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Abstract 

This study extends the state of the art of deep learning convolutional neural network (CNN) to the 

classification of video images of echocardiography, aiming at assisting clinicians in diagnosis of heart 

diseases. Specifically, the architecture of neural networks is established by embracing hand-crafted 

feature within a data-driven learning framework, incorporating both spatial and temporal information 

sustained by the video images of the moving heart, and giving rise to two strands of two-dimensional 

convolutional neural network (CNN). In particular, acceleration measurement along the time direction 

of each point is calculated using dense optical flow technique to represent temporal motion 

information. Subsequently, the fusion of both networks is conducted via linear integration of 

histograms of class scores obtained from the two strands of networks. As a result, this architecture 

gives the best classification results of eight viewpoint categories of echo videos with 92.1% accuracy 

rate whereas 89.5% can be achieved using only single spatial network. When concerning only three 

primary locations, 98% of accuracy rate is realised. In addition, comparisons with a number of well-

known handcrafted approaches are also performed, including 2D KAZE, 2D KAZE with Optical Flow, 

3D KAZA, Optical Flow, 2D SIFT and 3D SIFT, which delivers accuracy rate of 89.4%, 84.3%, 87.9%, 

79.4%, 83.8% and 73.8% respectively. 

 

Keywords: Deep learning, classification architecture for video images, convolutional neural network, 

KAZE, SIFT, SURF. 

 

1. Introduction 

Echocardiography remains an important diagnostic aid in cardiology for heart 

diseases and relies on the ultrasonic techniques to generate both single image and 

image sequences of the heart, providing insight on cardiac structures, movements 

and detailed anatomical and functional information of the heart. More importantly, 



echocardiography (echo) can present the moving heart in real time, revealing the 

health status of the heart in vivo while sustaining as a non-invasive, painless, easy to 

operate and inexpensive imaging tool.  In order to depict different anatomical 

sections of the three-dimensional (3D) heart over the time (1D), there are eight 

standard view positions at which each distinguished characteristics of a specific 

section of the moving heart can be captured, whereas otherwise no clear view of the 

heart can be observed from any other viewpoints. Therefore, in order to acquire any 

view section, physically, an ultrasound transducer is set to posit at three primary 

positions on the surface of a person’s chest. At each position, while rotating angles 

of the transducer, more sections of the heart can be brought out. Figure 1 illustrates 

the exemplar images of all eight views of pictures that an echocardiography can 

reveal at these three primary locations. The first four images, i.e., Apical 2 Chambers 

(A2C), Apical 3 Chambers (A3C), Apical 4 Chambers (A4C), and Apical 5 Chambers 

(A5C), can be acquired from the same location (location 1) while the transducer 

changes positioning angles, whereas at location 2, only one view of Parasternal 

Long Axis (PLA) can be obtained. At location 3, three sections of the heart can be 

captured, depicting Parasternal Short Axis (PSA) of Aorta (PSAA), PSA of Papillary 

(PSAP) and PSA of Mitral (PSAM). Usually, the acquisition of echo videos is 

performed by sonographers, the data that clinicians can make diagnostic decisions 

on. By doing so, clinically, once each viewpoint is determined, a number of major 

anatomical structures, such as left ventricle, can then be manually delineated, 

measured and analysed in order to ascertain the status of the functioning heart. 

While in appearance, as presented at Figure 1, several images might appear similar, 

e.g. (g) and (h), especially when they are viewed in a video form presenting the 

moving heart that might bordering at two different viewpoints. These images in 

essence capture discriminative information from both spatial and temporal point of 

view. Therefore, the determination and classification of the viewpoint upon which the 

video image under consideration is obtained constitute a crucial first step for the 

subsequent measurement, analysis and diagnosis as well as the development of 

computer-aided diagnostic systems [1-4]. 
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(Apical 2 Chambers) 
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(Apical 3 Chambers) 
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(Apical 4 Chambers) 
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(Apical 5 Chambers) 
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(Parasternal  Long 

Axis) 

 

 
(f) PSAA 

(Parasternal Short Axis 

of Aorta) 

 

 
(g) PSAP 

(Parasternal Short Axis of 

Papillary) 

 

 
(h) PSAM 

(Parasternal Short Axis 

of Mitral) 

Fig. 1.  The illustration of the eight views of echocaridogram videos. 

1.1  The state of the art of classification of echocardiograms based on 
viewpoints 

Progress on classification of viewpoints has been forged by a number of researchers 

[5-9] applying several approaches. For example, Ebadollahi et al. [5] and Zhou et al. 

[8] employ Markov Random Field models with a focus on spatial information to index 

echocardiogram (echo) videos through the detection of the number of objects 

presented on each image/frame (e.g. 4 chambers of the heart in A4C videos), giving 

rise to an averaged precision of 67.8%. In order to increase the classification 

accuracy, Beymer et al [6] take temporal information into account through the 

employment of scale-invariant feature points, achieving 80.1% of recognition rate. In 

their case, the extraction of motions is tracked by the application of Active Shape 

Models (ASMs) through a heartbeat cycle, which is then projected onto an Eigen-

motion feature space of the viewpoint class for matching.  In addition, Otey et al [9] 

has proposed a different feature-based method that measures the magnitude of 

gradients in space-time domain of videos, which is built on a hierarchical 

classification scheme, in an attempt to reduce the number of misclassifications 

among super-classes. Since these features are hand-crafted, their application 

ranges vary depending on the characteristics of the feature , e.g., both work at [6] 

and [9] take only on four viewpoints into consideration, e.g. A2C, PLA, PSAP and 

PSAA at [6] and A4C, A2C, PLA, and PSA in [9]. To take all eight viewpoints into 



consideration, the work detailed by Kumar et al [7] utilizes the technique of scale 

invariant features extracted from the magnitude image that has undergone edge 

filtered motion in advance, which is supported by Pyramid Matching Kernel (PMK) 

and Support Vector Machine (SVM) for view classification. As a result, their work has 

achieved 81% of average accuracy rate (AAR) over a collection of 113 echo videos. 

However, this collection of video data are normalised (to align all the videos to start 

at the same phase of the cardiac cycle) with the addition of extra information 

extracted from ECG (Electrocardiogram) data.   

Since ECG data are not always available for echo videos, recently, the work 

presented by Qian and Wei et al [10, 11] adopt a slightly different approach for those 

non-normalised data by utilizing the Bag of Word (BoW) paradigm that is integrated 

with linear SVMs. Unlike the traditional BoW paradigm [12], sparse coding [13] is 

adopted in their investigation instead of Vector Quantization (VQ) to train a video 

dictionary based on a set of 3D SIFT (Scale Invariant Feature Transform) 

descriptors, the space-time interest points that are detected by Cuboid detector. 

Furthermore, instead of using histograms, multiple scales of max pooling features 

are applied as the representation of echocardiogram videos. Subsequently, the 

linear multiclass SVMs is enlisted in the classification of these echo videos into eight 

view groups. With the collection of 219 videos, the AAR is 72% in [10], which is 

further improved to 81.09% by the application of KAZE feature at [11] coupled with 

the enlargement of their datasets into 312 videos.  

Although varying approaches are developed in those aforementioned work, they all 

share the same important character, which is that all the interesting feature points on 

each image remains manually engineered, i.e., hand-crafted, such as the extraction 

of edges, leading to retaining both advantages and disadvantages. 

Broadly speaking, classification approaches can be divided into two categories. One 

is constructed on the approaches applying hand-crafted interest points whilst another 

learns discriminative features automatically, such as deep learning led approaches. 

 

1.2  The techniques for extraction of hand-crafted features  
At present, the most applied hand engineered algorithms for feature detection and 

description remain the Scale Invariant Feature Transform (SIFT) [14], the Speeded 



Up Robust Features (SURF) [15], and KAZE features [16]. In addition, a number of 

improved approaches based on either SIFT or SURF also become flourished 

depending on the contents of images they are working on, including PCA-SIFT [17], 

ASIFT [18], and M-SURF [19]. 

 

The significant difference between SIFT, SURF and KAZE is the choice of scale 

space. The former two make use of the Gaussian scale space through the linear 

diffusion or approximation of Gaussian derivatives to detect features, whilst KAZE 

concentrates on nonlinear diffusion of filtering [20]. In this way, more boundary and 

detailed information related to cardiac structures can be retained while reducing the 

level of noises. Figure 2 demonstrates the examples where feature points are 

extracted by the application of the three approaches of SIFT, SURF and KAZE for a 

frame of an echo video. From the representation of cardiac structure (i.e. boundary) 

point of view, KAZE appears to perform better with more features highlighting on the 

edge of the structure and less scattering. One important aspect regarding to hand-

crafted approaches is that they are image-dependent, i.e., one method that performs 

excellent on one group of images may not work well on several other collections, 

which prompts the development of neural network led deep learning methods to 

detect silent features automatically. 

 

 

 

 

 

Fig.2. Illustration of approaches of SIFT, SURF and KAZE on the extraction of feature points. The first one is 
the original echo image. The other three are the first one superimposed by the feature points extracted using 

SIFT (2nd), SURF (3rd) and KAZE (last) algorithms. 

	

1.3 Deep learning -- Convolutional Neural Network (CNN) 

Deep learning neural networks refer to a class of computing machines that can learn 

a hierarchy of features by establishing high-level features from low-level ones and is 

pioneered by Perona et al. [21]. One of these models is the convolutional neural 

network (CNN) developed by LeCun et al. [22]. Consisted of a set of algorithms in 

machine learning, CNN comprises several (deep) layers of processing involving 

    



learnable operators (both linear and non-linear), and hence has the ability to learn a 

hierarchy of information by building high-level information from low-level data, 

thereby automating the process of construction of discriminative information [23]. It 

has demonstrated that, when trained with appropriate regularization, CNNs can 

deliver superior performance on the tasks of visual object recognition without relying 

on hand-crafted features. In addition, CNNs have been shown to be relatively 

insensitive to certain variations on the inputs due to the fact that a CNN network is 

designed to imitate biological vision processes and implements a feed-forward 

artificial neural network, simulating variations of multilayer perceptrons of the vision 

system where the individual neurons are tiled in such a way that they respond to 

overlapping regions in the visual field [24]. As a direct result, they are widely applied 

for image and video recognition. Specifically, CNNs have demonstrated as an 

effective class of models for understanding image content, giving state of the art 

results on image recognition, segmentation, detection and retrieval.  

 

In addition, recent advances of computer hardware technology (e.g., GPU) have 

propitiated the implementation of CNNs in representing images. While CNNs have 

lent themselves well to the computer vision field and achieved state-of-the-art 

results, they are built mainly for 2D still images due to the assumption of human 

vision systems of being two dimensional. However, to work on video images, the 

inclusion of temporal information will evidently benefit. For example, for the 

recognition of human actions, Ji et al [25] obtain the temporal information by 

processing three consecutive images along the time dimension. Whereas Simonyan 

et al [26] and Vedaldi et al [27] have proposed two stream scheme to learn both 

spatial features and temporal velocity information independently for the collection of 

human actions. Furthermore, to investigate the connectivity between spatial and time 

domains, Karpathy et al [28] make use of a large dataset of over one million videos 

consisted of 487 classes to perform an empirical evaluation. It exhibits that spatial-

temporal networks display significant performance improvement (63.9%) in 

comparison with feature-based baselines (55.3%). 

 

One of the challenges this research faces while classifying echocardiography videos 

remains that these video images do not have ECG (electrocardiogram) data that 



record the rhythm and electrical activity of the heart. Therefore, the video images 

cannot be aligned at the same phase of the cardiac (heartbeat) cycle. As a result, 

the velocity information obtained along the time direction may not be comparable 

directly with each other. In addition, the echocardiography videos are cycled 

periodically along the time direction whereas most of the human action videos 

published [25-28] present continuous activities. Therefore, each video clip (~2 

seconds) many contain different class information depending on at which phase of 

the cardiac cycle the recording time starts.  For example, in Figure 3, the structure of 

5 chambers (A5C) of the heart has been shown whereas Figure 4 illustrates the four-

chambered (A4C) structure for the same subject.  The first two rows are in the 

systole with the MV (Mitral Valve) and TV (Tricuspid Valve) closing, while AoV 

(Aortic Valve) opening or about to open. The following two rows are in the diastole 

with the MV and TV opening and the AoV closing. When in diastole state (the bottom 

row), the images bear similar features with 4 chambers (A4C class) instead of 5 as 

illustrated in Figure 3 middle column at bottom row. 

Fig. 3. Sample frames from A5C viewpoint. The first two rows are in the systole with the MV and TV closing, 

while AoV (central chamber) opening or about to open. The following two rows are in the diastole with the MV 

and TV opening and AoV closing. The arrow frame demonstrates the resemblance to A4C.  



Fig, 4. A sequence of frames corresponding to A4C viewpoint when in systole state with both MV and TV being closed. The 

arrow points to the similarity of A5C. 

 

Hence in this investigation, a fused CNN architecture is proposed integrating a deep 

learning network employed along spatial direction and a hand-engineered network 

along temporal dimension. Specifically, the feature of acceleration is applied in the 

time domain. This paper is structured in the following settings. Section 2 entails the 

methodologies that are advanced in this study including proposed networking 

architecture, 3D SIFT and 3D KAZE, which is followed by Section 3 presenting both 

experimental results and comparison outcomes with the state of the art hand-crafted 

approaches. The conclusion and discussion are then summarised in Section 4. 

 

2. Material and Methods 
 

2.1 Datasets 

In total, 432 video images of ultrasonic video images of echocardiography (echo) of 

the heart are collected from both Tsinghua University Hospital at Beijing and Fuzhou 

University Hospital at Fuzhou, China. They contain eight view classes and are 

captured from 93 different patients aged between 7 and 85 years old (containing 35 

wall motion abnormalities and 58 normal cases). All videos are recorded with 

duration of 1 second from GE Vivid 7 or E9 and are stored in DICOM (Digital 

Imaging and Communications in Medicine) format with the size of either 434 x 636 

pixels x 26 frame or 341 x 415 pixels x 26 frames. Each clip belongs to one of the 

eight different views, as detailed in Table 1. The ground truth data of eight different 

view videos is catalogued by clinicians in both hospitals in advance. 

Table 1. The numbers of  videos for each of eight viewpoints in the database and applied for training and testing 
respectively. 

View	 A2C	 A3C	 A4C	 A5C	 PLA	 PSAA	 PSAP	 PSAM	 Total	



Videos	 62	 46	 58	 40	 79	 57	 48	 42	 432	

Training	 40	 30	 38	 26	 51	 37	 32	 26	 280	

Testing	 22	 16	 20	 14	 28	 20	 16	 16	 152	

 

 

2.2  The fused architecture of two stand of deep learning CNN 

Figure 3 illustrates the integrated architecture of networks implemented in this study. 

Specifically, two CNN networks are schemed along space and time directions 

respectively and executed individually whereas the integration of both spatial and 

temporal information is fused upon the final classification scores obtained from both 

networks. The spatial CNN network works upon the original echo video images that 

are normalised into the size of 227 x 227 x 26 frames to learn spatial information 

automatically.  Whilst for the temporal CNN network, all the images undergo pre-

processing in advance before the learning starts. Firstly, they are resized to 

175×200×26 pixels, which is half of the video sizes in order to speed up subsequent 

processing. Then the approach of Optical Flow (to be detailed below) is applied twice 

to obtain velocity and thereafter acceleration images. Based on both networks, the 

final classification result is secured though the linear combination of the classification 

scores obtained from each network using the algorithm of softmaxloss, which tags a 

probability of belonging to each of the eight classes for each image in question. As 

for a video clip, histogram based scoring system ranks the final score from all the 

video images. 

 



 
Fig. 5. The fusion of deep learning networks integrating both spatial and temporal information. 

 

Specifically, for a training dataset 𝒙 ! ,𝒚 ! , where image 𝒙 !  is in three-dimension 

(with the 3rd dimension being intensity colour channel) and 𝒚 !  the indicator vector of 

class of 𝒙 ! ,  the feature maps of an image, namely, 𝑤!,… ,𝑤! , will be learnt based on 

CNN by solving Eq. (1). 

𝑎𝑟𝑔𝑚𝑖𝑛
𝒘!,…,𝒘!

1
𝑛 ℓ(𝑓 𝐱!;𝒘!,… ,𝒘! ,𝒚!)

!

!!!

 
(1) 

 

where ℓ refers to a suitable loss function (e.g. the hinge or log loss). 

 

To obtain these feature maps 𝒗!"
!" computationally, 2D convolution is performed at 

the convolutional layers to extract features from local neighbourhood on feature 

maps acquired in the previous layer. Then an additive bias is applied whereby the 

result is passed through a sigmoid function as illustrated in Eq. (2) mathematically. 

 

𝒗!"
!" = 𝑡𝑎𝑛ℎ 𝒃!" + 𝒘!"#

!"
!!!!

!!!

!!!!

!!!!

𝒗 !!! !
!!! !!!  

(2) 

 

 

where the notations of those parameters in Eq. (2) are explained in Table 1. 



 
 Table 2. Notations of the Parameters in Eq. (2). 

Parameter Notation 

𝑡𝑎𝑛ℎ .  hyperbolic tangent function 

𝑚 index over the set of feature maps in the 𝑖 − 1 𝑡ℎ layer 

𝒃!" bias for the feature map 𝑓 in Eq. (1). 

𝒘!"#
!"  value at the position (p, q) of the kernel connected to the 

kth feature map 

𝑝, 𝑞  2D position of a kernel 

𝑃!, 𝑄! height and width of the kernel 

 

In the subsampling layers, the resolution of feature maps is reduced by pooling over 

a local neighbourhood on the feature maps in the previous layer, thereby increasing 

invariance to distortions on the inputs. As a result, the CNN architecture can be 

constructed by stacking multiple layers of convolution and subsampling in an 

alternating fashion. The parameters of CNN, such as the bias 𝑏!" and the kernel 

weight 𝒘!"#
!"  are usually trained using unsupervised approaches [24]. As illustrated in 

Figure 5, this study applies eight layers of convolution.  

 

2.3 Calculation of acceleration based on optical flow technique 
 

In this study, the temporal information is learnt from acceleration images along the 

time direction of the echo videos. As demonstrated in Figure 6, the calculation 

acceleration between two points of P1 (𝑝!! ,𝑝!!) and P2 (𝑝!! ,𝑝!!) over two 

consecutive video frames where P1 in frame 1 is moved to P2 in frame 2 is usually 

formulated in Eq. (3). 

 

𝐴! 𝑃1 𝑡 = 𝑉! 𝑷! − 𝑉! 𝑷! = 𝑣!! , 𝑣!! 𝑷! − 𝑣!! , 𝑣!! 𝑷!  

= 𝑣!! 𝑷! − 𝑣!! 𝑷! , 𝑣!! 𝑷! − 𝑣!! 𝑷! = 𝑎!! ,𝑎!! 𝑡  (3) 

where 

𝑎!" = (𝑣!" − 𝑣 !!! !)/𝑡 

𝑎!" = (𝑣!" − 𝑣 !!! !)/𝑡      (4) 

and 

𝑣!" = (𝑝!" − 𝑝 !!! !)/𝑡 



𝑣!" = (𝑝!" − 𝑝 !!! !)/𝑡      (5) 

In both equations of Eqs. (4) and (5), 𝑖 refers to the frame number of a video clip and 

goes from 1 to n, the last frame number in each case, and 𝑖 + 1 the location of point 𝑖 

appearing in the following frame. 

 

 
Fig. 6. The illustration of the relationship between points, velocity and acceleration. 

 

In Figure 6, the point P1 changes its location to P2, and subsequently P3 over the 

next two consecutive image frames and hence generates moving velocity frames. 

Similarly, on velocity frames (to be created below), the same velocity point (V1) 

moves to different position (V2) on the following frame, giving rise to an acceleration 

value (A1). Therefore the calculation of acceleration in this study is conducted in the 

same way as the acquisition of velocity value through the application of optical flow 

technique. 

 

Optical flow indicates the pattern of apparent motion of objects in a visual scene 

where the same object point remains the same brightness level and therefore can 

work on the direct discovery of image motion at each pixel level based on the 

variations of brightness from spatial-temporal images [29].	 As formulated in Eq. (6) 

where optical flow is expressed from one frame (Figure 6, frame 1) to the next frame 

(Figure 6, frame 2) with the displacement 𝒅 = 𝜉, 𝜂  occuring at the point (𝑝! ,𝑝!), 

whereas  𝜉, 𝜂  are the two unknowns. 
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𝐼 𝑝! ,𝑝! , 𝑡 = 𝐼(𝑝! + 𝜉,𝑝! + 𝜂, 𝑡 + 𝜏)      (6) 

Based on Taylor expansion series, the following formula exists. 

𝐼(𝑝! + 𝜉,𝑝! + 𝜂, 𝑡 + 𝜏)≈ 𝐼 𝑝! ,𝑝! , 𝑡 + !"
!"
𝜉 + !"

!"
𝜂 + !"

!"
𝜏   (7) 

Since the intensity level remains the same for the same point, Eq. (7) results in 

!"
!"
𝑉! +

!"
!"
𝑉! +

!"
!"
= 0        (8) 

where 𝑉! ,  𝑉! are the 𝑥  and 𝑦 components of the velocity or the optical flow 

of  𝐼(𝑝! ,𝑝! , 𝑡) and  !"
!"

 ,!"
!"

 𝑎𝑛𝑑 !"
!"

 are the derivatives of the image at  𝑝! ,𝑝! , 𝑡  in the 

corresponding directions. 

As shown in Eq. (8), there are two unknowns in one function therefore cannot be 

solved as such. Hence a number of methods have since developed, including both 

variational and dense optical flows. In this study, the implementation follows the work 

by Brox et al. [30] on variational optical flow in a hope to capture motions that 

amount to large displacement. It assumes that the flow is essentially constant in a 

local neighbourhood of the pixel in question, and therefore can solve the basic 

optical flow equations for all the pixels in that neighbourhood by the least squares 

criterion. In addition, to render the displacement fields of acceleration into a 

displayable 8-bit image in JEPG format, the flow values are linearly rescaled to a [0, 

255] range at each of x and y directions. These images are subsequently undergone 

CNN process the same way as the original images as illustrated in Figure 5. 

For the original video echo images, each clip has 26 frames whereas for the 

acceleration frames, each clip contains 24 frames, i.e., every 3 consecutive frames 

generate one acceleration frame. The fusion of the two strands of CNN paths takes 

place by the combination of histograms of the final 8 class scores generated from 

each strand of CNN network. 

2.4  SIFT descriptor in three-dimensional (3D) 



In order to compare with the existing approaches applying hand crafted features, the 

method of 3D SIFT features has been advanced in this study in an attempt to include 

temporal information. As demonstrated in Figure 7, three stages take place whereby 

each video is treated as a 3D object with 3rd dimension being time. Firstly the 

detection of spatial-temporal interesting points is conducted using Cuboid detector 

[31].  Then these points are represented by the employment of 3D SIFT descriptors. 

And finally the construction of visual vocabulary dictionary is coordinated based on 

the approach of Sparse coding. demonstrates this process. 

	

	

	

(a) An echocardiogram 
video sequence 

(b) Neighborhoods of 
a space-time interest 
points 

(c) 3D SIFT 
descriptors(X)  of a 
space-time interest 
points 

(d) Histogram of 
gradient 
orientation 

Fig. 7. The process of obtaining 3D SIFT descriptors. 

	

In particular, as shown in Figure 7 (a) and b)), a 12 x 12 x 12 neighbourhood volume 

around an interest point is selected and then divided into 2 x 2 x 2 = 8 sub-volumes. 

Upon each sub-volume, the magnitude and orientation of the gradient of each voxel 

in the sub-volume are calculated by Haar wavelet transform along x, y and z 

direction respectively, whereby the magnitude of the gradient is subsequently 

accumulated to the corresponding bin of the gradient orientation, in an attempt to 

implement a tessellation orientation histogram [32]. By deploying the tessellation 

technique, each bin of 3D gradient orientation can be approximated with a mesh of 

small piece of 3D volume seen as a triangle in Figure 7(d). The gradient orientations 

pointing to the same triangle then belong to the same bin, as marked by the black 

points in Figure 7(d). The total number of the bins is calculated as 20 x (4 ^ 

Tessellation level). Since the Tessellation level decides the number of constituting 

triangle surfaces, i.e., the number of bins of gradient orientation in 3D space, in this 

study, the Tessellation level is set to 1, thus resulting in 80 bins. In addition, each 



sub-volume is accumulated into its own sub-histogram, leading to the 3D SIFT 

descriptor X of each interest point being 2 x 2 x 2 x 80 (= 640) dimensions.  

2.5  KAZE features in 3D 

Similar to Section 2.4, comparison with 3D KAZE also eventualises in this research. 

As illustrated in Figure 2 and described in [11], 2D KAZE appears to deliver better 

performance in the representation of feature points for echo videos. This study will 

extend this technique to 3D to embed temporal information. In doing so, the 

detection of KAZE features undergoes the processes of 3D Gaussian smoothness, 

calculation of conductivity, creation of nonlinear scale spaces, extraction of features 

and finally coarse-to-fine suppression. 

First, echo video pre-processing takes place by the application of 3D anisotropic 

Gaussian kernel to de-noise video volume 𝑣 using Eq. (9), where the filtered volume 

𝑈 is generated with independent spatial and temporal variances (𝜎!, 𝜏!): 

𝑈 𝑥,𝑦, 𝑧  ;𝜎!, 𝜏! = 𝐺  𝑥,𝑦, 𝑧 ;𝜎!, 𝜏! ∗ 𝑣( 𝑥,𝑦, 𝑧 )                          (9)                                               

where the spatial-temporal separable Gaussian kernel 𝐺 is defined as: 

𝐺 𝑥,𝑦, 𝑧;𝜎!, 𝜏! = !
(!!)!!!!!

 exp (− !!!!!

!!!
− !!

!!!
)                       (10) 

Then the calculation of conductivity equation is conducted using nonlinear partial 

differential equations (PDEs) as formulated in Eq. (11). 

                                                        
!"
!"
= 𝑑𝑖𝑣 𝐶 𝑥,𝑦, 𝑧 , 𝑡 ∙ ∇𝑢   

𝑢|!!! = 𝑢!
                                        (11) 

 

where 𝑢! refers to the original volumetric image, with 𝑑𝑖𝑣 and ∇ indicating the 

divergence and gradient operators respectively. Furthermore, the diffusion coefficient 

𝐶 can make the filtering adaptive to local image structure and is chosen to be able to 

estimate the gradient as suggested by Catte et al. [33], which is given in Eq. (12). 

 

𝐶 𝑥,𝑦, 𝑧, 𝑡 = 𝑔 ∇𝐺!,! ∗ 𝑣 𝑥,𝑦, 𝑧                                (12) 



where 𝐺!,! is the spatial-temporal separable Gaussian kernel as defined in Eq. (10). 

As a result, the gradient of spatial-temporal feature points can be detected by the 

application of Eqs. (13) and (14) to calculate gradients at two different levels. 

𝑔! ∇ 𝑥,𝑦, 𝑧 = exp −
∇ 𝑥,𝑦, 𝑧

𝐾

!

 

                                             (13) 

𝑔! ∇(𝑥,𝑦, 𝑧) =
1

1+ ∇(𝑥,𝑦, 𝑧)
𝐾

! 

(14) 

where 𝐾 indicates the contrast parameter to control the smooth level, which can be 

determined automatically based on Eq. (15) to reflect the grey level distribution of 

images in echocardiogram video sequence.  

𝐾 = 𝜎! = 𝑃! 𝐼! − 𝐼 !!
!!!       (15) 

In Eq. (15), 𝐼! and 𝐼 refer to the actual grey values and the corresponding mean 

respectively in echo video clip, with the probability of the 𝑖!! grey value being 

expressed by  𝑃! where 𝑁 stands for the maximum value of the grey level.  

 

3. Implementation and Results 

For the calculation of acceleration frames along time axis, optical flow is employed 

from every two consecutive image frames for the discovery of image motion, which 

generates velocity images where the intensity value of each pixel directly correlates 

with velocity value. Likewise, upon velocity video frames, optical flow technique is 

execuated again over two consecutive velocity frames to create acceleration motion 

images. Figure 8 exhibits the process of obtaining acceleration frames, whilst Figure 

9 depicts the acceleration frame along both x and y directions. 

 

     
(a) Image frame 1 (b) Image frame 2 (c) Optical flow (d) Velocity frame (e) Velocity frame 



(F1) (F2) between F1 

and F2 

1, x-direction 

(VF1-x). 

1, y-direction 

(VF1-y). 

   	  
(f) Image frame 

(F2) 

(g) Image frame 3 

(F3) 

(h) Optical flow 

between F2 

and F3 

(i) Velocity frame 
2, x-direction 

(VF2-x). 

(j) Velocity frame 

2, y-direction 

(VF2-y). 

Fig. 8. Image frames of 1 to 3 ((a), (b), (g), (f)) and their corresponding optical flow maps ((c), (h))  and 

velocity image frames 1 ((d), (e)) and 2 ((i), (j)). 

 

   

Superimposing three 

images of F1 to F3 in 

Figure 8. 

Acceleration frame along 

x- direction generated from 

VF1-x and VF2-x. 

Acceleration frame along y-

direction generated from 

VF2-y and VF2-y. 

Fig. 9. Acceleration created from Velocity frames 1 and 2 along both x and y directions. The left-most graph 

shows the superimposed figure of images F1 to F3. 

 

All the programming work is implemented using Matlab software based on 

MatConvNet [27], in a computer that runs Ubuntu 64-bit operating system with 64 

GB memory and GPU facility. For each strand of CNN network, it takes about two 

days processing all 432 video images. In addition, the creation of acceleration 

frames is accomplished offline in advance to expedite the process, which takes 

another two days. 

Table 3 presents the final classification results obtained in the form of confusion 

matrix. The second last column shows the result applying two CNN networks 

proposed in this study integrating both spatial and temporal information whereas the 

last column supplies the outcome concerning only spatial information, i.e. using 

single CNN network. As a result, the averaged accuracy rate (AR) calculated 

applying Eq. (16) from two-strand network is 92.1% in comparison with 89.5% from 

the single CNN network. 



𝐴𝑅 = !"#_!"##$!%&'_!"#$$%&%'(
!"!#$_!"#_!!!"_!"#$$

          (16) 

Table 3. Confusion matrix for 8 echocardiogram view classification employing both two-CNN-network and 
one-CNN-network (i.e. without Acceleration (A)) archetechture. 

	 	 Classification	Results	 (AR)	
(%)	

AR	no	A	
(%)	

Ground	

Truth	

	 A2C	 A3C	 A4C	 A5C	 PLA	 PSAA	 PSAM	 PSAP	

A2C	 22	 	 	 	 	 	 	 	 100	 100	

A3C	 	 16	 	 	 	 	 	 	 100	 100	

A4C	 	 	 20	 	 	 	 	 	 100	 95	

A5C	 	 4	 	 10	 	 	 	 	 71.4	 57	

PLA	 	 	 	 	 27	 	 1	 	 96.4	 100	

PSAA	 	 	 	 	 1	 19	 	 	 95	 90	

PSAP	 	 	 	 	 1	 1	 12	 2	 75	 68.8	

PSAM	 	 	 	 	 	 	 2	 14	 87.5	 87.5	

Overall	AR	 	 	 	 	 	 	 	 	 92.1	 89.5	

 

In many published work, presentation based on three primary locations is also 

emphasised, which is provided in Table 4, where the overall precision rate of the 

classification is 98%, which remains the same for both two-strand and single-strand 

CNN network architecture. 

Table 4. Confusion matrix for 3 primary view locations. 

	
AA	
(Apical	Angle)	
	

PLA	
(Parasternal	
Long	Axis)	

PSA	
(Parasternal	
Short	Axis)	

Accuracy	Rate	
(AR)	
(%)	

AR	without	A	
(%)	

Ground	

Truth	

AA	 72	 	 	 100	 100	

PLA	 	 27	 1	 96.43	 100	

PSA	 	 2	 50	 96.15	 94.23	

Overall	AR	 	 	 	 98.02	 98.02	

 

In addition, comparisons with a number of well-known hand-crafted methods are 

performed, including 2D SIFT, 3D SIFT, 2D KAZE and 3D KAZE together with the 

addition of optical flow in several cases, which are given in Table 5.  

 

 

 



 

Table 4. Comparison results between hand-craft approaches and proposed CNN network. 

Methods Average accuracy 

2D space domain 
2D KAZE 89.4% 

2D SIFT 83.8% 

Spatial-temporal domain 

2D KAZE + optical flow 84.3% 

Optical flow 79.4% 

3D SIFT 73.8% 

3D KAZE 87.9% 

Deep learning CNN 89.5% 

Deep learning with two networks CNN + Acceleration 92.1% 

 

As indicated in Table 5, our two-network CNN architecture proposed in this paper 

performs the best. Without the inclusion of acceleration of temporal information, CNN 

still outperforms all the other hand-crafted approaches with 89.5% precision rate. 

Among those hand-crafted approaches, 2D KAZE appears to achieve the best for 

this group of echo images with the overall AR maintaining 89.4%.  

4. Conclusion and Discussion 

In this study, a fused CNN architecture is proposed integrating both automatic and 

selective deep learning networks for the classification of echocardiography videos of 

eight viewpoint classes. As a result, this CNN architecture of two-strand networks 

performs the best with classification results up to 92.1% accuracy, the best so far in 

the published work. This indicates that deep learning led techniques can be 

implemented onto medical images and have shown potentials in finding 

discriminative features automatically for echo video images. In theory, deep learning 

networks work better with the increase of the number of datasets. In our 

investigation, the total number of the data is just over 400 videos, which is not 

significantly large in comparison with the published work built on bench mark 

datasets [25, 26, 28] where each class has more than 1 million datasets. However, 



CNN outperforms all the hand-crafted approaches studied in this investigation. 

Specifically, with the embedding of acceleration information along temporal 

dimension, two-strand-networks of CNN achieves significantly better (92.1%) than 

the single-network of CNN without temporal information (89.5%). Interestingly, the 

performance of single network of CNN is very close to 2D KAZE (89.4%), implying 

that when the number of datasets are in small numbers, the hand-crafted methods 

can accomplish just as good.  It should be noted that in this study both 2D hand-

crafted approaches appear to operate better than their 3D counterparts, i.e. 2D 

KAZE (89.4%) vs 3D KAZE (87.9%) and 2D SIFT (83.8) vs 3D SIFT (73.8%), which 

can be explained away by the fact that all these collected echo videos are not 

normalised. In other words, each video can have different starting point at any phase 

of cardiac (heartbeat) cycle. As a result, the temporal information is not aligned and 

may sometimes provide conflict information depending on the features to be 

explored. It is expected that if the duration of videos is extended to contain more 

than one cycle, this conflict information might be alleviated, leading to the 3D forms 

of either SIFT or KAZE might function better. This will account for part of our future 

work. Furthermore, the dimension along the temporal direction is significantly lower 

in comparison with spatial ones, i.e. 26 vs 341 x 415 or 434 x 636, which might lead 

to difficulties in extraction of distinguish temporal information. Nevertheless, temporal 

information constitutes an inseparable part of video images and will enhance the 

classification results if correct features are implemented as evidenced in this paper 

where acceleration features are extracted.  

Significantly, not only does the proposed method of two-strand deep-learning 

network outperforms the state of the art handcrafted approaches, but also it applies 

to the datasets that are not normalised. In other words, any echo videos can be 

classified without the need of availability of ECG data, which will provide significant 

benefit when it comes to the development of computer-aided diagnostic systems.  

Although the temporal information contributes significantly to the final classification 

results, i.e. 92.1% vs 89.5%, temporal information alone cannot represent echo 

videos completely with only 79.4% accuracy rate when only optical flow is applied.  

Furthermore, along the temporal direction, the technique of optical flow is employed 

to capture the motion features of velocity and acceleration of the moving heart, which 



operates on dense motion fields. In the case of an ultrasonic image, 

echocardiography can only generate a fan-shape view window, suggesting that each 

image frame may always introduce new points/objects that are not present in the 

previous frame, leading to a wrong match of brightness-based points to a certain 

extent as depicted in Figure 10. Hence the application of acceleration features alone 

to classify viewpoints is not expected to give better performance. In this study, those 

points outside of the fan shapes are excluded for the subsequent processes and are 

replaced by the background grey level as shown in the flow maps of Figure 8 (middle 

column). 

 

Fig. 10. The optical flow image without the exclusion of edge points outside of the fan shape. 

 

The class of A5C contains the last number of datasets (40) and has the worst 

classification rate (71.4%). Therefore another future work is to collect more data.  
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