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ABSTRACT 

The current transport mechanism usually assumed to be valid for 

metal silicon Schottky barriers is thermionic-emission. However, 

Crowell and Beguwala, using a thermionic-diffusion model, suggested 

that significant deviations from the behaviour predicted by the 

thermionic-emission theory shonld be observed on low barriers, 

especially those formed on silicon of low impurity concentration. 

The barrier height of ti tanium on n-type silicon is 0.1)0 volt which 

is lower than most other metals, and should make the effects predicted 

by the thermionic-diffusion theory more important for titanium contactso 

Titanium contacts were prepared on n-type silicon with impurity 

. 20 -] 21 -] 
concentratlon from 2 x 10 m to 3 x 10 m • Most of the diodes 

showed nearly ideal behaviour at low app1ied voltages ann the current-

vo1 ta{~e che.racteristics 00uld be represented by the relationship 

I =Ise<f(n~~){\ - e'rn~)} 
with n values as low as 1.01. It was concluded that tnnne11ing 

interfacia.l layer and surface effects WAre insignificant for such 

diodes. However, at higher current densities, many of the same diodes 

exhibited deviations from ideaJ behaviour which were equivalent to 

n values as high as 1. 25, or which could be interpreted in terms of a 

rapidly decreasing saturation current ISO 

Simjlar effects were observed on magnesium and aluminium contacts 

on silicon, but at bigher applied voltagos, corresponding' to the 

higher barrier heights of 0.55 and 0.72 volts. 

The main features of the experimental results agreed well with 

the preclictions of the thermionj.c-diffusion theory for band lJ8nding 

between j = 9 ancl j = 2. At the upuer value of,t, the pr8cli~tions 

of the thermionic-emission and thermionic-diffusion theories were 

iii 



almost identical and the diode behaviour was closest to ideal with 

n = 1001. The lower value of.fl represents the limi t of agreement 

between the measurements and tho thermionic-diffusion theory. Two 

possi ble mechanisms are outline(l which could explain the discrepancy 

below,f3 = 2. These are phonon scattering of electrons between the 

barrier maximum and the metal,and the effect of the reserve layer on 

the shape of the potential barrier at very low bane!. bending. 

The results demonstrate the concli tions under which the thermionic-

diffusion theory rather than the thermionic-emission theory should be 

applied, and suggest a practical lower limit on ~ for the range of 

applicability of the tbermionic-diffusion theory. 
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CHAPTER 1 

INTRODUCTION 

1.1 lEPRODUCTION 

The work described in this thesis is concerned with the preparation 

of titanium contacts on n-type silicon, the measurement of their 

properttes, and the explanation of their properties in terms of the 

existin~~ theory. This chapter surveys the historical development of 

,the the()ry of metal-semiconductor barriers and their fabrication, and 

relates this work to previous results in the same field. The importance 

of titanium contaots in present day microelectronio devices is 

outlinecl. 

1.2 HISTORICAL SURVEY ......, 

Since 1874, when Braun reported the rectifying behaviour of 

metal point contacts to various semiconductor crystalsl , the papers 

published conoerning metal-semiconductor device research have been so 

numerous that an exhaustive list will not be attempted. However, in 

this survey the reader will be referred to several thorough reviews 

which have been made by previous authors. 

Henisch, in his book Rectifying Semiconductor Contacts2, reviews 

the experimental and theoretical developments up to 1956. Following 

the formulation of semiconductor tranr 1 i'" i: I; he ory, based on the band 

theory of solids, by Wilson3, theories of the transport of electrons 

over the barrier were developed. Wagner4 and Schottky and Spenke5 

proposed that the current was limited by the processes of diffusion 

and drift through the barrier region where' a surface potential 

barrier was present due to stable space charge in the semiconductor6• 

Bethe7 suggested the alternative that the current was limited by the 
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rate of emission of eleetrons over the barrier from the semiconductor 

into the metal. 8 Bardeen's work suggested that the presence of 

surface states on a semiconductor would reduce the dependence of the 

barrier properties on the difference between the thermionic work 

functions of the metal and the semiconductor. Schultz9 formulated 

a model of current transport across the barrier which linked the 

thermionio-emission model of Bethe with the diffusion model of Wagner, 

Schottky and Spenke. 

In 1966 Mead10 published a review paper surveying many of the 

recent experimental results for barriers formed on freshly oleaved 

semiconduotors, but he did not include details of barriers formed on 

chemically cleaned surfaces, although there were a vast number of 

papers being published at that time. '11he influence of surface 

preparation on barrier properties was demonstrated by Turner and 

Rhoderiokll , and Smith12 in 1968. 

Meanwhile, on the theoretical side, Scharfetter13 had predicted 

levels of minority carrier injection which were largely verified by 

the experimental work of Yu and Snow14• Crowell and Sze15 presented 

a synthesis of the thermionic-emission and diffusion theories of 

carrier transport which incorporated image force lowering of the barrier 

and quantum mechanical tunnelling scattering of carriers. Their paper 

also included a quantitative check between the theoretical and 

experimental values for the Riohardson oonstant39 for emission of 

electrons over the barrier, and a treatment of the influence of an 

interfacial layer on the barrier properties. 

The tunnelling of carriers, especially important through the 

narrower barriers formed on more heavily doped semiconductors, was 

discussed in many papers by Stratton and Padovani16 , and Rideout and 

Crowe1111 between 1966 and 1910. Perhaps the most complete treatment 

was given by Chang and Sze18 who also included the effects of carrier 
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diffusion expected for barriers on lightly doped semiconductors. 

The review paper by Rhoderickl9 showed that by 1970 a more 

accurate comparison of experiment and theory was possible because of 

the fabrication of diodes with near-ideal characteristios. This was 

. 20 21 the result of uSlng the guard ring technique' to minimise edge 

effects22 and the formation of metal silicide-silicon junctions to 

remove the problems associated with an interfacial layer. 

I , 23 
In the book Semiconductors and Semimeta1s ,Padovani gave a 

complete review of the mechanisms of oarrier transpor; across meta1-

semiconductor barriers, particularly with regard to the thermionio 

field-emission and field-emission regimes. However, some of his 

predictions about the diffusion of carriers through the barrier region 

were revised by Crowell and Beguwala24 who used different bOU~dary 
conditions. 

In 1973 Jager and Kosak25 experimentally demonstrated the importanoe 

of minority carrier effects at high forward current densities. Green 

26 and Shewchun used a numerical method to solve the two carrier problem 

including recombination with the same boundary oonditions as the 

thermionic-diffusion model of Crowell and Sze l5 • Using different 

boundary conditions, Demoulin and van de Wiele27 presented an analytioa1 

solution of the same problem, whilst Card and Rhoderick28 showed that 

the influenoe of minority carriers would be enhanoed by the presence of 

an interfacial layer. 

Of particular relevance to the present work are those papers 

concerned with titanium-silicon barriers and those which deal with 

contributions to the diode ideality factor or In value' and its 

variation as a function of the external bias voltage applied across the 

barrier. Ata11a29 first mentioned the use of titanium as a barrier 

metal. Zettler and Cow1ey2l used several meta~s, including titanium in 

guard ring devices, and Cowley30 later analysed the behaviour of titanium 

diodes on both nand p-type silicon in terms of the thermionic-emission 
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model of current transport. However, Cowley did not fabricate devices 

on high resistivity silicon. Saltioh31 measured barrier heights on 

n-type ailicon of various impurity concentrations,and Saltich and 

Terry32 fabricated titanium diodes on both nand p-type silicon, and 

showed that the barrier height was very dependent on the presence of 

an interfacial oxide layer. Burton, Portnoy and Leedy33 used an 

unu~alfabrication technique which gave anomalous results with several 

contact metals including titanium. Diodes fabricated by the Plessey 

Company34 had characteristics which, for the most part, could be 

explain~d in terms of the thermionic-emission theory although there 

were so~e unresolved anomalieso 

Contributions to the diode 'n value' come from image force 

lowering15 , edge effects22 , the influence of an interfacial layer35 , 

oarrier recombination in the barrier22 , diffusion effects reducing the 

current 'below that expected from thermionic emission24 , and, for diodes 

on heavily doped silicon, from the influence of tunnelling18 , 36• 

Demoulin and van de Wiele suggested that minority carrier injection would 

re~uce the apparent n value. 

1.3 SCOPE OF THE PRESENT WORK -
The work described in this thesis includes the measurement of the 

barrier ~eight of titanium on phosphorus doped n-type silicon of 

20 -3 21 -3 impurity concentration between 2 x 10 m and 3 x 10 m • The 

accuracy of the barrier height determination from the current-voltage 

characteristics is estimated as ± 5 mV with a total range over all the 

diodes measured of 25 mV. Although Saltich3l investigated the barrier 

height oyer a similar range of impurity concentration, he used the 

capaoitance-voltage characteristics to determine the barrier height and 

quoted the accuracy of bis results as ± 20 mV with barrier height values 

ranging over 60 mV. 
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A particular feature of the present work is the detailed 

investigation of the theoretical oontributions to the diode ideality 

factor or n value. Most of the meohanisms oontributing to non-ideality 

are strongly dependent upon the applied voltage and the impurity 

oonoentration in .the silioon. The experimental results reported here 

show that it is possible to deduoe whioh meohanisms are dominant by 

studying the voltage and impurity oonoentration dependence of the n 

value. 

For most of the diodes measured in this work, the current-voltage 

oharaoteristics are well desor~bed by the thermionic-diffusion model 

of current transport with the addition of image force lowering of the 

barrier height. The formulation of thermionic~diffusion theory used 

in this work is very similar to that given by Crowell and Beguwala24 • 

From the measurements, which extended to current densities as high as 

4 x 105 Am-2, deductions are made about the regions of applicability 

of the thermionic-emission and thermionic-diffusion models. The 

prev~ous work by Cowley30 on titanium barriers used a maximum current 

dens~ty of the same order, but his measurements were confined to 

silioon of impurity ooncentration greater than 5 x 1021 m-3• 

1.4 IMPORTANCE OF TITANIUM CONTACTS IN MICROELECTRONIC DEVICES 

The traditional metal for the formation of oontaots and 

interconnections on silicon integrated circuits is aluminium, which 

has a high conductivity and good adhesion to the silioon dioxide 

surface. However, two defects of the aluminium metallisation system 

are electromigration, and the formation of etoh pits when aluminium 

diffuses into silicon76 • These problems are overcome in modern high 

performance integrated circuits by using a barrier metal, such as 

titanium, between the silicon and the aluminium77 ,34. Titanium is 

also used in the high reliability beam lead process78 because of 
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its good adhesion to silicon dioxide and silioon nitride. 

The relatively low barrier height of titanium n-type silioon 

diodes has led to their oonsideration as power reotifiers, beoause 

they have a lower forward voltage,at'a given ourrent density, than 

most other metal oontacts 

,6 



CHAPTER 2 

THEORY OF THE METAL SEMICONDUCTOR BARRIER 

This chapter will discuss the physical model of the metal 

n-type semiconductor barrier with particular reference to the 

processes determining the current-voltage characteristics. The 

theoretical basis for methods of measuring the barrier height and 

other parameters of the model will be presented. 

2.l FORMATION OF THE SCHOTTKY BARRIER 

2.1.1 Ideal Case 

The formation of the electrostatic barrier between the metal 

and the n-type semiconductor can be visualised as follows. When 

the metal and the semiconductor are e1eotrica11y neutral and isolated, 

the energy of an e1eotron at rest outside either solid will be equal 

to the vacuum level shown in Figure 1a where EFS and EFM represent 

the equilibrium energy levels inside the semiconductor and metal 

re!spectively. When the metal and semiconductor are connected 

e1eotrica11y by an external circuit, e1eotrons flow from the 

semioonductor to the metal until e1ectronio equilibrium is reached 

when the Fermi levels EFS and EFM are equal. The metal has a net 

negative oharge and the semiconduotor has a net positive oharge so that 

there is an eleotrio field in the gap between them, Figure lb, As the 

gap is reduoed, the oharges oolleot at the surfaoe and, in the oase 

of the n-type semioonductor, the positive charge oonsists of a 

layer of uncompensated donor ions whioh has a thickness related to 

the doping density and is muoh thicker than the corresponding layer-

of negative charge in the metal. As the gap S deoreases the space 

charge l.,er in the semiconductor builds up, and the bands are bent 

7 



as shm'ffi, Figurelc, so that eventually the majority of the potential 

difference appears across the space charge region rather than across 

the gap. If S is of the order of 1 nm then the gap is essentially 

transparent to electrons which can tunnel through. For the ideal 

contact when the gap d.isappears (Figure ld) the barrier height ~B 

is given by ~B = (~M - XS) where ~M and Xs are the metal work 

function and semiconductor electron affinity as shown in Figure lao 

2.1.2 Barrier With Surface States 

Experimentally it is found that the barrier height ~B can be 

almost independent of the metal, especially on a freshly ~leaved 

semiconductor surface. In this case the surface states arising from 

the termination of the semiconductor lattice play a major part in 

determining the barrier height. Figure 2a shows a semiconductor 

surface with surface states which are filled up to a level ~SS by 

electrons moving in from the conduction band, causing a depletion 

region, band bending, and a buil,t' in barrier even without the presence 

of a metal. In this case when the metal and the semiconductor are 

connected, the Fermi level of the semiccnductor must fall relative to 

that of the metal by an amount equal to (~M - Xs-tVF) as before, but if 

the density of surface states is high enough to accommodate the 

additional charge without appreciably altering the occupation level 

~SS' then the space charge in the deple·:ion region will be largely 

unaffected. Thus the barrier height will be a property of the 

semiconductor surface and independent of the metal work function. 

In practice the conditions at the t:urface will be intermediate 

between the two extreme cases and the birrier height can be expressed 

in a form such as 37 

¢B = d(¢M -)(S) + (1 -clJ (Eg - ¢o) • • • •• (1) 

Where E is the semicond.l1ctor eneI'g'J gal and ¢ is the value of ¢SS 
g 0 
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which would make the semiconductor surface neutral. In the case where 

the metal and semiconductor are separated by a thin layer of oxide, 

thickness ~ , permittivity ~o~ and the depletion layer space charge 

is muoh less than the charge in the surface states, then 

d..,= E. o )<. 

Eo)C + '-~ Ds 
••••• (2) 

where DS is the density of surface states per electron volt per unit 

area of surface. 

2.1.3 Image Force Lowering of The Barrier 

The variation in potential through the barrier has been considered 

as solely due to the semiconductor space charge (Figure 3a), and is 

given by the expression 

V (:to) = "Np (J\.x. -~) -V13 fot" l: ~ 0 .... 0 (3) 

Es' ~I ~ 2 E.' V"h-VF '2 
where V(x) is measured relative to the Fermi level, 1\ _ ($'( ) 

, N.3> 
is the width of the depletion region, q is the magnitude of the 

electronic charge, ND is the density of donor atoma in the semiconductor, 

E$~ is the permittivity of silicon, and VF is the potential difference 

between the Fermi level and the bottom of the conduction band. 

Expression (3) is obtained by solving Poisson's equation 

_ ~" = d~ = ~ 
') .:x.. ). a :c. €: !>;.. 

for the abrupt approximation to the charge distribution that 

J = "N]) fo~ 0< x( 1\. Qnd J = 0 jot" oX. > J\. 

where ~ is the eleotric field in the barrier. In fact there will be 

a region near x.J\ where the ionised donor atoms are partially 

oompensated by mobile electrons, which is oalled the reserve 

layer where 0 </ < 1 N;p and it oan be shown 46 that 
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its effeot is to alter the bracketed term in the expression for 1\ 

to (VB - VF - kT/q) where k is Boltzmann's constant and T is the 

absolute temperature. 

However, when an electron travels through the barrier and 

approaohes the conducting plane of the metal, it experiences an 

eleotrostatio field (in addition to the barrier field alrea~ 

discussed) as if there were an equal and opposite charge looated at 

the mirror image point, oonsidering the plane of the metal semiconductor 

junotion as the mirror. The attractive foroe experienoed by the 

eleotron is given by F. 2 
-q whioh gives an additional 

2 . 
47\(2x) Esi 

2 
oontribution to the potential of V - q ----

16 IT Esi x 

shown in Figure 3b. 

The sum of these two potential distributions is shown in Figure 30 

and it oan be shown 38 that the effect of the image force bas been to 

lower the barrier by ~VB which is given by 

{ 

3 kT }..l.. ~VB • q ND (VB - VF - / q) 4 

8 1"(2 Esi3 

••••• (4) 

at mero applied bias. 

2.2 CURRENT TRANSPORT ACROSS THE BARRIER 

2.2.1 Summary of Mechanisms 

Figure 4 illustrates the most important oonduotion meohanisms 

for a Sohottky barrier on n-type semiconductor. 

(a) Flow of electrons with sufficient energy from the conduction 

band over the top of the barrier into the metal. 

(b) Tunnelling of electrons (with insufficient energy for 

process (a) ) through the barrier. 

(0) Injeotion of holes from the semioonduotor surfaoe into the 

12 



neutral region (followed by recombination with electrons 

in the bulk semiconductor or at the ohmic back contaot). 

(d) Reoombination or generation of eleotrons and holes within 

the depletion region. 

Which of these mechanisms dominates the behaviour of the Schottky 

barrier will depend upon the semiconductor doping, the barrier height 

and other parameters resulting from the design and technology used to 

fabricate the diode. Mechanism (b) is generally insignificant at room 

temperature for semiconductors of doping density ND less than 

1023 m-3 and so to a large extent can be neglected for the present 

21 -3 study where the maximum doping density is 3 x 10 m • 

2.2.2 Flow of Electrons Over The Barrier 

There are two possible processes limiting electron flow over the 

barrier. The diffusion theor,y 4, 5 suggests that the current is 

limited by the rate at which the ~leotrons move through the depletion 

region by the prooesses of drift and diffusion. The thermionic 

emission theor,y7 assumes that the ourrent is limited by the supply of 

electrons with sufficient energy to be emitted over the barrier into 

the metal. 

The influenoe of eaoh limiting process will be determined by the 

degree of soattering of electrons by other mobile carriers, fixed donor 

ions,or phonons, as they pass through the depletion region. In the 

limiting case where the mean free path of eleotrons is greater than 

the thiokness of the barrier, then the thermionic emission or diode 

theor,y will be valid. 

2.2.3 Thermionio Emission Theo;y 

The current-voltage (I - V) characteristio, as given by the diode 

2 theor,y, is 

I • A* S~ exp (-qVB!kT) [exp (qV!kT) -1 ] 

13 

••••• (5) 



where A* is the Richardson constant and S is the diode area. 

Assuming the semioonduotor has ellipsoidal constant energy surfaces 

in momentum space, the value of the Riohardson oonstant A* is39 

A* • (4:1 k
2 

) (1 m m + m m m + n m m ) •••• 0 (6) L 2 2 2 ! 
y z Z x x y 

where h is Planok's constant; 1, m, and n are the direction cosines 

of the normal to the emitting plane relative to the principal axes 

of the ellipsoid; m m and m are the oomponents of the effective x y z 

mass tensor; and the summation has to include all energy surfaces 

participating in the emission process. This relation is derived from 

the oonservation of electron transverse momentum. 

Equation (5) is known as the 'ideal' diode charaoteristic and it 

is usual to compare the ourrent-voltage predictions of other models 

by writing them in the form 

I • Is [exp ( qV I nkT ) - 1 ] ••••• (7) 

and then calculating the value of the parameter h, which may be a 

function of applied voltage. In a similar fashion, when characterising 

practical diodes, it is usual to plot the logarithm of the forward 

ourrent as a funotion of bias voltage and evaluate the 'h value' from 

the slope of the plot. 

Equation (5) predicts that the reverse current will saturate to a 

constant value when V~ - kT/q• However, the barrier height VB is 

dependent upon the external bias through the mechanism of image force 

lowering. For reverse bias, equation (4) becomes 

AVB • 

q3 ND ( VB - VF - V _ kT/
q 

) t 
••••• (8) 

8 1\2 E..si 3 

and the result is that the reverse ourrent does not saturate but 

inoreases slowly for incpeasing reverse bias. 
. 15 

Crowell and Sze showed 
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that the effect of image force lwwering in the forward direction can 

be included by writing the ourrent-voltage charaoteristio in the form 

of equation (7) where the fi value is a slowlY var,ying funotion of the 

bias voltage 

h _ 1 • d VB 

d V 

[ 1 _ ~] -1 ••••• (9) 

In addition to the image foroe effect, there are other mechanisms 

oausing barrier lowering, of which tunnel penetration of the top of 

the barrier, and surface state penetration of the barrier have been 

reviewed by Padovani23 and the influence of an interfacial layer31 

was disoussed in sub-seotion 2.1.2. The apparent lowering of the 

barrier height caused by tunnel penetration of the top of the barrier 

oan be expressed as 

~ VB • Xc [ 2NDq (VB - VF - V - kT/ q)t E.Si] t ••••• (10) 

where Xo is the tunnelling length. 
J 

Surfaoe state penetration of the barrier results in a lowering of the 

barrier given by 

6 VB • d t. max In(qNss/ e.si t max) ••••• (11) 

where Nss is the surface state density, d is the penetration distanoe 

of the surfaoe states and e: is the surfaoe eleotrio field, which max 

for an ideal·Sohottky barrier is given by 40 

t max • [ 2NDq (VB - VI" - V - kT/q ) / E..1 ] t ..... (12) 

Comparison of equations (8), (10) and (11) shows that eaoh 

barrier lowering meohanism has a different dependenoe upon eleotrio 
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field and so, in prinoip1e, it should be possible to deoide whioh 

meohanism is dominant by studying the reverse ourrent-vo1tage 

oharaoteristio. 

2.2.4 Diffusion Theory 

The expression for the ourrent-vo1tage oharaoteristio derived 

from the diffusion theory is given by40 

I • 

Sq No Dn [ exp (qV/kT) - 1 ] 

l~xp CqV(x) /kT) dx 

.... 0 (13) 

where No is the effeotive density of states in the conduction band 

and V(x) is the potential measured between the oonduction band and 

the Fermi level If} . the -JY'lec ... L. The above relation is 

derived assuming that 
40 

the Einstein re1a. tion Dn - f n kT / q holds 

throughout the barrier, where D and ~ 
n / n 

are the diffusion 

coefficient and mobility for electrons. The interesting feature 

Ofl expression (13) is that it shows that the current-voltage rela.tion 

is sensitive to the shape of the barrier and the position of the 

quasi-Fermi level, because of the appearance of the term V(x). 

Several treatments of diffusion theory 41, 42,.43 have discussed the 

effeot of variation in the shape of the barrier but very few have 

questioned the assumptions made about the position of the quasi-Fermi 

level. The quasi-Fermi level is a hypothetical energy level which has 

the significance that, if inserted in the Fermi-Dirao distribution 

funotion 

F (E) 

it gives 

• [ 1 + exp (E ~TEF) ]-1 

the oorreot oonoentration of e1eotrons (e.g. N F(E ) ) even o 0 
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though the system may not be in thermal equilibrium. 

Rhoderick19 has shown that the difference between the diffusion 

and thermionic emission theories can be more clearly understood by 

considering the behaviour of the quasi-Fermi level for electrons. 

Away from the junction, on either side, the quasi-Fermi level would 

be expected to ooincide with the Fermi level in the metal or 

semiconductor, assuming negligible voltage drop across the bulk 

metal or semiconductor. The usual assumption made in treatments of 

the diffusion theory is that the quasi-Fermi level at the junotion 

coincides with the metal Fermi level as shown in Figure 5. On this 

basis, the conduction eleotrons just inside the semioonductor are in 

equilibrium with those in the metal and their conoentration does not 

ohange when bias is applied. The assumption for ·the thermionio-

emission model is that the quasi-Fermi level remains flat through the 

junotion and so the concentration of electrons at the top of the 

barrier does ohange with applied bias. However, the electrons which 

are emitted over the barrier are not in thermal equilibrium with the 

oopduction eleotrons in the metal. These 'hot' electrons have a 

quasi-Fermi level higher than the Fermi level in the metal, but as 

they move into the metal they lose energy by collisions, so that 

eventually the quasi-Fermi level and the Fermi level coincide. 

Returning to the expression for the current-voltage characteristio 

given by equation (13), it is possible to evaluate the integral if 

the quasi-Fermi level at the interfaoe is assumed coinoident with the 

metal Fermi level as disoussed above, and if some form of potential 

distribution through the barrier is assumed. Using the potential 

distribution derived in sub-seotion 2.1.3 

V(x) • 
qND 

E.si 

( 7\ x - x
2
/ 2) - VB 
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equation (13) becomes 

I - S~ DnNc ,.(V.-V 4- Nj) e.r(-~) p kT .... (14-) - '1 [ ), ] ~ {ex (~ V) ..:. I } 
k T Es~ k T 1- exp[-2l(L-V~V)] 

where VD • VB - VF - kT/q• For reverse voltages and small forward 

voltages V - V \, kT; , D // q and so the exponential term in the denominator 

oan be negleoted and equation (14) reduces to 

Y2. 

1 ~ Sf~nN< [ ~(Vp~~: tN>] exr(~[ exr(t¥) - ~ ..... ( 15) 

2.2.5 Thermionic-Diffusion TheoEY 

A synthesis of the thermionic emission and diffusion approaohes 

can be made by using an alternative boundar,y condition at the metal-

semiconductor interface which does not involve assumptions about the 

position of the electron quasi-Fermi level9, 24. A detailed treatment 
i 

of this approach is given in Appendix A but the main results are 

presented here. 

The ourrent-voltage characteristic is expressed in the form 

I = S't,Nc Vc 

1+ Vc./ 
/Vd 

ex p ( - ,1 ~ ) [ ex r( l ~ ) - I J ..... (\6) 

where Vo is an effective colleotion yelocity for electrons reaohing 

the top of the barrier, vd is the effective diffusion velooity related 

. . v 
to the Debye diffusion velooity vD by vd • _D___ where D is the 

D'J'I2. ) 

, Dawson funotion 50, 51 and f3 is the band bending in units of kT/ q. 

,,8= ~ T ( VB - V F - k y" -V) (see f\d J e"dL!"1 ) 

19 



For bigh values of f and heavily doped silicon, v d » v c and 

equation (16) reduces to the form of equation (5) of the thermionic 

emission theor.y if v 
L c has a value va ::: 

A* T2 
qN 

c 
However, 

consideration of quantum mechanical tunnelling and phonon scattering 

of electrons in the barrier region suggests tlllit this value of v is 
c 

an upper limit. Image force loV/ering of the barrier can be included 

by replacing VB in equation (16) by the term (VB - .6. VB)' 

If the current-voltage equation is written in the form 

I ~ l5 eXf(t~kT) [ I - exr(-1)h)] " ... (Ib a ) 

it is shown in Appendix A trill t over a limited range of voltage, 

I can be considered constant and the parameter n has a value given 
s 

by 

'n 

Sy -y 05j3-~ 

6v i- J) (ft~) 

I 1 N t 'kT -~ / -~ L! 
[ 

3 ~ 3 

4- 8112(5~1 (t) ... (17) 

where d
v 

::: Vnj as defined in Appendix A. 
Vc 

2. 2.6 l!~l_e Inlection 

rrhE: Schottky barrier current is mainly carried by electrons 

because (as shown in Figure 6) the effective barrier for electrons 

is q V" ::: q V - q V whereas the effective barrier for holes 
IJ B F 

is q Vq E - q V and in general q VB < E • g F g 

A t high current density, a voltage develops across the resista~ce 

of the c;J.asi-neutral pent of the epitaxial layer. This increases the 

minority carrier injection ratio ~ (ratio of minority current to 

total 0'_- rrent) because the diffusion of holes across the quasi-neutral 

region is aided by the electric field which ha.s developed in this region. 

?O 



For the low injection case, before the drift oomponent of the 

hole ourrent beoomes oomparable with the diffusion term, the injeotion 

ratio '6 is given by13 

2-

0= Jf ~ Jp 
In 

~ Vli, Dr 
NJ> LfA~T2e~p(-~) 

_ 1 nt Dr 
N L 1 .... (17) 

~ -t-:rr l> r s 

where D and L are the hole diffusion constant and diffusion length p p 

respeotively, and ni is the intrinsio carrier oonoentration. 

At the other extreme when the drift oomponent of the hole ourrent 

dominates the diffusion term 

O=~ 
J", 

~ (~p) J N: }Jh ~ 
..... (\~) 

The density of holes in the epitaxial region at xl is given by 

p(:x:
l

) 2 
• n,l J if it can be assumed that the hole concentration 

N J .'2. (V) D S at the interface is constant, r(o) = V'l L exp " p 
Np kT 

and the quasi-Fermi level for holes is constant through the 

depletion region. The concentration of holes elsewhere through the 

epitaxial region depends ver,y much upon the rate of recombination 

of holes in the bulk and at the epitaxial layer-substrate boundar,y. 

A recombining interface at x2 would require the excess hole concentration 

to be zero there, while a reflecting boundar,y requires the minority 

oarrier current 10 be zero at x2• The refleoting boundar,y oondition 

is often taken as an approximation for an n - n+ epitaxial boundar,y 

at low ourrents. In the limiting oase of a perfeotly reflecting 

interfaoe and a bulk lifetime of infinity, the injeotion ratio drops 

to zero and the distribution of holes through the epitaxial region is 

given by f (~) = 2-
Y'lt r exp[~ (X -X.I)] 
NJ) J,; l N) D" 
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Recent,work
28 

has shown that the injection ratio can be 

considerably increased by the influence of a thin interfacial oxide 

layer. When a voltage is applied to the junction, part of the 

voltage can appear across the interfacial layer which has the effect 

of lowering the effective barrier height for holes. If the 

interfacial layer is thin enough so that the holes can tunnel tr..rongh, 

then the hole injection current will increase at the 

expense of the electron current. Quantitative calculations are 

difficult but it has been shown experimentally that although the 

effect is almost negligible for an oxide of thickness ~ 1 urn, it 

increases dramatically above 1.701'1\ so that an oxide of thickness 

~ := 2 ,<a (1M can increase 't by a factor of upto 103• 

2.2 0 7 Ge~eration and Recombinat~on Currents. 

Under reverse bias, [-my hole electron pairs generated in the 

depletion region will be m-{ept out by the field and contribute to the 

t ' t h' h' , b 22 genera lon curren W_1C lS glven y 

13M 
1 n~ A 5 

I 
••••• (20) 

where I is the lifetime wi thin the depletion region, and the only 

vol tage dependence is con'~ained in the depletion region width ?\. 

so that 

I:Jen ( ~ 
oC ~ -- VF - V - kJ'f, ) 2 

• . • •• (21) 

As the reverse bias increases, the depletion region widens and the 

genera tion current increaLies. The temperature variation of the 

generation current followc n., the intrinsic carrier concentration 
l 

-E n
i 

OC exp ( g/2kT)' and co when th8 temperature dependence of the 

revGC-SG current is plottec 9 if an activation energ:r of Eg/ 2 is founa, 

it sUg!!,8stS that the g'enG:r-ation current is dominant. HoineV8T., for 

diodes wi th loVl 'barrier D.f:ight VB and long lifetime l, the thermionic 

2~-? 



emission ourrent generally dominates the ourrent-voltage oharaoteristios. 

In the forward direotion, holes and eleotrons oan reoombine in 

the depletion region without needing to oross the whole barrier. This 

reoombination current oan be expressed as 

I .... := 'V'L 71. S exr( '\.;rk T ) ••••• (22) 

for forward bias greater than 3kT/. If the reoombination ourrent 
q 

is dominant then the temperature dependence of the forward ourrent 

will have an activation energy close to (Eg -~V)/2. If the current

voltage relation is written as equation (7), then when reoombination 

ourrents are dominant, an n value of 2 will be found, whereas pure 

thermionio emission gives an n value of unit,y. 

2.2.8 The Influence of an Interfacial Layer 

When a metal is deposited on chemioally oleaned silicon, a thin 

interfacial l~er of oxide generally exists between the tw044 ,45. 

Although this prevents intimate contact, it is usually so thin 

( ....l.. l'nm) that carriers can tunnel through it freely. When the voltage 

across the junction is changed, a small part of the ohange will appear 

across the film with the result that the change in current flowing 

will be smaller than that without the presence of the interfacial 

l~er. Hence the current-voltage characteristic will increase 

more slowly than exp (qV/kT). If the interfaoial layer is so thin 

that the ocoupation of the surface states is determined by the 

position of the metal Fermi level, then the ourrent oan be expressed 

in the form of equation (7) where n has a value15,3, 

n = + & €S~ 
A(£~+ ~JDs) 

23 
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~ is the thickness of the oxide layer, ~O~ is the permittivity 

of the oxide and DS is the density of surface states in 

equilibrium with the metal. The value of n varies slowly with 

bias beoause of the voltage dependenoe of 7\ , the depletion region 

width. 

The effeot of the interfaoial layer on minority oarrier 

injeotion has already been disoussed in sub-seotion 2.2.6. 

2.3 MEASUREMENT OF BARRIER HEIGHT 

2.3.1 Current-Voltage Measurements 

If the diode oharacteristios follow the thermionic emission 

model then from equation (5) and including barrier lowering, we can 

wr:1 te 

I =oIs [ exr(~~) -IJ ••••• (24) 

where Is -= ~ ST
2

exr (-" (~~~VB~ ••••• (25) 

* Using a theoretioal value for A we can then oalculate (VB - ~VB) 

from ISo An alternative method is to measure the temperature 

I 1/ variation of IS' then plot In ( s/T2) against T and deduce 

(VB - ~VB) from the slope. Although this technique does not 

* require the value of A to be known, it does assume that thermionio 

emission is the dominant mechanism throughout the range of temperature 

measurement and that the barrier height is independent of temperature. 

In practice reoombination or tunnelling currents soon become important 

as the temperature is lowered, and at higher temperatures the 

thermionio emission ourrents beoome so large that series resistance 

in the bulk silioon beoomes important or diffusion may start to limit 
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the ourrent. 

If the diode behaves like the diffusion or thermionio-diffusion 

model, then the calculation of barrier height from the current-

voltage measurements is not straight forward. If some shape for 

the potential barrier can be assumed, based on other evidence like 

capacitance-voltage measurements, then the voltage dependence of the 

saturation ourrent (defined by equation (24) ) can be calculated 

and the barrier height deduced. 

The determination of which voltage dependent barrier lowering 

mechanisms are operative in the diode is of equal importance to the 

measurement of barrier height. The relative importanoe of the 

mechanisms already discussed (sub-section 2.2.2) can be found by a 

study of the reverse current-voltage characteristic. If the 

logarithm of the reverse current IR is proportional to 

(VB • VF - kT/q - v)t then image force lowering is dominant. Tunnel 
~y. 

penetration of the top of the barrier will cause In(IR) oC (V~-VF- k-r_V/2 
~ 

Reoombination generation currents will be proportional to 

(VB - VF - kT/q_v)i and will be difficult to distinguish from the 

effeots of surface state penetration of the barrier, whose dependenoe 

upon voltage is given in equations (11) and (12). 

2.3 0 2 Capacitance-Voltage Measurements 

Although the depletion region forms a barrier to the flow of 

mobile charge oarriers, small changes in the applied voltage aoross 

the barrier oause changes in the charge stored in the depletion region, 

and the barrier can be treated as a voltage dependent capacitance. 

In the simplest oase of a Schottky barrier where the charge density 

in the depletion region is constant and due only to the ionised donor 

atoms, the oapaoi tanoe is given by C • E.st. 5 
l\.. 
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depletion r8~~on width given by 

J\= 

Henr.!e 

(2 

2. f.s'- (\jf>- VF - kJ'\, - V) 

~ NJ> 

V2 

2 ( 1\1 V" - V F - k T/ \1 ) 
~,,,,,Esc 5 2 /'1, - • • • •• (26) 

and from a plot of ljC2 vs. bias V, the donor concentration ND ' and 

buil t in voltage "D V kT 
B - V11' - jQ can be obtained from the 

slope, and intercept on the abscissa respectively. Unfortunately 

it is not always possible to obtain the linear plot expected from 

equation (26) and Gooc'!.man46 has treated some deviations from the 

ideal case given above. ~vo of the most important causes of non-

lineari ty are a non-uniform doping density N
D

, and surface s i;ates 

whose charge varies· wi th a·ppliecl voltage. Smith and Rhoderi:;k47 

have described a technique for measuring capacitance-voltage 

c{1..aracteristics even in the presence of traps which would no::'mally 

cause a non-linear plot. 

2.3.3 Photoelectric Method 

When :nonochromatic light is incident upon the barrier, 'jither 

through a thin metE'.l layer or from the back surface of the sLlicon, 

a photocur::.'ent may he generated if the photon energy is great enough 

to generate excited electrons in the metal h~ > Q VB' 0,' gre a t 

enough to g'3nerate hole electron pairs in the depletion regi'm 

h» > ~ . ::r 
::0 

By measuring the photocurrent as a function of ''iCwelength, 

the barrier height can be found. 

and 

Al'~":O~l{l'h this method Ins been described 3.8 the most aCC.lrate 

the ,::03t c.irect40 
1 it is also subject to subtle error-s48 if 

?6 



trapped electrons are present or if photons with an energy muoh 

greater than the threshold are used. There is also some doubt as 

to whether the barrier height measured for the photoelectric prooess 

is the same as for the current transport prooess when no photons are 

present. For low barriers, even with no illumination the reverse 

current flowing is large and makes the detection of the photocurrent 

more diffioult, so that this teohnique was not used in the present 

stu~. 

2.4 ADDITIONAL BARRIER MODEL PARAMETERS 

In order to prediot the behaviour of a metal semioonduotor 

diode aoourately, not only is it necessary to have a model of the 

ourrent transport meohanism, as discussed in section 2.2, and a value 

of the barrier height, but also several other parameters resulting 

fr.om the praotical fabrication of the diode structure. are needed. 

The series resistance of the bulk silicon cannot be neglected 

at high current densities, although its effect may be very small on 

hef30vily doped silicon. To minimise its effect on lightly doped silicon, 

a thin epitaxial layer of the required resistivity is grown on the 

surface of a heavily doped substrate crystal. Because the width of 

the undepleted region of the epitaxy (or quasi-neutral region) is a 

function of voltage, the effective series resistanoe will be voltage 

dependent. Figure 7 demonstrates this effect. If ~(O) is the 

series resistanoe value at zero applied bias, then its value at an 

applied voltage V is given by 

Rs(v) -= RsCO) 
(:rEP1 -J\ (V) ) 

(:~CPI -1\ (0) ) 

where XEPl. is the width of the epitaxial layer. 

.... (27) 

A seoond parameter whioh also becomes important at hi~h current 

27 



densi. tiA8 is the thwrmal resistance o:p the rliode, eo Y'or stAady 

sta te concli tions, it is fOllnrl. AXDA1:'imentally that the diode 

tnmneT'R,tll1:'8 ris8s linearly as a fLJncti.on of power dissipated, at 

least up to 10 mW • 81]oh thR,t 

6 T = e I V .. 0 00 (:28) 

where ~rF "" T - TA 9 is the temperature rise. 

The th8rmal behaviour of the diode, including trans:i8nt Affects, 

is discussed in A p'penclix D. Knowledge of e allows the diode 

behaviour to be prAdieted to much higher current levels than is 

possible using an isothermal approximation. 
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cHAyrER 3 

P]~PARATICN OF SPE!,CIHEHS 

All processes during the prepaC'ation of the specimens ,';ere 

carried out using chemicals of Electronic Grade under conditions 

of high cleanliness, uhich have become commonplace in microelectronic 

device fabrication. It is not appropriate for this thesis to list 

all the plant and equipment used in the laboratory during the 

preparation of the specimens.. Hm-rever '"There any stage during the 

processing ",as considered critical, all relevant information ,dll 

be given. 

The preparation of specimens can be divided into the following 

headings:-

Silicon wafer preparation 

f,Ietal deposition and photoengraving 

Post '-Tafer processing 

3.1 SILICON I~AFE:t PREPARATION 

The various wafers used in the investigation had a surface layers 

of epi taxially grOiffi silicon of different thiclmesa and electrical 

resistivity, all of which had a low crystalline d·3fect density and 

required no mechanical or chemical polishing before use. The 

w"afers "Tere supplied by Texas Instruments, Bedford, except for two 

supplied by Plessey Company Limited, Allen Clark Research Centre, 

Tm"Tcester. 

For fabrication of titanium and magnesium dioJes, the silicon 

,-rafer preparation consisted solely of a cleaning rrocedure prior to 

metal evaporation directly onto the surface of the 1irafer. However, 

for aluminium diodes a guard ring structure
20

, 21 ",'laS fabricated by 

the procedure below" .. 

~)9 
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3.1 .1 Silicon ''lafer Cleaning 

The purpose of the cleaning procedure was to remove organic 

and inorganic contamination from the surface of the wafer, and to 

minimise the thickness of the silicon dioxide layer44, 45 formed 

on the surface of the wafer. 

(a) Ultrasonically wash wafer in trichlorethylene for two minutes. 

(b) Ultrasonically wash wafer in methanol for two minutes. 

(0) Rinse wafer in de-ionised water (of resistivity greater than 

10 Megohm em.) and spin dry. 

(d) Clean wafer in a mixture of one part conoentrated H2S0
4 

and 

one part H202 for five minutes. 

(e) Rinse wafer in de-ionised water for two minutes. 

(f) Dip etoh wafer in a mixture of six parts de-ionised water and 

one part of hydrofluorio acid. 

(g) Rinse wafer in de-ionised water and spin dry. 

At this stage the wafers were rapidly transferred to the vacuum 

evaporation system for the deposition of titanium or magnesium metals. 

Aluminium diodes required the formation of a p-type guard ring 

sttuoture (Figure 8) in the n-type epitaxial layer and so further 

process stages were involved as detailed below. 

3.1.2 Oxidation of Silicon 

The purpose of the initial oxidation desoribed here, was to 

form a mask on the surface of the n-type silicon wafer, against 

diffusion of a p-type impurity (boron). 

Immediately after stage (g) of the cleaning procedure, the 

silicon wafers were loaded onto a quartz glass boat and pushed into 

the oentre of a tube furnace at 10800 C (Figure 10). After 15 

minutes oxidation in a dry oxygen atmosphere, steam was added to 

the gas flow through the tube to complete the growth of the silioon 
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aluminium 

. Sohottky barrier p-type guard ring 

n-type epitaxial layer 

n + subst.rate 

ohmic contact 

Figure 8 Guard ring structure (not to scale) 

Figure 9 

1. 

2. 

1. Oxide etching mask 

(Stage 3.1.3) 

2. Oxide etching mask 

. (Stage 3.1.5) 

3. Metal etching mask 

(Stage 3.2.4) 

Masking patterns(approximately x 200) 
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dioxide to a thickness of 0035 pm. Finally the gas flow was changed 

back to dry oxygen for five minutes to prepare the wafers for the 

photo-engraving stage, where a clean dry surface is essential for 

good adhesion of photo-resist52 • 

3.1.3 Photo-engraving and Etching 

Kodak Metal Etch Resist (KMER) was applied to the surface of 

the oxide covered wafers using a rotating vacuum chuck. After 

application of a few drops of KMER to the surface, the chuck was 

rapidly accelerated to 4000 r.p.m. which produced a 1 rm uniform 

coating. After drying the KMER layer on a hotplate at 90°C for 15 

minutes, the wafer was exposed to ultra-violet light. This stage 

was carried out with the wafer firmly clamped to a masking pattern 

(Figure 9) on a Kodak high resolution glass plate using a Kullicke and 

Soffa model 686 mask aligner. The unexposed KMER was then washed off 

by applying the developing reagent and rinsing solvent from aerosol 

sprays. A 20 minute bake at 1500a completed the polymerisation 

of the exposed KMER so that it would protect the underlying oxide 

against the etch. 

The unprotected oxide was then removed from the surface by 

immersing the wafer in buffered hydrofluoric acid at room temperature. 

This etch consisted of four parts of 40% NH4F solution and one part o~ 

HF. After etching, the wafer was rinsed in de-ionised water and then 

the photoresist removed by two successive applications of stage (d) 

of the cleaning procedure. Stages (e) to (g) were car~ied out and the 

wafer was ready for impurity diffusion. 

3.1.4 Impurity Diffusion 

Figure 11 shows a schematic of the 970°C tube furnace system used 

to.deposit the B20
3 

glass on the surface of the wafer from which the 

boron would diffuse into the siliconllattice53• The glass was 

deposited allover the surface of the wafer. Where the silicon had 
)) 



been exposed by the, previous etching stage, the reaotion 

B20
3 

+ Si ~ Si02 + B 

took plaoe producing free boron which could diffuse into the lattioe 

and become electrically active as.a p-type impurity. 

After removal of the wafers from the deposition furnace, the 

exoess boron glass was removed from the surface by a two minute 

etoh in 6 : 1 de-ionised water : HF. 

The final stage of diffusion was a further oxidation stage to 

regrow oxide over the whole surface of the wafers and also, because 

of the high temperature involved, drive the boron impurity atoms 

further into the silicon lattice. This oxidation was carried out 

in a tube furnace at 11800 0, and after removal from this furnace, 

the wafers were ready for a second photoengraving stage to out 

oontact windows through the oxide to the silioon. 

3.1.5 Second Photoengraving and Etching 

The procedure used was exaotly the same as that used in Section 

3. i1-3 except that the masking pattern appropriate for the etching 

of contaot windows was used. After removal of the photoresist and 

cleaning, the wafers were then ready for transferring to the vaouum 

system for the evaporation of aluminium. 

3.2 EVAPORATION OF METALS 

Titanium was the principal metal under investigation but 

magnesium and aluminium Schottky barriers were also fabricated 

to enable a more general evaluation of the theories which were. 

developed to explain the behaviour of the titanium diodes. 

In the case of titanium and magnesium, a thin barrier film 

of about 0.1 fID of the metal was first evaporated with the aim 

of getting a film of high pUrity. A second evaporation ot about 

1 ~ aluminium was made, to which aluminium wire could be bonded at 
34 



a later stage in the processing to facilitate evaluation of the 

devices 0 

~e titanium was supplied in the form of 1 rom diameter wire 

of 9909% purity from Koch Light. Magnesium wire of 1.5 rom diameter 

and 99.9% purity was supplied by B.D.H. The aluminium wire 2 rom 

diameter and of purity 99.99&.% was obtained from Johnson Matthey. 

3.2.1 Evaporation Equipment 

Two Edwards High Vacuum Coating Units, model 12 E 3, were used, 

each with a 12" diameter glass bell jar, liquid nitrogen trap, oil 

diffusion pump and rotary backing pump. Pressures during evaporation, 

-6 -5 ranged from 10 to 10 torr. 

Metal films were evaporated from tungsten filaments in a 

shuttered system, with substrate. heating for the silicon wafers. 

Figure 12 shows a schematic of the jig, inside the bell jar, most 

of which was fabricated from stainless steel. Titanium and 

magnesium were evaporated in one system which had an additional 

heat shield round the filament to minimise heating and hence 

ou~gassing of the remainder of the bell jar system_ 

3.2.2 Evaporation TeChnique 

The technique of evaporation was similar for all the metals. 

Prior to loading of the silicon wafers, and the metal charge, the 

system was pumped down and the filaments "Tere outgassed by passing a 

current through them, in excess of that to be used during evaporation, 

for 30 seconds. Each metal charge was prepared avoiding direct handling 

and was ultrasonically cleaned in trichlorethylene, acetone, and de-

ionised water followed by an appropriate metal etch to remove the surface 

layer. Silicon wafers were loaded after the preparation previously 

desoribed and the vaouum system was pumped down with the minimum delay. 

When the pressure reached 10-5 torr. the metal charge on the 
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filament was outgassed for 30 seconds at a current just below 

that needed to melt the charge. The rest of the.vacuum system was 

outgassed by using the substrate heater to raise the temperature 

o to 250 c. 

The system was then allowed to cool and when the pressure 

stabilized below 10-5 torr. the metal charge was evaporated. 

Since freshly evaporated films of both titanium and magnesium act 

as excellent getters for residual gas, both these metals we:re 

evaporated slowly at first until the gettering action was detected 

by a fall in monitored pressure. The heating current was then 

raised and the shutter opened to deposit the film on . the silicon 

wafers. However with aluminium, the filament current was raised 

to a high value immediately and as soon· as the metal started to 

melt,the shutter was opened. After evaporation, the 

bell jar system was allowed to cool to near room temperature 

before the system Vias opened to air. 

3.2.3 Film Evaluation 

Film thickness, during evaporation, was monitored using an 

Electrotech Equipments Ltd. Film Monitor P 1001. This equipment 

gave a direct reading of the conductance across a glass slide 

positioned close to the silicon wafers inside the bell jar system. 

In order to convert conductance measurements into film thickness, 

a value of the sheet resistivity is require~. The appropriate 

value is usually somewhat higher than the bulk resisti vi ty 

because of film impurity or thin film scattering effects. 54 

After removal of the samples from the vacuum system, film 

thicl~ess was measured using a multiple beam interference method:5 

This enabled the value of sheet resistivity of the deposited film 

to be compared with the bulk values reported in the literature. 

The equipment used to observe the interference pattern'vvas a Leitz 
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Ortholux microscope vTith Nultibeam Interference attachment and 

sodium vapour lamp. The schematic arrangement is Sh01'ffi in Figure 13 

and the appearance of the fringe p:~ttern in Figure 14. The thiclmess 

of the film t is gL ven by 

t = ~ A,,( 
J) 2-

\'There J\ = 589 nrn for the sodium vapour lamp. 

Titanium:. films of betvTeen 34nm and 136 nm I'Tere deposited 1-nth 

resistivi tv values betiwen 69 c.nd 79 u .ft. cn. The hulk value of 
L / 

resistivity56 is 43 t n em but thin film values vary widely. Singh 

and Surplice57 obtained films ,·lith resistivity bet"reen 100 and 170 f 
.J1.. cm for their films TtThereas Friebertshauser and HcCamont58 using a 

rapid evaporation technique obtained films '-Tith resistivity in the range 

44.5 to 65.5 f Sl.. cm. 

The magneshun films of betvTeen 70 nm and 200 nm thickness had 

resistivi ty valuefl between 5.8 and 6.9 !..n.. cm. 

r. 59 

These are to be 

compared Hi th the bulk value of 4.4 Y ..l}... cm , 

The aluminiwa films ,-rere considerably thicker at 1.2 fm. 

1'he substrate temperature, measured b;'l the thermocouple sho,m in 

Figure 12,during the evaporation of aluminium onto silicon and titanituu 

was 200°C. Em-Tever during the evaporation of aluminium onto llk'l.gnesium, 

the substrate vIas held at 100°C to prevent the formation of intermetallic 

compounds59• It is vlell Immm that metal films evaporated from tungsten 

filaments .-Till contain traces of tungsten54• Examination of an 

evaporated film of titan:ium, using an electron microanalyser at the 

Plessey Company, Allen Clark Research Centre, failed to detect any 

tungsten. It I,ras concluded that the tungsten coricrmtration must be less 

than 1 ?-~, ,'Thich vTa~l the sensi ti vi ty of the probe. 

3.2.4 r.Ieta~ Photo-enr;;ravinp- and Etching 

'1'he procedure) used for selective e tchin,S' of the metal to form 

circular areas of contact to the silicon \,ras very similo,.r to tb.<:'l t 
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desoribed in seotion 3.1.3 for seleotive etohing of silicon dioxide. 
\ 

Shipley AZ 1350 H photoresist was used to protect the metal during 

the etching stage. 

For the fabrication of aluminium diodes, the following etch 

was used at 500 C and the etching time was about two minutes. 

80 ml Phosphoric Acid 

4 ml Nitric Acid 

18 ml De-ionised Water 

The overlay of aluminium on the titanium diodes was etched as 

above but once the etch had exposed the titanium it did not remove it. 

At this stage the wafers were rinsed in de-ionised water and transferred 

to the following mixture which etched away the unwanted ti tanium'J in 

about 30 seconds. 

10 ml HYdrofluoric Acid 

20 ml Hydrochloric Acid 

60 ml Nitric Acid 

400 ml De-ionised ~later 

A similar procedure was used to form the magnesium diodes with 

aluminium overlay. In this case the aluminium etch did remove the 

magnesium and so both metals could be defined in one etching stage. 

In all cases, after etching the metal, the wafers were rinsed 
, 

in de-ionised water and the photoresist removed with acetone. 

3.3. POST WAFER PROCESSING 

At this stage each silicon wafer surface was covered with a matrix 

array of ciroular metal contaots of various sizes, and to facilitate 

measurement and evaluation of individual diodes the following prooess 

sequenoe was carried out:-
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3.3.1 Scri~e and Break 

Using a diamond tipped scribing tool, a regular array of lines, 

in nro orthogonal directions, "Tere cut into the surface of the 

silicon lmfer "Thich divided it into groups of six diodes. The silicon 

dust produced Vias blown clear, and the wafer was placed face down 

on a filter paper. By rolling a i" diameter copper pipe over the 

back of the wafer, the wafer was broken into 'chips', each of which 

had s:Lx diode contacts on illS front surfo,ce. rrhe chips were visually 

inspected for defects such as cracks or scratched metal and the 

satisfactory chips were bonded to gold plated header cans. (Figure 15) 

3.3.2 Chip Bonding 

The chips were attached to the metal headers by a eutectic bond 

between·sili.con and gold or using an adhesive resin. The eutectic 

bond required the formation of an alloy between the back face of the 

chip and the gold plating on the header. The header VIas pla.ced in 

a heated jig at 400 0
C ~vith a nitrogen jet blowing across the surface 

and the chip was placed on the header and 'scrubbed' into contact 

using glass rods to position the chip. When the formation of the 

a.lloy was observed, the bonded chip and header were removed to 

cool. 

The attachment of chips by adhesive resin was used for the 

magnesium diodes which could not be heated above 2000 C because of 

the possible formation of intermetal1ic compounds with the aluminium 

overley. The method was also used for a series of titanium diodes 

to chock if the high temperature used during eutectic bonding was 

a1 tering the diode characteristics. 

r~'he epoxy adhesive used was Dupont 5504A silver epoxy which 

ge.,ve r:n Al8ctrically conductive bond. The cu ring cycle was 1600c 

for 1(, hours. 
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3.3.3 Wire Bondin~ 

Aluminium wire of 25 rm diameter was bonded between each metal 

contact on the surface of the chip and the top of an adjacent post 

on the header. A Hugle Industries Inc. Model 1300 ultrasonic 

bonder was used so that the diodes were not subjected to a further 

heating cycle. A metal or opaque plastic cap Vias then fitted over 

the top of the header to provide mechanical protection for the 

dio:J.es. The electrical characteristics of the diodes were measured 

by inserting the leads from the headers into the appropriate test jig. 
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CHAPTER 4 

MEASUREHENT TECHNIQUES 

This chapter describes the equipment and methods used to measure 

diode forward and reverse current-voltage characteristics, forward 

AC resistano~capaoitance-voltage characteristios, activation energy 

plots (from current-temperature characteristics at fixed voltage), 

and thermal properties. The theoretical background to each method 

of characterising the diodes has already been given in Chapter 2. 

Presentation and disoussion of the results is given in Ohapter 5. 

4.1 OURRENT-VOLTAGE NEASURE~mNTS 

All current-voltage measurements were made with the diode under 

test enclosed in a light-tight metal alloy box to avoid photoelectric 

generation of hole-eleotron pairs. At a very early stage in the 

measurements it was realised that the ~iode current was very sensitive 

to changes in ambient temperature. In order to minimise this effect 

the metal alloy box containing the diode was surrounded by a 50 mm 

thick layer of expanded polystyrene and the measurements were made 

in a thermostatically controlled room. With these precautions, a 

mercury in glass thermometer in contact with the alloy box indicated 

temperature variations of less'than ± 0.1 0 0 during a series of 

measurements. Typical recordings of temperature fluctuations during 

electrical measuremenmsare shown in Figure 16. Thus apart from any 

self heating effects at high current densities, the diode temperature 

variation would be expeoted to be within ± 0.1 0 0 of the mean recorded 

temperature for each set of measurements. 

For diode currents greater than 10 )UA the measuring equipme~t 

(listed in Table.l) was connected as shown in Figure 17. The 

expeoted accuracy of current and voltage measurements using this 
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TABLE 1 

Measurement Equipment 

Equipment 

(a) Voltmeter 

(b) Voltmeter 

(0) Voltage Source 
I < 300 mV 

> 300 mV 

(d) Standard 
Resistor 

(e) Electrometer 

(f) Electrometer 

(g) Univers:\l 
Bridge 

Type Specified Accuracy 

Solartron Digital . + 0.05% of reading 
Voltmeter 1M 1450 - ± 0.05% of full scale 

ISolartron Digital ± 0.05% of range 
Voltmeter 1M 1420 ± 1 digit 

Stabilised Supply 
Circuit (Figure 19) 

Solartron Transistor 
Power Supply 
Type AS 757.2 

100 H. Tinsley & I Maximum Error 0.02% at 20
0
0 

Co. Ltd. Type 1659 

Keithley Type 610C I± 2% of full scale 

Vibron Type 33B2 ± 1% of reading ± 0.2 mV 

Wayne Kerr B224 ± 0.1% of reading 

(h) Phase Sensitivel Brookdeal FL 355 
Detector and MS 320 

( j) Osci 11a tor 

(k) Capacitanoe 
Bridge 

(1) Capaoitance 
Bridge 

Solartron Signal 
Generator 00 546 

Boonton 72A (1 MHz) + 0.5% of full Beale 
- ± 1% of reading 

Boonton 75D (1 MHz)1 +(0.25% +(103G + O.5)pF ) 
- xl range 

+(0025% +(1030 + 0.05)pF ) 
- xO.l range 
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arrangement was usually better than ± 0.1% but in all cases better than 

± 0.5%. During use, the digital voltmeters were calibrated using their 

own internal voltage standards. After the measurements, these were 

then checked against a Muirhead Standard Cell type D402 which was 

specified as being calibrated to within ± 0.002% by the manufacturers. 

For diode currents below 10 fA a different arrangement was used 

as shown in Figure 180 To minimise spurious leakage currents, P.T.F.E. 

insulation was used in the construction both of the jig to hold the 

diode under test and also in the stabilised voltage 'source.', Before 

assembly, all insulating components were 1'lashed in non-polar solvents 

and handled with rubber gloves to avoid ionic contamination. Measurements 

made with the diode disconnected, suggested that the total leakage path 

had an impedance greater than 1010r.L • For this arrangement the 

accuracy was limited by the Keithley Electrometer at ~ 2%. 

The stabilised voltage source (Figure 19) was developed from 

published circuits60 , to give a continously variable output between 

zero and 300 mV. Two low temperature coefficient zener diodes provide 

a reference voltage, and a feedback loop using a high gain operational 

amplifier ensures that the output is held at the reference voltage for a 

very large range of loads. Short circuit overload protection is 

provided by the current limiting transistor T3• The circuit proved 

able to supply a voltage constant to within 1 part in 1000 over a 

period of several hours, much longer than that needed to complete a 

set of measurements. 

4.2 AC RESISTANCE MEASUREMENTS 

The presence of series resistance in a practical diode makes 

determination of the diode behaviour from current-voltage measurements 

more difficult especially at high currents. The measurements of diode 

AC resistance can then be very useful in providing additional information. 

The full theoretical expression for the diode AC resistance RAC = d Vm 
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is derived in Appendix B. An approximate expression, derived from 

equation (7) of Chapter 2, which has often been used by other workers 

is 

"Rt\( -= ~s -t- h k T 
,,(Im + Is) • .; ••• (29) 

The measurement equipment was arranged as in Figure 20 and is 

illustrated in the photograph Figure 21. The universal bridge was of 

the transformer ratio arm type which allowed application of a steady 

DC bias to the diode under test while measuring its AC parameters. 

Figure 22 is a schematic diagram of the bridge connections but does 

not show details of the internal bridge circuits used to balance the 

output signal. Measurements of the voltage across a standard resistor 

in series with the DC bias supply enabled the current through the 

diode to be deduced. 

Although the bridge did have an internal source and detector, 

these were not used as the internal signal amplitude was 65 mV peak 

tO
I 

peak, and in some cases this would have been larger than the DC bias 

which was between 20 and 800 mV. The use of an external signal 

generator and phase sensitive detector gave extremely high sensitivity 

because of the improvement in signal to noise ratio made possible by 

the very narrow bandwidth of the detector compared with a conventional 

tuned amplifier. The polarity of the out of balance signal was 

indicated thus defining the sense of the adjustment neccessary to 

obtain balance. Another advantage was that the output voltage could 

be resolved into two components, one corresponding to the resistive 

unbalance of the bridge, the other to the reactive unbalance. Using 

this technique the signal size applied to the diode could be as low 

as 20 pV peak to peak before noise began to overload the detector. In 

practice a signal of 70 )1V amplitude was used as the balance position 
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was then sensitive to changes of 1 part in 5000 in the conductance 

setting which enabled the full accurancy of the bridge (± 0.1% of 

reading) to be realised. 

Experimentally it was found that the balance position was not 

sensitive to variation in the signal frequency between 500 Hz and 

20 kHz. However, the bridge sensitivity was greatest at 4 kHz and so 

this frequency was used for the measurements. 

A systematic error in the bridge readings was expected due to the 

internal resistance of the bridge circuits and the bridge leads. Using 

the technique suggested in the operating instructions for the bridge, 

the value of this resistance was measured and found to be 0.31 ~ 

and 0.23 ~ for the two bridge ranges used. Thus at low bias currents 

through the diode where the slope resistance was of the order of 500Jl, 

the lead correction was insignificant, although it became inoreasingly 

important at higher bias currents. 

The aocuracy of the bridge was checked using 10.tl. and 100 ..n. 

(± 0.02%) standard resistors and after lead corrections were applied, 

the measured values agreed with the standard values to within the quoted 

accuracy of the bridge. Using the above equipment arranged as in 

Figure 20, it was expected that the accuracy of the current, voltage 

and slppe conductance values would be ± 0.1% or better. However, 

because of the extreme sensitivity of the bridge and detector system 

it was noticed that changes in the ambient temperature of the order of 

± 0.1 00 caused detectable changes in the balance position. For this 

reason, all the measurements were made in a thermostatically controlled 

room with the additional precautions listed in section 4.1. In 

addition to changes in ambient temperature it was also apparent that at 

high diode currents, self heating would occur and so measurements were 

made to oharacterise this behaviour. (See section 4.5). 

52 



4.' CAPACITANCE-VOLTAGE HEASUREMENTS 

4.3.1 Initial Measurements 

The equipment used to measure the diode capacitance as a function 

of applied bias was connected as shown in Figure 23. The capacitance 

bridge was self balancing and gave a direct meter reading of the diode 

capacitance value. Although the bridge had the facility for applying 

a DC bias to the diode under test through rear terminals, it was 

found that the voltage appearing across the diode leads was not the 

same as that applied to the rear terminals. This was because of the 

internal resistance of the bridge biaSing network and the finite 

current drawn by the diode in reverse bias. This difficulty was 

overcome by measuring the front terminal voltage directly with a 

digital voltmeter between readings of capacitance, for which the 

voltmeter leads were disconnected. 
46 . 

Following Goodman the indicated value of capacitance was 

corrected for the effect of diode series resistance and reverse leakage 

current. The indicated value of capacitance cM was related to the 

true value of capacitance C by the relation 
, 

c = M 
c 

« r~ + I y- -I- W2.'(''' C"] ••••• ('0) 

where y represents the semiconductor bulk reSistance, and the barrier 

is represented by a voltage dependent capacitor C and a voltage 

dependent conductance G as shown in Figure 24. In the worst case, 

near zero bias this correction was of the order of 1%. 

The capacitance bridge used a fixed 1 MHz frequency signal of 

amplitude 15mV. In regions where the diode oapaoi tance "Tas changing 

rapidly as a function of bias, the comparatively large signal tended 

to causa a significant change in capacitance. This could be as large 

as 4% near zero bias although the effect would become less important 
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as the diode was biased further into the reverse direction. 

As the reverse bias across a diode was increased, its capacitance 

fell Until eventually it reached the same order as the stray capacitance 

of the leads and header can enclosing the diode. Measurements of the 

capacitance of header cans without diodes attached, allowed correction 

of measured values to give the true barrier capacitance. 

The quoted accuracy of the capacitance bridge was ± 1% but it can 

be seen from the above discussion that throughout the range of reverse 

bias applied to the diode, correction terms have to be applied which 

make it likely that the total error was larger than 1%. These doubts 

were reinforced by increasing discrepancies in indicated capacitance 

value on the different ranges of the instrument as the reverse bias 

across the diode was reduced towards zero •• Because of this uncertainty, 

a second series of measurements were made on equipment at the Plessey 

Company, Allen Clark Research Centre. 

4.3.2 Improved Measurements 

The experimental arrangement was basically the same as in Figure 

23 but with the Boonton 72A bridge replaced by a Boonton 75D which had 
, 

its own internal DC bias supply. The advantages of the Boonton 75D 

compared with the 72A were as follows: adjustable signal size and 

detector gain which enabled a signal of 5 mV amplitude to be used 

without loss of sensitivity; improved accuracy; and the facility to 

balance the resistive component of the diode impedance independently 

of the capacitive component. Even with these improvements it was not 

possible to make accurate measurements near zero bias because of the 

influence of the diode conductance G, which increased rapidly in this 

region and reduced the predicted accuracy of the bridge (see Table 1). 

In practical terms, there was a notable loss of sensitivity of the

balance position when the diode conductanoe approached 10-38. 
The detailed results of the capacitance-voltage measurements are 
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given in Chapter 5. The two sets of capacitance measurements agreed 

to within the quoted accuracy of the bridges at high reverse bias 

but diverged near zero bias. In general, the measurements using the 

75D bridge gave more nearly linear 1/ C2 against V plots and hence 

were more useful in determining the barrier parameters. 

4.4 ACTIVATION ENERGY MEASUREMENTS 

Measurements of diode current (at fixed voltage) as a function 

of temperature were made using the same instruments as shown in 

Figure 18 but with the diode fitted in a brass calorimeter whose 

temperature could be varied by immersion in various cooling mixtures. 

The diode temperature was monitored on a Comark Electronic thermometer 

Type 1602 which was connected to a Chrome-Alumel thermocouple in 

contact with the diode header can. The instrument calibration was 

checked using the fixed points of an ice/water mixture and a solid 

CO~methanol mixture. 

Measurements were also made between fixed points by using a heat 

leak into the calorimeter to provide warming or cooling. Very close 
I 

agreement between diode current values obtained on warming and cooling 

cyc~es indicated that the thermocouple probe was in good thermal contact 

with the diode. 

In order to minimise the effect of voltage fluctuations on the 

current readings, the diodes were reverse biased to a voltage of 110 mV. 

In this region of the current voltage characteristic, the only voltage 

dependent term is the image force lowering of the barrier height which 

is a very slowly varying function of applied bias (See equation (8) 

Chapter 2). 

As well as giving an alternative method of measuring the barrier 

height, these measurements verified that the temperature variation of 

the reverse current followed the predictions of eqUation (25) of 

Chapter 2. This enabled measurements of diode reverse current to be 
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used to deduce diode temperature during measurements of the thermal 

properties of the devices. 

4.5 THERMAL MEASURENENTS 

4.5.1 ]llectrical 11ethod 

Each silicon chip mounted on a header can had at least six diode 

contacts to its top surface. Using one of these diodes at a high 

forward current to dissipate power, it was then possible to detect 

changes in the chip temperature by monitoring the reverse current at 

constant voltage on any other diode. In practice, two sensing diodes 

were used, one adjacent to the dissipating diode and one at the other 

edge of the chip (Figure 25) so that variations in temperature across 

the chip could also be measured. The electrical connections to the 

chip were as shown in Figure 26. The power dissipated by diode L3 was 

calculated from measurements of voltage across the diode and across the 

10.lL standard resistor, and was varied between zero and 50 mW. The 

current through the sensing diodes S1 and S3 was measured at a constant 

reverse voltage of 300 mV and was in the range 30 to 60 ~ so that the 
I 

power dissipated in these diodes was negligible. 

At 300 mV reverse bias, the reverse current I is not very 

sensitive to changes in voltage, but is very sensitive to changes in 

temperature. From equations (8) and (25) of Chapter 2. 

I~ ~ AS T 2 exr [ -~ T (VB - A Y;a) ] 

where ~ Y;B -= {l, 2» NoD (V"B - YF - k Yc - Y)} YIt-
8rr~~~ t 

80 that for small changes in temperature T above the ambient TA 

Lt"\ {I& (T)} = 
I~(T,) 

2 (T -1;.,) 

lA 
')6 

+ . ~ (V» - Ll ~ ) ( T -~) • • • •• (:~ 1 ) 

k~ .,.~ 
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Once the diode reverse current IR(TA) has been measured at the 

ambient temperature TA, the diode temperature at any later time 

can be deduced from IR(T). 

Because the reverse current is insensitive to small changes in 

voltage, many potential sources of error become negligible. The 

voltage developed across the part of the silicon substrate common to 

all three diodes was measured on voltmeter (b) by disconnecting the 

voltage source 2. Even at the highest forward current through L~ 

this voltage was only 5 mV which effectively increased the reverse 

bias on S1 and S~ to 305 mV which would have caused about 0.3% 

increase in IR• This was compared with the increase of about 30% in 

IR due to the temperature rise at the same current. The temperature 

.gradient across the silicon caused a thermoelectric emf to be 

developed, but for the maximum measured temperature change across the 

silicon of 0.6°0, this voltage would have been of the' order of61 

O.5mV which was negligible. 

The main errors in the determination of temperature rise came 

from th.e errors in the measured values of reverse current (±0.25%), 

the value of (VB - A VB) <± 2"fo) and the error in the measured current 

and voltage of the dissipating diode which gave an error in the power 

of ± 2% so that the resultant error in the calculated value of $, the 

thermal resistance, was of the order of ± 10%. 

In addition to the thermal resistance, the thermal time constant 

Ir~ of the diode and header system was determined by allowing the 

system to reach a steady temperature with a high power dissipation 

and then switching off the dissipating diode and recording the 

sensing current IR as a func tion of tine. 

4.5.2 Infra-red Radiometric Method 

An alternative technique used an Infra-red Radiometric microscope 

model RM-2A manufactured. by the Barnes Engineering oompany, Stamford, 
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Connecticut, U.S.A., to measure the chip surface temperature directlY. 

The instrument uses an Indium Antimonide detector of infra-red 

radiation, cooled by liquid nitrogen, to compare the radiance of the 

sample with the radiance from a black body at room temperature. The 

resolution of the instrument was ± tOc at 200C and improved as the 

temperature increased. The same techniques of measuring power 

dissipation as described in section 4.5.1 were used. The microscope 

spatial resolution was better than 100 pm so that the temperature 

variation across the chip was detected. The use of the radiometric 

technique requires a knowledge of the emissivity of the sample surface 

relati~e to that of a black bo.dy (emissivity 1). This was obtained 

by a preliminary measurement of the radiance from a chip placed upon 

the calibrated hotplate provided with the instrument. 

The disadvantage of the radiometric method was that the measurements 

could not be made under the same conditions as the current-voltage 

measurements when the chip was enclosed in the alloy box insulated by 

expanded polystyrene. Thus the results of the radiometric method 

could not be compared directly with the measurements described in 
I 

section 4.5.1 which were made with the chip enclosed in the box and 

insulatiLon. 
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Ini tial measurementB of titanium Schottlc,y barrior diodes formed 

on n-type silicon of donor concentration Nl) '" 9 x 1020 m , showed 

minor anomalies in the current-voltaGe characteristics62 which could 

not be explained in terms of the thermionic emission theory. In order 

to check a possible explanation in terms of the thermionic-diffudon 

model, the investie:ation was widened to include silicon samplo8 of 

. 20 -3 21 -3 donor conccmtrat'\.on 2 x 10 m and 3 x 10 m as well as two 

further metals, aluminium and mar;neoium. In this chapter the reBultB 

are presented in three sections corresponding to the three barrier , 
metals used. The following chapter discusses the interpretation of 

the results in terms of the alternative theories available. 

For the purpose of identification, all the diodes were referred 

to by an alphanumeric code (e.g. DIOAL
3
) in which the initial letter 

refers to .the metal, D for titanium, E for aluminium and F for 

magnesium. The following number and leUer identifies the silicon 

slice and chip from that slice, and the final letter and number 

locate the diode on tho chip and indicate its diameter (L diodes are 

approximately 750 pm diameter and S diodes 250 fm). 

5.1 TITANIUM 

5.1.1 General 

The most striking feature of the titanium diodes was the almost 

identical behaviour of diodes from a particular slice, and the 

very small spread between slices of tho same donor concentration. 

Table 2 shows a typical set of voltage readings at constant current 

for diodes of two sizes on two chlps from the same slioe. Table 3 llsts 
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TABLE 2 Measurements indicating the uniform electrical properties 

of diodes from a particular slice. 

Chip Diode Voltage Readings in mV at ourrent level indioated 
Numbe;r I Number 

0.1000 rnA 1.000 rnA 

D12A S1 36.9 101.0 I 

S2 36.1 106.4 

S3 3608 10102 

S4 36.8 101.1 

Dl213 S2 3101 108.4 

S~ 31.1 108.1 

! 

0.1980 rnA 1.980 rnA 

D12A L1 13.8 5808 

L2 13.4 51.1 

L3 13·5 58.1 

L4 13.6 58.5 

D1213 L1 
i 

14.0 58.9 

L2 14.1 59.2 

L3 14.0 59.0 
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TABLE 3 Titanium n-type silioon barrier heights from current-voltage 

measurements. 

Diode Barrier Height VB volts N m-3 
D 

D3AS1 0.500 ± .005 9 x 10
20 

D4CS
3
: 00500 ± .005 " 

D6AS1 0.510 ± 0005 " 
D7AS2 0.495 ± 0005 " 
D8AL4 0.495 ± .005 " 
D12BL2 0.490 ± .005 " 
Mean 0.500 range ± .010 " 

DllAS
3 

0.485 ± .005 3 x 102l 

D10AS2 0.500 ± .005 2 x 1020 

- -

TABLE 4 Comparison of titanium n-type silicon barrier heights from 

activation energy plots and current-voltage measurements. 
I 

Diode Barrier Height volts 

Number 
EA/q + ~VB VB (I - V) 

DlASl 0055 ± .01 0.545 ± .005 

D2ASl 0.56 + .01 0.555 ± .005 

D4AS1 0051 + .01 0.500 ± .005 

D4CS
3 

0.51 + .01 .0.500 ± .005 
. 
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the calculated barrier heights for diodes from eight slices. 

5.1.2 Barrier Hei~ht 

(a) Current-Voltage Characteristics 

The current-voltage characteristics in most cases, could be 

interpreted in terms of equation (7) if the effect of series 

resistance was included. Figure 27 shoWB the measured current 

voltage characteristic for DIIBS
3 

which had only a limited linear 

region between 75 and 100 mV before the voltage drop across the 

series resistance became significant. However, if the measured 

values of voltage Vm were corrected for the small voltage drop across 

Im the series resistance to give V and then was plotted 
1 - expCqV!kT) 

against V, a linear plot was obtained, with slope corresponding to an 

In value' of 1.03 ± .01. This procedure was equivalent to representing 

the current-voltage characteristics by equation (16a) 

I = Is exF(~)t \ - eXf(-tf)] 
The intercept of this plot with the current axis, I (V '" 0) could then s 

be used to calculate the barrier height using equation (25) 

Is = A * 5 T 2 ~)(r [ - ~~ T ('{ - 1\ ~ ) ] 

40 -2 0 -2 where the value of A* was taken as 110 amp cm K. 

The barrier height value was relatively insensitive to the small changes 

in A* caused by electron tunnelling, scattering, and diffusion effects 

which are discussed in Appendix A. The dominant barrier lowering 

mechanism was found to be image force lowering (Section 5.1.6) and so 

the barrier height values in Table 3 have been corrected by the 

calculated value of ~ VB at zero bias. 

The mean value of barrier height of 0.50 volts agreed very closely 

with previously published results of Cowley30 (0.50 volt), Saltioh3l 
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, 32 
(0.48 volt), and Saltich and Terry (0.51 volt). 

(b) Activation Energy Measur~ment 

This technique was only used on a small number of diodes 

because of the long time period needed to complete a cooling and 

heating cyole. The axp@rimantal ~lQta of 
I 1 

In ~ a~Rinst T wore 

o linear between room temperature and -50 C, but below that the current 

was greater than that expected from the thermionic emission theroy, 

presumably due to edge leakage or tunnelling effects. By inspection 

of equation (25) it can be seen that EA, the activation energy 

obtained from the slope of the plot should be equal to q (VB - ~VB) 

if thermionic emission was the dominant ourrent transport mechanism. 

Table 4 shows the barrier height values obtained from the activation 

energy plots where ~VB was taken as the image force lowering at 

the reverse bias of 110 mV used. Also shown are the corresponding 

values from current-voltage measurements. The good ag~eement between 

the barrier heights obtained from the two measurement methods confirms 

that thermionic emission was the dominant current contribution at room 

temperature. Diodes DIAS, and D2AS, were fabricated at a very early 

stage using an unshuttered titanium evaporation and the barrier 

heights were significantly higher than all the later results using 

the shuttered evaporation technique described in Chapter 3. 

(c) Capacitance-Voltage Characteristics 

According to 

linear with slope 

equation (26) the plot of 1/C2 
2 

N E S2 and interoept 
q D si 

against V should be 

VD a VB - VF - kT/q • 

Although most of the experimental plots were linear, several were not, 

even using the improved measuring technique described in section 4.3.2 • 

Cowley30 also obtained non-linear plots which he attributed to the 

presence of an interfacial layer, even though he obtained linear plots 

with other metal oontacts using the same silioon surfaoe preparation. 

His explanation seems unlikely, espeoially as Card and Rhoderiok35 

h5 
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obtained linear plots with surface oxide layers present of thickness 

between 0.8 and 2.6(\1'1\, A much simpler exnlanation is that the lack of 

balance sensi ti \'i t:r \'then mRasurinp; capacitance n"lar zero bias, led 

to increasin~ errors in the capacitance values. As discussed in 

section 4.3.2, this lack of sensitivity was due to the high parallel 

conductance of the diodes resulting from their low barrier height. 

This explanation is consistent with Cowley's observation of linear 

plots for other metals, all of which had higher barriers than 

titanium. An additional factor contributing to non-linearity would 

be any non-uniformity in the impurity concentration through the 

epi taxial layer. Figure 28 shows some t,ypical plots of 1/ C2 against 

bias. Table 5 lists the barrier heights deduced from the intercepts. 

From the slope of the plot the value of ND was deduced and then 

VF was 

VF ::: 

calculated using the expression40 

kT 
q 

In N"C ---
N' J) 

• • • •• (32) 

The barrier heights from capacitance voltage measurements showed a 

greater spread in values than those from the current-voltage 

measurements but were generally higher. Differences betv/8en the 

barrier heights, mee.sured by the two techniques, of the orc.er of 

. 31 63 67 68 10 mV have been recorded by several preVlOUS Ylorkers ' -, , 

and repr0sent the chan{s8 in effRctive barrier h8'Lght from 7.ero electric 

field (0 - V method) to zero applied bias (r - V method) when the 

internal electric field is not zero. 

5.1. 3 ~uri ty Concentrat~~r:0iD 

Apart from DIO and Dll, all the silicon slices used in the 

investigation were supplied with a nominal doping 6.5 to 9 x 1020 m-3• 

DIO and Dll were supplied to nominal doping concentrations of 

20 ~ 3 21 -3. . 3 x 10 m and 3 x 10 m respectlvely. Table 611sts the 
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TABLE 5 Titanium n-type silicon barrier heights from Capacitance-

voltage measurements. 

Diode Intercept VD 
kT/ VB = VD + VF + q volts 

I 

D3ASl 0.23.± .01 0.52 .± .01 

D3BS1 
, 0'.23 .± .01 0.52 .± .01 I , 

D4AS1 
I 0.25.± .02 0.54 .± .02 

D4CS2 
i, 

0.23 .± .02 0.52 .± .02 

D4CS
3 

0.25 .± .02 . 0.54 .± .02 

D6AS l I, 

0.24 .± .02 0.53 .± .02 

D1AS2 0.24 .± .02 0.53.± .02 

D8AS2 0.23.± 0.1 0.52 .± .01 

D8AL
4 

II 0.22.± .02 0.51 ± .02 

DllAL2 0.23 ± .01 0.52 .± .01 

D12AL1 0.26 .± .02 0.55 ± .02 
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· experimentally determined impurity concentrations from capacitance-

voltage measurements, which correlate very well with the manufacturerS 

nominal values. It was not possible to make four point probe resistivity 

measurements because the surface n-type epitaxial layers were deposited 

on heavily doped n+ subatrgtaa. ~gbla 6 alao lists the Qltimntol of 

impurity concentration deduced from measurements of diode series 

resistance described in the following section. 

5.1.4 Additional Barrier Model Parameters 

(a) Series Resistance ~S 

In many cases the variation of the diode AC Resistance as a 

function of current followed the approximate relationship (equation 

(29) ) 

RAC ~S + n kT 

q (IM + IS) 

The value of the series resistance ~S was then obtained from the 

intercept of the plot of RAC as a function of (IM + IS)-l. In the 

cases where diffusion or other effects caused a non-linearity in the 

plot, it was still possible to obtain a rough estimate of ~s. As 

discussed in Appendix B" ~s '" ~ + RL where ~ is the resistance of 

the quasi-neutral epitaxial region, and RL is the resistance of the 

substrate, back contact and leads. RL is assumed to be independent of 

the area of the front contact S, whereas ~(O) .. f (~PI - A (0) ). 

Hence the values of RS and RL were deduced from s 

the values of ~S for the larr,e and small diameter diodes on each chip. 

Table 6 includes the values of impurity concentra"tionobtained from the 

resistivity J' using published curves40• 

(b) Epitaxial Layer Thickness ~PI 

Figure 29 shows the experimental capacitance-voltage characteristics 

plotted as 1/C2 aeainst Vfor diodes from slice DII. The abrupt change 
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TABLE 6 Diode parameters impurity concentration and epitaxial 

layer thickness. 

Impurity Concentration ND m-3 

Diode Nominal Epitaxial 
Number Nominal C - V plot ~S Value Layer thickness fm 

DIAS1 7 ',x 1020 5.1 x 10
20 - 15 ±. 1 

i 

6.1 x 1020 
D2ASl " - " 

I 

D3AS1 
• 20 9.2 x 1020 

" 6.5 Ito 9 x 10 -
D4AS1 

: tt 1.0 x '1020 - " 
! 

6.6 x 1020 
D4CS2 " - " I 

I 

D4CS
3 " 6.9 x 1020 - " 

D6AS I " 8.0 x 1020 - " I 

D1AS2 " 1.2 x 10
20 - " 

D8AS2 " 8.2 x 1020 - " 
D8AL

4 " 1.5 x 10
20 - " 

D10AL
3 

2 to 3 x 1020 "" 2 x 10
20 20 ,.,..2 x 10, 1·5 

DllAL2 2 to 3 x 1021 3.3 x 1021 2 x 1021 
" 

7n1BL4 " 3.0 x 1021 2 x 1021 
" 

D12ALl 6.5 to 9 x 10 
20 9.1 x 1020 9 x 10

20 
15 .± 1 

F19ALl 8 x 1020 7.1 x 10
20 9 x 1020 

" 
F19AL3 " 

20 
" 8.4 x 10 0 -

: 
I 
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in slope resulted from the change in impurity concentration when the 

depletion region reached the substrate. Using the value of reverse 

voltage, VE, at which the change in slope occured, and the epitaxial 

region donor concentration, ND, the epitaxial layer width ~PI was 

calculated using the relation ship 

~PI 
• j\ (\/.) = [ ZEd II" -IIE)J 'lz 

4t NlJ 

The calculated value of ~PI was 1.5 ± 0.1 jlm which agreed well with 

the nominal value quoted by the supplier. The value of ~PI was also 

CE at which the epitaxial region was oalculated from the capacitance 

S Esi 
fully depleted. CE = = 30 + 1 pF 

'J ~PI -
so that ~PI = 1.5 ± .05 ;um. 

This technique could not be used for the nominally 15 fm thick 

epitaxial layers on other slices, as the voltage required to fully 

deplete the epitaxial region would have been about 130 volts, in 

excess of the breakdown voltage of the diodes. However the excellent 

agreement between the doping concentration calculated from the series 

resistance ~s' using the nominal value of ~PI and other methode , 
showed that a value of 15 fm for ~PI was consistent with the other 

measurements. (See Table 6). 

For the diodes formed on slice DIO, the lightly doped epitaxial 

layer was almost fully depleted at zero bias, so that it was difficult 

to get a precise value for VEe (Figure 30). However, the value of 

33 ± 1 pF for Cm gave a value of 1.4 ± .05 fm for ~PI which was close 

to the nominal value of 1.5 )Um. 
(c') Thermal Para.meters 

Figures 31 (a) and 31 (b) show the measured diode temperature 

rise as a function of dissipated power for steady state conditions 

using the two techniques described in Section 4.5. For steady state 

e o -1 conditions, the thermal resistance DC had a value 215 ± 15 C watt 

o -1 for chip D12A and 230 ± 20 C watt for chip D7A using the electrioal 
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method. The radiometric microscope method gave a value of 150 .± 300 e 

watt-l for chip D7A but, as discussed in Section 4.5, this value 

cannot b8 comp~red directly with the electrical measurement, because 

the dio~l.e was uncovered for the microscope measurement. The microscope 

was just able to resolve' a temperature variation across tr.e chip at the 

highest pav/ar dissipation used, which was of the order of 100e watt-l 

across 1.4 mm. The electrical method detected a temperature difference 

between the two measurement diodes 2.1 rnrn apart, equivalent to 

12 ± 4°C watt-I. The distance between the power dissipating diode 

and the nearest sensing diode was only 0.6 rnrn so that the temperature 

between them caused only a small error in the determination of eDC. 

Pigure 32 shows the thermal behaviour of the sensing diode 

after an instantaneous reduction of the power 

to 15 ;tv{ (the power dissipated by the sensing 

which is proportional to L1 T, is plotted on a 

dissipation from 17 mW 

. {I (T) ~ dlode). In -..ll.... , 
IR ~) 

logarithmic 

scale against time; The linear relationship found between 30 and 

180 secs. corresponded to an exponential decay of temperature with a 

time constant lTH 75 ± 5 secs. The fall in temperature during 

the first few seconds was much more rapid and corresponded to the 

shorter thermal time constants of the chip/header system (see Appendix 

D). The expected therm2.1 time constant for the header can/ambient 

system was of the order of 40 sees. 

5.1. 5 Forward Current-Vol tageCharacteristies 

As di':lcus~3ecl in fjection 5. 1.21 the rna.jor featm'es of the current-

voltage characteristics for most diodes, could be represented by 

equation (16a) if the effect of series resistance wi..'.s taken into 

account. However, there wet'e deviations which were greatest for the 

diodes on the silicon of lowest impurity concentration. Figure 33 

shows the experimental values of' In [ 1- exr(..:'qv~-) ] plotted against 

diode voltage V, for large diodes from slices DIO, DIl and D12. These 
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slices were cleaned together as a group and then had the metal layers 

deposited in the same evaporation. Thus if there was an interfacial 

layer present, it would be identical for all three slices. Although 

the plots were linear, the saturation current density at any particula.r 

voltage was significantly lower for the diodes on the slices of lower 

doping, and was coupled with a higher n value (smaller slope). 

Similar, but more pronounced effects were observed on small diodes 

from the same slices, DID, Dll and D12, as shown in Figure 34. Due to 

the size difference, the current density at any given current was 

about ten times larger for these diodes compared with those shown in 

Figure 33. The plots for small diodes from slice DID became non-linear 

at high curre~t densities. In terms of equation (16a) 

I · Is e"r ( *T H I e'f(- ~)] 
the non~·linearity is equivalent to a decreasing value of IS or an 

increasing value of n. It is shown in Appendix A that this equation 

is not valid when either of these parameters is changing rapidly as a 

f~nction of voltage. 

However, in the case where the plots were almost linear, then the 

n values were determined from the slope, and the experimental results 

are presented in Table 7. The spread of n values for diodes 

fabricated on a particular slice was of the order of ± 1% for the two 

more heavily doped slices Dll and D12. For the lightly doped slice 

DID the high n values and large spread were indicative of major 

deviations from the simple thermionic emission theor.y. In Chapter 6 

it is shown that these deviations can be explained,for the most part, 

in terms of the thermionic diffusion theory. 

5.1.6 Reverse Current-Voltage Characteristics 

The activation energy plots, discussed in Section 5.1.2 (b), 

have already suggested that thermionic emission was the dominant reverse 
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TABLE 7 Experimental n values from current-voltage (r - V) 

measurements and from AC Resistance (RAC ) measurements. 

Diode n Value Impuri ty 

Number I - V RAC 
Concentration m-3 

! 

3 x 1021 
DllALl i 1.03 1.01 

DllBL4 1.02 1.01 " 
DlllS3 I, • 

1.01 1.03 " 
DUBS

3 
I 1.03 1.02 " 
I 

I 

D12AL4 . 1.06 1.02 9 x 1020 

I 

D12BL2 1.06 1.02 " 
D12AS

4 
1.08 1.06 " 

D12BS2 i 1.07 1.06 " 

DlOAL1 1.13 1.06 2 x 1020 

DlOBL
1 

. 1.16 1.07 " 
DlOAS2 > 1.18 >1.17 " 
DI0BS1 >1.25 >1.11 " 
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ourrent meohanism at room temperature. Further evidence supporting 

this hypothesis came from the reverse current-voltage characteristics. 

Figure 35 shows the experimental results plotted as 

against (VB - VF - kT/q - V)~ for several diodes. 

ln [ I..... J 
~~r(~"T)-1 

The linear relationship evident between reverse voltages of 200 mV 

and 20V was oonsistent with image force lowering of the barrier 

height being the dominant reverse current mechanism in this range. 

Table 8 lists the experimental slopes for comparison with the 

theoretical values for two impurity concentrations and two temperatures. 

Although the experimental values were close to the theoretical values, 

they were all slightly higher. A possible explanation of the 

disorepanoy is given in a previously published paper by the authorG2 , 

inoluded in Appendix E. Also disoussed in that paper is the anomalous 

ourvature of the plots for reverse voltages below 200 mV whioh is 
I 

equivalent to a decreasing value of m 
IS" (vI ,~. This 

e.r-r q kTJ - 1 
oorresponds :lio the theoretioally predioted d~crease in A** '" A'I. frf'lt 

, -+ V'!vd 
at low internal electric fields, and is evidence for the validity of 

the thermionic-diffusion theDry rather than the thermionio-emission 

theoryo The reverse current-voltage characteristics of the diodes 

formed on the thin epitaxial layers (DIO, Dll) were not as close to the 

theoretical predictions as the characteristics of the diodes discussed 

above. Figure 36 shows a comparison of three typical diodes from 

slioes DIO, Dll, and'D12. DIOAS J had a lower reverse current near 

zero bias oorresponding to the lower saturation current in the 

forward direotion (see Figure 34). The saturation current rapidly 

inoreased with reverse bias,which would be expected if the diffusion 

limi,tation on ourrent flow were being eased. Eventually for reverse 

biases greater than about 200 mV the epitaxial region would be 

oompletely depleted (see Seotion 5.1.4 (b)). As soon as the 

depletion region reaohed the substrate, an inorease in the generation 
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, 

TABLE 8 Comparison of experimental slopes of reverse current

voltage characteristics plotted as 1n IR against (VB - VF - V _ kT/q)t 

with the theoretical value q/kT [q3 ND ] t assuming image 
81T~ E si 3 

force lowering is the dominant mechanism. 

, 

Diode ! Experimental Slope Theoretical 
. ..),. ...,;i.. 

Number, volts 4 volts 4 
i 
i 

21°c I 
i 
I 

D4AS1 I 0.70 .± .02 0.56 

I " D4CS
3 

0.97 .± .02 

D7AS2 I, 
0.84 ± .02 " 

D8AL
4 

0.63 ± .04 " 
D8AS2 0.67 .± .03 " 
D12BL3 0.75 .± .03 " 

D12BS
3 

0.64 .± .04 " 

DllAL3 0 0 91 + .05 0.76 

DllA3
4 

1.02 .± .04 " 

~ 

D4AS1 0.70 ± .03 0045 

D7AS2 
0.72± .03 " 
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current would be expected22 as the carrier lifetime in the heavily 

doped substrate woul(1. be very short in comparison with the lightly 

doped epitaxial region. The same comments apply to diodes on slice 

Dll which had a higher impurity concentration in the epitaxial layer 

so that it would be fully depleted at .about 6 V reverse bias. 

5.1.7 Diode AC Resistance 

The diode AC resistance was measured for currents between 50 yA 

and 20 mAe As discussed in Section 4.2, the diode AC Resistance 

should follow the relationship 

RAC ... ~S + 
nkT 

q (1m + IS) 

as long as n is close to unity. If n and the saturation current IS 

can· be treated as constants, then the experimental plot 

against (Im t lS)-l should be a straight line of slope 

of RAC 
n~T 

q 
and 

intercept ~S on the y axis. T,ypical experimental plots for large 

diodes from slices DIO, Dll and D12 are shown in Figure 370 

The results for the diodes on slice Dll (ND = 3 x 1021 m-3) 

followed the relationship given above with a constant n value of 

1.01 as the plot was linear over the whole range of measured currento 

The n values agreed well with those calculated from current-voltage 

measurements (see Table 7). The n values for diodes from slice D12 

(N
D 

a 9 X 1020 m-3) were slightly higher but the plots were still 

linear. However, the diodes formed on the silicon of impurity 

oonoentration ND = 2 x 1020 m-3 (slice DIO) gave slightly non linear 

plots whj.ch suggested that the n value was changing as a function of 

current. For much of the lower range of current the experimental 

points could be fitted to a line with slope corresponding to 

n • 1.06 ± .010 

Figure 38 shows the experimental values of R AC for the smaller 
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diodes, which, for a given value of (Im + IS)-l had a current density 

of approximately ten times that of the larger diodes. As before, the 

diodes from the slice Dll gave linear plots with low n values which 

agreed with the values from current-voltage measurements. The results 

for diodes from slice D12 corresponded to a much higher n value of 

1.06 but the plots were still linear except for slight deviations at 

the highest currents. These deviations were discussed in the second 

published paper by the author69 , included in Appendix E. The 

treatment given there, analysed the results in terms of a var,ying 

n value, and also the measurements were extended to much higher 

current densities than those shown in Figure 38. The experimental 

plot of RAC against (Im +IS)-l for the small diodes from slice DIO 

was so markedly non linear, that it was only possible to assign a lower 

limit to the n value. This was also the case for the n value from the 

current-voltage characteristics (Figure 34) but even so the agreement 

between the two methods of estimating n was quite good. When the 

n value is changing rapidly, its estimated value using the different 

techniq~es will var,y (see Section 6.4.1 (a) ) so that the n value 

formulation becomes inconvenient. It is then somewhat simpler to 

a.nalyse the results in terms of a varying saturation current I (V). s 

In the discussion of results in Chapter 6, both approaches will be 

used. 

The series resistance for dlodes with linear plots was found by 

straightforward extrapolation of the plot to intercept the y axis 

where RAC = ~S. For non Hnear plots the series resistance could not 

be accurately determined unless the reason for the non linearity was 

known. Diode self heating would cause a linear plot at low currents 

to turn upwards at high current if the temperature rise causlng an 

increase in ~S was dominant, and the best estimate of ~S at the 

ambient temperature would be given by an extrapolation of the linear 
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portion of the plot. For plots which were linear at low current and 

then turned sharply downwards at high current, minority carrier 

injection would be a possible explanation, -'and again in that case 

extrapolation of the linear portion of the plot would give the 

unmodulated resistance of the epitaxial layer. With diffusion 

effects, the curvature would be caused by a changing value of nand 

the true value of REs would be given by the extrapolation of the curved 

plot to the y axis. The experimental values of REs used to calculate 

the impurity concentrations shown in Table 6 (see Section 5.1.4 (b) ) 

were obtained using this latter technique, as other evidence had 

suggested that thermionic diffusion effects were dominant in the 

diodes with non linear plots. In addition to the effects already 

mentioned, variation of the width of the undepleted epitaxial layer 

would be significant on lightly doped silicon and would cause 

variation of the REs value. Thus it was only for truly linear plots 

that an unambiguous determination of ~S could be made. 

5.i2 ALUMINIUM ---
5.2.1 General 

The aluminium n-type silicon Schottky barrier diodes were 

fabricated with a p-type guard ring diffused into the n-type silicon 

to a depth of 2 .± 0.5 fm (measured by a conventional lapping and 

junction staining method53). The saturation ourrent of the guard 

ring diode was of the order of 10-16 amps (measured on a similar device 

wi thout -the 8nhottky oontact ) so that tho current contribution of the 

guard ring could be neglected in comparison with the aluminium Schottky 

contact which had a saturation current of the order of 3 x 10-9 amps. 

5.2,2 Current-Voltage Characteristics 

Figure 39 shows typical current-voltage characteristics of the 
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aluminium diodes, which can be interpreted in terms of equation (16a) 

with an n value of 1.15 ± .02. The barrier height VB calculated 

from the saturation current IS using equation (25) was 0.72 ± .02 volt, 

which agreed closely with the values of 0.71 volt and 0.73 volt 

obtained by Chin062 and Yu and Snow14 , on chemically prepared surfaces 

and was between the values of 0.76 volt on cleaved surfaces and 0.50 volt 

on chemioally cleaned surfaces obtained by Turner and Rhoderickll• 

5.2.3 Diode AC Resistance 

The diode AC Resistance was measured for diode currents between 

5 fA and 10 mAt The values of RAC were then plotted against 

(Im + Is)-l and as shown in Figure 40, between 5 fA and 0.5 mA, the 

values followed the linear relationship expected from equation (29) 

with a constant n value of 1.12 ± 002 which agreed closely with the 

n value from the current-voltage characteristics. Above 0.5 rnA the 

plots became non linear and Figure 41 shrnvs the experimental results 

for aluminium diodes at high currents, and for comparison, the results 

for titanium diodes of similar area from slice DIO. 

5.3 MAGNESIUM 

503.1 General 

Magnesium n-type silicon Schottky barrier diodes have been 

reported with barrier heights as low as 0.35 vOlt64; and it was 

h!l!'d tha.t many of the anomalous effects observed on titanium n-type 

silicon l)arriers would be even more evident on magnesium barriers 

because of the lower barrier height. The magnesium barriers fabricated 

in this investigation, using the prGcedure described in C~pter 3, had 

uniform and reproducible characteristics, but the barrier height was 

muoh higher than expected. 
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5.].2 Current-Voltage Characteristic!! 

Figure 42 shows the experimental characteristics for several 
I m 

diodes, where 
I - e-qV7kT 

has been plotted on a logarithmio scale 

against diode Voltage V. The diode voltage was obtained from the 

measuredl voltage Vm by correcting for the vol tage drop across the 

series ~7esistance ~S (whose value was obtained from the AC resistance 

measure~ents). The linear plots showed that the characteristics could 

be fitted well by an expression of the form of equation (16a). Table 

9 shows the n values and barrier heights VB deduced from the slope and 

intercepts of!the experimental plots. The spread in barrier height 

values oetween 0.53 and 0.57 volt was greater than for the other metals 

but compared well with previously published results. Crowell, Shore 

and LaBate6~obtained values between 0.52 and 0.32 volt for diodes on 
> 

freshly oleaved surfaoes and on surfaces with deliberately grown 

interfacial layers, whioh had large but unspecified n values. An 

early result by Archer and Atalla6~ has been quoted as 0.37 volt 

(Cowley and Sze 37 ), 0.4 volt (Atalla29 ), and 0.35 volt (Ma, Yang and 

Chang60). The uncertainty presumably arose because the original result 

was give~ in terms of the apparent barrier height from the semiconductor 

side ( ~ VB - 4VB - VF). Ma, Yang and Chang66 have reported a barrier 

height of 0.35 volt on n-type silicon, but did not present any cnrrent 

voltage oharaoteristics, and their fabrication procedure included an 

anneal between 550
0
C and 640°C which may have caused interdiffusion 

of the silicon and magnesium as the eutectic temperature59 is 645°C. 

Th@ special precautions taken during fabrication to guard against 

the fo~ation of intermetallic compounds, and the near ideality of some 

of the I[nagnesium diodes fabricated in this study (n as low as 1.03) 

suggests that the higher values of the barrier height reported here, 

are mor~~ reliable than many of the previous results. Further evidence 

is that a value of 0055 volt for VB fits the plot of barrier height 
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TABLE 9 Experimental parameters for Magnesium n-type silicon 

Schottky barriers. 

Diode VB (I - V) n (I - V) n (RAe) 

i 
1.06 F12AS1 , 00570 ± .005 1.06 

i 

F18AS1 i 00550 ± .005 1.10 1.13 

F18AL
1

i 00555 ± 0005 1.10 1.10 
\ 

F19AS
4 

I 00530 ± 0005 1.15 1.11 

i'19A1
3 00545 ± 0005 1003 1.04 

! 

I ! 

" 
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against work function given in Cowley and Sze's paper37 much better 

than the lower values, and Saltich and Terry32 quote a barrier height 

of 0.55 volt for magnesium on n-type silicon but do not give a direct 

referenoe to the source of their data. 

5.3.3 Diode AC Resistance 

The experimental values of RAC are shown in Figure 43 plotted 

against (Im + Is)-l for diodes of two sizes. RAC was measured for 

currents between 20 yA and 5 mAo The n values deduced from the slopes 

of the plots, all of which were linear, are shown in Table 9. Comparison 

with the values obtained from the current-voltage measurements showed 

that although the agreement between the two methods of measurement was 

good, there was a large variation between diodes which did not appear 

to be linked to diode size. Edge effects were more likely to be 

significant for the magnesium diodes, which had a higher barrier than 

titanium and hence a lower thermionic emission saturation current. If 

these edge or surface effects were due to a generation/recombination 

mechanisln then the n value contribution would be expected to decrease 

at higher forward bias22• Figure 45 shows that this was the case for 

the magnesium diodes with high n values, but further discussion will be 

left until the next chapter. 

5.3.4 Capacitance-Voltage Characteristics 

The experimental values of l/c2 plotted as a function of diode 

reverse bias are shown in Figure 44. The plots were linear down to a 

bias of 30 mV where the parallel conductance of the diode became 

significant and caused a loss in sensitivity of the balance position. 

As can be seen from Table 6, the impurity concentration deduced from 

the slope of the plot, agreed well with the nominal value, and!;!, 

calculated from the series resistance. The intercept of the plot on 

the voltage axis gave a value of the built in voltage 
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VD • VB - VF - kT/q from which the barrier height was calculated 

to be 0055 ± 0001 volt. 
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CHAPTER 6 

DISCUSSION OF RESULTS 

6.1 GENERAL 

Many of the main features of the behaviour of the Schottky 

barriers inves tiga ted in this vTork have already been explained in terms 

of the existing theories outlined in Chapter 2. In particular the 

current~voltage characte~istics have been shown to correspond closely 

to a relationship of the form of equation (16a) 

I.~ Is e)4F (::T) [I - e)4F (-~)1 
wi th n values in the range 1.01 to 2. HOvTever, these n values are 

equivalent to deviations in the diode voltage of between 1 and 100% 

from that predicted by the thermionic-emission model, and in this 

chapter a closer match between experiment and theory will be attempted. 

6.2 INITIAL DISCUSSION OF RESULTS FOR TITA.I.\fIIDl BARRIERS 

'6 .• 201 Comparison of Experimental and Theoretical n values 

Table 10 shows the theoretical contributions to non-ideality from 

image force lowering, thermionic~diffusion, tunnelling and interface 

effects, expressed in terms of n - 10 These have been calculated 

using the relationships given below, at two values of band bending and 

three values of impurity concentration o 

For i.mage force lowering'O 

n = d VB -11 
(1 + - ) where 

d VB 

d V d V 

~VB 
= 

4 (V - V - kT/ - V) B F q 

For the thermionic-diffusion theory24, equation (A16) from 

Appendix A gives 

n :: 
~v ,.. J) (ph. ) 

~v + 0$ .ft-'1'L 
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The contributions to n - 1 from tunnelling effects have been 

taken from the graphical presentation of results given by Chang and 

18 Sze 0 

The contribution to n - 1 from interface effects depends not only 

on the material and thicknesS' of the interfacial layer, but nl'l() on 

DS the density of surface states35
0 Assuming DS = 0 and an oxide 

thickness [' = 1.5nm, which was a possible upper limit 44, for the 

surface preparation given in Chap,ter 3, 

.r E.s~ 
n = 1 t J\toJ'. which varies as a function of voltage and 

impurity concentration because of the presence of the factor II , the 

depletion region width. If DS is not zero then an additional contribution 

to n would be expected,which would be similar for slices with identical 

surface preparation. 

vllien there is more than one contribution to the non-ideality, it 

will be assumed that the composite value of n - 1 is just the arithmetic 

sum of all the individual contributions, as long as these are small. 

It should be noted that all the mechanisms, except thermionic-

diffusion, predict n values which. increase with increasing impurity 

concentl·ation \,lhich is contrary to the experimental results shown in 

Table 7~ All the oontributions to the n valumare voltage dependent 

and, except for surface effects discussed below, tend to increase as the 

band bending jS decreases o 

The experimental value of n = 1.02 ± 001 for diodes on slice D11 

was lower than the sum of all the possible contributions given in 

Table 10, so that it was unlikely that there was a significant 

contribution from interface effects. The sum of the image force 

lowering (IFL) and thermionic-diffusion (TD)contributions appropriate 

t'o these diodes was n = 1.03. 

Diodes on slice D12 had n values in the range 1.05 ± .03 which 

was slightly higher than the value of n = 1.04 given by the sum of IFL 
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TABLE.:.lO Theoretical contributions to non-ideality expressed as n - 1 

Slice No. DIO D12 Dll 

Impuri ty 2 x 1020 m-3 9 x 1020 m-3 3 x 1021 m-3 
Concentration 

, 

Band 
Bending in 6.8 2.0 8.3 2.0 9.6 2.0 

kT/Cl units (V=O) (V=O) (V=O) 

n ,. 1 
Image Force .010 .024 .011 .035 .014 .048 
Lowering 

! 

n .... 1 
Thermionic- .057 .209 .026 .152 .013 .109 
Diffuaion 

n ... 1 
Inter!acial 
Oxide Layer .004 .008 .008 .016 .014 .029 

~=15 ,~~ DS=O 
I 

I Tunnelling < 0.01 <0.01 __ 0.01 
. n , .. 1 

~ 
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and-TD co~tributions. 

The ~ values for the diodes on slice D10 were more widely spread 

but for t~e larger diodes n = 1011 ± .05 which was greater than the 

value of ~ = 1.07 given by the sum of the IFL and T.D contributions o 

However, the most important feature of both the experimental and 

theoretical results for this material l'laS that the n value was 

increasin~ rapidly as a function of voltage applied to the diode. 

One contribution to non-ideality which has been neglected so far, 

is that f:rom sUFface effects22 • Although generation and recombination 

currents can result in n values as high as two, their contribution 

decreases as the diode is biased further into the forward direction 

and the t~ermionic-emission currents dominate o The experimental results 

discussed in Sections 6.5 and 6.6 show that for the titanium silicon 

diodes the n values increased as the diodes were further forward biased, 

so that it was unlikely that surface effects were making a significant 

contribution to the non-idealityo This was confirmed by the reverse 

current-voltage characteristics (Section 5.1 0 6) which were dominated 

by thermionic-emission effects. Howeve~ later measurements on 

aluminium and magnesium barriers (see Section 6.3.2) showed that in 

some cases surface effects could be importanto 

6.2.2 Comparison of Saturation Curr.ents 

Figures 33 and 34 show that for the diodes from the slices of 

different impurity concentration, there was a corresponding change in 

the saturation current values IS (V = 0) given by the intercepts on the 

current ~is. 

Fro~ eq ua ti on (A 1,2) of Appendix A 

:r, 51' fey 1 Nt. 'leo 

I + J><rv 
eKl' [ -;T( V" - M,,)] 
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'= 
(

cy I1v,& 
~p k-r 

\ + P/J" 

l V .. tN~v(oe"f(-&)~ 

so if var:Lations in f p f q can be neglected, the expression in the 

square brlilckets can be taken as equal for all three impurity 

concentrations. In this case the saturation currents should be in 

the same fa tic as exp( ~TA VB) Table 11 shows the theoretical 

values of this 1 + DIS" expression together wi th the 

experimen'!;al results for large and small diodes on each of the three 

silicon slices of different impurity concentrationo The agreement 

was good ~d suggested that the model used to derive equation (A12), 

which included image force effects and thermionic-diffusion, adequately 

described the experimental behaviour. The effect of variations in 

Jp Jq would be to reduce the saturation current at low internal 

electric fields (low J' ) and would be most significant for the diodes 

on silicon of lowest impurity concentration. 

Tabl~ 12 lists the experimentally measured and theoretically 

calculate4 values of the same parameters at a forward bias of 120 mV, 

and again the agreement was good although the experimental value for 
i 

the light~f doped silicon was low. This may have been due to the 

reduction in J
P 

fq at low internal electric field discussed above. 

602o~ Preliminary Conclusions 

The Inain features of the non-ideality of the titanium n-type 

silicon d:~odes have been explained in terms of a model where thermionic 

diffusion and image force lOl'l"ering effects are dominant. Alternative 

models have been rejected either because they predict behaviour which 

haa the wfong dependence on impurity concentration (tunnelling or 

interfacial layer effects) or because they predict behaviour which had 

the wrong dependence on bias voltage (surface effects). 

In ofder to check these conclusions, the analysis of the results is 
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TABLE 11 Diode model parameters, and a oomparison of experimental 

saturation ourrents with the theoretioal model prediotions at zero 

bias, for three impurity concentrations. 

~ Parameter DIO D12 D11 

,[v 0.16 0.35 0.63 

i VF volts 0-301 0.269 0.232 

ft 6.8 8.1 9.6 
i D 

1 + /~v 2033 1.53 1.27 

. AVB mV 6.4 9·9 14.0 

N ormal:i,sed ~r(-V#l 
0.41 0.70 I 

Ratio I -+ .:J:>/Jv \ 

Experimental rsma11 
0036 0.75 1 diodes 

Ratio of IS , 
large 

Values l diodes 0034 0·73 1 

I 

TABLE 12 As Table 11, but at a forward bias of 120 mV • 

~ Parameter DIO D12 D11 

j3 2.1 3.4 4.8 

1 + D /~" 3.76 1·95 1.42 

~V'~ B- mV 4.8 7.9 11.7 
.. 

(~AI/B) .. 
Normalised' e.Xf K:T 0.29 0.63 1 

Ratio I + J>~v 

Experimental i:small 0.20 0.61 1 
diodes 

Ratio of IS 
large 0.21 0.62 1 

Values diodes 
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~xtended below to include the wider variation of parameters which 

was carried out in the experimental programmeo Thus far, only the 

theoretical predictions for variation of impurity concentration Nn 
have been compared with experimento In the next section the effect of 

changes in barrier height VB is checked by analysing the results 

for aluminium and magnesium barriers, and then the analysis is 

extended to higher current densities. This enables the experimental 

dependenoe of; the n value and the saturation current IS on band bending 

~ to be compared with the theoretical predictions. 

6 .. ~ VARIATION OF BARRIER J.1ETAL 

6.~.1 Theoretical Predictions 

In the thermionic-diffusion theory, the only parameter which is 

dependent upon changes in the barrier height is the band bending 

J3 = s- (VB - VF - kT1q - V). Using the experimentally determined 
kT 

VB values for titanium, magnesium and aluminium of 0 0 50, 0.55 and 0 0 72 

vol ts respec ti vely, 'the corresponding values of J3 at zero applied 

bias are 80~, 1002, and 16090 

For a given value of band bending, the thermionic-diffusion theory 

predicts identical behaviour for all three metal silicon barriers, 

, (all other parameters such as Nn being equal) although the applied 
.;; . 

. ';' voltage needed to obtain a given band bending 'l'lill vary widelyo For 

example a band bending of 5 (kT/q units) results from applied diode 

vol tages of 8~ mV, 133 mV and 30~ mV on titanium, magnesium and 

aluminium respectivelyo 

6.3.2 Comparison with Experiment 

Figure 45 shows the experimental n values for the different metal 

barriers plotted as func~ion of band bending. The n values were 

obtained from the AC resistance measurements. The incremental slope 
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Figure 45 
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of the plot of ~AC against (IE + I S)-1 i'Till be aIJproximately 

as long as the n value is constant or only slovrly varying (see 

Section 5.,1.7 and equation (29) )0 

nkT 
'}, 

Figure 45 shoVTs that apart from J!'19AS4, the results "\'Tere 

similar over the "\'Thole rcmge of band bending for the ti tE.4'1ium and 

magnesium diodes vThich Here fabricated using similar techniques. 

HOI'lever, the aluminium diodes, fabricated using the guard ring technique 

had n values which vlere higher by about 0 0 10 but "\'Thich did shovT an 

almost identical upward trend at lOVl values of fl 0 

Al though the general upW'ard trend in n value ''laS in agreement 

"\vi th the theoretical values from thermionic-diffusion theory, the 

detailed agreement 'was not very good, especially at 10i'! j3 vThere the 

n va.lues '.'ere changing rapidly. Apossible explanation of this 

discrepancy is given in the follovring section. The theoretical results 

in I"igure 45 vTere taken from Figure 54, of Appendix A. 

Tne results for diodes E1BS
3 

and }'19AS4 shOl'[ that where a high 

n value VlaS obtained at 101'1" fo:nrard bias (high J3 ) this tended to 

decrease slightly before folloi·ling the general upuard trend at 1mT J3 0 

This 1'Ti'J.S consistent vlith a. la.rge contribution to the n value fro[;1 

surface effects ao discussed in Section 6.2.10 

6.4 FURrl'£~~'l .\l1~SU1::~~8 orr TI'rfJ:TIU}1 B};.t?RIE1{S ArE HI.Gm~R CUllRL';WI' DBI~'Sn'IEs. 

6~fr.1 Varia+;ior~. oLn value as <'1 Functioll of .Band B..e.r~9JE.il 

(a) .Hethod~_of Calculating Xl value 

In the analysis of data presented in Section 6.302 the n values 

Viere calculated. from the incremental slope of the diode AC resistance 

charac t8ri8 tic vTh:Lch \Tas taken as equal to nY-1 if the n vulue VTaS 

q 
cons teD t or onl;)' changed slolrly as a fune tion of diode current. 

EO'ITeVer, the prel:i.:::linary resul ts E;hovm in 'jiligure 45 sugC8s t that the 

n value lJ.fly be varying l'D,pidly at high currents (loyrl ) 0 In this 
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case the :~ncremental slope of the AC resistance characteristic ~ 
q 

will not ~e equal to ~ but will involve terms in derivatives of n. 
q -1 d n 

It can ea~ily be shown that n * n'- (~ + IS) C-----\-, 
~ rm+IsJ 

since n is tending to increase as (~ + IS)-1 decreases' 

n will be greater than n'. 

and 

trndef the' condi tions des<il;ribed above, an alternative method of 

calculating the n value is to use the absolute value of RAC at a given 

current and substitute into equation (B14) derived in Appendix B. 

1) = R (V'r) -r'R;- nkT {I +I~O.5 R~( 0, T)[ 2. E5~ J~} I\~c. S) I L 

, ,,(~+nIs) (xErt-i\(o)) qNj)(~-Yr-kT-V) 
. V ~ 

Although this expression is expected to be valid for diode currents up 

to 10 rnA, the value of series resistance ~S = ~ + ~ and its 

voltage d~pendence must be known or assumed before the expression can 

be used tQ calculate no 

The original definition of n (Equation (A13) ) was in terms of the 

slope of the plot of ln { J _ vI 1 against V, but this does not 
1 - exp( q kT)J 

provide ru~ accurate method of estimating n for the following reasons. 

FilJstly, '~he measured voltage Vin must be corrected for the effect of 

series resistance which is difficult at high currents when R is a 
ES 

function of voltage and temperature. Secondly, when diode self heating 

becomes s~gnificant, it is clear that the experimental results cannot 

be compar~ directly with the predictions of an is.othermal theoretical 

model 0 ~lis comment also applies to the previous methods of calculating 

n. 

(b) Comparison of Experimental and Theoretical Results 

Figu~e 46 shows a comparison of the n values determined from the 

experimental data using the three techniques described above, for two 

values of the parameter RES for diode D12BS
2

o Also shown is the 

apparent value n' from the incremental slope of the AC resistance 
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characteristic. The agreement between the n values determined by the 

different techniques \'las better for RES = 1408.a. than for ~S = 1504..0-

but the main feature \,/'as' the critical dependence of n on the value of 

RES at low values of JB although the n value was almost independent of 

RES at higher j3 . 
The conclusion that n' was in general less than n would be 

consistent with the results presented in Table 7 and~Figure 45. In 

Table 7 the n t values from diode ACliesistance characteristics "lere 

lower than those n values from current-voltage characteristics, and in 

Figure 45 some of the n' values were lower than the theoretical 

predictions. 

Figures 47, 48 and 49 show the variation of n value plotted as a 

function of j3 for diodes fabricated on n-type silicon of the three 

impurity concentrations used in the experimental study. 

For comparison, the theoretical values from the thermionic~diffusion 

model, with and without the addition of image force effects, are also 

shown in these figures. The agreement with the experimental results 

was good for j3 > 5, but below this value the n values \'lere generally 

much higher than those predicted by the theory, and as discussed 

previously, the n values were increasingly dependent upon the value of 

the parameter ~S 0 

6.4.2 Variation of Saturation Current as a Function of Band Bending 

(a) Calculation of Saturation Current 

Using the estimate of RES from the diode AC resistance characteristic 

(or alternatively the value of RES which gave a good fit to the 

experimental data using the computer diode simulation model discussed in 

Section 6.4.3) the measured voltage Vm was corrected to give the voltage 

across the barrier V. The saturation current was then calculated as 

I = S 
1('/'\ 

~f(~~) -\ 
Although the value of IS was dependent upon 
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the value of ~S it was found that this dependence was not as critical 

as that of the n value o 

The theoretical saturation current values given in Figure 50 
J 

represent TTH(~ = 0) , where J TH ( V = 0 ) is the saturation current 

density from the~mionic-emission theory including image force lowering 

A VB at V = 0 ~ 2 (-.1. (v. _ b.V~)J 
:... T = A T /C.Y-f kT 13 - !\oj 

5" 
J,.~ 

In order to compare the experimental saturation current (IS) values 

with the theo~etical predictions, the values of IS must be normalised 

by dividing by the value of ITH (V = 0) appropriate to the impurity 

concentration of the diode. This involves taking a value for VB' the 

barr,ier height, and then calculating AVB in each case. Since the 

diodes formed on slice Dll had the most nearly ideal characteristics, 

the saturation current for these diodes was used to calculate I TH • 

I~(~=o)1 = Is(V=O)! (I +~) = 0.0566 N1A 
~, ~I-

and hence 

ITti ('1 .. 0) I 
,])10 

= I,./V=O)) exr [-~ (~V» (v:o){ -A~(V=O){ \] 
,.l>11 k T ,1)11 ~IO} 

I-rIi(V=O)\ : IT~(V"O)I ~~f [-.1. (11 VB (Vco)1 -L\V~(V=o)f )] 
J> 12 .lHl k 1" :;PI! .l>l2, 

This procedure is equivalent to empirically fitting the experimental 

and theoretical values at V = 0 (j> = 9.1) for diodes from slice D11. 

(b) Comparison of Experimental and Theoretical Results 

Figure 50 shows the experimental and theoretical values of 

normalised saturation current plotted as functions of band bending j3 0 

The ratio of saturation currents for the diodes on the three silicon 

slices was in-good agreement with the theoretical prediction over most 

of the range of measurements. For each impurity concentration, the 

variation of saturation current as a function of Jj was in general 
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Figure 50 Comparison of experimental results and theoretical 

predictions for variation of saturation current with band bending. 

J 

The solid lines represent the prediotions of the theoretioal model, 

whioh inoludes thermionio-4iffusion and image foroe effeots, for eaoh 

of the three imp,lrity oonoentrations used,(see Fig. 53 A.ppendix A). 
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agreement with the predictions of the model based on thermionic-

diffusion and image force effects. Although the saturation current 

values were dependent upon the value of RES for each diode, the general 

form of the variation was fairly insensitive to changes in RES. This 

is illustrated in Figure 50 by results for some diodes plotted for 
! 

various values' of RES' all of which showed a similar decrease in 

saturation current at low ;B • 
The experimental values for diodes formed on the silicon of lowest 

impurity conce~tration (D10) extended through the flat band condition 

(P = 0) into the region where the theoretical models were no longer 

valid. The main feature of the experimental results in this region was 

the continuingldecrease in saturation currento The experimental values 

. of saturation current for band bending below j3 = 2 could not be compared 

directly with the predictions of any isothermal theory because the effects 

of diode self heating 'iere becoming significanto This is illustrated in 

Figure 50 where the results for diode D12BS
3 

have been included with and 

without correction for the effect of diode self heating 

6.403 Computer Diode Simulation Ivlodel 

It was found that the comparison of experimental and theoretical 

results discussed in Section 6.4.1 and 6.4 0 2 involved a lot of numerical 

calculations which could easily be processed by a computer. An additional 

reason -for using a computer diode simUlation model is given in the 

following discussion. 

As the current density across the barrier increased, the diode 

behaviour was expected to become more complex because of the possible 

influence of diode self heating, minority carrier injection, variation 

of the width of the undepleted epitaxial layer in addition to further 

restrictions on the current flow caused by diffusion effectso In any 

given diode, one of these mechanisms may have been dominant at high 

current, but it was difficult, a priori, to decide which mechanisms to 
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neglect. The advantage of a computer model was that it could be based 

on simpl~ theory and then the additional mechanisms could be introduced 

until there were enough free parameters available that the diode 

behaviour could be matched by the model over the whole range of 

experimental measurements. The problems of using such a model have 

been discussed: in detail by Tan traporn48 
0 In particular, a close fit 

between the model and e~perimental results only shows the theoretical 

basis is adequate,if the value of the free parameters which give the 
I 

best fit are physically mean.ingful o 

Table 13 shows the relative effect of some of the high current 
I 

mechanisms calculated by the computer model given in Appendi~ C. Also 

shown are the values of ¥, the mi~ority carrier injection ratio 
! 

calculated using equation (18) of Chapter 2, which are seen to be 

negligible up to currents of 10 mAe It was suggested in Section 5.1.7 

that minority icarrier injection could have modulated the resistivity of 

the epitaxial layer and caused the observed rapid decrease in RAe at 

high currentso There are two reasons why this explanation was unlikely. 

Firstly, the theoretical prediction of 0 was too low by a factor of 
I 

between 103 and 105 to make the level of injection significant at 10 mAe 

Secondly, as shown in Figure 41, the variation in RAC at high currents 

was very similar for aluminium and titanium diodes and occurred at 

almost identical values of)6o The theoretical values of 0 
for these two diodes differed by a factor of 3 x 102 as a result of the 

difference in barrier heightso 

A typical output from the computer diode simulation model is given 

in Appendix C. For diodes on the silicon of impurity concentration 

1 20 -3 21 -3 . t 9 x 0 m and 3 x 10 m the model could match the experlmen ally 

measured values of voltage, current and AC Resistance to better than 

1% over the whole range of measuremento The model was not able to match 

the experimental results for currents greater than about 1 mA for the 
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TABLE 13 Relative effect at three current levels of diode self-

heating, minority carrier injection, series resistance modulation, 

~and reduction of saturation current by diffusion effects, for 

small diodes. 

Slice Current AT 
'6 ~S IS 

NUmber °c ~S (v.o) Is (V.O) f rnA 

0.1 0.0 1.6 x 10-11 1.01 0.95 8.8 

Dll 1.0 0.0 1.6 x 10-10 1.04 0.85 6.7 

10 0.3 1.6 x 10-9 1.07 0.81 4.6 

0.1 0.0 2.4 x 10-10 1.00 0.92 6.9 

D12 1.0 0.1 2.4 x 10-9 1.01 0.80 4·5 

10 0.8 2.4 x 10 -8 1.03 0.62 1.~ 

\ 

0.1 0.0 10-8 1.56 0.80 4.6 

! D10 1.0 0.0 10-7 2-32 0·53 2.1 
I 

10 0·7 10-6 - - -va 

0.1 - 3 x 10-6 - - 5·6 

E1 1.0 - 3 x 10-5 - - 2·9 

10 - 3 x 10-4 - - 1.2 
_______ ~___ L-- '----- . ----
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diodes on silicon of impurity concentration 2 x 10
20 

m-3 which suggested 

that the thermionic·diffusion theory ''las not adequate to describe the 

behaviour of these diodes below jS = 20 

6.4.4 Limitations.of the Theoretical Model 

In the discussions of Sections 6.4.2 and 6.4.3 , it was evi.rlent 

that the theoretical model was unable to match the experimental behaviour 

for band bending 1<2 • This section outlines some of the limitations 

of the theoretical model which explain why this disagreement occurs. 

The derivation of thermionic-diffusion theory given in Appendix A, 

assumed tlmt the shape of the potential barrier was parabolic, a 

resul t which followed from the assumption of an abrupt edge to the 

depletion region and a uniform space charge density. Ooodman46 has shown 

that the effect of the reserve layer is to reduce the effective band 

bending by one unit of kT/q • Thus for band bending of the order of 

two units of kT/q , the effect of the reserve layer is significant 

and the assumption of parabolj.c band bending is no longer valid. 

The effect of tunnelling and phonon scattering of electrons jn 

the barrier region was included in the terms f and f used in the 
q p 

model. For internal electric fields> 105 volt m-l , the variation in 

f f is small40 and the product can be treated as a constant. 
p q 

However, this value of electric field corresponds to ft of the order 

20 -3 20 -3 of 0.1 for ND = 9 x 10 m and 0.5 for ND = 2 x 10 m', and 

so the effects of changes in f f are expected to be increasingly 
p q 

important at lower values of ~. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 SUMMARY OF RESULTS 

Measurements have been made on titanium, magnesium and aluminium 

Schottky parrier diodes on n-type silicon, over a wide range of 

current density such that, in some cases, the diodes were close to 

the flat pand condition.J .. 0 (where band bending J. qjkT (V13- VF- kT - V) ) 
q 

Most of the diodes showed nearly ideal behaviour at low 

applied voltages and the current-voltage characteristics could be 

represented by the relationship 

I • IS exp(.!:)f 1 - exp
( :~v)} 

with n va~ues as low as 1.01 _ It was concluded that tunnelling, 

interfacial layer and surface effects were insignificant for such 

diodes. However, at higher current densities, many of the same diodes 

exhibited deviations from ideal behaviour, wW.ch were equivalent to 

n values as high as 1.25 , or which could be interpreted in terms of 

a rapidly decreasing saturation current IS,-

7.2 CONCLUSIONS 

The. main features of this behaviour can be explained in terms 

of a thermionic-diffusion model of current transport through the 

barrier region, which includes the effects of image force lowering 

of the barrier. The behaviour predicted by this model deviates 

increasingly from that predicted by the thermionic-emission model as 

the band bending;S and the impurity conoentration ND deorease. The 

observed oharaoteristics agree with the prediotions of the thermionic-

diffusion model for band bending in the range 9 >;8 > 2 , but do not 
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agree for values of)3 less than 2 • 

Previous calculations by Rhoderick79 show that measurements 

made on gold n-type silicon barriers (ND = 5 x 1021 m-3) are in 

agreement with the thermionic-diffusion theory at j3~10 • Cow1ey30 

and Saltich31 both obtained n values of 1.03 for titanium n-type 

silicon diodes of impurity concentrations 5 x 1021 m-3 and 5 x 1022 m-3 

respectively. Cowley's conclusion, that for his diodes an n value 

of 1.03 could be explained solely in terms of image force lowering 

effects, is c~nsistent with the results obtained in this study which 

suggest that the effects of thermionic-diffusion are very small for 

> 21 ! -3 
ND 3 x 10 m • 

The results obtained in this work suggest that for diodes formed 

on silicon of impurity concentration between 2 x 1020 m-3 and 

3 x 1021 m-3 , the thermionic-diffusion model is valid between ft a 9 

( where its predictions are very olose to those of the thermionic

emission model) and)3 = 2 • This lower limit appears to correspond 

to the limit discussed by Crowell and Sze15 , when phonon scattering 

of electrons between the barrier maximum and the metal becomes 

do~inant. It is suggested that in order to develop a theory valid 

for J' less than 2 , the diffusion analysis will have to be extended 

beyond the potential energy maximum, instead of using an effective 

thermionio-emi~sion velocity boundary condition. The analysis will 

also have to oonsider the effect of the reserve layer on the shape of 

the potential variation near the barrier. 
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APPENDIX A 

THERMIONIC-DIFFUSION THEORY 

Derivation of Current-Voltage Relationship 

The electron current density through the barrier region is due 

to a combination of drift and diffusion) 

r. == ~ [ n (X) fAn C 

whioh can be expressed as 

+ D", "dn] 
d:x:. 

J" =, ~ n(x)fh (l. ~) 
" dX 

••• t.(Al) 

where q is the magnitude of the electronic charge, n(x) is the 

density of conduction electrons at x, JA~ is the electron mobility, 

e is the electric field in the depletion region, D is the electron 
n 

diffusion constant, T is the electron temperature which is assumed 

constant through the barrier and equal to the lattice temperature, 

y6n(x) the electron quasi-Fermi energy or imref and ~ (x) the 

energy of the semiconductor conduction band are both positive when 

measured relative to the metal Fermi energy. 

ELed:rol'l 

EneY"j~ I Vc. ----
T 

--J:, 

"V» -~ if; (:x:) 1. ~ 1'\ 

I I 

o X,.,.. l\.. ---l'>11- X 

Figure 51 Electron energy levels through the barrier. 
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(\ 

n (x) = Nc e"p [ - ( 'r(~)~ (A (;C))] . • •••• (A2) 

Under steady state conditions with no recombination J is constant n . 

through the barrier, independent of x. The Figure shows the energy 

levels through the barrier inoluding image foroe lowering which 

moves the peak of the barrier from x • 0 to x • x. 
m 

Ini tially 

the approximation that the barrier height VB is independent of the 

bias voltage V will be made, because the image foroe lowering effect 

is small. 

In the region between x and the metal surface, because the m 

potential energy changes rapidly over a distance comparable with 

the electron mean free path, equations (AI) and (A2) will not be 

valid and hence the distribution of oarriers cannot be described in 

terms of an imref or an effective density of states. If this portion 

of the barrier acts like a sink for electrons, then the current flow 

oan be described in terms of an effective eleotron collection velocity 

V at the potential energy maximum, and is in faot an alternative to o 

app~ing a boundary condition to the imref at the metal surfaoe. The 

eleotron ourrent can be expressed as 

Tn = \ ( r'\yy\ - no) Vc 
••••• (A3) 

where n = n(x ) at zero bias V a 0, n D n(x ) when a bias voltage o m m m 

V is applied (V positive for forward bias). 

Under zero bias ¢r. (xm) • 0 Y (xm) - qVB so no • NC 

For a forward bias V 

nm • No exp [ - (qVB -

(AP'). qV Y(xm)· qVB and 

~,,(xm»/kT ] 

Eliminating n(x) between equations (AI) and (A2) 

oxp [ - ~ V'( T ] 

••••• (A4)-

J., =. tr.( \ ~~)Nc el<p[ -("V(x)- ¢,(X)KT ] 
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and integratjng between x and A m 

7\ 

In J eXf ('f(X)) dx 
fttNc kT k T . 

:x:'" 

:x.-=l\ - J -' e><f(CAJX)) J ¢ 
kT kT ) 

x:x'" 

= [exr(W) [~: 
"' 

= e)l.~(~) - e)<p( (/In (Xt1I) . 
. k T I k T · • • (A5) 

From (A3) and (A4) 
i 

·1 

nm = no + I n 

Nt Nc t vcNc 

eXf [- ( t VB - CP. (x .. )) 1 '" e><r( -~) 
kT J kT 

+ ~ 
~ v, Nc. 

e~r ( ¢. (X.,))::: 1 -+ L.exr ( ~) 
kT ) tVcN< kT 

••••• (A6) 

Eliminating s6h(Xm) between (A5) and (A6) 

~ JA exr( "'t(X)1 d::c. - e){f (~) 
f" Nt k T k T ) k T 

:em 

= -I - J" e~r(~) 
'it Vc Nt k T 

l\ 

Putting = J 1. eXf[C'/~x) -'" Y»)l dx. ••••• (A7) 

Vd f"kT k T J 
.:t", 
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/ 
.-~ 

~ ~)(f(\VB) 1- JV' e)(f(~) = eXf(~) - I 
,N,,,cl kT ,Ne"e kT kT 

Henoe ~ 1 Nc;c exr(-l~) [e~f(~~) - I } ... (ABl 

\ + 1yd. 

The expression for vd given in equation (A7) can be evaluated 

if some form for the potential variation through the barrier is 

assumed, such as that given in equation (3) of Chapter 2, 

v (x) = ~ (Ax - J.:/2.) - Vl!> o~:x.~l\.. 
Est 

This potential distribution results from the assumption of a uniform 

space charge density qNn between x • 0 and x. 1\ • Image foroe 

lowering of the barrier is neglected in this expression, but its 

effe~t will be small between x. x and x. J\. The potential m 

energy )t-'(x) is given by 

y (x.) -= -'{, Vex.) -

)\ 

'\, V:s - \2. NJ> (Ax - :eI
Z 

) 
Es .. 

Z. E:s~ (VB -VF - k~ - V) 
'l, N J> 

Y (l\) -= ~ (VF+V-+ kT/" ) 

'f ( XM) ~ Y (0) = \., \J.a if image force lowering is small. 

Put j3 = _I (Y(X) - '\f(I\)) 
kT 

__ I ~~[l\;-j\:x.+~J 
k T €!»~ 2 2 

= 12 NJ> (1\- ·:x)2. 

2 kTEsi. 
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Substitute t
2 

for ~ 

t = + (,,2 NpJCA-X) 
( 

N )~ 
2 kTE s' 

dt _ _ ,,2 J) 

dx. - 2kTEs~ 
From equation (A7) 

x, ... l\ 

1 = -exr [ 'f'(l\)-tv»]J_l-_ey-r["VcX)-'f(]\)l (2kTE!I~clt: 
VrJ, k T y."kT k T J~"1 NT) I 

where 

Henoe 

where 

and 

function 

:r:= x", ,"'0 
_ - e'Kf [- '\ ('>to- Vo -,"\ -v) 1 .1.. h k T ES' r e><p( ~ ">-) <\10 

kT J JAl\kT\ r- Np / J 
fJ -= 1.(v»-V,-~y"-V) 

\c.T 
It \" t.: ~ 

,~ +.l.. (2k\E.s~" e'l<f C - j2) j e"f (\:') c\1: 
M"kT ,\. Np . 
I 1;.-:0 

2-~ = \/kT(Y&-VF_k\-V) 

- ]) (~) 

Vel YJ> 

Vj) = f-V' k T 
Ji "LJ> 

LJ> = (k T E.s~)Y2. 
'J, 

2 NJ> 

••••• (A9) 

is the effective Debye diffusion 

length, and D(y) is the Dawson 
~.j 

])<J)= exr(-~') J el<or(t::l) dt 
\:"0 

which satisfies the differential equation 

and whose value can be found from tablee 50 

JD== 1-2~]) 
J~ 
or by numerical integration. 

Discussion of Parameters in the Current-Voltage Relationship 

If minority carrier ourrent can be negleoted then equation (A8) gives 

an expression for the total current density. It is convenient to 

P9 



define a saturation current density 

:J;'= 1 Neve . exr (- 1 Y, 1 
l-t vc/ k. T 1 

/0../4 

J,.ti ..... (/\ \0) 
\ ;- v(/ 

IVJ 

J TH is the limiting value of J S when vd » Vo and there is no 

diffusion limitation to the current flow. In this case the value 

of the oollection velooity v • v can be deduced from the o co 

same oonsiderations used in the thermionic emission theor,y39, 49. 

Negleoting quantum mechanical tunnelling and soattering the value 

is v -
Co -

2-

A"T/.i N, 
and when this value is inserted in equation (A8), the ourrent-voltage 

expression beoomes 

T = tT4exftkt~)[~f~;~) - I] 
i.e. equation (5) of the thermionic emission theory. 

Crowell and Sze15 have shown that tunnelling and phonon 

scattering reduce the collection velocity by factors f and f 
q P 

respectively. The value of f is obtained by averaging the tunnelling 
q 

probability over the distribution of carriers incident on the barrier. 

'It is a function of temperature and electric field at the barrier, 

but is always less than unity for conditions where the thermionic 

emission currents dominate the tunnelling currents. Electrons that 

cross the potential energy maximum at x oan be scattered baok by m 

optical or acoustic phonons before they reach the metal so that only 

a fraction f get through. The value of f is obtained by averaging 
p p. 

the probability of phonon emission over the distribution of carriers 

crossing the barrier and like f , it is a funotion of electric field 
q 

tempe ra ture. Thus the effective colleotion velooity v is given Qy c 

v • v f f where f f has a value olose to 0.5 over muoh o co p q p q 

of the range of the range of eleotrio field but falls rapidly for 
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5 -1 fields below 10 volt m • 

The full expression for the saturation ourrent density is now 

Ts = t Nt Jr}" \0 eXF (-1 V» \ 
\ +lJ(?y kT 7 

~v 

••••• (All) 

where ~v • VD/ Vo is a useful parameter whioh is almost independent 

of applied voltage. Using the following relationships, 

Vl> = f-~ kT (~ )'h. 
1, 2kTEs~ 

A* = (4-~tk) 
* 

'* rt''t 

Vc = iff" A# T2 

" Nt 

Nc = 2(2T\~1-:kTt2 

where mt is the electron effective mass for emission over the barrier 

* (see equation (6), Chapter 2) and md is the effeotive mass for the 

densi ty of states function, we can express ~v as 

~v == f-: (~ N~)Y2 (fYl/r)3~ ( ~) 
ml: j" f-p f" 

If JU~ and fp fq were independent of field, then &v would be 

bias independent and mainly a funotion of doping density ND as shown 

i~ the Figure below24• 

$v 

10' 

\0
0 r ~ n-t:~re silicon 

·10·' 

·2 
10 I I '" 

Figure 52 

~v as a function of 

donor conoentration 

ND.for n-typ~ 

silioon. 

'Ol~ 10" lOa.· IOU. IOU lOa ... 

N;p / m-3 
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However, for high barriers and reverse bias, the internal electric 

6 ~ ~ field may exceed 10 volt m and the mobility is no longer constant. 

Conversely, for low barriers and forward bias the internal field may 

5 -1 15 be below 10 volt m where the product f f starts to decrease • 
p q 

This will increase the value of dv but a more important effect will 

be the reduction in J through the influence of the term f f in v s p q c 

on the numerator of equation (AlO). 

Formulation of Theoretical Predictions for Comparison with 

Experiment 

Although equations (A8) and (A9) represent the predictions of 

thermionic diffusion theory, these analytical expressions are not 

convenient for comparison of experiment and theor,y. There are two 

approaches which can be used to reformulate the predictions embodied 

in equations (A8) and (A9). The first is to recognise that the 

'saturation current' J is a voltage dependent parameter whioh can s 

easily be evaluated from experimental values of current and voltage. 

Ts ( experimen tal) = I 
5 [e~r (~~-,-) - \] 

The second approach is based upon the use of the parameter n or 

'diode ideality factor' and it will be shown that the usefulness of 

this parameter is limited when it is varying rapidly as a function 

of voltage - in other words,in the region of greatest interest. 

Saturation Current Variation 

The theoretical value of the saturation current is given by 

equation (All) which was derived assuming that the barrier height VB 

was constant. If image force lowering of the barrier is small 

_ ( Il VB < kT/ q) then its effect can be included by rewriting 

.equation (All) as 

Ts= Sf f" ,NCo 'to 
1-+ Da .. 

l:V [ -1,(Y1>k--t V,,)] ••••• (A12) 



.. 

Treating f f as oonstant Crowell and Beguwala24 oaloulated 
p q 

Js= 
- :D JT\4 1 -+ ~v 

as a function of f3 and presented their results 

graphioally. The present work has included the 

effects of image foroe lowering and presented below are the predicted 

values of _ eXr [ - '\, (tJ. 'Is (:* -c.v" (Vl)] (I ... J)fJS I J; -
T-nt (V=O) 

as a funotion of j3 with ND as a parameter. J TH (V. 0) is the 

value of the saturation ourrent density obtained from thethermionio 

emission model including image foroe lowering, but negleoting 

diffusion effeots. 

0·' 

0.7 

0.6 

1 O.S 

~ -J,..CV10) 0.4-

0.3 

O.l. 

0., 

o :I. 3 
"'" 

s , 
ft 

NJ> IO::l1 m-3 

(cS'v = 0.35) 

NJ) 3.3)( 10'11 m-'3 

(~v=O.b3) 

#_" NJ> 1.5)( 102.0 m-3 

(dv:' 0.11 ) 

7 8 f 10 

Figure 53 Predicted deorease in saturation ourrent, due to 

diffusion and image foroe effects, as a funotion of band bending I' . 
These predicted values of saturation ourrent were obtained using a 

numerioal integration method to evaluate the Dawson funotion (see 

Appendix 0). 
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'n value' Variation 

Although the diode n value is usually defined by I a kT d In (J), 
~ ~~ 

this definition is only useful for forward voltages V » kT/ • 
q 

Following Crowell and Beguwala24 a more useful definition of n, whioh 

is valid for forward and reverse bias, is 

.l = k T 1- L" {T } I ••••• (AI3) 
n \, d V I - eXf(-j,V{T) I V 

where the n value is a funotion of voltage. Integrating equation (AI3) 

[ Ln { \ _ ;(-'~T)} r 
Vo 

jv dV 

. n~V) kT 
vo 

,henoe v dY ) 

:reV) = TN.) e,v(l, k, [I - e~F(-'JkT)J.(A14) 
\ - ~~f (-\~T) 

where J(V ) is the saturation current density at some initial o 

voltage V. Consider the case when n is a slowly varying funotion of o 

voltage suoh that, throughout the range of integration, it can be 

~reated as constant n • n (V). Then (AI4) reduces to o 

T (V) = J" (~) 

e.l'f (' Vik T) - \ 
"Kl'{"~T (v- V·t'(v.l- '1} f'r("~T) -IJ 

••••• (AI5) 

but 
J (Vo) :fs (Yo) from equation (AIO). 

exl(~\JikT) - \ 

Choosing Vo • 0, (AI5) becomes 

T" ];(0) e'r(~) [I - ~r (-tf)] 
which corresponds to the usual formulation in terms of n value 

(Equation (7), Chapter 2) when V» ~. However, it must be 
q 
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remembered that this expression for the current-voltage relationship 

cannot be used when n is ohanging rapidly as a funotion of applied 

voltage. 

To calculate the n value, we combine equations (A8) and (AlO) 

in the fom 

J = T", ( \ ;- D ~,,) r [e~r (~V/kT) -IJ 
Thus 

T.,.. (1;- :D:,8~) r ~"f("~T) T 

1 - ""f( -\ ~kT) 

J Ln {T } ~ ~ ltl (Trw) - ~v L (D ). + , 
d" I - QXr(-'tT) d V (~v+D) dV S" {T 

Neglecting image foroe lowering effects, the first term on the right 

~s zero and d~ 

dV 
• -qj kT so that 

kT J Ln r.:r } 1 dV ~\ - ~f (-'~i) 
=1-

2 

Hence 
I I 

n 

~" + 0.5 ;-r;. 
d" + .D(,B~) 

(I - zpY.z. ])) 1 -r 

(~" + D) ftYz 

••••• (A16) 

and using this relation the n value can be calculated as a function 

of band bending ~ • 

Image force lowering can be included by considering the variation 

in J TH, the thermionic emission saturation current, 

J.,.. = A" T4 eJ<f [ -\(V~-_/V8)] 

n5 



1') 

where ~\& = ~ N~ (VD-Vr - k~ -V) 4-
{ 

:3 ~~ 
8IT2~! ~ 

so kT d -- Ln (TrH) - d ~VB 

\ dV dV 

- L1 :eo ::: - _I 9./~ N 1> 14- k T /4. V 
[ 

I -3 

4 (VB - V. - k.Y" - V) 4- 8n'E:,~J [~p] 
The expression for the n value, equation (A16), beoomes 

'= ~v +" 0·5 fl-~ I ['t~N1> J4 [kT J-~ -- -- ~ --;S ..... {A17) 
$" + J)(fYz) t 37\ Es? 1 n 

The Figure overleaf shows the value of (n - 1), oaloulated using 

expression (A17), as a funotion Of~ 0 Also shown are the 

individual values of the two terms in expression (A17), for 

21 -3 Np • 10 m • 
I 
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Fi~)'.He 54- .. 
RESULTS OF COMPUTER SfMULATrON OF SCHO,TTKY BARRIER 

• COMPOSITE MODEL ~) 
X 0 I FFUSl ON MODEL (b) 
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AP~lj~mr,Y B 
----~----~.~ 

mJRIVATIon OF AN EXPRESSIOl'T 11'02 l;TO'};;; AC RESISTAlTC3 
--.------------~. ------.------ -

Diode t~odel 
----~-----

The Figure 55 ShO'NS the partition of the diode model. I and V m m 

represent th9 externally measured current and voltage, while V repC-9sents 

the part of this voltage that appears 2.c:c'oss the 'ideal' diode. The 

series resistance is split into two cCioponents because ~, the 

resistance of the quasi-neutral enita.xial region, is sensitive to 

changes in voltage and temperature, -Nhereas RV representing the 

resistance of the substrate, back contact and external lsads, is not. 

The resistance of the alloyed back contact is almost negligible. An 
71 

upper limit on its value can be calculated by treating the back contaot 

as a gold silicon junction where the dominant current transport 

mechanism is tunnelling, since the donor concentration is greater 

than 3 x 1024 -3 m • The calculated value of junction resistance 

is 0.25.n.. • 

The current-voltage relation of the 'ideal' diode is represented 

by the equation 

1m"' fyi, ~*S T2e'F[~~(VB -LW~)1 [ e~F(~~) -I] 
I + i"Sv J 

..... (Bl) 

which is derived from equation (All) of the Thermionic-Diffusion 

model given in Appendix A. 

For small temperature variations, the series resistance RS can 

. tiO 
be wrJ. tten', 

RS (V, rr) TIs (V, TA) ( _~ __ ) 2·5 
·-A 

13[3 



assuming electron mobility is the main temperature dependent factor40 

contributing to the variation of R
S

' for the donor concentrations used in 

thiA work. The variation in RS due ·to changes in the depletion 

region width can be expressed as 
) . 

~(V,T) '" ~(O,T) (xEPl-J\(V)) 

(~Pl - J\ ( 0 ) ) 

as in equation (26). These two expressions can be combined as 

~ (V, T) • ~ (0, TA) (: t 5 
(":tom - A (.~) ) 

A (~Pl - J\ (0) ) 

By inspection of the diode model shown in the Figure 

Vm = V + Im (RS + RL) 

For small changes 

11 V "" ~ V + I ~ RS + (R + RL).6 I m m S m 

and .6RS ... d RS 

dV 

.6v b. 1m ... 

Hence ~Vrfl ~ V 
-=-
~ I", .6 I", 

-r IIY\ d Rs A V --
d V b. Im 

d I 
m 

dV 

f:j, V 

+ (Rs + R\.,) 

RAe. d Vrn - -
dIm 

-(~~J-IC+~~~ + (RS+~L) 

1~9 

••••• (B2) 

••••• (B3) 



I is 3. function of voltage and tW:n)era tU-:'8 so 
ill . 

d IN'\ 

dV 

citY) 

'dV IT 

+ "dL,,1 d T 

'dT Iv dV 
••••• (B4) 

where dT is wl'itten as a total de,:,iv3.tive because the ambient 
dV -

temperature is considered constant a~:i t~a only changes in Tare 

caused direotly b,Y the inoreased pry.,,=;:- -L~;3iTlation when V is 

increased. 

Derivation of ~ 
iJ V IT 

Differentiating equation (Bl) logari'tb;nically 

1 dIN) ::: ~fen (f:f. 1\*5T2) - -e~ (I + ~ )-1 (VB-I1~)+ eY)rexr(~) -IJI\ 
I",~V aV\ Ft Jv kT L \kT ) 

and considering each term in turn. . ., . (B 5) 

I 
~ en( f f A*ST2) 
'dV f '\, . will be neglected at this stage as 

f f is a very slowly v,:;'I"Jing function of voltage. 
P <l . 

~ ~n (\ +~.) 
-aV ~v 

~ J)(f~9 == (\ - 2j3~ .Dif~)) (-..L) 
;)V (dv +D) 2JYz \kT Sv +}) 

_ .1. ( j) - D.S? -~2.) 
kT \ ]) + S v 

If image f01'ce lowering is the major contribution to 

then 

••••• (B6) 

~ VB 

- 't ~ (V$-IJ.VB ) = 't )~~ == 1, [ -fJ. V:e J 
k-r "dV kT d V kT 4(\f.B-V~- i-V) 

lAO 



== 
-l ~ Np- 4- (VB --Yr - kla -V)-/'-\-

(

3 J~ "3/ 

4 kT '8T\7.E5~ . '\, 
••••• (B1) 

1 (t'{; ) ~ 
"l. {~[e)(Fh V \ - I = " e,.; r Ik T / = k T •.... (B8) 

d'J \kT I J n (""fN,)-1 (\ - "'f(-':fT)) 

Substituting (:86), (:81), and (:88) b3.ck;~:::~o (:35) 

dI(f\ =: tIn {-(D-o.5ft~) b,. "1.3 . I } 
d V T k T CD -t- dv) -tU.=V, -k~) + (I-e"f'(-)(;.))··· (1l9) 

Derivation of 'dI.fI 
-aT IV 

Differentiating equation (B1) logarith'JIically, 

! 

1. 'dIN\ = ~kn (ff A*ST'-) - £r)(I+Jjf) - _~ (~-6V:B) + en [~f(~V)-IJ} 
1m aT dTL rl v kT . lkT 

r 

=- 2. frf" A*-S T< 

I f {\*' 5 T2. 
Jr '\t 

y. (Y)) -k 
+ ~=- 2ft 2]) f3 1 fi2 ~ (VB-VF"-k}-V) . 

d
v 

-t- J) ({jY2) 2 kT2 '}, . . 

+ ~l (VB -!:J.VJJ + t '\., V ) [\ - e)(r(-ll)] -I 
kT2. k T2. K) 

"dII'f\ = IrY\ {z. + (O.5-j3'1;.:v) f~ + 'Y-(VB-IJ.VE)- 9t/kT l.0(B10) 

"dT T ~v -+ ]) kT (l- eXr(-1iTJ)J 

By substitution of numerical values it is found that the second term 

is negligible ( rvO.1). For V> 3k~ 
q 
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1) . -'-' ~ dT 
_ 8T:t'l'3, lJJ_On OI ---------"_._--

dT 

dV 

dT dP 

dP dV 

dV 

8 (I + V dIm 
W 'ill ) 

dV 
,7here 8 is the 

w 

value of thermal resistance appropria~e to chRnges in dissipated 

power at a freCJ.uency w. (See .A:p:ger:d.ix D). Substituting the above 

expressions back into (B4). 

JIm 
dV 

_ 'Jlf1'] + k {2 -t-.l (VJ3-lJ\~-v)}[ew(I~ +V dr",,)] 
'dV T T kT . dv 

dIm f\ -IN) V 6w[2+ ~ (v~-Li V,,-V~} '= 1[", + I: eJz + ~ (~-4~ -v}l... (BII) 
d V l T kT 'J ) d Y TTL k T J 

In the limit of very low power dissipation in the diode, the second 

terms on each side of equation (Bll) can be neglected and dIm == d ~m 
dV d V I T 

The second term on the left-hand side~:rf equation (Bll) becomes 

significant when 1M V 8w [2 --t- i ('JB-l\Vg-v)l 
T kT J 

""v 10-3 

Taking e 4KR'4 looe watt -1 as a typical valu:~ the critical power 

level is I V ~ 3 mW which corresnonds to I ~ 10 rnA. The C1l2 . .. m 

second term on the right-hand Bide of equation (Bll) becomes 

significant when equal to 10-' (qIm) which is the approximate 
kT 

value of d I 
m 

~-V I T 

Approximately: 

1:8w (2.0) ~ 
T 

\0
3 

tIn') 
kT 

1M ------.. 
~ 

-3 . 
\0 300 

-3 2.5 . \0 20 . lO 
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l}::)l~i vat:Lon of dH r • 

. ~.---~-----.-..... --.- u 

dV 

Its is a fUl1c:tion of voltage and te:nperature so that 

dRS = dRS I + 

dV d V IT 

d Re. I 
d-:'j V 

dT 

dV 

d1Ks 
"dV IT 

-'Rs O,IA, T di\. = I\s a,lA T f.~;.. 2 ( \ I )2.'5 . ( ) ( 2'5[: 2 . J X 

(Xc", -1\( 0)) l TA i V 2 ("'E~P' - i\( 0)) TJ tft, (v. ~Y,- ~':< ~ v) 

dRsl 
"dT V 

_ 2·5"Rs (0) T~) (J:E?I - 1\ (v) ) 

(:::rEP' - J\ (0) 

T 1'5 

TJ\2.5 

As before dT == 8 (I + V d I ) 
dV w m m hence 

dRs 
dV 

dV 

"Rs(O,T",) I T 2 E..s;" 2 

( )
2'5 [ J~ 

(:X'PI - 1\(0) {2 1;, 1N,,(V.-VF~~-V)· 

+ 2.5 (X
EP

,-f\(V))(,1'5) 8
w1

f I!y\ + Y dI~J} 
T~'~ ~. d V 

••••• (1312) 

Substituting typical values into the above expression shows that the 

second term on the right is negligible in comparison with the first 

term for currents below 10 rnA. 

Diode AC Resistance 

Suhstitution of the above expressions back into (133) yields 

ths res'J.l t , 
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'R f\c. 
~ Rs ( V) T) -t- 1< L + bI _ (D - o· 5 ft 2. _ ~ 'If 13 + ~ 

-~) 

\I~ (J) + Sy ) 1-(\kVF-~-V) 

\- ~I(~) rt + I", 1<-s (0 IT) [ 2 f s~ 1 12} .... ( :B , 3 ) 

2 (xefl- 1\(0)) ~NJ> (VB-"F- k\-V)J 

which is valid for diode currents below 10 mAo Above this level of 

current, the terms which have been neglected in equations (Bll) and 

(B12) would be expected to become increasingly significant. 

Using the expression for the n value given in Appendix A 

equa tion (An), 

h 

(D- o.5f-~) 
CD -t- fv ) 

6 V$ 

4(Y~-VF- ~\ -V) 

then e~uation (B13) reduces to 

'R"c. " R,~JVJT) +"RL + nk T {1+4nXO.5Rs (O,T)[ 2 E.si. JYz} .. (BI4-) 
~(Im+hIs) (x"pl-A(o)) \Nj)(V:B-VF-~-V) . 

: " 
where IS is the saturation current , 

I~ II'V) 

exr(%) - I 

j 
------ -----

METAL DEPLE"TloN ~\.\"Sl- "'ElAi~AL N+ ALLoYED 
~EGrION EPITA'MAL "RECflON S\'\.13ST~AT£ coNIAc.T 

Vr-ro, 
~v ~----------------

~~ ~ 
~I Rs RL\ 1---

Figure 55 Partition of diode model into three componentsJ !ideal' I 

diode, epitaxial layer resistance, Bubstrate and back 
contaot resistance. 
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APPENDIX C 

COMPUTER DIODE SIMULA TION PROGRAM 

Description, 

Th~ program is based on the thermionic-diffusion model of Crowell 

and Sze lf5 but 'also includes image force lowering, diode self-heating 

I 

and varl,ation'of undepleted epitaxial layer width causing changes in 

the sedes resistance. A brief description of its operation is given 

below. 

Th~ input to the program consists of experimentally measured 

values of diode current, voltage and AC resistance,which are to be 

compared, wi th the model predictions calculated from the values of 

the modEl,l parameters. These are as follows (where the Fortran coding 

is given, in brackets) : barrier height VB (VBO), ambient temperature 

TA (TA), series resistance components RL and RS (RL B,nd REPI) , 

saturatiop current IS at V = 0 (ISO), impurity concentration ND (nn), 

eppaxial layer thickness ~PI (EPI), velocity ratio $v (DELTAV), 

thermal resistance E7DC (TRDC) , and in addition various constants 

such as Esi (EPSI) and q (Q). 

The program takes the first experimental current and voltage 

readings, and estimates the diode voltage using the value of series 

resistance from the model. This first estimate of diode voltage is 

then used, to calculate the band bending, image force lowering, 

depletio;n layer width J\ and the thermionicadiffusion theory 

saturati~n current. From this last parameter, a second estimate of 

the diodl~ voltage is made, which is corripared wi th the previous 

estimate, and if these are within 10-5 volt the program then prints 

out the calculated parameters including dj,ode temperature. If the 

second'e@timate of voltage is not within 10-5 volt, the calculation 
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sequence iterates until two successive values are within this range. 
\ 

In practice the values converge very rapidly to a self consistent 

answer. The sequence is then repeated for the subsequent experimental 

current readings. 

For each current reading, the computer output lists the experimental 

and predicted values of voltage and AC resistance. For convenience in 

'checking closeness of fit between the model and the experimental date, 

the program also calculate and lists the mean difference, root mean 

2 square difference and It . 

Program Listing and Output 
G 

(see following pages). 
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l"" 
fOIlTRAN 

001 
002 
003 
004 
00, 
006 

, '\ 

007 

010 

all 
012 
013 
014 
015 
C16 
017 
020 
021 
022 
023 
024 
025 
U2b 
027 
030 
031 
032 
033 
034 
035 
036 
037 
040 
041 
042 
043 
044 
ci f,5 
046 
047 
050 
051 
052 
053 
05'. 
055 
056 
0') '/ 

Ob\) 
061 
062 

063 
064 

065 
066 

200 (lOlJlW: LIS T I NG ANI> l) 1 AtlNO!i TIC :, 

DI'HHI!:.ION XI (I'll ,XV (14),X~( Lit! 
DIMI:N!:IION INII(20) 
~LAL ITH 
KEAL NC 
~EAL lM,15,150.ND 

PRO(,llAM: NONAMF 

DAtA xl/.ll,.19.1.1.1.827,l.957,3.215,4.44,7.305,lO.O,13,6, 
1 17.21,19.93,22.65,24.7/ 

DATA XG/4.5U7,6.997,24.5'15,32.11,33.16,40.38,44.64,50.03,52.6. 
1 54.43,,5.31,55.61,55.71,55.675/ 
~ATA XV/47.8,61.8,121.8,147.,151.,184.4,212.,272.,323.,389 •• 455 •• 

1 503.,5,3.,589./ 
"lDATA=l4 
EGLl=O 
c= 2.1 '.E-2 
VlJJ=0.51 
T A= 294.4'. 
~!:>J=15.3 
~SO= 1' •• 7 
~EPI=14.27 
~L=1.0 
KSO=REPl+RL 
ISO=2.334E-5 
EPI=15.E.-6 
NO=I.[21 
'lC;:2.uE25 
iU:A[)(2,911lNP 

91 FORI'IIlT (lOA3) 
92 FORMAT(IX,20A3) 

fiRlTE(3,92) INP 
VF=ALOG(NC/ND)*.8613E-4*TA 
TR=I./TA 
OELTAV=0.35 
EPSl=11.7~8.86E-12 
J=I.602E-19 
FR=2.K[PSl/(ND*Q) 
FU=VOO-VF 
TRAC= 11. 5 
TRDC=260. 
ACC=.OOOI 
~U=Fu-O.n613E-4*TA 
DF l=soRT (QU) 
~F 1 =C*S:;RT (OF 1 I 
FI=-1.161E4*(VUO-DFII 
Fv.;:SQRT(FRltbl31 
3=lJU/(O.8613E-4*TAY 
X;:~l)HT(fj) 

D=SIMPS(O.,X •• 0035,NI*EXP(-BI 
AA~TAR=ISO/(TA*TA*EXP(FI/TAI)*(l.+D/DELTAV) 
~S;:HSU ' I 

T;:TA 
ITH=ISOI(l •• D/DELTAVI 
~RITE(3,93)VHO,HSO,ISO,ITH,lPI,ND,VF,TA,D[LTAV 

93 FD~MAT(/5H VBO=,EIO.4,5H kSO=,EI0.4,511 ISO=,EIO.4./5H ITH=.flO.4. 
1 5ri EPI=,EI0.4,5H ND=,EIO.4,/15H FERMI VOLTAGE=,EIO.4,6H TAMn:, 
2 EI0.4,8H DELTAV=,EI0.4//) 

IiR I TE (3. 91t I 
94 FORMAT(lX,43rl CURRENT VOLTAGE IMPEDANCE V-JUNCTIOH, 

1 29H T-AMBI~NT k-5ERIE5 BETA ,13X,22H 15(C60) IMAG[ FORCF, 
2///) 

GllAR=O. 
Vl3Af{=O. 
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P(:.1 
P1~ 
1.l11 
1.)0 
on 
014 
015 
016 
011 
100 
101 
10Z 
103 
104 
105 
106 
101 
110 
III 
112 
113 
114 
115 
116 
117 
120 
121 
122 
lZ3 
124 
125 
126 
In 
130 
131 
132 
133 
13 f, 

135 
lJb 
131 
140 
14 1 
l l ,2 

143 
144 
145 
li,6 
147 
150 
151 
152 
153 
154 
1;5 
156 
151 
160 
1/,1 
lbt? 
16) 
lb4 
165 
166 
167 
170 
111 
172 

113 

114 
175 
116 
177 
200 
201 
202 
203' 
204 
205 

(TC I1 ,,,R! 
VI:H qQ, 
~4M~~;;fjt 
q.),lli!;() , 
D:l ')0 l~ltNDATA 
)1.(,,( 1 1= 1000I/XCI! II 
1~IXGIll-1001130,3Z,3Z 

30 D=0.31 
GOT033 

32 D=0.20 
33 XCJI!I=XCl(lI-D 

XV(II=XV(II/t.OOl 
XI (11=X!II)/t.OOL 
V,'1=XV (I) 
HI=X! II I 
I/=V~I-I~\;;RS 

Z TF::0.ll613C-4IiT 
TT::lltTR 
BU=FO-V-TF 
3=Bb/TF 
IFWl11d7d9 

11 iJRlT[(3dUlb 
18 FORMAT(26H NEGATIVE BAND tiENDING OF ,EI0.4,1H CKT/Ql) 

E38::1 
30=0. 
3=0. 
f.lDA1A::I-l 
GUi095 

19 CO'H IliUE 
DF I ::SURT Wb) 
D~ I =CltSJRT IDF I) 
FI=-1.16IE41i(VBO-DFI) 
~S=RL+REPI*(EPI-5QRT(FR/tBUII*TT*TT*5QRT(TT)/(EPI-FWI 
X::SJrn (s) 

[=.0035/0 
If(E-ACC)20.£0.21 

ZO E=AC.C 
21 )=SIMPS(O.O.X.E.NI/tEXP(-B) 

IS=AASTAR*T*T*EXP(Fl/TI/ll.+D/DELTAVI 
vO::V 
V::TF~ALOGll.+IM/151 
I/~\=V+ IM*R5 
T::TA+rR0C*IM*VM . 
~ES::RS+(I.+1M.0.5*R[Pllt5QRT(FH*TT/UUI*Tl*TT/IEPI-FWI)/ 1 

1 (IM/TF*(I./(I.-EXP(-V/TFII-IZ5*OFI/UB-IO-.5/X)/10+DfLTAWl» 
IF(AUS(1/8-V)-I.E-513.3.Z 

3 C()NT!r~UE 
D;,,=XG(II-RLS 
Dv::XV (I I -V~I 
SLi f,i,:: lltlAR + LlCi 
I/cJAI!::VllflR+DV 
5U~SU=SuMSQ+DG~()G 
SU~12 ~ S0:·\Z + 0V ltDV 
SCrlI=GCHI+DG*DG/RE5 
VCHI=vCHI+UV*DV/VM 
ilRITE(3,4) HI,XV(I).xGCl).VM.RE5.V.T.R5.U.D,IS.DFI,OV.DG 

4 FQRMAT(/3(IX.El0.41/Z(11X,911X.ElO.4)/» 
XV(!)=DV 
XCi(I)=DG 

90 CONTI hUE 
95 CONT I rlUE 

F:NDATA 
Sc.IAR=GBAR/f 
VuAH= VU/d,/1' 
z~:;~ehR*SUHT«F-l.)/SUMSU) 
ZV=VbAR.SUHT(lf-I.I/SUMZ ) 
SJMSU=~~RT(SUMSU/F) 
SUM2::~JRTI5UMZ/f) 
~RIT[(3.100)VllAR.GBAR.5UM2.5UM5Q.VCHI,CiCHI 

I I(XVIl) .XG(I».I=I.NDATAI 
100 FORi-IAT (/ /1311 DIFFERENCI:.S: / ,5f! NEAN.bX.2 (IX,EIO.41/5H RM5 ,6X, 

I 2(lX,EIO.4)/6H CHIS~.5X.ZIIX.EIO.4)//14(11X,ZI1X.EI0.41/)1 
NDA::/ILlA TA-1 
liklTEl3.60INOA 

60 ~aRMAT(lX.13. 20H DEGREES Of FREEDOM./I 
IF(EBU)tl02,B02.800 

800 iJH lIE (3. GO 11 
801 FORr·IAT (50H SEE HENl5CH $7.5.PZ03 
80Z CONTINUE. 

STOP 
~E.TURN 
END 
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FORTRAN 

001 
OOl 
003 
OO't 

FOIHHAN 

001 
002 
003 
004 
OO~ 

006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 
024 
025 
026. 
027 
030 
031 
032 
033 

aDO SOURCE LISTING ANU DIA~ND5TIC~ 

FUNCTION f(X) 
FftEXP(X~X) 
RETURN 
END 

200. 50UHCE LI5TIN~ ANU OIA~NOSTIC~ 

FUNCTION 5IMP5(XL,XU,~~S,N) 
'l~IAX= 127 
"1=0 
FANDL=F(XL'+F(XUI 
:>LD=O.O 
DX=XU-XL 
SH1P5=0.0 
EVEr·l5=0.0 
JOD5=0.0 

90 -;=1)\1,0.5 
X=XL+H 
JLD=5IMPS 
JDD5=QDDS+EVF.NS 
EVEN5=0.0 
EVEN5=EVENS+F(XI 
X=X+DX 
'l= ~I+ 1 
Ir (X-XU) 1.2.2 

2 DX=H 
51MP5=(FANDL+4.*EVENS+2.*ODDSI*H/3. 
IF ( SHIP 5 I 't .;l ,'t 

3 IF(AB5(OLD-SIMP51-EPSI5,5,99 
4 IF(ABS(1.-OLD/5IMPSI-EPSI5,5,99 

9~ IF(N-NMAX'98.~,5 
5 E~R=AU5(OLD-SIMPSI 

~ETURrl 
END 

\ 

. -
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I-' 
v' 
0 

-- -------.- -~~.-

-------------------------------------
D7ASI . 
VBO: .~100E+OO R50: .1527E+02 150= .2334E-04 
ITH: .3533::-04 [PI= .1500E-04 ND= .1000E+22 
FERMI VOLTAGE= .2597E-00 TAMB= .2944E+03 DELTAV: .3500E+OO . 

CURRENT V::>LTAC,E IMPEDANCE V-JUNCTION T-AMBIENT R-5ERIES 

• L,)OE-O:; .4780E-Ol .2178E+03 
.4760E-Ol .2170E+03 .4591E-Ol .2944E+03 .1533E+02 
.2047[-0] .7950[+00 

.1900F-03 .6180E-Ol .1427E+03 
.6150E-Ol .1422E+03 .5858E-Ol .2944[+03 .1534E+02 
.3022::-03 .5186E+00 

.1100E-02 .121SE+00 .4038E+02 
.1210E+00 .4030E+02 .1041E-00 .2945E+03 .1542E+02 
.7550E-03 .8484E-Ol 

.1827E-02 .1470E+00 .3083E+02 
.1463::.00 .3080E+02 .1180E-00 .294?[+03 .1544E+02 
.7353E-03 .3526E-Ol 

.1957E-02 .1510E .. 00 .2985E+02 
.1502E+00 .2983t.+02 .1200E-00 .2945E+03 .1545E+02 
.8054E-03 .1553[-01 

.3215E-02 .1844E+OO .2445E+02 
.1837E+00 .2447[+02 .1339E-00 .2946[+03 .1548[+02 
.6950E-03 -.1699E-01 

.4440E-02 .2120[+00 .2209E+02 
.2120E+OO .2215E+02 .1431E-00 .2947E .. 03 .1551E+02 

-.6600E-05 -.5552E-01 

.7305E-02 .2720E+00 • 1968t:C+02 
.2712E+00 .1914[.-02 .1575E-OO .2950[+03 .1557E+02 
.7727E-03 -.0673E-01 

.1000E-Ol .3230E+00 .1870E+02 
.3228[.00 .1875E+02 • 166!:>E-OO .29?3E.03 .1563E+02 
.1950E-03 -.5027E-01 

-------"_.:-._p.-

BETA 15(C&8) IMA"E FORCE 

.7060E+Ol .2065E+OO .2152E-04 .1392E-01 

.6560E+Ol .2163F+OO .2094E-04 .1367E-Ol 

.4765E.Ol .2675F+OO .1846E-04 .1262£-01 

.4214F+Ol .2909F+00 • 1757E:-04 .1224E-01 

.4138E+01 .2946F+00 .17441:.-04 .1218f-01 

.3587[+01 .3244F+OO .1648E-04 .1175£-01 

.3223E+Ol .3480F+00 .1584E-04 .1144E-01 

.2655F+Ol .3918F+00 • 1489E-0"t .1091E-01 

.2297F+Ol .4238r+00 .1439E-04 .1052E:-:n 

------

-::-1 



.1360E-01 .3890[ .. 00 
.3e8':1t.+00 
.9210E-04 

.1721E-01 .4550[ .. 00 
.4537[ .. 00 
.1343E-02 

.1993E-01 .5030E+00 
.5020E+OO 
.9740E-03 

I 

.2265E-Ol .5530E+OO 
.5503E .. 00 
.266bE-02 

.2470E-01 .5390E+OO 
.5868E+00 
.2179E-02 

DIFF[Q[NCES: 
MEAN .8367[-03 
RMS , .1122E-02 
CHISQ .4695E-04 

.2047E-03 

.3022E-03 

.7550E-03 

.7353[-03 

.8054E-03 

.6950E-03 
-.6600E-05 

.7727E-03 

.1950E-03 

.9210E-04 

.1343E-02 

.9740E-03 

.2668E-02 

.2179E-02 

.1806E+02 

.1!l07L .. 02 
-.4390E-02 

.1777E+02 

.1770E+02 

.6706E.-Ol 

.i767E+02 

.1754E .. 02 

.1295[+00 

.1764[+02 

.1745ET02 

.1940E+00 

.1765[+02 
~ 1740E.+ 02 
.2469E+00 

.1352E+00 

.2725E-00 

.1241E-01 

.7.950E+00 

.5186E+{)G--

.6484E-Ol 

.3526[-01 

.1553E-Ol 
-.1699[-01 
-.5552E-Ol 
-.6673E-Ol 
-.5027[-01 
-.4390E-02 

.6706E-01 

.1295E+00 

.1940£+00 

.2469E+00 

13 DE~REES OF FREEDOM. 

.1751E-00 

.1814E-00 

.1851E-00 

.1381E-OO 

.1900E-00 

-~,-.--- .. --- --- -- -"--------

.2958E+03 .1572E+02 .1953[+0::' .4:;741'+00 • 1411E-o .. .1011E-01 

.2965E .. 03 .1582E+02 .1C>99F +01 .4!l?6F .. OO .1417E-04 .9767E-02 

.2970E+O;; .1590[+02 .15501'+01 .49711'+00 .1439[-04 .9549£-02 

.2977E .. 03 • J 59'1E+O" .:426F.Ol .50861'+00 .1476E-04 .9353E-02 

- ~---.----'--. -- -------~ ------.-~- ---- ------ - ------ --.- ----.--- ." .. ---~ 

.29e.2E+03 .1607E+02 .13471:+01 .51541'+00 .1514E-04 .9230[-02 



APPENDIX D 

THEm-tAL ANALYSIS 

8. 

~I 
lA r" I l;A (l;) _I 

I 

Figure 56 

Figur~ 56 shows a thermal equivalent circuit for the diode, 

developed from the model of Strickland7). The pow.er dissipation P(l~atts) 

is analogous to current in an electrical netl"ork, thermal resistance 

e (00 watt-1) is analogous to electrical resistance, thermal capacitance 

K (joule °0~1) is analogous to electrical capacitance, and temperature T(OO) 

is analogous to voltage. TDA (t) is the temperature difference behreen 
\ 

... the metal s@miconductor barrier and the ambient, l-,hich is a function of 

time. TA represents the constant ambient temperature. 

The number of e K pairs used in the model depends upon the n n 

accuracy of representation required. . 74 75 Many prev~ous treatments ' 

have associated the E7 and K with parts of the physical structure of 
n n 

the device. (eg, e the spreading resistance through the silicon from 
1 

the active region to the substrate, 62 the silicon substrate to metal 

header bond resistance, 9) the header to ambient resistance). A more 

general treatment is to use the experimental measurements to determine 
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the number and value of components needed • 

The sum L eh = 9.J>(. 
\'\ 

where BDC is the total thermal resistance 

which can be determined by measuring TDA under a steady pqwer dissipation 

P, eDC = 1;A 0 The other components can be determined from the 
'P 

temperature decay of the diode after an instantaneous removal of the 

power dissipation at a time designated as zero. The experimental cooling 

curve (plot ofiln TDA against t) should approach a straight line (see 

Figure 32 Chapter 5 for an experimental result) which will represent the 

contribution of the network with the largest time constant 1(TH = e~ K~ 

The difference between the cooling curve and the straight line will 
I 

repres.ent the contribution of networks with shorter time constants. The 

differenoe canjbe plotted again on a logarithmic scale against time and 

the plot should approach a straight line representing the contribution 

of the n~twork with the second largest time constant o This procedure 

can be continued until a straight line plot is obtained which continues 

down to time zero, or,until the temperature differences are of the same 

order as the experimental error o 

. Onc~ the thermal network has been established, then the thermal 

response of the system canbe predicted for sinusoidal or step changes iri 

the powe~ dissipation. In general, the magnitude of the effective 

thermal impedance E3. appropriate to a sinusoidally varying component of w 

power dissipation Pw at a frequency w, will be less than E3DC • At a 

frequency of 4 kHz the appropriate valu~of 9w is expected to be of the 

order of 10°C watt-1 which corresponds to the physical model of thermal 

spreading resistance through the silicon 61 := ~ which is calculated 

o -1 ( )-1 to be 13 C watt for D = 260 pm diode diameter and $ = 1.45 1-latt 

cm-
1 

°c -1 (thermal conductivity of silicon40). The experimentally 

d~termined values of eDC are of the order of 200°C. watt-1 (see Section 

5.1.4 (c) Chapter 5)0 
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ADDENDUM 

Limitations of the the due to hot elec 

In the thermionic-diffusion theor,Y developed in A.ppendix A, 

the electron temperature Te was asswned equal to the lattice temperature 

To • However , when the electrons move under the influence of an 

electric field, they gain energ,Y so that their effective temperature 

is increased.
81 

One reslll t is that electron mObilitY )l is no lone:er 
t n "' 

constant but l)ecomes a function of field through its dependence on 

T and this is known as the hot electron effect. 
e 

In the case where the hot electron effect is neglected, tbe 

cnrrent density I
n 

is given by 

~ = 1" n f" E -+ 1" Y", ~ dx. 

and D and)1 are connected by the Einstein relation D 
n n' n 

metal semicondu.ctor barrier, deS1Ji te the large built-in 

.1s'r. In" In a 
q 

electric 

nelds, when .T 0)1 and D must have their equilibrillll1 values 
n n n 

because the electron temperature must be everywhere equal to the 

lattice temperature. However when a current flows, the electron 

temperature T may change from T and)l and D are then functions . e'" 0 n n 

of Te. Unde:c these conditions, the currrmt density is given by 

~ -= 1 n I",CTe.) E -+ t ~x (V\ ])y\(Te.) ) 

The electron temperatuT8 is evaluated hy considering the equation 

of conservation of energy fOT electrons 

~[=hE(T€-)-+ ~ S (leJ 
d:c. 

where nB(T
e

) is the Tate at wlli.ch electTons lose eneTg" to the lattlce 

by electron phonon collisions and S(T ) is the flux of energy in the - e -

positive x direction • 

.9.~l9~J_~t.i on _ o.±.fl 
In the discussion of resu.I ts (Chapter 6) experimental values of 



j3 =: ~ (VB-~ -V-kT \ are quoted .• The value of VB used in this 
kT "v ) 

expression was taken from the appropriate I-V characteristics (±.5 mV error) 

VF was calculated as 1f~ loge Nc where the donor concentration ND was 

q 1\1 
found from the C-VD measurementso V was taken as V -I R~S 

m m I" 

and hence was dependent upon the value of ~S which was obtained from 

the AC Resistance measurements. The possible error in r arising from 

error in VB and V
F 

was of the ord8r of ±. 0.4 (:!:. 10 mV) inde-pend8nt 

of current , whereas the error due to R",S er:ro~ would increase 8,t high 
Ii" 

currents. However, even at 10 mA an error of :!:. 2.5.11.. in ~S would 

only cause an error of :!:.1.0 in' .Thus the maximum error inlwas of 

the ord8r of ±. 1.4 • 

There is some doubt as to whether tbe -kT/q te:cm arising' f~rom 

oonsideration of the effect of the reserve rep;ton should be included 

in the exp:ression for J 0 Al thonesh the rese:rve region reduoes tbe 

effective surfaoe e1eotric field, J3 arises from the potential change 

through the barrier, and so will not be affeoted in the same way. 

This would contribute an additional uncertainty; in 11 1.0. 

Pb;ysical si{e:nificance of 8:::;. 0 
_"'~~~' __ '=""-"===-___ ~'A'~","" ~, __ ~=A=~' __ #'_ v= _~--"'-"""''''=:/"",~ __ A~ 

For ap-oli8d vol tR,p;es suoh thp"tj > 0 there is still a depletion 

region in the semiconduotor w"hir:h lim-i ts the ClJrreDt flovr in Bdn.:i. tion 

to the 8f'fp.ct of the series resistance of the bulk semioonductor. When 

the appli8d voltage is such that' == 0, tb8).1 the d.eplet:Lon region has 

been :cemoved, and the thermionic-Amission theory suggests that there 

is no barrier to current flow other than the bulk semiconCl.1lotor and 

the CtlTrent clenRi t,), S110111d be nV/4 whAre n :i.s t"he eleotron density 

in the oondnction band, and v is the Bverage thermal veloci t,,! of the 

electrons in the semioonducto:c. 

The experimental T8sul ts su~~eat that I;his ourrent densi t~r bas 

not heen r8ached 8.t the flat band conClition /;:0, 'f)resllmahly becau.se 



(i) the diffusion meol1an:ism has reduoed 1'1 at the surfaoe 9 and 

(ii) eleotron 'ooolin,r;' effects have reduced v below its vRlne in 

the bulk semicondur:toro Hence the 'lJottleneck' to current flow haR 

not heen completely removed at f -= 0, cmel for adrli tional increases in 

cur~('ent flow, Fl. component· of the appLtAcl voltage appears acrORS the 

barrier in aildi tion to the flat hand voltage. Negative values of .J3 
indicate the size of this additional component in units of kT/q. 

It is not suggested that the addi tionA.l voltage is in any way due 

to the creation of a negative space chage region near the barrier. 

RE"FE1C:£.NCE 

(s \) STRp\TToN R., -Ph :is. RaV. 12. b 
:> 

2002 (1962) 



AP1'ENDIX E 

PUBLISHED PAPERS 

PAPER 

'CURRENT DIFFUSION EFFF:CTS H] TITANIUM N SILICON SCHOTTKY DIODF,S i 

Reprinted from Solid State Electronics, Volume 17, 1974. 

PAFB~R 2 

'JiNTDENCF, FOR CURRti;NT DTPJi'lJSION El1'F1'CTS IN SILICON SC}]ocrTKY 

BAfmIERS nBSTJLTING FROM lViBASURElVmJlFrS ON TITANIUM-SILICON DIODES' 

Heprinten. from Il1sti tute of Ph;/sics COnfE-'TSnCe Sf)rips No. 22, Metal 

Semicrmcluctor Contacts, 1J.M. 1.8 0 cr, MancbeRter Am'i]. 197~. 
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