
Encoding Monomorphic and Polymorphic Types

Jasmin Christian Blanchette1, Sascha Böhme1,
Andrei Popescu1, and Nicholas Smallbone2

1 Fakultät für Informatik, Technische Universität München, Germany
2 Dept. of CSE, Chalmers University of Technology, Gothenburg, Sweden

Abstract. Most automatic theorem provers are restricted to untyped logics, and
existing translations from typed logics are bulky or unsound. Recent research
proposes monotonicity as a means to remove some clutter. Here we pursue this
approach systematically, analysing formally a variety of encodings that further
improve on efficiency while retaining soundness and completeness. We extend
the approach to rank-1 polymorphism and present alternative schemes that lighten
the translation of polymorphic symbols based on the novel notion of “cover”. The
new encodings are implemented, and partly proved correct, in Isabelle/HOL. Our
evaluation finds them vastly superior to previous schemes.

1 Introduction

Specification languages, proof assistants, and other theorem proving applications typi-
cally rely on polymorphic types, but state-of-the-art automatic provers support only un-
typed or monomorphic logics. The existing sound and complete translation schemes for
polymorphic types, whether they revolve around functions (tags) or predicates (guards),
produce clutter that severely hampers the proof search, and lighter approaches based on
type arguments are unsound [13, 15]. As a result, application authors face a difficult
choice between soundness and efficiency.

The fourth author, together with Claessen and Lillieström [10], designed a pair of
sound, complete, and efficient translations from monomorphic to untyped first-order
logic with equality. The key insight is that monotonic types—types whose domain can
be extended with new elements while preserving satisfiability—can be merged. The
remaining types can be made monotonic by introducing protectors (tags or guards).

Example 1 (Monkey Village). Imagine a village of monkeys [10] where each monkey
owns at least two bananas (b1 and b2):

∀M : monkey. owns(M, b1(M)) ∧ owns(M, b2(M))
∀M : monkey. b1(M) 6≈ b2(M)
∀M1, M2 : monkey, B : banana. owns(M1, B) ∧ owns(M2, B)→ M1≈ M2

The type banana is monotonic, whereas monkey is nonmonotonic because there can live
at most bb/2c monkeys in a village with a finite supply of b bananas. Thanks to mono-
tonicity, it is sound to omit all type information regarding bananas. The example can
be encoded using a predicate gmonkey to guard against ill-typed monkey instantiations:

∀M. gmonkey(M)→ owns(M, b1(M)) ∧ owns(M, b2(M))
∀M. gmonkey(M)→ b1(M) 6≈ b2(M)
∀M1,M2,B. gmonkey(M1)∧ gmonkey(M2)∧ owns(M1, B)∧ owns(M2, B)→M1≈M2

Monotonicity is not decidable, but it can often be inferred using suitable calculi. In
this paper, we exploit this idea systematically, analysing a variety of encodings based
on monotonicity: some are minor adaptations of existing ones, while others are novel
encodings that further improve on the size of the translated formulas.

We also generalise the monotonicity approach to a rank-1 polymorphic logic, as
embodied by TPTP TFF1 [3]. Unfortunately, the presence of a single equality literal
Xα ≈ t or t≈ Xα, where X is a polymorphic variable of type α, will lead the analysis to
classify all types as possibly nonmonotonic and force the use of protectors everywhere.
We solve this issue through a novel scheme that reduces the clutter associated with
nonmonotonic types, based on the observation that protectors are required only when
translating the particular formulas that prevent a type from being inferred monotonic.

We first review four main traditional approaches (Sect. 2), which prepare the ground
for the more advanced encodings. Next, we present known and novel monotonicity-
based schemes that handle only ground types (Sect. 3); these are interesting in their own
right and serve as stepping stones for the full-blown polymorphic encodings (Sect. 4).
We also present alternative schemes that aim at reducing the clutter associated with
polymorphic symbols, based on the novel notion of “cover” (Sect. 5). Proofs of correct-
ness are included in a technical report [2].

A formalisation [4] of the results in the proof assistant Isabelle/HOL [14] is un-
der way; it currently covers all the monomorphic encodings. The encodings have been
implemented in Sledgehammer [13], which provides a bridge between Isabelle and au-
tomatic theorem provers. They were evaluated with E, iProver, SPASS, Vampire, and
Z3 on a vast benchmark suite (Sect. 6).

2 Traditional Type Encodings

We assume that formulas are expressed in negation normal form (NNF), with negation
applied to atoms, and that each variable is bound only once in a formula. Given a poly-
morphic signature Σ = (K ,F ,P) (with n-ary type constructors K , function symbols F ,
and predicate symbols P , all three sets finite), symbols are declared as s : ∀ᾱ. σ̄� ς ∈
F]P , where ς is either a type (for s ∈ F) or o (for s ∈ P). An application s〈τ̄〉(t̄) of s
requires |ᾱ| type arguments in angle brackets and |σ̄| term arguments in parentheses.
We often omit 〈τ̄〉 in examples. Σ is monomorphic if none of the symbols take type
arguments and untyped if additionally K = {ι}, in which case we omit K and indicate
arities by superscripts (sn). A problem over Σ is a finite set of closed formulas over Σ.

The easiest way to translate a typed problem into an untyped logic is to erase all type
information, omitting type arguments, type quantifiers, and types in term quantifiers.

Definition 2 (Full Erasure e). The full type erasure encoding e translates a polymor-
phic problem over Σ into an untyped problem over Σ′, where the symbols in Σ′ have the
same term arities as in Σ (but without type arguments). It is defined as follows:

Jf〈σ̄〉(t̄)Ke = f(Jt̄ Ke) Jp〈σ̄〉(t̄)Ke = p(Jt̄ Ke) J∀X :σ. ϕKe = ∀X. JϕKe
J∀α. ϕKe = JϕKe J¬ p〈σ̄〉(t̄)Ke = ¬ p(Jt̄ Ke) J∃X :σ. ϕKe = ∃X. JϕKe

Here and elsewhere, we omit the trivial cases where the function is simply applied to
its subterms or subformulas, as in Jϕ1 ∧ ϕ2Ke = Jϕ1Ke ∧ Jϕ2Ke .

By way of composition, the e encoding lies at the heart of all the encodings presented
in this paper. Given n encodings x1, . . . ,xn, we write J Kx1 ;...;xn for J Kxn ◦ · · · ◦ J Kx1 .

Full type erasure is unsound in the presence of equality because equality can be used
to encode cardinality constraints on domains. For example, ∀U : unit. U ≈ unity forces
the domain of unit to have only one element. Its erasure, ∀U. U ≈ unity, effectively re-
stricts all types to one element. An additional issue is that erasure confuses distinct mon-
omorphic instances of polymorphic symbols. The formula q〈a〉(f〈a〉) ∧ ¬ q〈b〉(f〈b〉) is
satisfiable, but its type erasure q(f) ∧ ¬ q(f) is unsatisfiable. A solution is to encode
types as terms in the untyped logic: type variables α become term variables A, and type
constructors k become function symbols k. A symbol with m type arguments is passed m
additional term arguments. The example above is translated to q(a, f(a))∧¬ q(b, f(b)).

We call this encoding a. It coincides with e for monomorphic problems and is
unsound. Nonetheless, it forms the basis of all our sound polymorphic encodings in a
slightly generalised version, called ax below. First, let us fix a distinguished type ϑ (for
encoded types) and two symbols t : ∀α. α� α (for tags) and g : ∀α. α� o (for guards).

Definition 3 (Type Argument Filter). Given a signature Σ = (K ,F ,P), a type argu-
ment filter x maps any s : ∀α1, . . . ,αm. σ̄� ς to a subset x s = {i1, . . . , im′}⊆ {1, . . . ,m} of
its type argument indices. Given a list z̄ of length m, x s(z̄) denotes the sublist zi1 , . . . ,zim′ ,
where i1 < · · · < im′ . Filters are implicitly extended to {1} for t, g /∈ F]P .

Definition 4 (Generic Arguments ax). Given a type argument filter x , the generic
type arguments encoding ax translates a polymorphic problem over Σ = (K ,F ,P) into
an untyped problem over Σ′ = (F ′]K , P ′), where the symbols in F ′, P ′ are the same
as those in F , P . For each symbol s : ∀ᾱ. σ̄� ς ∈ F]P , the arity of s in Σ′ is |x s|+ |σ̄|.
The encoding is defined as J Kax ;e , where the nontrivial cases are

Jf〈σ̄〉(t̄)Kax = f〈σ̄〉(〈〈x f(σ̄)〉〉, Jt̄ Kax) J∀α. ϕKax = ∀α. ∀〈〈α〉〉 :ϑ. JϕKax

Jp〈σ̄〉(t̄)Kax = p〈σ̄〉(〈〈xp(σ̄)〉〉, Jt̄ Kax) J¬ p〈σ̄〉(t̄)Kax = ¬ Jp〈σ̄〉(t̄)Kax

The auxiliary function 〈〈σ〉〉 returns the term encoding of a type over K as a term over
({ϑ},K) of the distinguished type ϑ, following the simple scheme described above.

An intuitive approach to encode type information soundly is to wrap each term and
subterm with its type using type tags. For polymorphic type systems, this scheme relies
on a distinguished binary function t(〈〈σ〉〉, t) that “annotates” each term t with its type σ.
The tags make most type arguments superfluous. This encoding is defined as a two-stage
process: the first stage adds tags t〈σ〉(t) while preserving the polymorphism; the second
stage encodes t’s type argument as well as any phantom type arguments.

Definition 5 (Phantom Type Argument). Let s : ∀α1, . . . ,αm. σ̄� ς ∈ F]P . The ith
type argument is a phantom if αi does not occur in σ̄ or ς. Given a list z̄ ≡ z1, . . . ,zm,
phans(z̄) denotes the sublist zi1 , . . . ,zim′ corresponding to the phantom type arguments.

Definition 6 (Traditional Tags t). The traditional type tags encoding t translates a
polymorphic problem over Σ into an untyped problem over Σ′ = (F ′]K]{t2}, P ′),
where F ′, P ′ are as for aphan (i.e. ax with x = phan). It is defined as J Kt ;aphan ;e , i.e.
the composition of J Kt , J Kaphan , and J Ke , where

Jf〈σ〉(t̄)Kt = bf〈σ〉(Jt̄ Kt)c JXKt = bXc with btσc = t〈σ〉(t)

Example 7 (Algebraic Lists). The following axioms induce a minimalistic first-order
theory of algebraic lists that will serve as our main running example:

∀α. ∀X :α, Xs : list(α). nil 6≈ cons(X, Xs)
∀α. ∀X :α, Xs : list(α). hd(cons(X, Xs))≈ X ∧ tl(cons(X, Xs))≈ Xs

We conjecture that cons is injective. The conjecture’s negation can be expressed em-
ploying an unknown but fixed Skolem type b:

∃X, Y : b, Xs, Ys : list(b). cons(X, Xs)≈ cons(Y, Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Because the hd and tl equations force injectivity of cons in both arguments, the prob-
lem is unsatisfiable: the unnegated conjecture is a consequence of the axioms. The t
encoding translates the problem into

∀A, X, Xs. t(list(A), nil) 6≈ t(list(A), cons(t(A, X), t(list(A), Xs)))
∀A, X, Xs. t(A, hd(t(list(A), cons(t(A, X), t(list(A), Xs)))))≈ t(A, X) ∧

t(list(A), tl(t(list(A), cons(t(A, X), t(list(A), Xs)))))≈ t(list(A), Xs)
∃X, Y, Xs, Ys. t(list(b), cons(t(b, X), t(list(b), Xs)))≈

t(list(b), cons(t(b, Y), t(list(b), Ys))) ∧
(t(b, X) 6≈ t(b, Y) ∨ t(list(b), Xs) 6≈ t(list(b), Ys))

Type tags heavily burden the terms. An alternative is to introduce type guards, which
are predicates that restrict the range of variables. They take the form of a distinguished
predicate g(〈〈σ〉〉, t) that checks whether t has type σ. With the type tags encoding, only
phantom type arguments needed to be encoded; here, we must encode any type argu-
ments that cannot be read off the types of the term arguments. Thus, the type argument
is encoded for nil〈α〉 but omitted for cons〈α〉(X, Xs), hd〈α〉(Xs), and tl〈α〉(Xs).

Definition 8 (Inferable Type Argument). Let s : ∀α1, . . . ,αm. σ̄� ς ∈ F]P . A type
argument is inferable if it occurs in some of the term arguments’ types. Given a list
z̄≡ z1, . . . ,zm, infs(z̄) denotes the sublist zi1 , . . . ,zim′ corresponding to the inferable type
arguments, and ninfs(z̄) denotes the sublist for noninferable type arguments.

Definition 9 (Traditional Guards g). The traditional type guards encoding g trans-
lates a polymorphic problem over Σ into an untyped problem over Σ′ = (F ′]K ,
P ′]{g2}), where F ′, P ′ are as for aninf. It is defined as J Kg ;aninf ;e , where

J∀X :σ. ϕKg = ∀X :σ. g〈σ〉(X)→ JϕKg J∃X :σ. ϕKg = ∃X :σ. g〈σ〉(X) ∧ JϕKg
The translation of a problem is given by JΦKg = Ax ∪

⋃
ϕ∈Φ JϕKg , where Ax consists

of the following typing axioms:

∀ᾱ. X̄ : σ̄.
(∧

j g〈σj〉(X j)
)
→ g〈σ〉(f〈ᾱ〉(X̄)) for f : ∀ᾱ. σ̄� σ ∈ F

∀α. ∃X :α. g〈α〉(X)
The last axiom witnesses inhabitation of every type. It is necessary for completeness.

Example 10. The g encoding translates the algebraic list problem of Example 7 into

∀A. g(list(A), nil(A))
∀A, X, Xs. g(A, X) ∧ g(list(A), Xs)→ g(list(A), cons(X, Xs))
∀A, Xs. g(list(A), Xs)→ g(A, hd(Xs))
∀A, Xs. g(list(A), Xs)→ g(list(A), tl(Xs))
∀A. ∃X. g(A, X)

∀A, X, Xs. g(A, X) ∧ g(list(A), Xs)→ nil(A) 6≈ cons(X, Xs)
∀A, X, Xs. g(A, X) ∧ g(list(A), Xs)→ hd(cons(X, Xs))≈ X ∧ tl(cons(X, Xs))≈ Xs
∃X, Y, Xs, Ys. g(b, X) ∧ g(b, Y) ∧ g(list(b), Xs) ∧ g(list(b), Ys) ∧

cons(X, Xs)≈ cons(Y, Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Bibliographical Notes. The earliest descriptions of type tags and type guards we are
aware of are due to Enderton [11] and Stickel [15]. Wick and McCune [18] compare
type arguments, tags, and guards in a monomorphic setting. Type arguments are remi-
niscent of System F; they are described by Meng and Paulson [13], who also consider
full type erasure and polymorphic type tags. Urban [17] extended the untyped TPTP
FOF syntax with dependent types to accommodate Mizar.

The intermediate verification language and tool Boogie 2 [12] supports a restricted
form of higher-rank polymorphism (with polymorphic maps), and its cousin Why3 [6]
provides rank-1 polymorphism. Both define translations to a monomorphic logic and
handle interpreted types [7, 12]. One of the Boogie translations [12] uses SMT triggers
to prevent ill-typed instantiations. Bouillaguet et al. [8] showed that full type erasure is
sound if all types can be assumed to have the same cardinality and exploit this in the
verification system Jahob. An alternative to encoding polymorphic types is to support
them natively in the prover; this is ubiquitous in interactive theorem provers, but perhaps
the only automatic prover that supports polymorphism is Alt-Ergo [5].

3 Monotonicity-Based Type Encodings—The Monomorphic Case

Type tags and guards considerably increase the size of the problems passed to the auto-
matic provers, with a dramatic impact on their performance. Most of the clutter can be
removed by inferring monotonicity and soundly erasing type information based on the
monotonicity analysis. Informally, a monotonic formula is one where, for any model of
that formula, we can increase the size of the model while preserving satisfiability.

We focus on the monomorphic case, where the input problem contains no type vari-
ables or polymorphic symbols. Many of our definitions nonetheless handle the poly-
morphic case gracefully so that they can be reused in Section 4.

Before we start, let us define variants of the traditional t and g encodings that op-
erate on monomorphic problems. The monomorphic encodings t̃ and g̃ coincide with
t and g except that the polymorphic function t〈σ〉(t) and predicate g〈σ〉(t) are replaced
by type-indexed families of unary functions tσ(t) and predicates gσ(t), as is customary
in the literature [18].

Definition 11 (Monotonicity). Let S be a set of ground types and Φ be a problem. The
types in S are (infinitely) monotonic in Φ if for all models M of Φ, there exists a model
M ′ such that for all ground types σ, JσKM is infinite if σ ∈ S and

∣∣JσKM ′ ∣∣ = ∣∣JσKM ∣∣
otherwise. A type σ is (infinitely) monotonic if {σ} is monotonic. The problem Φ is
(infinitely) monotonic if all its types, taken together, are monotonic.

Our criterion, infinite monotonicity, subsumes the finite monotonicity of Claessen et al.
The set {monkey, banana} is infinitely monotonic in Example 1, even though banana
is not monotonic in the sense of Claessen et al. Another advantage of the new criterion
is that it directly handles polymorphic signatures and infinitely many types.

Full type erasure is sound for monomorphic, monotonic problems. The intuition is
that a model of such a problem can be extended into a model where all types are inter-
preted as sets of the same cardinality, which can be merged to yield an untyped model.

Claessen et al. introduced a simple calculus to infer finite monotonicity for mono-
morphic first-order logic [10]. The definition below generalises it from clause normal
form to negation normal form. The calculus is based on the observation that a type σ
must be monotonic if the problem expressed in NNF contains no positive literal of the
form Xσ ≈ t or t ≈ Xσ, where X is universal. We call such an occurrence of X a naked
occurrence. Naked variables are the only way to express upper bounds on the cardinality
of types in first-order logic.

Definition 12 (Naked Variable). The set of naked variables NV(ϕ) of a formula ϕ is
defined as follows:

NV(p〈σ̄〉(t̄)) = /0 NV(t1≈ t2) = {t1, t2} ∩ V
NV(¬ p〈σ̄〉(t̄)) = /0 NV(t1 6≈ t2) = /0

NV(ϕ1∧ ϕ2) = NV(ϕ1) ∪ NV(ϕ2) NV(∀X :σ. ϕ) = NV(ϕ)

NV(ϕ1∨ ϕ2) = NV(ϕ1) ∪ NV(ϕ2) NV(∃X :σ. ϕ) = NV(ϕ)−{X}

Variables of types other than σ are irrelevant when inferring whether σ is monotonic;
a variable is problematic only if it occurs naked and has type σ. Annoyingly, a single
naked variable of type σ will cause us to classify σ as possibly nonmonotonic.

We regain some precision by extending the calculus with an infinity analysis: triv-
ially, all types with no finite models are monotonic. Abstracting over the specific anal-
ysis used to detect infinite types (e.g. Infinox [9]), we fix a set Inf(Φ) of types whose
interpretations are guaranteed to be infinite in all models of Φ. The monotonicity cal-
culus takes Inf(Φ) into account.

Definition 13 (Monotonicity Calculus BBB). Let Φ be a monomorphic problem. A
judgement σ B ϕ indicates that the ground type σ is inferred monotonic in ϕ ∈ Φ.
The monotonicity calculus consists of the following rules:

σ ∈ Inf(Φ)

σB ϕ

NV(ϕ) ∩ {X | X has type σ}= /0

σB ϕ

Monotonic types can be soundly erased when translating from a monomorphic logic
to an untyped logic. Nonmonotonic types in general cannot. Claessen et al. [10] point
out that adding sufficiently many protectors to a nonmonotonic problem will make it
monotonic, after which its types can be erased. Thus the following general two-stage
procedure translates monomorphic problems to untyped first-order logic:

1. Introduce protectors (tags or guards) without erasing any types:
(a) Introduce protectors for universal variables of possibly nonmonotonic types.
(b) If necessary, generate typing axioms for any function symbol whose result type

is possibly nonmonotonic, to make it possible to remove protectors.

2. Erase all the types.

The purpose of stage 1 is to make the problem monotonic while preserving satisfiability.
This paves the way for the sound type erasure of stage 2.

The encoding t̃?, due to Claessen et al., specialises this procedure for tags. It is
similar to the traditional encoding t̃ (the monomorphic t), except that it omits the tags
for types that are inferred monotonic. By wrapping all naked variables (in fact, all terms)
of possibly nonmonotonic types in a function term, stage 1 yields a monotonic problem.

Definition 14 (Lightweight Tags t̃̃t?). The monomorphic lightweight type tags en-
coding t̃? translates a monomorphic problem Φ over Σ into an untyped problem over
Σ′ = (F ′]{t1

σ}, P ′), where F ′, P ′ are as for e. It is defined as J Kt̃?;e , where

Jf(t̄)Kt̃? = bf(Jt̄ Kt̃?)c JXKt̃? = bXc with btσc =

{
t if σB Φ

tσ(t) otherwise

Example 15. For a monomorphised version of Example 7, with α instantiated by b,
the monomorphic type corresponding to list(b) is monotonic by virtue of being infinite,
whereas b cannot be inferred monotonic. The t̃? encoding of the problem follows:

∀X, Xs. nilb 6≈ consb(tb(X), Xs)
∀X, Xs. tb(hdb(consb(tb(X), Xs)))≈ tb(X) ∧ tlb(consb(tb(X), Xs))≈ Xs
∃X, Y, Xs, Ys. consb(tb(X), Xs)≈ consb(tb(Y), Ys) ∧ (tb(X) 6≈ tb(Y) ∨ Xs 6≈ Ys)

The t̃? encoding treats all variables of the same type uniformly. Hundreds of axioms can
suffer because of one unhappy formula that uses a type nonmonotonically (or in a way
that cannot be inferred monotonic). To address this, we introduce a lighter encoding: if
a universal variable does not occur naked in a formula, its tag can safely be omitted.1

Our novel encoding t̃?? protects only naked variables and introduces equations
tσ(f(X)σ) ≈ f(X) to add or remove tags around each function symbol f whose result
type σ is possibly nonmonotonic, and similarly for existential variables.

Definition 16 (Featherweight Tags t̃̃t??). The monomorphic featherweight type tags
encoding t̃?? translates a monomorphic problem Φ over Σ into an untyped problem
over Σ′, where Σ′ is as for t̃?. It is defined as J Kt̃??;e , where

Jt1≈ t2Kt̃?? = bJt1Kt̃??c ≈ bJt2Kt̃??c

J∃X :σ. ϕKt̃?? = ∃X :σ.

{
JϕKt̃?? if σB Φ

tσ(X)≈ X ∧ JϕKt̃?? otherwise
with

btσc =

{
t if σB Φ or t is not a universal variable
tσ(t) otherwise

The encoding is complemented by typing axioms:

∀X̄ : σ̄. tσ(f(X̄))≈ f(X̄) for f : σ̄� σ ∈ F such that σ 6B Φ

∃X :σ. tσ(X)≈ X for σ 6B Φ that is not the result type of a symbol in F

The side condition for the last axiom is a minor optimisation: it avoids asserting that σ
is inhabited if the symbols in F already witness σ’s inhabitation.

1 This is related to the observation that only paramodulation from or into a variable can cause
ill-typed instantiations in a resolution prover [18].

Example 17. The t̃?? encoding of Example 15 requires fewer tags than t̃?, at the cost
of more type information (for hd and the existential variables of type b):
∀Xs. tb(hdb(Xs))≈ hdb(Xs)
∀X, Xs. nilb 6≈ consb(X, Xs)
∀X, Xs. hdb(consb(X, Xs))≈ tb(X) ∧ tlb(consb(X, Xs))≈ Xs
∃X, Y, Xs, Ys. tb(X)≈ X ∧ tb(Y)≈ Y ∧ consb(X, Xs)≈ consb(Y, Ys) ∧

(X 6≈ Y ∨ Xs 6≈ Ys)

The g̃? and g̃?? encodings are defined analogously to t̃? and t̃?? but using type guards.
The g̃? encoding omits the guards for types that are inferred monotonic, whereas g̃??
omits more guards that are not needed to make the intermediate problem monotonic.

Definition 18 (Lightweight Guards g̃̃g?). The monomorphic lightweight type guards
encoding g̃? translates a monomorphic problem Φ over Σ into an untyped problem over
Σ′ = (F ′, P ′]{g1

σ}), where F ′, P ′ are as for e. It is defined as J Kg̃?;e , where

J∀X :σ. ϕKg̃? = ∀X :σ.

{
JϕKg̃? if σB Φ

gσ(X)→ JϕKg̃? otherwise

J∃X :σ. ϕKg̃? = ∃X :σ.

{
JϕKg̃? if σB Φ

gσ(X) ∧ JϕKg̃? otherwise

The encoding is complemented by typing axioms:

∀X̄ : σ̄. gσ(f(X̄)) for f : σ̄� σ ∈ F such that σ 6B Φ

∃X : σ. gσ(X) for σ 6B Φ that is not the result type of a symbol in F

Example 19. The g̃? encoding of Example 15 is as follows:
∀Xs. gb(hdb(Xs))
∀X, Xs. gb(X)→ nilb 6≈ consb(X, Xs)
∀X : b, Xs. gb(X)→ hdb(consb(X, Xs))≈ X ∧ tlb(consb(X, Xs))≈ Xs
∃X, Y, Xs, Ys. gb(X) ∧ gb(Y) ∧ consb(X, Xs)≈ consb(Y, Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Our novel encoding g̃?? omits the guards for variables that do no occur naked, regard-
less of whether they are of a monotonic type.

Definition 20 (Featherweight Guards g̃̃g??). The monomorphic featherweight type
guards encoding g̃?? is identical to the lightweight encoding g̃? except that the condi-
tion “if σB Φ” in the ∀ case is weakened to “if σB Φ or X /∈ NV(ϕ)”.

Example 21. The g̃?? encoding of the algebraic list problem is identical to g̃? except
that the nilb 6≈ consb axiom does not have any guard.

Theorem 22 (Soundness and Completeness). Let Φ be a monomorphic problem, and
let x ∈ { t̃?, t̃??, g̃?, g̃??}. The problems Φ and JΦKx ;e are equisatisfiable.

Section 4 will show how to translate polymorphic types soundly and completely. If we
are willing to sacrifice completeness, an easy way to extend t̃?, t̃??, g̃?, and g̃?? to
polymorphism is to perform finite monomorphisation: heuristically instantiate all type
variables with suitable ground types, taking as many copies of the formulas as desired.
Finite monomorphisation is generally incomplete [7], but by eliminating type variables
it considerably simplifies the generated formulas, leading to very efficient encodings.

4 Complete Monotonicity-Based Encoding of Polymorphism

Finite monomorphisation is simple and effective, but its incompleteness can be a cause
for worry, and its nonmodular nature makes it unsuitable for some applications that need
to export an entire polymorphic theory independently of any conjecture. Here we adapt
the monotonicity calculus and the monomorphic encodings to a polymorphic setting.

We start with a brief digression. With monotonicity-based encoding schemes, type
arguments are needed to distinguish instances of polymorphic symbols. These addi-
tional arguments introduce clutter, which we can eliminate in some cases. The result is
an optimised variant actor of the type arguments encoding a, which will serve as the
foundation for t?, t??, g?, and g??. Consider a type sum(α, β) that is axiomatised to
be freely constructed by inl : α � sum(α, β) and inr : β � sum(α, β). Regardless of β,
inl must be interpreted as an injection from α to sum(α, β). For a fixed α, its interpre-
tations for different β instances are isomorphic. As a result, it is safe to omit the type
argument for β when encoding inl〈α,β〉 and that for α in inr〈α,β〉 and nil〈α〉 : list(α). In
general, the type arguments that can be omitted for constructors are precisely those that
are noninferable in the sense of Definition 8. We call this encoding actor. The encodings
presented below exploit the fact that JΦKactor ;e is equisatisfiable to Φ if Φ is monotonic.

The polymorphic version of the monotonicity calculus captures the insight that a
polymorphic type is monotonic if each of its common instances with the type of any
naked variable is an instance of an infinite type.

Definition 23 (Monotonicity Calculus BBB). Let Φ be a polymorphic problem. The
monotonicity calculus consists of the single rule

∀Xτ∈NV(ϕ). mgu(σ,τ) ∈ Inf∗(ϕ)

σB ϕ

where mgu(σ,τ) is the most general unifier of σ and τ, and Inf∗(ϕ) consists of all
instances of all types in Inf(ϕ).

The polymorphic t? encoding can be seen as a hybrid between traditional tags (t) and
monomorphic lightweight tags (t̃?): as in t, tags take the form of a function t〈σ〉(t); as
in t̃?, tags are omitted for types that are inferred monotonic.

The main novelty concerns the typing axioms. The t̃? encoding omits all typing ax-
ioms for infinite types. In the polymorphic case, the infinite type σ might be an instance
of a more general, potentially finite type for which tags are generated. For example, if α
is tagged (because it is possibly nonmonotonic) but its instance list(α) is not (because it
is infinite), there will be mismatches between tagged and untagged terms. Our solution
is to add the typing axiom t〈list(α)〉(Xs)≈Xs, which allows the prover to add or remove
a tag for the infinite type list(α). Such an axiom is sound for any monotonic type.

Definition 24 (Lightweight Tags t?). The polymorphic lightweight type tags encod-
ing t? translates a polymorphic problem Φ over Σ into an untyped problem over Σ′ =
(F ′]{t2}, P ′), where F ′, P ′ are as for actor. It is defined as J Kt?;actor ;e , where

Jf〈σ〉(t̄)σKt? = bf〈σ〉(Jt̄ Kt?)c JXσKt? = bXc with btσc =

{
t if σB Φ

t〈σ〉(t) otherwise

The encoding is complemented by the following typing axioms, where ρ is a type sub-
stitution and TV(σρ) denotes the type variables of σρ:

∀TV(σρ). ∀X :σρ. t〈σρ〉(X)≈ X for σρ ∈ Inf(Φ) such that σ 6B Φ

The lighter encoding t?? protects only naked variables and introduces equations of the
form t〈σ〉(f〈ᾱ〉(X))≈ f〈ᾱ〉(X) to add or remove tags around each function symbol f of
a possibly nonmonotonic type σ, and similarly for existential variables.

Definition 25 (Featherweight Tags t??). The polymorphic featherweight type tags
encoding t?? translates a polymorphic problem Φ over Σ into an untyped problem over
Σ′, where Σ′ is as for t?. It is defined as J Kt??;actor ;e , where

Jt1≈ t2Kt?? = bJt1Kt??c ≈ bJt2Kt??c

J∃X :σ. ϕKt?? = ∃X :σ.

{
JϕKt?? if σB Φ

t〈σ〉(X)≈ X ∧ JϕKt?? otherwise

with

btσc =

{
t if σB Φ or t is not a universal variable
t〈σ〉(t) otherwise

The encoding is complemented by typing axioms:

∀ᾱ. ∀X̄ : σ̄. t〈σ〉(f〈ᾱ〉(X̄))≈ f〈ᾱ〉(X̄) for f : ∀ᾱ. σ̄� σ ∈ F such that ∃ρ. σρ 6B Φ

∀TV(σρ). ∀X :σρ. t〈σρ〉(X)≈ X for σρ ∈ Inf(Φ) such that σ 6B Φ

∀TV(σ). ∃X :σ. t〈σ〉(X)≈ X for σ 6B Φ that is not an instance of the result
type of f ∈ F or a proper instance of τ 6B Φ

Example 26. In Example 7, list(α) is infinite and hence monotonic, whereas α and its
instance b cannot be inferred monotonic. The t?? encoding of the problem follows:

∀A, Xs. t(A, hd(A, Xs))≈ hd(A, Xs)
∀A, Xs. t(list(A), Xs)≈ Xs
∀A. ∃X. t(A, X)≈ X
∀A, X, Xs. nil 6≈ cons(A, X, Xs)
∀A, X, Xs. hd(A, cons(A, X, Xs))≈ t(A, X) ∧ tl(A, cons(A, X, Xs))≈ Xs
∃X, Y, Xs, Ys. t(b, X)≈ X ∧ t(b, Y)≈ Y ∧

cons(b, X, Xs)≈ cons(b, Y, Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Analogously to t?, the g? encoding is best understood as a hybrid between traditional
guards (g) and monomorphic lightweight guards (g̃?): as in g, guards take the form of
a predicate g〈σ〉(t); as in g̃?, guards are omitted for types that are inferred monotonic.

Once again, the main novelty concerns the typing axioms. The g̃? encoding omits
all typing axioms for infinite types. In the polymorphic case, the infinite type σ might
be an instance of a more general, potentially finite type for which guards are generated.
Our solution is to add the typing axiom g〈σ〉(X), which allows the prover to discharge
any guard for the infinite type σ.

Definition 27 (Lightweight Guards g?). The polymorphic lightweight type guards
encoding g? translates a polymorphic problem Φ over Σ into an untyped problem over
Σ′ = (F ′, P ′]{g2}), where F ′, P ′ are as for actor. It is defined as J Kg?;actor ;e , where

J∀X :σ. ϕKg? = ∀X :σ.

{
JϕKg? if σB Φ

g〈σ〉(X)→ JϕKg? otherwise

J∃X :σ. ϕKg? = ∃X :σ.

{
JϕKg? if σB Φ

g〈σ〉(X) ∧ JϕKg? otherwise

The encoding is complemented by typing axioms:

∀ᾱ. ∀X̄ : σ̄. g〈σ〉(f〈ᾱ〉(X̄)) for f : ∀ᾱ. σ̄� σ ∈ F such that ∃ρ. σρ 6B Φ

∀TV(σρ). ∀X : σ̄ρ. g〈σρ〉(X) for σρ ∈ Inf(Φ) such that σ 6B Φ

∀TV(σ). ∃X :σ. g〈σ〉(X) for σ 6B Φ that is not an instance of the result
type of f ∈ F or a proper instance of τ 6B Φ

The featherweight cousin is a straightforward generalisation of g?.

Definition 28 (Featherweight Guards g??). The polymorphic featherweight type
guards encoding g?? is identical to the lightweight encoding g? except that the condi-
tion “if σB Φ” in the ∀ case is weakened to “if σB Φ or X /∈ NV(ϕ)”.

Example 29. The g?? encoding of Example 7 follows:

∀A, Xs. g(A, hd(A, Xs))
∀A, Xs. g(list(A), Xs)
∀A, X, Xs. nil 6≈ cons(A, X, Xs)
∀A, X, Xs. g(A, X)→ hd(A, cons(A, X, Xs))≈ X ∧ tl(A, cons(A, X, Xs))≈ Xs
∃X,Y,Xs,Ys. g(b,X)∧ g(b,Y)∧ cons(b,X,Xs)≈ cons(b,Y,Ys)∧ (X 6≈ Y ∨Xs 6≈ Ys)

Theorem 30 (Soundness and Completeness). Let Φ be a polymorphic problem, and
let x ∈ {t?, t??, g?, g??}. The problems Φ and JΦKx ;actor ;e are equisatisfiable.

5 Alternative, Cover-Based Encoding of Polymorphism

An issue with t?, t??, g?, and g?? is that they clutter the generated problem with type
arguments. In that respect, the traditional t and g encodings are superior—t omits all
non-phantom type arguments, and g omits all inferable type arguments. This would
be unsound for the monotonicity-based encodings, because these leave out many of
the protectors that implicitly “carry”, or “cover”, the type arguments in the traditional
encodings. Nonetheless, an alternative is possible: by keeping more protectors around,
we can omit inferable type arguments.

Definition 31 (Cover). Let s : ∀ᾱ. σ̄ � ς ∈ F] P . A (type argument) cover C ⊆
{1, . . . , |σ̄|} for s is a set of term argument indices such that any inferable type argu-
ment can be inferred from a term argument whose index is in C. We let Covers denote
an arbitrary but fixed minimal cover of s.

For example, {1} and {2} are minimal covers for cons : ∀α. α× list(α) � list(α), and
{1,2} is also a cover. As canonical cover, we arbitrarily choose Covercons = {1}.

The encodings t@ and g@ introduced below ensure that each argument that is part
of its enclosing function or predicate’s cover has a unique type, from which the omitted
type arguments can be inferred. For example, t@ translates the term cons〈α〉(X, Xs) to
cons(t(A, X), Xs) with a type tag around X, effectively preventing an ill-typed instantia-
tion of X that would result in the wrong type argument being inferred. We call variables
that occur in their enclosing symbol’s cover “undercover variables”. They can be seen
as a generalisation of naked variables to arbitrary predicate and function symbols.

Definition 32 (Undercover Variable). The set of undercover variables UV(ϕ) of a
formula ϕ is defined by the equations

UV(f〈σ̄〉(t̄)) = bt̄cf ∪ UV(t̄) UV(X) = /0
UV(p〈σ̄〉(t̄)) = bt̄cp ∪ UV(t̄) UV(t1 ≈ t2) = ({t1, t2} ∩ V) ∪ UV(t1, t2)

UV(¬ p〈σ̄〉(t̄)) = bt̄cp ∪ UV(t̄) UV(t1 6≈ t2) = UV(t1, t2)
UV(ϕ1∧ ϕ2) = UV(ϕ1, ϕ2) UV(∀X :σ. ϕ) = UV(ϕ)

UV(ϕ1∨ ϕ2) = UV(ϕ1, ϕ2) UV(∃X :σ. ϕ) = UV(ϕ)−{X}

where bt̄cs = {tj | j ∈ Covers} ∩ V and UV(t̄) =
⋃

j UV(tj).

The cover-based encoding t@ is similar to the traditional encoding t, except that it tags
only undercover occurrences of variables and requires typing axioms.

Definition 33 (Cover Tags t@). The polymorphic cover-based type tags encoding t@
translates a polymorphic problem over Σ into an untyped problem over Σ′ = (F ′]K]
{t2}, P ′), where F ′, P ′ are as for aninf. It is defined as J Kt@;aninf ;e , where

Jf〈σ̄〉(t̄)Kt@ = f〈σ̄〉(bJt̄ Kt@cf) Jt1≈ t2Kt@ = bJt1Kt@c≈ ≈ bJt2Kt@c≈
Jp〈σ̄〉(t̄)Kt@ = p〈σ̄〉(bJt̄ Kt@cp) J∃X :σ. ϕKt@ = ∃X :σ. t〈σ〉(X)≈ X ∧ JϕKt@

J¬ p〈σ̄〉(t̄)Kt@ = ¬ p〈σ̄〉(bJt̄ Kt@cp)

The auxiliary function b(tσ1
1 , . . . , tσn

n)cs returns a vector (u1, . . . ,un) such that

u j =

{
tj if j /∈ Covers or tj is not a universal variable
t〈σj〉(tj) otherwise

taking Cover≈ = {1,2}. The encoding is complemented by typing axioms:

∀ᾱ. ∀X̄ : σ̄. t〈σ〉(f〈ᾱ〉(bX̄cf))≈ f〈ᾱ〉(bX̄cf) for f : ∀ᾱ. σ̄� σ ∈ F
∀α. ∃X :α. t〈α〉(X)≈ X

Example 34. The t@ encoding of Example 7 is as follows:

∀A. t(list(A), nil(A))≈ nil(A)
∀A, X, Xs. t(list(A), cons(t(A, X), Xs))≈ cons(t(A, X), Xs)
∀A, Xs. t(list(A), hd(t(list(A), Xs)))≈ hd(t(list(A), Xs))
∀A, Xs. t(A, tl(t(list(A), Xs)))≈ tl(t(list(A), Xs))
∀A, X, Xs. nil(A) 6≈ cons(t(A, X), Xs)
∀A, X, Xs. hd(cons(t(A, X), Xs))≈ t(A, X)∧ tl(cons(t(A, X), Xs))≈ t(list(A), Xs)
∃X, Y, Xs, Ys. t(b, X)≈ X ∧ t(b, Y)≈ Y ∧ t(list(b), Xs)≈Xs∧ t(list(b), Ys)≈ Ys∧

cons(X, Xs)≈ cons(Y, Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Definition 35 (Cover Guards g@). The polymorphic cover-based type guards encod-
ing g@ is identical to the traditional g encoding except for the ∀ case:

J∀X :σ. ϕKg@ = ∀X :σ.

{
JϕKg@ if X /∈ UV(ϕ)

g〈σ〉(X)→ JϕKg@ otherwise

The encoding is complemented by typing axioms:

∀ᾱ. X̄ : σ̄.
(∧

j∈Coverf g〈σj〉(X j)
)
→ g〈σ〉(f〈ᾱ〉(X̄)) for f : ∀ᾱ. σ̄� σ ∈ F

∀α. ∃X :α. g〈α〉(X)

Example 36. The g@ encoding of the algebraic list problem is identical to the g en-
coding (Example 10), except that the guard on Xs is omitted in two of the axioms:

∀A, X, Xs. g(A, X)→ g(list(A), cons(X, Xs))
∀A, X, Xs. g(A, X)→ nil(A) 6≈ cons(X, Xs)

Theorem 37 (Soundness and Completeness). Let Φ be a polymorphic problem, and
let x̄ ∈ {t@;aninf, g@;aphan}. The problems Φ and JΦKx̄ ;e are equisatisfiable.

6 Evaluation

To evaluate the type encodings described in this paper, we put together a set of 1000
polymorphic first-order problems originating from 10 existing Isabelle theories, trans-
lated with Sledgehammer’s help. Our test data are publicly available [1].

The problems include up to 500 heuristically selected facts. We evaluated each type
encoding with five modern automatic provers: E 1.6, iProver 0.99, SPASS 3.8ds, Vam-
pire 2.6, and Z3 4.0. To make the evaluation more informative, we also tested the
provers’ native support for monomorphic types where it is available; it is referred to
as ñ . Each prover was invoked with the set of options we had previously determined
worked best for Sledgehammer.2 The provers were granted 20 seconds of CPU time
per problem on one core of a 3.06 GHz Dual-Core Intel Xeon processor. To avoid giv-
ing the unsound encodings an unfair advantage, for these proof search was followed by
a certification phase that attempted to re-find the proof using a combination of sound
encodings, based on its referenced facts. This phase slightly penalises the unsound en-
codings by rejecting a few sound proofs, but such is the price of unsoundness.

Figure 1 gives, for each combination of prover and encoding, the number of solved
problems. Rows marked with ˜ concern the monomorphic encodings. The encodings ã,
ãctor, t̃@, and g̃@ are omitted; the first two coincide with ẽ, whereas t̃@ and g̃@ are iden-
tical to versions of t̃?? and g̃?? that treat all types as possibly nonmonotonic. Among the
encodings to untyped first-order logic, the monomorphic featherweight encoding g̃??
performed best overall. It even outperformed Vampire’s recently added native types (ñ).
Among the polymorphic encodings, our novel monotonicity-based and cover-based en-
codings (t?, t??, t@, g?, g??, and g@), with the exception of t@, constitute a substantial
improvement over the traditional sound schemes (t and g).

2 The setup for E was suggested by Stephan Schulz and includes the little known “symbol offset”
weight function. We ran iProver with the default setup, SPASS in Isabelle mode, Vampire in
CASC mode, and Z3 in TPTP mode with model-based quantifier instantiation enabled.

e a t t? t?? t@ g g? g?? g@ n

E 116 361 263 275 347 228 216 344 349 262 –˜ 393 – 328 390 397 – 337 393 401 – –
iProver 243 212 231 202 262 135 140 242 257 169 –˜ 210 – 243 246 245 – 180 247 241 – –
SPASS 131 292 262 245 299 164 164 283 296 208 –˜ 331 – 293 326 330 – 237 320 334 – 356
Vampire 120 341 277 281 314 212 171 271 299 241 –˜ 393 – 309 379 382 – 265 390 403 – 372
Z3 281 355 250 238 350 279 213 291 351 268 –˜ 354 – 268 343 346 – 328 355 349 – 350

Figure 1. Number of solved problems

The new type encodings also made an impact at the 2012 edition of CASC, the
annual automatic prover competition [16]. Isabelle competes against LEO-II, Satallax,
and TPS in the higher-order division. Largely thanks to the new schemes (but also to
improvements in the underlying first-order provers), Isabelle moved from the third place
it had occupied since 2009 to the first place.

7 Conclusion

This paper introduced a family of translations from polymorphic into untyped first-order
logic, with a focus on efficiency. Our monotonicity-based encodings soundly erase all
types that are inferred monotonic, as well as most occurrences of the remaining types.
The best translations outperform the traditional encoding schemes.

We implemented the new translations in the Sledgehammer tool for Isabelle/HOL
and the companion proof method metis, thereby addressing a recurring user complaint.
Although Isabelle certifies external proofs, unsound proofs are annoying and often con-
ceal sound proofs. The same translation module forms the core of Isabelle’s TPTP ex-
porter tool, which makes entire theorem libraries available to first-order reasoners. Our
refinements to the monomorphic case have made their way into Monotonox [10]. Ap-
plications such as Boogie [12] and Why3 [6] also stand to gain from lighter encodings.

The TPTP family recently welcomed the addition of TFF1 [3], an extension of the
monomorphic TFF0 logic with rank-1 polymorphism. Equipped with a concrete syntax
and translation tools, we can turn any popular automatic theorem prover into an efficient
polymorphic prover. Translating the untyped proof back into a typed proof is usually
straightforward, but there are important corner cases that call for more research.

The encodings are all instances of a general framework, in which mostly orthogonal
features can be combined in various ways. Defining such a large number of encodings
makes it possible to select the most appropriate scheme for each automatic prover, based
on empirical evidence. In fact, using time slicing or parallelism, it pays off to have each
prover employ a combination of encodings with complementary strengths.

Acknowledgement. Koen Claessen and Tobias Nipkow made this collaboration pos-
sible. Lukas Bulwahn, Peter Lammich, Rustan Leino, Tobias Nipkow, Mark Summer-
field, Tjark Weber, and several anonymous reviewers suggested dozens of textual im-
provements. We thank them all. The first author’s research was supported by the Deut-
sche Forschungsgemeinschaft (grants Ni 491/11-2 and Ni 491/14-1). The third author’s
research was supported by the DFG project Ni 491/13-2, part of the priority program
RS3. The authors are listed alphabetically regardless of contributions or seniority.

References
[1] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. Empirical data associated with

this paper. http://www21.in.tum.de/~blanchet/enc_types_data.tar.gz, 2012.
[2] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. Encoding monomorphic

and polymorphic types. Tech. report, http://www21.in.tum.de/~blanchet/enc_types_
report.pdf, 2012.

[3] J. C. Blanchette and A. Paskevich.TFF1: The TPTP typed first-order form with rank-1 poly-
morphism. Tech. report, http://www21.in.tum.de/~blanchet/tff1spec.pdf, 2012.

[4] J. C. Blanchette and A. Popescu. Formal development associated with this paper. http:

//www21.in.tum.de/~popescua/enc_types_devel.zip, 2012.
[5] F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing polymorphism in SMT

solvers. In C. Barrett and L. de Moura, editors, SMT 2008, 2008.
[6] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd of

provers. In K. R. M. Leino and M. Moskal, editors, Boogie 2011, pages 53–64, 2011.
[7] F. Bobot and A. Paskevich. Expressing polymorphic types in a many-sorted language.

In C. Tinelli and V. Sofronie-Stokkermans, editors, FroCoS 2011, volume 6989 of LNCS,
pages 87–102. Springer, 2011.

[8] C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M. Rinard. Using first-order theorem
provers in the Jahob data structure verification system. In B. Cook and A. Podelski, editors,
VMCAI 2007, volume 4349 of LNCS, pages 74–88. Springer, 2007.

[9] K. Claessen and A. Lillieström. Automated inference of finite unsatisfiability. J. Autom.
Reasoning, 47(2):111–132, 2011.

[10] K. Claessen, A. Lillieström, and N. Smallbone. Sort it out with monotonicity—Translating
between many-sorted and unsorted first-order logic. In N. Bjørner and V. Sofronie-
Stokkermans, editors, CADE-23, volume 6803 of LNAI, pages 207–221. Springer, 2011.

[11] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
[12] K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification language: Design

and logical encoding. In J. Esparza and R. Majumdar, editors, TACAS 2010, volume 6015
of LNCS, pages 312–327. Springer, 2010.

[13] J. Meng and L. C. Paulson. Translating higher-order clauses to first-order clauses. J. Autom.
Reasoning, 40(1):35–60, 2008.

[14] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

[15] M. E. Stickel. Schubert’s steamroller problem: Formulations and solutions. J. Autom.
Reasoning, 2(1):89–101, 1986.

[16] G. Sutcliffe. Proceedings of the 6th IJCAR ATP system competition (CASC-J6). In G. Sut-
cliffe, editor, CASC-J6, volume 11 of EPiC, pages 1–50. EasyChair, 2012.

[17] J. Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reason-
ing, 37(1-2):21–43, 2006.

[18] C. A. Wick and W. W. McCune. Automated reasoning about elementary point-set topology.
J. Autom. Reasoning, 5(2):239–255, 1989.

http://www21.in.tum.de/~blanchet/enc_types_data.tar.gz
http://www21.in.tum.de/~blanchet/enc_types_report.pdf
http://www21.in.tum.de/~blanchet/enc_types_report.pdf
http://www21.in.tum.de/~blanchet/tff1spec.pdf
http://www21.in.tum.de/~popescua/enc_types_devel.zip
http://www21.in.tum.de/~popescua/enc_types_devel.zip

	Encoding Monomorphic and Polymorphic Types
	1 Introduction
	2 Traditional Type Encodings
	3 Monotonicity-Based Type Encodings—The Monomorphic Case
	4 Complete Monotonicity-Based Encoding of Polymorphism
	5 Alternative, Cover-Based Encoding of Polymorphism
	6 Evaluation
	7 Conclusion

