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Abstract—The rapid advancements in manufacturing technolo-
gies are transforming the current industrial landscape through
Industry 4.0, which refers not only to the integration of informa-
tion technology with industrial production, but also to the use of
innovative technologies and novel data management approaches.
The target is to enable the manufacturers and the entire supply
chain to save time, boost productivity, reduce waste and costs,
and respond flexibly and efficiently to consumers’ requirements.
Industry 4.0 moves the digitization of manufacturing components
and processes a step further by creating smart factories. Within
this context, one of the key enabling technologies for Industry 4.0
is the adoption and integration of the Digital Twin (DT). However,
most of the DT solutions provided by the current leading vendors
are in fact digital models or digital shadows, and not digital twins.
This is due to the fact that there is no common understanding
of the definition of the DT amongst the leading vendors, and
its usage is slightly different but showcased under the same
umbrella of DT. In this paper, a DT framework is proposed
that replicates the processes of a real production line for product
assembly using the Festo Cyber Physical Factory for Industry 4.0
located at Middlesex University. Moreover, the paper introduces
a viable framework for interlinking the physical system with its
digital instance in order to offer extended predictive maintenance
services and form a fully integrated digital twin solution.

Index Terms—Predictive Maintenance, Digital Twin, Smart
Manufacturing, Industry 4.0.

I. INTRODUCTION

The Fourth Industrial Revolution brings about fast-paced
growth in the ways industry operates through the introduction
of automation technologies that drive production-based com-
panies. The focus is now shifted towards increasing efficiency
and sustainability in manufacturing machinery by leveraging
Machine Learning (ML), Artificial Intelligence (AI), the In-
dustrial Internet of Things (IIOT), and Cyber-Physical Systems
(CPS). These technologies promise improved productivity by
enabling communication between heterogeneous systems to
transmit large amounts of data at high speeds, thus allowing
real-time monitoring and analysis of machinery parameters.
The Big Data is then processed using state-of-the-art tech-
niques to extract meaningful information to be used for
optimal decision-making.

Industry 4.0 is built upon intelligent systems and processes,
sensor networks, low latency communication, distributed con-
trol systems and specialized automation technologies. As such,

the complexity of up and coming solutions demands expert
knowledge in order to monitor the state of the machinery,
assess its performance, detect equipment failure and provide
timely maintenance. The delivery of quality products and
services strongly depends on the manufacturing production
line machines’ health, and neglect or poorly synchronised
repair action can result in additional costs and resource waste,
manifested as unplanned downtime and additional workforce.
As such, in the context of Industry 4.0, an automated solution
is required to provide monitoring, simulation, performance
evaluation and threat analysis.

The concept of Digital Twin (DT) is not a new one,
but nowadays it is evolving and becoming gradually more
prominent in the industry as companies start to see real value
in implementing it. There are various definitions for this
technology in literature and between businesses, with some
companies denominating the digital model of a physical entity
as a digital twin, when in fact it would be more appropriate
to call it a digital shadow. A working definition would be
that the DT represents the two-way interaction between the
twin entities which is a challenging task to achieve due
to the highly complex configuration. The DT needs to be
fully integrated within the Production Line Engineering (PLE)
and interact with the environment and its physical processes.
This integration becomes even more complex because of the
heterogeneity of components and the tight interaction between
software, networks/platform and physical components. Thus,
the digital twin is not just a passive replica of the real system,
but it is an active and reactive component that can continuously
evaluate the current state of its real twin and provide expert
recommendations in terms of optimising processes, predicting
and scheduling maintenance, and improving the design and
overall performance. Consequently, in this work, DT refers
to the two-way interaction between the physical entity and its
virtual replica, achieving full integration within the PLE, along
with its surrounding environment and its physical processes.
This integration indeed requires domain knowledge of the
physical asset, as well as of several enabling technologies, but
it is the successful implementation of this two-way connection
that enables harnessing the Predictive Maintenance (PdM)
capabilities of Digital Twins to increase production efficiency



and avoid equipment failure.
In this context, this paper proposes a framework for connect-

ing a real Festo Cyber Physical Factory for Industry 4.0 with
its digital representation in order to facilitate the implemen-
tation of a Predictive Maintenance model, by compensating
for the lack of run-to-failure data through error simulations
run on the physical asset and its Digital Twin. The framework
highlights the integration of the Digital Twin into a Predictive
Maintenance architecture, with the objective of leveraging the
virtual replica’s operation history and simulation capabilities
to achieve accurate and adaptive Predictive Maintenance. Ad-
ditionally, the work describes the PdM use-case of the Festo
CP Lab’s Tunnel Furnace Station, facilitated by the DT.

The rest of this paper is structured as follows: Section 2
explores related works on this subject, Section 3 provides an
overview of the Cyber Physical Factory’s configuration, with
an emphasis on the tunnel furnace station, Section 4 describes
the proposed Digital Twin framework for Predictive Mainte-
nance, and Section 5 showcases this work’s conclusions.

II. RELATED WORK

In its initial stages of development, the Digital Twin is seen
as a reliable auxiliary tool for decision-making assistance in
view of obtaining optimal functionality and productivity. The
information-driven nature of the DT along with its capability
of one-to-one replication of the physical asset’s behaviour
make it the go-to solution for process emulation. More of a
digital shadow in this instance, the technology continuously
monitors its physical counterpart, gauges its state, mirrors
it, and provides meaningful insight and suggestions that an
operator can take into consideration to decide on the best
course of action that is to be followed. Furthermore, it learns
behavioural patterns by studying the physical asset, then it uses
that information to illustrate the functioning of the real object
in hypothetical scenarios through simulations. This mimicking
characteristic of the Digital Twin allows the testing of infant
technologies, like 5G and Vehicle-to-Everything networks,
before roll out, saving resources and time [1].

Once the two-way interaction is established, the digital
shadow becomes a Digital Twin and its gainful feedback can
be cultivated to make products, operations and infrastructure
more flexible, reliable and predictable. Big Data analytics have
been proven to be a reliable tool in process optimisation for
production lines. Ferreiro et al. [2] show that power data is
a good indicator of a machine’s health status, reflecting even
slight component wear, and that faults in the equipment can
be identified by comparing real-time monitored process data
to a healthy baseline. Wang et al. [3] proposed a data-driven
Intelligent Immune System to react and adapt to manufacturing
condition changes in order to optimise the machinery’s energy
consumption and increase productivity. The work demonstrates
that the equipment’s power consumption pattern can again be a
comprehensive parameter for condition monitoring. Similarly,
Liang et al. [4] put forward a Big Data-enabled anomaly
detection method based on power data. The paper showcases
the use of pre-processing mechanisms that store, categorise,

and scale the data before extracting a set of critical features
that can indicate anomalies. The framework also includes
a threshold optimisation algorithm to allow accurate failure
detection in dynamic working conditions. Liang et al. in [5]
proposed a layered architecture for a low latency deployment
of a Convolutional Neural Network (CNN) – based prognosis
system. The proposed scheme consists of three layers that
share responsibilities effectively, keeping high-speed process-
ing capabilities on the terminal and fog layers, close to the
manufacturing equipment, and leaving the training of the CNN
to the cloud layer.

In order to achieve satisfying accuracy, Predictive Main-
tenance schemes that rely on Big Data more often than
not require massive amounts of historical failure data. This
is not always available, especially in old machinery where
maintenance records have not been kept, or in equipment
whose uptime is so crucial that no run-to-failure scenarios
were allowed. In these instances, a digital solution to emu-
late the tool’s behaviour in various states is needed. In this
direction, Hsieh et al. [6] proposed a PdM scheme based
on Virtual Metrology that can generate a baseline model for
the monitored target device to reflect its healthy state using
real process-related data. Then, the equipment’s condition is
monitored and when its state deviates from the baseline, a fault
is registered and fed into the Remaining Useful Life (RUL)
regression-based predicting module. As shown by Ortega in
[7], the concept of Digital Twin can be used to obtain accurate
fault detection and failure prediction, replacing the need for
extensive historical run-to-failure data with the DT’s ability
to replicate the functional patterns of the real equipment.
The research is built around a Digital Twin model of the
drilling station of a Festo Cyber-Physical Laboratory (CP
Lab). The work focuses on the drilling station, where an
accelerometer has been installed to record the vibration signal
that describes the drilling. The vibration data together with
the energy consumption information provided by the CP Lab
provide enough information to estimate the RUL using an
exponential degradation statistical model. Aivaliotis et al. [8]
proposed an approach based on a Digital Twin that mirrors
the physical properties of the device, generating virtual sensor
data that is synchronised and converged with the real sensors’
data, then using Prognostics and Health Management (PHM)
techniques to generate the RUL.

These applications require specialised expert knowledge of
the operation of the target device in order to build its Digital
Twin. In practice, manufacturing equipment is always adapting
to new requirements depending on the product evolution.
Barthelmey et al. [9] researched a solution to this issue,
showcasing a flexible Digital Twin architecture with an update
service to allow accommodation of new components in the
physical asset and the twin. To enable PdM capabilities, the
framework incorporates a Human Machine Interface (HMI) to
allow operators to register and label failures as they happen,
over time accumulating enough data to train a supervised Ma-
chine Learning model. Several other use-cases for the Digital
Twin for Predictive Maintenance purposes are showcased by



Fig. 1: Festo Cyber Physical Factory functional diagram.

Aivaliotis et al. in [10].
Another approach to fault detection that discards the need of

expert domain knowledge is presented in [11], whose authors
propose a diagnosis framework based on a Digital Twin that
is created during the production phase of the real asset. In this
instance, potential failure modes can be simulated in the virtual
environment before production in order to train a Stacked
Sparse autoencoder deep neural network to identify several
stages of failure. Once the product is deployed and data can
be collected in real time, Deep Transfer Learning is used to
further adapt the parameters to the new distribution of the real
data, obtaining exceptional accuracy.

In summary, the Predictive Maintenance frameworks studied
in related works are greatly dependent on historical run-
to-failure data. Some of them also use Digital Twins for
the purpose of generating synthetic data that can be used
for training Machine Learning algorithms, whether traditional
ones or deep-learning. However, the underlying assumption in
most of these works is that the configuration of the machine
remains static over its whole lifetime, to ensure a constant
distribution of the measurements used for training, validating
and testing. This is often not the case in complex manufactur-
ing pipelines, where the different order configurations would
manifest themselves through varying sensor readings patterns.
However, this paper proposes using the Digital Twin to its full
potential by also relying on it to mirror the current operational
state of the machine and its demands. By associating sensor
readings to its corresponding configuration data, then Machine
Learning algorithms can be safely trained and deployed on
appropriate distributions of data, as instructed by the DT-
provided configuration meta-data.

III. FESTO CYBER PHYSICAL FACTORY CONFIGURATION

The Festo Cyber Physical Factory at Middlesex University
is a didactic model of a product assembly line. The CP

Lab consists of two production cells (or “islands”) connected
via an Automated Guided Vehicle (AGV – “Robotino”), and
each production cell has three stations that perform individual
assembly tasks. Additionally, the production cells each have a
bridging station whose role is to pass the product to the AGV
to transport to the next island. Figure 1 illustrates this setup
and the functionalities of the stations.

Once an order is placed, a carrier tray is assigned to it for
the whole duration of the process, and it travels between an
island’s stations via a conveyor belt. The carrier, the order
number and assembly progress are checked at each station
using RFID-based identification to ensure that the order is
serviced once by every module.

The production process begins at the Base cover application
station: IR sensors check if the carrier is empty or not; if it is,
the base cover holder places a base cover on it. If the carrier
is not empty, the station will not perform any action on the
product. The second module is the Manual Station, where
an operator is required to place the order-specific Printed
Circuit Board (PCB) onto the base cover. Next is the Camera
inspection station, where a quality check is performed to verify
that the correct PCB has been selected. If the visual inspection
is successful, the product is passed to the Bridging station
where the AGV is waiting to transport the carrier to the second
production cell. If the visual inspection is not successful, the
order will be passed again through the first island’s stations,
where each of them will verify the progress of the product via
RFID and act upon the order accordingly to successfully pass
the camera inspection on the next attempt.

The product is then transported to the second island’s
Bridging station. Once at the Top cover application station,
the sensors record if the product needs a top cover; if it does,
a top cover is placed on the PCB board. The next station is
the Muscle press station, whose role is to press the upper
and lower parts of the product together. Using the Human-



Fig. 2: The Digital Twin of the Festo Cyber Physical Factory.

Machine Interface (HMI) available, the operator can set the
force that would be used to press the covers together, and the
time interval for which that force is continuously applied. The
last station is the Tunnel furnace station (or Heating station),
where the product is kept for a user-defined period of time
in the pre-heated furnace. The available HMI can be used
to modify the time and target temperature parameters and
monitor in real-time the actual temperature registered by the
PT100 sensor inside the module, as well as the total time the
carrier has spent inside the oven. If the current temperature is
lower than the target temperature, the heating element and a
cross-flow blower are turned on until the target temperature is
reached, after which a count down clock will start from the
user-picked time interval. When the time runs out, the carrier
is released and the order is ready.

It is noteworthy that the CP Lab supports the simultane-
ous production of several orders, since the stations on each
island are technically independent of each other. Additionally,
several sensors are installed on the Cyber Physical Factory:
each conveyor belt is equipped with six capacitive sensors
that detect every passing carrier at all times, RFID readers
and IR sensors at every station to assess the state of the
order and its carrier, power consumption sensors for each
island, and process-specific sensors, like temperature sensor,
camera, etc. Furthermore, each station, except for the bridging
stations, presents a HMI that offers monitoring, control, and
configuration capabilities in real time, and is controlled via a
Programmable Logic Controller (PLC).

IV. A DIGITAL TWIN FRAMEWORK FOR PREDICTIVE
MAINTENANCE

In order to build the digital twin for the Cyber Physical
Factory, we first had to build its digital shadow. The dig-
ital shadow is a virtual replica of the system that imitates
the real asset’s processes, functioning, and behaviour, in a

synchronous manner. Figure 2 illustrates the proposed digital
twin concept of the Cyber Physical Factory, with the real and
virtual asset synchronised via the two-way communication.
Thus, enabling several services like storing maintenance and
operational history, monitoring real-time data, and providing
analytics capabilities to achieve predictive maintenance, opti-
mised operations, and design improvements.

The first step was to build the 3D model of the Cyber Phys-
ical Factory using the CAD files of the system provided by
Festo. The advantages of this approach and the format used is
the the fact that the model can be broken down into individual
components, therefore allowing custom characteristics to be
applied to individual parts and even sensors.

The environment that has been chosen to create this digital
shadow is Unity, a game engine with a C# based Application
Programming Interface (API). This selection was motivated
by the flexibility offered by the game engine in terms of
simulation capabilities, licensing, and the lack of other devel-
oping environment-specific constraints. Within Unity, with an
accurate physics engine, it is possible to simulate how a design
would behave in any real-world conditions. Additionally, using
C# makes it easy to interface any libraries and does not con-
strain the user to only using proprietary functions within Unity.
Lastly, Unity is free and is not specific to any manufacturer,
so building a Digital Twin framework on it makes it more
accessible and the overall preferable option.

Once the 3D model of the system had been created, the
next goal was to leverage the two-way communication in
order to harmonize the real and digital twins. As a first step,
live tracking of the product carrier has been implemented.
For each station on the Cyber-Physical Lab, the data coming
from capacitive sensors installed on the conveyor, along with
the optical encoder measuring motor speed, is continuously
being sent to the Unity Engine. As such, carrier velocity
can be calculated from the conveyor motor RPM, therefore



Fig. 3: The second island of the CP Lab and its Heating Station.

determining carrier position in real-time. Furthermore, since
the carrier is sitting on a conveyor, slipping is probable; in
this instance, the capacitive sensors data can be used to verify
and update carrier position.

Orders can be placed on the Manufacturing Execution
System (MES) software, the main control software for the
CP Lab. The progress of the order can be viewed live via the
Unity tracking control function. RFID data from the physical
carriers are sent to Unity and added as a class property
of the simulated carrier counterpart, creating digital twins
of the carriers themselves. The data transfer between the
physical asset’s controllers and Unity is assured via TCP
socket connections, to make the system accessible for most
controllers on the market. Each PLC in the system has a
server-client connection with a script running in Unity. Using
TCP instead of UDP allows for certainty in the transfer of
data, since it requires an acknowledgment from the recipient
to guarantee the packet transmission. Data transfer frequency
is approximately 50ms, depending on other system tasks. Each
data packet is a delimited plain-text string that is parsed once
a Unity script receives it.

It is also possible to run the software system independently
of its physical counterpart. This is beneficial for testing new
efficiency solutions and improvements and for generating an
artificial historical data bank as a reference for predictive
analytics. The data transfer protocol used works both ways,
therefore Unity can send information to the physical system
to change how the system functions, such as creating or
editing an order, scheduling optimally-timed maintenance, and
re-arranging orders to obtain maximum productivity. Conse-
quently, the two-way interaction between the physical and the
virtual asset defines our Digital Twin of the Cyber Physical
Factory.

A. Use-cases

In order to leverage the Digital Twin for its Predictive
Maintenance capabilities, an initial study has been conducted
in the evaluation of the Festo Cyber Physical Factory for faults

that could induce a critical failure, meaning a failure that could
greatly reduce or nullify the productivity of the CP Lab.

As in any other complex system, there are several compo-
nents that could malfunction, resulting in extended downtime,
lower productivity, or just overall abnormal functioning. Fur-
thermore, it is sometimes difficult to trace back the source
of the failures without a proper data monitoring and logging
system that can indicate when and why the error has begun
developing. As such, in this work, intensive focus has been di-
rected towards finding the failure modes that can be prevented
and predicted via the data provided by the smart factory’s
multiple sensors, in a way that allows the detection and
classification of faults leading to the effortless identification of
the broken components. Amongst the potential critical failures,
the one that has the most devastating impact is the erroneous
triggering of the Tunnel furnace station’s Safety Shutdown
mechanism, which can induce immediate downtime of the
entire second production cell. This mechanism is a protective
measure that helps prevent fire hazards, as well as low-quality
products, however it is imperative that it is triggered as rarely
as possible, to reduce the inevitable hindering of production.

Figure 3 illustrates the subsystem of interest for the work
conducted in this study, the second island of the Cyber
Physical Factory, along with its stations, with extended focus
on the Tunnel Furnace Station. A detailed functionality of the
first island of the Cyber Physical Factory was introduced in
[12]. Raza et al. [12] introduced the digital system for process
replication of the first island of the assembly line.

The Tunnel furnace station uses a Resistance Temperature
Detector (RTD) sensor, PT100, to sense the temperature
emanated by the heating element in order to monitor and
control the process effectively. As such, the quality of the
product and the normal functioning of the station greatly
depend on the health state of the heating station, in particular
its heating element and temperature sensor. In case one of
these components becomes unreliable, the software control
mechanisms of the station will fail to stop the heating process,
resulting in abnormally high temperatures being reached. For



Fig. 4: A Digital Twin framework for Predictive Maintenance.

this reason, the machine is equipped with a hardware shutdown
mechanism which is triggered by two temperature switches
that get activated once the chamber temperature reaches 80°C.
However, the Safety Shutdown mechanism can be erroneously
triggered if:

• the temperature sensor is malfunctioning, failing to ac-
curately gauge the temperature levels, thus allowing the
heating element to increase the temperature past the user-
imposed target temperature;

• the heating element is malfunctioning, ignoring control
signals and increasing the temperature to 80°C.

In both scenarios, a fault in the temperature sensor or the
heating element would manifest itself through anomalies in
the power consumption patterns of the second production cell,
a parameter which can be monitored via the power sensors
installed on the island. Thus, the behaviour of the heating
element is reflected in the power consumption signal; if the
temperature of 80°C is reached, without it being intentionally
set as a target temperature by the operator, then the whole sec-
ond island will consume more power than what was expected
for the order configurations that are active at the time.

Another potential failure mode is the degradation over time
of the heating element, which could affect its capacity to
properly heat the product in a time-efficient manner, such that
the overall productivity of the whole Cyber Physical Factory
does not fall below a certain pre-defined threshold. Such a
failure could be caused by continuous usage in subpar working
conditions, and it could manifest itself in either increasingly
lower energy output (in which case it would take longer than

usual to heat up the element to the target temperature), or,
the opposite, which is gradually higher temperature output,
leading to fire hazards risks, and lower heating times.

Once the potential critical errors have been defined, it is
important to extract relevant data from the Cyber Physical
Factory, which constitutes the real asset of the digital twin.
However, for the successful identification and classification
of the faults, sensor data is not enough. Additional meta-data
can serve as indicators of the working regime of the smart
factory, allowing the division of the other data into multiple
categories, where each category is characterised by the same
data distribution. For example, the power consumption patterns
of the second island will differ depending on the number of
active orders being carried out at its stations.

However, in order to train a data-driven model to recognise
degradation patterns and accurately predict the station’s Re-
maining Useful Life, an abundance of historical run-to-failure
data would be needed. Given the absence of recordings of
reactive maintenance having ever been applied to the station,
faults can still be simulated through the manual ventilation
flaps installed on the module, seen in Figure 3, to reflect
the station’s behaviour in the erroneous scenarios described
above. Furthermore, the CP Lab’s Digital Twin, as previously
mentioned, can be used to emulate the physical asset to
generate additional abnormal power consumption patterns,
under various types and quantities of active product orders, to
train a degradation model that can accurately and efficiently
estimate the RUL.



B. Digital Twin Framework for Predictive Maintenance

With the use-cases for Predictive Maintenance powered
by Digital Twin defined, this paper introduces a framework
that aims to achieve optimised Predictive Maintenance by
leveraging predominantly time-indexed streaming sensor data,
along with configuration data coming from the digital twin
of the Cyber Physical Factory. The proposed framework is
illustrated in Figure 4 and consists of: the data acquisition
block, the pre-processing block, the database, the time-series
anomaly detection block, the RUL predictor block, and the
monitoring dashboard.

1) Data Acquisition Block: The data acquisition block
extracts information from both the real twin, and the digital
twin. The types of data needed for the purpose of Predictive
Maintenance are:

• Sensor data - acquired from the Cyber Physical Factory,
the sensor data consists of time-indexed sensor readings
from the PT100 temperature sensor installed in the baking
station, the power monitor attached to the second island,
as well as boolean flags readings from the capacitive
position indicating sensors. The proposed framework
communicates to the physical asset via the OPC UA
protocol for timely machine-to-machine communication
of the streaming data.

• Configuration data - acquired from the digital twin of
the CP-Lab, it consists of meta-data that describes the
configuration of the order, as well as the current load
of the second island. It is important for the later stages
of data analytics that the working regime of the smart
factory be monitored in real time, so that the power sensor
data, which describes the power consumption of all the
four stations installed on the second island, can be scaled
and normalised to reflect the power consumption of the
heating station.

2) Data preprocessing Block: The data preprocessing block
normalises the data if necessary, then it inserts it into the
database.

3) Database Block: The database of the system consists
of the relational PostgreSQL, which was optimised for time-
series analysis through the TimescaleDB extension, allowing
fast inserts of high-rate streaming data.

4) Time series Anomaly Detection: This block deals with
identifying odd behaviour in the time-series sensor data, with
respect to the expected behaviour based on the configuration
data coming from the digital twin. The anomaly detection
block’s responsibilities are also to detect outliers, change-
points, and transmit warnings with various levels of urgency
based on the found anomalies.

5) RUL Predictor Block: The Remaining Useful Life Pre-
dictor block is functionally split into two subsystems:

• Health Trend Extraction - deals with analyzing the sensor
and configuration data to extract a health trend. In order to
qualify for the use Predictive Maintenance, the extracted
health trend must fulfill (as much as possible) certain
conditions: it must be a function of time, it has to be

monotonically increasing (or decreasing) over time, and,
preferably, it has to be an injection. Popular methods
that combine features, depending on whether they can
be modelled linearly or not, are Principal Component
Analysis (PCA) and Isomap.

• RUL Estimator - extracts the Remaining Useful Life of
the component, based on the current health status indi-
cated by the health trend. A Machine Learning model is
fit to the Health Trend, and it is updated for every coming
sample. The Machine Learning algorithm that predicts the
RUL will be chosen based on the characteristics of the
health trend. In many cases, the RUL extraction can boil
down to a simple curve fitting and regression technique,
if the health trend respects the aforementioned conditions
of monotonicity and dependence on time. However, if it
does not, there are multiple other options which can be
applied, like Recurrent Neural Networks (RNNs), Long
Short Term Memory networks (LSTMs), Support Vector
Regression (SVR), etc., depending on the characteristics
of the pre-processed data. It is worth mentioning that,
even though it is preferred that the RUL be a function
of time, it can also be expressed in ”cycles” or ”orders”.
For example, the output of the RUL Estimator block can
indicate that the machine would fail in a certain number
of cycles, if a given sequence of order configurations is
to be serviced after the moment of prediction.

6) Monitoring Block: The Monitoring Block is a web
application built with Dash, which displays continuous com-
prehensive information about the current state of the real asset.
It also presents controls that can be communicated back to the
physical twin for engineered process optimisation.

C. Challenges

One of the most pressing challenges of building a digital
twin for the Festo Cyber Physical Factory, which is a sturdy
and reliable system, is the lack of historical failure data to
be exploited for predictive maintenance purposes. The smart
factory’s components have long lifespans, and, unlike in a
real manufacturing factory, the working environment is not
necessarily harsh enough to have a significant impact on the
degradation of the system. For this system and others like it, it
is important to find a digital twin solution that can be used to
generate synthetic data sets to describe faulty behaviour. In this
context, another significant challenge is creating artificial time
series data that accurately reflects the real twin’s operation
in naturally occurring erroneous scenarios. While various
intentional errors can be easily inserted into the data set used
to train the RUL Estimator, the resulting RUL may not be
a credible reference for the actual remaining useful life of
the system. As in any other Machine Learning application,
the output is only as good as the data used for training and
testing.

On the same note, another important challenge is the
validation of the results. In order to verify that the proposed
framework and, ultimately, the Predictive Maintenance algo-
rithm are accurate, meaning that the real remaining useful life



of the system is indeed correctly given by the digital twin-
provided RUL parameter, the real twin must fail naturally at
least once.

It is equally important to consider the limitations of this
framework. One of the most challenging ones is the fact that
this framework will be able to predict only failure modes
that it has been made aware of beforehand through training
data, real or simulated. The Anomaly Detection block aims
to compensate for this issue by providing warnings to the
operator when the machine behaves in a new, odd pattern
that it has never seen before. Of course, this implies that
the Anomaly Detection block will be trained to recognise
only normal functioning behaviour and known failure modes,
treating any other behaviour as anomalies. However, it also
needs to account for change point detection of a known pattern,
and advise the operator accordingly.

V. CONCLUSIONS AND FUTURE WORK

In this work, a framework for Predictive Maintenance using
Digital Twin of a Festo Cyber Physical Factory has been
proposed as a tool that can help drive manufacturing processes
in the Industry 4.0. First, the real smart factory has been
described with an emphasis on the processes involved in the
creation and completion of an order. Then, the initial stages
of digital twin development have been presented, namely the
3D modeling of the real asset in a game engine environment
such as Unity, detailing also the synchronization of the twins
with the purpose of live tracking of orders via the digital twin.
Next, a framework based on the digital twin was proposed for
achieving predictive maintenance. The introduced architecture
uses real data coming from the CP Lab for monitoring and
training purposes, along with configuration data provided by
the digital twin to establish its working regime, so that the
RUL of the target system, the Tunnel Furnace Station, can be
effectively singled out. Lastly, the active challenges that were
encountered in this study have been presented.

Future work will look into the validation and the perfor-
mance evaluation of the proposed solution. More specifically,
extensive focus will be placed on building simulation models
that can mimic the signals coming from the temperature
and power sensors installed on the Tunnel Furnace Station.
The simulators’ outputs will then be compared with the real
data coming from the Heating Station under different order
configurations. Once accurate synthetic data is obtained, we
will look into using it together with real data to build the
Predictive Maintenance model by following the framework
presented in this work. This model’s performance will be
validated by the real twin, in the case of an eventual, naturally
occurring failure. Once these feats have been accomplished,
the Digital Twin will be completely integrated within the
lifecycle of the Festo Cyber Physical Factory, and it will be
able to provide insights into its failure modes.
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