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The use of mobile devices is rising daily in this technological era. A continuous and increasing number of mobile applications are
constantly offered on mobile marketplaces to fulfil the needs of smartphone users. Many Android applications do not address the
security aspects appropriately. This is often due to a lack of automated mechanisms to identify, test, and fix source code vulnerabilities
at the early stages of design and development. Therefore, the need to fix such issues at the initial stages rather than providing updates
and patches to the published applications is widely recognized. Researchers have proposed several methods to improve the security
of applications by detecting source code vulnerabilities and malicious codes. This Systematic Literature Review (SLR) focuses on
Android application analysis and source code vulnerability detection methods and tools by critically evaluating 118 carefully selected
technical studies published between 2016 and 2022. It highlights the advantages, disadvantages, applicability of the proposed techniques
and potential improvements of those studies. Both Machine Learning (ML) based methods and conventional methods related to
vulnerability detection are discussed while focusing more on ML-based methods since many recent studies conducted experiments
with ML. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in secure mobile application development
while minimizing the vulnerabilities by applying ML methods. Furthermore, researchers can use the discussions and findings of this
SLR to identify potential future research and development directions.
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1 INTRODUCTION

With technological enhancements and an increase in the usage of mobile devices, a growing number of people depend
on mobile phones for their daily activities, both for the personal and professional aspects of their lives. Statista forecast
that by 2023, there will be 4.3 billion smartphone users [136]. 71.45% of them use Android as the Operating System (OS)
(May 2022) [135]. Because of this worldwide popularity, many application developers are developing various Android
mobile applications with rapid development life cycles. However, most of these applications are developed without
integrating proper security mechanisms, increasing their vulnerabilities at the development stage. Since Google Play
does not extensively validate apps to detect code vulnerabilities when publishing [36], users may experience various
issues caused by the lack of security checks [142]. Therefore, it is important to integrate appropriate Android source
code vulnerability detection methods and tools when developing the apps.

Studies such as [20, 53, 59, 133, 134] have proposed several methods to detect vulnerabilities in source code, including
some automated mechanisms to support the developers when designing and developing secured applications. An
increasing number of these supporting methods, such as [45, 48, 89, 93] are based on machine learning and deep
learning for automatic early detection of security issues and vulnerabilities, which can support the software engineers
to improve software security. Studies in [10, 18, 116, 164] employ alternative techniques, to identify vulnerabilities. A
thorough understanding of these existing methods is essential for developing Android applications by applying security
best practices. Moreover, further research also can be conducted to enhance those methods. Therefore, researchers
and the application development community can use this state-of-the-art SLR to fully understand the strengths and
weaknesses of existing source code vulnerability detection methods and thus identify future research directions.

As discussed in Section 2, several limitations, including not covering recent proposals, relatively narrow scopes, and
lack of critical appraisals of suggested detection methods, have been identified in these existing literature reviews on
Android vulnerability detection and prevention methods. The lack of a thorough analysis of ML or Deep Learning
(DL) based methods when detecting vulnerabilities was also a limitation of existing works. This SLR addresses these
limitations by critically evaluating 118 carefully selected technical studies while answering the formulated research
questions. Therefore this work is unique, which addresses the research gap in this area.

1.1 ResearchQuestions

This systematic review aims to answer the following research questions.

RQ1: What are the existing methods for source code and application analysis?
Many research studies considered various source code analysis methods, including application reverse engineer-
ing. Moreover, byte-code-based analysers are also used since Android apps can be easily reverse engineered to
source code. The static analysis techniques were mainly used on a broad scale, while also applying dynamic and
hybrid analysis techniques to analyse source code. These methods are discussed in Section 4.

RQ2: What are existing Android source code vulnerability detection methods, and how to use them to
prevent vulnerabilities?
When detecting Android source code vulnerabilities, ML methods and some conventional methods were applied
in various studies. Among them, applying ML methods has been popular in recent years among the research
community. Therefore, many studies applied various ML methods. In contrast, few studies applied conventional
non-ML-based methods. Detecting vulnerabilities alone is not sufficient when boosting the security of Android
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Fig. 1. Structure of this Systematic Literature Review paper

source code. Ways to prevent security issues by integrating the detection techniques into software development
environments should also be studied. These detection and prevention methods are discussed in Section 5.

RQ3: Which tools and repositories can be used to detect vulnerabilities in Android apps?
Exploring tools, repositories, and datasets that can be used to analyse source code and detect vulnerabilities
is also essential. Identifying their characteristics and usage is beneficial for conducting new research studies.
Therefore, those facts are discussed in Section 6.

1.2 Organization of the Review

The SLR is structured as presented in Fig. 1 to answer the formulated research questions in three main sections.
The rest of this paper is organised as follows. Background and related literature are discussed in Section 2, followed

by a detailed description of the review methodology in Section 3. The experimental studies reviewed in this SLR are
categorised into three main sections: application analysis, code vulnerability detection, supportive tools and repositories.
As the initial step of vulnerability detection, applications should be analysed, and three types of analysis techniques
(static analysis, dynamic analysis, and hybrid analysis) are used. Studies related to this application analysis are reviewed
in Section 4. Code vulnerability detection related studies are reviewed in Section 5, which discusses the ML-based
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methods and conventional methods. It further discusses how the existing prevention techniques can be integrated with
the identified detection methods. Section 6 reviews supportive tools and repositories which can be used in application
analysis, vulnerability detection and prevention. Section 7 discusses the threats to the validity of the review. Finally,
Section 8 concludes the paper.

2 BACKGROUND AND RELATED LITERATURE REVIEWS

This section discusses the background related to the security of Android applications and the vulnerabilities associated
with them. It provides a high-level overview of the Android layered architecture, its security implications, Android
application vulnerabilities, and potential mistakes made by users and developers that can lead to security and privacy
issues. It also explains the ML process since the paper focuses more on ML-based vulnerability detection mechanisms.
Then, it would be helpful for all the readers to understand the content easily. Furthermore, the existing literature
reviews are also discussed in this section.

2.1 Background

2.1.1 Layered Architecture and Security Implication of Android. Android has a layered architecture that provides
a systematic way to communicate with device components, software applications, and its users. Android OS is built on
top of the Linux kernel [125]. It provides drivers and mechanisms for networking and manages virtual memory, device
power, and security. On top of the Linux kernel layer, hardware abstraction layer, native C/C++ libraries layer, and
Android runtime layer, Java Application Programming Interface (API) framework layer are stacked [12].

Each of these layers performs unique tasks while interacting with other layers. The study in [125] provided a layered
approach for Android application development, which uses the layered architecture. In this approach, a server interacts
with the Hypertext Transfer Protocol (HTTP) layer, while the API layer interacts with the HTTP layer. The API layer
interacts with the generic data layer, and that interacts with the platform-dependent data layer. The User Interface (UI)
layer interacts with the platform-dependent layer. Many of the source code vulnerabilities can be identified in the top
layer, which contains user and system apps since the regular app developers mainly focus on that layer. However, the
understanding of the layered architecture is beneficial to mitigating some of the vulnerabilities.

Android platform security has been defined with several rules in the Android security model [94]. They are multi-
party consent, open eco-system access, security and compatibility requirements, factory restores the device to a safe
state, and applications’ security principles. The study in [165] identified three main security mechanisms, including
1) process sandbox, which is the sandbox environment of Android; 2) signature mechanism, which can digitally sign
applications with the private key before being released; 3) permission mechanism, which defines the ability of an app
to access protected APIs and resources. The sandbox environment of Android does not allow the use of one application
resource by the other. Sandboxes are developed using Linux, and only they can access the core functionalities of the OS.
Monitoring system calls and acknowledging them is a responsibility of the Sandbox [125], and they are used to prevent
malicious applications which request access for system functionalities through vulnerable source code.

Mobile devices can easily be lost or stolen, connect with several networks on the go, and contain more privacy-related
data since they are close to the users [131]. Therefore, limiting to traditional security mechanisms will not be sufficient
for mobile devices. Malicious actions including gaining physical access to the device, connecting with un-trusted
networks, installing and running untrusted applications, executing untested code blocks and contents are identified as
some of the threats [94], which can occur in an Android mobile device. Thus, security measures should be tightened
though mitigating vulnerabilities to safeguard the data in Android devices.
Manuscript submitted to ACM
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Therefore, implementing proper security measurements is a must to improve the security of Android devices and
their applications. Hence, detecting vulnerabilities of Android applications and their source code should be performed
when implementing the security best practices.

2.1.2 Vulnerabilities of Android Applications. Many of the Android applications are freely available to download
from app markets. Therefore the usage of these free applications is very high. Hackers may try to penetrate these
applications and grab user data on a massive scale or perform illegal activities if there are no proper security mechanisms
in place in the application [130]. Therefore, the app developer should carefully check for proper security measures.
Issues in Secure Sockets Layer (SSL), Transport Layer Security (TLS) commands, permissions, web views, key stores,
fragments, encryptions, intents, intent filters, and leaks were identified as common causes for vulnerabilities of Android
mobile apps [47]. Attacks from the Internet and Wireless Personal Area Networks (WPAN), and malware transmitted
through personal computers can exploit these vulnerabilities. The study related to Android vulnerability [165], identified
SSL/TLS protocol vulnerabilities, forged signature vulnerabilities, and some of the common vulnerabilities in Input/
Output (I/O) operations, intents, permissions, web views.

There are several types of vulnerabilities categorised in CyBOK [101]. They are memory management vulnerabilities,
structured output generation vulnerabilities, race condition vulnerabilities, API vulnerabilities, and side-channel
vulnerabilities. Safe languages, spatial vulnerabilities, temporal vulnerabilities, code corruption attacks, control-flow
hijack attacks, information leak attacks, data-only attacks were identified as memory management vulnerabilities. It has
classified Structured Query Language (SQL) injections, command injection vulnerabilities, script injection vulnerabilities,
stored injection vulnerabilities, high-order injection vulnerabilities as structured output generation vulnerabilities. It
has listed concurrency bugs and time-of-check to time-of-use issues as race condition vulnerabilities. Correct use and
implementation were also recognised as cases where API vulnerabilities can evolve while mentioning side-channel
vulnerabilities as the other category of vulnerabilities. Under this software-based side channel, covert channels, micro-
architectural effects, and fault injection attacks were considered. Some of these vulnerabilities are related to Android,
and they can be mapped with Common Vulnerabilities and Exposures (CVE) [33] and Common Weakness Enumeration
(CWE) [34], which is possible to use as the starting point to categorise vulnerable source code.

The study in [49] identified 563 Android-related vulnerabilities, including gain privileges and information, memory
corruption, Denial of Services (DoS), malicious code execution, overflow, and bypass security measures. Further, it has
analysed trends of those vulnerabilities from 2009 to 2019, and the peak period of vulnerabilities was started in 2016.
The empirical study conducted in [82] discussed the types of Android-related vulnerabilities, the layers and subsystems
of Android which could be affected by vulnerabilities, and the survivability of vulnerabilities. This study consists of 660
vulnerabilities from the CVE Details [33] and the official Android Security Bulletins [11]. It was identified that most of
the vulnerabilities could happen from data processing issues, access controls, memory buffers, and improper input
validation, primarily due to vulnerable code lines. Most of them can be reduced by following secure coding practices.

2.1.3 User andDeveloperMistakes. Mistakes can happenwhen using an application by the users or when developing
applications by the developers. Sometimes users allow permissions when installing or running an application without
knowing the exact need, leading to some vulnerabilities. Hackers and malicious app developers also try to steal data
from users by forcing them to allow specific permissions. Authors in [92] identified that most security issues in mobile
applications occurred due to the actions of the users. These issues can be minimised if the applications are developed
with less vulnerable source code.
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Developers also make mistakes by not following an extensive testing and validation process from the initial stage of
the app development life cycle. When developing mobile applications, many mobile app developers are still not focusing
on writing secure codes even though there are mechanisms in place [100]. Due to these developer mistakes, some of
the vulnerabilities have occurred. Instances such as mentioning unwanted permissions in the AndroidManifest.xml file
can also lead to arise vulnerabilities of the mobile applications. If these permissions are dangerous level permissions,
users will have to grant those also, which can cause rejections of the app by some users [25]. These vulnerabilities
may not be detected when publishing apps to Google Play, since Google Play itself could not thoroughly analyse the
code of the mobile applications when publishing it, such as in Apple App-Store [51]. Therefore, proper source code
vulnerability detection mechanisms should be integrated with coding.

2.1.4 Machine Learning Processes. The use of ML methods for vulnerability detection has been increased in
recent years [53]. Therefore, comprehending the ML processes is beneficial to understanding ML-based source code
vulnerability detection studies.

TheML lifecycle includes data extraction, preprocessing, feature selection, model training, evaluation, and deployment
steps [8] and ML consists of supervised learning, unsupervised learning, semi-supervised learning, reinforcement
learning, and deep learning. A labelled dataset is used to train the model in supervised learning to solve classification and
regression problems. Algorithms such as Naive Bayes (NB), Logistic Regression (LR), Linear Regression, Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), and k-Nearest Neighbors (kNN) can be applied for supervised
learning. Unsupervised learning identifies hidden patterns in data using clustering, association and dimensionality
reduction. A labelled dataset is not required to train the model. K-means clustering, Principal Component Analysis
(PCA), and autoencoders are some methods that can be applied for unsupervised learning. A mix of supervised and
unsupervised learning techniques is applied in semi-supervised learning and used in the case of limited labelled data
in the used dataset. The model parameters are updated with the feedback from the environment in reinforcement
learning where no training data is involved. This ML method proceeds as prediction and evaluation cycles. DL is defined
as learning and improving by analysing algorithms independently, which consists of a higher or deeper number of
processing layers. Convolutional Neural Network (CNN), Long Short Term Memory Network (LSTM), Recurrent Neural
Network (RNN), Generative Adversarial Network (GAN), and Multilayer Perceptron (MLP) are some of the popular DL
algorithms [21].

2.2 Related Literature Reviews

Previous reviews [1, 2, 38, 50, 72, 80, 86, 127, 132] discussed various security-related studies, including vulnerability
detection methods for Android applications and the ways to prevent them. With the rapid focus on software security,
most of these studies and experiments were conducted after 2015.

The security in the Android platform was studied in [1]. It reviewed the studies on several threats to Android, such
as information leakage, privilege escalation, repackaging apps, denial of service attacks, and colluding. It has also
reviewed Crowdroid [24], Kirin [40], AndroSimilar [42], RiskRanker [55], RiskMon [67], FireDroid [123], Aurasium [161],
DroidScope [162], RecDroid [166], and DroidRanger [168] methods. Those studies were reviewed with objectives such
as the assessment, the source code analysis method (i,e. static or dynamic analysis), and detection mechanisms. However,
there are limitations in this review, such as following an informal review approach and not covering comprehensive
details on vulnerability detection and prevention mechanisms.
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It is crucial to identify the duplicate codes in several places in a program. When identifying bugs in a program,
code repetition places also should be identified as all the places should be revised. The study in [2] reviewed various
studies related to code clone detection. This study has systematically reviewed 54 studies under six categories: textual
approaches, lexical approaches, tree-based approaches, metric-based approaches, semantic approaches, and hybrid
approaches. Twenty-six clone detection tools were also identified in this review, and found that many of the tools and
models can be applied in Java/ C++ codes. However, since this review contained papers from 2013 to 2018, it is better to
review the latest code clone detection methods proposed after 2018.

Authors in [38] analysed 55 studies from 2015 to 2021 related to software vulnerability detection. The selected articles
were grouped into several categories across various vulnerability detection evaluation criteria such as neural network,
machine learning, static and dynamic analysis, code clone, classification models and frameworks. Based on the analysis,
it has been identified that many researchers used machine learning strategies to detect vulnerability in software since a
large volume of data can be analysed easily with machine learning. Though some of the reviewed studies have overlaps
with vulnerability detection of source code written in C and Java, a further review should be conducted specifically for
Android source code vulnerability detection.

The study in [50] reviewed Android security assessments, including trends and patterns of different analysis
approaches, analysis techniques, code representation tools, and applicable frameworks by analysing about 200 studies
from 2013 to 2020. It has also focused on privacy leaks, cryptographic issues, app cloning, permission misuse, code
verification, malware detection, test case generation, and energy consumption. It discussed sensitivity analysis, data
structures, and code representations in the reviewed literature under the static analysis techniques. Kernel level,
application level, and emulator level inspectionswere also considered under taint analysis and anomaly-based approaches
in dynamic analysis techniques. The review highlighted that many research studies were conducted related to Android
vulnerabilities and leaks. Moreover, This study systematically reviewed several android assessments techniques and
identified call graphs, control flow graphs, and inter-procedural control flow graphs as the used data structures. However,
the studies related to preventing vulnerabilities were not discussed. Moreover, reviewing studies on non-ML-based
methods to detect and prevent vulnerabilities is possible since this review considered only ML methods.

Related studies on automated testing mechanisms of Android applications were systematically reviewed in [72] from
2010 to 2016. This paper discussed three functional testing types: black-box, white-box, and grey-box by analysing
Android related studies, including test-related objectives, targets, levels, and techniques, along with their validation
depths. The considered test objectives were bugs, defects, compatibility, energy, performance, security, and concur-
rency. Under test targets, it considered inter-component communication, inter-application component, graphical user
interface, and events. System, integration, and regression were considered for the test levels while testing types, testing
environment, and testing methods were listed as used test techniques. Further, executing tests using emulators and
real devices was also discussed. It examined testing methods including mutation, concolic, A/B, fuzzing, random,
search-based, and model-based. This review considered frequently used essential tools such as AndroidRipper [9],
Monkey [14], Silkuli [61], Robotium [119], EMMA [121], and Roboelectric [158]. Though it has reviewed Android app
testing comprehensively till 2016, the recent studies are not considered.

The review in [80] analysed 124 research studies from 2011 to 2015 intending to identify static analysis mechanisms
for Android applications. It identified that static analysis was used in many research studies related to privacy and
security, and taint analysis was the widely applied technique in those studies. According to that, Soot (a framework for
analyzing, instrumenting, optimizing, transforming and visualizing Java and Android applications) [76], and Jimple
(an intermediate representation that can simplify analysis and transformation of Java bytecode) [151] were the widely
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used tools and formats, and a few studies considered path-sensitivity. After analysing, this review identified that leaks
and vulnerabilities are the primary concerns addressed by the other research studies. Moreover, this review found
permission misuse, energy consumption, clone detection, test case generation, code verification, and cryptographic
implementation issues. Some of the novel techniques, including ML related studies, were not reviewed since this review
focused on research from 2011 to 2015.

The work in [86] systematically reviewed DL-based Android malware defence by answering three primary research
questions: 1) aspects of Android malware defences applied when using DL, 2) approaches developed for malware
defences, and 3) emerging and potential research trends for DL-based Android malware defences. The review considered
the technical studies from 2014 to November 2021. The review identified that while many of the reviewed studies mainly
consider DL-based on Android malware detection, some defence approaches were based on non-DL based methods.
It has also been identified that static program analysis is widely used to collect features, and semantic features are
frequently occurring. Moreover, it concluded that most of the approaches were performed as a supervised classification
task. This review identified that many studies were conducted to detect malware, and other types of more detailed
analyses on malicious apps are receiving increasing attention. Nevertheless, it was not comprehensively reviewed how
the other types, such as malicious code detection and code vulnerability detection, can be performed.

The systematic review conducted in [127] discussed ML and DL-based Android malware detection methods, along
with a comparison of methods and their accuracies. This review analysed many studies from 2017 to 2021 and identified
that static, dynamic, and hybrid analysis could be used with ML/ DL models to detect malware. Furthermore, it identified
that static analysis is the widely used technique in the reviewed studies. It has been found out that RF, SVM, NB, kNN,
LSTM, and AdaBoost (AB) were the widely used ML/DL models in this context. Further to the malware detection method,
this review briefly discussed Android software vulnerability identification. It reviewed the methods and techniques to
identify source code vulnerabilities. The critiqued studies have identified that hybrid analysis techniques were widely
used to identify Android source code vulnerabilities. The main focus of this review was Android malware detection
using ML/ DL. Therefore, it is still essential to review code vulnerability detection methods to a great extent.

Studies related to the Android security framework, its security mechanisms assessments, and mitigation strategies
were reviewed in [132]. Under the security mechanisms, user interfaces, file access, memory management, type safety,
mobile carrier, application permissions, component encapsulation, and application signing were reviewed. It has
reviewed the security analysis studies related to Android framework cornerstone layers, application-level permissions,
installing applications, mobile web browsers, SQL injections, connectivity and communication, hardware, software
updates, malware in Linux environment, andmalware related to Java. Under mechanisms, studies related to anti-malware
tools, firewalls, intrusion detection and prevention methods, access controls, permission management applications,
encryption methods, and spam filters were reviewed. Though this review discussed the studies conducted under
Android security by following an informal and non-systematic approach, it does not consider security issues such as
API vulnerabilities, concurrency bugs, and the latest OS-related bugs due to the considered period in the review.

Though the existing reviews provide in-depth details of the related studies, reviews such as [72, 80] did not cover the
recent works conducted in this area. Reviews such as [2, 132] did not thoroughly review the studies on Android-specific
vulnerability detection using various experiments performed in source code analysis. Therefore, it is required to
conduct a comprehensive review of recent studies related to Android source code vulnerability detection and prevention
mechanisms. Table 1 summarises and compares the related reviews with this work’s contribution.
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Table 1. Summary of Related Reviews

Paper Focus of the Review Period Review Approach Number
of Re-
viewed
Studies

Android
Specific

Static
Analysis

Dynamic
Analysis

Hybrid
Analysis

ML-based
code vul-
nerability
detection

Non
ML-based
code vul-
nerability
detection

Code vul-
nerability
preven-
tion

Supportive
tools and
reposito-
ries

Ahmed et
al. [1]

Security in Android
platform, associated
threats, and malicious
application growth

2010-
2017

Informal 14 ✓ ✓ ✓ ✓ x x x x

Ain et al.
[2]

Code clone detection
for vulnerabilities

2013-
2018

Systematic search
(Budgen [23] and
Kitchenham [71]
guidelines)

54 x ✓ ✓ ✓ x ✓ x x

Eberendu
et al. [38]

Various methods for de-
tecting software vulner-
abilities

2015-
2021

Systematic search
- (PRISMA model
[109])

55 x ✓ ✓ ✓ ✓ x x x

Grag et al.
[50]

Android security asse-
ments and application
analysis methods

2013-
2020

Systematic search
(Kitchenham guide-
lines [71])

200 ✓ ✓ ✓ ✓ ✓ x x ✓

Kong et al.
[72]

Automated testing
mechansims for An-
droid

2010-
2016

Systematic search
(Kitchenham guide-
lines [71])

103 ✓ ✓ ✓ x x x x ✓

Li et al.
[80]

Static analysis for An-
droid apps

2011-
2015

Systematic search
(Kitchenham guide-
lines [71])

124 ✓ ✓ x x x ✓ x x

Liu et al.
[86]

Malware and malicious
code detection with DL

2014-
2021

Systematic search
(Kitchenham guide-
lines [71])

132 ✓ ✓ ✓ ✓ ✓ x x x

Senanayake
et al. [127]

Malware detection and
malicious code detec-
tion with ML

2017-
2021

Systematic search
(PRISMA model
[109])

106 ✓ ✓ ✓ ✓ ✓ x x x

Shabtai et
al. [132]

Android security frame-
work and security as-
sessment

2007-
2009

Informal 42 ✓ x x x x ✓ x x

This
work

Android code vulner-
ability detection and
prevention

2016-
2022

Systematic search
- (PRISMA model)
[109])

118 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 METHODOLOGY

The Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) model [109] was used in this review
to report and analyse the research studies conducted in this domain. Based on the objective of this study, initially, the
search strategy was defined to identify the conducted studies which can be used to answer the research questions. The
database usage, and the inclusion and exclusion criteria were also defined. The study selection, data extraction and
synthesis were conducted as the next stage to identify studies aiming to answer the formulated research questions.
Threats to the validity of this SLR, and the mechanism to reduce the bias and other factors that could have influenced
the outcomes of this study were also identified.

3.1 Search Strategy

As the initial step of the review process, existing literature reviews on Android malicious code detection and vulnerability
detection were analysed to identify the research gap. Once the research gap was identified, the search string was used
to extract and identify the technical studies related to the review’s focus.

The search strategy involves outlining the most relevant bibliographic sources and terms of search. This review
used several top research repositories including ACM Digital Library, IEEEXplore Digital Library, Science Direct,
Web of Science, and Springer Link as primary sources to identify studies. The search string to browse through
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Table 2. Search Results Distribution across Primary Sources for each Search Term

Search Term ACM IEEEXplore Science Direct Web of Science Springer Total Count

vulnerability detection 428 377 264 557 496 2,122

source code vulnerability 10 13 17 11 36 87

code vulnerability detection 9 10 8 12 20 59

vulnerability analysis 381 331 2,456 1,632 740 5,540

vulnerable code 282 99 88 103 201 773

static analysis 5,596 2,210 2,609 3,390 4,729 18,534

dynamic analysis 2,652 1,947 3,048 2,197 2,695 12,539

hybrid analysis 175 88 150 132 257 802

vulnerability dataset 22 10 24 10 41 107

android 12,482 8,942 5,331 9,942 12,618 49,315

machine learning 54,996 88,735 146,255 215,080 85,194 590,260

deep learning 24,316 72,742 66,147 127,016 48,450 338,671

formal methods 3,488 1,335 1,686 3,859 5,844 16,212

heuristic methods 760 1,271 3,261 1,635 3,445 10,372

Complete Search String 688 146 582 255 855 2,526

research repositories is ((("vulnerability detection") OR ("source code vulnerability") OR ("vulnerable code") OR ("code
vulnerability detection") OR ("vulnerability analysis") OR ("static analysis") OR ("dynamic analysis") OR ("hybrid
analysis") OR ("vulnerability dataset")) AND ("android") AND (("machine learning") OR ("deep learning") OR ("formal
methods") OR ("heuristic methods"))).

A few years later from the initial release of Android in 2008, security concerns were discussed with the increasing
popularity of Android applications [135]. Methods to detect and prevent vulnerabilities by improving software security
using ML and non-ML-based methods were also proposed in several studies. There was a boost in applying various
techniques to improve application security in the last five years [85], and vulnerability detection in mobile applications
using ML techniques-related trends increased from 2016 [53]. Hence, many researchers are involved in identifying
novel ML-based methods to enhance software security. Considering these reasons, technical studies from 2016 to June
2022 were reviewed. The search results distribution across primary sources for each search term is listed in Table 2.

Google Scholar was also used as another source to identify research studies published in quality venues since it can
be used to identify research studies not published in primary repositories. "Android source code vulnerability detection"
was used as the search query. The range of publication years was set to 2016-2022. Though the search results included
about 17,500 records, only the top 200 (sorted by relevance) results for each year were considered, resulting in 1,400
studies.

3.2 Study Selection, Data Extraction and Synthesis

Initially, through the research database search in the top research repositories, 2,526 research papers and from Google
Scholar, 1,400 were identified. 3,112 were excluded from these 3,926 papers because of duplicate entries, and another
127 were excluded because they were not publicly available. 687 studies remained after the initial screening. Research
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Fig. 2. PRISMA method: collection of papers for the review

repository search engines often list irrelevant results presence articles [23]. Therefore, the collected list of relevant
studies was consolidate by manually going through all the papers and examining the title and abstract to ensure that
they align with the focus of this review. After these steps, 119 studies were eligible, but 3 more articles were excluded
due to data analysis and experiment issues in the given context, which remains 116 studies. The snowballing process
[159] was also performed, considering all the references presented in the retrieved papers and evaluating all the papers
referencing the retrieved ones, which resulted in 2 additional relevant papers. The same process was applied as for
the retrieved papers. Once all these steps were performed, the remaining 118 articles were reviewed in this study. The
results were cross-validated by performing peer-verification process by all the authors. Fig. 2 shows a summary of the
paper selection method for this systematic review.
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4 APPLICATION ANALYSIS

Applications or source code should be analysed as the first step in detecting vulnerabilities [63]. There are two analysis
approaches: analysing the reverse-engineered source code of Android Application Packages (APKs), and analysing the
source code simultaneously when writing the code. Most of the research studies have been conducted related to the
reverse-engineering approach. However, the second approach has more advantages for the developers to detect code
vulnerabilities at the early stages of development life cycle. Reviewing studies on both approaches is vital since their
methodologies have many overlaps.

It is required to extract features as the initial step of analysing the source code of a given application. These features
can be extracted through three analysis techniques named as static, dynamic, and hybrid analysis [6, 32, 87]. Reversed
engineered APKs, application’s source code, or byte code can be analysed using static analysis. However, it is impossible
to identify all the bugs and failures using static analysis only since it does not cover the vulnerabilities that can occur
during the execution time of the app. Features can be generated by executing applications in runtime when performing
the dynamic analysis. The runtime behaviour is monitored while using specific input parameters. However, it is possible
to crash the run time environment due to severe vulnerabilities, and there are possibilities that some vulnerabilities
remain undetected [115]. The hybrid analysis technique contains characteristics of both static and dynamic analysis
techniques. Therefore, this approach can analyse the source code as well as run time behaviour of the application [10].

4.1 Static Analysis

Native Android applications can be developed using Java or Kotlin, and Java is the widely-used programming language
for this purpose. Frameworks such as React Native and Xamarin can also be used to develop Android mobile applications
[15]. However, these mobile applications also contain Extensible Markup Language (XML) files such as the Android
Manifest, User Interface (UI) layouts, and resources among the application files. Therefore, it is required to identify the
issues in both source code files and XML files. Static analysis can analyse both of these files without executing them.
There are two static analysis methods: manifest analysis and code analysis. These two methods differ based on feature
extraction. Some studies use either manifest analysis or code analysis, while a few use both [73].

The manifest analysis is a widely used static analysis method. It can extract package names, permissions, activities,
services, intents, and providers from the AndroidManifest.xml file. The AndroidManifest file contains all the permissions
used in a particular application, categorised as dangerous, signature and normal. Twenty-two permissions have been
identified as significant permissions in SigPID in [78], and they were identified by developing a three-level data purring
method. Those three levels were support-based permission ranking, permission mining with association rules, and
permission ranking with a negative rate. The second method of the static analysis is code analysis which considers about
the source code files. Features such as API calls, information flow, taint tracking, native code, clear-text analysis, and
opcodes can be extracted with code analysis. The MaMaDroid [107] method provides an example for API calls analysis.
It abstracted apps’ API call executions to create regular classes or packages using static code analysis techniques and
then determined the call graph using the Markov chain.

Authors in [50] proposed five aspects for static analysis: analysis techniques, sensitivity analysis, code representation,
data structures, and inspection level. The analysis techniques are symbolic execution, taint analysis, program slicing,
abstract interpretation, type checking, and code instrumentation. Objects, contexts, fields, paths, and flows are considered
for sensitivity analysis. Smali [57], Dex-Assembler [111], Jimple [151], Wala-IR [153], and Java Byte code/ Java class are
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used for code representation while Call Graph, Control Flow Graph, Inter-Procedural Control Flow Graph are data
structures. Kernels, applications, and emulators are considered for the inspection levels.

4.2 Dynamic Analysis

The second technique is dynamic analysis, which is used to analyse the application by executing it in a sandbox runtime
environment. A completed product (i.e., APK) is required to apply this method. Therefore, it is widely used to detect
vulnerabilities and malware in developed applications.

Five feature extraction techniques were identified for the dynamic analysis in [50], and they were network traffic
analysis, code instrumentation, system call analysis, system resources analysis, and user interaction analysis. Network-
related features, process-related features, usage-related details, and component interactions were extracted using those
five methods. Under the network-related features, uniform resource locators, internet protocols, network protocols,
network certificates, and network traffic were considered while considering non-encrypted data, Java classes, intents,
and system call for process-related features. Usage-related features such as processor, memory, battery, network,
and process reports were also considered. Additionally, buttons, icons, actions, and events were considered for user
interaction analysis features.

Authors in [52] used dynamic analysis techniques to identify Android vulnerabilities. It contained three modules:
network traces collection, network feature extraction, and network feature detection. Network activities of running apps
were periodically recorded and monitored in the traces collection module. Feature extraction module extracted network
features used in applications such as origin-destination-based features, domain name system-based features, transmission
control protocol-based features, and hypertext transfer protocol-based features and performed the vulnerability detection
process.

4.3 Hybrid Analysis

The hybrid analysis uses both static and dynamic features to analyse a given application. The study in [99] used
static features, including permissions and intents and dynamic features, including IPs, emails, and URLs, to extract
various information related to applications. The APKTool [150] was used to decompile the APK as the initial step. After
extracting the data, it used disassembled dex files to create the feature vector for further analysis. The APK files were
executed in an emulator to extract the behaviours of the dynamic features.

The model proposed in [143] used a hybrid analysis to identify Android security vulnerabilities. It can analyse
metadata and data flow using static analysis and API hooks and executable scripts using dynamic analysis. The static
analysis technique of this work was able to identify eight vulnerable categories: unrestricted component, insecure
JavaScript in WebView, sensitive data processed in plaintext, privacy leak by log, dynamically loading a file, insecure
password, intent exposure, Structured Query Language (SQL) inject. The dynamic analysis technique was able to
identify the unverified inputs vulnerability category. However, it may fail if the app uses specific security measures such
as signature verification. Hence, false-positive results can be expected sometimes. Nevertheless, the overall analysis
can perform within 93 seconds on average with approximately 95% accuracy. Issues in SSL/ TLS are also essential
to identify, and they can be analysed using hybrid analysis. The DCDroid framework in [154] used hybrid analysis
techniques to identify them, and the study found that 360 out of 2213 applications contained security issues related to
SSL certificates/ TLS.

Manuscript submitted to ACM



14 Senanayake, et al.

5 CODE VULNERABILITY DETECTION

Mobile applications can be misused to breach the security mechanisms [53] due to the source code vulnerabilities.
However, developing applications with zero defects or vulnerabilities is impossible but can be achieved to a certain
extent, and vulnerabilities of the source code must be detected to accomplish that. Several methods including machine
learning, deep learning, heuristic-based methods, and formal methods can be applied to detect source code vulnerabilities
with the use of static analysis, dynamic analysis and hybrid analysis.

5.1 Machine Learning Methods

ML and DLmethods such as NB, LR, DT, RF, GB, LSTM, RNN, andMLPwere applied in the studies related to vulnerability
detection. To train such ML or DL methods, features should be identified in the Android application by following a
suitable analysis technique: static, dynamic, or hybrid.

5.1.1 Machine Learning with Static Analysis. ML methods can be applied with static analysis techniques when
detecting code vulnerabilities if the source code is formulated into a generalised form. Abstract Syntax Tree (AST)
is a popular way of generalising the code [110]. The rate of false alarms on vulnerabilities depends on the accuracy
of formulating the AST and its generalisation mechanism, in addition to the quality of features, selected dataset and
trained algorithms. Studies such as [53] proved the possibility of employing ML and DL-based methods on a generalised
architecture of source code such as AST to detect Android code vulnerabilities. Therefore, improvements to feature
generation methods like AST building are identified as a research gap in this area to employ ML techniques to the
problem.

Some studies applied static analysis techniques in various ways with ML methods to detect malicious code and
vulnerabilities. The WaffleDetector [138] is a static analysis approach to detect malicious code and vulnerabilities in
Android applications by using sensitive permissions, program features, and API calls. Extreme Learning Machine (ELM)
was used in this for further analysis. In [45], vulnerability detection and patching framework was proposed named as
Vulvet. This framework used static analysis approaches to detect vulnerabilities in Android applications along with a
multi-tier multi-pronged analysis technique. Further, this framework proposed an automated patch generation process
for vulnerabilities. Augmented control-flow analysis, and Android-specific component validation approaches were also
proposed to avoid false positives. The Vulvet framework used some features in the Soot framework, such as data-flow
analysis, call-graph analysis, intermediate code scanning, taint analysis, parameter analysis, API analysis, and return
value analysis. It used vulnerability resolution, control-flow instrumentation, methods/parameters reconstruction,
secure method call augmentation, manifest modification, and code elimination. This model can detect vulnerabilities
with 95.23% precision and 0.975 F-Measure on 3,700 apps from the benchmark and other Android market places. It has
also been identified that 10.46% of evaluated apps were vulnerable to various exploits. Though this is a comprehensive
model, there are some limitations, such as not analysing and patching vulnerabilities in native code, not supporting
Java reflecting and dynamic code loading, and marking all the files read from external storage as malicious which needs
to be overcome with further studies.

Analysing data flow is also important to detect malicious code and applications. The study in [163] proposed a
mining method for topic-specific data flow signatures to characterise malicious Android apps. It identified that the
topic-specific data flow signatures are much better than the overall data flow signatures to characterise malicious and
vulnerable apps. Descriptions and sensitive data flow patterns were obtained from 3,691 benign and 1,612 malicious
apps for analysis. Once the features were extracted, a topic model was built using adaptive Latent Dirichlet Allocation
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(LDA) with Genetic Algorithms (GA). An optimal number of topics was determined with GA. After that, a topic-specific
data flow signature was generated by computing the information gain ratio of each piece of data flow information.
Then the information gain ratio of the piece of data flow information was generated, and it was used to characterise
the apps. Though this study considered a high number of apps, their representative is not considered, which might
decrease the process accuracy. That limitation could be overcome by analysing more representative apps and ensuring
the sample sizes of each topic.

Source code can be retrieved from the APK file or Portable Executable (PE) file to perform the static analysis. In [70],
an automated method to classify malicious codes and secure codes using PE structure. It used static analysis with RF,
GB, DT, and CNN models and achieved 98.77% detection accuracy. The model built in [20] was able to predict software
code vulnerabilities before the release of the application. The code was represented using an AST to analyse it, and ML
models were applied. It used Python, C, and C++ source codes taken from well-known datasets such as NIST [103],
SAMATE [104], SATE IV Juliet Test Suites [105], and Draper VDISC [122] for the training purpose. One main drawback
of this approach was the inability to locate the specific place of the vulnerable code segment.

The developed mechanism in [31] classifies the C language functions into vulnerable or non-vulnerable using ML
methods. The first step was to prepare the AST. After that, data pre-processing, feature extraction, feature selection, and
classification tasks were performed by applying ML algorithms. This study used National Vulnerability Dataset (NVD)
[103] to collect code blocks written in C language and their known vulnerabilities. Another automated vulnerability
detection systemwas proposed in [122], which uses C and C++ source codes. It used MLwith deep feature representation
learning and compared the findings with Bag of Words, RF, RNN, and CNN. It used existing datasets, and the Drapper
dataset [122] complied using GitHub [124] and Drebin [16] repositories which contain open source functions and
carefully selected labels. Though these studies ([20, 31, 70, 122]) considered Python C or C++ codes, with methodically
proven the possibilities of using these proposed approaches to detect code vulnerabilities in Android source code
written in Java should be further studied.

5.1.2 Machine Learning with Dynamic Analysis. Dynamic analysis techniques also can be applied to generated
features to train ML models to detect vulnerabilities at the execution time. The study [91] discussed a dynamic analysis
approach that used NB, K-Star, RF, DT, and Simple Logistic MLmodels to detect vulnerabilities andmalicious applications.
Features were extracted while executing the APKs in an emulator. Simple Logistic performed well with 0.997 precision
and 0.996 recall in this model. However, some applications crashed when running in an emulator due to their dynamic
behaviour. The used dataset requires fine-tuning to increase accuracy since some shared permissions exist between
malicious and benign applications, which might get incorrectly classified.

A dynamic analysis technique was used in [160], and it discussed a code vulnerability detection mechanism by
applying DL. It compared CNN, LSTM, CNN-LSTM and identified that CNN-LSTM has a detection accuracy of 83.6%.
It has been identified that Deep Neural Networks (DNN) also can predict vulnerable source code. To classify the
vulnerable classes with high precision, recall, and accuracy, the model proposed in [112], can be used. This model was
evaluated using Android apps written in Java. N-gram analysis and statistical feature selection to construct feature
vector were performed in this model. Another study in [59] discussed a ML-based vulnerability detection rules extraction
method with dynamic analysis. The J48 ML algorithm performed with 96% accuracy compared with another thirty-two
supervised ML algorithms considered in this study. A context-aware intrusion detection system was proposed in 6th
Sense [134], and it used NB, Markov chain, and Logistic Model Tree (LMT) to detect vulnerabilities. This study observed
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changes in sensor-related data in the mobile device by integrating dynamic analysis methods. The model still requires
some fine-tuning to the followed dynamic analysis approach to widen vulnerability detection.

The dynamic analysis based method proposed in [93] detect anomalies of system calls with ML by considering
type, sequence, and frequency. It can detect Android security vulnerabilities by identifying benign and malicious apps.
Further, this work has created system call time-series datasets used in vulnerable and regular applications. The Zygote
process of Android, which handles the forking of new processes, was used together with Android Debug Bridge (ADB)
to trace every new activity and its processes. Dynamic Register Broadcast Receiver, Electronic Code Book (ECB) block
cypher, fragment injection, weak permissions, and privilege escalation were the common vulnerabilities in the selected
application dataset. Finally, a consolidated dataset was created after transforming unstructured time-series data. It was
used to perform the machine learning operations while computing precision, recall, and F-Score using kNN, LSTM, and
the Genetic Algorithm LSTM. All three ML algorithms performed well with over 85% F-Score, while Genetic Algorithm
LSTM performed slightly better than the others. Currently, this model can detect only nine vulnerabilities. Therefore,
more vulnerabilities should be considered and verified by keeping the same level of accuracy by enhancing the model
in subsequent studies.

5.1.3 Machine Learning with Hybrid Analysis. The use of hybrid analysis with ML methods is also widespread
since the detection approach can be enhanced with both static and dynamic features. The study conducted in [169]
proposed an ML-based vulnerability detection mechanism, using hybrid analysis techniques and studied Android Intent
mechanisms, along with the composition of Intents. Further, Android-Intent-related security detection was discussed
by applying several ML algorithms such as DT, ID3, C4.5, NB, and AB. One hundred fifty applications were collected to
test the model with Android Intent mechanism security vulnerabilities and another 150 applications without them and
performed the training and testing. The average accuracy was 77% of the proposed model. Limitations such as fewer
samples and low performance were identified as points to be further improved.

The study in [48] proposed a parallel-classifier scheme for Android vulnerability detection. This study explained
the possibilities of using distinctive parallel classifiers to detect zero-day malware and highly elusive vulnerabilities in
Android with an accuracy of 98.27%. It has also identified some issues in static and dynamic analysis approaches such
as inefficiency, code obfuscation, and similarity score issue of signature-based detection. This model extracts static
features such as permissions, API calls, version, services, used libraries, broadcast receivers while extracting dynamic
features such as system calls, network calls of the mobile applications. It proposed the best combination of most efficient
ML algorithms such as SVM, Pruning Rule-Based Classification Tree (PART), MLP, and Ripple Down Rule Learner
(RIDOR). While employing parallel classifiers, this method also considered upgrading the precision and recall when
detecting malware or vulnerabilities. Based on the results of the initial part of the research, it was identified that the
MLP performed better than the other classifiers with a 96.11% detection rate. The next part of the study was conducted
using a composite model where the results from the initial part are executed in parallel to estimate the efficiency of
the cumulative approach. Average probabilities, Product of probabilities, Maximum probabilities, Majority vote, were
considered ensemble techniques. As per the final results, MaxProb was the best parallel classifier. It is better to consider
and create more parallel classifiers to increase the model’s accuracy while employing deep learning techniques.

Models such as [66] studied the possibilities of employing ML algorithms with both static analysis and dynamic
analysis to analyse the source code in a hybrid manner. Identifying malware and benign applications was the main focus
of this by considering their vulnerabilities. After extracting from APK files using Androguard [44] tool, it converted
Manifest data to a JSON file in static analysis approach. Then datasets from Kaggle [68] and MalGenome [167] were
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used to train the ML models such as LR, SVM, and kNN. Finally, another JSON file was prepared and identified the code
vulnerabilities. After that, the APKs were dynamically analysed by executing them to find the vulnerabilities.

The model described in [77] used a hybrid analysis mechanism to identify malware and vulnerabilities using ML
models. This model had an accuracy of 80% in the static analysis approach and 60% accuracy in the dynamic analysis
approach. According to the findings, combining both of these methods will increase detection accuracy. However, it is
better to provide a methodical approach to prove the increase in accuracy when using the hybrid analysis. Another model
in [139] used a hybrid analysis mechanism to detect vulnerabilities and malware. It has proposed a Tree-Augmented
Naive Bayesian Network (TAN) based mechanism for this using features such as permissions, system and API calls.
The output relationships were modelled as a TAN, and it used datasets such as AZ [7], Drebin [16], Android Malware
Dataset (AMD) [74], and GitHub [124]. The model performed well with an accuracy of 97%. The main limitation of the
study is considering only two features. It could be expanded with more features and train the dataset to get a more
reliable outcome. The possibility of combining into one model rather than training separately can also be checked.

Though there are several proposed ML/DL based methods, many of them lack the code vulnerability detection
capability at the app development time. A summary of some useful ML/DL-based models used in Android code
vulnerability detection is compared in Table 3. It summarises the methodology, analysis technique, used ML/DL methods
or framework, used tools and dataset, and the overall model’s accuracy.

5.2 Conventional Methods

Conventional methods, including heuristic-based methods, formal methods,and other non-ML-based methods also can
be applied to detect code vulnerabilities with analysis techniques. These studies are discussed in this section.

5.2.1 Conventional Methods with Static Analysis. Several studies have used static analysis with conventional
methods to detect code vulnerabilities. A formal model to detect security issues in Android permission protocol in Alloy
(a language based on first-order relational logic) was introduced in [18] which automatically analysed and identified
potential flows in the protocol with static analysis techniques. It identified three types of vulnerabilities in the protocol:
URI permission vulnerability, improper delegation vulnerability, and custom permission vulnerability. This model can
also cater to the dynamic permission process and identifies that widely used permission is signature-based. It has been
identified that out of four content types in Android, the receiver has the highest frequency. An experimental study
was also conducted to confirm the relationship between potential flaws and security vulnerability. It also assessed the
scalability of the formal analysis approach. It is possible to apply this model to other mobile operating systems by
conducting fewer configurations. By finetuning, the model can overcome the limitation of detecting a few vulnerabilities.

Another static analysis approach to identify vulnerabilities in an Android application was proposed as a vulnerability
parser model proposed in [28]. This architecture consists of APK decompressor, Manifest.xml parser, vulnerability
vector, and DexParser sub components. APK decompression was carried out as the first step using a python script. The
Manifest file was parsed to decompress and decompile the APK file using the Manifest parser. This Manifest parser could
parse the Manifest to an understandable format with security aspects. DEX parser is used to parse the decompressed
source files. Under the vulnerability vector, file access and exported component vulnerabilities were identified. The
detection results were categorised as critical, warning, notice, and advice. It is better if this model can be increased
further by considering more vulnerable categories since, at the moment, it is limited.

Vulnerabilities in third-party libraries also cause problems to the application. Therefore, it is essential to identify
them too. ATVHunter was proposed in [164] for reliable version detection of third-party libraries. This model provided
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Table 3. ML/DL-based Android Vulnerability Detection Mechanisms

Study Summary of the Methodology Analysis
Technique

Used ML/DL
Methods/
Frameworks

Used Datasets/ Tools/ Methods Accuracy of the
Model

Pang, et al.,
ICDLT Conf.,
2017 [112]

Deep neural network algorithm is employed on features based
on mining source code, which is generated with N-gram. The
algorithm is based on rectified linear units trained with the
stochastic gradient descent method and batch normalization.

Static
Analysis

DNN Dataset is generated by down-
loading APKs from F-Droid
[58].

92.87%

Wu, et al., ICCC
Conf., 2017
[160]

Function call collection of 9872 sequences is collected as fea-
tures to represent the patterns of binary programs during their
execution. Then DL models are applied to predict the vulnera-
bilities of these binary programs based on the collected data.

Dynamic
Analysis

CNN, LSTM,
and CNN-
LSTM

Dataset is generated from 9872
sequence of function calls. VDis-
cover tool [56] is also used.

83.6%

Zhuo et al.,
ICISCE Conf.,
2017 [169]

APKs are decompiled, and static analysis is performed on the
manifest file to obtain the components/ permissions. Then sys-
tem status is obtained, and fuzzy testing is performed with
dynamic analysis. Then ML algorithms are executed to detect
intent-based security issues.

Hybrid
Analysis

AB and DT Dataset is generated by down-
loading 300 APKs from major
app stores.

77%

Grag et al.,
Computers
& Electrical
Engineering,
2019 [48]

APKs are decompiled, and features are selected for static analy-
sis. Then the APKs are executed in an emulator, and log files
are generated from system calls for the dynamic analysis. Then
the vector space is generated, and ML algorithms are executed
as parallel classifiers.

Hybrid
Analysis

MLP, SVM,
PART, and
RIDOR

Dataset is generated by down-
loading APKs from Google Play
[64], Wandoujia [147], AMD
[74], and Androzoo [4].

98.37%

Bulgin et al.,
IEEE Access,
2020 [20]

ML-based analysis is performed to differentiate vulnerable and
non-vulnerable source code by extracting and then converting
the AST of a given source code fragment into a numerical array
representation while preserving structural and semantic infor-
mation contained in the source code.

Hybrid
Analysis

MLP and a cus-
tomised model

The public Draper VDISC
Dataset [122] is used. Pro-
posed model is compared with
code2vec [5] method.

70.1%

Gupta et al.,
System Assur-
ance Eng. and
Manag., 2021
[59]

The most efficient human-readable vulnerability detection rules
are generated after selecting the best ML algorithm to detect
Lawofdemeter, BeanMemberShouldSerialize, and LocalVariable-
couldBeFinal vulnerabilities. The tenFold cross-validation was
performed, and analyzed the result with performance metrics.

Static
Analysis

J48 and JRip Dataset is generated from An-
droid Universal Image Loader
project [144] and JHotDraw
project [46]. PMD tool is used
to analyse the source code.

96%

Kim et al.,
MDPI Symme-
try, 2021 [70]

PE data extraction module and the image generation module are
used to generate input data for each module. Then each model
individually judges whether it is malicious with ML algorithms
by receiving images generated from the image generation mod-
ule as input data.

Static
Analysis

CNN Dateset is generated from Win-
dows portable program files and
usingMicrosoft Malware Classi-
fication Challenge dataset [96].

98.77%

detailed information on vulnerabilities and libraries by pinpointing the vulnerability in library versions and extracting
the control flow graphs and opcodes. A dataset contained 189,545 unique third-party libraries with 3,006,676 versions,
and it contained 1180 common-vulnerable enumerations. Further, it created additional 224 security bugs to analyse this
model. The steps included in the detection process were pre-processing, module decoupling, feature generation, library
identification, and vulnerable libraries version identification. The ATVHunter model detects the vulnerabilities with
98.58% precision, 88.79% recall at the library level, 90.55% precision, and 87.16% recall at version level. Focusing only on
Java libraries, using only static analysis, detecting only the known vulnerabilities, and using only free apps for the
study are identified as limitations of this study that can be further improved.

Android web view objects can also lead to vulnerabilities. A way to detect them by following a static analysis
approach named WebVSec framework was proposed in [39]. This study mainly considered four types of vulnerabilities:
Interface to Interface vulnerabilities, Interface to WebViewClient vulnerabilities, WebViewClient to WebViewClient
vulnerabilities, and Reverse vulnerabilities. This framework was implemented on top of the Androguard tool. AndroZoo
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was used as the dataset to perform analysis. The WebVSec framework contains five main steps: decompilation, interface
and WebWiewClient class identification, methods identification, method abstraction, and path analysis to identify the
above four vulnerabilities. The experiments analysed 2000 Android apps and detected 48 applications with the above
four types of vulnerabilities. On average, this can analyse an application in 49 seconds. The framework still requires
improvements, such as analysing the WebView vulnerabilities generated through Java codes since it considers only
Javascript.

The DroidRA model proposed in [79] designed and implemented an approach that aims at boosting existing static
analysis for Android by taming reflection in apps. It can resolve the targets of reflective calls through a constraint
solving mechanism by instrumenting Android apps to augment reflective calls with their explicit standard Java calls.
The analysis was supported by three modules: Jimple pre-processing module, reflection analysis module, and booster
module. The model considered a random set of 100 real-world apps that contain reflective calls and at least one sensitive
data leak to validate the static analysis results. The main advantage of this model is the possibility of uncovering
dangerous code such as sensitive data leaks and sensitive API calls, which is not visible in other static analysis based
analysis mechanisms. However, the single entry-point method may not cover all the reflective calls as identified as a
limitation that should be further explored. Applying these boosting mechanisms to other static analysis techniques
used in Android vulnerability detection approaches would be interesting for further studies.

5.2.2 Conventional Methods with Dynamic Analysis. Few studies considered dynamic analysis also with the
conventional methods. The study in [116], Android app vulnerability detection was discussed, and it was inspired by a
case study of web functions’ vulnerabilities. Android app categories including browsers, shopping, and finance were
investigated for security by downloading and examining 6,177 apps. It analysed four vulnerabilities: Alibaba Cloud
OSS credential disclosure vulnerability, improper certificate validation, Web-View remote code execution vulnerability,
Web-View bypass certificate validation vulnerability (from China National Vulnerability Database [27], CVE list[33] and
CWE list[34]). A heuristic vulnerability search algorithm was used in proposed method named VulArcher to verify the
accuracy of the analysis. All sensitive APIs and methods that may cause vulnerabilities in the app, a collection of rules
for vulnerability fixes and a set of rules that the vulnerability triggers were the inputs for this algorithm, and it provides
detailed code snippets of the vulnerability and the path where vulnerabilities are located as the output. The possibility
of detecting vulnerabilities on both packed and unpacked apps was an essential feature of the proposed model, which
contains decompilation, packer identification, unpacking (if packed), building taint path, and detection steps. This
model can perform with high average accuracy with a detection rate of 91% with high efficiency, low computing cost,
and high scalability. Some limitations identified in this were the usage of an old dataset and integrating third-party
tools, which can be revised to get higher accuracy when detecting newer vulnerabilities.

Another dynamic analysis based Android vulnerability detection tool was proposed in [165] named VScanner, which
can detect all known system-level vulnerabilities. The framework of this tool was based on a scalable Lua script engine,
a lightweight scripting language. Exploiting was used for dynamic detection and feature matching for static detection
in the VScanner. It can detect vulnerabilities with a high efficiency and a low false alarm rate (nearly 100% detection
accuracy) using 18 implemented plugins. Due to the high scalability of the proposed system, it was easy to add new
vulnerability triggers. Once a vulnerability is triggered via an API call, code execution, or database exploit, a feature
matching database will be used with scan components (information collection and feedback) in the Lua engine and
provide reports and logs. This research has proposed a vulnerability taxonomy by Proof of Concept and Attack Surface
(POCAS) since existing taxonomies are still immature, specific to Android. In POCAS, vulnerabilities were divided into
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native layer vulnerabilities (i.e., memory corruption, permission management, kernel escalation, input validation) and
Java layer vulnerabilities (i.e., component exposure, file management, information disclosure, logic error). The model
was applied for two case studies which were FakeSMS and CVE-2014-1484 in National Vulnerability Database [103].
VScanner was tested in fifteen Google simulators, five Android smartphones, eight Genymotion emulators, and seven
third-party customised Android systems and provided high accuracy and efficient results. Increasing the number of
plugins used for vulnerability detection and optimising the structures to enhance efficiency can improve the quality of
the proposed framework.

5.2.3 Conventional Methods with Hybrid Analysis. Several conventional methods used hybrid analysis techniques
to detect vulnerabilities. The empirical study conducted in [133] detected eight common vulnerabilities in Android
with hybrid analysis from randomly selected twenty-nine apps in the EATL app store [37] and six apps from the
Google Play store. Those eight common vulnerabilities were related to storage access, web views, SQLite database
encryption, intents, advertisement module, outdated or sensitive APIs, short messages, phone calls, and Android debug
mode. The study chose three quality tools: AndroBugs [81], SandDroid [106], and Qark [84] to test and uncover those
vulnerabilities. This study further discussed the countermeasures for those vulnerabilities, such as using web views
more securely, keeping essential files and backups in the internal storage instead of external storage, and turning the
debug mode off when releasing the apps. This study could consider further analysis on apps and more vulnerabilities
by increasing the sample size.

The application vulnerability mining method proposed in [29] uses a hybrid approach, first performing static analysis
and then following it up with dynamic analysis. This model improved the mining accuracy by using fuzzy dynamic
testing technology with static analysis while performing reverse analysis on the application. In the static analysis, APK
files were de-compiled to get the source files using Dex2Jar and JD-GUI tools and libraries [111]. Then the feature
vector of API functions, privileges, components, and library files was created by the feature extraction process. The
scan engine consisted of data flow analysis, regular expressions matching, and file detection using a vulnerability rule
base to get the analysis results. Fuzzy testing was used to perform dynamic analysis in a natural machine environment
with taint analysis. It was conducted after the static analysis by executing the application with test cases, semi-effective
data, execution data, taint tracking, and monitoring the exceptions. This model was able to detect vulnerabilities with
an over 95% detection rate which can be optimised further by expanding the number of detectable vulnerabilities by
enhancing the analysis techniques.

Another hybrid analysis based approach was proposed in AndroSheild [10], that focused on building a hybrid analysis
approach to detect vulnerabilities in Android applications. This model was evaluated against various applications
for various security flaws. It can also detect information leaks, insecure network requests, and commonly detectable
flaws that can harm users, such as intent crashes and exported Android components. The proposed model contains
three-layer architecture (application, presentation, data) with a methodology of APK reverse engineering, manifest
file decoding, meta-data extracting, static analysis performing, dynamic analysis performing, and report generating. It
also can generate a detailed report with the overall application risk level and the identified vulnerabilities in it. Some
limitations identified in this publically available framework are not detecting deprecated and vulnerable libraries, not
analysing native libraries, and not applying the model to apps written in other programming languages such as Kotlin.

A summary of studies related to the conventional models used in vulnerability detection methods is compared in
Table 4. It summarises the considered vulnerabilities, findings/ capabilities, limitations, used datasets, used tools, and
used methods of these works.
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Table 4. Conventional Methods of Android Vulnerability Detection

Study Considered Vulnerabilities Findings/ Capabilities Limitations Used Datasets/ Tools/
Methods

DroidRA,
ISSTA Conf.,
2016 [79]

Vulnerabilities from sensitive data leaks
and API calls

A large portion of Android apps relies
on reflective calls and they are usually
used with some common patterns.

May not possible to uncover all re-
flective calls due to the used single
entry-point method.

Google Play [64], An-
droZoo [4]

Shezan, et al.,
NSysS Conf.,
2017 [133]

Vulnerabilities in storage access, web
views, SQLite database encryption, in-
tents, advertisementmodule analysis, out-
dated or sensitive APIs, short messages
and phone calls, Android debug mode.

It discusses the countermeasures for the
detected vulnerabilities.

Sample size is limited. AndroBugs [81], Sand-
Droid [106], Qark [84]

VScanner,
NSS Conf.,
2017 [165]

Vulnerabilities in native layer and Java
layer

It can detect all known system-level vul-
nerabilities. It also proposes a vulnera-
bility taxonomy by Proof of Concept
and Attack Surface.

Using a limited number of plugins
for vulnerability detection.

Lua Scripts Engine

Bagheri, et
al., Formal
Aspects of
Computing,
2018 [18]

URI permissions,
Improper delegations,
Custom permissions

It identifies signature-based permission
as the widely used permission, and the
receiver has the highest frequency out
of four content types of Android.

Only a few vulnerabilities can be
detected.

Alloy [65]

AndroShield,
MDPI Infor-
mation, 2019
[10]

Information leaks,
Insecure network requests,
Intent crashes

It generates a detailed report with the
overall application risk level and the
identified vulnerabilities.

Unable to detect vulnerable li-
braries, and unable to analyse na-
tive libraries.

ApkAnalyzer [13],
FlowDroid [17]

Qin, et al.,
IEEE Access,
2020 [116]

Alibaba Cloud OSS credential disclosure,
Improper certificate validation,
Web-View remote code execution,
Web-View bypass certificate validation

It can detect vulnerabilities in packed
and unpacked apps with a low comput-
ing cost. The average accuracy, detec-
tion rate, efficiency, and scalability are
also high.

Using an old APK set and integrat-
ing third-party tools.

APK dataset down-
loaded from Wandoujia
[147], Qihoo 360app
[126] and Huawei [62]
App Stores

DCDroid,
Journal of
Systems and
Software,
2020 [154]

SSL/TLS Certificate vulnerabilities It identifies the potential security risks
of apps in implementing SSL/TLS with
static analysis and identifies the vulner-
ability status of apps to man in the mid-
dle attacks and phishing attacks.

Unable to verify the apps with com-
plex method implementations, lead-
ing to false-negative results.

APK dataset down-
loaded from Qihoo
360app [126] app mar-
ket and Google Play
[64]

WebVSec,
Computers
& Security,
2021 [39]

Interface–Interface,
Interface–WebViewClient,
WebViewClient–WebViewClient,
Reverse vulnerability

It can analyse an application within 49
seconds.

Unable to analyse the WebView vul-
nerabilities generated other than
through Javascript.

BabelView [120]

5.3 Prevention Techniques

Preventing code vulnerabilities at the early stages of app development is more advantageous than detecting them once
the app has been developed. Therefore, prevention techniques can be integrated as frameworks, tools and plugins to
the development environments as additional support to the app developers with automated vulnerability detection
methods. The analysis of experimental results in [141] identified the need for automated code vulnerability detection
support when developing secure applications to perform well. Android developers had to play the role of participants
and they had to propose an appropriate fix to given vulnerable code samples, such as SQL injections, encryption issues,
and hard-coded credentials. Moreover, the stitch in time mechanism proposed in [100] described vulnerability detection
methods in Android apps at the development time. Developers can enter source code and continue the development
process while the model checks for known security-oriented issues. If there are such issues, developers are informed
accordingly. Therefore, developers get the benefit of developing less vulnerable source code. However, this method uses
only known vulnerabilities. Therefore, the ML/DL-based method could be applied to adapt to the changing nature of
source code-related issues. The model could be modified further to learn from user mistakes and bugs.
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It is always better to inform the app developer about the severity level of identified vulnerabilities in addition to
raising an alert. Android Lint is a valuable method to discover vulnerabilities using static analysis in given Android
source code [54]. It can detect 339 security, performance, correctness, usability, internationalisation, and accessibility
issues. Android Lint uses either an AST or an Universal AST generated through source code. There are other Linters
also available such as Infer, PMD, FindBugs, CheckStyle, Detekt, and Ktlint, as discussed in [60]. The OASSIS study
introduced a method to prioritise warnings generated from Android Lint with static analysis. This method used app
user reviews and sentiment analysis to identify app issues. Because of the prioritised warnings, developers can take
action accordingly to fix the vulnerability issues. A way to indicate this to the developer is using a similar approach like
in [156].

The model in [88] proposed a mechanism to integrate static analysis with development environments named as
MagpieBridge. Though it is possible to integrate this plugin with code editors such as Eclipse, IntelliJ, PyCharm, Jupyter,
and Submile text, integrating with Android studio was not discussed. Meanwhile, the DevKnox plugin [75] for Android
Studio can detect and resolve security issues while writing codes to develop Android applications. FixDroid [100] can be
used to get security-oriented suggestions and fixes to overcome vulnerabilities when developing Android applications.
It also can be integrated with Android studio, and it can be improved further by integrating ML to provide suggestions.

Another framework proposed in [117] guided the app developers to detect, prioritise and mitigate vulnerabilities
using secure development guidelines, and named SOURCERER, and it used static analysis techniques. When the
framework is applied, developers can get to know a concise list of vulnerabilities. It has a three-phase process: asset
identification, vulnerability to asset mapping, and mitigation. The authors tested this framework with 36 Android
financial apps, and there were three developers involved in this experiment. Based on the findings, when using this
framework, developers spent an average of 15, 30, and 20 minutes for asset identification, vulnerability detection and
prioritisation, and finding mitigations, respectively. This framework did not complicate the security testing process of
Android apps. Issues such as the limited number of sample apps, limited developer involvement in the experiments,
and developers’ prior knowledge could affect the performance of this framework. Some of these limitations could be
overcome by proposing an automated process.

The VuRLE tool [89] can be used to detect and repair vulnerabilities in source code automatically. It assists developers
in dealing with various vulnerabilities. Initially, the model was trained and clustered similar edit blocks into groups
using a training set of repair examples. Repair templates were generated for each group, and repaired templates to
identify vulnerable groups by applying transformative edits. Traversal of a generated AST was used in this together
with 10-fold cross-validation. This model repaired 101 out of 183 detected vulnerabilities from 48 real-world apps
(Android, web, word-processing, and multimedia apps) written in Java. However, some of the vulnerabilities were
unable to repair due to unsuccessful placeholder resolution, lack of repair examples, and partial repairs. The low repair
rate of this, which was 65.69%, can be increased by having a well-trained model with more vulnerable code samples.

5.4 Discussion on Vulnerability Detection Methods

Based on the reviewed studies, it is identified that 51% of studies used static analysis as the application analysis method,
and 35% of studies used hybrid analysis. The rest of 14% used the dynamic analysis method. This is illustrated in Fig 3.
The increased usage of static analysis may be due to its advantages for code-level analysis approaches since they focus
more on code features. Apart from that, the cost involved in static analysis is lower when compared with the other two
methods. Dynamic analysis requires additional resources such as emulators or real devices to run the source code, and
it will not be possible to uncover many vulnerabilities as in static analysis. Moreover, the need for APKs or compilable
Manuscript submitted to ACM



Android Source Code Vulnerability Detection: A Systematic Literature Review 23

Fig. 3. Application/ source code analysis techniques used in the reviewed studies

Fig. 4. Vulnerability detection methods

packages could be another reason for having fewer studies conducted for vulnerability detection with dynamic analysis.
In terms of percentage, hybrid analysis is in the middle since it has the characteristics of the other two analysis types.

Based on the reviewed studies, applying machine learning-based methods were higher than conventional methods.
This is illustrated in Fig 4. Before 2016, conventional methods were popular among the research community compared to
ML methods. However, with the boost in ML techniques, researchers tried to apply ML methods to solve problems [53].
Therefore, due to this popularity, the ability to provide high accuracy results, ease of handling complex problems, and
scalability are suspected as the reasons for the high usage of these ML/ DL methods in studies on Android vulnerabilities
detection in the considered period of the review.

Many code vulnerability detection studies used the code analysis method as the feature extraction method. The
Manifest analysis and the system call analysis methods are the other widely used methods. Fig 5 illustrates those feature
extraction methods used in the reviewed studies. It is possible to detect many vulnerabilities by analysing source codes
rather than analysing permissions or other features. That may be the reason for the highest usage of code analysis.
Using manifest analysis can also identify vulnerabilities to a certain extent, such as the type of permissions used in
applications. The vulnerabilities can be detected based on the required permissions of the application, such as the
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Fig. 5. Feature extraction methods used in the reviewed studies

requirement of the dangerous level permissions. That may be the reason for having a somewhat high number of studies
conducted. A considerable number of studies uses system call analysis since it is possible to detect vulnerabilities to a
certain level by analysing the system calls. Code instrumentation, system resources analysis and network analysis were
used in a limited number of studies since it is not easy to detect vulnerabilities by analysing them.

API calls were the most widely extracted feature for vulnerability analysis and detection in Android source code. Fig
6 illustrates along with the other extracted features in the reviewed studies. Many static and hybrid analysis methods
extracted API calls as the feature to perform the analysis. A thorough understanding of vulnerabilities can be received
by analysing API calls, which could explain the high usage of this as the extracted feature. Permission is the second
prominent feature that was extracted in the reviewed studies. When conducting manifest analysis, permission is the
main feature to be extracted. Since the manifest analysis was also widely used, it could be the reason for this high
extraction rate. System calls are also a highly extracted feature in those studies since they can detect many vulnerabilities
by analysing them. Native code or opcodes, intents, network traffic, activities and services were also extracted as
features, but their usage is not highly visible.

It is identified that very few studies considered prevention mechanisms which supported by the detection techniques
as tools, plugins in Android source code vulnerabilities. Many of the studies considered only the detection as illustrated
in Fig 7. It is valuable for the Android application developers if proper mechanisms are available that use various
advanced techniques to prevent vulnerabilities. Therefore, as a finding of this review, the need to build such a prevention
mechanism is recognised.
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Fig. 6. Extracted features in the reviewed studies

Fig. 7. Availability of detection and prevention methods

6 SUPPORTIVE TOOLS AND REPOSITORIES

Application and source code analysis tools, and frameworks are beneficial to perform several analysis processes. Once the
analysis is completed, vulnerability detection tools can be applied to identify the vulnerable source code. Furthermore,
it is essential to identify existing datasets and repositories to build ML models.
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6.1 Tools

The surveys and interviews conducted related to intervention for long-term software security in [157], have identified
the importance of having an automated code analysis tool to recognise vulnerabilities. The study [118] considered six
main characteristics to compare these security analysis tools. They are 1) tools vs framework, 2) free vs commercial,
3) maintained vs unmaintained, 4) vulnerability detection vs malicious behaviour detection, 5) static analysis vs
dynamic analysis, and 6) local vs remote. This study compared sixty-four solutions and considered supported Android
versions, multiple operational modes, supported API levels, only applicable categories of vulnerabilities, the existence of
vulnerabilities, and provided inputs as required by the tools. Another study in [118] reviewed 64 tools and empirically
evaluated 14 vulnerability detection tools for 42 known vulnerabilities identified in [97] and found out that only 30
vulnerabilities from those 42 can be detected. These 42 known vulnerabilities were categorised into seven which are, 1)
Crypt - 4 vulnerabilities, 2) Inter-Component Communication (ICC) - 16 vulnerabilities, 3) networking - 2 vulnerabilities,
4) permission - 1 vulnerability, 5) storage - 6 vulnerabilities, 6) system - 4 vulnerabilities, and 7) web - 9 vulnerabilities.
This study used AndroZoo [4] as the source of real-world Android apps which contains around 5.8 million APKs.

The empirical analysis conducted in [3] identified the static software metrics’ correlation and the most informative
metrics which can be used to find code vulnerability related to Android source codes. The AndRev tool proposed in
[113] extracted the permissions using static analysis by reverse engineering APKs with a batch-scripted tool. Extracted
features are stored in a feature vector, and it was analysed to identify patterns of the permission by considering the app
category. This tool tried to remove unwanted permissions for the app by reverse engineering and rebuilding. Security
analysis was also performed to identify the vulnerabilities by integrating a tool named Quixxi. According to this study,
there are more medium-risk vulnerabilities than low and high-risk vulnerabilities. The tool’s accuracy can be further
validated using a large dataset, as this study has used a limited dataset of 50 apps to perform the initial analysis.

Some of the tools and frameworks which can be executed in local machines to analyse applications, to analyse source
code and to detect vulnerabilities in Android are compared in Table 5. It compares the tool’s capabilities, limitations,
analysis method, and usage.

6.2 Repositories and Datasets

Datasets and Repositories are useful to perform various ML or conventional vulnerability detection methods. There are
several datasets such as Drebin [16], Google Play [64], AndroZoo [4], AppChina [146], Tencent [148], YingYongBao
[140], Contagio [149], Genome/MalGenome [167], VirusShare [152], IntelSecurity/MacAfee [137], MassVet [30], AMD
[74], APKPure [145], Anrdoid Permission Dataset [35], Andrototal [90], Wandoujia [147], Kaggle [68], CICMaldroid
[102], AZ [7], and Github [124] whic can be used to perform these experiments.

In [97], an open-source repository of benchmarks called as Ghera was introduced. It captured 25 known vulnerabilities
in Android apps. Further, this has also presented some common characteristics of vulnerability benchmarks and
repositories. The main reason for this research is to find Android-specific vulnerability benchmarks to evaluate available
tools that can help the app developers. It identified that there were neither test suites nor benchmarks to evaluate
the vulnerability detection techniques reasonably. Many of them used the regular data and apps available in Google
Play. During the retrospection stage, eleven characteristics were identified as vulnerability benchmark characteristics.
They were 1) tool and technique agnostic, 2) authentic, 3) feature specific, 4) contextual, 5) ready to use, 6) easy to
use, 7) version-specific, 8) well documented, 9) contain both vulnerability and a corresponding exploit, 10) open to the
community, and 11) comprehensive. This repository contains information on the Android Framework’s inter-component
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Table 5. Tools and Frameworks for Android Application Analysis and Vulnerability Detection

Framework
Name/ Tool

Year Capabilities Limitations Analysis Technique Usage

FlowDroid [17] 2014 Ability to statically computes data flows. Assumes that the entire contents remain tainted,
even if an untainted value overwrites the single
array element.

Static Analysis Academic

COVERT [19] 2015 Ability to perform compositional analysis of inter-
app vulnerabilities.

Unable to identify native code-related vulnerabili-
ties and Permission leakages.

Static Analysis Academic

DIALDroid [22] 2017 Ability to identify privilege escalations and inter-
app collusion [69].

Unable to resolve reflective calls if their arguments
do not contain string constants and may fail to
compute some ICC links due to ignoring over-
approximated regular expressions.

Static Analysis Academic

HornDroid [26] 2016 Ability to perform static analysis of information
flows, and ability to soundly abstract the semantic
of Android apps to compose security properties.

Over-approximates the life-cycle of fragments by
executing all the fragments along with the con-
taining activity in a flow-insensitive way, which
might lead to precision problems in real apps.

Static Analysis Academic

MalloDroid [41] 2012 Ability to identify broken SSL certification valida-
tion using Androgurd framework [44].

The analysis might fail if the app is obfuscated
and cannot test the entire workflow.

Static Analysis Academic

JAADAS [43] 2016 Ability to analyse API misuse, inter-procedure
style taint flows, local-denial-of-services, and in-
tent crashes.

May crash when analysing obfuscated apps and
JSON output file is not visualising the scale of
potential problems.

Static Analysis Industrial

DevKnox [75] 2016 Ability to detect and resolve security issues while
writing codes.

Unable to detect novel vulnerabilities and does
not support for latest Android environments.

Static Analysis Industrial

AndroBugs [81] 2015 Ability to find potential Android security vulnera-
bilities, and check the code for security best prac-
tices and dangerous shell commands.

Unable to provide a complete and detailed descrip-
tion to help solve any potential security issues.

Static Analysis Industrial

MARVIN [83] 2015 Ability to assess the maliciousness of previously
unknown apps with ML techniques and creates an
accurate snapshot of malware behaviour that it can
leverage to assess the risk associated with apps.

Unable to intercept apps when downloading from
marketplaces, the apps need to be submitted to
the MARVIN manually.

Static Analysis Industrial

QARK [84] 2015 Ability to find security-related vulnerabilities in
Android applications either in APKs or source code.

Unable to analyse heavily obfuscated apps and re-
quire high CPU consumption when decompiling.

Static Analysis Industrial

FixDroid [100] 2017 Ability to provide security-oriented suggestions
and fixes to overcome vulnerabilities.

Relying on a relatively small sample set and not
focusing on improving data flow analysis except
leveraging the existing features of IntelliJ IDEA.

Static Analysis Academic

MobSF [108] 2015 Ability to perform static analysis, hybrid analysis,
penetration testing, and provides a REST API for
integration with development environments.

Unable to perform API testing and occur some
issues in the emulator when executing apps in
hybrid analysis.

Hybrid Analysis Industrial

APKTool [150] 2010 Ability to decompile the APK with the support of a
static analyser [95] and ability to reverse engineer
Android apps by decoding to nearly original form
and rebuild the app after performing modifications.

Fails to decompile and analyse heavily obfuscated
APKs.

Static Analysis Industrial

Amandroid [155] 2014 Ability to analyse the inter-component data flow
for security vetting.

Unable to detect security issues where exceptions
can occur and unable to handle reflections and
concurrency.

Static Analysis Academic

communication, storage, system, and web vulnerabilities. However, in Ghera, vulnerabilities related to networking,
sensors in the Android Framework were not covered. Nevertheless, none of them provided a benchmark dataset
specifically for Android source code vulnerability detection. Therefore, it is better to cover more areas while expanding
the repositories with more real-world apps.

The work in [49], identified that the CVE details [33] as one of the sources for data analysis which provides details on
vulnerability statistics on products, versions, and vendors. CVE details were prepared using the National Vulnerability
Database (NVD) [103]. Mean impact scores of vulnerabilities and the number of instances were considered when
assessing vulnerabilities. A dataset to fix open-source software code vulnerabilities by identifying security-related
commits in a given source code was introduced in [114]. This dataset was prepared by manually curating. The study in
[98] created a repository named AndroVul, which contains Android security vulnerabilities. It includes high-risk shell
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command vulnerabilities, security code smells, and dangerous permissions. An Android code vulnerability dataset was
proposed in [128], named LVDAndro [129], which contains vulnerable and non-vulnerable source code with their CWE
[34] details. The proof-of-concept of this work identified the applicability of the dataset to train ML models to detect
Android code vulnerabilities.

For the source code analysis purpose, fifteen tools and five tools that can detect vulnerabilities in Android were
identified. The review also identified that 19 datasets and repositories are available for source code analysis and
vulnerability detection. However, the majority of these datasets and repositories are not purely based on Android source
code vulnerabilities. Therefore, the need to have a proper dataset is one key finding in this SLR. Furthermore, using
such datasets, it is also important to consider developing new source code vulnerability detection tools for Android
since very few comprehensive tools are available to detect vulnerabilities.

7 THREATS TO VALIDITY OF THE REVIEW

Even though this systematic review was conducted by following a well-established methodology [109], results are not
guaranteed to cover all relevant studies due to some limitations during the review process. Thus, this section discusses
possible threats to the validity and measures taken to minimise them under construct, internal, external, and conclusion
validity.

7.1 Construct Validity

Threats to construct validity can arise because of search term-based queries performed on repositories. There can still
be good papers that were not reviewed in this study since they were not available in the research repositories, including
ACM Digital Library, IEEEXplore Digital Library, Science Direct, Web of Science, and Springer Link. Google Scholar
was used as another source to capture such missing studies to minimise this. However, some relevant publications may
still be missing in the collected studies. The additional aspect of the construct validity is the possibility of having a few
errors in the process, filtering out the studies by inclusion or exclusion criteria. The list of publications was analysed by
cross-checking the primary studies to avoid these errors.

7.2 Internal Validity

Internal validity is related to data extraction and analysis, primarily related to the soundness of the proposed review
process. There was a heavy workload in data extraction and data analysis. Hence, data was also collected by cross-
checking and obtained after all the authors agreed on the comparison results. However, it is still possible to make a few
mistakes in extracting and analysing data. If possible, original authors could be involved in verifying to reduce mistakes.

7.3 External Validity

External validity is about the summary of the results obtained from the primary studies. The analysis based on this
review was performed on the research publications collected from 2016 to June 2022 to cover Android code vulnerability
detection methods to date. ML techniques for vulnerability detection have increased significantly during this period due
to recent advances in software security and artificial intelligence. The trends may also vary for different time-period.
Therefore, this work may not capture some comprehensive studies conducted before the period.

Manuscript submitted to ACM



Android Source Code Vulnerability Detection: A Systematic Literature Review 29

7.4 Conclusion Validity

The bias and the other factors affecting the review study were tried to minimise when searching for the papers. Research
papers written only in English were considered. Because of this limitation, this work may have overlooked some crucial
works written in other languages such as Chinese, German, and Spanish. Moreover, the threat may also occur due to
consideration of studies with individual reviewers’ bias. It may lead to flaws and biases in this study. Furthermore,
positive results are more likely to be reported than negative results [71]. However, many papers that reported negative
effects were also captured in this study since a peer-verified systematic review process was followed. Cross-checking
mechanism was also applied to maintain the focus of the SLR, where a thorough examination was done when reviewing
the papers. All the authors were constantly involved in the study selection and reviewing process to ensure this.

8 CONCLUSION AND FUTUREWORKS

Mobile app developers continuously develop Android applications to fulfil the need of the rapid demand. When
developing these applications, the security concepts also should be adequately addressed. Several vulnerability detection
methods could be applied to do that. Based on the available literature, this systematic review of the state-of-the-art
Android source code vulnerability detection techniques covered the latest research from 2016 to June 2022. It discussed
three steps to increase the security of an Android application by considering analysing, detecting, and preventing
vulnerabilities. Applications and code analysis techniques, static analysis, dynamic analysis, and hybrid analysis and
the tools used were reviewed in this, along with ML/DL and conventional methods applied to detect vulnerabilities.
Possible prevention mechanisms were also discussed in this. The work identified the potential gaps in previous research
and possible future research directions to enhance the security of Android OS.

After conducting the review, static analysis was identified as the widely used technique to detect Android vulnera-
bilities, and the code analysis technique is more useful when performing it. Another critical finding is that API calls,
permissions and system calls were the widely extracted features in feature extraction. It was also identified ML/DL-based
techniques are widely used to detect vulnerabilities. Though a couple of malware related datasets were identified, a
properly labelled dataset on Android source code vulnerability is also required. Once such a dataset is introduced, it can
be used for further experiments to train ML models to detect and predict code vulnerabilities with high accuracy. A
comprehensive code analysis mechanism that can identify security issues at the development time can be introduced.
Furthermore, just having detection mechanisms will not be sufficient for the app development community. Further
research should also be conducted to identify the possible ways of integrating the detection methods into Android app
development environments as tools or plugins. By utilizing them, developers can validate the security throughout the
application without waiting for the complete application. Moreover, the lack of an automated mechanism for identifying
the reasons for the vulnerabilities was also identified. Further research can be conducted to integrate the explainable AI
techniques with Android source code vulnerability detection mechanisms to overcome this.

Both Android vulnerabilities and their detection techniques are evolving. Therefore, similar future reviews are also
necessary to cover the studies on these emerging threats and their detection methods. As per the understating through
the review, novel ML methods, DL methods, and reinforcement learning methods are also emerging to detect and
prevent vulnerabilities. Therefore further reviews also can be carried out.
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