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Abstract: There has been extensive research on dimensionality reduction techniques. While these1

make it possible to present visually the high-dimensional data in 2D or 3D, it remains a challenge2

for users to make sense of such projected data. Recently, interactive techniques, such as Feature3

Transformation, have been introduced to address this. This paper describes an user study that was4

designed to understand how the feature transformation techniques affect user’s understanding of5

multi-dimensional data visualisation. It was compared with the traditional dimension reduction6

techniques, both unsupervised (PCA) and supervised (MCML). Thirty-one participants were7

recruited to detect visually clusters and outliers using visualisations produced by these techniques.8

Six different datasets with a range of dimensionality and data size were used in the experiment. Five9

of these are benchmark datasets, which makes it possible to compare with other studies using the10

same datasets. Both task accuracy and completion time were recorded for comparison. The results11

show that there is a strong case for the feature transformation technique. Participants performed best12

with the visualisations produced with high-level feature transformation, in terms of both accuracy13

and completion time. The improvements over other techniques are substantial, particularly in the14

case of the accuracy of the clustering task. However, visualising data with very high dimensionality15

(i.e., greater than 100 dimensions) remains a challenge.16

Keywords: Human-centered computing; Empirical studies; Visual analytics; Dimensionality17

reduction18

1. Introduction19

With the explosive growth in the size of available data (Big Data), there is an increasing demand20

to help users better understand the Big Data they have. A large portion of the Big Data is high21

dimensional and is notoriously difficult for humans to comprehend because of the lack of physical22

analogy of data with more than three dimensions. Various dimension reduction techniques have been23

developed to reduce the data dimensions, so they can be visually displayed [1,2]. Dimensionality24

Reduction (DR) techniques such as Principal Component Analysis (PCA) and Multidimensional25

Scaling (MDS) allow analysts to project multidimensional data to a lower dimensional (2D or 3D)26

visual display as scatterplot diagrams where patterns such as groups and outliers can be easily27

identified. The approach is widely used for explorative analysis of large information spaces.28
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However, most of these techniques are not designed for human perception, but rather optimising29

for certain metrics such as minimising the distance distortion after the projection. While these30

techniques have been shown to be very useful, they inadvertently introduced difficulties for data31

visualisation and sense making in lower dimensions such as visual cluttering that affects the32

interpretation of a projection. Moreover, with increasing dimensionality and noise in the data,33

such methods become less effective due to the curse of the dimensionality problem [3]. When34

the dimensionality is high, the distance measure becomes less meaningful as all objects tend to be35

similar and dissimilar in many ways, leading to points being projected to similar locations in the36

projection space (over-plotting problem). Given a particular pattern recognition task, often not all37

the recorded information is relevant. The irrelevant information will obscure the patterns in the38

visualization, leading to blurred group boundaries and patterns being hidden behind overlapping39

group boundaries. A recent study by Etemadpour et al. [4] compared five different DR techniques40

from the user perception perspective, and the results confirmed the two issues discussed earlier.41

Recently, there have been a number of works that aim to improve the existing dimension42

reduction techniques by producing more understandable visualisation or allowing user interaction43

during the process [5–10]. These are later summarized by Sacha et al. in their survey [11]. Among44

these, one approach is to use a supervised DR technique that employs class labels to compute the45

projection. Supervised DR helps improve visual clarity of projections but an uncluttered projection46

can hardly be guaranteed. On the other hand for explorative analysis, it is important to gain47

an overview of the data before detailed analysis [12]. Schaefer et al. [8] proposed a feature48

transformation approach that can be applied in conjunction with any existing DR technique to reduce49

the over-plotting problem and improve group separation in the visual space. The essential idea is to50

integrate prior knowledge in the projection process by extending certain features in the original data51

space before projection to achieve projections that better reveal hidden patterns in the data. Schaefer’s52

work is further extended by Pérez et al. [9,13] where interactive visualizations are proposed to53

provide analysts with more flexibility and user control over the feature transformation process.54

Although the feature transformation approach “distorts” the original feature space to a certain55

degree, testing results in both Schaefer’s and Pérez’s work demonstrate a good compromise can56

often be made between maintaining the original characteristics of the data and achieving better visual57

clarification in the final projection. This was demonstrated through the assessment of the projections58

using quality measures that showed an improvement of visual overlapping with a small variation59

of the structural preservation. However, both works do not include user studies that evaluate the60

effectiveness of the feature transformation approach from the perspective of user perception and61

comprehension.62

This paper describes an experiment studying the effectiveness of feature transformation63

techniques in supporting analysts making sense of high-dimensional data. The participants were64

asked to perform common analysis tasks, i.e., cluster and outlier identification, using 2D projection65

(i.e., visualisation) produced by feature transformation and other DR methods. The experiment used66

a number of benchmark datasets that cover a wide range of size and dimensionality. Both task67

accuracy and completion time were recorded, and the result analyses show significant difference68

among these methods.69

The remainder of the paper is organised as follows: Section 2 provides a more complete and70

in-depth discussion on the existing work related to the study. The details of the feature transformation71

are described in Section 3. This is followed by experiment design, hypotheses, data sets and protocol72

(Section 4). The experiment results are reported in Section 5, followed by in-depth discussions in73

Section 6. Section 7 concludes the paper.74

2. Related Work75

An extensive range of DR techniques exist [1] that estimate the structure of data in a low76

dimensional space. Classical methods such as Principal Component Analysis (PCA) [14] or77
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Multidimensional Scaling (MDS) [15] are based on linear approaches. Later non-linear techniques78

were developed, for example Sammon proposed a version of the MDS algorithm [16] to compute79

a projection that is able to represent non-linear structures in the data. In the beginning of the80

21st century, newer non-linear techniques, based on neighbour embedding, were proposed. These81

algorithms compute a manifold in a low-dimensional space from high dimensional data with an82

underlying structure. Some of the best known examples are isometric embedding mapping or83

Isomap [17], Laplacian Eigenmaps (LE) [18], locally linear embedding (LLE) [19], local tangent84

subspace alignment (LTSA) [20] and t-Distributed Stochastic Neighbour Embedding (t-SNE) [21].85

Moreover there are methods that use class information to guide the computation of the86

projection, that is, supervised dimensionality reduction. Available supervised methods include the87

Linear Discriminative Analysis (LDA) [22] that extracts the discriminative features to the class labels88

and uses them to generate embedding, the Neighborhood Components Analysis (NCA) [23] that learns89

a distance metric by finding a linear transformation of input data such that the average classification90

performance is maximized in the projection space, and the Maximally Collapsing Metric Learning91

(MCML) [24] that aims at learning a distance metric that tries to collapse all objects in the same class92

to a single point and push objects in other classes far away.93

DR techniques estimate the underlying structure and reveal relationships in multidimensional94

data. However, due to noise and irrelevant attributes, a satisfactory projection is not always95

obtained. Feature selection and transformations have been developed to improve performance of96

many applications in several research fields [25,26]. A recent approach [8] transforms the feature97

space by extending specific features of selected dimensions. The result can be applied to improve98

group separation and reduce visual cluttering in the final embedding.99

Furthermore, with the increasing size and complexity of data, it becomes more difficult to100

generate meaningful projections in a fully automatic way. This leads to the development of interactive101

multidimensional data projection techniques that facilitate interactive analysis by integrating the102

analyst’s knowledge about the data with the knowledge gained during the learning process.103

Examples include the iPCA approach [6] that provides coordinated views for interactive analysis104

of projections computed by PCA method and the iVisClassifier system [7] which improves data105

exploration based on a supervised DR technique (LDA). Moreover, the DimStiller framework [27]106

analyzes dimension reduction techniques with interactive controls that guide the user during the107

analysis process and Dis-Function [28] provides an interactive visualization to define a distance108

function. Similarly, AxiSketcher [10] allows user to change the projection dimensions interactively.109

Perez et al. [9] proposed an interactive framework for feature space extension that allows the user to110

incorporate class labels into the projection gradually. A hierarchical interpretation can be done using111

the clusters of the initial projection and the class labels that are revealed by the method. More details112

of this technique can be seen in Section 3.113

The previously mentioned techniques are only part of a rich body of research that exists on114

multidimensional data visualization. Integrating human knowledge into the analysis loop requires115

understanding of the usability of the techniques mentioned. There are metrics for comparing the116

quality of visualisation layouts, but they do not consider human perception. Examples include117

the rank-based criteria framework by Lee and Verleysen [29] that is scale independent and many118

high-dimensional data visualization quality metrics discussed in the survey by Bertini et al. [30].119

There are a number of experiments studying the effectiveness of the projections from a user’s120

perspective. Different quality measures were proposed to evaluate scatterplots based on visual121

perception, for example in terms of correlation [31] , cluster separation [32] , or both [33]. Lewis122

et al. [34] investigated whether human evaluations of the projections are reliable, showing that user123

experts are reasonably consistent about layout quality, but novices disagree on the quality. Recently,124

a controlled user experiment [4] was performed to evaluate the human performance on multiple125

tasks with different projection techniques. The results demonstrated that performance of projection126

techniques varies with cognition task and is also data dependent. As far as we know, there has been127
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no user evaluation on the effectiveness of interactive visualization techniques for DR, which this work128

aims to address.129

3. Feature Transformation130

The main idea of the interactive feature transformations proposed in [9] is to extend the attributes
based on prior knowledge such as class labels. Assuming a data matrix X where rows correspond to
objects, columns are features, and the labels y describe the categorical class of each object:

X =
[
xij
]
∈ Rn×d y = [yi] ∈ Nn (1)

Being i = 1, . . . , n and j = 1, . . . , d, where n is the number of points and d the number of dimensions.
Then a new data matrix X′ is defined using the original data matrix X and a new extended part X̃ as
follows:

X′ =
[
X | X̃

]
(2)

This extended part corresponds to the statistical value based on the class labels. Here we use the
mean values of each class member. Using the extension of the full feature space, then this part X̃
corresponds to the centroids of each class member.

X̃ = [x̃i] ∈ Rn×d being x̃i =
1
|Cyi |

∑
i∈Cyi

xij (3)

where Cyi is the set of objects belonging to class yi.131

A real parameter λ ∈ [0, 1] allows the transition between original data (X) and the extended part
(X̃) by applying simple changes in the metrics of the feature space using the matrix Wλ ∈ R2d×2d.
This matrix allows a weighted feature extension of the both parts of the matrix:

Xweight = X′Wλ (4)

where the matrix Wλ is defined as follows:

Wλ =

(
(1− λ) I 0

0 λ I

)
, λ ∈ R (5)

The parameter λ controls the changes between the original data structure and the centroids of132

the introduced classes. Theses changes are independent of the technique used for computing the133

projection. They produce a better separation of the introduced groups in the projections. Therefore134

a visual improvement is achieved by means of a controlled modification of the original structure,135

essentially a trade-off between visual clarification and structural preservation.136

Below is an example using the iris flower data [35] that contains three species of iris: setosa,
virginica and versicolor. Each species has four features: the length and width of the sepals and petals,
measured in centimetres. This data set has been used in data analysis, as an example by many
classification techniques in machine learning. Below is part of this data set represented as a matrix as
described in Eq. 1:

X =



...
...

...
...

...
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 virginica
6.4 3.2 4.5 1.5 virginica

...
...

...
...

...


(6)
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The new data matrix X′ (as in Eq. 2) is composed by the original data and the extended part using
the class information from the species of iris. This extension is built using the mean feature vector for
each class. For instance, if the mean feature vector for setosa is msetosa = (5.01, 3.43, 1.46, 0.25) and for
virginica mvirginica = (5.93, 2.77, 4.26, 1.32), then the new data matrix is as follows:

X′ =



...
...

...
...

...
...

...
...

5.3 3.7 1.5 0.2 5.01 3.43 1.46 0.25
5.0 3.3 1.4 0.2 5.01 3.43 1.46 0.25
7.0 3.2 4.7 1.4 5.93 2.77 4.26 1.32
6.4 3.2 4.5 1.5 5.93 2.77 4.26 1.32
...

...
...

...
...

...
...

...


(7)

The two parts of this new matrix are then weighted using the λ parameter defined in Eq. 5), where137

λ = 0 corresponds to the original matrix and λ = 1 leaves the extended part only. Finally, embeddings138

can be computed with a DR technique. Figure 1 shows the resulting projections with a series of λ139

values using a supervised DR technique MCML (as discussed in Section 2).140

4. Experiment141

A controlled experiment was conducted to evaluate the effectiveness of the interactive feature142

transformation technique. The goal is to understand its impact on high dimensional data143

visualisation, and consequently the user’s ability to gain insight from the data. The experiment144

followed a within-subject design, and task accuracy and completion time were collected for145

comparison.146

4.1. Pilot147

A pilot study was conducted with three participants using the three conditions:148

1. Visualisation generated by PCA. This is the same as the first condition in the final experiment149

(as described in Section 4.2).150

2. Static Feature Transformation. The visualisation in this condition included the distortion151

introduced by the feature transformation. However, the user was not allowed to change the152

level of distortion, so the visualisation was static.153

3. Interactive Feature Transformation. This is similar to the previous condition, but users could154

interactively change the level of distortion introduced by feature transform. This is achieved155

through a slider that changes the λ value.156

Two issues were identified after analysing the results from the pilot study:157

• Both Feature Transformation conditions performed better than the PCA condition. However,158

this is partly due to the fact that they utilise the clustering information, whereas PCA does not.159

We believe that this gave the two Feature Transformation conditions unfair advantage. As a160

result, we decided to introduce a new DR technique that also uses the clustering information.161

• There was large variation in the performance of the interaction feature transformation162

condition. One participant always set the λ to the maximum value. As a result, each cluster163

transformed into a single point and the tasks became trivial. To avoid this scenario, we164

removed the interactive feature transformation condition, and replaced it with two static feature165

transformation conditions that have low and high level of distortion respectively.166

4.2. Conditions167

Four revised conditions were included in the main experiment:168
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1. Visualisation generated by PCA. The PCA is used as an example of DR technique that does169

not utilize clustering information. While it is possible to include additional DR method such170

as MDS, it will make the experiment overly long (it is close to one hour already with the four171

conditions) and it is not the focus of this study to compare DR techniques that do and do not172

use clustering information.173

2. Visualisation generated by MCML. This represents supervised techniques that take into174

account the class labels information during dimension reduction, since feature transformation175

also requires class information. This should produce visually more separated results than176

PCA because of the additional class labels information. Because feature transformation is177

independent of the DR technique used, any technique that uses class label can be used, so long178

as it is also used in the two feature transformation conditions.179

3. Visualisation generated by low-level feature transformation distortion (FT-low), based on the180

results of MCML. The visualisation in this condition includes low level distortion introduced181

by the feature transform, and the user was not allowed to change the level of distortion. A182

small λ value was selected manually to ensure considerable visual difference from the MCML183

condition. This is to emulate the scenario when a low level of distortion is introduced through184

interactive feature transformation.185

4. Visualisation generated by high-level feature transformation distortion (FT-high), based on the186

results of MCML. This is similar to the last condition except that the distortion level was higher.187

A larger λ value was selected manually to a) ensure considerable visual difference from the188

FT-low condition, and 2) avoid reducing the question to a trivial task, e.g., every cluster is189

reduced to a single point. This is to emulate the scenario when a high level of distortion is190

introduced through interactive feature transformation.191

We selected λ = 0.1 and λ = 0.3 for the FT-low and FT-high condition respectively after192

considering different λ levels for all the datasets used. This ensures for all datasets enough visual193

difference between these two conditions and from the MCML only condition (Condition 2), without194

reducing the question to a trivial task. For example, Figure 1 shows the distorted projections of the195

iris dataset with different λ values. Please note that the colour here is to help demonstrate the effect of196

feature transformation. All the data points appear black in the experiment; no clustering information197

was provided through colour.
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Figure 1. Projections of the Iris dataset with λ value from 0 to 1. The colour is used to help illustrate
different clusters here, and was not used in the actual experiment.

198

4.3. Tasks199

The participants were asked to complete two types of tasks during the experiment: identifying200

clustering and outlier. They are common in high-dimensional data analysis, and usually form the201

basis of more complex analysis tasks.202
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Clustering: The participants were asked to identify visually the number of clusters in the display.203

This is to test how well the resulting visualisation reveals the clustering structure within the204

original high-dimensional dataset.205

Outlier: Similarly, this task requires participants to identify visually an outlier within the original206

dataset, which is another important property of high-dimensional data. To simplify the207

accuracy measurement, each dataset has exactly one outlier, so the answer can be either correct208

or incorrect. This avoids the case of ‘partially correct’ answers when there are two or more209

outliers.210

We deliberately did not give formal definition of ‘clustering’ and ‘outlier’ during the training stage of211

the experiment. We wanted to see the participants’ intuition about these concepts, and its impact on212

task performance. As it turned out, all participants were able to grasp these concepts easily with the213

examples given during the training stage, and apply them successfully in the following tasks.214

4.4. Datasets215

We used a number of benchmark and synthetic datasets in the experiment. The goal was to cover216

a wide range of data size, dimensionality, and number of clusters in the dataset. The benchmark217

datasets are widely used by machine learning and visualization communities, and their details are218

in Table 1. The projections of all four conditions were checked before the experiment to ensure that219

the datasets do not favour any particular condition. We manually checked all the projections to make220

sure there were no trivial cases where clusters collapse into points.

Table 1. Experiment Datasets

Dataset Points Dimensions Classes Reference
HIV 78 159 6 [36]
Iris 147 4 3 [35]
Bbdm13 200 13 5 [37]
Tse300 244 46 8 [38]
Gaussian 500 10 5 [32]
Yeast 1452 8 10 [35]

221

For each dataset, a new point was added as the outlier. For half of the datasets, we added an
outlier with extremely large value, using the formula below:

x > Q3 + IQR× 1.5

For the rest of the datasets, we added an outlier with extremely small value:

x < Q1 − IQR× 1.5

where Q1 is the lower quartile (or the 25th percentile), Q3 is the upper quartile (or the 75th percentile),222

and IQR the inter-quartile range (Q3 − Q1). This computation was applied to all dimensions in the223

corresponding dataset.224

4.5. Participants and Procedure225

We recruited 41 participants, with valid data collected from 31 of them. In several cases,226

the participant did not complete the experiment (participant can quit the experiment at any time227

without giving a reason) or there was a software error, so their data were not included for analysis.228

The participants were of mixed age range and technical background, including university students,229

administration staffs, and family and friends. It is voluntary to provide demographic information.230

In total, 11 participants chose to provide information about their age group (one under 19, six 19–25,231

and four 26–39) and gender (ten males, one female).232
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The study lasted approximately 45 minutes and consisted of three sections: training, experiment,233

and feedback. The training section started with the consent and demographic information form.234

After that, the two experiment tasks were explained using one example each. This part also showed235

the participants how to answer questions using the experiment software interface. The last part236

of training was practice, during which participants needed to complete one question for each task237

type. During practice, feedback was given if the participant did not answer correctly. Figure 2 is a238

screen-shot of the training interface.239

Figure 2. The training interface for the outlier task that includes the instructions (bottom right corner)
and feedback (‘Well Done!’ for a correct answer).

The second section was the main experiment. The interface was the same as the training stage,240

except without feedback. As a within-subject design, each participant completed the two tasks on all241

six datasets under all four conditions. This led to in total 2× 6× 4 = 48 questions. The order of the242

questions were counter balanced using Incomplete Block Design to avoid learning effect. Also, the243

same dataset appears quite differently under the four conditions, so it is unlikely that participants244

can recognise them under different conditions. Figure 3 shows the four conditions of the HIV dataset.245

Please note the data point colour and shape are for illustration only and they are not used in the actual246

experiment. It is not easy to recognize that these four projections are the same dataset, even when247

placing them next to each other with the colour and shape. The chance is very small that a participant248

can recognize so during the experiment when they appear randomly and without colour or shape.249

The task accuracy and completion time were recorded for further analysis.250

The last section is feedback, during which the participants were asked to provide subjective251

comments about the tasks and visualisation. Because the participants are not aware of the four252

conditions (the information is not provided in the experiment), the feedback was not specific to253

experiment conditions.254

4.6. Hypotheses255

1. We hypothesise that participants will perform significantly better, in terms of both accuracy and256

completion time, with MCML than with PCA, because MCML takes advantage of additional257

clustering information. We hypothesise that this will be the case for both the clustering and258

outlier tasks, because the two require similar visual information, i.e., it is easier to identify259

outliers if the clustering is visually clear.260
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Figure 3. The four conditions of the HIV dataset. Please note the data point colour and shape are for
illustration only and they are not used in the actual experiment. It is not easy to recognize that these
four projections are the same dataset, even when placing them next to each other with the colour and
shape. So when they appear randomly and without colour or shape, the chance that a participant
could recognize them during the experiment was very small.

2. Similarly, we hypothesise that participants will perform significantly better with FT-low than261

MCML, in terms of both accuracy and completion time. The only difference between the two262

is the distortion introduced by the feature transformation, which makes the clustering/outlier263

structure visually more obvious.264

3. Finally, We hypothesise that participants will perform significantly better with FT-high than265

FT-low, but only in accuracy. The higher level of distortion in FT-high will usually result in266

even clearer clustering/outlier structure, thus better accuracy. While it is likely the completion267

time will be shorter with FT-high, it can be already quite short with FT-low. As a result, the268

difference may not be significant.269

5. Results270

We used a repeated-measure analysis of variance (RM-ANOVA) to analyse the task accuracy271

and completion time of 31 participants with valid collected data. Accuracy was measured as the272

percentage of correct answers. Completion time was measured in seconds; however, it was not273

normally distributed as shown by the result of a Shapiro-–Wilk test. We used the logarithm of274

completion time to normalize the skewed distribution.275

5.1. Accuracy276

Figure 4a shows the mean accuracy. A RM-ANOVA test showed a significant main effect of277

method (F(3, 90) = 97.78, p < 10−27), task (F(1, 30) = 32.01, p < 10−5), and the interaction method278

× task (F(3, 90) = 28.56, p < 10−12). Follow-up paired t-tests with Holm correction revealed that279

FT-high was significantly more accurate than FT-low (p < 10−13), and both FT-low (p < 10−8) and280

PCA (p < .02) were significantly more accurate than MCML. FT-low (M = .54, SD = .50) was more281

accurate than PCA (M = .48, SD = .50), but the difference was insignificant (p = .09). The results are282
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summarized in Figure 5a, where each line indicates a significant difference, pointing towards the less283

accurate condition.284
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Figure 4. Mean accuracy and completion time overall and for each task.
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Figure 5. Significant results of paired t-tests for task accuracy. An arrow from condition A to condition
B indicates that participants performed significantly more accurately under A than under B.

For Clustering task, a RM-ANOVA test showed a significant effect of method (F(3, 90) =285

74.52, p < 10−23). Follow-up paired t-tests with Holm correction revealed that FT-high was286

significantly more accurate than FT-low (p < 10−14), and FT-low was significantly more accurate287

than PCA (p < .001). PCA (M = .33, SD = .47) was more accurate than MCML (M = .25, SD = .44),288

but the difference was insignificant (p = .08). The results are summarized in Figure 5b, following the289

same notation as in Figure 5a.290

For Outlier task, a RM-ANOVA test showed a significant effect of method (F(3, 90) = 28.67, p <291

10−12). Follow-up paired t-tests with Holm correction revealed that FT-high was significantly more292
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accurate than FT-low (p < 10−5), and FT-low was significantly more accurate than MCML (p = .01).293

PCA (M = .63, SD = .48) was more accurate than FT-low (M = .59, SD = .49), but the difference was294

insignificant (p = .3). Again, the results are summarized in Figure 5c, following the same notation.295

5.2. Time296

Figure 4b shows the mean completion time. A RM-ANOVA test showed a significant main effect297

of method (F(3, 90) = 13.97, p < 10−6), task (F(1, 30) = 87.46, p < 10−9), and the interaction method298

× task (F(3, 90) = 51.55, p < 10−18). Follow-up paired t-tests with Holm correction revealed that299

FT-high was significantly faster than FT-low (p < .02), and MCML was significantly faster than PCA300

(p < .001). MCML (M = 5.44, SD = .19) was faster than FT-high (M = 6.03, SD = 0.23), but the301

difference was insignificant (p = .06). The results are summarized in Figure 6a.302

MCML

FT-high

PCA

FT-low

(a) All Tasks.

X

MCML FT-low FT-high PCA

X

(b) Clustering.

PCA X

FT-high

MCML

FT-low

(c) Outlier.

Figure 6. Significant results of paired t-tests for completion time. An arrow from condition A to
condition B indicates that participants completed the tasks much faster under A than under B.

For Clustering task, a RM-ANOVA test showed a significant effect of method (F(3, 90) =303

24.2, p < 10−10). Follow-up paired t-tests with Holm correction revealed that MCML was304

significantly faster than FT-low (p < .023), FT-low was significantly faster than FT-high (p < .021),305

and FT-high was significantly faster than PCA (p < 10−5). The results are summarized in Figure 6b.306

For Outlier task, a RM-ANOVA test showed a significant effect of method (F(3, 90) = 55.46, p <307

10−19). Follow-up paired t-tests with Holm correction revealed that PCA was significantly faster than308

MCML (p < 10−5), and MCML was significantly faster than FT-low (p < 10−14). FT-high (M =309

4.23, SD = .16) was faster than MCML (M = 4.54, SD = .17), but the difference was insignificant310

(p = .075). The results are summarized in Figure 6c.311

6. Discussions312

6.1. Methods313

Overall, FT-high performed the best: it is significantly more accurate than the three other314

conditions (Figure 5a) and took significantly less time than PCA and FT-low (Figure 6a). This supports315

our Hypothesis 3 and demonstrated that feature transformation can help users better understand316

multi-dimensional data. The improvement is more obvious in term of accuracy (Figure 4a) and less317

so for completion time (Figure 4b).318

FT-low did not perform as well as we expected. It is significantly more accurate than MCML319

(Figure 5a), as in Hypothesis 2, but it required longer completion time than MCML (Figure 6a), which320

is different from what we hypothesised. Figure 7a and 7b shows the detailed completion time of321

clustering and outlier task respectively, ordered by dataset size. Figure 7a shows that the completion322

time under the FT-low is comparable to other conditions for the clustering task. However, its time is323

much longer than the rest for the outlier task (Figure 7b), especially the HIV dataset. As in Table 1,324

the HIV data has the highest dimensionality (159) among all the data sets, which can be the cause of325

the poor completion time of the outlier task under FT-low.326
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(d) Accuracy of the outlier task.

Figure 7. The results of the clustering and outlier task, ordered by data size.

The performance of the MCML condition is one of the surprises in the experiment results. It has327

the lowest task accuracy (Figure 5a), and this is the case for both the clustering (Figure 5b) and outlier328

task (Figure 5c). It was expected to out-perform PCA (Hypothesis 1), given that it takes advantage of329

the clustering information, i.e., which data point belongs to which cluster. Figure 7c and 7d show the330

accuracy of the clustering and outlier task respectively. For the clustering task, the accuracy of MCML331

is particularly poor for the HIV dataset. The results of the same dataset are even more extreme for the332

the outlier task (Figure 7d): except for PCA, the accuracy of the other three methods are all 0%. The333

high dimensionality of the HIV dataset may be the cause here, particularly for the outlier task; it also334

led to long completion times for the outlier task for FT-low (Figure 7b) as discussed earlier. Figure 3335

shows the four conditions of the HIV dataset with the outlier inserted. The outlier is marked as class336

6 (the red triangle). For clustering, it is obvious that the clusters are not well separated in all cases,337

particularly for MCML, which may explain the results in Figure 7c. Similarly, it is easy to see that the338

outlier is not well separated from other data points in MCML and FT-low, which makes it difficult to339

spot when the colouring is removed (no colouring was used in the experiment.) While the outlier is340

better separated in FT-high, the two data points in the top-right corner may make it difficult to select341

the true outlier. This can be the reason for the poor performance of these three conditions, as shown342

in Figure 7d.343

The completion time of MCML is surprisingly fast. Overall there is no significant difference344

between MCML and FT-high, which was expected to have the fastest completion time (Figure 6a).345

However, the detailed results in Figure 7a and 7b show that the absolute difference is not that346

substantial, even if it is statistically significant.347

Finally, PCA performed better than expected in the experiment. It was expected to be the least348

accurate method overall (Hypothesis 1), but this is not the case (Figure 5a). The poor performance349
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of other methods on the HIV dataset, particularly the outlier task (Figure 7d), can be a contributing350

factor. Also, it is interesting that its accuracy varied dramatically for the outlier task among the351

datasets (Figure 7d): while it performed extremely well for the HIV dataset, the accuracy dropped352

to 0% for the Tse300 and Yeast dataset. Time-wise, PCA is comparable to other methods, except for353

the clustering task (Figure 4b). The detailed results in Figure 7a show that this may be the result354

of the large difference with the Bbdm13 dataset. However, further investigation into the individual355

completion time did not reveal any anomaly. Overall, being one of the classic DR methods, PCA356

does a reasonably good job to support user understanding even though it was not designed for this357

purpose.358

6.2. Data Size and Dimensionality359
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Figure 8. The results of the clustering and outlier task, ordered by data set dimensionality.

It is important to understand how the performance of different methods scale with data. This360

is particularly relevant if these approaches are to be applied to Big Data. There are two possible361

scaling: data size, i.e., number of data points, and data dimensionality. The data sets in Figure 7a362

to 7d are ordered by their sizes, i.e., increasing from left to right. Figure 7a and 7b show that the363

completion time does not increase with data size. In fact, it took longer with the HIV dataset, which364

has the smallest number of data points (78), than the Yeast dataset, which has the largest number365

of data points (1452). This is the result of pre-attentative visual processing [39]: users use the data366

point location, which is one of pre-attentative visual features, to decide clustering structure, and the367

processing of such visual feature takes constant time, regardless the number of points. This is one368

of the main advantages of data visualisation: information represented with pre-attentative visual369

features can be processed very quickly irrespective of the data size. There is no obvious trend in370
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the task accuracy (Figure 7c and 7d), either. Other factors, such as the complexity of the clustering371

structure and appropriateness of the visualisation method, may have more of an impact on the task372

performance than the data size does.373

Figure 8 shows the same results as in Figure 7a to 7d, but ordered by the data set dimensionality,374

increasing from left to right. There is a weak trend of increasing completion time with the data375

dimensionality (Figure 8a and 8b), which is an indicator of the data set complexity. The trend is less376

clear for the accuracy results (Figure 8c and 8d), possibly because the suitability of the visualisation377

method is the main factor. For example, PCA led to low accuracy with the Yeast and Tse300 dataset,378

and performed very well with the result of data sets (Figure 8d).379

6.3. Tasks and Participants380

While not the main goal of this study, we also examined the performance difference between the381

two tasks used in the study. The results show that in general the clustering task is more difficult382

than the outlier task, which is supported by both the performance metrics and user preference.383

The clustering task has significantly lower accuracy than the outlier task (t-test, p < 10−5), and384

the difference is obvious as shown in Figure 10a. Similarly, the clustering task took significantly385

longer to complete than the outlier task (t-test, p < 10−6), and the difference is sizeable as shown in386

Figure 10b. User preference data (Figure 10c) showed a similar pattern, with the clustering task being387

perceived as significantly more difficult than the outlier task (Fisher’s exact test, p < 10−6). This388

strengthens the argument for applying a Feature Transformation type of approach when visualising389

high dimensional data: FT-high (high-level of feature transformation) was the only condition with390

more than 50% percent accuracy for the clustering task and beat the second best option FT-low by a391

healthy 30% margin (Figure 4a).392

There is a weak correlation between user preference and performance. For the clustering task,393

the Spearman’s correlation coefficient is 0.0692892 (almost no relation) between rating and accuracy,394

and 0.3012618 (a weak positive – more difficult, more time spent) between rating and completion time.395

Similarly, for the outlier task, the Spearman’s correlation coefficient is -0.2622217 (a weak negative –396

more difficult, less accurate) between rating and accuracy and -0.1281551 (a weak positive) between397

rating and completion time.398

We analysed the relationship between participants’ performance and their demographic399

information such as age group. Both completion time and accuracy of the three age groups are shown400

in Figure 9, and they appear to be similar across the groups. The small number of participants (11)401

who provided their information does not allow any meaningful significance tests.402

Finally, we checked the performance variations among the individuals participated the study.403

Figure 11 shows the average completion time (Figure 11a) and accuracy (Figure 11b) of each404

participant across all tasks. There appears to be larger variation among the performance of the405

completion time than that of the accuracy, and this is the confirmed by their coefficient of variation:406

0.4198652 for time and 0.129759 for accuracy.407

We further investigated participant 14 who had the longest completion time. For the clustering408

task, his completion time (Figure 12a) appears to be similar to the average time (Figure 7a) except409

for a few questions, such as Bbdm13–PCA and HIV–FT-high. We speculate that he struggled with410

these questions and spent long time to find the right answers: he correctly answered four out of five411

questions that he spent most time on (>40s). This is much higher than the average accuracy. Similarly412

for outlier task, his completion time is also close to the average except for one question (Iris–MCML),413

which he answered correctly.414

6.4. Limitations415

As with any user study, this experiment is not without its limitations. For example, the tasks416

were simplified to make the experiment manageable, and thus less representative of the real-world417

scenario: users were not able to interactively choose the λ value for the feature transformation and418
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Figure 9. Performance in different age groups and tasks.

there is always one outlier in the outlier-detecting task. We were aware of these limitations, and419

consulted the end users during the experiment design stage. While not fully realistic, they thought420

the simplified tasks were good enough approximation of the real-world analysis as the first step to421

explore the performance difference among these techniques. More realistic set-up will be explored in422

the further studies.423

7. Conclusions424

This paper described a user study that was designed to understand how feature transformation425

technique affects the user’s understanding of multi-dimensional data visualisation. Four different426

conditions were included: PCA, MCML, low-level feature transformation (FT-low), and high-level427

feature transformation (FT-high). Thirty-one participants were recruited to detect clusters and428

outliers using visualisation of six different datasets. Both task accuracy and completion time were429

recorded for comparison.430

7.1. Techniques431

• There is a strong case for the feature transformation technique. Participants performed best with432

the visualisation produced with high-level feature transform (FT-high), in term of both accuracy433

and completion time. The improvements over other techniques were substantial, particularly434

in the case of the accuracy of the clustering task.435

• Low-level feature transformation has a lesser impact on visualisation readability, and as a result436

does not have a clear advantage over existing techniques, represented by MCML (supervised437

DR) and PCA (un-supervised DR).438

• Very high dimensional data seems to be a challenge for all the techniques, but particularly439

MCML and to certain extend FT-low. MCML performed poorly with the HIV dataset, which440

has a much higher dimensionality (139) than the rest of the data sets.441

• The results of PCA were better than expected; its performance was close to that of the FT-low442

and MCML. Also, it performed surprisingly well on the very high-dimensional HIV dataset,443

matching the results of FT-high.444
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Figure 10. Clustering vs. outlier task

7.2. Scalability445

• All the visualisation methods scaled well with data size, particularly with completion time.446

There is no apparent increase in completion time as the number of data points grow (20 fold447

difference between the size of the smallest and largest dataset). This is the result of human448

pre-attentative visual processing, which requires constant time regardless of data size. This449

makes visualisation an effective tool for understanding large data.450

• The data dimensionality appears to have a larger impact on the user performance than the data451

size. It leads to an increase in completion time as the data dimensionality grows. The effect452

on the accuracy is less clear, with the performance of a certain method changes dramatically453

between data sets. This indicates that the suitability of a visualisation method to a particular454

data set can be the dominant factor for task accuracy.455

7.3. Tasks and Participants456

• Clustering is a more difficult task than outlier identification. Its accuracy is significantly lower457

and took significantly longer to complete. Except for FT-high, all techniques led to accuracy of458

only around 25%. This demonstrates that it is almost impossible to perform visual clustering459

analysis without feature transformation.460

• Outlier detection is the relatively easier task, with faster completion time and higher accuracy.461

However, its accuracy varies dramatically between data sets and techniques. One technique462

can have close to 100% accuracy on one dataset, but 0% on another data set with similar size463

and dimensionality. Therefore, selecting an effective visualisation method is important for a464

successful analysis.465
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Figure 11. Individual performance.
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Figure 12. Time completion of participant 14 broken down by condition and dataset.

• Participants perceived clustering as the significantly more difficult task, but there was only a466

weak correlation between user preference and actual performance. There is a larger variation467

among the individual completion time than that of the task accuracy.468

In summary, the experiment results showed that visualisation is an effective approach for high469

dimensional data analysis, because it does not require additional time as the data size grows. The470

feature transformation technique can significantly improve user’s understanding, increasing task471

accuracy and reducing completion time simultaneously. It is almost impossible to obtain meaningful472

results from visual clustering analysis without feature transformation. Visualising data with very473

high dimensionality (i.e., greater than 100 dimensions) remains a challenge. It will be an interesting474

future work to evaluate further the effectiveness of the feature transformation with more realistic task475

settings and when in combination with more advanced approaches such as t-SNE.476
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