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 Parkinson’s disease (PD) is a common neuro-degenerative issue, evaluated 

via the continuous deterioration of motor functions over time. This condition 

leads to a gradual decline in movement capabilities. For diagnosing clinical 

set of PDs, medical experts utilize medical observations. These observations 

are highly based on the expert’s experience and can vary among clinicians 

due to its subjective nature, leading to differences in evaluation. The gait 

patterns of individuals with PD typically exhibit distinctions from those of 

adults. Evaluating these gait malformations not only aids in diagnosing PD 

but can also enable the categorization of severity stages with respect to 

symptoms of motor movement. Therefore, this paper introduces a 

classification of gait model based on the optimized deep learning (DL) 

model bidirectional gated recurrent unit-artificial hummingbird optimizer 

(BI-GRU-AHO). The training and testing involved the sequential 

segmentation of the right and left instances from the signals of vertical 

ground reaction force (VGRF) based on the identified gait cycle. The 

outcomes of the proposed BI-GRU-AHO exhibits reliable and accurate 

assessment of PD and achieved better accuracy of 98.7 %. The proposed 

model is trained and tested satisfactorily; hence it can be implemented in a 

real-time environment by integrating the model into a software application 

or system capable of receiving real-time data from PD patients. 
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1. INTRODUCTION 

Gait analysis plays a major role in diagnosing various neurodegenerative conditions such as 

parkinson’s disease (PD), dementia and alzheimer. Gait analysis offers essential insights into joint 

movement, spatio-temporal features, and the treatment process [1]. Of recent, the gait patterns have proved to 

be valuable method in diagnosing PD. There is significant advancement in gait analysis methodologies, 

driven by the introduction of sophisticated analysis of motion models [2]. Various techniques have been 

employed for the gait process includingthe use of cameras for capturing motion paths. These innovations 

collectively contribute to a comprehensive understanding of human gait without duplicating existing content [3]. 

Currently, medical evaluation approaches for PD patients continue to depend on questionnaires and 

self-descriptions like freezing of gait questionnaire (FOG) and assessments of daily living (ADL) [4]. Experts 

frequently assess PD severity in specific criteria based on the patient’s performance in questions outlined in 

questionnaires. However, this process takes more time and provides inaccurate outcomes, limiting its 
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effectiveness in the treatment and screening of PD. Gait process also poses several challenges, such as high 

dimensional data, non-linear dependencies and intricate correlations among spatio-temporal features [5]. 

Addressing the highly non-linear nature of gait patterns requires specialized and efficient 

approaches for finding the severity stage of PD. In recent developments, the machine learning (ML) and deep 

learning (DL) models have demonstrated significant possibilities in aiding medical experts [6]. These models 

diagnose the occurrence of PD through gait flexibility analysis and classify the stages of PD based on the 

motor symptoms exhibited by individuals. Leveraging DL models in the gait process can markedly reduce 

the time associated with the processing of data, as these algorithms possess the ability to identify hidden 

features and manage huge databases [7]. This, in turn, can significantly enhance the treatment quality 

received by patients and efficiently enhance clinical results. Even though the gait process has been 

extensively analyzed for PD diagnosis, a more thorough investigation of hidden gait biomarkers is necessary 

for enhanced identification and quantitative evaluation of symptoms of PD. Moreover, DL models have the 

potential to surpass ML models when there is a sufficient amount of data, a factor that may vary based on the 

effectiveness of the adopted indication models. Some of the DL models like recurrent neural network (RNN), 

convolutional neural network (CNN) and long short term memory (LSTM). This paper presents an optimized 

DL model to model the gait analysis of PD patients using the wearable sensor data. Subsequently, gait 

classification is achieved using gated recurrent unit-artificial hummingbird optimizer (BI-GRU-AHO) and 

VGRF. 

Section 2 presents recent works of literature based on different PD models. Section 3 presents the 

PD model and section 4 discusses the analysis of results. In section 5 concludes the paper. 

 

 

2. RELATED WORKS 

Sigcha et al. [8] developed a model based on the RNN and tri-axial accelerometer for enhancing the 

detection of FOG. The experimentation was demonstrated by the cross-validation. Camps et al. [9] developed 

automated detection FOG) utilizing DL model CNN and data from wearable sensors. This approach 

demonstrates superior performance compared to existing methods, achieving an accuracy level of 90%. 

Vidya and Sasikumar [10] developed a method for predicting PD through a CNN with LSTM.  

The signals of VGRF were extracted by the EMD (empirical mode decomposition) to obtain the significant 

intrinsic features. Accuracy achieved was 98.3% for multi-classification. CNN with locally weighted random 

forest (LWRF) was introduced by Aşuroğlu and Oğul [11] for the categorization of parkinson’s disease.  

The LWRF was utilized to identify PD and extract local characteristics. 

Xia et al. [12] presented CNN model to detect FOG in PD patients; here, the discriminative features 

were analyzed using multi-1D data. Comparative analysis was performed for two feature fused models like 

patient dependent and independent settings. Ferreira et al. [13] presented ML approaches to detect PD with 

respect to spatio-temporal features. Here, the accuracy and precision values achieved of 84% and 92.3% 

respectively. 

Borzì et al. [14] presented real time identification of FOG in PD using sensor and multi head CNN. 

The performance was carried out by varying threshold values of 0, 0.4 and 0.7 on three databases. Upon 

evaluating this existing approach using the 6MWT database, a decrease in sensitivity and an enhancement in 

specificity were noted. Nilashi et al. [15] developed early identification PD using DL and fuzzy models. For 

handling massive datasets expectation maximization and clustering were utilized. Then, for removing the 

noise, the PCA (principal component analysis) was presented. At last, the K-nearest neighbour (KNN) was 

presented to identify PD. 

An approach to PD detection using speech recognition was suggested by Nissar et al. [16]. They 

evaluated eight different classifiers using feature selection methods including minimum redundancy 

maximum relevance (mRMR) and recursive feature elimination (RFE). An accuracy of 95.39% was achieved 

by combining RFE with extreme gradient boosting (Xgboost), which was better than previous methods. 

Using voice data from UCI, Gunduz [17] presented a CNN-based PD classification method. Their combined 

use of features and models resulted in an 86.0 percent model-level accuracy. By combining BAT with the PD 

classification dataset from UCI, Olivares et al. [18] created a method for PD diagnosis. They were able to 

attain a 96.74 percent accuracy with a 3.27% loss by feeding 23 characteristics into the model’s input layer. 

As a means of pre-diagnosis for PD, Lavalle and Romero [19] suggested using voice data. They 

used KNN, random forest (RF), support vector machine (SVM), and multilayer perceptron (MLP) classifiers 

to choose features and classify them. With a precision of 94.7%, the SVM-RBF classifier was a success. To 

identify PD, Yaman et al. [20] relied on vowels. For the purpose of classification, KNN and SVM classifiers 

were used after ReliefF was used to extract acoustic features from the dataset. A 91.25% success rate was 

attained with the SVM classifier. An ML-based system for parkinson’s disease diagnosis using chosen 

features, RFE, and feature importance was proven by Senturk [21]. They used RFE and SVM classifiers in 

conjunction with artificial neural networks (ANNs) and regression trees to get a 93.8% accuracy rate. 
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In their 2019 study, Aich et al. [22] utilized a dataset from Max Little University, Oxford, to 

categorize the PD group using principal component analysis (PCA) and online feature selection based on 

regression (OFS) non-linear features. Their methodology used nonlinear classifiers, bagging classification, 

regression trees, RF, and RPART, which allowed them to get a 96.83 percent accuracy rate when RF was 

combined with PCA. When it comes to PD prediction, Rustempasic and Can [23] highlighted biomedical 

voice analysis. They were able to acquire a sensitivity of 75.34%, a specificity of 45.63%, and an accuracy of 

68.04% using pattern recognition and fuzzy c-means (FCM) clustering to forecast PD from patients’ speech. 

Researchers Silveira et al. [24] administered the pennsylvania smell identification test (UPSIT)-40 and 

sniffin’s sticks 16-item smell tests to members of the Brazilian population. For every attribute, logistic 

regression was used. The specificity and sensitivity levels for sniffin sticks were 89.0% and 81.1%, 

respectively, whereas for UPSIT-40 they were 83.5% and 82.1%. The sleep behavior disorder questionnaire 

and the olfactory impairment scale (UPSIT) were used by Prashanth et al. [25]. A sensitivity level of 90.5% 

and an accuracy of 85.4% were the outcomes of training using support vector machines and classification 

trees. 

From the detailed literature review, the following research gaps are identified. 

Data scarcity and quality 

− Data imbalance: existing datasets may be imbalanced, with more data for certain severity levels, leading 

to biased model performance. Developing techniques to handle imbalanced data in the Bi-GRU model is 

a gap worth exploring. 

Feature engineering 

− Advanced feature extraction: there might be a lack of advanced feature engineering tailored specifically 

for PD, such as extracting non-linear patterns from time-series data. Research could focus on identifying 

or creating novel features that enhance the Bi-GRU’s ability to detect subtle changes in disease severity. 

 

 

3. PROPOSED METHOD 

Figure 1 shows the block diagram of the proposed gait pattern analysis in PD. This approach 

leverages optimized DL model and incorporates the capability of physionet dataset [8]. The optimized DL 

model BI-GRU-AHO is presented and the dataset is collected using VGRF. 
 

 

 
 

Figure 1. Framework of the proposed gait pattern analysis in PD 
 

 

3.1.  Database 

The database considered is physionet [7] and includes gait measurements from 73 normal people 

(average age is 66.3 years) and 93 people (average age is 66.3 years) with idiopathic PD. The database has 

VGRF instances of individuals walking on level terrain for about two minutes at their typical, self-

determined pace. Eight sensors in the right and left foot track force overtime and it is computed by Newton’s. 

The sampling frequency is 100 Hz and the outcome from the sixteen sensors is digitalized and stored. Two 

signals that represent the total of the outcomes from every eight sensors for every foot are also included in 

the instances. The database has severity ratings of healthy, severity 2, 2.5, and 3. 
 

3.2.  Preparing data samples 

The gait observed on regular walking for the lower leg on the left or right exhibits a quasi-periodic 

model. Therefore, for effective modelling and understanding of the inherent behaviour of gait, it is advisable 
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to segment gait data based on walk cycles. To achieve this, the work employed the overall force for 

identifying the walk cycles for the respective lower leg. The cycle for gait in the single lower leg is 

delineated as the duration from the initial instance when the respective foot makes a set with the floor to the 

concluding motion if the foot lifts off the floor. Employing a threshold process enables the detection of the 

zero-crossed point, facilitating the segmentation of the gait cycle. Utilizing the identified gait cycle,  

the multiple ranges of VGRF data are split to different samples of data to train and train the classifier.  

The zero-padding approach is utilized for making every identified gait cycle with an equal length of 140. 

 

3.3.  Gait classification 

For modelling the left and right gaits, the DL model BI-GRU-AHO is presented. The effectiveness 

of RNN has been demonstrated in processes like signal and language recognition. However, the conventional 

RNN encounter challenges such as gradient vanishing, especially with increasing input data. Addressing 

these challenges, an LSTM is developed and because of its gating model, LSTM can effectively utilize for 

storing and accessing useful features. In the advanced model of LSTM, previous works indicate that GRU 

outperforms LSTM in various domains. In this work, O-GRU has the gates like update gate 𝑢𝑡 and reset gate 

𝑟𝑡 as shown in Figure 2. 

 

𝑟𝑡 = 𝜎(𝑊𝑟𝑦𝑡 + 𝑈𝑟h𝑡−1 + 𝑏𝑟) (1) 

 

𝑧𝑡 = 𝜎(𝑊𝑧𝑦𝑡 + 𝑈𝑧h𝑡−1 + 𝑏𝑧) (2) 

 

𝑐𝑡 = 𝑡𝑎𝑛h(𝑊𝑐𝑦𝑡 + 𝑈𝑐h𝑡−1 + 𝑏𝑐) (3) 

 

h𝑡 = (1 − 𝑟𝑡)h𝑡−1 + 𝑟𝑡𝑐𝑡 (4) 

 

Where, 𝜎,𝑦𝑡 ,h𝑡 and 𝑐𝑡 are the sigmoid, input vector, hidden phase and storage medium. 𝑊𝑟 ,𝑊𝑧 ,𝑊𝑐 , and 

𝑈𝑟 , 𝑈𝑧 , 𝑈𝑐  are the weighting matrices and 𝑏𝑟 , 𝑏𝑧 , 𝑏𝑐 are the bias values. 

But, the GRU network considers the input series in only one direction, limiting its ability to learn 

the representation of the feature. Consequently, the Bi-GRU model has been devised to address this 

limitation by generating a series of inputs from both forward and backward directions. The formulation of the 

Bi-GRU model in both directions is presented below: 
 

h𝑡
→

= 𝐺𝑅𝑈
→

(𝑦𝑡 , h𝑡−1) (5) 
 

h𝑡
←

= 𝐺𝑅𝑈
←

(𝑦𝑡 , h𝑡−1) (6) 
 

At last, the last outcomes of the Bi-GRU model are given as (7). 
 

𝑌𝑡 = [h𝑡
→

, h𝑡
←

] (7) 

 

Then, for optimizing the parameters of Bi-GRU model, the optimizer AHA is presented. HB 

(hummingbirds) assess the characteristics of food sources, including the context and quality of honey specific 

flowers, the rate of honey production, and the time elapsed since their final visit to a flower.  

The foraging behaviour encompasses three strategies guided, relocation, and territorial foraging. These three 

foraging behaviours are presented below. 
 

 
 

 
 

Figure 2. Bi-GRU model 
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Initialization: the population of HB is kept in a randomized manner on the source of food and it is  

given as (8). 
 

𝑦𝑗 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑 × (𝑈𝐵 − 𝐿𝐵) (8) 

 

Where, 𝑈𝐵, 𝐿𝐵 is the upper, and lower bounds and 𝑟𝑎𝑛𝑑 is the random number. 

Guiding foraging: HB individually navigates towards the nectar source containing the highest nectar 

content. These birds utilize three distinct flight modes: axial, diagonal, and omnidirectional. The axial flight 

is given as (9). 
 

𝐷(𝑗) = {
1 𝑤h𝑒𝑛 𝑗 = 𝑟𝑎𝑛𝑑
0 𝑒𝑙𝑠𝑒𝑤h𝑒𝑟𝑒

  (9) 

 

The diagonal flight is given as (10). 
 

𝐷(𝑗) = {
1 𝑤h𝑒𝑛 𝑗 = 𝑃(𝑘)
0 𝑒𝑙𝑠𝑒𝑤h𝑒𝑟𝑒

 (10) 

 

Where, 𝑃 = 𝑟𝑎𝑛𝑑𝑝(𝑘), 𝑟𝑎𝑛𝑑𝑝is the random permutation. 

The omnidirectional flight is given as (11). 
 

𝐷(𝑗) = 1 (11) 
 

The foraging characteristic is mathematically expressed as (12). 
 

𝑣𝑗(𝑡 + 1) = 𝑦𝑗,𝑡𝑎𝑟(𝑡) + 𝑔 × 𝐷 × (𝑦𝑗(𝑡) − 𝑦𝑗,𝑡𝑎𝑟(𝑡)) (12) 
 

Where 𝑦𝑗,𝑡𝑎𝑟(𝑡) is the 𝑗𝑡hHB position of food source and 𝑔is the guiding term. 

The 𝑗𝑡h HB position of food source is given as: 
 

𝑦𝑗(𝑡 + 1) = {
𝑦𝑗(𝑡)  𝑓((𝑦𝑗(𝑡)) ≤ 𝑣𝑗(𝑡 + 1))

𝑣𝑗(𝑡 + 1) 𝑓((𝑦𝑗(𝑡)) > 𝑣𝑗(𝑡 + 1))
 (13) 

 

When the food source of candidate’s honey fill ration is larger than the present source of food,  

the HB avoids the present source of food. Figure 3 shows the flowchart of the AHA. 
 
 

 
 

Figure 3. Flow-chart of the AHA 
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Territorial foraging: the mathematical equation below outlines the local forage process employed by 

HB and defines a proper source of food within their territorial foraging model. 

 

𝑣𝑗(𝑡 + 1) = 𝑦𝑗(𝑡) + 𝑙 × 𝐷 × 𝑦𝑗(𝑡)  (14) 

 

Where 𝑙 is the territorial term. 

Relocation foraging: the relocation of a HB, transitioning from the honey source with the less refill 

ratio to a randomly generated new source, can be elucidated as (15). 

 

𝑦𝑙𝑜𝑤(𝑡 + 1) = 𝐿𝐵 + 𝑟𝑎𝑛𝑑 × (𝑈𝐵 − 𝐿𝐵) (15) 

 

Where 𝑦𝑙𝑜𝑤  is the source of food having less refill ratio. 

 

 

4. RESULTS ANALYSIS 

To assess all classification models, a stratified 10-fold cross-validation approach is employed. 

Initially, the original database is split into 10 separate fold values. Nine out of the ten folds are integrated and 

utilized as a train model, while the rest folds served as a test model. Each train model underwent resampling 

and resizing using the SMOTE algorithm to ensure a more balanced distribution of instances across all 

classes. Table 1 defines the performance metrics considered in this work. These metrics are evaluated using 

four criteria like 𝑌𝑝𝑜 , 𝑌𝑛𝑒 , 𝑍𝑝𝑜, and 𝑍𝑛𝑒 as true positive, false negative, false positive and false negative 

respectively. 

 

 

Table 1. Performance metrics 
Metrics Expressions 

Accuracy 𝑌𝑝𝑜 + 𝑌𝑛𝑒
𝑌𝑝𝑜 + 𝑌𝑛𝑒 + 𝑍𝑝𝑜 + 𝑍𝑛𝑒

 

Precision 𝑌𝑝𝑜
𝑌𝑝𝑜 + 𝑍𝑝𝑜

 

Sensitivity 𝑌𝑝𝑜
𝑌𝑝𝑜 + 𝑍𝑛𝑒

 

Specificity 𝑌𝑛𝑒
𝑌𝑛𝑒 + 𝑍𝑝𝑜

 

 

 

4.1.  Comparative analysis 

Following section defines comparison of accuracy by varying different iterations, confusion matrix, 

region of characteristics (RoC) and comparative analysis are given. Figure 4 states the accuracy by varying 

different iterations from 1 to 14,000. Accuracy performance is carried out by varying loss values from 𝜆1 =
10−5, 𝜆1 = 10−4, 𝜆1 = 10−3, and 𝜆1 = 10−2. It is observed that when the iteration is increased, the accuracy 

value is also increased. Moreover, the value of accuracy is high at 𝜆1 = 10−5 and value of accuracy is low at 

𝜆1 = 10−2. 

 

 

 
 

Figure 4. Accuracy at different iterations 
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Figure 5 presents the confusion matrix of the proposed DL model BI-GRU-AHO with respect to 

four classes as healthy, severity 2, 2.5, and 3. It is noted that the proposed BI-GRU-AHO classified 99.96% 

samples as healthy, 97.02% samples as severity 2, 96.59% samples as severity 2.5 and 99.74% samples as 

severity 3. Figure 6 presents the receiver operating characteristic (ROC) of the proposed DL model  

BI-GRU-AHO with respect to four classes like healthy, severity 2, 2.5, and 3. The area under the curve 

(AUC) value achieved by the healthy, severity 2, 2.5, and 3 are 0.977, 0.961, 0.963, and 0.97. 
 

 

 
 

Figure 5. Confusion matrix 

 

 

 
 

Figure 6. ROC curve of the severity stages 
 

 

Table 2 depicts the comparative analysis of different approaches like RNN, LSTM, Bi-LSTM, 

GRU, Bi-GRU, and the proposed BI-GRU-AHO. The performance is carried out by varying the healthy and 

severity values. In all comparative performance the proposed BI-GRU-AHO outperformed the conventional 

DL model and suitable for gait analysis. 

The practical impacts of using improved Bi-GRU for PD severity analysis can be substantial across 

various domains, particularly in healthcare, patient care, and research. Here are some of the key impacts: 

Enhanced diagnostic accuracy 

− Improved early detection: the Bi-GRU model, with its ability to capture complex temporal dependencies 

in sequential data, can significantly enhance the accuracy of early detection of PD. This leads to timely 

interventions, potentially slowing disease progression. 

− Precision in severity classification: by accurately classifying the severity of PD symptoms, the model 

enables more tailored treatment plans. This precision is critical in managing the disease effectively and 

adjusting therapies as needed. 

Clinical decision support 

− Supporting clinicians: the model can serve as a decision support tool for clinicians, providing data-driven 

insights into the severity of a patient’s condition. This can assist in making informed decisions regarding 

treatment options and interventions. 
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− Reducing diagnostic variability: by providing consistent and objective severity assessments, the improved 

Bi-GRU reduces the variability in diagnoses that can occur due to subjective judgment, leading to more 

standardized care. 

These practical impacts highlight the potential of the improved Bi-GRU model to revolutionize the 

management and understanding of PD, leading to better patient outcomes and more efficient healthcare 

systems. 

 

 

Table 2. Comparative analysis 
Class Method Accuracy Sensitivity Specificity Precision 

Healthy RNN 90.2 91.2 91.7 89.3 

LSTM 91.3 92.4 93.9 90.4 

Bi-LSTM 94.3 94.9 94.5 93.2 
GRU 94.7 95.1 95.6 94.8 

Bi-GRU 95.6 95.9 96.9 95.3 

Proposed 98.7 97.7 97.2 96.9 
2 RNN 94.2 91.9 91.4 90.3 

LSTM 94.3 92.3 95.9 90.5 
Bi-LSTM 95.3 94.1 94.9 93.4 

GRU 95.7 95.5 96.7 94.1 

Bi-GRU 95.9 94.9 97.8 95.9 
Proposed 96.7 97.3 97.8 99.9 

2.5 RNN 90.4 91.2 90.1 89.6 

LSTM 91.3 92.4 92.2 90.7 
Bi-LSTM 94.3 94.9 94.7 93.4 

GRU 94.7 95.1 95.8 94.9 

Bi-GRU 95.6 95.9 96.2 96.2 
Proposed 98.5 96.7 97.9 98.9 

3 RNN 90.6 91.6 91.9 90.3 

LSTM 91.5 91.4 94.9 91.4 
Bi-LSTM 93.1 95.8 95.5 93.5 

GRU 94.4 95.4 95.2 94.6 

Bi-GRU 95.2 95.8 96.1 95.2 
Proposed 98.1 97.6 97.4 97.1 

 

 

5. CONCLUSION 

Signals in gait typically exhibit periodic and repetitive patterns. Therefore, the evaluation of gait 

abnormalities proves effective in distinguishing between normal and PD individuals. Medical experts 

traditionally rely on multiple physical, neurological and physiological analyses for an accurate PD diagnosis. 

However, this approach heavily relies on the expertise and leads to inaccuracies. The work presented in this 

paper (DL model BI-GRU-AHO) was subsequently utilized to analyze the gait patterns on the VGRF pattern. 

The proposed BI-GRU-AHO was trained using a 10-fold cross-validation and achieved better accuracies of 

98.7% (healthy), 96.7% (severity 2), 98.5% ((severity 2.5), and 98.1% (severity 3) respectively. The findings 

suggest that the proposed BI-GRU-AHO, when trained with a larger database of gait data, has the potential to 

offer improved assessments of patients with PD. This capability can be particularly valuable for clinicians in 

formulating more effective rehabilitation programs. Future research could focus on validating the improved 

Bi-GRU model across multiple and diverse datasets. This would ensure the model’s robustness and 

generalizability, making it applicable to different populations and environments. Investigating methods to 

adapt the Bi-GRU model to new datasets with minimal retraining could enhance its usability in different 

clinical settings, reducing the need for extensive data collection and model retraining. 
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