redundancy. After extracting the main component of the data, a
data matrix is constructed and mathematically represented as follows:

X =
{
X1;X2; ...;Xi; ...;Xn

}
(1)

where n is the total number of sensors used to collect data, X is the
overall matrix containing data from sensors, and Xi is the time series
signal received by sensor number i.

To train a machine learning model, data needs to be restructured to
meet the network’s requirements, such as organizing input data, output
data, and labels. Here, the raw data will be restructured to fit the re-
quirements of the 1DCNN-LSTM architecture. This process involves
applying matrix transformations to systematically and efficiently
arrange and organize the data. After restructuring, the data will be
divided into two parts, one part for training the model and another part
for testing the model’s accuracy and effectiveness. The training data will
teach the model to learn important features and relationships within the
data, enhancing the model’s ability to make accurate predictions. The
testing data, also known as the test set, will not be used during the
training process but solely for evaluating the model’s performance after
training. This ensures that the model not only performs well on known
data but also has the capability to generalize and make accurate pre-
dictions on new, unseen data. In this study, the training and testing sets
will be split at a ratio of 70 % to 30 %. Using this 70/30 ratio ensures that

Fig. 1. Preprocessing data before feeding into the model.
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Fig. 2. Combining 1DCNN and LSTM networks for data reconstruction.
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the model has enough data to learn effectively while retaining a sig-
nificant portion of data to assess its accuracy and possibility for gener-
alization. This approach promotes that the model not only performs well
on known data but also accurately predicts new, unseen data.

The final step in data preprocessing is data normalization. This step
ensures that all data is brought to a common standard, facilitating the
training of the 1DCNN-LSTM model. When data features are standard-
ized, the model can learn the important characteristics without being
influenced by the differences in the scale of each feature. Normalization
helps prevent the problem of overfitting because the model will not be
excessively affected by extremely large or small values in the data that
could be considered outliers. This makes the model training process
more stable and the results more accurate. Data from the sensors is
scaled to the range [0,1] using Min-Max Scaling (Equation (2)

xnorm =
x − min(x)

max(x) - min(x)
(2)

where xnorm is the value after normalization, x is the value of the data
being considered, and min(x) and max(x) are the minimum and
maximum values of the data, respectively. At the end of the data pre-
processing process, the data is saved and prepared for training the
proposed model.

Data preprocessing in this study is carried out in a distinctive
manner. This process optimizes the simultaneous exploitation of the
1DCNN’s feature extraction capabilities and the LSTM’s temporal data
analysis strengths. A time-shift technique is applied to improve the
model’s generalization ability for SHM data. While conventional pre-
processing methods typically involve basic normalization or standardi-
zation, this approach strategically restructures the data. After
preprocessing, data leakage is carefully controlled, thereby enhancing
the model’s generalization and reliability in practical applications.
Additionally, sensor data are grouped based on data correlation,
reducing the complexity of information while improving its quality. This
facilitates better performance of the proposed model.

2.2. Model architecture

2.2.1. 1DCNN
1DCNN [46] is a type of neural network that specializes in analyzing

one-dimensional data, such as time-series signals from sensors [47]. The
1DCNN operates by sliding small filters over the input signal to auto-
matically detect important patterns, like peaks, fluctuations, or trends.
These patterns are then used as the basis for further processing and
analysis [48]. Activation functions such as rectified linear unit (ReLU)
and pooling layers then enhance and aggregate these features, reducing
data dimensionality while retaining critical information. Finally, the
extracted features are linked through fully connected layers to perform
predictions or classifications. 1DCNNs not only improve classification
performance but also serve as valuable tools in various applications such
as time series analysis, audio recognition, and signal processing, effec-
tively addressing challenges associated with sequential data processing.

The core operation in a 1DCNN is the convolution, which is defined
as the scalar product of a filter (or kernel) with a sequence of data.
Mathematically, the convolution of a sequence x[i]with a kernel w[k] is
given by [49]:

y[i] = (x× w)[i] =
∑m− 1

k=0
x[i + k].w[k] (3)

where, x[i]is the input sequence (e.g., time series, signal), w[k] is the
kernel or filter of size m, and y[i] is the output of the convolution
operation, often referred to as the feature map.

2.2.2. LSTM
LSTM [50] network is a type of recurrent neural network (RNN)

specifically designed to handle and learn from sequential data with long-
term dependencies. Unlike traditional RNNs, LSTM networks overcome
the vanishing gradient problem through their complex structure, which
includes memory cells and gating mechanisms [51]. These mechanisms
consist of forget, input, and output gates, each playing crucial roles in
regulating the information retained, added, or output from the memory
cell state. LSTM architecture allows the maintenance and update ofi n-
formation over long sequences, making them highly effective in appli-
cations requiring long-term dependency modeling, such as natural
language processing, speech recognition, and time series prediction.
This capability enables LSTMs to provide more accurate predictions and
analyses for sequential data by retaining memory of past events and
adjusting their state based on new inputs [48,52].

The memory cell is the core component of the LSTM, designed to
store information over time. It can be updated, maintained, or forgotten
based on the inputs received by the network [50]:

Ct = ft ⊗ Ct− 1 + it ⊗ C̃t (4)

where Ct is the memory cell state at time step t, ft is the forget gate output
at time step t, Ct-1 is the memory cell state at the previous time step t-1, it
is the input gate output at time step t, C̃t is the candidate cell state,
created by the input gate at time step t, and ⊗ is the element-wise
multiplication

2.2.3. Combining 1DCNN and LSTM to reconstruct data
Combining 1DCNN and LSTM networks for data reconstruction le-

verages the strengths of both architectures to address complex time-
series data challenges. The 1DCNN is adequate for extracting spatial
features and patterns from sequential data and identifying important
characteristics within individual time steps. Meanwhile, LSTM excels in
capturing temporal dependencies and long-term relationships within the
data, making it ideal for handling sequences where the order of events is
crucial. This hybrid approach can reconstruct missing or corrupted
sensor data with high accuracy, even in scenarios involving intricate
patterns or dependencies. This combination is particularly effective in
SHM, where both spatial and temporal information are critical, enabling
more reliable data reconstruction and better structural integrity
assessment over time. Fig. 2 shows the implementation steps of the
proposed method.

After pre-processing, the data is stored as input matrices to be ready
for training. The network’s input is defined as the intact data, while the
output corresponds to the data considered faulty or missing and
requiring reconstruction. The data first passes through the 1DCNN
layers to extract their features. The role of the 1DCNN layers is to
identify and isolate important features, with the number of layers and
parameters within each layer being customized according to the specific
requirements of the problem at hand.

Once the features are extracted, they form data matrices containing
distinct characteristics that reflect crucial aspects of the original data.
These matrices are then fed into the LSTM layers for further training.
LSTM specializes in handling temporal information, enabling the model
to learn and recognize complex relationships between data points,
including long-term dependencies that other models might overlook.
Using LSTM, the model can effectively learn from time-series data,
detecting repeating patterns and temporal variations, thereby enhancing
the accuracy of data reconstruction.

Finally, the outputs are determined through the Fully Connected
Layer. This layer synthesizes all the information processed and learned
from the previous layers, converting it into the final output: accurately
reconstructed data.

The mathematical interpretation of the process is presented below:

Input data

Assume the sensor signal collected is represented by a matrix:

T.Q Minh et al.
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X =

⎡

⎢
⎢
⎣

x1,1 x1,2 ⋯ x1,F
x2,1 x2,2 ⋯ x2,F
⋮ ⋮ ⋱ ⋮
xT,1 xT,2 ⋯ xT,F

⎤

⎥
⎥
⎦ ∈ RT×N (5)

where: T is the number of time steps; N is the number of sensors (input
channels).

One-Dimensional Convolutional Layer (1DCNN).

a. Layer Parameters:

Number of filters: F.
Kernel size: k.
Kernel weights:X(c) ∈ Rk×N×F

Bias vector:b(c) ∈ RF

b. Operation:

At each time step t ∈{1,2,…,T-k + 1}, a sliding window segment is
extracted from the input matrix:

Xt:t+k− 1 =

⎡

⎢
⎢
⎣

xt,1 xt,2 ⋯ xt,N
xt+1,1 xt+1,2 ⋯ xt+1,N

⋮ ⋮ ⋱ ⋮
xt+k− 1,1 xt+k− 1,2 ⋯ xt+k− 1,N

⎤

⎥
⎥
⎦ ∈ Rk×N (6)

For each filter f ∈ {1,2,…,F}, the convolution is computed as:

zt,f =
∑k

i=1

∑N

j=1
W(c)

i,j,f ⋅xt+i− 1,j + b(c)f (7)

The result is passed through a ReLU activation function:

h(1)t,f = max
(
0, zt,f

)
(8)

c. Output Matrix:

After applying all filters and scanning through time, the resulting
output matrix is:

H(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h(1)1,1 h(1)1,2 ⋯ h(1)1,F

h(1)2,1 h(1)2,2 ⋯ h(1)2,F

⋮ ⋮ ⋱ ⋮
h(1)Tʹ,1 h(1)Tʹ,2 ⋯ h(1)Tʹ,F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RTʹ×F with Tʹ = T − k+1 (9)

Long Short-Term Memory (LSTM) Layer.

a. Parameters:

Hidden state dimension: d.

Fig. 3. A laboratory composite plate structure model: a: Structure design; b. The structure set in the laboratory and location in an onsite application [53].
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Input weight matrices:Wi,Wf ,Wo,Wc ∈ Rd×F

Recurrent weight matrices:Ui,Uf ,Uo,Uc ∈ Rd×F

Bias vectors:bi,bf ,bo,bc ∈ Rd

b. LSTM Computation at Each Time Step t ∈{1,2,…,T’}:

h(1)t ∈ RF be the input at time t, and ht− 1, ct− 1 ∈ Rd be the hidden state
and cell state from the previous step. Then:

Input gate:

it = σ
(
Wih(1)t + Uiht− 1 + bi

)
(10)

Forget gate:

ft = σ
(
Wf h(1)t + Ufht− 1 + bf

)
(11)

Candidate cell state:

c̃t = tanh
(
Wch(1)t + Ucht− 1 + bc

)
(12)

Cell state update:

ct = ft ⊙ ct− 1 + it ⊙ c̃t (13)

Output gate:

ot = σ
(
Woh(1)t + Uoht− 1 + bo

)
(14)

Hidden state:

ht = ot .tanh(ct) (15)

where: ⊙ is the Hadamard (element-wise) product, σ is the sigmoid
activation function

c. Output Matrix:

H(LSTM) =

⎡

⎢
⎢
⎣

h1,1 h1,2 ⋯ h1,d
h2,1 h2,2 ⋯ h2,d
⋮ ⋮ ⋱ ⋮
hTʹ,1 hT∗ ,2 ⋯ hTʹ,d

⎤

⎥
⎥
⎦ ∈ RTʹ×d (16)

Fully Connected Layer for Output Prediction

a. Parameters:

Weight matrix:Wfc ∈ Rd×Nʹ

Bias vector:bfc ∈ RNʹ

N’ is the number of sensor channels to be reconstructed.

b. Output at each time step t:

x̂t = htWfc + bfc (17)

c. Final Output Matrix:

X̂ = H(LSTM).Wfc +1Tʹ×1.bTfc ∈ RTʹ×Nʹ (18)

Loss Function
Given the ground truth matrix Xtrue ∈ RTʹ×Nʹ, the model is trained by

minimizing the Mean Squared Error (MSE):

L MSE =
1

Tʹ⋅Nʹ
∑Tʹ

t=1

∑Nʹ

j=1

(
xtruet,j − x̂t,j

)2
=

1
Tʹ⋅Nʹ‖Xtrue − X̂‖

2
F (19)

where ||. ||F denotes the Frobenius norm.

Fig. 4. Measuring grid designed for the experiment: red: reference point; cyan: moving point.
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3. Testing and evaluating performance

3.1. A laboratory composite plate structure model

A full-scale cantilever model equivalent to the actual structure was
constructed in the laboratory test bed (Fig. 3) within the Thang Long
Bridge repair project (Hanoi, Vietnam) [53]. The experimental model
aims to evaluate the current repair solution, while its data is used for
research purposes in SHM.

The nominal dimensions of the model are 3.3 × 7.25 × 0.865 m3,
which consists of the following components: a composite deck with
support ribs, an I-section crossbeam, and a steel box beam (refer to
Fig. 3). The composite deck consisted of a 14 mm steel plate reinforced
with a UHPC coating layer with a thickness of 65 mm through stud
connections. Underneath the deck, 16 steel support ribs are welded
horizontally to enhance the stiffness and stability of the composite deck
by countering the membrane effect. A transverse crossbeam with a
variable I-section, which works in conjunction with a horizontal box
beam, to support the entire composite deck and rib system. The highest
I-section transverse crossbeam reaches up to 800 mm in height, while
the horizontal box beam maintains a uniform height of 800 mm. In
addition, two sets of steel bearings are placed under the box beam to

transmit the load to the support base and to control a slope for the
structure. In order to create a model with equivalent boundary condi-
tions to the actual structure, steel anchors are used to anchor the test
model to the laboratory side walls.

Data gathering.
An experimental dynamic test and data collection of the structural

plate’s acceleration response in the laboratory was conducted [54]. The
equipment includes high-sensitivity accelerometers (PCB model sensors
with a range of sensitivities from 1054 to 1083 mV/m/s2), a converter
and data acquisition system for the sensors, and a dedicated computer
for data storage and processing. The surface of the structural plate was
divided into a grid of square cells (measurement grid) to mark the lo-
cations for installing the accelerometers. The measurement grid com-
prises 35 points divided into 5 rows and 7 columns (Fig. 4).

Each grid point is marked and numbered to distinguish each other
during the experiment. Due to the limitation of the number of sensors
and input channels in the signal acquisition system, only 8 sensors
corresponding to 8 measurement channels are used in each round of
measurement. Therefore, the measurement test was performed by
multiple sub-rounds, in which each sub-measurementconsisted of 3
reference points (which are fixed points and marked as numbers 03, 06,
and 35), and five other points were selected from the remaining points.

Fig. 5. Collecting vibration data of a composite plate structure model in laboratory conditions.

Fig. 6. Vibration data of slab structures in the laboratory in 1 sub-measurement.
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Data from these sub-measurements was combined through the three
reference points. The accelerometers are fixed on the surface of the plate
at marked positions during the data collection of each sub-measurement.
During the experiment, vibrational stimuli are generated by applying
hydraulic force arranged above the plate structure (Fig. 5).

Data reconstruction
Fig. 6 shows the data collected in a sub-measurement. The acceler-

ation values at the measurement points were continuously recorded over
time with a sampling frequency of 1651 Hz (1651 samples per second).
With a data collection period of approximately 40 min for each sub-
measurement, the number of data points collected by a single sensor
reaches nearly 4 million data points. The large amplitude segments in
Fig. 6 were caused by controlled dynamic excitations applied using a
hydraulic actuator to simulate sudden external loads.

3.1.1. Single channel data loss
In the first research scenario, a sensor malfunction is simulated, such

that the data from one sensor becomes faulty and unusable. The other
data remains intact, while the faulty sensor’s data is assigned a value of
0 to indicate the error. The task of data reconstruction is then carried
out.

The first step involves pre-processing the data from the sensors to
prepare it for training the 1DCNN-LSTM model. Seven data colum-
ns corresponding to the data from seven sensors are identified as the
input for the proposed model. Simultaneously, the output is the data
from the sensor that needs to be reconstructed.

The proposed network combines three 1DCNN layers and four LSTM
layers to perform the sensor data reconstruction. Each 1DCNN layer is
equipped with 512 filters with a kernel size of 25 and the ReLU acti-
vation function. After the features have been extracted through the
1DCNN layers, the LSTM layers are used to process and analyze these
features in a temporal sequence. These LSTM layers are particularly
effective in handling time-series data, enabling the model to understand
and predict trends and variations in the sensor data over time. In the first
two LSTM layers, 512 memory cells are used, while the next two layers
use 256 memory cells. After each LSTM layer, a “Dropout” layer with a
parameter of 0.25 is employed. The purpose of the “Dropout” layers is to
prevent overfitting and enhance the effectiveness of the training process.
Fully connected layers are added at the end of the network, and the

output is the data from the faulty sensor. The model compilation process
is started. The model training is set to run for up to 1000 epochs, with a
batch size of 30, using the Adam optimizer, a learning rate of 0.001, and
the MSE loss function. The model with the best performance is then used
to perform the data reconstruction task.

These parameter were determined based on a combination of liter-
ature references and empirical evaluation. Specifically, using three
1DCNN layers with 512 filters and a kernel size of 25 is inspired by
studies that have successfully applied similar architectures to time series
signal reconstruction tasks [31,33,41,42]. The kernel size of 25 was
chosen after preliminary experiments with values ranging from 10 to 50
and it provides the best balance between local pattern detection ability
and computational efficiency. Similarly, for LSTM, a four-layer stack
was applied to increase the model’s ability to learn long-term de-
pendencies [40,48,49]. The memory cell size (512 for the first two layers
and 256 for the last two layers) was selected through a grid search
process to balance training performance and stability. Too large a
memory cell size tends to cause overfitting in preliminary experiments.
These parameters are selected after multiple tuning iterations, where
variations in model depth, kernel size, and memory units are evaluated
on a validation dataset. The selected configuration consistently yields
the best reconstruction accuracy and MAC value metric performance.

Fig. 7 illustrates the training results of the proposed model alongside
several other machine learning models in the task of data reconstruction
[26,30,42,43]. Preliminary evaluations show that the 1DCNN-LSTM
model has the best performance, surpassing other machine learning
models (with the same parameters). Specifically, during the training of
the 1DCNN-LSTM model, the convergence rate of the learning process is
significantly faster than that of other models (Fig. 7a). The proposed
model exhibits a rapid decrease in loss and converges close to zero by
epoch 197. In contrast, other comparison models begin to converge
around epoch 300 (for hybrid models) and even beyond 300 (for single
models). The loss value of the 1DCNN-LSTM model is also the closest to
zero. This indicates that the model achieves higher accuracy compared
to the other models. The presence of plateaus in the training loss curve
(Fig. 7a) occurs due to the complexity of SHM data. Additionally, this
behavior results from the combination of non-stationary signals,
dropout regularization, and the adaptive learning rate of the Adam
optimizer. However, these short stagnation periods do not affect overall

Fig. 7. Comparison of results between several machine learning models in data reconstruction: a. Loss training; b. Mean Absolute Error (MAE) of the best model.
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convergence and are consistent with the model’s high reconstruction
accuracy.

The mean absolute error between the reconstructed data values and
the actual values in the training and testing sets of the models is shown
in Fig. 7b. The 1DCNN-LSTM model has a very small error between the
actual and reconstructed values, and it is the smallest among the models
with the same configuration. This demonstrates that the 1DCNN-LSTM
model can accurately and effectively reconstruct sensor data. More-
over, the error values in the training and testing sets for this model are
quite similar, indicating that the model performs well and retains
generalizability. The model performs well on known data and maintains
high performance on new, unseen data.

Fig. 8 presents the reconstructed data results using various ML
models. The data reconstructed using the 1DCNN-LSTM model closely
aligns with the actual data. A detailed examination of Fig. 8 reveals that
the 1DCNN-LSTM model consistently outperforms other models in
accurately reconstructing the sensor data patterns. This is evidenced by
the minimal deviation between the reconstructed data points and the
actual values, indicating the model’s higher ability to capture the un-
derlying trends of the sensor data. In contrast, the other models exhibit
more noticeable discrepancies, with some models showing significant
deviations from the actual data, especially during periods of rapid
change or fluctuation in the sensor readings. This highlights the
robustness of the 1DCNN-LSTM model in handling complex data dy-
namics and maintaining high fidelity in data reconstruction. Although
the reconstructed signals shown in Fig. 8 appear smooth, this is a typical
result of neural network-based models, which tend to filter out noise
while preserving key structural characteristics.

Two sets of reconstructed and actual data were input for analysis and
comparison. After analyzing and processing the data using the MACEC

toolbox [55]. Modal analysis was accomplished using the covariance-
based stochastic subspace identification (SSI-COV) technique. The
criteria used to concretize and characterize the modality frequency
stabilization (1 %), damping ratio stabilization (5 %), and mode shape
stabilization (1 %) [8]. The results are presented in Fig. 9 and Table 1.

The mode shapes obtained after analyzing the two datasets (recon-
structed data and actual data) show similar patterns, indicating high
accuracy in the data reconstruction process. These similarities demon-
strate that the reconstructed data accurately reflects the dynamic char-
acteristics of the system. Specifically, in the first two mode shapes, the
vibration points nearly overlap, suggesting that the reconstruction
model has accurately captured the primary mode shapes, which are
crucial for understanding the structural response. It is particularly
important in applications such as SHM, where the primary mode shapes
play a significant role in assessing the condition and behavior of the
structure. For the subsequent mode shapes, there are some points where
the vibrations exhibit slight deviations, but these differences are not
significant.

From the analysis results in Table 1 and Table 2, there is a discrep-
ancy but not significant in the frequency values between the two data-
sets. The largest recorded discrepancy is in the fourth mode shape, with
a deviation of 1.162 %. The Modal Assurance Criterion (MAC) values
obtained when comparing the mode shapes also show high values, very
close to 1. The highest MAC value is achieved in the second mode shape
(0.997) and the lowest in the fourth mode shape (0.986). All MAC values
are greater than 0.9, indicating high accuracy. The high MAC values
further reinforce the effectiveness of the reconstruction model. The
combination of minor differences in frequency values and high MAC
values highlights the stability and reliability of the model in recon-
structing sensor data.

Fig. 8. Part of the data is reconstructed using different methods.
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3.1.2. Multi-channel data loss
Various multichannel data loss scenarios were studied to determine

the proposed method’s effectiveness. This section will consider data loss
scenarios ranging from 2 to 7 sensors. Correspondingly, the input of the
trained network will vary from 6 to 1, and the output will vary from 2 to
7. This approach involves systematically reducing the number of input
channels while increasing the number of output channels that the model
needs to reconstruct. For instance, when data from 2 sensors is lost, the
network will have 6 input channels and 2 output channels. Conversely,
when data from 7 sensors is lost, the network will have only 1 input
channel and 7 output channels. By examining these scenarios, the
robustness and adaptability of the 1DCNN-LSTM model can be evaluated
under different conditions of data loss. This comprehensive analysis
ensures that the model’s performance is thoroughly tested, providing
insights into its capability to handle varying degrees of sensor data loss
and still accurately reconstruct the missing data.

The parameters of the 1DCNN-LSTM model were selected similarly
to the single-channel data loss scenario to ensure a consistent

performance comparison. After preprocessing the data, the model’s
input and output were determined, and the training process
commenced. Specifically, parameters such as the number of layers,
number of filters, kernel size, activation function, learning rate, and loss
function were kept the same as in the single-channel data loss scenario.
The objective is to evaluate whether the model can maintain high per-
formance when dealing with more complex data loss situations. During
training, the model will learn to reconstruct the lost data from different
sensor channels. Each scenario will be trained for a maximum of 1000
epochs with a batch size of 30, using the Adam optimizer and the MSE
loss function. The training process and model performance will be
closely monitored. Metrics such as MAE and MAC values will be calcu-
lated to assess the model’s accuracy and reconstruction ability in each
scenario. Fig. 10 presents the results of the proposed model training
process.

The convergence curve of the training process is shown in Fig. 10a. In
all cases, the convergence curve drops rapidly at the initial stage and
then stabilizes horizontally. Preliminary evaluations indicate that the

Fig. 8. (continued).
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method’s efficiency decreases as the number of faulty sensors increases
(input decreases and output increases). Specifically, when two faulty
sensors need to be reconstructed, the model begins to converge and
approaches the value of 0 within 249 epochs. As the number of faulty
sensors increases, the number of epochs required for the model to
converge also increases. In the case of 3 faulty sensors, the model starts

to converge more slowly, requiring around 300 epochs to approach the
value of 0. As the number of faulty sensors continues to increase to 4 and
5, the convergence time becomes even longer, indicating greater
complexity and challenges in reconstructing data with decreasing input
and increasing output.

However, in cases with 6 and 7 faulty sensors, although the model

Fig. 9. Mode shape results of two real and reconstructed data sets: a. Mode 1: 1st torsion; b. Mode 2: 1st vertical bending; c. Mode 3: 2nd torsion; d. Mode 4: 2nd
vertical bending; e. Mode 5: 3rd torsion (Compare with actual values in [8]).
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converges relatively quickly, the loss value does not tend to approach 0.
This suggests that the model performs less effectively in these scenarios.
The possible reason is that the model is insufficiently capable of learning
and accurately reconstructing data when the amount of input informa-
tion is too low and the amount of data to be reconstructed is too high in
comparison. These results underscore that the model’s effectiveness
significantly diminishes when facing complex data loss situations with
many faulty sensor channels, highlighting the need for further im-
provements and optimizations to enhance accuracy and data recon-
struction capability in these challenging scenarios.

Fig. 9. (continued).

Table 1
Frequency analysis results of reconstructed datasets from different methods.

Mode Real data 1DCNN-LSTM 1DCNN-RNN CNN-LSTM LSTM

f(Hz) Error (%) f(Hz) Error (%) f(Hz) Error (%) f(Hz) Error (%)

1st 7.47 7.55 1.071 7.82 4.685 8.01 7.229 8.42 12.718
2nd 8.62 8.72 1.160 9.13 5.916 9.18 6.497 10.18 18.097
3rd 24.99 25.28 1.160 27.19 8.804 23.26 6.923 28.13 12.565
4th 36.16 36.58 1.162 38.53 6.554 39.12 8.186 31.46 12.998
5th 48.81 49.31 1.024 46.21 5.327 51.98 6.495 43.12 11.657

Table 2
MAC values of reconstructed datasets from different methods.

Mode 1DCNN-LSTM 1DCNN-RNN CNN-LSTM LSTM

1st 0.996 0.926 0.931 0.906
2nd 0.997 0.935 0.925 0.907
3rd 0.990 0.933 0.914 0.903
4th 0.986 0.942 0.934 0.900
5th 0.987 0.915 0.912 0.906
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Fig. 10b shows the mean absolute difference between the actual
value and the reconstructed value based on the number of faulty sensors.
The discrepancy between the actual value and the reconstructed value is
smaller when the amount of data needing reconstruction is less. When
only two sensors are faulty, the difference is negligible. However, this
discrepancy gradually increases as the number of faulty sensors in-
creases. Particularly, when the number of faulty sensors reaches five or

more, the discrepancy increases significantly. This highlights the decline
in the model’s performance in accurately reconstructing data when
dealing with a higher number of faulty sensors. It highlights the
importance of having sufficient input data to maintain high accuracy in
the reconstruction process and indicates that the model needs further
improvement to handle more complex scenarios of data loss with mul-
tiple faulty sensors effectively. The MAC values were calculated to

Fig. 10. Training results of the proposed mode: a. convergence curve; b. Mean absolute differences according to the number of data reconstruction.
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evaluate the reconstructed datasets under different scenarios. Fig. 11
shows the MAC values for various sensor failure scenarios:

The reconstructed data showed relatively high MAC values in sce-
narios where 2 to 4 sensors failed. This was observed after the data was
analyzed and compared with the mode shapes. Specifically, in cases
where data had to be reconstructed from 2 to 4 failed sensors, the MAC
values were all above 0.9. The MAC value matrix was relatively uniform.

However, in scenarios where data needed to be reconstructed from 5
sensors (out of a total of 8), the method’s effectiveness dropped signif-
icantly. This is consistent with previous evaluations of the model’s
effectiveness. For the scenario involving data reconstruction from 5
sensors, the highest MAC value achieved was only 0.789. This perfor-
mance further decreased substantially in scenarios involving data
reconstruction from 6 and 7 sensors, with MAC values reaching only

Fig. 11. MAC value in data loss scenarios.
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0.692 and 0.519, respectively. As the number of failed sensors increases,
the model’s ability to reconstruct data sharply decreases, highlighting
the necessity for further improvement and optimization of the model to
ensure accuracy in more complex situations.

3.1.3. Evaluation under different noise levels
In SHM systems, sensor signals are often subject to noise caused by

the environment or hardware. It can degrade the performance of data-
based models. An additional experiment was conducted to evaluate
the impact of signal-to-noise ratio (SNR) on the accuracy of recon-
structed data. This experiment allows for the evaluation of the reliability
of the proposed solution when deployed in real-world conditions. The
SNR analysis in this study focuses on a single-channel data reconstruc-
tion scenario to isolate the impact of noise on model performance. This
allows for a clear assessment of how different levels of noise affect the
accuracy of the reconstruction. Multi-channel data loss scenarios under
noisy conditions will be explored in future studies.

Gaussian white noise was added to the laboratory dataset at different

SNR levels. The noise levels considered were 40 dB (Signal is almost
unchanged, noise is very small); 30 dB (Slight noise starts to appear, but
signal is still clear); 20 dB (Noise becomes more visible, signal starts to
distort slightly) and 10 dB (Signal is heavily noisy, waveform starts to be
difficult to distinguish). These values represent increasing noise envi-
ronments, with 40 dB representing minimal noise and 10 dB repre-
senting a high noise situation. The noise was added to all input sensor
channels, while the actual output channel remained clean to simulate
real-world reconstruction conditions. The 1DCNN-LSTM architecture
and training parameters were used in the single-channel reconstruction
scenario. This ensures that the observed variations in reconstruction
accuracy are due only to added noise and not to changes in architecture
or hyperparameters.

The data reconstruction results considering the SNR levels are shown
in Fig. 12 and Table 3:

The proposed model maintains high MAC values (>0.9) and low
MAE up to 20 dB, indicating that it is robust against moderate noise
levels. At 10 dB, the performance degrades more significantly, which is
expected due to the significant noise in the input signals. These results
confirm that the 1DCNN-LSTM model can still produce reliable re-
constructions under typical noise conditions in SHM, reinforcing its
practical applicability.

3.2. Practical applications − Chuong Duong truss bridge

Chuong Duong Bridge (Fig. 13) is located in Hanoi, Vietnam, serving
as a vital transportation link across the Red River. The main bridge spans

Fig. 11. (continued).

Fig. 12. Mean Absolute Error (MAE) of the best model at different SNR levels.

Table 3
MAC at different SNR levels.

SNR (dB) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

40 0.991 0.990 0.986 0.983 0.984
30 0.976 0.968 0.962 0.967 0.959
20 0.938 0.926 0.910 0.912 0.901
10 0.872 0.855 0.837 0.825 0.801
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Fig. 13. Chuong Duong Bridge: a. side view; b. in front view.

Fig. 14. Data collection at Chuong Duong bridge: a. Measurement point grid; b. Install measuring points on the site.

Fig. 15. Vibration data of one setup at Chuong Duong bridge.
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the river with 11 steel truss spans, designed to accommodate heavy
traffic flow. Built to alleviate traffic congestion, Chuong Duong Bridge
has significantly contributed to maintaining smooth traffic flow into the
city center. Since its completion, the bridge has not only eased the
pressure on surrounding routes but also ensured efficient and uninter-
rupted transportation. To this day, the Chuong Duong Bridge remains a

crucial part of Hanoi’s transportation network, ensuring seamless con-
nectivity and supporting the region’s socio-economic development.

Chuong Duong Bridge was designed according to Vietnam’s TCN18-
79 standard [56]. It has an H30 load capacity for vehicles in the main
lanes and an H6 load capacity for vehicles moving on the cantilevered
sides of the bridge. The total cross-sectional width of the bridge is 20.6

Fig. 16. Data reconstruction at different locations: a. Loss training; b. Mean Absolute Error (MAE) of the best model.
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Fig. 17. Data reconstruction at different locations.

T.Q Minh et al.



Measurement 253 (2025) 117810

21

m. The truss members are H-shaped and are connected by plates at the
truss joints. The deck system is supported by a network of transverse and
longitudinal beams connected to the truss structure. The upper and
lower bracing systems are designed to stabilize the bridge against both
longitudinal and transverse loads.

Data gathering.
During the testing and load assessment campaign of the Chuong

Duong Bridge, a comprehensive vibration data collection was conducted
[23,57]. The equipment used was similar to that in the laboratory plate
test, including 8 PCB accelerometers, an NI signal receiver, and other
auxiliary devices. A comprehensive vibration measurement grid of the
bridge was designed and divided into 8 sub-measurement rounds to
optimize data collection (Fig. 14a). Measurement points were installed
at the nodes of the bridge’s truss, allowing data collection from the most
critical structural locations (Fig. 14b). In space, the sensors were
installed in three perpendicular directions: vertical, longitudinal, and
transverse to the bridge.

A monitoring station was set up throughout the data collection
process to supervise and control the entire operation. Random excita-
tions, such as vehicles passing over the bridge, wind loads, and other
factors, were utilized to induce natural vibrations in the bridge struc-
ture. Random vibration data collection setups were implemented. On-
site, after each measurement setup was completed, the sensor data
correlation was checked to ensure data quality. Simultaneously, the data
was pre-processed to evaluate the results and ensure data quality. In case
of any abnormalities, the setup was remade. Fig. 15 shows the data
collected in one setup.

Data reconstruction

3.2.1. Single channel data reconstruction
In the case study involving an actual bridge structure, instead of

comparing the performance of different machine learning models, this
section will analyze and evaluate the data from different sensor loca-
tions. Scenarios involving data loss at various sensor positions will be
conducted. Similar to the laboratory tests on plate structures, the
collected data underwent preprocessing before being input into the
model for training. The parameters of the proposed model are chosen
similarly to the plate case: three 1DCNN layers, four LSTM layers,
additional Max Pooling, and dropout layers. The results of the training
process are shown in Fig. 16.

The convergence curve of the training process shown in Fig. 16a
provides a preliminary assessment indicating that the 1DCNN-LSTM
model performs well in most of the examined cases. After approxi-
mately 250–350 epochs, the model starts to gradually converge towards

zero. Compared to the plate case discussed earlier, the model takes
longer to converge. The data collection process from an actual bridge
typically occurs under various conditions such as weather, temperature,
and bridge activity, leading to greater variability in the data. These
factors necessitate the model to process and filter out more noise signals,
thereby extending the convergence time of the training process. Work-
ing with more complex real-world data also poses a greater challenge for
the model in accurately identifying and reconstructing useful signals
from the raw data. This can explain the longer convergence time
compared to the plate structure in the laboratory setting.

At the bridge bearings (located above the expansion joints), signals
are frequently disturbed by external forces, particularly the impact of
vehicles crossing the expansion joints. This adds complexity to the data
at these locations. Sensors 3 and 7, installed at the bridge bearings,
exhibit lower performance compared to other sensors. The convergence
curves for reconstructing data from these two sensors take the longest to
converge, highlighting the complexity of the data at these noisy posi-
tions. Despite this, the 1DCNN-LSTM model still operates and can
reconstruct data at these locations, although its performance is signifi-
cantly reduced compared to less noisy positions. This indicates that
while the proposed model can handle data from complex real-world
environments, further optimization is needed to improve its perfor-
mance in high-noise areas.

Fig. 16b shows the average difference between the actual and
reconstructed values in different scenarios. Fig. 15b also demonstrates
the accuracy of the reconstructed data across various cases. The recon-
structed values are relatively accurate in both the training and test sets.
However, the cases of sensor 3 and sensor 7, located at the bridge
bearings, have lower accuracy compared to the other cases. This cor-
responds with the longer convergence time observed for these sensors,
indicating challenges due to the noisy environment. Despite this, the
model still achieves commendable performance in reconstructing data
from most sensors, suggesting that while the proposed 1DCNN-LSTM
model is effective, improvements are needed to handle data from
particularly noisy locations. Fig. 17 shows a portion of the reconstructed
data at different locations.

At regular positions, the reconstructed data closely matches the
actual data, showing the model’s effectiveness in most scenarios.
However, at the bearing positions, specifically at sensors 3 and 7, where
data exhibits sudden changes, the reconstructed data does not align well
with the actual data.

A modal analysis was conducted to assess the reliability of the
reconstructed data. This analysis aimed to examine the accuracy and
reliability of the data after it was reconstructed by 1DCNN-LSTM,

Fig. 17. (continued).
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determining whether the reconstructed values accurately reflect the
characteristics and behavior of the actual data. The results of the anal-
ysis are presented in Fig. 18 and Table 4.

The mode shapes obtained from the analysis of both the actual and

reconstructed datasets show a high degree of similarity. The locations of
the vibration points almost coincide, with the overall mode shape
appearing nearly identical between the two datasets. Notably, the
greatest differences are observed at the bridge bearings. These results

Fig. 18. Mode shape results of Chuong Duong bridge with 2 datasets: a. Mode 1; b. Mode 2; c. Mode 3; d. Mode 4; e. Mode 5; f. Mode 6 (Compare with actual values
in [23]).
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indicate that the model effectively captures the essential characteristics
of the structure’s response, although it struggles more in areas subjected
to higher noise levels, such as the bridge bearings. The consistency in
mode shapes across other regions demonstrates the robustness of the
proposed 1DCNN-LSTM model in accurately reconstructing sensor data
for structural health monitoring.

Observing Table 4, the frequency of the bridge structure obtained
from the analysis and comparison of the two datasets shows minor dif-
ferences. Specifically, in the fourth mode shape, the frequency exhibits
the largest difference, but it is only 3.181 %. Although the data from the
actual structure, after analysis, show greater discrepancies compared to
the lab-based plate, the differences are not significant. This indicates
that the model is capable of reconstructing data with high accuracy,

Fig. 18. (continued).

Table 4
Results of analysis of real and reconstruction data at Chuong Duong bridge.

Mode Frequency Error (%) MAC

Real data Reconstructed data

1st 1.79 1.77 1.117 0.989
2nd 3.57 3.62 1.401 0.987
3rd 4.30 4.42 2.791 0.988
4th 4.60 4.51 1.957 0.986
5th 5.03 5.19 3.181 0.983
6th 8.09 7.99 1.236 0.985
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(a) (b)

(c) (d)

(e) (f)

Fig. 19. MAC value in data loss scenarios of the Chuong Duong dataset.
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even though the data collected from the actual structure is more com-
plex than laboratory conditions.

Furthermore, the MAC values also achieve high scores, close to 1.
This indicates that the reconstructed dataset is highly representative of
the real data. The small discrepancy in frequency, combined with high
MAC values, demonstrates that the proposed 1DCNN-LSTM model
maintains its effectiveness in analyzing the dynamic characteristics of
the bridge structure, confirming the feasibility of the method for prac-
tical applications. The high MAC values reinforce the reliability of the
reconstructed data in accurately reflecting the behavior and character-
istics of the actual structure, thereby validating the robustness and
precision of the model in real practical scenarios.

3.2.2. Multi-channel data reconstruction
The multichannel data reconstruction for the Chuong Duong Bridge

was carried out using a similar method to that employed for the plate in
the previous case study. Accordingly, the data from the sensors were
sequentially corrupted (assigned a value of 0), and then data recon-
struction was performed.

Fig. 19 illustrates the MAC values for various data loss scenarios after
mode analysis. Overall, the network’s performance decreased compared
to the laboratory data set but still achieved relatively high efficiency.
Specifically, for the Chuong Duong Bridge data set, the highest MAC
value achieved in the case of reconstructing data from 2 sensors was
0.955 (while for the laboratory plate, it was 0.969). Other cases also
showed a decrease in MAC values compared to the laboratory study.
This can be attributed to the complexity and variability of real-world
data from the bridge, which includes more noise and fluctuations than
the controlled laboratory environment. However, the MAC values ob-
tained remain high, demonstrating the model’s ability to accurately
reconstruct sensor data in complex real conditions. Despite some
decrease, these results indicate that the data reconstruction method can
still be effectively applied in practical situations.

As the number of faulty sensors increases, the model’s performance
and accuracy decrease significantly in each case. Specifically, when
there are 3 faulty sensors, the MAC value drops to 0.923, and when the
number of faulty sensors increases to 4, this value further decreases to
0.901. This trend continues to worsen with more faulty sensors, with the
MAC value reaching only 0.728 when 5 sensors are faulty and dropping
sharply to 0.609 with 6 non-functional sensors. Particularly, in the most
severe scenario with 7 faulty sensors, the MAC value is only 0.498. This
decrease indicates that although the 1DCNN-LSTM model can relatively
accurately reconstruct data from sensors, it struggles significantly when
faced with severe data loss. This highlights the need for improving and
optimizing the model to ensure higher performance in more complex
data loss scenarios.

4. Conclusion

This research introduces a novel approach that combines 1DCNN and
LSTM for sensor data reconstruction in SHM. The proposed method uses
the strengths of 1DCNN in feature extraction and LSTM’s ability to
process time-series data. The effectiveness of this combination is
demonstrated through two case studies, confirming the significant effi-
ciency of the 1DCNN-LSTM model. From these studies, several key
conclusions are drawn:

(1) The 1DCNN-LSTM combined method provides high performance
in sensor data reconstruction for SHM compared to other ma-
chine learning models with the same input parameters. This
improvement is clearly demonstrated through the accuracy and
reliability of the reconstructed data, making the 1DCNN-LSTM
approach more effective in handling complex structural health
monitoring scenarios.

(2) For single-channel data reconstruction, the proposed method
achieves relatively high accuracy when applied to both

laboratory and real practical datasets. Although the effectiveness
of the method decreases slightly when applied to real bridge
structural data, it still maintains a high level of accuracy.

(3) The proposed method demonstrates the ability to effectively
reconstruct data from one or multiple faulty sensors. However, as
the number of faulty sensors increases, the model’s performance
tends to decrease.

(4) Future research could focus on enhancing the network’s perfor-
mance and expanding the method’s applicability to different
types of sensor data. To achieve this, studies could investigate
advanced network optimization techniques, such as improving
network architecture or fine-tuning training parameters, to ach-
ieve better performance under real-world conditions.
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