
Information Technology

Making Security Type Systems Less Ad Hoc

Prof. Tobias Nipkow, Ph.D.: Fakultät für Informatik, Technische Universität München, Boltzmannstr.
3, 85748 Garching, Germany
Tel: +49-89-289-17302, Fax: +49-89-289-17301, E-Mail: nipkow@in.tum.de
Tobias Nipkow received his Diplom in Informatik (MSc in Computer Science) from the Technische
Hochschule Darmstadt in 1982 and a PhD in Computer Science from The University of Manchester
in 1987. He held post-doc positions at MIT and Cambridge University before becoming a professor
at the Technische Universität München in 1992. He has worked on term rewriting, programming
language semantics and theorem proving. For more than 20 years, Tobias Nipkow and his research
group in Munich (jointly with Lawrence Paulson in Cambridge and Makarius Wenzel in Paris) have
been developing the popular proof assistant Isabelle.

Dr. Andrei Popescu: Fakultät für Informatik, Technische Universität München, Boltzmannstr. 3, 85748
Garching, Germany
Tel: +49-173-2609466, Fax: +49-89-289-17301, E-Mail: uuomul@yahoo.com
Andrei Popescu received his BA in Computer Science from the University of Bucharest in 2001, a PhD
in Mathematics from the same university in 2005, and a PhD in Computer Science from the University
of Illinois at Urbana-Champaign in 2010. From 2010, he is working as a post-doc at the Technische
Universität München. His main research interests are mechanical verification, type systems, category
theory, information-flow security, and intersections of these areas.

Keywords: D.4.6 [Security and Protection]; F.3.1 [Specifying and Verifying and Reasoning about

Programs]; D.1.3 [Concurrent Programming]

Schlagworte: D.4.6 [Sicherheit]; F.3.1 [Programmspezifikation und -verifikation]; D.1.3
[Nebelufige Programmierung]

MS-ID: uuomul@yahoo.com January 12, 2015
Heft: 53/* (2011)

Abstract
We present a uniform, top-down design method for security type systems applied to a parallel while-language.
The method takes the following route: from a notion of end-to-end security via a collection of stronger notions
of anytime security targeting compositionality to a matching collection of type-system-like syntactic criteria. This
method has emerged by distilling and unifying security type system results from the literature while formalizing
them in a proof assistant. Unlike in our previous papers on this topic, here we focus entirely on high-level ideas
instead of technical proof details.

Zusammenfassung
Dieser Artikel präsentiert eine uniforme Entwurfsmethode für Sicherheitstypsysteme für eine Programmiersprache
mit While-Schleifen und Parallelismus. Beginnend mit dem Begriff der end-to-end Sicherheit führt der Weg über
kompositionale Begriffe der anytime Sicherheit zu syntaktischen Kriterien wie in Typsystemen. Diese Methode ist
das Resultat der Formalisierung und Unfizierung existierender Sicherheitstypsysteme in einem Beweisassistenten.
In diesem Artikel konzentrieren wir uns auf die Ideen hinter der Methode anstatt der technischen Details der
Beweise.

2

1 Introduction
A type system is a syntactic representation of aspects of a
program semantics. If a function f has type int→ bool, we
know its semantics will map integers to booleans. A major
use of a type system is to ensure that, if well-typed, a pro-
gram “does not go wrong.” Traditionally, this means that a
program’s execution does not get stuck or produce low-level
errors. On the other hand, a security type system guarantees a
quite different property: a program’s execution does not leak
private information. For example, if h stores high (confiden-
tial) data and l is a low (publicly observable) variable, then
the assignment l := h exhibits a direct leak from high to low
and is rejected by typical security type systems. The follow-
ing indirect leak, exposing in l the information on whether h
is 0, is also rejected: if h = 0 then l := 1 else l := 2.

Type-system-like syntactic criteria for leak prevention
have been discussed as early as the seventies (e.g., Denning
and Denning [5]). However, it was the work of Volpano,
Smith and others in the nineties [14–16] that started the tra-
dition of semantically justified security type systems. In this
tradition, one provides a type system together with a sound-
ness theorem that relates it with a semantic notion of security
(formulated via the programs’ semantics). To express seman-
tic security, one typically assumes the program memory is
separated into a low, or public, part, which an attacker is able
to observe, and a high, or private, part, hidden to the attacker.
A program is called information-flow secure (or noninterfer-
ing) if, upon running it, the high part of the initial memory
does not affect the low part of the resulting memory. Thus,
there is no information leak from high to low. The soundness
theorem states that well-typed programs are secure.

A variety of pairs consisting of a security type system and
a semantic notion of security connected by a soundness theo-
rem were proposed in the meantime (e.g., [3, 4, 6, 7, 11–14]),
covering different types of information leak channels, in-
cluding termination and probabilistic channels. As part of
our work [2] within the RS3 program [1], we studied some
of these security type systems in the light of the three RS3

guiding themes: property-centric view of security (by study-
ing in depth the underlying security properties before com-
mitting to type-system-like policies), semantically justified
certification of security (by emphasizing formalized seman-
tics as a foundation), and security in the large (by focusing
on compositionality). Type system design is known to be
tightly linked to a compositional representation of the prop-
erties one wishes to enforce, and Sabelfeld and Sands [13]
explicitly remind us of this in the security context. However,
this is not how the Volpano-Smith-style type systems appear
to have been designed, as witnessed by their complex non-
compositional soundness proofs (e.g., [3, 4, 14]).

Our goal was to investigate whether such proofs can be
simplified using compositionality. This paper describes the
positive outcome of this investigation, yielding a proposal for
a “canonical” route for designing security type systems: End-
to-end security⇒ Anytime security⇒ Type system. (More
technical presentations of these ideas can be found in [8, 9]

for possibilistic and in [10] for probabilistic security.)
We restrict our attention to a concurrent imperative lan-

guage with a nondeterministic (possibilistic) semantics (§2).
In this context, we tell the story of the top-down design of
security type systems. We start with end-to-end security, de-
scribing a desired security property of the program in terms
of the relationship between the initial states and the final
states obtained from fully executing the program (§3). End-
to-end security is not compositional—to address this, we in-
troduce stronger properties, called anytime security, which
refer to intermediate states during execution; we obtain a hi-
erarchy of notions of anytime security (§4). Anytime security
is compositional and hence ready for a type system: using the
hierarchy graph and the compositionality properties, we ex-
tract sound type-system-like criteria automatically (§5). Re-
markably, among these automatically generated systems, we
find carefully designed and apparently intricate security type
systems from the literature.

2 The Programming Language
Our parallel while-language has commands c, atomic com-
mands a, arithmetic expressions e and boolean tests b defined
below, where n represents integers and x program variables:

c ::= skip | a | c1 ; c2 |
if b then c1 else c2 |
while b do c1 | c1 ‖ c2

a ::= x := e
e ::= n | x | e1 + e2
b ::= e1 = e2

A state is a function assigning integers to variables. In each
state s, arithmetic expressions e evaluate to integers written
e(s) and boolean tests b to boolean values. Executing atomic
commands x := e changes s to s[x 7→ e(s)], i.e., updates s to
assign e(s) to x. For example, if s assigns 1 to x and 2 to y,
then x+y evaluates to 3 and x := x+y changes s to s[x 7→ 3].

In general, we write s c−→ s′Bc′ to indicate that, in state s,
command c takes one step changing the state to s and yield-
ing the remainder c′. The remainder indicates what remains
to be executed out of c—if the remainder is skip, the program
has terminated and we write s c−→ s′. For example, one step
taken by the sequential composition x := 1; y := 2 in state
s changes s to s[x 7→ 1] and yields the remainder y := 2—

this is written s
x := 1;y := 2−−−−−−−−−→ s[x 7→ 1]B y := 2. Given

the parallel composition command x := 1 ‖ y := 2, we have
two possibilities: either the left component takes the step

s
x := 1 ‖ y := 2
−−−−−−−−−−→ y := 2B s[x 7→ 1], or the right component

takes the step s
x := 1 ‖ y := 2
−−−−−−−−−−→ x := 1B s[y 7→ 2]. A termi-

nating step example is s x := 1−−−−→ s[x 7→ 1]. We also allow the

idle step s
skip−−−→ s—this will not trivialize the notion of ter-

minating computation, which we define as “reaching skip.”
We also write s c

=⇒ s′B c′ to indicate that, in state s, com-
mand c takes zero or more steps changing the state to s and
yielding the remainder c′; again, if the remainder is skip, we

write s c
=⇒ s′, e.g., s

x := 1;y := 2
=========⇒ s[x 7→ 1,y 7→ 2].

In short, we consider a standard small-step semantics, de-
noted using→, and its multi-step extension⇒.

3

3 End-to-End Security
Henceforth, we assume the variables are partitioned into low
variables l, l′ etc., and high variables h,h′ etc. Low variables
store public, low-confidentiality data and high variables store
private, high-confidentiality data. Two states s1 and s2 are
low-equivalent, written s1 ∼low s2, if they assign the same
values to low variables. The attacker has a “low view”, only
seeing the values of low variables—i.e., the attacker cannot
distinguish between two low-equivalent states.

A command c is end-to-end secure if, given low-
equivalent states, the results after executing c are again low-
equivalent. Intuitively, the attacker should not be able to tell
anything about the high part of the state by changing its low
part, running the command c, and inspecting the low part of
the final state. In our nondeterministic semantics, a sensi-
ble formalization of this property, denoted by securee2e(c),
is depicted in Fig. 1(A): for all s1 ∼low s2 and all s′1 such as
s1

c
=⇒ s′1, there exists s′2 such as s2

c
=⇒ s′2 and s′1 ∼low s′2.

A problem with end-to-end security is its lack of compo-
sitionality w.r.t. parallel composition: even if c1 and c2 are
both secure, c1 ‖ c2 may be unsecure. This fact is obvious
from the nature of the interleaving semantics, which is sen-
sitive to the intermediate execution states. For example, if c1
is l := h ; l := 4 and c2 is l′ := l, then during the execution of
c1 ‖ c2 the secret value of h may be leaked via l to l′ imme-
diately after l has received it from h, whereas executing c1
alone would overwrite this secret value to 4 and hence would
be secure. To address this, we strengthen end-to-end security
by postulating security at any time during execution.

4 Anytime Security
We obtain anytime security by subjecting end-to-end security
to a series of modifications, as depicted in Fig. 1. The first
modification (A to B) is the most essential one: we look not
only at complete (terminated) executions of a command c,
but also at incomplete ones, yielding the remainders c′1 and
c′2. The second modification (B to C) first replaces on the
left execution the multi-step ⇒ by the single step →, since
analyzing how one step of the left is matched by the right is
sufficient for knowing how multiple steps are matched; more-
over, for the right execution we replace ⇒ by , a generic
arrow that can encode restrictions on the number of matching
steps—we will come back to this later.

Note that (C) states something like this: c is secure if for

all s1,s′1,s2 and c′1 such that s1 ∼low s2 and s1
c−→ s′1Bc′1, there

exist s′2 and c′2 such that s2
c
 s′2Bc′2 and s′1 ∼low s′2. But how

about the remainders c′1 and c′2? They should certainly not be
allowed to produce insecure behavior—in fact, it is natural to
require for them a property similar to the one we required for
c, i.e., that they resume in a secure way the so far secure ex-
ecution; and the same for their own remainders, and so on,
indefinitely. This motivates the last modification (C to D),
which replaces the single command c desired to be secure by
two commands c1 and c2 desired to be “mutually secure” ac-
cording to a binary relation ≈ , with the remainders c′1 and
c′2 required to also be mutually secure.

Consequently, we define anytime security, ≈, as follows:
c1 ≈ c2 holds if and only if, for all s1,s2 such that s1 ∼low s2:

• for all c′1 and s′1 such that s1
c1−→ s′1B c′1, there exist c′2

and s′2 such that s2
c2 s′2B c′2, s′1 ∼low s′2 and c′1 ≈ c′2

• ditto, with (c1,s1) and (c2,s2) swapped
(In particular, we have skip ≈ skip.) There is an apparent cir-
cularity in this definition, which explains c1 ≈ c2 in terms of
c′1 ≈ c′2. This is resolved by taking the greatest fixed point
view of this equation, meaning that ≈ should hold for c1 and
c2, and for their continuations c′1 and c′2, and for the contin-
uations of these, etc. A command c is called ≈ -secure if
c ≈ c holds.

The bisimilarity-like relation ≈ is parameterized by the
choice of . Choosing particular relations leads to par-
ticular ≈ relations:
• if is→, we obtain strong bisimilarity, denoted ≈S:

one step needs to be matched by precisely one step

• if is⇒, we obtain weak bisimilarity, denoted ≈W:
one step needs to be matched by zero or more steps

• if is “→ or identity”, we obtain ≈01, an intermedi-
ate between ≈S and ≈W which we call 01-bisimilarity:
one step matched by zero or one steps

A natural question arising here concerns termination: should
the relation ≈ be further required to be termination-sensitive,
i.e., in Fig. 1(D), should the remainders c′1 and c′2 be required
to be skip at the same time (meaning that the indicated steps
or sequences of steps from c1 and c2 are either both termi-
nating or both not terminating)? We do not commit to a yes-
or-no answer, but factor in both possibilities. Whereas ≈S is
termination-sensitive by definition, adding the termination-
sensitiveness to ≈W and ≈01 yields two new relations ≈WT

s1

c
��

∼low s2

c
��

s′1 ∼low s′2

s1

c
��

∼low s2

c
��

s′1 ∼low s′2
5 5

c′1 c′2

s1

c
��

∼low s2

c
��
�O
�O
�O

s′1 ∼low s′2
5 5

c′1 c′2

s1

c1
��

∼low s2

c2
�� �O
�O
�O
�O

≈

s′1 ∼low s′2
5 5

c′1 ≈ c′2
(A) (B) (C) (D)

Figure 1: From end-to-end security to anytime security

4

≈W (c)

≈01(c)

88qqqqqqqqqqq
≈WT (c)

OO

≈01T (c)

OOffMMMMMMMMMMM

high(c)

OO

≈S (c)

OO

high(c) ∧ term(c)

OO

FF��������������������������
siso(c)

OO

c term(c) high(c) ϕ (c) ψ (c)
a True highAtom(a) nonleak(a) nonleak(a)

c1 ; c2
term(c1)
term(c2)

high(c1)
high(c2)

ϕ (c1)
ϕ (c2)

ψT (c1)
ψ (c2)
ψ (c1)
high(c2)

if b then c1 else c2
term(c1)
term(c2)

high(c1)
high(c2)

low (b)
ϕ (c1)
ϕ (c2)

low (b)
ψ (c1)
ψ (c2)

while b do c1 False high(c1)
low (b)
ϕ (c1)

False

c1 ‖ c2
term(c1)
term(c2)

high(c1)
high(c2)

ϕ (c1)
ϕ (c2)

ψ (c1)
ψ (c2)

ϕ ∈ {siso,≈S,≈01T,≈WT} ψ ∈ {≈01,≈W} ψT≡
{
≈01T , if ψ = ≈01

≈WT , if ψ =≈W

Figure 2: Hierarchy and compositionality for anytime security

and ≈01T. Finally, we consider some degenerate strong no-
tions of security. A command c is called:
• self-isomorphic, written siso(c), if it is strongly bisim-

ilar with itself while keeping the remainders identical
(as in Fig. 1(D), except that c1 = c2 and c′1 = c′2); intu-
itively, this means that not only the low-observable be-
havior, but also the program counter does not depend
on the high part of the state

• high, written high(c), if its execution never updates a
low variable—so no interesting observable behavior

Convention 1 If χ is one of the above binary relations, then
χ(c) denotes its unary version (which gives the correspond-
ing notion of c being secure)—e.g., ≈S (c) denotes c ≈S c.

Recall that our intermediate goal was to strengthen end-to-
end security in order to solve the ‖ compositionality issue.
Our notions of anytime security routinely achieve this goal,
provided for the termination-insensitive notions we addition-
ally assume termination of the program:

Proposition 2 Assume one of the following holds:
• χ is any of siso,≈S,≈WT,≈01T

• χ is any of high,≈W,≈01 and all executions of c (start-
ing from any state) are terminating

Then χ(c) implies securee2e(c).

We are ready to engage in the second part of our program: es-
tablish, for the anytime security notions, their hierarchy and
their (partial, conditional) compositionality properties w.r.t.
all language constructs, not only ‖ .

All these are depicted in Fig. 2. In the graph, the arrows
represent inclusions and term(c) states an interactive form
of termination for c (in a possibly changing environment),
formally: for all s,s′,s′′ and c′ such that s c

=⇒ s′B c′, there
exists a terminating execution of c′ starting from s′′. Since
high(c) implies ≈WT (c) only for interactively terminating
c, we include the predicate term in the graph. Note that all
commands not containing while loops satisfy term.

The table contains compositionality properties of these
notions w.r.t. the language constructs. The first column lists
the possible forms of a command c: it may be an atomic
command a, a sequential composition c1 ; c2, etc. The next
columns list conditions under which the predicates stated on
the first row hold for c. For example, row 3 column 3 says:
if high(c1) and high(c2) then high (c1 ; c2). The conditions
on the atomic commands are as follows: x := e is high if x
is high and non-leaking if there exists no variable in e which
is strictly higher than x—i.e., if x is low, then no variable in
e is high. A boolean test e1 = e2 is low if e1 and e2 contain
only low variables. The horizontal line in row 3 column 5
represents a disjunction. Each table property was produced
independently from the others, by confronting a given pro-
gram construct with a given security notion.

Proposition 3 The implications and the compositionality
facts from Fig. 2 hold.

5 Syntactic Criteria
We would like to stress that it is not crucial that the reader
followed our definitions of the anytime security notions that
inhabit Fig. 2’s graph, and in fact we shall never again need
to refer to these definitions—what should be retained is that
they were naturally produced as strengthenings of end-to-
end security with the purpose of obtaining compositionality
w.r.t. ‖ (the last row in Fig. 2’s table).

Now we are ready to generate the type-system-like syn-
tactic criteria. They simply follow by trying to prove security
of a command using only Fig. 2’s graph and table. To show
that c is secure according to some anytime security notion χ ,
we first try to reduce the goal to proving χ for the compo-
nents of c; if this is impossible due to the failure of the side-
condition in the table’s entry for χ and the top construct of c,
we move downward on the graph and try the proof for c and
one of χ’s predecessors (which is hopefully more composi-
tional w.r.t. c’s top construct). And the procedure continues
recursively, exploring the predecessors depth-first.

5

For example, here is a table-and-graph proof for ≈01(c)
where c is l := 4 ; if h = 0 then h := 1 else h := 2:
• We start positioning ourselves at ≈01 in the graph.

Since c has construct “;” at the top, we look in the
table at ≈01 versus “;”—the decomposition condition
is a disjunction, and we choose the upper disjunct.

• The property we need to check for the left component
of c, namely l := 4, is ≈01T. Looking in the table at
≈01T versus atomic statements, we need to check that
l := 4 is nonleaking, which is true.

• It remains to check ≈01 for the right component of c,
namely if h = 0 then h := 1 else h := 2. Since, the re-
quired side-condition in the table’s entry for≈01versus
if, namely low (h = 0), fails, we turn to the predeces-
sors of≈01 from the graph, namely high and≈01T, from
which we choose high.

• We restart the table-and-graph procedure, this time for
high and if h = 0 then h := 1 else h := 2. The proof
now succeeds completely by the table.

Note that we appeal to the graph whenever the table re-
sult is not sufficiently flexible. Now, a syntactic criterion
χ emerges for each semantic notion χ by simply turning the
above procedure into recursive function definitions. For ex-
ample, the following recursive equations correspond to the
semantic facts used in our sample table-and-graph proof:

≈01 (c1 ; c2) =
(≈01T(c1) ∧ ≈01(c2)) ∨
(≈01(c1) ∧ high(c2))

≈01 (if b then c1 else c2) =


≈01(c1) ∧ ≈01(c2),

if low (b)

high (if b then c1 else c2) ∨
≈01T (if b then c1 else c2),

otherwise

≈01T (a) = nonleak(a)
high (if b then c1 else c2) = (high(c1) ∧ high(c2))

high (a) = highAtom(a)

In the first equation, the disjunction reflects the correspond-
ing disjunction from the table’s entry for ≈01 versus “;”.
In the second equation, we see that in case the table side-
condition (here low (b)) fails, we turn to the graph—the dis-
junction emerges here from the existence of two graph pre-
decessors of ≈01, namely high and ≈01T.

The soundness of the χ’s follow immediately by mutual
induction, using χ’s hierarchy and compositionality:

Theorem 4 The syntactic criteria χ are sound for the secu-
rity notions χ in Fig. 2, in that χ (c) implies χ (c). A fortiori,
χ are sound for end-to-end security of terminating programs.

Type systems from the literature. siso corresponds to a type
system from Smith and Volpano [14] for scheduler indepen-
dent security—this criterion is extremely harsh, forbidding
high tests at if and while. ≈WT corresponds to another type
system [14], where high tests are allowed at if provided the
branches are high, but are disallowed at while. This harsh
condition on while is the starting point of work by Boudol
and Castellani [4], where a type system equivalent to ≈01

is introduced. ≈01 allows high tests for while provided the
body of the while is high. This is possible because, unlike
≈WT, ≈01 can fall back on high. However, the price for
this is a harsher clause for “;” (which is a limitation of the
termination-insensitive notions). An improvement of ≈01

is proposed by Boudol [3], where, in the c1 part of c1 ; c2,
one no longer restricts to low tests everywhere, but rather
only in places that may affect termination (i.e., inside while
loops). Interestingly, this condition on c1 is the one imposed
by ≈WT, and therefore Boudol’s approach can be seen as a
carefully designed combination of ≈WT and ≈01—it is in
fact equivalent to ≈W.

Acknowledgment. This work was supported by the project
Ni 491/13–2, part of the DFG priority program Reliably
Secure Software Systems (RS3). Dmitriy Traytel, Jasmin
Blanchette and the reviewers made very useful suggestions
to improve the presentation and corrected some errors.

References
[1] Reliably secure software systems (RS3). http://www.

reliably-secure-software-systems.de, 2013.

[2] Security type systems and deduction—RS3 project. http:

//www21.in.tum.de/local_projects/rs3.html, 2013.

[3] G. Boudol. On typing information flow. In ICTAC, pages 366–
380, 2005.

[4] G. Boudol and I. Castellani. Noninterference for concurrent
programs. In ICALP, pages 382–395, 2001.

[5] D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20(7):504–513, 1977.

[6] M. Keil and P. Thiemann. Type-based dependency analysis for
javascript. In PLAS, pages 47–58, 2013.

[7] A. C. Myers. Jflow: Practical mostly-static information flow
control. In POPL, pages 228–241, 1999.

[8] A. Popescu, J. Hölzl, and T. Nipkow. Proving concurrent non-
interference. In CPP, pages 109–125, 2012.

[9] A. Popescu, J. Hölzl, and T. Nipkow. Formal verification of
language-based concurrent noninterference. Journal of Formal-
ized Reasoning, 6(1), 2013.

[10] A. Popescu, J. Hölzl, and T. Nipkow. Formalizing probabilis-
tic noninterference. In CPP, pages 259–275, 2013.

[11] A. Sabelfeld and H. Mantel. Securing communication in a
concurrent language. In SAS, pages 376–394, 2002.

[12] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communica-
tions, 21(1):5–19, 2003.

[13] A. Sabelfeld and D. Sands. Probabilistic noninterference for
multi-threaded programs. In IEEE Computer Security Founda-
tions Workshop, pages 200–214, 1999.

[14] G. Smith and D. Volpano. Secure information flow in a multi-
threaded imperative language. In POPL, pages 355–364, 1998.

[15] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(2/3):167–188, 1996.

[16] D. M. Volpano and G. Smith. A type-based approach to pro-
gram security. In TAPSOFT, pages 607–621, 1997.

6

