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A B S T R A C T 

Occupant Restraint Systems (ORS) have been widely used in Public Service 

Vehicles (PSVs). A Wheelchair Tiedown and Occupant Restraint System (WTORS) 

has been developed to provide effective occupant protection for disabled people who 

are seated in whceichairs. An international laboratory study had been conducted to 

produce a compliance test protoco! that included spécification of the sied décélération 

versus time history and the crash puise corridor. Currently effort at the international 

level is being focused through the International Standards Organisation (ISO) to 

produce standards for WTORS and transportable wheelchairs. 

Dynamic sied testing of WTORS was conducted in Middlesex University 

Road Safety Engineering Laboratory (MURSEL) to develop a test protocol in a 

WTORS System. This research has been concerned with the effects to which the 

occupant of a wheelchair secured by a WTORS is subjected in a frontal impact. Both 

occupant Forward Facing Frontal (FFF) and Rearward Facing Frontal (RFF) impact 

configurations have been considered. A Surrogate wheelchair with a tiedown restraint 

System, a Surrogate occupant restraint System, and an Anthropomorphie Test Dummy 

(ATD) were used to facilitate highly controlled tests. Production wheelchairs were 

also crash tested to validate the response of the Surrogate System. A 48 km/h-20g 

crash pulse falling within the ISO standard crash puise corridor was specified. 

The Crash Victim Simulation (CVS), one of the computer modelling methods, 

and Finite Element Analysis (FEA) models were designed to study the dynamic 

response of a restrained wheelchair and its occupant in a crash environment. Two 

CVS computer packages: MADYMO®*, DYNAMAN®** and one of F E A programs: 

PAFEC were used in WTORS models to predict the occupant response during impacts 

and henee provide data to optimise future system design. A modelling protocol for 

WTORS was developed based on the results of ninety (90) sied tests of WTORS 

Surrogate system and forty (40) dynamic tests of production wheelchairs. To illustrate 

the potential of thèse models the results of simulations were validated by sied tests. A 

MADYMO© is ihc trademark of TNO Road Vehicles Research Institute 

DYNAMAN© is the iradcmark ofGESAC 

2 



random effects Statistical method was used to quantify the results. The load-time 

historiés were also traced to qualify thc test and model results. 

A literature review highlighted twenty years of wheelchair crash research. The 

corrélation between computer model and expérimental results was made more 

accurately. The modelling technique of interconnection of FEA models into CVS 

program was also introduced. The velocity profile and the natural frequency of 

WTORS analysis were used to explain why the wheelchair and dummy experienced 

accélération amplifications relative to the sied. The Shoulder belt load at floor-

mounted configuration was found to be higher than that at B pillar configuration. 

Energy principles were also applied to show why more compilant wheelchair tiedown 

Systems subjected restraints to a less severe crash environment. A décomposition of 

forces using the computer model showed why quasi-static analysis is insufficient in 

WTORS design. It is concluded that the B pillar anchorage of the occupant diagonal 

strap is superior to the floor-mounted configuration. 
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C H A P T E R 1: INTRODUCTION AND B A C K G R O U N D 

1.1 Road Safety and Dynamics 

More than 10,000 people die as a resuit of accidents of one form or another in 

the UK every year. Over one-third of thèse fatalities occur on the roads. The economic 

cost of road trauma in the U K in 1993 represented 1.7 per cent of Gross Domestic 

Product (GDP). It was about 1.6 per cent of GDP in Australia in 1994. This figure is 

typical of the economic significance of road accidents in other industrialised countries. 

United States of American (USA) estimâtes would suggest economic cost of between 

1.0 and 1.5 per cent of GDP. 

Society attempts to reduce this toll and enormous loss. Firstly, the immédiate 

practical causes of différent types of road accident have to be discovered. Secondly, 

Occupant Restraint Systems (ORS) have been designed for the safety of ail users. One 

important aspect of road safety is the incidence of serious and fatal accidents 

following a collision. If there is an accident or collision, the velocity changes can be 

damaging to both humans and the ORS System. A proper appréciation of current 

methods and proposais requires an understanding of the basic scientific and 

engineering concepts of dynamics. 

Although approximately one third of fatal car accidents are frontal collisions, 

serious injury and fatality are also seen in other types of car accidents such as side and 

rear impacts. Thus, in order to increase the integrity for crashworthiness, studies of 

various types of crash situations are required. The extension of crashworthiness 

calculations to various aspects of the crash would greatly enhance the structural 

integrity of the ORS. It is désirable to have a simulation tool for investigation of better 

crashworthiness performance, such as, sied tests and computer models, thereby 

decreasing the bürden of full-scale tests of prototype vehicles. There are more 

stringent requirements to protect the disabled occupant sitting in a wheelchair 

travelling in a vehicle during impact. These requirements include restraint Systems 

both for disabled occupants and wheelchairs. 
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Considérable advances have been made in the crash injury protection of 

wheelchair occupants over the past two décades, but motor vehicle accidents still 

waste enormous human potential. How to make new progress in crash injury 

protection of wheelchair occupants is still a challenge to the whole world. 

1.2 Wheelchair Occupant Safety and Requirements 

The accident data related to Public Service Vehicles (PSVs) passengers in the 

UK, excluding those injured while they were boarding or alighting, were obtained 

from the police STATS19 (1981) form, given in nation-wide coverage. The 

breakdown for the year 1981 is typical and is given in Table 1.2a. 

Table 1.2a Passengers injured in PSVs, UK 

Impact 
Types 

Severity of Injury % of Total 

Fatal Serious 
Front 0 171 38% 
Rear 1 6 1% 

Offside 0 16 4% 
Near side 2 7 2% 
Rollover 2 60 13% 

No impact 3 186 42% 
Total 8 446 

Two most important types of accident were found in Table 1.2a. The first is an 

injury happened when no vehicle impact takes place, but emergency braking or 

sudden manoeuvres cause passengers to be thrown against the bus structure (42% of 

the total injuries). In such an event, unrestrained wheelchairs would be free to roll and 

represem a danger not only to the wheelchair occupants but also to other users of the 

PSVs. The second event from Table 1.2a is the direct frontal impact (38% of the total 

injury). Accident data have shown that the priority requirements for the wheelchair 

restraint are to hold the chair and occupant in place during normal driving. These 

requirements are summarised in 'Code of Practice: the safety of passengers in 

wheelchairs on buses' (VSE87/1). Roy (1995) drew attention to différences between 

types of occupant restraint System observed during ISO Surrogate wheelchair tests. 
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The mechanical response of the wheelchair during impacts dépends on the anchorage 

of the dummy's occupant restraint, attached either to the floor or to B pîllar. 

Manufacturers noted that wheel brakes were insufficient in securing a 

wheelchair during normal driving manoeuvres. The tiedown restraint Systems have to 

be developcd to limit wheelchair movement. Unfortunately, thèse restraint devices 

were designed to prevent excessive wheelchair and occupant movement in transport, 

giving little attention to basic crashworthy principles. In 1976, Orne suggested basic 

design criteria for Wheelchair Tiedowns and Occupant Restraint Systems (WTORS), 

and produced a WTORS prototype (Orne, et al, 1976). In 1978 and 1979, dynamic 

sied impact tests were conducted at the University of Michigan to evaluate the 

effectiveness of several commercially available WTORS (Schneider, et al, 1979). The 

results revealed that most tiedown and occupant restraint equipment were inadéquate 

for protecting wheelchair passengers in a crash environment and suggested a need to 

develop WTORS performance standards. 

These studies resulted in two draft ISO standards: the standard for WTORS 

(ISO/CD 10542-1) and the standard conceming the strength of the wheelchair itself 

(ISO W D 7176-19). These are only draft standards which are continually changing. 

The final standards have not yet been issued. 

In the above ISO standards, the production wheelchair was anchored to the sied 

using either its own specified restraint Systems or a defined Surrogate system. The 

dummy of mass 75 kg was used. Whcn subjected to impact WTORS should meet the 

following requirements: 

• Retain the test dummy and wheelchair on the sied. The test wheelchair should 

remain in the upright position. 

• Not show any fragmentation or complète séparation ofany load carrying part. 

• Not allow the horizontal excursions ofthe test dummy and test wheelchair to 

exceed the limits defined in Appendix ÎA. 

• Allow the dummy and wheelchair to be releasedfrom the sied without the use of 

tools. 

• Prevent the wheelchair loading the occupant by exhibiting a ratio: 
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(maximum knee excursion)/(maximum chair excursion) > 1.1 

• Secure electric batteries without any leakage. 

• Not deformed to cause serious injury to the occupant. 

The accident investigations have been conducted through WTORS 

environment studies, dynamie testing of production wheelchair and its restraint 

system, wheelchair users and manufacturer. The design conditions and requirements 

for WTORS are summarised in Table 1.2b. 

Table 1.2b Summary of design conditions and design requirements for WTORS 

Design Conditions Design Requirements 

AccidcnL 

Environment 

• Frontal impact 

• Rcar impact 

• Side impact 

• Emergency braking (a décélération of 0.8g) 

Wheclchairs • Electric powered and manual wheclchairs 

• Battery securcment: no breakaway and no acid spills in accident 

Wheelchair 

Restraint System 

• Sccured to vchicle under accident environment 

• No entrapping of passenger in accident 

• Fit into most types of vehiclcs 

• Fit within space envelopc of wheelchair 

• Easy to install and remove 

• Easy to mass producc (low unit costs) 

Disabled Occupant • Survive accident conditions with littlc or no injury 

• Lowcr human tolérance values (HIC or 3MS) than for able-bodied occupant 

• Passive rather than active restraint preferred 

• Simple opération of devices 

1.3 Worldwide Régulations for WTORS 

Numerous countries have adopted législation and standards to ensure that 

people in wheelchairs travel safely in the PSVs. Thèse call for expérimental work and 

computer model s under conditions of impacts with monitoring of the integrity of 

WTORS. Many authorities are actively concerned with increasing the safety of 
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wheelchair occupants, such as the International Standard Organisation (ISO), 

motoring associations, accident prévention societies, university impact engineering 

departments, car manufacturer and governments. 

Work has continued both in the U K and internationally in the development of 

standards for wheetchairs carried in vehicles and for restraint Systems used on them. 

ISO Committees have involved in drawing up international standards in thèse fields. 

They are also liaison closely with the manufacturer to ensure that standards are set on 

the basis of the best practice and research expérience. 

In 1982, the UK govemment introduced législation, which for the first time in 

the UK provided a statutory framework requiring ail forms of domestic land based 

public transport to be accessible by disabled people. The législation covers buses, 

coaches, trains, trams and taxis. The Transport Research Laboratory (TRL) test site at 

Crowthorne in Berkshire has conducted numerous experiments on road surface, layout 

and car design in co-operation with both local govemment experts and car 

manufacturers. In 1981, the Department of Transport (DOT) issued a Code of Practice 

and Special Provisions for the Carnage of Passengers in Wheelchairs on Public 

Service Vehicles (VSE518). Currently advice on the safe carnage of wheelchair 

occupants in buses in the U K is provided by the Code of Practice VSE 87/1, which was 

substituted for VSE 518. This Code describes how wheelchair should be secured when 

travelling in a bus. A bus is defined as a vehicle for more than eight (8) seats, 

including those in wheelchairs. The Code of Practice defines the recommended space 

and headroom inside the vehicle to manoeuvre the wheelchair, and the width of the 

door and gangway. Middlesex University Road Safety Engineering Laboratory 

(MURSEL) has involved in some aspects of crash environments and maintenance, 

including advice to the govemment on road safety improvement and safety législation, 

which have contributed to international standards (ISO/CD 10542-1 and ISO W D 

7176-19). 

In the Netherlands, the TNO-Road Vehicles Research Institute has involved in 

a long-term research programme on the transport of wheelchair occupants (Kooi J. 

and Janssen E.G., 1988). TNO has formulated requirements and recommendations 

regarding instructions for use, design and durability of the wheelchairs. A working 
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group of the Dutch Standardisation Office (Netherlands Normalisation Institute, NNI) 

has started preparation to transform this work into Standards. 

In France, the order of July 1982 on the collective transport of persons for 

vehicles with more than ten (10) scats was issued. This order stipulates that the 

wheelchair must be anchored to the floorboard of the vehicle and that the passenger 

must be secured in the wheelchair. Schneider (1979) examined the case of children in 

wheelchairs subject to 48 km/h frontal impact and concluded that the means of 

restraint existing at the time for forward facing impact was not the best Solution. 

In Germany, the standard DIN 75078 (1985) Covers the transport in vehicles 

with less than 12 seats, which must be equipped with a complicated wheelchair and 

occupant restraint system. The wheelchair restraint system has been impacted in the 

University of Heidelberg Research Centrę for Rehabilitation and Prevention, West 

Germany (Kallieris D., et al., 1981). Studies have been carried out by reconstructing 

frontal and rear impact accidents involving light vehicles and minibuses. The aim was 

to propose Solutions for the wheelchair occupant restraint Systems. 

In Sweden, regulations published in 1989 and recommended two different 

restraint Systems, one for the wheelchair and another for the occupant. These 

regulations outline objectives to be attained with regard to restraint of the wheelchair 

and lay down requirements concerning the position of anchoring points for the 

occupant's seat belts. They apply to vehicle seats less than twelve (12) persons. 

Petzall (1995) tested production wheelchairs restrained using Systems adapted. Düring 

tests with heavy electric powercd wheelchairs, breakage of the strap-type system was 

observed. 

In Australia, the Standard AS2942 (1987) served as the starting point for the 

work of the ISO group. 

In North America, government regulations ensure that safety restraint Systems 

can be used to protect passengers in all modes of transportation meet certain minimum 

performance criteria. The concem for the safety of wheelchair passengers in transit 

arose in the mid-1970's in USA. In 1990, the Americans with Disabilities Act (ADA) 

extended civil rights protection to people with disabilities. It was conducted by setting 

minimum performance Standards to protect wheelchair passengers in public transit. 
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Unfortunately, the safety of whcelchair passengers in personally-licensed vehicles, 

such as vans, has not been addressed in legislation in the form of a WTORS standard. 

To consider this oversight, the Society of Automobile Engineering (SAE) Adaptive 

Devices Committee Wheelchair Restraints Task Group has recommended practices 

which led to a national standard for personally-licensed vehicles. The ultimate goal is 

to ensure that all passengers in all forms of transportation are guaranteed the same 

level of protection in the event of a crash. Adams (1994) highlighted the problem of 

the position of the shoulder belt anchorage either to the floorboard or to an upright. 

This problem made more difficult in the case of coaches with large surface áreas of 

glass to the sides. 

The current world-wide standards including the issues and the performance 

requirements are summarised in Table 1.3. An ISO Technical Committee was set up in 

1970s to manage working groups of experts, whose task was to draft standards 

concerned with wheelchairs. With the increased mobility of wheelchair occupants in the 

early 1980s, particularly of those travelling in personally licensed vehicles, a new 

working group (WG6) was established in 1988. It was given the task of drafting an 

appropriate restraint standard. Membership of the group includes a wide assortment of 

professionals, researchers, government officials, users, rehabilitation engineers and 

manufacturers from nine (9) countries. In November 1995, technical experts in this 

group met at M U R S E L to work on a standard for the crash protection of wheelchair 

occupants. 

In an effort to provide consistency among all standards world-wide, the ISO 

Wheelchair Restraint Systems Working Group (ISO/TC-173/SC-1/WG6) is currently 

working on the development of standards for both WTORS (ISO/CD 10542-1) and 

Wheelchair Transportable System (WTS) (ISO W D 7176/19), applicable to both 

personally licensed vehicles and public transportation. The ISO 10542 standard places 

particular emphasis on design requirements, test procedures, and performance 

requirements with regard to the dynamic performance of WTORS in a frontal impact. 

It incorporates a severity of impact of 48 km/h with a máximum deceleration of 26g. 

In this standard, the occupant is restrained by a traditional 3-point seat belt attached to 
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the structure of the vehicle. The wheelchair is positioned facing to the front of the 

vehicle and is held by a tiedown system secured to the floorboard of the vehicle. 

Table 1.3 A summary of the current Worldwide standards of WTORS 

Country/ 

Standards 

Vehicle 

types 

Occupant 

restraints 

Evaluation 

criteria 

Performance 

requirements 

U K / 

VSE 87/1 

Motor vchiclcs 

for more lhan 

8 seats 

L a p & 

torso 

Static tests: 

4.4 kN for chair 

restraint; 

8.8kN occupant 

restraint. 

The restraint should withstand 

applied forces without failing or 

separating from the attachment; 

Movement of chair < 200 mm 

Nethcrlands Road transport 

vchiclcs 

Lap & 

torso 

Dynamic tests: 

30 km/h, 10g 

maximum 

Movement of chair < 200 mm 

France/ 

Order 1982 

Vchiclcs more 

than 10 seats 

L a p & 

torso 

Sied tests Chair must be anchored on the 

floorboard 

Germany/ 

D1N75078 

(1985) 

Road transport 

vehicles 

Lap & 

torso 

Sied test: 

frontal impact, 10g 

No spécifications for vehicles 

seating more than 12 seats 

Sweden/ 

Régulations 

(1989) 

Buses built after 

1989, 12 seats 

maximum 

L a p & 

torso with 

inertia 

réels 

Static test: 

5 k N for manual 

wheelchair 

Wheelchair must remain steady 

Australia/ 

AS 2942 

(1987) 

A i l motor 

vehicles 

L a p & 

torso 

Sied test: 

front, side, and rcar 

impacts 

Horizontal excursion of dummy 

hip point 

Canada/ 

CSA-Z604 

(1992) 

Motor vehicles 

(other than 

passenger 

vehicles) 

Lap bell 

required 

Dynamic test: 

driving manoeuvres 

Motion of wheelchair must bc 

limited in any direction 

USA/ 

A D A 

(1990) 

A i l motor 

vehicles 

L a p & 

torso 

Sied test: 

48 km/h, 20g - 30g 

within spccifïed 

frontal impact 

corridor 

Dummy head, hip and knec 

forward excursions; chair must 

not load occupant; entire system 

must rcmain intact, allow egress 

without the aid of tools 
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The objectives for the new standard should ensure the following requirements: 

• Occupant injuries are reduced to a minimum in an accident. 

• The chair and occupant are held securely in place during the journey. 

• Equipment is simple to fit, comfortable to wear, to provide the occupant with 

confidence and to incorporaîe an emergency quick release. 

• Equipment is adaptable between différent wheelchair designs and preferably 

uses common attachment points. 

• Systems are ajfordable. 

1.4 Interlab Testing of WTORS 

During the work on the standards, a number of key issues emerged so that 

further investigations are required. The main area of research centred on finding answers 

to the following questions: 

• Whatare the appropriate restraint Systems? 

• Whatare the appropriate crash conditions? 

• What testprotocol is required to ensure compliance ofproducts? 

• What is a satisfactory performance? 

A multi-lab comparison test was conducted to détermine if the test protocol 

was sufficiently defined to produce reusable and reproducible results at différent crash 

laboratoires. This international laboratory study (interlab) also served to provide 

useful information regarding the relative effects of test parameters. Four laboratories 

participated in the interlab study: University of Virginia (UVA), University of 

Michigan Transportation Research Institute (UMTRI), Defence and Civi l Institute of 

Engineering Medicine (DCIEM), and MURSEL. Four mechanisms have been applied 

to retard their sleds, each of which exhibited différent shapes of décélération-time 

characteristics. The interlab testing results are summarised in a paper (Roy et al, 1995). 

The interlab study proved that wide crash puise variations within the ISO 

corridor do not significantly affect response parameters such as loads, décélération, 

and excursions. Although future investigation into the relative influences of peak sied 
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deceleration and velocity change (Av) are necessary, the crash pulse specification (48 

km/h) of the proposed ISO standard is sufficient. 

The deceleration-time characteristics for each of the sleds achieved during the 

research programme was different. The UMTRI peaked early, followed by the 

M U R S E L and the U V A later. The communication between the laboratories stated that 

these differences were due to a combination of different sled dynamics, wheelchair 

restraint systems. The most significant difference was the way in which the occupant 

restraints were anchored. The practice in the U K had been to use a shoulder belt attached 

over the shoulder to the floorboard whereas elsewhere was to mount the belt above the 

shoulder (B pillar), in a similar way to that in a car. The resulting downward force on the 

occupant from the floor-mounted configuration made the chair collapse. With the 

standard ISO 7176/19 to explore wheelchair performance, a industry test programme has 

been conducted to test a number of proprietary production wheelchairs to obtain a more 

accurate measurement of their crash performance and to contribute to the drafting of this 

standard. 

1.5 MURSEL 

M U R S E L is the university centre for impact engineering in the research, 

teaching and commercial fields. In 1979, In collaboration with K L Automotive 

Products Ltd (now named Jeenay Pic who produced the world's first child safety seat 

for cars in 1962), a tracked moving sled indoor installation was built (Gregg, D.J. and 

Roy, P., 1983). The design is basically an improved version of the British Standards 

Institution (BSI) facility at its Hemel Hempstead site. The facility at M U R S E L is 

hence ideally suited for conducting dynamic tests in accordance with the appropriate 

British and other European standards. The wheelchair crash tests in M U R S E L started 

in 1982. 

The impact test rig was constructed at the University's Hendon campus to test 

the performance of dummies and vehicle components during impacts representative of 

road accident crash situations without having to destroy complete vehicles each time. 

The test rig comprises a thirty-three (33) metre long track, one sled and the impact 

head, which is secured to a eighty (80) tonnes concrete impact block. The rail mount 
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sied propelled by bungees is decelerated using the appropriate European standard 

(ECE R44) polyurethane décélération tubes and olives. The crash séquence is 

monitored using a high speed caméra or video. Transducer Outputs are recorded and 

displayed using PCs. Standard data processing techniques are employed during the 

analysis. The détails of performance spécification of the M U R S E L facility are listed in 

Table 1.5. 

Table 1.5 Performance spécification of MURSEL facility 

Parameters Descriptions of ranges 

Velocity change A total sied mass of 1250 kg can be decelerated to 65 km/h. With a redueed 

mass of 520 kg, an initial velocity of 80 km/h is available. 

Décélération dislance Distances up to 1 metre are available. 

Sied input puise The magnitude and the shape of the puise is a function of the combinations of 

steel olives and polyurethane tubes or crumple tube dimensions. In particular 

the requircments of the dynamic tests to the standards can be met. 

Test scats Both adult and child scats arc available, conforming to the appropriate 

standards. 

Impact directions Impacts can be carried out to simulatc frontal, rearward, side and oblique crash 

conditions. 

Instrumentation 

Dummies Hybrid II and TNO-10 adult dummy, the range of TNO child dummies 

Transducers Appropriate transducers are available to measurc the following parameters: 

Sied: stop Distance, velocity and décélération (Endevco 7232C); 

Dummy: tri-axial ehest and head accélération (Endevco 7267A); 

Restraint: anchorage and strap loads (Denton gages and 'dogbone' load cclls 

Data recording Signais received from the sied bome transducers via signal conditioning units 

arc displayed on a computer. The signais arc filtered using appropriate 

software. Twenty-four high speed A/D input Channels are available. 

Video caméra A Hadland Hyspccd S2 caméra or a Kodak EktaPro high speed video motion 

analysis system are used to monitor dummy movement during impact. 

Computer modelling A T B / D Y N A M A N , M A D Y M O , E A S i - M A D , P A F E C 

Static ri g and 

the others 

Static scat bclt rig can apply static loads up to 35 kN to seat belt Systems. 

Small impact rig consists of a sied mass which can be varied up to 25 kg. The 

mass can be accelcraled to an impact velocity of 18 km/h. 

Wheelchair static rig is operated on behalf of T R L . Approval tests to the Code 

of Practicc VSE 87/1 were carried oui on this rig. 
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The Crash Victim Simulation (CVS) programs used at M U R S E L are described 

in Appendix 1B. The research in WTORS is aimed at producing some significant 

advances in the production of a computer model in order to study the effect of the 

variation of appropriate parameters on the impact performance. This compléments the 

test work that has been carried out in M U R S E L and funded by the Department of 

Transport. The research programme has been part of the U K contributions in the areas 

of occupant restraint crash performance. The outputs of the research have generally 

been as research reports followed by papers submitted to national and international 

conférences (see Lists of Publications). The results of this research have also been 

used as the basis of proposais to write or amend the following standards: 

ISO/CD10542-1, ISO W D 7176-19. 

On the commercial side, M U R S E L is a centre that approves products to meet 

the requirements of national and international standards. It has carried out work for a 

number of organisations: Department of Transport (DOT), British Standards 

Institution, New Zealand Standards Institution and a number of companies: UNWIN, 

Sunrise, Britax, Irvin (GB), Klippan, MIRA, Peugeot, AB Volvo, etc. Some industry 

test results for WTORS and production wheelchairs are shown in Appendix 5A. 

1.6 Research Programme 

A literature review highlighted twenty years of wheelchair crash research, and 

showed that there were still many issues not fully understood. The original WTORS 

concept in ISO 10542 standard relies only on the shoulder belt being anchored to B 

pillar in frontal impact. The main parameters that are accepted as judgmental criteria 

for satisfactory crash performance were established for head and chest accélérations 

and their displacements. 

1.6.1 Objectives 

This research programme has been set to develop the expertise in three 

dimensional computer models to validate expérimental results and accurately predict 

performance of occupant restraint Systems. The computer models have been built up in 

order to 
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• analyse the dynamic performance of occupant restraint Systems 

• demonstrate and evaluate interactions between restraint Systems and the 

wheelchair 

• predict dynamic performance parameters of tiedown restraint Systems 

• evaluate the biofidelity of ATD dummies 

1.6.2 Research flow diagram 

The research has been conducted by the author through three tools as accident 

investigations, dynamic expérimental testing and mathematical models (Figure 1.6). 

In this thesis, the initial four Chapters provide background information and most of 

practical work conducted in this programme. This includes a literature survey of 

related work and relevant worldwide régulations for WTORS. It continues with the 

présentation of work conducted to examine the various parameters, which affect 

WTORS performance and the injury potential of the occupant (Chapter 4). 

Examination of the dynamic performance of WTORS was conducted both by 

impact tests and mathematical models. The expérimental work was carried out at 

MURSEL. The mathematical model was conducted using computer software packages 

called A T B / D Y N A M A N and M A D Y M O designed as Crash Victim Simulation 

(CVS) models, and a Finite Element Analysis (FEA) software called PAFEC used to 

model the wheelchair structure. Both techniques are described in gênerai (Chapter 6 

and 7) and then in more detail, specific to work conducted for this thesis in Chapter 8 

and 9. 

The CVS modelling includes the following séquences: 

1. Estimation of the initial hinematics and extemal forces reacting on the 

models, hased on the analysis of real impact record from the video footage 

and accident investigations (Chapter 5, 6) 

2. Préparation ofelementary modelling of WTORS and its contacts 

(Chapter 7, 8) 

3. Assembly of the elementary models into a proper simulation (Chapter 9) 

4. Validation of dynamic impact tests (Chapter 10) 

5. Assessment and analysis of crash performance of WTORS (Chapter 11). 
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Figure 1.6 Research flow diagram 

Results of the experimental investigation into the parameters which affect 

WTORS performance are interpreted in the relevant Appendix to Chapter 5 
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(Appendix 5A, 5B, 5C and 5D). The industry test (Group 1) was for production 

wheelchair crash performance survey. The T R L and ISO tests (Group 2 and 3) were 

conducted wtth surrogate wheelchairs design parameters to evaluate floor reaction 

forces and effect of diagonal strap anchoragc configuration on occupant restraint 

System respectively. The taxi test (Group 4) involved production wheelchair and 

surrogate wheelchair to investigate the crash performance of a rearward facing 

wheelchair occupant System in frontal impact. 

The results of CVS model validation of expérimental work are presented in 

Chapter 10. The final two chapters (Chapter 11 & 12) draw together the results in a 

gênerai discussion and conclusion of work. The discussion work was conducted using 

basic work-energy balance analysis methods. 
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C H A P T E R 2: E L E M E N T S OF WTORS 

As currently defïned in the draft ISO wheelchair standard (ISO/CD 10542-1, 

1994), WTORS is a 'complète restraint system designed to provide effective occupant 

protection for motor vehicle drivers and/or passengers seated in a wheelchair'. It 

includes a system or device for wheelchair tiedown as well as a system for restraining 

the occupant. 

In this Chapter the basic four éléments of WTORS: wheelchair, wheelchair 

tiedown restraint system, occupant and its restraint Systems are presented in Figure 

2.0. The certain test configurations are compared. The crash environment for WTORS 

will be discussed in Chapter 3 and the misuse of WTORS effects on injuries will be 

discussed in Chapter 4. 

WTORS 

Wheelchair Restraint Systems Occupant 

•< r t 

- •• Wheelchair Tiedown Occupant Restraint 

Figure 2.0 Four éléments of WTORS 

2.1 Wheelchair Structure 

A wheelchair is a 'seating system comprising a frame, a seat, and wheels that 

is designed to provide support and mobility for persons with physical disabilities' 

(ISO/CD 10542-1, 1996). Many types of production wheelchairs have been used in 

WTORS testing in the past, such as standard manual wheelchairs, electrically powered 

wheelchairs, scooter-type wheelchairs, and spécial wheelchairs. As a resuit of thèse 

tests, the strong and weak points of standard wheelchairs have been determined, and 
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the peiformance of specific tiedown systems with certain chairs has been observed. 

Power wheelchairs are typically used in WTORS tests because the chair weight 

(approximately 85 kg) makes a representative loading case. Industry testing results 

(Appendix 5A) have revealed that for the some parts, the brazed frame of manual and 

powered wheelchairs could not withstand the forces generated in a 48 km/h (30 mph), 

20g frontal impact. 

For the purposes of WTORS acceptance and evaluation testing, the use of 

production chairs is not feasible. The extreme crash always results in a largc amount 

of chair deformation and involves the high cost of replacing damaged parts. Another 

problem to use production wheelchairs involves decidítíg which models to use as there 

are many designs of unique weights and geometry. The use of various production 

chairs introduces too many variables. 

A solution to the problcms associated with 

WTORS testing is the use of a reusable Surrogate Wheel 

Chair (SWC). SWC is a chair having the general 

dimensions, shape, and geometry of a typical standard 

production wheelchair, but suitably reinforced to ensure 

that the chair will not permanently deformed in a 48 km/h 

crash. 

Figure 2.1a T h e reasons why a reusable SWC is needed are 

TRL surrogate wheelchair explained as follows: 

• SWC is specified in the dynamic test for the 

Australian and Canadian WTORS standards (Standards Association of Australia, 

1991, Canadian Standards Association, 1992), and has been adopted by ISO for their 

draft standards. 

• SWC facilitates a standardised test, assuring that all WTORS can be tested 

repeatable within-lab consisteney and reproducibly between-lab consisteney. In 

essence, the surrogate wheelchair pro vides a level playing field for all WTORS. 

• SWC presents a worst case loading severance for systems as it is rigid. Since 

the chair does not permanently deform, i.e., dissipate energy, the entire energy 

management of the crash could be sustained by the restraint systems. 
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The Australian Surrogate wheelchair has 

skids in place of wheels (no wheels). The Canadian 

chair's 51 mm tubulär diameter frame appears 

grossly over designed but it is in compatible with 

docking system hardware. One of the SWC 

designed by the Transport Research Laboratory 

(TRL) in the UK was selected in this research 

programme (TRL-SWC in Figure 2.1a). The design 

for the chair was based on standard powered 

wheelchairs in the U K . The T R L design was 

Figure 2.1b 

ISO Surrogate wheelchair 

adopted because it provides a more.realistic Simulation of power wheelchairs. Tt has 

an industry Standard 22 mm diameter tubulär frame. The extra masses were attached 

to the chair so that the total chair mass was 85 kg. It is the average mass of Standard 

power wheelchairs as determined in a survey for the Canadian Standards Association 

Another Surrogate wheelchair used in this research programme was the ISO 

wheelchair (ISO-SWC in Figure 2.1b). It was found 50 mm (2") higher than T R L 

Surrogate wheelchair. A modified ISO Surrogate wheelchair was designed and 

fabricated for the purpose of sied testing. The tiedown hardware attachment is an 

important modification. In the new design of ISO-SWC, two solid attachments or 

opening points (A and B in Figure 2.1b) were provided on the wheelchair front and 

rear. 

2.2 Wheelchair Tiedown Systems 

A wheelchair tiedown is *a device or system designed to secure a wheelchair 

in place in a motor vehicle' (ISO/CD10542-1, 1996). The wheelchair rests on the 

floorboard of the vehicle and is secured either by a manual tiedown connection or by an 

automatic connection system. The tiedown anchorage was either locked into rails or 

bolted to the floorboard. Two configuration designs (type I and II) of wheelchair 

tiedown restraint system were tested dynamically in the U K (Roy et al. 1995). Type I 

restraint (floor mounled) used the various anchorage rails with a lap belt only. Type U 

(CSA). 
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is a System using an adjustable A-type frame, which it is placed at the back of the 

wheelchair in sockets on the floorboard and roof of the vehicle. The wheelchair can 

then be held onto the A frame either by webbing or by clamps. Loads transmitted 

through the wheelchair can result in its frame collapse. As the frame failed, the loads 

of the wheelchair restraint increased with the possibility of sudden failure. 

Modifications to the wheelchair structure can delay the start of failure. The floorboard 

structure in the vehicle must be sufficiently strong not only to hold the restraint 

anchorage but also to withstand the reaction forces through the wheelchair wheels. 

Five generic catégories have been adopted in the wheelchair tiedown System: 

(1) Rear locking System (Rearlok) and U-shaped bracket 

(2) Easy Locking device (Easilok) 

(3) clamping device 

(4) webbing bell 

(5) docking System 

The rear locking System (Rearlok), developed by UNWIN Safety System Ltd, 

is a restraint attached to the backrest of the wheelchair. It holds the wheelchair 

securely without the need for additional attachments on the front of the wheelchair. 

Rear locking system includes a horizontal member located directly below the cross 

members of the chair, which Spans from the left side to the right in a wheelchair. The 

horizontal member supplies pressure at thèse two points on wheelchair when the 

vertical component of the T-bar is clamped to the vehicle floorboard. 

U-shaped bracket Systems consist of U-shaped brackets locked to two vertical 

bars of the wheelchair. The wheelchair is secured in this system by moving the chair 

backrest against the restraint members. Two bars are entered in the structural slot by 

placing a rod or pin through the U-bracket. This system has been tested initially in 

dynamic sied testing in production wheelchairs, and all types have performed poorly, 

due mainly to the fact that the attachment points (bars) are one of the chair's weakest 

structural members. 

The easy locking device (Easilok) is the latest wheelchair and passenger 

restraint in the U K . However, many studies have documented their poor performance 

in the crash environment. Their déficient crash protection is most likely due to the fact 
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that a single vertical member is responsible for restraining the entire system. Also, 

since the restraint relies on downward pressure, the mechanism for restraint often 

forces the chair to start deforming. 

The performance of wheelchair was further 

investigated by the use of clamp. A wheelchair 

clamping device consists of a hook, which is 

connected to the vehicle floorboard by a pin jointed 

bracket. The wheelchair restraint is accomplished by 

fitting the hook around the tubular frames of the 

chair (Figure 2.2a). The attachment rods are 

Figure 2.2a Clamping device sometimes added to the wheelchair to provide 

attachment points of sufficient rigidity. These 

systems, which require considerable operator assistance, are far more popular in U K 

than four strap tiedowns but have the disadvantage of concentrating the loads in the 

wheelchair structure. 

Belt systems are generally considered as 

the most effective and crashworthy of the 

wheelchair tiedown systems (Schneider, 1979). 

These systems consist of adjustable straps, which 

either hook onto the wheelchair or loop around 

structural members for securement. The belt 

systems are typically configured in a four-point 

symmetrical arrangement, usually with two 

Figure 2.2b attachment points in the front and another two in 

Webbing restraint (4 point) m e r e a r . The belt securement to the vehicle is 

usually accomplished by connection to track 

fittings mounted to the floorboard of the vehicle. Positive aspects of this system 

include good crash performance, excellent adaptability to a wide range of wheelchair 

models and it is easily adjusted. A drawback of these systems is their large space 

requirements. 
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The 4-point webbing belt (Figure 2.2b, Karabiner type) was developed by 

UNWIN Ltd. The wheelchair is positioned over the rail and brakes applied. Two front 

straps are attached to wheelchair and clipped to the rail. Two rear straps are hooked to 

the wheelchair as high up the centre of gravity in a wheelchair as possible. 

Docking systems involve hardware mounted to the underside of the wheelchair 

that latches into hardware on the vehicle floorboard. This restraint system is relatively 

new, and as a result, has not been crash tested as extensively as the other systems. An 

advantage of docking systems is that they take up no more room than the wheelchair 

itself. Another advantage is their ease of use, the user just needs to roll the wheelchair 

into position and lock it into place. A disadvantage of this system is that it is not easily 

adjusted and expensive. 

The webbing belt tiedown system is the most common in use in the world. 

Acknowledging this, WTORS standard was based on this tiedown system in an effort 

to encourage manufacturers to use these designs. In the following Chapters, the 

webbing belt tiedown system will be further investigated. 

23 Occupant 

The primary reason for the occupant investigation in WTORS study is to 

provide the loading paths and interactions with the wheelchair so that the potential for 

occupant injury could be investigated (Chapter 4). Cadavers have been used 

extensively in automotive crash testing and in WTORS research as well (Kallieris, et 

al, 1981). It was believed that cadavers pose a higher level of biofidelity compared to 

Anthropomorphic Test Dummies (ATD), and consequently, offer a more accurate 

assessment of injury severity. Unfortunately, it is nearly impossible to accomplish 

repeatedly with human surrogates since no two cadavers are alike. 

Unlike cadavers, ATD can be precisely calibrated and set-up for a given test, 

thus assuring excellent control of an important test variable. Another major advantage 

of ATD is that they could generate the loads and loading paths of the human occupant 

and mass distributions of the human body so that occupant kinematics can be 

approximated. They provide a tool for assessing the likelihood and severity of injuries 

resulting from a crash. To accomplish this accurately, A T D must provide a human-
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like response to the crash environment and contain integral instrumentation to 

quantify the responses of différent body régions. 

Since WTORS évaluation testing should provide a typical case loading 

environment, the adult-sized 50th-percentile male dummy (75 kg) is specified in ISO 

standard. In this program, two types of adult A T D were used in WTORS crash 

research, TNO-10 and the Hybrid II. TNO-10 dummy was developed by TNO 

(addendum 15, ECE R16, 1990) and was used to test the wheelchair and its restraint 

Systems. Since the primary purpose of testing is to provide the loads and loading paths 

generated during a wheelchair crash, standard dummy instrumentation used for injury 

assessment was not required. 

Hybrid II was developed by General Motors in 1972 (Foster, et al, 1977). The 

new version of Hybrid II, called Hybrid HI, was developed in 1977. It more closely 

resembles human response in the head, neck, and ehest, and provides measurements of 

ehest deflection and femur loads. Hybrid IU can be used to provide a much better 

assessment of injury due to secondary impacts compared to the Hybrid H. 

2.4 Occupant Restraint System 

The fourth élément of WTORS, the occupant restraint, is defmed as 'a System 

or device designed to restrain a motor-vehicle occupant to prevent éjection and 

prevent or minimise contact with the vehicle interior components during a crash* 

(ISO/CD 10524-1, 1994). 

The question is why safety belts should be used. The conséquences of the 

impact on the occupant dépend upon the déformation characteristics of the object 

Struck. The object of all interior safety devices is to reduce the force applied to the 

body as much as possible by absorbing the maximum proportion of the original 

kinetic energy of the occupant. Clearly we want to spread the absorption of this energy 

over the greatest possible distance and greatest interval of time. The safety belts can 

be used to improve this to some extent. Further analysis has shown that maximum 

protection can be achieved when the belts Stretch uniformly at constant load. 

In the L'K, automotive seat belts came onto the optional equipment market in 

the early sixties, conforming to a British Standard (BS3254, 1960). In 1965, the car 
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manufacturers were obliged to provide anchorage points for front seat belts. The front 

belts became compulsory items in cars and minivans purchased from 1967 onwards. 

The compulsory wearing of front belts was imposed on January 1983. The seat belt 

has achieved a sustained high level of public awareness and compliance. The concept 

of the passive restraint emerged, in which the occupant is automatically protected, for 

example, by a belt arrangement which moves into effect when the door is closed, or by 

an inflatable cushioning device to be triggered in an impact, i.e. the airbag concept. 

The lap and diagonal (L/D) self adjusting impact sensitive configuration is now the 

accepted form. 

A typical wheelchair occupant restraint consists of both an upper torso 

restraint and a lower torso restraint. The upper torso restraint may be in the form of a 

traditional shoulder belt or a shoulder hamess. The shoulder harness is a double inertia 

réel and stalk system with independent lap and diagonal shoulder straps for maximum 

security and comfort. Straps are provided with lockable clips that may be set to 

alleviate strap pressure on the occupant. The réel assembly is fitted with a shield to 

protect the plastic covers of the spring chambers from damage. Both components are 

mounted on the unique lockable rail fittings for ease of installation and removal, and 

can be securely clamped to the track to avoid rattles. The system has been fully tested 

and certified in accordance with Section 3.3 of Practice V S E 87/1 for lap and diagonal 

safety harness. 

The upper anchor points of the upper torso restraint are located on the wall of 

the vehicle (B or C pillar), and the lower anchor points may be attached on the rear 

tiedown belt sccuring the wheelchair (intégral securement), or direct to the vehicle 

floorboard (independent securement). The lower torso restraint is the traditional lap 

belt, whose function is to provide pelvic restraint for the occupant. 

Independent securement refers to the case when the occupant is secured 

independent of the wheelchair. Intégral securement refers to the case when the 

occupant restraint is anchored to either the wheelchair tiedown or the wheelchair 

itself. The independent securement requires the wheelchair tiedown to restrain less 

load. A drawback of independent securement is the possibility of the wheelchair 

loading the occupant during the event (Schneider, 1979; Kallieris, et al, 1981). This 

46 



CHAPTER 2 

occurs when the wheelchair tiedown is more compilant than the occupant restraint and 

the wheelchair is allowed to move more than the occupant. Consequently, wheelchair 

restraint is accomplished through the occupant restraint, which could increase the 

likelihood of severe occupant injury and require the occupant restraint to withstand a 

greater load than it was designed for. This fit is difficult to achieve with independent 

securement because of wheel interférence. 

In the integral securement configuration, the lap belt portion of the occupant 

restraint is anchored to the wheelchair tiedown or the wheelchair itself. This 

arrangement would eliminate the possibility of the wheelchair loading the occupant 

during the crash (Kooi and Janssen, 1988). 1t also allows a better fit of the lap belt 

over the pelvic bones of the occupant's lower torso. This is important because when 

the lap belt does not traverse the bony pelvis correctly, occupant submarining may 

occur, allowing the lap belt to ride up over the occupant's abdomen, leading to severe 

internal injuries. A study in 1981 at the University of Heidelberg using cadavers noted 

that a poor lap belt fit resulted in a liver injury (Kallieris, et al, 1981). A drawback of 

this configuration is that the load path is redirected from the occupant restraint 

through the wheelchair tiedown, requiring the wheelchair tiedown to withstand the 

inertial load of the occupant as well as the chair. 

Many researchers concluded that independent securement is the optimal 

method, since the wheelchair restraint is responsible for securing only the wheelchair 

(Schneider, 1979). Although occupant restraint loads are not a main performance 

requirement of the compliance test, manufacturer may want the occupant restraint 

loads to be monitored. Load historiés give manufacturer an idea of the magnitude of 

the loads experienced by their Systems, and can aid in the improvement or redesign of 

their Systems. In the following Chapters, the independent restraint configuration will 

be considered. 

2.5 Surrogate WTORS 

The use of a Surrogate WTORS was a logical solution, both from an 

economical and a practical view. 
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2.5.1 Surrogate WTORS for FFF impact 

The surrogate System was designed to ensure that the wheelchair and its 

occupant would be effectively restrained in a 48 km/h Forward Facing Frontal (FFF) 

impact. The design of the surrogate tiedown system enabled easy measurement of 

wheelchair tiedown loads, something that is very difficult to do when using 

commercial tiedown Systems. Also, the design of the surrogate tiedown enabled pre-

tension to be performed easily and precisely. Finally, the surrogate WTORS 

minimised test costs and allowed the control of a key test parameter, as the webbing 

belt could be replaced easily after each test. This allowed an easier analysis of cause 

and effect relationships. 

In this research programme, a surrogate WTORS was designed and fabricated 

for the purpose of initial testing and test protocol development. The surrogate System 

consisted of a 4-point belt wheelchair tiedown and a 3-point occupant restraint System. 

The wheelchair rear tiedown was designed with two segments of 1320 mm-long, 50 

mm-wide polyester seat belt webbing (11% elongation) maximum rated for 14.5 kN on 

each side of a shoulder belt (portside or starboard) in the crash severity of 48 km/h FFF 

impact. The shoulder webbing belt was constructed using a continuous length of 50 

mm-wide webbing (11% elongation) and a 75 x75 x 75 m 3 block for slack adjustment. 

The webbing belts have viscous-elastic characteristics that produce a velocity sensitive 

response. In addition to the section of webbing, each wheelchair rear tiedown leg 

consisted of a bucklc for slack adjustment and a tension load cell (Denton) for tiedown 

load measurement. Since the primary purpose of the tiedown load is to provide the 

loads generated during impact, the front tiedown instrumentation used for load 

measurement during rebound was not required. 

2.5.2 Surrogate WTORS for RFF impact 

The design of the Surrogate framed Taxi Restraint System (STRS) to evaluate 

WTORS in Rearward Facing Frontal (RFF) impact was based on a London taxi (see 

Chapter 5). Computer modelling of the STRS was used in conjunction with this frame. 

The belt types chosen for use with this taxi were: 
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• A Surrogate belt, one standard webbing belt was attached to both anchorages 

with two standard reel-mounting brackets. This allowed greater movement of 

the wheelchair and belt route. 

• A static lap belt with 25 mm (1") slack was used to restrict the movement of 

the wheelchair. 

The methods of parameter variation for the various phases are itemised below: 

(1) The variations in a wheelchair centre of gravity were achieved with two 

différent types of wheelchair, ISO-SWC and a manual wheelchair. 

(2) With or without handles in a manual wheelchair. 

(3) A modified headrest was bolted on the taxi bulkhead, allowing the head to be 

contacted onto required position. 

(4) Belt route could be changed by various holes placed in the side plates. 

The détails of the STRS will be discussed in Chapter 5. 
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C H A P T E R 3: WTORS CRASH ENVIRONMENT 

This Chapter outlines the research méthodologies in the field of wheelchair 

and occupant crash environment, including mode! of simulation, crash Simulator, test 

conditions, visual recording of movements, instrumentation and signal control system. 

3.1 Modes of Simulation 

The problem with some simulations is to find a corrélation of a static load to 

the actual dynamic load paths in a given crash severity and to consider how the 

simulations represent the real crash. 

3.1.1 Static and dynamic testing 

Static testing involves applying a constant force to a structural member at a 

relatively low rate over a long period of time. Dynamic testing involves a force 

application of short duration (approximately 100 ms in WTORS sied tests) at a high 

rate. 

Initial wheelchair tiedown évaluation testing involved static tests (Orne, et al, 

1976). Historically, manufacturer designed their wheelchair restraints based on 

simple static calculations: restraint force = mass of chair times peak vehicle 

décélération, and then tested their Systems based on thèse force levels. Unfortunately, 

a static analysis invariably underestimates the loads generated for given crash 

conditions. This is due to the fact that a static test oversimplifies the crash, and can 

not account for phenomena unique to the dynamic environment, such as the 

accélération amplification effect (see Chapter 11). A tiedown restraining a 85 kg 

wheelchair undergoing a 20g vehicle décélération generated a horizontal force greater 

than 17 kN. The shortcomings of static testing also in volve the force point of 

application, ldeally, the force point of application should be at the weakest point in 

WTORS System, however this location is never obvious due to the complexity of the 

entire System. Another problem of static testing involves how to détermine the 
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direction of force application (load paths). Düring the actual crash, load paths in three 

directions are created. It is impossible to predict ail of the load paths analytically using 

the inhérent over-simplifications of static testing. 

Since the early 1980's, dynamic testing has become the acceptable mode of 

testing WTORS in the United States (Schneider, 1979; Red, et al, 1982), and around 

the world (Kallieris, et al, 1981; Kooi and Janssen, 1988). Dynamic testing exposes 

Systems to real-world crash environments. It also reveals modes of hardware failure, 

such as webbing belt rupture at the area of high stress concentration, which static tests 

could never reveal. In a supporting for the use of dynamic évaluation testing in the 

Dutch standard, Kooi and Janssen (1988) refer to the instance where a System passed a 

16 kN quasi-static test but failed a 48 km/h dynamic test because stress concentrations 

were created due to inertial loading of the chair and its resulting déformation. There 

are a lot of important performance parameters, such as wheelchair and dummy 

excursions, chair and dummy interactions which could be evaluated only in dynamic 

testing. It is widely recognised that the secondary collision, the impact between the 

occupant and the interior structures of the vehicle resulting from occupant excursions, 

is the primary cause of injury and death in an accident. This could only be evaluated 

by dynamic crash. 

For the reasons outlined above, a dynamic test has been specified for the 

evaluate WTORS in the ISO standards. However, dynamic testing is costly and time 

consuming. In an attempt to eliminate the need of dynamic testing of WTORS, 

attempts have been made to find a corrélation between static and dynamic testing 

experimentaily. A simple relation coefficient could be determined using computer 

simulation. 

3.1.2 Front, rear and side impact 

Evaluations in the direction of impact are performed for front, rear, and side 

impacts. The Australian standard, Wheelchair Occupant Restraint Assemblies in 

Motor Vehicles, spécifies a forward, rearward, and side impact test (Standards 

Association of Australia, 1987). Statistical data suggested that frontal impacts 

comprised the majority of accidents, and should be the primary focus of WTORS 
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research and development. According to the National Highway Traffic Safety 

Administration (NHTSA) Traffic Safety Facts 1992, frontal accidents comprised 63% 

of ail fatal accidents and 52% of ail injurious accidents (NHTSA, 1992). A complète 

breakdown is found in Figure 3.1. 

Figure 3.1 Breakdown of fatal and injury accidents (NHTSA), 1992 

Extensive research has determined that the wheelchair and occupant should 

always be oriented parallel to the direction travel, either facing forward or rearward 

(Kooi and Janssen, 1988). Researchers also emphasised that when using rearward 

facing orientation, it is imperative that a headrest be provided to limit the flexure of 

the head in the case of a crash. Side-facing wheelchair orientations perform poorly in 

crash tests, due to the inhérent lateral instability of the chair and the tendency of the 

frame to fold up and tip over (Schneider, 1979). 

Based on the current requirements for occupant protection in the automotive 

industry, wheelchair occupant sitting positions both in Forward Facing Frontal Impact 

(FFF) and Rearward Facing Frontal Impact (RFF) are the exclusive mode of testing in 

this research programme. 

3.1.3 Vehicle and sied testing 

Dynamic tests can be either using vehicle, when an actual vehicle is crashed 

into a barrier, or using a sied, when WTORS system is mounted on a test rig and 

crashed using a non destructive décélération technique. 
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In vehicle tests, hardware costs are high as a new test vehicle is required for 

every crash. Sied testing provïdes a mechanism for conducting tests without 

destroying the test platform. Also the set-up time for sied tests is shorter than for 

vehicle tests. While vehicle tests are real life, there is a level of uncertainly associated 

with each test that makes it a difficult tool to use in a research and évaluation 

environment. There are structural différences in vehicles even of the same make and 

model. The poor ability to control key test parameters like crash puise and test set-up 

makes it very difficult to produce repeatable and reproducible results in vehicle tests. 

Sied tests offer a much more controlled environment. The most important input 

parameter of the dynamic test is the décélération time history or crash puise, which 

can be reproduced more easily in a sied test compared with a vehicle test. 

Because of thèse drawbacks associated'with vehicle testing, using a sied is the 

acceptable mode of dynamic testing. However, the accuracy of sied testing has been 

questioned. Is sied testing adéquate for providing a real life crash environment? What 

requirements should the sied crash pulse meet in order to achieve a représentative 

simulation? How does the crash puise affect the results? These will be discussed in 

the next few Chapters. 

3.2 Crash Simulator - Sied 

To evaluate the crash performance of WTORS System, a dynamic sied test has 

been evolved. The System is anchored to the sied which is impacted with a velocity 

change of 48 (+2,-0) km/h. To exhibit a satisfactory performance the System must 

demonstrate structural integrity, reasonable opération and excursions within a defined 

envelope. This section outlines one part of the apparatus used to simulate the dynamic 

crash environment: the sied. 

The sied décélération could be achieved by différent Systems. U V A ' s sied 

décélération is accomplished by a probe contacting métal bands that lie across the 

track. UMTRI uses a rebound sied that impacts a pneumatic spring. The velocity after 

rebound is approximately equal to the velocity at impact. DCIEM and Millbrook use 

H Y G E sied, which accélérâtes a stationary System rearward with a pneumatic cylinder 
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(Gilkey, 1983). MURSEL's décélération is accomplished via conical probes extending 

from the sied carnage that insert into tubes mounted at the end of the track. 

The impact rig facility at M U R S E L consists of a 

rail mounted flat bed trolley (sied) restricted to only one 

degree of freedom (linear). The test sied has a run-up 

distance of 20 mètre (33 mètre track) and is capable of 

accelerating payloads of 682 kg to 80 km/h (50 mph). 

The platform is pulled backwards by a cable and electric 

winch and stretched by ten rubber cords (bungees), 

which enable the trolley to be accelerated towards the 

retardation device at a predetermined rate (Figure 3.2a). 

When the platform is released, the rubber cords 

accelerate the sied to the required velocity. At the point 

of impact, the sied has attained a constant velocity and is no longer subject to 

accélération imposed by the bungees. The sied was pulled back a certain position 

(start length) by bungees and released by a bomb release. The start length is the 

distance from a référence position to the polypropylene tubes. This length has been 

predetermined from expérience. The larger this distance is the greater the sied velocity 

can be achieved. 

3.2.2 Sied test platform 

The simulation of a selected occupant restraint condition is achieved by 

bolting the expérimental assembly on the flat frame of the moving sied. The added 

assembly would generally comprise a seat structure, an anchorage frame appropriate 

to the particular restraint, the restraint system itself, e.g. lap and diagonal adult belt, 

and an instrumented dummy. A flat plate represents coach or minibus floorboard. A 

105 kg mild steel plate has 1200 mm (48") long, 1200 mm wide, and 25 mm (1") 

thick. The underside of the plate is reinforced with 76 x 102 mm 2 steel tubing. An 

upper anchorage frame (52 kg), which is constructed with 50 x 102 mm 2 steel tubing, 

3.2.1 MURSEL rig 

Figure 3.2a MURSEL rig 
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was bolted to the platform to provide the upper anchorage point for the shoulder belt 

(Figure 3.2b). 

B pillar 

Figure 3.2b Sled test platform with upper anchorage frame 

A highly rigid platform was chosen so that it would not deflect during the 

crash event, ensuring that the crash pulse of the sled was transferred to the wheelchair-

occupant system without attenuation. This presented a worst case load scenario since 

it required the restraint system to absorb most of the energy associated with the crash. 

A disadvantage of rigid floorboard in WTORS compliance testing is that they may not 

always reveal a particular tiedown propensity for disengagement since there is no 

deflection at anchorage locations. 

Preliminary tests conducted on the platform alone verified that the platform 

effectively transmitted the crash pulse to the system. The sled pulse (measured on the 

sled carriage) and the platform pulse (measured on the plate) were nearly identical. 

The small z-acceleration on the platform (up and down motion) indicated that the 

plate did not introduce significant vertical accelerations to the system. The platform 

chosen for this research did not contain interior vehicle components because the 

proposed ISO standard does not require the simulation of dummy contacts with the 

vehicle interior. The issue of occupant protection is addressed in the proposed ISO 

standard in terms of maximum allowable excursion limits (Appendix 1 A). 
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3.3 Test Conditions 

The severity of the crash environment détermines the velocity change and 

décélération, which a System would have to withstand. In automotive and wheelchair 

crash testing, the crash pulse détermines the crash environment and provides a direct, 

visual Statement regarding the severity of the crash event. A quantifying measurement 

of vehicle crash puises was introduced and derived from the vehicles stroke time 

history by Matsui in 1976. The vehicle's stroke is the integral of the velocity time 

history, and gives a measure of the crush or displacement of the vehicle. 

3.3.1 Crash pulse 

The crash pulse, termed as the vehicle décélération time history, is a direct 

relation to the severity of the crash event. A more difficult question to deal with the 

impact simulation is what the actual décélération pulse is. Simply specifying the impact 

velocity is not enough. The amount of sied stopping distance (vehicle crush) for a 

given pulse shape should also be known before the peak accélération is achieved. As 

the amount of information regarding actual vehicle décélération puises is very limited, 

the mean décélération (in g's) could be estimated for a half-sine pulse shape in the 

following formula: 

(Av) 2 

Dm= (3.0) 
2gS 

where Av is the velocity change in m/s, S is the sied stopping distance in mètres. Linear 

accélération is often more conveniently in units of g's. One g is the accélération caused 

by gravity. 0.8 g is heavy braking for a car. When the undeformed part of the car goes 

from 48 km/h to zéro crashed into a rigid barrier in a distance of 0.61 metre (2 feet) 

produces a mean décélération of 14g. 

In vehicle impact, there are two components of the crash pulse. The first is the 

velocity change, or Av, The second is accélération or décélération. In the previous 

study (Gu J., Roy P. 1994, 1995 and 1997), peak sied décélération levels and Av were 

varied to study the effects of both velocity and décélération on typical Outputs such as 
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floor reaction forces or wheel loads, wheelchair seat loads and head excursions. The 

previous study concluded that the magnitude of the constant velocity of the sied at 

impact had a greater influence on wheelchair damage and dummy injury than the peak 

level of décélération. 

(i) Velocity change (Àv) 

The Av is defined as the différence in vehicle velocity immediately before and 

after the main impact or crash event, and is given by the following relation: 

where: v c is the sied velocity immediately following impact, v 0 is the initial sied 

velocity. An extreme case is when a very heavy truck and a small relatively 

lightweight car collide hcad-on, with both vehicles initially travelling at 48 km/h. The 

truck will continue to go forward at a slower speed, while the car will reverse 

direction. The resuit is that the truck Av will be less than 48 km/h and the car Av will 

be greater than 48 km/h. For most sied testing, as there is rebound in the crash event to 

varying degrees, the Av are always greater than the initial velocity of the sied. Also as 

it is very difficult to détermine the rebound velocity of the sied accurately, direct 

interprétation of the sied crash puise is the preferred technique of calculation Av: 

where: a(t) is the accélération time history or crash pulse. Av is not directly related to 

the force levels experienced in a crash and is related to the total energy of the crash. 

The kinetic energy, K, is the amount of energy represented by a moving mass and 

given by: 

Av= lv c - v 0 l (3.1) 

Av = j t a(t)dt (3.2) 

K = 1/2m(v e

2- vo2) (3.3) 
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This is an important considération in WTORS design and testing, because the 

kinetic energy of the event should be managed effectively by the restraint System, and 

consequently, couid have a signifïcant affect on the failure of mechanical components. 

This considération will be made to analysis the impact phenomena in Chapter 11. 

(ii) Accélération or décélération 

The second component of the crash puise is the rate of velocity change, that is, 

accélération or décélération. 

Accélération is the rate of velocity change and is normally given the symbol 

'a'. Négative accélération are often referred to as décélération, i.e. where the 

magnitude of the velocity decreases. Vehicle manufacturers would like to keep the 

décélération puises as low as possible and ideally a square puise if they could. 

Crumple zones in vehicle have the effect of absorbing energy and lowering the puise. 

0 25 50 75 100 125 150 175 200 225 

Time ( ms ) 

Figure 3.3a Accélération variation 

A constant accélération was assumed to simplify our calculations. However 

dynamic expérimental results indicated that accélération varies appreciably. Figure 

3.3a shows a typical variation in which the rectangle frame line indicates the constant 
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décélération required bringing the sied to rest in the same time. It was measured by a 

fixed arm planimctre (séries no. 35015). The maximum décélération (18g) is much 

greater than in the constant décélération case (approximately 8.69g) and the risk of 

serious injury is therefore greater. The area (1) equals total area (2) and area (3). The 

total area of the rectangle is 552.7 square millimètres. 

3.3.2 Two décélération régimes: ACT and PTT 

The levei of the peak vehicle décélération is due in large part to the crush 

characteristics of the vehicle. A vehicle with a short crush zone will have relatively 

less time to undergo the Av compared to a vehicle with a large crush zone. A larger 

crush has the effect of reducing the crash event and lowering the peak décélération 

experienced by the vehicle. According to Newton's Second Law, accélération is 

directly proportional to force. Thus the décélération level of the crash event (measured 

in g's) is a direct Statement on the forces required to restrain the occupant. The 'g' 

level provides a rough estimate of what the restraint- forces would be for a given 

wheelchair-dummy System, due to the accélération amplification effects. 

The nature of the décélération pulse experienced by the sied is commonly 

referred to as the sied pulse. It reflects the décélération pulse experienced by the safety 

vehicle during an accident. Two décélération régimes were employed at MURSEL, 

Aluminium Crumple Tubes (ACT) and Polyurethane Tapered Tubes (PTT). 

In order to approximate the impact of a vehicle, A C T are employed to 

reproduce the effect created by the crumple zone of the vehicle. A C T are aluminium 

cylinders with 1 metre long, 75 mm (3") diameter and 1.87 mm (0.075") wall 

thickness, which buckle axially when Struck by the sied. The buckling force generated 

is approximately constant, yielding a roughly constant décélération of the sied. A sied 

pulse of this type is clearly the most désirable for secured victims of an accident to an 

Optimum level of décélération and associated loading as it has the minimum peak 

value. 

For practical reasons of cost and repeatability, the internally tapered 

polyurethane tubes are widely used, in particular for approval purposes. The PTT is 

held within steel sleeves that are rigidly fixed to the impact block. A probe (one metre 
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long), which is attached to the front of the platform, has a tapered steel bail (olive) on 

the end (Figure 3.3b). The olive has a larger diameter than the tapered hole in the tube 

and is guided into the tube as the sied approaches. 

Steel sleeve 
Probe. 

\ 
\ 

jiT:.TT^..~--.-..,->'^l.-f.-,i \ 
\ 

s 

Olive 
Polyurethane tube 

Figure 3.3b Section through olive/tube assembly Figure 3.3c Sied puise from polyurethane tubes 

The PTT absorb the sied energy by quasi-plastic déformation as the olive is 

forced down the tube length. The tube will recover to its original shape in twenty-four 

(24) hours. Tt provides a repeatable method of sied décélération puise, which is 

roughly sinusoidal in shape. The number of tubes dépends upon the mass to be 

retarded. Corrections have to be made for changes in ambient température, sied mass, 

velocity and tube wear in order to achieve the consistent décélération. 

The sied puise, which is achieved by the PTT, approximates to a half sine 

wave in form to represent an actual vehicle décélération puise. Figure 3.3c détails a 

typical sied puise achieved by use of polyurethane tubes. The PTT testing is the 

defined method of sied décélération in the European seat belt standard (ECE RI 6, 

1994). 

3.3.3 ISO corridor 

Choicc of a suitable crash puise is a function of the vehicle in which WTORS 

system is being carried. Initially four generalised crash puises were considered which are 

displayed in Table 3.3. These are usually quantified by the velocity change (AV) of the 

vehicle and its peak décélération, although vehicle mean décélération may be a better 

predictor of impact severity in many cases. As a resuit of discussion in interlab testing of 
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WTORS, the car pulse was rejected as too severe, and a pulse close to type 2 was 

adopted. 

Table 3.3 Verriete crash pulse types 
Vehicle Pulse Velocity Change (AV) Peak Décélération 
Type Type km/h g 

Car 1 50 32 

US mini van 2 50 26 

European Mini Bus 3 32 20 

Largc Transit Bus 4 32 10 

The European Child Restraint System (CRS) approval standard ECE R44 calls 

for dynamic testing in frontal impacts to be condueted using a sied pulse whose 

Parameters fall within a pre-defined envelope. Figure 3.3d détails the approval 

envelope for ECE R44 test puises. The décélération limits are defined in terms of 

corridors, which speeify overall pulse duration (120 ms), maximum décélération level 

(28g), rate of onset, and a minimum time for which the décélération should be at a 

certain level. 

Currently for WTORS, the aeeepted décélération corridor (Fig 3.3e) is the one 

adopted by ISO. The ISO corridor is based on the décélération time historiés resulting 

from frontal barrier crashes of minivans travelling at 48 km/h and the ECE R44 

envelope. This corridor is consistent with the Australian and Canadian standards in 
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which it spécifies a peak décélération larger than 20g for a minimum of 15 ms, and 

largerthan 15g for 40 ms (ISO/CD 10542-1, 1996). 

3.4 Visual Recording of Movements 

Relative movements are defined as the total forward displacement of a point 

relative to the starting position. How does the occupant's head and body move? How 

does the wheelchair flex? How did the seat belt, buckle and tiedown restraint 

perform? These questions can be answered by high speed caméra or high speed video, 

which is linked to a computer and can be instantly assessed frame by frame. 

HIGII-SPEED 
VIDEO 

CAMERA 

EktoPro Video VIDEO 
PROCESSOR MONITOR 

Signal 

Image Controls ^ 

KEVPADor 
MOPRO 

Figure 3.4a High speed video analysis 

The high speed eine caméra (Hadland Hyspeed S2) was used at a rate of 500 

frame per second (fps) with 16 mm colour negative eine film (Eastman 7292). Scaled 

measurements were taken using a calibrated graticule on each frame of the film. High 

speed video analysis was condueted and the side view of the crash event was recorded 

by using Kodak EktoPro 1000 analyser, operating nominally up to 1000 fps. The 500 

fps speed was used in this research programme to allow chair and dummy positions to 

be determined at least every two milliseconds. This System comprises one video 

caméra linked to the main recording and processing unit (Figure 3.4a). The digitised 

images from the caméra are recorded in real-time on a specially designed video tape 

cassette, which is loaded in the main unit. The video image (black and white) is 

composed of a 240 x 192 pixel array with 256 gray scale levels for clear 
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differentiation. Once it is recorded in high density tapes, a playback of the event is 

available for immédiate analysis. 

Measurements of the recording can either be directly made in pixels using a 

menu-driven keypad or scaled measurements using a PC based motion program called 

MOPRO. When the impact frames are recorded, the object movement during impact 

can be analysed by using the vertical and horizontal Cursors and the time between each 

frame (Figure 3.4b). Accuracy of the measurements is limited by the number of pixels, 

which create the image, and définition of two objects with similar scales. Typically 

the best accuracy of this System is ±8 mm although it dépends upon how close you 

zoom into the measured object. 

Comparing of high speed video analysis methods, the eine film yields high 

quality colour images which allow greater accuracy of measurement. However the 

eine film could not be viewed during a test séries, and also does not allow for simpler 

transfer of measurement data to other PC software packages. In this research 

programme, high speed video analysis was used. A lateral recording of the crash was 

also recorded by normal VHS camcorder being placed at a sufficient distance from the 

track to minimise the effects of lens distortion and parallax. Unfortunately, an 

overhead view was not recorded for the assessment of gross dummy and chair 

movements because of the limitations of M U R S E L facility. 

Cross hair 

Figure 3.4b Kodak EktaPro motion analyser 
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3.5 Instrumentation 

AU componcnts in the dynamie test system, such as the sied, wheelchair, 

occupant, and restraint Systems should be suitably instrumented to record and evaluate 

the dynamics of the crash event. This section outlines the instrumentation for each 

component of the test system and the methods used to acquire and process the 

décélération, loads, and excursions in order to characterise the event. 

3.5.1 Sied 

The sied platform was instrumented with one uni-axial accelerometer 

(Endevco Piezo-resistive Shock Accelerometers, 7232C). This accelerometer was 

placed at the rear of the platform and approximately at the centreline to record the 

décélération time history, that is, crash puise of the event. 

A photo-optic speed trap was used to record the sied velocity just prior to 

impact. One-metre bar on the side of the sied passed through the trap and blocked the 

light sensor located on one side of the trap. It triggered a digital counter to record the 

total time of the blocked light. Once the bar has fully passed through the trap, the 

counter stopped. The final readout indicated the time when it took the sied to travel 

one mètre (second per mètre). From this, the sied velocity change could be converted; 

3.5.2 Wheelchair 

A tri-axial accelerometer (Endevco Type 7267A) was placed on the centre of 

gravity of the wheelchair to record the accélération time history of the chair during the 

event. As the direction of sied travel (x-direction) is the principal direction of interest, 

the wheelchair accélération is always measured in this direction. The lateral 

accélération is y-direction and vertical accélérations is z-direction. The accélération 

gives a indication of the wheelchair tiedown ability to secure the chair without 

excessive movement during normal travel. 

The floor vertical loads under the wheels of the chair were recorded using 

cantilever wheel load plates. Because there is a movement of the chair during the 

crash event, a transducer is required having a relatively large surface area over which 
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wheel loads can be measured accurately. Details of the design of this load cell are 

described in the Appendix 3. 

On the chair, the référence point 'P' and the centre of gravity (CG) were 

tracked by high contrast photo targets. The point 'P' is defined as the centre of a 100 

mnvdiameter circle that sits tangent to the intersection of the chair's backrest and 

seating plane. The P-point was adopted by ISO from the Australian standard to serve 

as a convenient point for tracking the movement of the chair. A pièce of white tape 

was stuck transversely across the floor plate used to limit parallax errors in the 

measure of the horizontal displacement of the wheelchair. 

3.5.3 Test Dummy 

Two tri-axial accelerometers (Endevco, Type 7267A) were placed in the 

dummy ehest and head respectively for measuring of dummy ehest and head 

accélérations. The local x, y, and z accélérations were recorded. The résultant 

accélération was determined, given by 

a = (ax

2 + a y

2 + a7

2)w (3.4) 

The résultant accélération is standard practice since the orthogonal directions 

by themselves are of limited value. Their co-ordinate frame of référence is changing 

with time due to the forward rotation of the head and ehest during the crash. 

In order to measure the movement of the dummy during the crash, the photo 

targets were placed on the dummy head and knee. Whenever possible, a photo target 

was placed at the hip. Unfortunately, this point was usually obscured during the crash 

by the wheelchair frame or the dummy's lap belt. On the dummy, the head C G , the 

Forward-Most Point of the head (head FMP), and the knee were tracked. The FMP of 

the dummy is defined as the point above the nose that is most-forward at any given 

time. A i l movements were referenced to their positions in the platform frame of 

référence. 
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3.5.4 Restraints 

A very important output parameter in WTORS test is the time history. This 

measurement could be made relatively easiiy for belt type wheelchair tiedown. In this 

research programme, précision 'dogbone1 type load cells (Appendix 3) were placed in 

séries with the MURSEL surrogate webbing tiedown. This allowed an accurate 

measurement of the load time history for the rear tiedown. The extrême loads on each 

side of rear tiedown in Level UJ crash severity for TRL tests were found in excess of 

14 kN. On the right side (starboard) between the hip and the floor anchor point of the 

L/D restraint System, a 'dogbone' was installed for FFF impact. 

To mcasure occupant restraint loads, 'Denton' type belt load transducers were 

also used. The shoulder belt Denton was placed between the upper anchor point (B 

pillar) and the point where the belt goes over the left shoulder. On the left side 

(portside) between the hip and the floor anchor point, a lap belt 'Denton' was also 

placed for FFF impact. 

3.5.5 Calibration 

A l i accelerometers were calibrated on a regular basis by the traceable 

laboratories. The 'dogbone' load cells and cantilever wheel load plates were calibrated 

on-site using a calibrated universal testing machine. Calibration factors were verified 

on a regular basis prior to testing. Each instrument was calibrated prior to using and 

monitored during the test to ensure the validity of the signal. 

3.6 Signal Control System 

The instrumentation used at M U R S E L conforms to S A E recommended 

practice J 211 for instrumentation of impact tests (SAE J211, 1987) and the data 

acquisition processing is shown in Figure 3.6. 

3.6.1 Data Acquisition Processing 

During impact, data is read from transducers, such as accelerometers, 

'dogbone' and 'Denton' load cells, etc. Thèse transducers are supplied with an input 

voltage (transducer excitation, usually 10 VDC) to match the input sensitivity of the 
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data acquisition device by the EMI-SE1054 signal conditioning unit. This unit is 

linked with transducers by twelve umbilical cords (Channels) extending from the 

platform to the control room. It also provides amplification of the analogue Output 

signal. 

COMPUTER SYSTEM TRANSDUCERS 

Computer based 
data acquisition 

system 

DAP 24( 0/6 

card A/E transfer 

ASYST 
Butterworth 

filtering system 

Spreadshcct 
software 

•EMI SE1054 DC 

Signal 
Conditioning units ' 

Input: voltage 
Output: amplification , 
- of analogue 

. signal 

Anti-alias filters 

T T L logie 
(Triggers) 

Digital lime 
display 

Accclerometcrs 

a. ay 

Load cells 

Sied 

Sied 

t/m 

Instrumcnted ; 
WTORS 

S L E D 

Figure 3.6 Data acquisition processing at MURSEL 

The signal is then passed from the signal conditioning units to Kemo anti-alias 

filters (low-pass 4 kHz, pre-set required dependent upon sample rate) and then into the 

data acquisition system. The low-pass filters are used exclusively for anti-alias, at a 

cut-off frequency (filter) of 100 Hz for the sied (CFC60). Once amplified, the signais 
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are converted into a 12-bit digital word by the digitiser. The digitised data (in milli-

volts) could then be downloaded to the PC. 

The data acquisition system comprises a Microstar acquisition card (DAP 

2400/6) which is mounted in a PC computer. The data acquisition card converts the 

analogue signal to digital form. A software package called A S Y S T (version 4.01, 

DOS based) is used to control the cards and analyse the data. Al i test signais are 

recorded by real-time digitisation at the sampling rate of 10 kHz per channel (set to 

±2.5 volts). The sampling time is 400 ms to give 4000 data points per channel, so it 

can be imported to a spreadsheet (Quatto Pro or Excel program). 

3.6.2 Filters 

Analogue signais measured during experiments usually need to be low-pass 

filtering beforc being digitised and recorded. There are some forces of résonant 

vibration caused by WTORS, which is excited and usually needs to be filtered out 

before an underlying shape can be seen. The higher frequencies should also be filed 

out to give an approximate accélération puise. When determining the peak 

accélération of WTORS, filtering gets rid of any spikes caused by spurious noise. 

There are three reasons for filtering as follows: 

(1) to prevent alias errors during subséquent sampling 

(2) to reduce high frequency environment noise 

(3) to remove high frequencies that are considered not important for the 

phenomena being studied. 

Sampling is initiated by a trigger generated by the velocity gâte circuit. Of this 

total sampling time, approximately 45 ms is pre-trigger at the crash severity of 32 

km/h. Digital filtering of the data is conducted by ASYST program using a 

Butterworth filtering system and the data is also converted by multiplication with a 

calibration factor. The acquisition times and duration data are stored in A S Y S T and 

plotted a graphie for a single test. 

In the CVS model s, it is important to conform to an accepted standard in order 

to enable comparison of data from différent sources. The low-pass filters available in 

M A D Y M O are defined of Channel Filter Class (CFC) (SAE J211, 1987). Among the 
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specifications by the S A E J211 Draft, there are four filters, denoted as CFC60, 

C F C 180, CFC600, and CFC1000. The lower the CFC number, the lower the cut-off 

frequency of the filter. In M A D Y M O model the cut-off frequency divided by the CFC 

number is somewhere between 1.67 and 1.98. For simplicity, all transducer output 

was filtered to CFC180 (300 Hz). 
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C H A P T E R 4: RESTRAINT INJURY MECHANISMS IN WTORS 

4.1 Introduction 

The field of injury biomechanics deals with the effect on the human body by 

mechanical loads, in particular impact loads. Also the biomechanical response would 

experience due to the mechanical and physiological changes and injury would take 

place if the response is beyond a recoverable limit. Injury criteria are normally defined 

as a biomechanical index of exposure severity, which indicate the potential for impact. 

Many injury criteria are based on accelerations, forces, displacements and velocities. 

Some injury criteria need a mathematical evaluation of a time history signal. 

Quantitative studies have been made for injury description, injury mechanism, 

the severity index and tolerance limit. Many schemes have been proposed for ranking 

and quantifying injuries. Anatomical scales describe the injury in terms of its 

anatomical location, the type of injury and its relative severity. The most well known 

worldwide-accepted anatomical scale is the Abbreviated Injury Scale or Accident 

Injury Scale (AIS). This scale is used by engineers to code the severity of injuries. The 

AIS distinguishes the following levels of injury: 

0 no injury 

1 minor 

2 moderate 

3 severe (not life threatening) 

4 serious (life threatening but survival probable) 

5 critical (survival uncertain) 

6 maximum injury (cannot be survived) 

9 unknown 

Unfortunately AIS is difficult to evaluate the injuries associated with forces 

used in impact engineering analysis. An engineering approach to injury analysis of 

WTORS includes many physical and biomechanical factors influencing the restraint 

system. It is difficult to assess the importance of these factors in the absence of in-

depth investigation of the following five crash factors in WTORS: 
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• Vehicle crash severity 

• Wheelchair design 

• Restraint System performance 

The restraint System performance includes restraint design features such as 

anchorage geometry, webbing areas, webbing material elongation, force limiting 

energy absorbing devices, retractor behaviour and pretensions, etc. 

• Occupant factors 

Occupant factors that contributeto injury tolérance include stature, weight, âge, 

gender, obesity and pre-existing health conditions. In this research programme, thèse 

factors were considered and based on the ATD dummy database. 

• Usage variables 

The usage variables could be pivotai to successful belt performance, such as 

anatomical positioning, pre-impact position and belt slack, etc. 

Currently little in-depth data exists concerned with injuries to wheelchair 

occupants in vehicle accidents. The restraint injury mechanisms in WTORS has not yet 

been addressed by current engineering requirements although several suggested 

mechanisms for the healthy occupants have been made by différent researchers (Mertz 

et al 1967, Simpson and Foret-Bruno et al 1991, Bandstra, Lawson and Lundell et al 

1998). In order to be able to know what engineering facts to investigate in WTORS, 

the simulation results and the results of the injury mechanism research in WTORS 

need to be evaluated. A new comparative injury parameter, Aa, is proposed in this 

programme and deflned as the déviation between the peak résultant accélération force 

applied to the chest and head in the ATD. lt has been used to estimate the potential for 

a particular injury mechanism and then to evaluate the designs for a wheelchair and its 

restraint system. 

The computer modelling program, M A D Y M 0 3 D (Appendix 4) has been used 

to perform injury parameter calculations, such as, Head Injury Criterion (HIC) for head 

injury, 3 ms Criterion (3MS) for thorax injury, the résultant belt loads and seat loads 

for shoulder injury or spinal injury. Thèse were carried out on the linear accélération 

signal of a selected ATD body. The HIC and 3MS indices for assessing possible head 

and chest injury were computed from the résultant linear accélérations. 
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4.2 Restreint Injury Mechanisms 

The most important vehicle crash safety innovation, which should contribuée 

to injury réduction in wheelchair occupants, is the proper use of WTORS restraint 

Systems, such as, wheelchair tiedown System, lap and diagonal seat belts, head 

restraint and wheelchair backrest. 

Four important sites of possible injury related to WTORS restraint Systems are 

the head, neck, thorax and lumber région. This research also considered that disabled 

people in WTORS could be difficult to sit in their seating positions due to wheelchair 

backrest inclination. Questions are: 

• How misuse of restraint Systems can lead to restraint injury? 

• How the loads imposed on the neck are transferred to loads and déformations of . 

individual tissues of the neck? 

These questions have been answered by injury mechanism analysis. The 

computer model and dynamic sied tests contributed to a better understanding of the 

following injury mechanisms. 

4.2.1 Head injury 

Head injury could be caused by translation, rotation, flexion or extension and 

direct impact. The direct impact has been researched at Wayne State University 

(WSU) (Lawson et al, 1998). The Wayne State Tolérance Curve (WSTC) is a head 

injury tolérance curve, which is based upon the assumption that linear skull fracture is 

linked to brain damage. The basic question is what happens when a head hits a fiai 

plate, i.e. unrestrained occupants. 

At présent the head injury is predicted by the HIC: 

1 
HIC = [ — — J , ^ a (t>dtf5(t2 -10 (4.1) 

tz - ti 

n=2.5 is weighting factor, based on a straight line approximation to the WSTC plotted 

on a log-log base between 2.5 ms and 50 ms, ti and t2 are initial and final time during 

which HIC attains a maximum value, a = a(t) is the résultant head accélération 
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measured at the head CG. It can be calculated from the linear acceleration signal of 

the centre of mass of the head (LINACC). 

This equation attempts to use mathematical functions to approximate the 

WSTC. It is estimated that the HIC of 1000 represents 8.5% risk of death from head 

injury. HIC has been effective in reducing of the risk of head injuries by the resulting 

levels of translation accelerations experienced by the head. Unfortunately this 

criterion neglected the effect of rotational acceleration on the severity of brain injury. 

Recent pathological studies have found that brain damage is not necessarily 

linked to skull fracture (Simpson, et al 1991). Studies have also demonstrated that 

HIC deviates from the WSTC at pulse duration above 15 ms. To reduce the risk even 

further there is a need for even more sophisticated safety systems and products. This 

requires a better understanding of the biomechanics of head injury and the use of 

improved HIC. In this programme, the headrest effect on the physical head injury has 

been investigated by a response envelope for Hybrid II dummy head resultant 

accelerations in the following example. 

Figure 4.2a A response envelope of head resultant accelerations 

in RFF impact of WTORS 

Figure 4.2a compares two traces of head resultant acceleration in a manual 

wheelchair without headrest (Series I) and with headrest (Series III) in a Rearward 

Facing Frontal (RFF) impact. Here the calculation was focused on the first peak. The 
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second peak response was at a relatively low level and was due to the secondary 

contacts, in particular in test Séries I (without headrest). The bold straight line 

enclosed a response envelope. This type of response was used to détermine a strategy 

for achieving low HIC values. For example, the wheelchair backrest restraint structure 

could be designed to give a square pulse with a maximum of 80g to control the initial 

peak. The low-density material in headrest should be used to avoid the inertial spike. 

In this case, the post peak response must be maintained below 40g. 

4.2.2 Neck Injury 

The neck consists of seven (7) cervical vertebrae. There are adjacent vertebra 

bowl separated by dises of tissue and stabilised by fibrous tissue (ligaments). The 

neck injury mechanisms are defined by forward flexion, rearward bending and 

extension. Neck injury biomechanical analysis suggests that shear forces on the neck 

are important in flexion prior to the chin contacting the ehest. If the chin contacts the 

ehest, it would cause a lower level of force to be developed in the postern neck 

muscles. In addition the chin is parallel to the shear forces and hence aids the 

accélération of the head. 

Rear impact aecounts for most diagnosed neck injuries. There are three parts 

of the head-neck motion during a rear-end collision: retraction, rearward angular 

velocity of the head and hyperextension. The neck injuries resuit in localised neck 

pain. Hyperex tension injuries to adults have not been reported in accident studies as a 

high frequency event. Children in the CRS in which a croteh strap has not been used, 

submarining and fracture have occurred (Lowne et al, 1987). 

AIS 1 minor neck injuries have been reported in all crash configurations. 

However the risk of sustaining a neck injury is higher in rear impacts as compared to 

other crash types. The prime injurious event is the forward flexion of the neck caused 

in FFF impact by the sudden décélération of the torso held by the seat belt, in 

particular if no slack given in the Shoulder belt. 

The stiffer chair backrest of ISO Surrogate wheelchair could cause rearward 

bending of neck during RFF impact. This could result in the force exerted on the torso 

by the chair backrest and hence the accélération of the torso relative to the head being 

higher in the early stages of motion. The use of headrest with higher force/deflection 
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characteristics than that of the chair backrest could make neck forward flexion worse 

as they gave the head more rebound acceleration from the torso during RFF impact. 

This could be resolved by the use of energy absorbing foam both in the headrest and 

backrest. 

Another alternative mechanism for neck injury indicates that the most harmful 

event occurs early in the motion sequence when the occupant head is moving 

backward relative to the shoulders. This produces shear forces, especially in the 

uppermost vertebrae, as the neck distorts into S shape, and this could also happen in 

frontal impacts (Walz et al, 1995; Minton 1998). The transition from the S shape to 

the extension mode involves a sudden change in the volume of the spinal canal. The 

pressure gradients induced by the sudden and rapid flow of blood and spinal fluid 

along the canal and through the associated transverse vessels could result in damage 

to the spinal ganglia. 

4.2.3 Thorax Injury 

Two types of injury happened in the thoracic area, ribs and internal organs. 

Rib fractures are not dangerous in themselves, but they cause more serious injuries if 

they puncture internal organs. The most serious case is a rupture of the thoracic aorta, 

which it is considered to be caused by compression between the sternum and the 

shoulder belt. 

Thoracic criteria could be measured by 3MS, chest deflection, chest 

acceleration and shoulder belt load. Chest deflection limits are based on AIS 3 and a 

median clarifying age of 45 years (Table 4.2). 3MS is the highest acceleration level 

that is exceeded during at least 3 ms. It was achieved from the linear acceleration 

signal at the location of the thorax accelerometer (LINACC). 

Table 4.2 Chest deflection limit 

Occupant size Sternum deflection limit (mm) 

5th percentile female 60 

50th percentile male 75 

95th percentile male 90 
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The difficulty of measuring ehest deflection has led to the adoption of ehest 

accélération as a criterion. Mertz (1967) reported that an instrumented man dropping 

onto a thick mattress from 17.4 m height experienced 46g ehest accélérations. Fédéral 

Motor Vehicle Safety Standards (FMVSS 208) spécifies 60g for dummies in seat 

belts, ECE R44 (child restraint Systems) spécifies a résultant of 55g and a 'z' 

component of 30g. From Foret-Bruno (1991) report, for occupants less than 30 years, 

no injury was found at belt loads less than 7.3 kN, for occupants above 50 years of 

âge, fractures began at 4.2 kN. It should be noted that the results in the current 

research are for the people who are healthy, not disabled and lower values would be 

expected for older wheelchair occupants. 

Collar bone 
.collapsed 

Figure 4.2b The dummy collar bone collapsed during FFF impact 

In the FFF impact of WTORS, some yaw rotation of the torso was found due to 

lack of symmetry of the belt System on the torso. This could be inferred from the 

différent amount of extension of the arms. The Shoulder load calculations (Chapter 11) 

indicate that the dummy's Shoulder loads in the floor-mounted configuration is 6.14 

kN, which is about double values of the B pillar case. Figure 4.2b shows that the 

Shoulder belt collapses the dummy's collar bone during FFF impact (B pillar 

configuration in ISO test). It suggests that at a crash severity 34 km/h, 20g, the 

occupant Shoulder injury could be reduced if the Shoulder load was limited to 5 kN. 

4.2.4 Lumbar Injury 

Various types of injury are frequently associated with a particular type of 

restraint System. The lumbar spinal and abdominal injuries often identified with lap 
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belt forces applied above the bony pelvis. As seat belt system usage has increased, 

seat belt injuries have been complained to be the resuit of accélération forces being 

directed through the webbing belt to the underlying anatomical structures of the 

occupant (Bandstra, et al 1998). 

The lumbar injury was found to be correlated with wheelchair backrest 

inclination in FFF impact. The excessive! y laid back seating posture was not accepted. 

However some disabled occupants have to incline their seats to keep their positions 

properly. This resuit gives rise to the question: what would have happened if the 

wheelchair backrest was inclined? If the backrest was gently inclined, the gap 

betwcen the Shoulders and the wheelchair backrest would be greater than that between 

the lumber area and the backrest. The lumbar area would expérience localised 

accélération forces before the upper back. Another mechanism could be that the 

stretching of the spine axial caused the pelvis accelerate much more rapidly than the 

thorax in the horizontal direction due to the torso being inclined from the vertical. 

In the FFF impact, TRL and ISO test results suggested that lumbar spine 

injuries have been shown to be associated with use of L/D 3-point belt due to flexion 

of the torso, while the pelvis was held relatively static. The rebound from the belt 

would resuit in the occupant impacting the chair backrest in the same way as it does. 

If the chair backrest was inclined, or no front tiedown used on wheelchair or front 

tiedown angle over 45-degree, it would expérience the same localised loading of the 

lumbar région. This rebound contact with the chair backrest from a FFF impact would 

be much milder than the case in a RFF impact of équivalent severity. However, in 

practice, FFF impacts generally tend to be more severe than RFF impacts, so the risk 

of lumbar strain injury to an individual may be poorly correlated with impact 

direction. The tests and computer models also suggested that an occupant wearing a 3-

point belt would acquire some rotational motion relative to the pelvis and thighs in the 

early stages of the impact, as the unrestrained Shoulder moves further forward than to 

the restrained point like B pillar. As the occupant rebounds from the belt, this rotation 

would continue until it was damped out by contact with the chair backrest. An 

occupant with a highly inclined chair backrest is therefore likely to achieve a much 

greater angular displacement of the Shoulders relative to the pelvis/thighs before their 

rotational motion is reduced. It is therefore bad for the lumbar spine. 
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4.3 Restraint Injury Prévention 

The restraint injury is most relevant to the positions in the occupant, such as 

thorax and head. It was verified by measuring the dummy's accélération in sied tests 

using standard ehest and head accelerometers. The dummy-chair interaction was 

investigated by pancake type load cells. The neck accelerometer will be used for 

further investigation of restraint effect on dummy neck injury. The pelvis 

accelerometer will help to investigate dummy lumbar injury. 

The accélération forces applied to the head and torso were found to be quite 

larger in the Surrogate wheelchair. In order to prevent wheelchair rebound at the end 

of the impact séquence, the corresponding déformation of the chair backrest must 

occur plastically (not elastically). The soft cushion on the headrest would not be 

compatible with this requirement unless the head is allowed to sink through it before 

significant accélération force is applied to the torso. The headrest must also not built 

on the chair as the wheelchair itself is movable during impact. A well adjusted 

headrest, which could be built on a fixed seat, would resuit in less severe injury than a 

badly adjusted one. An effort to research in restraint injury mechanisms resulted in the 

following injury protection guidelines and engineering requirements. 

• Restraint Systems 

Several gênerai injury réduction principles could be identified with the 

restraint system design. Webbing belt Systems with proper restraint design features 

are expected to limit to the extent practicable movement and reduce neck injury. 

Usage variables are expected for opetimising belt performance. Headrest design 

should be improved to reduce occupant head accélération. Head movement should be 

limited relative to the torso to an even greater extent than that required to prevent 

gross hyperextension. The chair backrest and headrest should geometrically support 

the curvature of the back and neck of occupant as precisely as possible. It will be not 

only achieved by positioning the occupant as close as possible to the wheelchair 

backrest and headrest, but also by designing a smart restraint system, such as a well 

adjustable headrest, and a tiedown restraint system with dynamic loading 

characteristics. 
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• Dummy model 

The biofidelity of the présent dummy \s such that none of injury parameters 

could accurately be considered to represent a true occupant response. The shape 

adopted by a seated occupant's back would be différent from the spécification of 

preferred shape for the hard frame structure in the Surrogate wheelchair. The situation 

occurred where localised sections of the spine were in contact with much harder 

structures than adjacent areas of the back. If the chair follows the shape of the 

occupant well, this characteristic will tend lo restrain the body evenly and thus allow 

minimum relative movement between the head and spine. 

Few dummies exist today that would give an appropriate response of spinal 

injury in a crash test. A direct impact of the sub-system test should be conducted to 

détermine the local distribution of force/deflection characteristics throughout the 

wheelchair backrest and headrest in order to simulate a human spine interaction with 

chair backrest. A mathematical model written in M A D Y M 0 3 D with a segmented 

spine, as well as engineering judgement should be developed to minimise relative 

movements between adjacent vertebrae and the relative joint, i.e. the curvature of the 

spine should change as little as possible during the impact. 

• Wheelchair design 

Wheelchair backrest material and structure should be improved to minimise 

the head and neck injury. This could be satisfied by using better energy absorption in 

the chair backrest. At présent, no wheelchair design satisfies this requirement. Only a 

higher hystérésis chair backrest model was conducted by computer models. A quasi-

static sub-system test of the wheelchair backrest was added during the initial 

engineering phase. 

4.4 Injury Parameters 

The philosophy for improving the occupant restraint performance in this work 

was to reduce Injury Parameters, such as 3MS, head excursions and the Aa, based on 

the following arguments: 

• What should we consider a reliable dummy response? 
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* What should we measure during the crash test? 

• What should we estimate the potential for a particular injury mechanism to 

be? 

The ATD used in this programme was instrumented with two tri-axial 

accelerometers, one in the Upper torso and the other in the head. Three orthogonal 

traces from thèse accelerometers were studied individually and the résultant 

accélérations were also measured. The ehest résultant 3 ms accélération was used to 

assess the occupant restraint performance during expérimental testing. The dynamic 

response rate was higher as the dummy was much more rigid than a human body. 

Accélération traces exhibited many high spikes, due to this higher response rate. The 

higher peaks of thèse traces that were seen in the dummy response were generally 

neglected and only the three millisecond (3 ms) value was taken. The 3 ms value was 

calculated by neglecting accélération peaks of total summed width 3 ms, moving a 

horizontal line down the accélération curve until ail the peaks crossed, occurred in a 

total time of 3 ms. A commonly stated human tolérance level for severe ehest injury 

(AIS>4) was a maximum linear accélération in the centre of gravity of the upper 

thorax of 60g, sustained for 3 ms or longer. The 3 ms injury criterion was computed in 

M A D Y M 0 3 D by tracing the résultant linear accélération signal using a time window 

with a width of 3 ms. 

The second measured parameter of dummy response was concerned with 

reducing the possibility of head contact with some part of the vehicle. In order to 

reduce this probability, the movement or excursion of the head was defined as the 

horizontal movement of the target on the side of the dummy head, relative to the head 

initial position.. The head movement was measured from high speed film or video 

recording. Both film and video analysis had the ability to provide output scaled 

position co-ordinates for any point in the picture. For the measurement of head 

excursion, the output was scaled in millimètres with a position origin at the fixed 

point, as both wheelchair and dummy were movable. In this programme, variations in 

head initial position occurred as différent occupant restraint configurations were 

investigated. ISO/CD 10542-1 imposed a 650 mm limit on this value, but there was 

some concern that this is too high. The head excursion was stored from the file 

REDIS recording in M A D Y M 0 3 D to output scaled position co-ordinates. The head 
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peak excursion was the maximum horizontal position of any point on the dummy 

head during the test and was measured from the target origin point, stored in the file 

PEAK. 

The use of the M A D Y M 0 3 D crash victim simulation allowed the 

considération of other injury parameters, which were diffïcult to be measured during 

the sied test. The most important of thèse factors was the neck load and the head 

angular accélération. These parameters were considered not as absolute values for 

injury assessment, due to the lack of biofidelity in the dummy. But it was considered 

appropriate to accept a réduction in thèse parameters as réduction in the potential for 

injury. 

The RFF impact tests for WTORS suggested that collapse of the chair backrest 

and seat cushion generally had a bénéficiai effect on reducing spine injury. However, 

wheelchair backrest breakage design is undesirable in terms of preventing serious 

injuries in severe RFF impact. The backrest should be designed to undergo plastic 

déformation in RFF impact. Another possible solution is to design a chair backrest 

structure to allow the torso to move backwards relatively, going into the chair backrest, 

so that the head could maintain the same orientation relative to the torso, until the head 

was in contact with the headrest. From this point of view, the peak accélération 

imparted by the headrest to the head (arh) should be the same as that imparted by the 

chair backrest to the torso (arc) within 30 ms time period for a given input severity. 

Therefore, a new comparative injury parameter, Aa has been defined as the absolute 

values of the déviation between two accélérations, Aa = I a r e - a^ I. 

In taxi test results (see Appendix 5D), the peak value of Aa (delta 'a') in the 

manual wheelchair test was much less than that in Surrogate wheelchair. It was 

approximately 15g différence at Level II and 40g différence at Level IV. As the input 

puise increases for a given wheelchair this Aa seems to increase shown on the bar 

charts (Figure 4.4a). The peak value of ehest accélération in the Surrogate wheelchair 

case is greater than that of head accélération, due to a higher stiffness material 

characteristics of backrest in the Surrogate wheelchair. After a headrest was removed in 

the given manual wheelchair, the peak value of Aa was greater than that in the same 

wheelchair with a headrest (approximately 22g différence for a given Level V input 
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severity). The peak value of head accélération is greater than that of ehest accélération, 

due to higher stiffness material characteristics used in the headrest (Figure 4.4b). 

Figure 4.4b exhibits évidence of the need to match the head restraint stiffness to that of 

the chair backrest. The comparison of Aa at two configurations of a manual wheelchair 

(with and without handles) is shown in Figure 4.4c. 
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(with and without handles) 

The modified manual wheelchair without handles increased the peak value of 

Aa (approximately 23g at a given Level V). It indicates that it is not better design to cut 

the handles of the wheelchair off although it could be used to avoid the second contacts 

between the wheelchair and vehicle internal strueture. 

This comparative injury parameter is practicable in impact engineering 

analysis. It can be used to estimate the potential for a particular injury mechanism, and 

then to evaluate the design of wheelchair and its restraint Systems. The smaller value 

the Aa is, the better the wheelchair design and the crash Performances are. 

4.5 Summary 

Various types of injury are frequently associated with a particular type of 

restraint system. 

• Restraint system Performance needs to be improved. Webbing belt Systems 

with proper restraint design features are expected to limit the head excursions and 

wheelchair movement, and then to reduce neck injury. 

• Usage variables are expected for optimising belt Performance, such as a well 

adjustable headrest, and a tiedown restraint system with dynamic loading 

characteristics. To improve the restraint Performance and reduce injury, the chair 
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backrest and a well adjustable headrest in the vehicle structure should geometrically 

support the curvature of the back and neck of occupant as precisely as possible. 

• Wheelchair backrest material and structure should be improved to minimise 

the forward rebound into the seat bell and then to reduce head and neck injury. 

• There is an urgent need for the development of much more biofidelity dummy 

spine model than that currently available. The wheelchair occupant injury 

mechanisms will be further investigated to improve the current injury mechanism 

study. 

• A response envelope for head résultant accélération can be practicably used to 

détermine a strategy for achieving head accélération between 40g and 80g. 

• A comparative injury parameter, the absolute values of the déviation between 

the peak résultant accélération forces applied to the ehest and head within 30 ms time 

period for a given input severity, Aa is a practical criterion in impact engineering 

analysis. It can be used to estimate the potential for a particular injury mechanism, 

and then to evaluate the design of wheelchair and its restraint Systems. 
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C H A P T E R 5: DYNAMIC SLED TESTING OF WTORS 

5.0 Introduction 

Over the years a considerable amount of research and testing have been carried 

out world-wide to determine the crashworthincss of Wheelchair Tiedown and 

Occupant Restraint Systems (WTORS). Most of this work has concentrated on the 

systems where the occupant faces forward, and the results have contributed to the 

development of draft international standards. These standards cover WTORS 

(ISO/CD 10542-1, 1996) and Transportable Wheelchairs (ISO W D 7176/19, 1995) for 

forward facing occupants. Within these proposed standards, a sled crash test was 

defined by a sled deceleration envelope using an adult dummy of mass 75 kg. 

The ultimate purpose of this research was to develop testing and modelling 

protocols for WTORS evaluation. The experimental phase of this research provided 

the experience and knowledge necessary to develop complete modelling protocols. 

The computer modelling phase of this research will be validated in Chapter 10. 

The dynamic tests were conducted using the sled at M U R S E L . As described in 

Chapter 1 and 3, one sled platform, two types of surrogate wheelchairs (herein called 

the TRL-SWC and ISO-SWC), different types of production wheelchairs and one 

surrogate tiedown system were specially designed for this research programme. TNO-

10 adult dummy and 50th-percentile male Hybrid II dummy were used for occupant 

simulation. 

Four groups of dynamic testing were addressed concerning WTORS (Figure 

5.0): 

(1) In industry tests, different types of production wheelchairs, such as powered 

and manual wheelchairs were reviewed. TNO-10, Hybrid II and child dummies with 

commercial restraint systems without any instrumentation were used in this group of 

tests. Testing of actual wheelchairs under the identical crash conditions was conducted 

to produce a reference level against which the surrogate results can be compared. 
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CRASH 
SIMULATOR 

TEST 
CONDITIONS 

SLED 

L E V E L I 
L E V E L II 
L E V E L III 

FOUR GROUPS 
TESTS 

1) Industry tests 
2) TRL tests 
3) ISO tests 
4) Taxi tests 

Figure 5.0 Four groups of dynamic sied tests 

(2) In T R L tests, TRL-SWC, TNO-10 dummy and Surrogate restraint Systems 

were used. It was varied for rear tiedown angles to investígate the effects on 

wheelchair (wheel loads) and dummy (LVD loads) during Forward Facing Frontal 

(FFF) impact. 

(3) In ISO tests, the pre-designed ISO-SWC, manual wheelchair (M-W/C), TNO-

10 dummy, Hybrid II dummy and Surrogate restraint Systems were used. It was varied 

of Upper diagonal strap belt angles to investigate the effects on the occupant injury 

(Shoulder loads) during FFF impact. 

(4) In taxi tests, in order to develop régulations for the carriage of rearward facing 

wheelchair occupants by taxi, research has been carried out to determine the 

crashworthiness of wheelchair Systems in the Rearward Facing configuration in 

Frontal impact (RPF). The modified ISO-SWC was used. The effect of différent 

wheelchair tyres and headrests on the dummy response was also investigated. 

The above four groups of test results are summarised in tables following each 

section in this Chapter, separated by Appendix 5A, 5B, 5C and 5D. The expérience 

and knowledge gained from these tests were used to draft a dynamic testing protoeol 

for WTORS évaluation and validate the computer models. 
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5.1 Industry Test (Group 1) 

A wheelchair, which is said to have passed the crash test, has met the test 

conditions required by the draft ISO standards (ISO/CD 10542-1, ISO WD 7176/19). 

For example the maximum forward movement of the wheelchair should not be greater 

than a defined amount (200 mm), batteries should not corne off a powered wheelchair, 

etc. WTORS was secured on a sied, which is then propelled at 48 km/h into concrète 

block, the sied décélération being around 20g. The wheelchair is occupied by a 75 kg 

test dummy representing the dimensions and weight of an average adult man. 

Conventional wheelchairs are primarily constructed as a motion device for 

handicapped persons and not be able to withstand higher loads resulting from traffic 

accidents. The purpose of industry tests is to examine the behaviour of conventional 

wheelchairs during a crash. 

Most of the damage to the powered wheelchair was caused by a failure of the 

wheelchair tiedown restraint. The wheelchair was then indirectly restrained by the 

occupant restraint system in B pillar configuration. Larger déformations were found at 

the wheelchair backrest, together with a slight déformation at the seat frame. During 

impact testing of a powered wheelchair (chair rnass 57 kg, test number T3028), ail 

loads on dummy and chair were taken by the lap and diagonal occupant belt (double 

inertial 3-point). Hence the dummy was forced backward into the chair resulting in 

chair backrest failure. 

The wheelchair itself may become a dangerous projectile, especially the 

heavier battery (18 kg) operated power wheelchair, if it is not properly tied down or 

just attached to the wheelchair during an accident. The problem is further complicated 

by the danger of acid spilling from the battery. Unfortunately the battery attachments 

in the conventional wheelchair are not strong enough to resist high accélération 

loading (Orne 1976). 

Visual examination of conventional wheelchairs helped to understand that the 

tiedown restraint system provides complète occupant protection at 40 km/h and is 

probably good for 48 km/h in a manual wheelchair. If the manual wheelchair was 

properly used, the disabled occupant would be able to survive forward and rearward 

facing impacts up to about 40 km/h with an extremely high chance of receiving little 
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or no injury. At 48 km/h crash severity, the rcar tiedown restraint structure deformed 

excessively but this would dépend on the amount of sied stopping distance or peak 

sied décélération specified. 

The industry tests provided valuable information regarding the dynamics of 

actual powered wheelchairs in a crash severity of 48 km/h, 20g FFF impact and 

suggested as follows. 

• The experiments revealed that the dummy significantly loaded the frontal 

wheels, footrests and scat. The vertical loading of the dummy on the seat caused the 

wheelchair collapse and resulted in dummy injury. 

• Fragility of the battery cases and the potential for acid spills were found. 

Hanging battery boxes could be a potential hazard because they were easily dislodged 

in a crash. 

• The déformation of the wheelchair backrest on dummy rebound allowed 

excessive rearward excursions. Although rebound is not addressed in the current 

standards, it appears that it could be a common mechanism for occupant injury and 

therefore should be addressed in the future. The rebound will be further discussed in 

Chapter 11. 

5.2 TRL Tests (Group 2) 

Table 5.2 T R L test programme 

Set Up 
WTRS 

(TRL-SWC only) 
WTORS 

(TRL-SWC + dummy) 
WTRS WTORS 

Three Phases Phase I Phase II Phase III 

Pulse Levéis Level I Level 11 Level I Level II Level III 

Stage No. 1 2 3 4 5 6 7 8 9 10 

Rear tiedown angle 
(°) 

30 45 45 30 30 45 45 30 30 45 30 45 

Sied puise o c 8 8 13 13 7 7 11 11 20 20 18 18 

A V km/h 28 28 28 28 26 26 26 26 33 33 32 32 

This group of tests involved three phases. Phase I testing used T R L surrogate 

wheelchair (TRL-SWC) only. The main purpose of this phase was to gain expérience 

with wheelchair testing and computer modelling to assess the rigidity and durability of 
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the Surrogate wheelchairs. Phase II involved testing of a füll wheelchair-dummy 

System. The object of this phase was to gain expérience testing of a füll System and 

develop test procédures to validate the computer models. In order to préserve the 

structural integrity of the test wheelchair, testing was carried out at three levels of the 

sied décélération puises for WTORS (Figure 5.2). In keeping with the ISO standards, a 

nominal 32 km/h, 20g crash pulse (Level IH) falling within the ISO corridor was 

finally selected in Phase UL TRL test programme is listed in Table 5.2. 
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Figure 5.2 Three levels of sied décélération puises used in TRL tests 

Phase I: TRL-SWC only (WTS) 

First phase of the TRL test programme assessed the rigidity and durability of 

TRL Surrogate wheelchair and provided valuable expérience in wheelchair testing and 

computer simulations. Test procédures were developed in an effort to produce 

repeatable results from one test to another. Phase 1 consisted of two levels of crash 

pulse: Level I (28 km/h, 8g) and Level H (28 km/h, 13g). 

The T R L wheelchair was restrained by a 4-point webbing Surrogate tiedown 

strap, two straps in front and two in the rear. The rear tiedown angles were varied to 
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30 and 45 degrees. The chair was positioned by centring the wheels on the four load 

plates and aligning the chair with the longitudinal centreline of the sied platform. The 

tiedown straps were pre-tensioned by hand until they were tîght. No particular pre-

tension convention was used. 

Wheelchair déformation was only found in the rear wheel axle. Deformation 

of the rear wheels continued in the subséquent tests. The chair was reinforced after 

Level ü . The original rear axle was replaced by a stronger tool steel bar. 

Phase I proved to be very instructive. Wheelchair testing and data analysis 

expérience was gained, and procédures were developed for using in the replicate tests. 

Phase II: TRL-SWC with dummy (WTORS) 

Once it was proven that a high degree of repeatability could be achieved with 

Phase I, the next step involved adding the dummy to the System. Phase II involved 

four tests (Stages 5 - 8 in Table 5.2). This was the first opportunity to observe and 

study the dynamics of a complète wheelchair-dummy-tiedown System. 

Procédures, which were incorporated into the overall test protocol from Phase 

I, were developed for dummy positioning and occupant restraint pre-tension. The 

ultimate goal was to develop a test protocol that would produce repeatable results in 

loads, accélération, and excursions, for the wheelchair and the dummy. 

The test set-up involved ensuring that the dummy's pelvis was located as 

rearward as possible and that the' dummy was seated symmetrically in respect to the 

centreline of the chair. An occupant restraint pre-tension procédure was also added to 

this phase. A 75 mm 3 wood block was placed perpendicular to the Shoulder belt across 

the dummy's sternum as the 3-point system was tightened. The block was removed to 

give approximately 63 mm slack in the Shoulder belt. The lap belt was arbitrarily 

tightened on both left and right sides of the chair. 

Phase III: mid-severity puise 

Phase I and II of the test programme involved gaining test expérience and 

developing a test protocol for producing highly repeatable results. With thèse goals 
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accomplished, phase ITT of the research was initiated using a mid-severity puise (32 

km/h, 20g). 

The effect of the following three factors on the wheel loads was evaluated by 

expérimental results. 

* The geometry of restraint Systems 

The rear wheel loads generated in the 45-degree case were higher than thosc in 

30 degree case, the maximum différence being 56 % of the 30-degrec values. 

* The occupant 

In gênerai without an occupant (WTS) the rear wheel loads were greater than the 

front. When the dummy was présent (WTORS) the effect of mass transfer from the rear 

to the front partially reduced the rear wheel loads. 

* The sied crash puises 

For Level I and Level II the front wheel loads were less than those at the rear. 

However, when sied décélération increased to Level m, the test results suggested that 

mass transfer to the front wheel, relatively increased the front wheel loads. 

5.3 ISO Tests (Group 3) 

This impact programme used a ISO defined Surrogate wheelchair (ISO-SWC) 

to represent a mid-range powered wheelchair. It is more robust and stiffer than a 

production chair (M-W/C). In addition the Hybrid IT dummy was seated on an 

aluminium plate above pancake load cells. Thus the centre of gravity (CG) of ISO-

SWC was higher and the seat absorbed little energy when compared with a soft 

cushion and the more flexible structure of the conventional wheelchair. Therefore the 

peak loads would be expected to be higher than in the real world. The results of 

industry tests (Group 1) also supported this view. 

WTORS restraint System consisted of two parts: 

(1) The wheelchair was secured by two rear tiedown straps and two front straps. 

(2) The dummy was restrained by a L/D occupant restraint. 

Both of the restraint Systems were independent of each other and anchored 

separately to the sied. The dummy sat on an aluminium alloy plate, which was placed 
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on the four pancake type load cells. The load cells were bolted to the wheelchair seat 

frame. The test programme is listed in Table 5.3a. 

Tn order to avoid the onset of structural damage to the ISO-SWC, the impacts 

in the floor mounted occupant shoulder belt configuration ceased at a sied velocity 

change of 34 km/h. For the B pillar configuration it was increased to 51 km/h (2% 

above the ISO 10542 defined maximum value). 

Table 5.3a ISO test programme 

Set Up M-W/C + TNO-1U ISO-SWC + TNO-10 ISO-SWC + Hybrid II 
Thrce Phases Phase I Phase II Phase III 
Pulse Levéis Level I Level II Level I Lcvcl II Level I Levcl II 

Upper shoulder B B B B B Floor B Floor B Floor B Floor 
anch orage p'ar p'ar p'ar p'ar p'ar p'ar p'ar p'ar 

Sied puise a 
G 

8 8 13 13 7 7 11 II 7 7 11 11 
AV km/h 28 28 28 28 26 26 26 26 26 26 26 26 

Phase I: M-W/C + TNO-10 dummy 

In order to préserve the structural integrity of the test wheelchair and the 

measurement devices using a proper crash severity, sied testing was initially carried out 

in three phases at three levels combined with appropriate velocity change to examine the 

effect on the wheel loads and shoulder load function (Figure 5.3a). The wheel loads 

were measured in the case of Level I and Level H tests only. 
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Figure 5.3a Three levels of sied puises used tn ISO tests 
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Level T: 6 - 1 0 g, AV = 15 - 25 km/h 

Level H: 11g, AV = 27 km/h 

Level m; 13 - 21 g, AV = 35 - 51 km/h 

Phase II: ISO-SWC + TNO-10 dummy 

This phase of tests repeated the above using ISO-SWC instead of M-W/C. 

Initial work using a TNO-10 dummy has shown that the manual wheelchair (M-W/C) 

exhibits less severe damage when the diagonal strap of the occupant restraint was 

anchored to the B pillar' at Shoulder height rather than anchored to the floor, for 

impacts of similar sevcrity. 

Analysis of video footage taken from a Kodak EktaPro 1000 Motion analysis 

System suggested that the crash dynamics of dummy were sensitive to the variations in 

the diagonal top strap anchorage positions. 

Phase III: ISO-SWC + Hybrid II dummy 

This phase présents the results of an investigation into the variation of 

wheelchair and occupant loads as a function of diagonal top strap anchorage 

configurations, thèse being anchored to the B pillar (Figure 5.3b) and the floor (Figure 

5.3c). The pancake type load cells were inserted below the seat plat in order to 

measure the seat loads between dummy and wheelchair. The cantilever wheel load 

cells were placed under the four wheels to measure the vertical loads between wheels 

and sied floorboard. 

The test séries continued once the chair was reinforced. In an effort to improve 

test repeatability, the test set-up procédures were refined and straps were adjusted in 

order to accurately align the centreline of the wheelchair with the centreline of the 

platform. 
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CHAPTER 5 

Chair alignment was verified prior to 

and after pre-tension. Tiedown straps were 

tightened in small incréments from left to right 

and from front to back to Hmit chair 

misalignment during impact (Figure 5.3d). 

This investigation was also carried out 

by computer simulation using D Y N A M A N 
Figure 5.3d 

Whcclchair misalignment after impaet a n d M A D Y M O packages (Chapter 9). 

5.3.1 Discussion 

The effect of the following three factors on dynamic responses was observed 

from ISO test results. 

* Comparison of the effect of diagonal top strap anchorage configuration 

ISO test results show that the front wheel loads were more sensitive to the 

anchorage configurations than the other parameters. In gênerai the shoulder load (Sf) 

increased as the velocity change (AV) increased (Figure 5.3e). The floor mounted 

configuration always produced higher values of front wheel loads and diagonal top 

strap tensions at a given A V . The détails of occupant shoulder load functions in B pillar 

[Sf(B)] and floor configurations [Sr(F)] are discussed in Chapter 11. 

• B Pillar 

• Floor 

• B Pillar 

• Floor 

• 
1-

• • • • 
1 

• 
• • • • • • 

• 
— ! 1 1 1 

15 18 20 23 25 27 34 

Delta ' V (km/h) 

Figure 5.3e Comparison of peak shoulder load fonction in two configurations 
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The load comparisons between Tables 5.3b and Table 5.3c show that for the 

tloor mounted configuration the peak time of diagonal top belt load (Ti) lagged the B 

pillar by 35 - 45 ms. 

Table 5.3b Load du ration (B pillar)- Level I, II 

Parameters Units Load duration 

Range 

(ms) 

Period 

(ms) 

Load range 

(kN) 

Chest Res. g 175 - 100 75 12.2 - 39.6 

Diag. top (TO kN 165 - 110 55 2.5 - 5.5 

Lap (T3) kN 165 - 110 55 1.9-5.4 

Buckle (T4) kN 165 - 105 60 3.5-7.8 

Seat Sum (Cr) kN 175 - 115 60 6.5 - 12 

Wheel sum kN 145-135 10 42.2 - 43.3 

Table 5.3c Load duration (floor-mounted) - Level I, II 

Parameters Units Load duiration 

Range 

(ms) 

Period 

(ms) 

Load range 

(kN) 

Chest Res. g 165 - 100 65 11.4-29.5 

Diag. top (T,) kN 210-145 35 3 - 5.9 

Lap (T3) kN 175-110 55 1.4-5.2 

Buckle (T4) kN 170- 110 60 2.7 - 6.9 

Seat Sum (Cr) kN 190- 115 75 6.6- 11.2 

Wheel sum kN 190- 135 55 27.5 - 45.5 

The shoulder load function différence of two configurations is summarised in 

Table 5.3d. It indicates that the minimum increase of shoulder load in the floor 

mounted configuration is 17% at AV 25 km/h. 
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Table 5.3d Shoulder load difference between two configurations 

AV S|(B) SKF) diff. 

km/h kN kN % 

15 1.17 2.41 106 

18 1.61 2.68 66 

20 2.63 3.24 23 

23 2.54 3.78 49 

25 3.25 3.81 17 

27 3.17 5.46 41 

34 3.13 6.14 96 

• Comparison of the effect ofwheelchair structure 

The peak values of seat loads in the ISO-SWC were considerably higher than 

those in the M-W/C (Fig 5.30- This suggested that the seat cushion in the M-W/C 

absorbed some of the energy from impact and reduced the peak seat loads. 

.4 J . Time-fn») 

Figure 5.3f Seat sum loads for B pillar configuration - AV =31 km/h 

* Comparison of the effect of sied crash pulses 

The front wheel loads varied considerably as a function of crash pulse. The test 

results suggested that weight transfer to the front wheels relatively increased the front 

wheel loads under the considerations of higher crash pulse. 
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5.3.2 Summary 

The diagonal top strap anchorage configurations had a considerable cffect on 

the dynamics of the system, such as, the valúes of the diagonal strap tensions and front 

wheel loads. 

• At all valúes of sled velocity change, the floor mounted configuration 

exhibited a peak shoulder load greater than that for the B pillar configured system. At 

a velocity change of 34 km/h the valué (6.14 kN) was higher by 96 %. The valué at 51 

km/h for the B pillar configuration was lower (5.74 kN). 

• At all valúes of sled velocity change, the floor mounted configuration 

exhibited a máximum dummy head target excursión greater than that for the B pillar 

configured system. At a velocity change of 34 km/h the valué of head excursión (450 

mm) was higher by 52%. This valué was not reached by the latter system: 384 mm at 

51 km/h. 

• The front wheel loads exhibited similar variations. They indicated that the 

weight transferred to the front of the wheelchair as the máximum head target forward 

excursión was reached. 

• In general the peak seat sum load in Level I and II was slightly greater for the 

B pillar than the floor mounted configuration. However the loading phase for the 

former acted over a shorter period. 

Taking into account the implications of the above conclusions on the oceupant 

and the wheelchair it is considered that the B pillar anchorage of the oceupant 

diagonal strap is superior to the floor mounting configuration. 

5.4 Taxi Tests (Group 4) 

Extensive research has determined that the wheelchair and oceupant should 

always be orientated parallel to the direction of travel, either facing forward or 

rearward (Kooi and Janssen, 1988). There has been very little work on rearward facing 

travel safely for WTORS. The recommendation of a rearward facing restraint for 

wheelchair and oceupants is recent regulatory practice in France and Germany 

(Maupas et al, 1996), Researchers emphasised that when using rearward-facing 
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orientation, a headrest must be addressed to limit the extensión of the neck in the 

case of a crash. 

In the United Kingdom wheelchair occupants are regularly carried in the 

rearward facing configuration in London taxis (known as 'black cabł) operating under 

the regulations of the carriage office in London. In order to further develop the 

regulations for the carriage of rearward facing wheelchair occupants by taxi, it is 

necessary to obtain data on the dynamics of this configuration in frontal impact. 

The following procedures have been carried out for a rearward facing 

wheelchair-occupant systems in frontal impact. 

1) Preliminary measurements of the geometry of a taxi instaliation to build a 

representative structure on the crash sled 

Components of London taxi, such as the window structure, the rear ticdown 

reel and occupant restraint anchorage-, were incorporated into both the sled 

simulated structure and the computer model by scaling their positions. 

2) The back support structure was designed and constructed to simúlate a taxi 

seat back. 

3) The contact loads were recorded at the wheelchair backrest and wheel level. 

The forces acting on the taxi bulkhead were resolved by monitoring the 

horizontal wheel loads and the back support loads. 

4) The dynamie response of the dummy was recorded by monitoring the dummy's 

head and chest acceleration, head and knee displacement, and the wheelchair 

movement. 

5) The restraint loads of rear tiedown and lap belt were also measured. 

This simulation provided data to contribute to the taxi design regulations in the 

UK, applying to the carriage of oceupied wheelchairs. In this test group references 

have been made to the ISO surrogate wheelchair and the manual wheelchair. 
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5.4.1 Tests set-up 

The sied was accelerated to a velocity up to 33 km/h and brought to a hait to 

give a décélération of up to 22g. The tests were recorded on both high speed video 

(500 fps) from side shot and normal VHS video recorder for instant play back for 

analysis of the movements of dummy and wheelchair during the impact. Five séries of 

sied tests were carried out as follows. 

• Séries I was programmed in standard manual wheelchair (M-W/C) tests. 

• Serious LT was programmed in ISO surrogate wheelchair tests (ISO-SWC). 

• Serious m was carried out in the standard M-W/C tests with a headrest. 

• In the test séries IV, a modified M-W/C (without handles) was employed to 

further investigate the impact loads on the bulkhead, as a comparison with the results 

of séries III. 

• Serious V test was to investigate the effect of velocity change on the crash 

performance. 

A summary of test conditions is given in Table 5.4. A typical décélération 

puise is shown in Fig 5.4a. 
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Figure 5.4a Sied puise for RFF impact (Séries I) 
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The AV corresponds to sied velocity change and sied 'g ' corresponds to sied 

maximum décélération. The accuracy of the transducers used is as follows: (i) sied 

velocity change: +/- 1.0 km/h; (ii) sied peak décélération: +/- 2.5g. 

The wheelchair used in the test séries I and HI was a standard folding 

wheelchair (mass 15 kg) made in the UK. A modified ISO surrogate wheelchair (mass 

83 kg, without battery) was used in Séries II tests. A modified manual wheelchair 

(without handles) was used in Séries IV and V , comparing with the results from Séries 

I and UI. 

Table 5.4 Taxi test conditions 

ÄV (km/h) Sied 'g' resulta 
Series I M-W/C 

iwilh handlest 
without 
headrest 

Level I 25 11 O K 
Level II 30 13 O K 
Level V 32 21 O K 
Series II Modifiai 

iso-swc 
with. headrest 

Level I 32 11 O K 
Level II 32 13 O K 
Level III 32 15 O K 
Level IV 32 17 failed 
Series i n M-WC 

(with handles) 
with headrest 

Level II 33 13 O K 
Level III 33 15 O K 
Level IV 33 17 O K 
Level V 33 19 O K 
Series IV * M-WC 

;(wiÛMHit handîes); 
"with'headrest 

Level II 33 13 O K 
Level III 33 15 O K 
Level IV 33 17 O K 
Level V 33 19 O K 
Series V M-W/C 

'(without handles)? 
î.wiih: headrest* 

21 13 O K 
25 16 O K 
29 19 O K 
33 22 O K 

5.4.2 Test facility designed for taxi work 

The simulated taxi installation was bolted to the sied floor plate. A simulated 

taxi system was designed by the author in four parts: a vertical rigid frame to represent 
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the taxi bulkhead, a back support structure to simulate a taxi seat backrest, an 

adjustable headrest fixed on the bulkhead 1200 mm above the floorboard. Two wheel 

load plates, which were boltcd on a sheet of steel plate (916 x 916 x 10 mm) of the 

vertical bulkhead, to record the horizontal contact loads from the rear wheels of the 

wheelchair (Figure 5.4b). A transverse belt structure was positioned at 850 mm from 

the sied floorboard and fixed on the vertical frame. This was composed of two 

cantilevered Channel sections, which supported a rolling réel at their free ends. A 

length of webbing (55 mm x 1150 mm) was passed around the réels and secured at 

each end via a 'dogbone' load cell to the vertical bulkhead (Figure 5.4c). An 

adjustment buckle was incorporated in order to pre-tension the webbing belt. The back 

support structure was attached to the.rigid frame to resemble the units on a taxi. 

It was subsequently found that the distance between the handle of wheelchair 

and bulkhead must be more than 265 mm (Séries TV) to avoid the second collision 

during impact (Figure 5.4d). 

The wheelchair was placed on the sied in the rearward facing configuration 

and secured with a typical black cab style *Y* shape tiedown. The tiedown was 

instrumented using a 'Denton' load cell to measure loads generated on rebound from 

the impact. Inflation pressure of the wheelchair's tyre was 345 kN/m 2 (50 psi) 

according to the manufactureras recommendation. The rearward facing wheelchair 

was placed on the platform surface and centred with respect to the back support 

structure. Both brakes were applied. The front castors were positioned backwards and 

wedged by a wood block to prevent any movement before the accélération phase of 

the sied. 

Wheel load plates Rolling reel 'Dogbone' Cantilevered Channel section 

Figure 5.4b A vertical rigid frame Figure 5.4c A back support structure 
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The occupant was simulated using a Hybrid II 50th percentile male dummy. 

The seated dummy shoulder rested against the wheelchair backrest. The arms were 

placed on the armrests of the wheelchair, the hands resting on the front of the armrest. 

It was equipped with tri-axial accelerometers to measure both chest and head 

accelerations. The dummy was lightly taped at the shoulder to the bulkhead to prevent 

it falling over during the pre-impact sled acceleration phase. It was restrained by a 

static lap belt, which was of similar geometry and design to that currently used in the 

black cabs. 

5.4.3 Discussion 

The RFF impact of the wheelchair-occupant system demonstrated more 

effective capacities for protecting the occupant than the FFF impact (Gu and Roy, 

1995). Analysis of the dynamics of this group test helped to draw the following 

discussions: 

* The chest resultant acceleration at a certain time ( 100 ms) is higher than the 

head's 

This phenomenon could be explained by the fact that when the wheels contact 

the load plates, the wheelchair and dummy seem to pivot at the onset of the impact. 
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The wheelchair backrest therefore makes contact with the transverse webbing later 

than rear wheels contact with the load plates, causing the peak values of the ehest 

accélération to be reached slightly earlier than the head. 

* The secondary collision 

The secondary collision is the impact between the wheelchair and the interior 

structure of the vehicle. It was observed during impact resulting from wheelchair 

déformation and occupant excursions. This is because of the small space between the 

wheelchair backrest and the bulkhead. 

It is important to ensure there is adéquate support for the wheelchair 

occupant's head and back. This means in practice that the headrest needs to be fixed 

on the bulkhead reaching at least a height of 1200 mm from the taxi floorboard. The 

distance between the wheelchair handle and the bulkhead must be more than 265 mm 

to avoid the second collision during impact. 

* The rearward facing back support structure System 

During impact this System is effective in spreading the loading over segments 

of the occupantes body and wheelchair, resulting in reduced accélération and 

movement of the dummy's head, ehest and wheelchair. Moreover, it éliminâtes 

deficiencies in the déformation and strength properties of the wheelchair. It offers 

adéquate protection under conditions of RPF impact to a severity of 21g, 33 km/h 

décélération in manual wheelchairs, provided some strengthening of chair backrest 

and seat cushion were incorporated. A rearward facing webbing restraint device has 

potential to be used in the taxi as it is simple, rapid to install and very few risks of 

incorrect use. The enormous advantage of a webbing device is that it does not occupy 

too much space. 

5.5 Summary 

* The dynamic test results were assessed both by quantitative]y and 

qualitatively. 
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A quantitative assessment of the test results was performed using a standard 

statistical analysis of maximum outputs for a given test series. Maximum values were 

of particular interest because they revealed the severity of the crash conditions, which 

a WTORS system was exposed to. The maximum values were independent and 

identically distributed variables following a normal distribution. Observing and 

reporting maximum values alone oversimplifies test results, and consequently, does 

not offer a full description a particular output parameter. 

A more comprehensive way of examining and evaluation test results is to 

study their time histories qualitatively. A time history plots an output at discrete 

intervals over the course of the entire event. This qualitative assessment provides a 

better evaluation of repeatability because output parameter responses could agree in 

different levels and time. 

• The surrogate wheelchair testing based on the T R L design indicated that the 

rear axle and front castors were insufficiently reinforced. Once TRL-SWC was 

strengthened, it proved durable and reliable in subsequent testing. A surrogate 

WTORS system allowed many tests to be conducted repeatedly and facilitated 

observation and analysis of the crash environment. 

• Production wheelchairs were crash tested and validated the surrogate system's 

ability to simulate the real crash dynamics. The production wheelchair tests provided 

insight into possible mechanisms for occupant injury and displayed areas on the chair 

that were structurally weak. 

• Tight control of chair and dummy positioning improved the repeatability of 

test results. 

• The preliminary test programme proved conclusively so that the replicated test 

results can be obtained when using a full chair-dummy system. 

• A l l test results helped to gather contact functions and force characteristics for 

construction Crash Victim Simulation (CVS) models. 

105 



CHARTER 6 

C H A P T E R 6: T H E O R E T I C A L M O D E L L I N G OF WTORS 

In order to gain a füll understanding of the crash performance of the 

Wheelchair Tiedown and Occupant Restraint Systems (WTORS) impact test and 

dynamic System modelling, it is necessary to have an understanding of the dynamic 

theory that is involved. 

6.1 Mathematical Modelling Procédure 

The mathematical modelling dépends not only on learning how to formulate 

the model équations but also on being able to prime the modcl with some data. The 

procédure with data flow incorporated is shown in Figure 6.1. 

IDENTIFY 

The real hardware 

S IM PLI F Y 

List the factors 
Assumptions 

TMPROVE 
Formulate math 
Problems 

» Interpret math 
Solutions 

Figure 6.1 The modelling flow diagram 

6.1.1 Identify of the real hardware 

WTORS System was fixed to a vehicle or a sied and subjected to the forces 

caused by the action of the vehicle décélération on it. The relationship between the 

forces due to the vehicle décélération and the reaction of WTORS was identified. It 

largely detcrmined the relevant properties of the System as follows: 

• The masses of all the moving parts, such as, the vehicle (sied), the wheelchair 

and the occupant (dummy). 

• The stiffness function (the force required to cause unit distortion) of each 

component, such as, the restraint Systems both occupant restraint and 
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wheelchair tiedown restraint. It is determined by the shape of each comportent 

and the material of which it is made. 

• The stiffness of the floorboard on which WTORS stands and the way where 

the System is attached to this floorboard. 

• Friction forces between vehicle floorboard and wheelchair, also between the 

dummy and wheelchair. 

• The set-up condition of WTORS, such as the dummy sat on the wheelchair, 

the tightness of the tiedown and webbing belts. 

• The performance of the polyurethane tube was used to decelerate the sied. 

High précision test results are often kept at the same ambient température to 

prevent differential expansion of the tube giving incompatible sied puises. 

• Wear was another considération here, closely connected with the pre-tension 

of webbing belts. 

6.1.2 Simplify of the real situation 

Simplicity is the mark of a good solution to a problem. An important part of 

the process of design is to identify the essentials and to eliminate unnecessary frills. 

The same principle has been involved in computer modelling. 

To begin with simplicity we take notice only of the most important and most 

obvious of the relevant properties and neglect the rest. A very simple mass-spring 

model was set up in WTORS model based on the following assumptions: 

• Neglect the mass of the sied and treat it as one rigid body. This is the first 

approximation as only sied puise is used. 

• Neglect the mass of the webbing belts and wheelchair tiedown, because it is 

smaller compared with that of the wheelchair and dummy. The tiedown is 

likely to be much more extensible, so it could be treated as a perfect spring. 

• Assume the Surrogate wheelchair to be built in the form of planes, as no 

déformation of this wheelchair was considered. 

• Neglect the friction in comparison with the other forces. 

• Assume that ail parts fit perfectly together. 

• Neglect the ambient température effect. 
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• Neglect the rebound effect. 

6.2 A Simple Wheelchair Model 

The force distribution was considered in a simplified WTORS. The Surrogate 

wheelchair without the tiedown restraint System could be simplified as a crate (a 

wheelchair without wheels) resting on a vehicle floorboard (Figure 6.2). The crate 

could be assumed to be made of a homogeneous material, so that the C G is located at 

the centroid of the volume. 

a(t) 
• 

Figure 6.2 Force distribution in a crate 

As an example, when the driver applied the brakes or the sied decelerated with 

tubes, the crate may slide relative to the floorboard or tip over. When the crate is at 

rest or moving with constant velocity, the weight force mg is equal to the normal 

force N on the crate. When the driver brakes, the vehicle is decelerating, a(t), and the 

maximum permissible décélération a x is positive. The actual sensé of the inertia force, 

interpreted as an external force applied to the crate, is to the right. Since this force 

tends to rotate the crate clockwise, the line of the reaction force of the bed of the 

vehicle on the crate moves to the right of its original position. The force f is the 

friction force exerted by the vehicle floorboard on the crate. The magnitude of the 

décélération is now imagined to increase. The crate will tip rather than slide when the 

friction force attains its maximum value of 
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fmax = U-N (6.2-1) 

where \1 is the coefficient of friction. The équations of motion for this case are 

I F y = 0 N = nvg (6.2-2) 

I F X = 0 ax = ^ g (6.2-3) 

As the magnitude of the décélération of the vehicle increases, the line of the 

reaction force of the crate continues to move rightwards. A limited condition is 

reached whcn this force acts on the forward edge of the crate. If the friction force at 

this condition is less than the maximum possible value | i N , the crate will be in a 

condition of impending tipping motion about the forward edge 'c ' point. The 

equilibrium requirements are 

I M c = 0 a x = (b/a>g (6.2-4) 

It can be observed that b/a defines the shape of the crate. 

If a x > [Ag or p. < b/a, the crate will slide without tipping; If a* > (b/a)g or p. > 

b/a, the crate will tip without sliding. A special case occurs if \i = b/a. In this case, 

sliding and tipping effects would occur simultaneously. 

6.3 A Wheelchair-Sled Model 

The Single Degree of freedom (SDF) model depicted in Figure 6.3 is 

analogous to the wheelchair-sled system. The mass m represents the mass of the 

wheelchair. The mass of the occupant was neglected from this analysis because the 

wheelchair and occupant are typically restrained independently of one another. 
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a(t) 

In this highly simplified approach 

model, a(t) is the sled deceleration force 

in the direction of the sled movement, 

k 
other force components are neglected 

here; k is the stiffness of the rear 

m wheelchair tiedown; u IS the 

SLED 

U 

displacement of the wheelchair due to the 

deformation of the wheelchair and u m is 

maximum displacement. We assume k to 

Figure 6.3 A wheelchair-sled system be a constant, which implies that force 

and extension are related by a straight 

line like that of the perfectly elastic spring. Displacements to the right are taken as 

positive so that velocities, accelerations and forces will be subject to the same sign 

convention. The entire system is connected to a moving reference frame that 

represents the vehicle, to which the wheelchair is anchored. 

The acceleration amplification is a function of the type of excitation (am = 

Um*Cûo ), i.e. crash pulse shape, the duration of the excitation (tb), crash pulse length, 

and natural frequency of the system (CUD). Since the natural frequency of the system is 

a function of k and m (oV = k/m), the tiedown stiffness and the system mass will 

affect the degree of acceleration amplification. 

6.4 Improvement of WTORS Model 

The following effects have been taken into account in order to improve the 

above WTORS model. 

6.4.1 Effect of wheelchair stiffness and mass 

In the previous model (Figure 6.3), we assumed that the frame of the 

wheelchair is rigid. This section demonstrates a way of accounting for the stiffness of 

the wheelchair frame to improve the model, although it inevitably adds complications. 

The wheelchair frame is a relatively large mass of material, which is subject to 

deformation when acceleration force is applied to it, particularly for manual 

wheelchairs. If these forces change with time then the deformation changes too. Any 
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attempt to formulate models must take into account not only stiffness but also the 

mass of the frame. It is, in principle, possible to treat the frame as a continuous mass, 

which embodies a résistance to the déformation of any part relative to another. This 

kind of continuous System, however, is not very easy to analyse especially when the 

shape is as complicated as that of most wheelchair frames. 

We therefore concentrate on the first stage of the model which we have used 

so far and only change some properties of a wheelchair, such as stiffness. The mass of 

the wheelchair was assumed to be entirely concentrated in some parts of the System. 

This is called a lumped parameter System. The word 'parameter' means any 

characteristic property of the system such as mass or stiffness. In this WTORS model, 

the simplicity obtained from lumping parameters was used to overcome the inhérent 

lack of accuracy. 

6.4.2 Effect of du mm y 

In order to take into account the effect of dummy, the continuous mass of the 

frame was dealt with by approximating it to a lumped parameter system (Figure 6.4a), 

and attaching this to the previous version of our model as shown in Figure 6.3. 

The fixed surface shown at the left hand end of the model in Figure 6.4a 

represents the foundation of the vehicle. The spring shown with stiffness kp represents 

the wheelchair effective stiffness of its frame and m F is its effective mass. m D is 

dummy mass and ko is dummy stiffness contacted with wheelchair. More information 

is required to specify the instantaneous state of this model, because there are now two 

masses, which could be moved relative to another. The displacement of this system at 

any instant is now specified by the values of Ui and 112. ô s is the elongation of the 

spring. 

The présent version of the model is now a system with two degrees of 

freedom, whereas the previous version had only one. 
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u 2 

T = k D (ôs+m). 

k F (6s + u2) kD (5S + ui ) 

Figure 6.4a Two mass and spring model of W T O R S 

6.4.3 Effect of Coulomb friction 

The effect of friction was considered because a small value of it can have an 

important effect on the behaviour of a dynamic System. We assumed that the frictional 

force was constant in magnitude but always opposed in direction to the motion. 

Friction that exhibits this idéal behaviour is known as Coulomb friction. 

Now we want to apply our discussion of friction to our model of WTORS. The 

easiest way was to assume that ail the friction acted in one place (preferably acting on 

the mass) and to choose a value of which would account for ail the friction in the 

System. It is difficult to represent ail the fcatures in one simple model. One way to 

proceed was to neglect the static friction to represent the friction by an idealised 

élément, which provides a resisting force (f) proportional to the sliding velocity. This 

élément is called a dashpot shown in Figure 6.4b. It consists of a piston in a cylinder, 

the piston diameter being slightly smaller than that of the cylinder so that there is a 

small circular gap between them. This produces a resisting force proportional to the 

relative velocity between piston (vp) and cylinder (vc), so that f = c(vp - vc), c is 

coefficient of viscous damping. It is a satisfactory qualitative guide to the effects of 

friction. 
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u 2 "1 

k D 

itio 

T = k D (ô s + ui) F f 

k F (ô s +u 2 ) r — ^ k D ( ô s + U i ) 

Figure 6.4b Two mass and dashpot model of W T O R S 

6.5 Further Studies of WTORS Model 

WTORS mathematical models have been formulated using the M A D Y M 0 3 D 

package for the spécial purpose of evaluating WTORS crash performance. 

6.5.1 Dummy model 

The centre of gravity of TNO-10 dummy éléments (Figure 6.5a) was 

determined by free hanging of the élément in two positions by a cord and correlated 

by the calculations in Table 6.5a and 6.5b. The moment of inertia of the dummy parts 

about an axis through the C G and perpendicular to the x-z plane had been measured 

with a torsion pendulum. The moment of inertia of the torso foam and skin could not 

be measured by this method and was estimated. The élément masses, location of the 

centre of gravity and moments of inertia were determined by extrapolation and 

estimations from P3 dummy mass distribution data (Wismans et al, 1979). 
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Figure 6.5a TNO-10 dummy Figure 6.5b Joints of dummy 

The résultant characteristics of the static résistance (stiffness) to rotation 

(including range of motions and joint stops) of the dummy joints were approximated 

by linear functions. A velocity dépendent résistive torque (viscous damping) was 

defined for ail of the joints. Thèse were based on observations that the shoulder, 

elbow and knee were almost critically damped, while the damping in the neck, spine 

and hip joints were estimated to be lower than critical values. The initial position of 

the dummy, just prior to impact, obtained from high-speed video analysis and direct 

measurements. The centre of gravity of Hybrid II dummy was calculated and is listed 

in Table 6.5a. The centre of gravity of TNO-10 dummy was calculated and listed in 

Table 6.5b. 

TNO-10 dummy was modelled and the joints of the dummy are indicated in 

Figure 6.5b. The inertial components were defined with respect to the wheelchair rear 

axle centreline, the positive direction being x-axis to forward, y-axis to the portside of 

a wheelchair and z-axis downward. 
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Table 6.5a C G calculation of Hybrid II dummy 

Initial Positions (inertial référence) 
Seg W X Z M x M z 

Units kg m m kg*m kg*m 
LT 16.28 0.85 -0.65 13.83 -10.57 
M T 2.20 0.78 -0.74 1.72 -1.64 
UT1 18.82 0.76 -0.95 14.33 -17.93 
UT2 4.15 0.76 -0.96 3.15 -3.98 
N K 1.16 0.72 -1.15 0.83 -1.33 
HD 5.08 0.72 -1.30 3.65 -6.58 

R U L 6.17 1.11 -0.65 6.82 -4.00 
R L L 3.26 1.34 -0.51 4.37 -1.68 
RF 1.24 1.49 -0.26 1.84 -0.32 

L U L 6.17 1.11 -0.65 6.82 -4.00 
L L L 3.26 1.34 -0.51 4.37 -1.68 
L F 1.24 1.49 -0.26 1.84 -0.32 

R U A 2.03 0.79 -0.89 1.60 -1.80 
R L A 1.72 0.89 -0.77 1.54 -1.32 
L U A 2.03 0.79 -0.89 1.60 -1.80 
L L A 1.72 0.89 -0.77 1.54 -1.32 
RHD 0.58 1.10 -0.78 0.64 -0.45 
L H D 0.58 1.10 -0.78 0.64 -0.45 
total 77.67 71.13 -61.17 

C G x 0.92 

C G 2 -0.79 

Table 6.5b C G calculation of TNO-10 dummy 

Initial Positions (inertial référence) 
Seg W X Z M x M z 

Units kg m m kg*m kg*m 
LT 16.28 0.85 -0.65 13.85 -1057 
M T 2.20 0.78 -0.74 1.72 -1.64 
UT1 18.82 0.76 -0.95 14.35 -17.94 
UT2 4.15 0.76 -0.96 3.16 -3.98 
N K 1.15 0.72 -1.15 0.83 -1.32 
HD 5.08 0.72 -1.30 3.66 -6.58 

R U L 6.17 1.10 -0.65 6.82 -4.00 
L U L 6.17 1.10 -0.65 6.82 -4.00 
M L L 9.05 1.31 -0.50 11.83 -4.56 
R U A 2,07 0.78 -0.89 1.60 -1.85 
L U A 2.07 0.78 -0.89 1.60 -1.85 
Total 73.20 66.24 -58.29 

C G X 
0.90 

C G Z -0.80 
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The centre of gravity (CG) of components can be calculated by the following 

formula: M x = W X , M z = W-Z, CG X = M x / W , C G Z = M z / W . W is weight of 

components; X and Z are initial positions relative to inertial référence. M is moment 

of components. The centre of gravity of TNO-10 dummy without legs is calculated in 

Table 6.5c. 

Table 6.5c CG calculation of TNO-10 dummy (without leg) 

Initial Positions (inertial référence) 
Seg W X Z M x M z 

Units kg m m kg*m kg*m 
LT 16.28 0.82 -0.65 13.34 -10.57 
M T 2.20 0.75 -0.74 1.65 -1.64 

UT1 18.82 0.73 -0.95 13.75 -17.94 
UT2 4.15 0.73 -0.96 3.03 -3.98 
N K 1.15 0.69 -1.15 0.79 -1.32 
HD 5.08 0.69 -1.30 3.50 -6.58 

R U L 6.17 1.08 -0.65 6.64 -4.00 
L U L 6.17 1.08 -0.65 6.64 -4.00 
R U A 2.07 0.76 -0.90 1.57 -1.85 
L U A 2.07 0.74 -0.89 1.54 -1.85 
Total 64.15 52.44 -53.73 

C G X 0.82 
C G Z -0.84 

6.5.2 Contact force model 

Static force deflection characteristics of the contact situations were 

approximated by linear functions and correlated by dynamical tests and CVS models. 

Coulomb friction to resist the sliding of upper leg relative to the chair and the 

wheelchair relative to the vehicle floorboard were estimated. 

More détails of modelling of WTORS using CVS dynamic programs will be 

discussed in Chapter 7 and 8. Here we just indicate some possibilités as follows: 

• A fairly obvious step should be involved to treat the foundation of WTORS in 

a similar manner to which was used for the dummy. This would resuit in a three 

degree of freedom System. 

• Another parameter that should be taken into account is that of hystérésis in the 

material of the webbing belts. This would absorb some of the energy in WTORS. It 
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could be treated as a kind of friction. One might allow for this by putting a suitable 

dashpot in parallel with the spring kF. 

• One effect that has so far been neglected is the belt slippage because of 

anchorage deformation and wheelchair axle bending during impact. This effect is a 

non-linear effect that could not be avoided. It is rather awkward to handle 

mathematically and it will be further simulated using explicit finite element models. 
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CHARTER 7: FINITE E L E M E N T ANALYSIS OF W H E E L C H A I R 

Finite Element Analysis (FEA) is the resuit of applying of the discrétisation 

principle. It was derived from structure matrix analysis, which was firstly named by 

Professor R. W. Clough in 1960 (Hoffmann et al, 1990). The F E A method has been 

widely used in both force analysis and équation calculation. 

This Chapter présents a static and dynamic force analysis of the structures of 

both the Surrogate wheelchair and the production wheelchair. A combination of FEA 

techniques with dynamic sied tests was employed to allow a more detailed description 

of the crash performance of the wheelchairs. The loading analysis of the production 

wheelchair was based on dynamic sied test results. The corrélation between the 

computer models and expérimental results was also presented. The dynamic analysis 

method was involved to investigate the crash performance of the Surrogate 

wheelchair. The corrélation of a static load to the actual dynamic load in a given crash 

severity was developed. 

7.1 Introduction 

The sied impact testing of WTORS has been presented in Chapter 5. It was 

shown that the wheelchair frame itself was the limiting factor in the frontal impact. 

Under impact condition, the loads transferred to the wheelchair are of sufftcient 

magnitude to cause its déformation, and even collapse of the joints in the wheelchair 

frame and hence injury to the disabled occupant. In order to strengthen the joints of 

the wheelchair's tubulär structure, it is necessary to détermine the values and 

directions of the forces and moments acting on the individual joints and tubes of the 

wheelchair. 

The F E A method applied to the solutions of force analysis of WTORS 

mechanism has facilitated the designers to gather data, such as the wheelchair Centre 

of Gravity (CG), the mass moment of inertia of the wheelchair in the three principal 

direction, Ix, I y, and I z, for the construction of CVS model (Chapter 9). AH 
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components placed in the wheelchair, such as the tubulär structure of the wheelchair, 

the battery and other parts, were incorporated into the model by scaling their masses 

and distributing them about the places where they are attached to the sied. 

The solid modelling program, PIG and F E A modelling program, PAFEC 

(V7.4, 1992) were used running on the V A X Cluster (Appendix 7A). The CVS 

programs, D Y N A M A N and M A D Y M O were also used to consider the data supplied 

from the FEA model. 

7.2 FEA Model Requirements 

Finite Element Analysis is a numerical approximation method. Two errors 

could be occurring. One is called the discrétisation error, which occurs when the. 

calculation model is used to simulate the engineering cases. Another is called 

calculation error, which dépends on the FEA program implementation. The fine mesh 

would reduce the discrétisation error, but it also would increase calculation error. In 

gênerai, the former error is much larger than the latter. The accuracy of structural 

F E A mainly dépends on the discrétisation, that is, the model set-up. 

FEA model set-up should meet the following requirements: 

* Accuracy - to co-ordinate between the component shape and structure; 

to co-ordinate between the supporting Systems and boundary 

conditions; 

to co-ordinate between loading conditions and actual working 

conditions. 

• Economy - to reduce pre-process and C P U time. 

7.2.1 Boundary conditions 

A wheelchair is a brazed pre-shaped tubulär structure. There are two 

supporting Systems to be co-ordinated with boundary conditions in a WTORS, rigid 

support and flexible support. The rigid support consists of wheelchair rigid frame 

supported by wheels. The flexible support considers wheels supported by ground 

floorboard as the wheels have large elastic déformation under external loading. 
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7.2.2 Loading conditions 

The loading conditions had been defined before F E A was used to analyse the 

component structure. The loading location dépends on différent working conditions. 

Two loading cases were considered in a WTORS analysis: concentrated and 

distributed loading. Loading was also considered in the dynamic mode to take into 

account any variations as a function of lime. For example, the structure of a 

wheelchair would sustain a complicated loading pattern when it was suddenly 

accelerated. 

The following formula was reasonably used to estimate the loading conditions 

in a WTORS System design: 

the maximum tiedown force = total mass of WTORS times 

the peak résultant accélération of dummy's ehest 

7.2.3 The FEA process 

Figure 7.2a 

Element force characteristics 

An infinite elastic continuum 

component can be simplified into finite 

degrees of freedom by a discrétisation 

principle and solved by structural matrix 

analysis method. The FEA process could be 

summarised as follows: 

1 ) Discrétisation of an infinite elastic 

continuum component 

Finite éléments are defined and meshes 

are divided, including sélection of the co-

ordinate Systems, élément type, mesh size, boundary conditions and loading 

conditions. 

2) Sélection of élément deflection functions to simulate the distribution rule 

within élément deflection. 

3) Analysis of élément force characteristics 

As an example, membrane élément was used to calculate the élément stiffness 

matrix and équivalent node loading matrix. The détails of membrane élément will be 

described in Chapter 8. The loading of the membrane élément is characterised by the 
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Cauchy stresses, which are constant within each membrane élément. Three non-zero 

components of the stress are determined with respect to the élément co-ordinate 

System. The positive direction of the x-axis can be determined as it corresponds with 

the direction of the right handed screw if rotation from node 1 past node 2 towards 

node 3 (Figure 7.2a). 

The relationship of four physical parameters: node deflection {A}, élément 

strain {e}, élément stress {a} and node force {F} is illustrated in Figure 7.2b. The 

strain matrix [S] and elastic matrix [E] are constant matrices, [k] is the élément 

stiffness matrix. The élément volume (V) is the élément thickness times the élément 

area. 

{A} [si = (E|/(Ai 

[E] [S| 

[El - JCTl/fel ^ virtual work principe | p 

4- fA)T(F1 = (E|T{CJHV) 

tkl = (FI/)Al= ISflEÏÏSlfV) 

Figure 7.2b The relationship of four physical parameters in a FEA mode! 

4) Intégral calculation of total stiffness matrix 

This calculation is based on the following principles: 

• AU éléments have the same deflection on the combïned nodes 

• The node force is equal conditions to nodal loading. 

The total structure stiffness matrix [K] = {R}/{A}. {R} is the résultant of 

élément force {F}. 

5) Modification of calculation model and design 

The node deflection {A} was achieved by boundary conditions and [K] 

modification. 

6) Stress équivalent graphs 
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The stresses on the élément and node were achieved and results were 

summarised in stress équivalent graphs. The flow chart of FEA process is listed in 

Figure 7.2c. 

Output 
results 

t 
Figure 7.2c FEA modelling flow diagram 

In the dynamic structure, the strain and stress vary not only with the Space 

position but also with time. In this programme, one of dynamic F E A methods, modal 

frequency and shape analysis was employed. The natural frequencies and mode 

shapes of a structure are independent of any loading. The mode shapes were 
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calculated using a limited number of dynamic freedoms called masters, or eigenvalue 

(tû2) and eigenvector ({A}). 

Rigid body modes were identified by very low frequencies from the shapes 

plotted out. The sizes of thèse rigid body frequencies provided a powerful check on 

the numerical accuracy of the calculation. PAFEC suggests that the true value 

probably lies in the following bounds (PAFEC 7.4, 1992): 

f i - [ l ± ( f r / f i ) 2 ] 1 / 2 (7.1) 

This expression shows that if the highest rigid body frequency (fr) is more 

than a third of the îowest non-rigid body frequency (fi) then the errors in the latter 

exceed 6%. The following changes were involved for unacceptable inaccuracy: 

• Re-mesh any areas where the éléments are small since this gives rise to 

numerical calculation error 

• Reduce the number of masters especially when manually chosen masters are 

used to increase the numerical précision. 

7.3 Loading Anal vsis of a Manual Wheelchair 

Many types of production wheelchair have been used in WTORS crash testing 

in the previous researches (Gu et al. 1995), such as standard manual wheelchairs, 

powered wheelchairs, scooter-type wheelchairs, and special wheelchairs. As a resuit 

of thèse tests, the strong and weak points of standard wheelchairs have been 

determined. The performance of specific tiedown Systems with certain chairs bas been 

observed. 

The extreme crash severity results in a large amount of chair déformation and 

involves the high cost of replacing damaged parts. The Surrogate wheelchair 

facilitâtes a standardised test, ensuring that ail WTORS could be tested repeatable 

within-lab consistency and reproducibly between-lab consistency (Shaw et al. 1994). 

In essence, the Surrogate wheelchair provides a base design field for ail WTORS and 

présents a worst case loading severity for Systems. In this Chapter référence has been 

made to TRL Surrogate wheelchair and one of the manual wheelchairs (HNE, Classic 

Universal in Figure 7.3a). 
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;d seat 
mcmber 

Figure 7.3a Classic Universal wheelchair 

7.3.1 Load analysis from sied tests 

Sied tests implied that the production wheelchair frame becomes severely 

distorted and that the tubes at certain load-bearing joints were pulled apart, such as, 

the castor tube. The forces causing the déformation are not pure tension or 

compression. It is the combined effect of tension and compression with large bending 

moments. 

Dynamic sied tests also revealed that it is difficult to décide the magnitude and 

directions of loads acting on the wheelchair frame from the décélération force of sied 

during impact. This is because the combination movements of dummy sitting on the 

wheelchair and wheelchair floating on the sied. After examination of the high speed 

video footage of testing, it was found that the wheelchair was progressively loaded by 

the sied décélération and the loads transferred to the wheelchair moved forward to the 

front castor wheels. The impact tcsted wheelchairs were then examined to détermine 

the areas of maximum déformation and gain an overall picture of the impact forces 
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effect on the wheelchair. A i l load cases are the resull of initial assumptions of the 

force distribution in the frame of the wheelchair. The two halves of the wheelchair 

frame are initially assumed as equal force allocation due to the symmetry structure. 

The front edge of the seat is the worst possible position. If the seat belts restraining 

the movements of the dummy are loose the dummy body could slide forward until its 

CG lies directly over the front edge of the seat. The load can be increased on the front 

castor wheels causing them to fail. 

The wheelchair (15 kg) was progressively loaded by dummy résultant 

accélération (about 40g) at the sied severity of 48 km/h, 20g. The force acting through 

the CG of the dummy (mass 75 kg) was about 30 kN. Only about one quarter of this 

value (7.2 kN) was considered in a manual wheelchair seat load condition as the seat 

loads of 14.7 kN was found in ISO Surrogate wheelchair (90 kg) tests in the same 

crash severity. This load transferred to the chair seat would be assumed in the order of 

about two-thirds in the front (4.4 kN) and one third in the rear (2.8 kN). Furthermore, 

the loads transferred to the chair backrest would be assumed in the order of about one-

third to upper backrest (2.4 kN) and two-thirds to the lower backrest (4.6 kN). 

7.3.2 Structural modellin g of a manual wheelchair 

The detailed real deformed parts were modelled as follows: 

• The sliding hook 

The sliding hook does not restrain the movements of the seat member in the z-

plane and y-plane in the impact situation. The locating hook was modelled as the seat 

member is free to slide in the joint in the x-plane but is fixed and unable to rise in the 

y-plane. 

• Cross-braced seat supporting member 

The positioning of the cross-braced members was set behind the centre of the 

chair, which the occupante centre of gravity lies directly overhead in normal 

opération, thus causing maximum bending moment at the cross braced joint. 

• Wheel assembly 

The rear wheel axles were modelled using the rear axle joint and the front 

castor wheel axles passing through front axle joint. The axle could not move in the y-

axis and z-axis but is free to move in the x-axis. The same boundary conditions were 
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applied to the front castor wheels. AU removable parts, such as armrests and footrests 

were removed. It was assumed that all thèse parts had no constructive part to play in 

the structural strength of the Standard wheelchair. 

7.3.3 Element types used in the model 

A combination of the following four dement types were used in FEA manual 

wheelchair model: 

Type 1: Simple beam élément (34000) 

This is a straight uniform beam element with two nodes. 

Type 2: Shear déformation and rotary inertia beam element (34100) 

A straight uniform beam element with shear déformation is included. There 

are six degrees of freedom (ux, u y , u z, <j)x, $ y, §7) at each of the two nodes. This 

element was applied in seat hook structure and cross-braced seat supporting members. 

Type 3: Cttrved beam element (34300) 

This element is part of a circle. Two node numbers are given in the topology 

and thèse are positioned at the centres of area of the cross-section at the two ends of 

the element. Shear déformation and rotary inertia are included. This element was 

applied to all round corners in the manual wheelchair. 

Type 4: Tension Bar Element ( 34400 ) 

This is a straight uniform element that carried end load and applied in wheel 

axis. 

7.3.4 Model results 

A post-processing program, PIG was run to post process the simulation. As the 

larger déformation was found in this model, the static loading analysis was used to 

investigate the positions of higher loading. The higher load positions in the H N E 

wheelchair (marked as 1,2,3 in Fig 7.3b) were found from the model. The highlighted 

element 1 posses higher shear force (z) (range from 820 N to 1000 N) and higher 

bending moment (y) (range from 211 Nm to 251 Nm); The highlighted element 2 

possesses higher shear force (y) (range from 580 N to 880 N) and higher bending 

moment (x) (range from 880 Nm to 990 Nm); The highlighted element 3 possesses 
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higher shear force (x) (range from 500 N to 880 N). The complète FEA modelling 

code is listed in Appendix 7A. 

\ 

élément 3 

Figure 7.3b Elément structure simulation of a manual wheelchair 

7.4 Modal Analysis of TRL Surrogate Wheelchair 

The most straightforward type of dynamic analysis is the détermination of 

natural frequencics and mode shapes. This type of calculation gives considérable 

insight into the dynamic behaviour of a structure. A i l the separate éléments of the 

surrogate wheelchair, such as tubes were built with a simple beam élément (34000) 

(Figure 7.4a). The surrogate wheelchair was simplified as beam éléments without 

wheels as the wheels were assumed no constructive part to play in the structural 

strength of the wheelchair. 

Interest was drawn in low frequency property of the wheelchair as rigid body 

modes were identified by very low frequencies. Five modes were used to figure out 

the complète mode shape. 

Figure 7.4b demonstrates the détermination of natural frequencies in a 

restrained three dimensional surrogate wheelchair structures. The doted line is the 

deformed mode. Mode 1 is the lst twisting vibration along x axis. Mode 2 is the lst 

bending vibration around y axis. The wheelchair rcar part vibrated to a maximum 

around the rear wheel axis. Mode 3 is 2nd bending vibration around y axis. The 

wheelchair rear part vibrated to a maximum around the frontal wheel axis. Mode 4 is 

3rd bend vibration around y axis. The wheelchair lower part did not vibrate. Mode 5 
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is 2nd twisting vibration in the rear part of the wheelchair. It was concluded that Ist, 

2nd bending vibration and 2nd twisting vibration resulted in larger déformation of the 

rear part of wheelchair than the other parts. This was validated by dynamic tests 

where the dummy vibrated from the rear to front and to rear of wheelchair (rocking 

effects) during FFF impact. The investigation has also shown that a twisting of the 

wheelchair about the x-axis occurred causing uneven forces in the two halves of the 

wheelchair frame. 

Figure 7.4a Beam structure éléments in T R L wheelchair 

Since parameter investigations using sied tests are costly and time consuming 

to perform, computer simulation has been populär to simulate the crash environment. 

It has been used as a tool for examining the effects of crash puise variations. How to 

find the corrélation between the static model and dynamic model is another subject in 

this research programme. 
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7.5 Corrélation of Wheel Contact Characteristics 

The corrélation between static model and dynamic experimental results was 

made more accurate by adjusting the various stiffness functions, friction pénétration 

factors, and correction factors. More détails of CVS modelling of WTORS using 

dynamic CVS program will be discussed in Chapter 9. Here we just indícate some 

possibilities to use FEA model results to support CVS model. Considering the data 

supplied from the above F E A model, a CVS model of TRL Surrogate wheelchair was 

initially written within D Y N A M A N program. The Surrogate WTORS System was 

modelled as linear segments whose stiffness properties were initially determined 

experimentally from static testing. Finally, they were validated and adjusted by 

dynamic sied test results. 

Observed from the high speed video footage (Appendix 5C and 5D), the rear 

wheels of the wheelchair were compressed downwards during the initial phase of 

impact and the front wheels were lifted off. The wheelchair was then shifted from its 

initial position to forward due to the dummy movement. 

The wheelchair tyre contacted on the floorboard was considered as a non-linear 

elastic flexible support. The properties of the tyre were devised into two phases: a linear 

static phase before impact followed by a non-linear dynamic phase during impact. These 

phases were modelled by a main linear spring and an additional non-linear spring. When 

the main spring is deformed to a certain point, the additional spring is engaged to 

simúlate the dynamic non-linear property of the tyre. 

Two beam éléments (bi and b 2) and one gap élément (b3) were selected at spring 

forcing point ' C (Figure 7.5a). Ai is the section área of the beam élément bi , Ai = 

kiLï/E, k i = tgoti, ki is équivalent stiffness of first straight line. A 2 is the section area to 

the second beam élément b 2, A 2 = kih^, k 2 = AP/AÔ, k 2 is équivalent stiffness of 

second straight line (Figure 7.5b). The gap dement is non-linear compressing dement as 

the gap could not be predicted during loading period. If 8i = 0, the beam dement b 2 is 

involved. The tyre deflection point *C* was assumed as upward déformation. If point ' C 

up deflection is larger than ôi, both beam éléments are loaded, équivalent two Springs 

parallel connected. If point ' C up deflection is smaller than 6\, only beam dement bi is 
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loaded, The deflection is a function of the loading conditions. The valúes of k i and k 2 

can be automatically varied by gap element. 

W H E E L C H A I R 

non-linear tyre model 

Figure 7.5a A wheelchair tyre model by FEA 
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Figure 7.5b Tyre non-linear stíffness (correlation) 

7.6 Summary 

• The loading analysis can be achieved using F E A models to investígate 

different parameters effect on WTORS system. 
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• The corrélation of a static load to the actual dynamic load in a given crash 

severity was investigated using an additional spring model. It is very important stage 

for modelling accurately of dynamic response of WTORS. 

• Further study of impact properties is needed to get a better corrélation between 

the models and experiments. One of the areas in which an improvement is required, is 

a means of modelling of the contact and friction forces exerted between the ground 

and the pneumatic tyre. Another area for improvement is the modelling of différent 

restraint Systems. The interconnect the FEA model into CVS model will be discussed 

in Chapter 8. 
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C H A P T E R 8: C R A S H VICTIM SIMULATION (CVS) AND 
APPLICATIONS 

In this Chapter, the past and current computer modelling technique for vehicle 

industry are firstly reviewed. The Crash Victim Simulation (CVS) modelling method 

and its applications are introduced. This is followed by a description of the approach 

and theory used in M A D Y M 0 3 D code. To illustrate the potential of this code the 

results of WTORS front impact simulations and expérimental test results are 

compared. The techniques, which have been used to interconnect the finite élément 

beit model and finite dement tyrc model into their relative CVS models, are also 

discussed in this Chapter. 

8.1 Introduction 

In the early design, lumped parameter models for predicting vehicle response 

using static crush data have been in use for several years (Grew, 1985 and Deng, 

1988). Another method of modelling is by considering the structure as an assembly of 

a number of individual beams connected at nodal points. Structural properties are 

incorporated in the beam stiffness matrix. Collapse properties of the beams and joints 

are measured using quasi-static tests. Combination of the lumped mass approach and 

space frame modelling can be realised using a M U L T I B O D Y approach, where the 

structure as well as the occupant are represented by rigid bodies interconnected by 

arbitrary kinematic joints. A comprehensive approach of modelling large 

déformations is by Finite Element Analysis (FEA) method. In this case, detailed 

information about the structural components must be available. A complète and 

accurate description of both component stiffness and mass distribution is essential .for 

the analysis. Areas directly involved in the déformation have to be meshed in fine 

detail. 

Back in 1963, McHenry proposed a 2D numerical model to describe the 

motion of a vehicle occupant in a collision event (McHenry, 1963). A 2-D computer 

model was developed by Automotive Safety Centre of Volvo Corporation in 1974. 
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Variations were introduced to standard half-sine crash pulse. The resulting affect on 

Outputs such as occupant accélérations, Head lnjury Criterion (HIC), Chest Severity 

Index (CSI), excursions and belt forces were examined. In conclusion, the author 

introduced a vclocity tolérance band to characterise the sied crash puise, as opposed to 

the traditional accélération tolérance corridors. In 1977, Nissan Motor Corporation 

conducted a study using computer simulation in an effort to determine the influence 

of the vehicle décélération curve on dummy injury criteria. M V M A - 2 D crash victim 

simulation package was used. It was found that for the same velocity change (AV), the 

dummy injury criteria could be drastically différent. They concluded that the vehicle 

décélération curves exhibited the higher residual déformations (RD), and 

coincidentally, the lower peak sied décélération produced the smaller dummy injury . 

criteria. 

In 1970, a 3D occupant model was published by Robbins (Robbins, 1970). 

This initial development was followed by a number of more general occupant 

simulation tools. Parameter studies hâve been conducted by several researchers and 

engineers to assess the relative effects of varying input parameters on Output 

parameters (Lundell, 1984). Elaborate computer simulations have been developed to 

study occupant kinematics and vehicle déformation patterns (Matsumoto, et al, 1990). 

A single degree-of-freedom game theory, or a constrained optimisation 

method was used to find crash puises falling within the bounds of the ISO crash puise 

corridor at University of Virginia (Scavnicky, 1994). The occupant simulation 

package D Y N A M A N was used to investigate the sensitivity of the ISO crash puise 

corridor using the best and worst puises derived from the optimisation technique. 

In the last few years, computeT simulation has been increasingly used as a 

method for optimising wheelchair structure and improving occupant protection 

(Grew, 1985, Adams, et al, 1994). A wheelchair-occupant model was built at the 

University of Virginia (Scavnicky, 1994) using A T B , a simple version of 

D Y N A M A N . The same package was also conducted at University of Pittsburgh 

(Digges. K, 1994). In this research programme, computer simulation of WTORS in 

frontal impact has firstly been conducted using a sophisticatcd computer CVS 

program, M A D Y M 0 3 D and finite element analysis techniques. 
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8.2 Co-ordinate Systems 

There are four co-ordinate Systems used in CVS modelling of WTORS: 

• Inertial (ground) Co-ordinate System (ÏCS) 

• Vehicle Co-ordinate System (VCS) 

• Body segment référence Co-ordinate System (BCS) 

• Joint Co-ordinate System (JCS) 

Inertial co-ordinate System is defined in INERTIAL SPACE in the M A D Y M O 

program. The plane is defined by the direction of a right-handed screw rule (outside 

normal) by three points. A sied plane is required for frontal impact models to define 

the contact movement of the sied and wheelchair. In a WTORS frontal impact model, 

the origin of the inertial référence co-ordinate System was assumed to be zéro (0,0,0) 

at the middle of the furthest left edge of the sied. The frame of référence was arbitrary 

and specified by defining the gravity vector to be pointing downward in the input. 

This was done by defining the three components of the gravity vector (0,0,9.81) to be 

represented by g = 9.81 m/s2. The x-axis is chosen in the initial direction of travel of 

the sied, the y-axis is then to the right (starboard). The inertial co-ordinate System is 

marked in Figure 8.2 by thick Unes. The shortest axis is z-axis and the longest axis is 

x-axis. 

The origin and frame of référence of the vehicle co-ordinate System was 

arbitrary and assumed to be (0,0,0). It was selected at the same position to the inertial 

System used to define the location of contact panels and tabular Urne historiés of sied 

puises in a fixed sied model. 

The body local co-ordinate system is defined by G E O M E T R Y in a system. 

The co-ordinate of the joint on the corresponding parent body (distance from the last 

body) and co-ordinate of the centre of gravity of the child body are defined. The 

origin of BCS was selected at the location of the joint with the corresponding parent 

body. This restricts the allowed location of thèse origins on the bodies to points on the 

corresponding rotation axis. The origin of the wheelchair was defined in position at 

the centre of the wheelchair directly between the two rear wheel contact points to the 

sied (CHR shown in Figure 8.2). 

Joint co-ordinate system is chosen at the centre of mass of each body to 

simplify the input of JCS. The x-axes are perpendicular to this plane, positive to the 
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right. The y- and z-axis of ail body local co-ordinate System are chosen in the plane of 

symmetry. Thanks to this chose there is no need to specify the orientation of the 

inertial co-ordinate System. 

Figure 8.2 General co-ordinate System convention 

If the JCS is not chosen at the centre of mass of each body, it has to be defined 

by ORIENTATIONS in the joints. Orientation can be specified using three methods: 

by up to three successive rotation angles in radians, by vector method and by screw 

axis method. In the vector method, the direction of two axes are defined by two 

vectors u and v. The vector, u, must be parallel to the x-axis and the vector v must be 

parallel to the x-y plane (not parallel to the x-axis). The components of thèse vectors 

are with respect to the (XJ, y„ z{) co-ordinate System. In screw axis method, the final 

orientation of the rotating co-ordinate System is the resuit of a single rotation about a 

screw axis. 
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8.3 Multibody Systems 

Multibody Systems include kinematic joint, 3D C A R D A N restraint models, 

joint degrees of freedom and initial conditions for equilibrium analysis, etc. 

8.3.1 Kinematic joints 

The joints are defined in two groups in account of 

joint connection methods. Group 1 is Euler joint, which is 

a combination of pins connected together, such as 

universal joint and revolute joint. Group 2 is non-Euler 

joint, such as spherical joint, bracket joint, translational 

joint, cylindrical joint and free joint. Five Parameters were 

used in the joint spécification, that is, joint stop angle, the 

energy dissipation function, and the linear, square, cubic 

torque coefficients. In addition, friction and damping can 

be specified. 

A kinematic joint constrains the relative motion of the pair of bodies. The 

parent body is denoted by i and the child body by j . As an example of TNO-10 

dummy model, the lower leg connected two upper legs (Figure 8.3a). It was modelled 

using two joints, one joint connected between upper leg and lower leg, another joint 

connected between lower leg and the other upper leg. Both joints had the same 

location on lower leg. 

8.3.2 CARDAN restraint models 

The joint stiffness (force model) specified elastic, damping and friction loads 

for kinematic joints corresponding the joint degrees of freedom. Torque in spherical 

joints and free joints were specified using C A R D A N RESTRAINTS and opposite 

torque was applied on the connected objects. A restraint co-ordinate system was 

defined on each body of the pair of bodies that were connected by a restraint. In the 

C A R D A N restraint model the relative orientation of the restraint co-ordinate Systems 

was described by means of three successive rotations, known as Bryant or C A R D A N 

angles. The C A R D A N angles define the orientation of restraint system j relative to 

restraint system i. The rotation angles phi (<p) fixed to body i, thêta (6) about a floating 

Figure 8.3a 

Joints linked with three 

bodies 
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axis and psi (*F) about an axis fixed to body j , carried out about Xj, yj and Zj 

respectivefy (Figure 8.3b). 

8.3.3 Joint degrees of freedom 

The relative motion of a pair of joint co-ordinate Systems is described by three 

joint degrees of freedom (DOF): the joint position, velocity and accélération. Joint 

position degree of freedom is as a function of time under the keyword MOTION. A 

spline interpolation was used to obtain the prescribed value at an arbitrary point of 

time. The corresponding joint velocity and accélération degrees of freedom were 

determined from this spline approximation. The détails of joint position DOF are 

listed in Table 8.3. The number of joint position DOF of a spherical joint equals four 

Euler parameters: qo, qi, q2. q3, which define the relative orientation of the joint co-

ordinate Systems. In spherical and free joints, angles of rotation are introduced so that 

the relative orientations of the joint co-ordinate Systems are defined. The non-Hnear 

elastic load Q e is a function of the joint degree of freedom q: 

Figure 8.3b Relative orientation of co-ordinate Systems using Bryant angles 

Q e = Qc (q) (8.1) 
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Table 8.3 Joint position DOF for 3D joint types 

Joint type Chara cteristi es Applications Joint DOF 

Oi Q4 Os 06 Q 7 

free NO constrain of : L T qo qi qa q 3 Si S2 s3 

the relative motion of roll p i t c h y a w for- left- up-
interconnectée bodies i right down left ward ward ward 

spherícal 
(ball and 
socket) 

lo constrain using: 
a rotation around origin of 
JCS 

h i p qo 

i 

qi 
pite h 
down 

q; 
y a w 

left 

qs 
roll 
right 

sp ine / thorax/ 

neck i 
roll 
right 

pitch 
down 

y a w 

left 
planer to constrain using: 

îlÇ-planc to coïncident 
Ç-axes -L motion plane 

'Impactor' 0 Sq H 

universal to constrain using: 
rotation around E, (02) 
rotation around T| (<£[) 

S h o u l d e r 4>i 
roll 
right 

02 
p i t c h 

d o w n 

revolute to constrain using: 
rotation on Ç-axes of JCS. 
The origins of JCS remain 
coinciden!. 

tyre 
knee/head 
elbow 

• 6 ) 

8.3.4 Initial equilibrium analysis 

A WTORS system is initially kept in equilibrium, i.e. the wheelchair is upright 

and the vertical tyre forces are in equilibrium with the weight of the wheelchair and 

dummy. This position was modelled from a pre-simulation in which vertical damping 

was specified for the tyre (critically damped tyres) so that the wheelchair converged 

to its equilibrium position. In the initial equilibrium analysis, velocity and angular 

velocity were set to zero by JOINT DOF in the INITIAL CONDITIONS. The initial 

valué of joint position DOF and joint velocity DOF were defined accordíng to relative 

joint types. 

8.4 Multibody Belt Model 

The belt system is represented by a stretched string that contaets a series of 

reference points on the surface of one or more body segments (ellipsoids) (Figure 

8.4a). 

In a belt routine, the points move across the surface as determined by 

anchorage location, belt tensión, belt physical properties, the longitudinal and 

transverse friction coefficients. The belt may penétrate the body surface, based on the 
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physical properties of the ellipsoid. Simple belt Systems can be described by means of 

Kelvin Clements. This force model calculates the forces produced by a spring parallel 

with a damper. The spring and damper forces act on the bodies at the attachment 

points of the Kelvin element. The accuracy of calculation depends on the position and 

numbers of the attached points as the belt force can only be obtained from the 

attached points. 

The multibody model accounted for initial belt slack (initial strain) or pre-

tension. The slack or pre-tension is specified by initial strain or initial length. The 

initial strain dL or pre-tension PRET: 

d L = [L( to ) -L 0 ] /Lo (8.2) 

where L(to) is the actual distance between the attachment points at the starting time of 

the Simulation, Lo is the original spring length. 

The belt stiffness characteristics were defined as a force-relative elongation 

function. Hysteresis, i.e. energy dissipation and permanent elongation, as well as 

rupture were specified for the belt material. The belt force was corrected by means of 

a correction factor COR to account for local body or anchorage deformation 

( M A D Y M O 5.3, 1998): 

Fb.it = C O R * F(e) (8.3) 

where F(e) is the pre-corrected belt force and £ is the relative elongation of the belt 

segment. 

The multibody belt model allows slip between two adjacent belt Segments. 

The slip depends on a friction coefficient. In Figure 8.4b, a slip ring was defined 

between two adjacent belt segments 2 and 3. The initial attachment point D3 of the 

segment 3 was connected to the same body as the final attachment point &2 of the 

adjacent segment 2 belt. A belt length correction parameter C O R was specified to 

account for the belt length between C2 and b3. 

140 

http://Fb.it


C H A P T E R 8 

Surface normal 

Référence points 

Figure 8.4a Webbing belt segment contact (L/D belt mounted to floor) 

Figure 8.4b Slip between two belt segments 
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In a WTORS model, a restraint System was described as two types, L /D belts 

and webbing tiedowns. The L/D belts were joined together at tie-points. The diagonal 

belt was in contact with two segments at nine (9) points in the B pillar configuration 

and at eleven (11) points at floor mounted configuration, The kinematics of multibody 

L/D belt model is demonstrated in Figure 8.4c. Observed from this belt kinematics, it 

was found that the dummy movements twisted the lap belt very much. The attachment 

points of the lap belt was dropped from seven (7) points to three (3) during impact 

from 40 ms to 200 ms. 
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In the conventional multibody belt model the belt segments are connected to 

the bodies by attachment points, which are fixed to the body and thus only allow 

sliding of the belt in the direction of the belt segment. If a Coulomb friction model is 

used, the nodes could slide over the dummy surface arbitrarily. Unfortunately, the 

phenomena such as submarining and belt roll out of the body could not be 

demonstrated in the multibody belt model. These problems were solved by finite 

élément belt which benefit from its simulation biofidelity and accurate force locations. 

8.5 Hybrid Belt Model 

A hybrid model is a combination of multibody model and a dynamic finite 

élément model. The interaction of support and contact générâtes forces between the 

finite élément model and the multibody System. 

8.5.1 Dynamic finite élément belt model 

Using finite élément method, a continuum component can be discreted into 

relatively simple finite éléments representing its shape. The éléments are 

interconnected at a discrète number of points, that is, the nodes. In the dynamic F E A 

belt model, the Lagrange description was used to define the nodes and éléments fixed 

to the material. The time discrétisation was also used, besides the spatial 

discrétisation. A finite élément time step was based on the Courant criterion 

calculated for the initial geometry. In M A D Y M O Version 5.3, it is still tiresome work 

for node/element numbering and the error-prone process of manually creating lists for 

material/property application. 

- Elements 

Two types of éléments, truss and membranes, can be used for the F E A belt 

model. These are based on linear displacement interpolation and integrated at a single 

point at the centroid of the élément. These éléments are also based on a co-ordinate 

velocity strain (rate of déformation) formulation leading to linear and frame invariant 

kinematic relations. As truss élément is one-dimensional two nodes connected 
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element, which can only carry axial tension and compression, the membrane element 

is more suitable for the webbing belt model. 

M E M 3 N L elements (constant strain) are flat two-dimensional three nodes 

connected triangular membrane elements, which can carry in-plane loads. Due to the 

absence of bending, the deformations are fully determined by three transitional 

degrees of freedom of these nodes. M E M 3 N L uses a non-linear strain description to 

account for large deformations. The mass of the membrane is lumped and distributed 

over the three nodes by using element distribution factors. These factors are 

proportional to the angle enclosed by the two element edges joining in the vertex. 

- Materials 

The material of webbing belts was assumed homogeneous and isotropic. The 

material behaviour HYSISO was specified under the keyword M A T E R I A L S . The 

Hysteresis model 1 or slope has a general non-linear material characteristics. The 

unloading is along hysteresis slope and unloading curve. It was used to model plastic 

deformation for contacts, such as tyres in the wheelchairs or webbing belts. 

Table 8.5 Finite element belt stiffness characteristics 

Characteristics Element types 

Relative elongation TRUSS2 M E M 3 N L 

(N) (N) 

0.025 0 0 

0.05 500 2E7 

0.075 7325 9.4E7 

0.1 9575 1.6E9 

0.125 12275 2E9 

Unloading carve: 

0 0 

0.1 2E7 

Hysteresis model 1 1 

Hysteresis slope (N/m) 5E5 6E9 

Density (kg/mJ) 1 900 
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A strain-stress relationship of a webbing belt is listed in Table 8.5 ( M A D Y M O 

V5.2.1, 1997). An unloading curve and a hystérésis slope were also specified in 

account of belt stiffness characteristics (Appendix 7B). A moderately steep hystérésis 

slope was chosen to détermine the stable intégration Urne step and save CPU time. 

- Finite élément modelling of seat belt 

The triangulär élément MEM3NL (material HYSISO) was used to model the lap 

and diagonal (L/D) belt, total 80 éléments and 63 nodes for B pillar Shoulder belt, 148 

éléments and 113 nodes for floor mounted Shoulder belt (Figure 8.5a). 96 éléments were 

used to model the wheelchair backrest support structure in RFF impact model within 

M A D Y M 0 3 D environment. 

Figure 8.5a Finite élément floor mounted Shoulder belt 

8.5.2 F E belt connected into the multibody belt 

Sliding of a belt over one dummy surface can be analysed by modelling that 

part of the belt System with membrane éléments. The FE belts were tied the outer 

nodes to the multibody belt System. The following bridge was used to link between 

pre-set FE belt and the multibody belts: 

145 



CHAPTER 8 

supports/contacts 
F E A model 4 • C V S model 
(FE belt) membrane élément, null Systems (multibody belt) 

- Positioning ofFE belts in the front of dummy 

The solution to the pre-positioning of the finite élément belt on the dummy 

was to initially set the finite élément belt as a straight bar located in the front of the 

dummy (Figure 8.5b). A finite élément analysis could resuit in a huge amount of 

output data. The pre-simulation created one of output files, FEMESH. This file 

contains the nodal co-ordinates on user requested time points in a M A D Y M O input 

format. The most suitable geometry could then easily be copied into the input deck for 

the actual simulation, called as FEA input file. In the pre-input file, ail accélération 

field data and ail output history file options were neglected. A i l the mass of the bodies 

in the pre-input file was increased to some huge value to keep them not moving. 

Figure 8.5b Pre-setting of finite élément belt to multibody belt 
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- Dragging FE belt using null Systems 

Three null Systems, which were closed to the outer nodes of the finite dement 

belt, were added in the pre-input file. One for B pillar (point 1 in Figure 8.5b), one for 

the buckle side of the belts (point 2) and one for the portside of lap belt (point 3). The 

null Systems were given a displacement towards a point in inertial Space so that after 

this displacement the end points of the belt segment were located at their original 

Position, thus the finite dement belt was dragged towards the dummy. The door side 

attachment points of the belt were located far bchind the buckle attachment point. The 

position of null system originated as a function of time. The null System point 1 

dragged the belt towards to the dummy starboard and keep belt along the dummy left 

Shoulder. The part of pre-input File is listed as follows: 

NULL SYSTEM 
Shoulder up B pillar 
MOTION 
POSITION 
0 0.6 0 0.2 
0.2 .0 -0.2 0 
0.3 .0 -0.2 0 
0.4 .0 0 0 
1.1 0 0 0 
-999 
middlc - buckle 
MOTION 
POSITION 
0 0.3 0 0.2 
0.1 .0 0 0 
1.1 0 0 0 
-999 
lap belt - ponside 
MOTION 
POSITION 
0 0.6 0 0.2 
0.1 .0 0 0 
1.1 0 0 0 
-999 
END NULL SYSTEM 

The finish points of the belt segments were tied to these null Systems. The null 

Systems were moved toward the origin of the inertial system (dummy). 

- Belt body contact 

At the start of the simulation initial pénétrations of nodes in ellipsoids, planes 

or finite déments may lead to violent reaction forces. In order to stabilise the analysis, 

the damping of a = 100 was added to the FE belt. The mass of the belt, such as the 

thickness of the belts, was increased to diminish the accélérations and the stiffness of 
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the belt. The élément déformation was prevented by change the constant factor, 

P E R M , for permeability of the materials, from 0.005 m to 1 m. The contact 

interactions between dummy ellipsoid and FE belt nodes were defined and the friction 

coefficient for nodal contacts was selected 0.4 to avoid the belt coming out of the 

dummy. The input file for contact interactions is listed as follows: 

CONTACT INTERACTIONS 
ELLIPSOm-NODE 
* sternum 10 shoulder belt 
1 2 l 0.4 1:63 
* left shoulder lo shoulder bell 
2 1 4 0.4 1:63 
* neck to shoulder bell 
3 1 22 0-4 1:63 
* abdomen 10 shoulder belt 
4 1 25 0.4 l;63 
* spinc lo shoulder btll 
5 1 2 0.4 1:63 
-999 
END CONTACT INTERACTIONS 

Sub-cycling ôf the finite élément rime intégration with respect to the 

multibody time intégration was implemented to reduce C P U times. The multibody 

time step was chosen as a multiple of the finite élément time step. The kinematic 

model file (KN3 file) and finite élément mesh file (FMS file) were included in the 

output options. 

8.6 Contact Interaction Models 

Besides the belt body contacts, several forms of other contacts: plane-segment, 

segment-segment, contacts between bodies and the point restraint contact have been 

involved in this programme. 

8.6.1 The plane-segment contacts 

Plane-segment contact functions dépend on the deflection. If plane-segment 

contact functions are defined to be rate dépendent, the total force deflection funclion 

is computed using the following équation: 

F (u, û) = F, (u) + F 2 (u) • F 3 (û) + F 4 (û) (8.4) 
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Where u and Ü are the deflection and deflection rate. F i , F 2 , F 3 and F4 represent the 

force-deflection function (FDF), the inertial spike function (I), the energy absorption 

factor (R), and the permanent déformation factors (G) respectively. 

The method for determining the magnitude, direction and location of segment 

to plane contact forces is illustrated in Figure 8.6. A perpendicular from the plane 

(three points Pi , P 2 , and P3 make one plane) to the point of maximum pénétration of 

the ellipsoid (point A) defines the pénétration function. This function was used to 

calculate the normal and frictional forces, based on force and displacement 

relationships cover in the input data set. Hystérésis was specified by I, R, and G. 

Friction forces were applied at the same point as the contact force, but parallel to the 

contact surface. 

Figure 8.6 The plane-segment contact 

The 'edge effect' option was used to ensure that the contact of a plane with an 

ellipsoid would not be ignored when the centre of the cross-sectional ellipse 

containing the area eut by the plane did not lie within the boundary of the plane. A 

Newton-Raphson scheme was employed to distribute this pénétration between the two 
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surfaces so that the forces acting to the two surfaces at the contact point were equal. 

The size of a plane for contact analysis was also determined by the parameter 

FIN within M A D Y M 0 3 D program. The factor FIN is half of the width of the 

boundary contact area. The size of the plane could effect on the pénétration in plane-

segment contacts. Caution should be taken the error could occur if too stiffer function 

defined or poor configuration made. The following five factors were applied in 

WTORS model. A l l data were selected based on a trial-error method and the author's 

observation expérience from sied tests and pre-simulation models. 

• Force Defleciion Function (FDF) 

Surface contact forces were replaced by a single force applied at a specific 

point in a specific direction. The magnitude of normal force was a function of the 

maximum pénétration. Friction force was proportional to the normal force and was in 

a direction so as to oppose the tangential velocity. In WTORS model, the chair seat (5 

mm thickness of steel plate) and the ISO wheelchair backrest (10 mm thickness of 

rubber) were assumed to be rigid according to the previous testing expériences. 

• Inertial Spike Function (I) 

This function was used to model the effects of inertial loading condition that 

might take place when contact between a plane and a segment was initiated, e.g. 

breaking window glass in RFF impact model of taxi. In WTORS frontal impact 

model, the inertial spike was neglected as the contact spike was not found in the 

dynamic tests. 

• Energy Absorption Factor Function (R) 

This function was used to approximate the effects of hystérésis. With the 

permanent deflection factor it was used to calculate the path that the unloading and 

reloading curves would follow. The following factors in ISO wheelchair model were 

optimised to get the better results respectively: chair seat (0.1), backrest (0.1), 

floorboard (0.1), tyre (0.5), dummy ehest (0.7). The R value of 0.5 for wheelchair 

tyres signifies that all energy spent in tyre déformation is recovered 50 per cent. This 

value will be verified using finite element tyre model. 
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* Permanent Deformation Factor Function (G) 

This function was used to model the permanent déformation when contact 

force between plane and a segment started decreasing from a positive value. In ISO 

wheelchair model, the following factors were chosen: chair seat (0.5), backrest (0.5), 

floorboard (0.7), tyre (0.3), dummy ehest (0.5). 

* Coefficient of Friction Function (FRIC) 

A complète définition of the friction contained two factors, FAC1 and FAC2 

that can be used to exercise the impulse, globalgraphic and roll-slide options. The 

following factors in WTORS model were adjusted: chair seat (0.3), tyre roll (0.5). 

8.6.2 Contacts between bodies (évaluations) 

In a vehicle door model, the B pillar of a car is connected to a séries of finite 

planes, which are attached to a vehicle representing the front and rear doors. If the 

stiffness of doors was assigned to each of the interactions separately, the pillar would 

penetrate several of the door planes at the same time and the effective total door 

stiffness in the model would be wo high. Due to the sudden change of the contact 

point from one plane to another in multiple contact interactions between an ellipsoid 

and several other planes or ellipsoids, instabilities could arise. The option 

EVALUATIONS was used to speeify that the forces resulting from just maximum 

values of thèse interactions were applied to the system bodies in the contact models. 

8.6.3 The point restraint model 

The point restraint model calculâtes elastic and damping forces on a fixed 

point P. This model could be considered as a combination of three orthogonal Kelvin 

éléments with constant damping coefficients parallel to the co-ordinatc axes x, y and z 

respectively. At one end the Kelvin éléments are connected to point P and at the other 

end to slider joints in three orthogonal planes parallel to the point-restraint co-ordinate 

system. The point restraint was used to restrain the distance between two points of 

différent bodies. 
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For example, the pin joint stiffness of the rear door in the vehicle was 

modified using point restraint model to adjust the accuracy of the door opening in the 

side impact. The bodies connected to the doors were fixed by P point restraint. 

8.7 Accélération Fîeld Model 

In WTORS models, an accélération field model was used to simulate the 

effect of the décélération forces of sied on the occupant during an impact. The sied 

was modelled as a body with a prescribed décélération in impact. A décélération 

measured at the sied was prescribed as a fictitious accélération field on the occupant 

as the relative motion of the occupant to the sied is most relevant. This was assumed 

that the sied rotation can be ncglected and the sied was fixed to the inertial space. A 

fictitious accélération field based on the fact that the vehicle décélération puise is 

prescribed in the one-body System. 

8.8 Hybrid Tyre Model 

The wheels and tyres of an occupied wheelchair, restrained in a vehicle by a 

WTORS have a significant effect on the dynamic behaviour during impact. Major 

disturbance and control loads on WTORS arise from the contact of the tyres of the 

wheelchair with the vehicle, The vertical loads generated as a function of the mass of 

the wheelchair and occupant are applied to the vehicle. The vertical behaviour of tyres 

is the dominant factor for wheelchair stability as lateral tyre force is not required for 

Controlling the direction of travel of the wheelchair during frontal impact. The tyre-

floorboard contact loads dépend on the characteristics of the tyre, the floor condition, 

and the motion of the tyre relative to the floorboard. The latter two characteristics of 

the tyre could be neglected if the wheelchair was restrained by four tiedown Systems. 

A proper description of the dynamic behaviour of the wheelchair requires a good 

model of the tyre-floorboard contact loads and a detailed model of the tyre behaviour. 

8.8.1 Model objectives 

The objectives of this tyre model are: 

* Application of compte x FEM modelling techniques within MADYM03D 

environment 
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• Optimal design ofwheelchair structures 

• Determination of the potential injury réduction benefits to wheelchair 

occupant during impact. 

8.8.2 Initial conditions 

The rear wheel tyre in a Surrogate wheelchair has a radius of 0.64 m and a 

width of 0.1 m. The nominal vertical tyre load equals 2 kN. The vertical stiffness 

equals 52 kN/m (see Appendix 7B). 

At the start of the dynamic test the wheelchair equilibrium position is upright 

and the vertical tyre forces react the total of the wheelchair and dummy weights. This 

position is obtained from a pre-simulation in which vertical damping is specified for 

the tyre so that the wheelchair reverted to its equilibrium position. 

8.8.3 Modelling techniques 

The wheelchair tyres could not be modelled using only the finite élément 

module in M A D Y M 0 3 D as no finite élément contact is defined in the SYSTEMS 

module within M A D Y M O code, although finite élément contacts are available in the 

CONTACT INTERACTIONS module. Mooney-Rivlin material of tyre (rubber-like 

materials) are incompressible and may undergo extremely large elastic déformations. 

FACET surface can define a more detailed or a more gênerai description of 

surfaces. In the tyre model, F A C E T surface was used to model the inner surface of the 

tyre. The triangulär FACET surface was attached to a wheel body and defined by the 

co-ordinate of the vertices. The surface was designed to contact finite élément models. 

One of the two contacting FACET surfaces was assumed to be compilant, the other to 

be rigid. The compliance was modelled by allowing the vertices of the compilant 

surface penetrate into the FACET of the rigid surface. The contact load was equal to 

the load that was needed to deform the compilant surface. This load was specified by 

the contact stress as a function of the vertex pénétration of the résultant contact force. 

The hybrid model was used to get more détails of tyre interior characteristics. 

This model is a combination of FACET, F E M and MULTD30DY models as follows 

(Figure 8.8a). 
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• Tyre core modelled by MULTIBODYSystem generated using MADYM03D 

pre-processor 

• Tyre inner structure modelled by FACET surface 

• Tyre outer structure (tread) modelled by FEM mesh created using Microsoft 

Excel and the FEM module within MADYM03D environment. 

The core of the tyre was modelled using ellipsoid and the rubber part (tread) 

was meshed using finite élément model within M A D Y M 0 3 D environment. The 

keyword SUPPORTS was used to connect finite élément nodes and tyre bodies in the 

System. A i l directions were supported with respect to the specified body in the 

System. The contact between nodes and planes was specified under the keyword 

CONTACT INTERACTIONS. The initial orientation of the finite élément référence 

co-ordinate System was by default parallel to the inertial co-ordinate System. 

Figure 8.8a A wheel tyre hybrid mode! 
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As the symmetry of the tyre, only quarter of it was considered in order to 

reduce Computing time. The initial co-ordinate of nodes (total nodes 536) were 

calculated in Excel format (Table 8.8). In this Table, the inner, outer and rim of the tyre 

are defined in three radius, r, R and M respectively. The mesh is layered in three levels, 

bottom (B), middle (M) and top (T). The mesh block is designed in Figure 8.8b and the 

meshes of tyres are laid out in Figure 8.8c. The élément FACET6 (material ISOLLN) 

was used to model the contact surface between the core and rubber of the whee! (total 

160 éléments). The élément SOLID1 (material LINVIS) was used to model the tread of 

the wheel (total 80 éléments). 

23 

Y 

207 

Figure 8.8b Tyre mesh block 
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Table 8.8 The wheel/tyre mesh calculations 

<t>(°) INNER (r) OU TER (R) RIM (M) 
Node No. X y Node No. X y X y 
B, M , T mm mm B, M , T mm mm mm mm 

0 1,12,23 0 0 206,217,228 61 0 51 0 
9 2,13.24 -1 16 207,218,229 59 25 49 24 
18 3,14,25 -5 31 208,219,230 53 50 44 47 
27 4,15,26 -11 45 209,220,231 43 73 35 69 
36 5,16,27 -19 59 210,221,232 30 95 22 89 
45 6,17,28 -29 71 211,222,233 14 114 7 107 
54 7,18,29 -41 81 212,223,234 -5 130 -11 1.22 
63 8.19,30 -55 89 213,224,235 -27 143 -31 135 
72 9,20,31 -69 95 214,225,236 -50 153 -53 144 
81 10,21,32 -84 99 215,226,237 -75 159 -76 149 
90 11,22,33 -100 100 216,227,238 -100 161 -100 151 

M A D Y M 0 3 D proved to bc very effective tool for modelling and simulating 

of différent interaction between complex M U L T I B O D Y and FACET, FACET and 

F E M modelling sets. However it should be noted that the third objective of this tyre 

model, which it is used to assembly it into one proper simulation to détermine the 

potential injury réduction benefits to WTORS will be achieved in future research. 

8.9 Input and Output Parameters 

The explicit numerical intégration method was employed in this programme. 

The maximum time step that leads to a stable solution dépends on the largest 

eigenvalue (non-linear differential équation of the solution) in the model. As the Ist 

order modified Euler method is more efficient than the Runge-kutta method (four 

function évaluations) it was used as initial model. A fourth order Runge-Kutta method 

with fixed time step was then conducted to get dynamic accurate response by step 

intégration. 

The R A M P was used to indicate the relation between jointed éléments. The 

RAMP1, R A M P 2 indicated dry friction (Coulomb friction) torque C p in the joints of 

dummy to avoid vibrations induced by dry friction torque. The RAC01, RAC02 are 

damping functions, which act in the direction opposite to the relative velocity of the 

components. 

*RAMPl(rad/s)RAMP2RAC01 RAC02(m/s) 
0.0000 0.5000 0.0100 0.1000 
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The kinematic data was generated every 50 ms in the KLN3 file. Simulation 

results included the linear acceleration at the centre of gravity of the dummy's head 

and chest, the tyre contact loads, the LTD restraint loads and tiedown loads, etc. 

158 



CHAPTER 9 

C H A P T E R 9: CVS M O D E L L I N G O F WTORS 

In this Chapter, Crash Victim Simulation (CVS) of Wheelchair Tiedown and 

Occupant Restraint System (WTORS) has been summarised. The Child Restraint 

System (CRS) side impact model [5] is not included in this thesis. 

9.1 T R L Frontal Impact Model 

This model was initially written within ATB program and then modified using 

D Y N A M A N package. The system 2, TNO-10 dummy data was developed and added 

in T R L wheelchair model. After simulation, the complète wheelchair-dummy model 

was created shown in Figure 9.1a. 

Figure 9.1a C V S modelling of W T O R S ( T R L model) 

The surrogate WTORS system was modelled as linear segments. The stiffness 

properties of the segments were initially determined experimentally from static tests. 

Finally, they were validated and adjusted by dynamie sied tests and CVS models. 

Damping and permanent déformation properties of the system were also accounted 

for. Contacts between the wheels and vehicle floorboard, chair seat and dummy, seat 

belts and dummy torso were simulated using FDF, I, R, G, and frictional properties of 
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the various contacts. The crash was simulated by specifying the crash puise and 

determining System responses at pre-determined time intervais. The crash puise was 

discerned in a sied test puise. The initial model was proved reliable by peak value, 

kinematic check and load trace validations. It was then used to investigate the effect 

on the location of diagonal trap belt anchorage (Figure 9.1b). 

Ceiling (+90) 

Figure 9.1b Diagonal strap belt configurations 

Incorrect occupant restraint positioning relative to the occupant has been 

shown to cause severe internal injuries. Occupant restraint anchorage points were 

selected in accordance with the zones specified by ISO/CD 10542-1. The ISO 

recommended zones ensure that the geometry of the lap and Shoulder belts is not 

injurious to the occupant in a crash. These zones were adapted from the Australian 

and Canadian WTORS standards (AS2942, 1987; CSA-Z604, 1992). The location of 

the Upper Shoulder belt anchorage locations was studied with the computer modelling 

of LVD belt. The resuit of this study was contributed to validate the ISO recommended 

zones and served as a tool for adjusting the zones more appropriately. 

The height of the diagonal top strap belt anchorage point was varied in four 

basic positions: floor mounted, 2-metre above the floor simulating fixing to the ceiling 

of a minibus (+90 degree), 1.25-metre above the floor representing the B-pillar fixing 

point, and zero level to the occupant Shoulder. Between the positions of floor and zero 
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degree, the shoulder belt was varied in three différent angles to the level: négative 60-

degree, 45-degree and 30-degree. Between the positions of zéro and 90-degree, the 

shoulder belt was varied in four différent angles to the level: positive 17-degree, 30-

degree, 45-degree and 60-degree. 

Table 9.1a CVS model résulte for diagonal strap belt configurations 

Set up Units Floor (-)fio (045 (030 0 deg (+)17 Bp'ar (+)30 (+)45 (+)60 (+)90 

Upper anchor mm 0 449 720 878 1092 1168 1256 1306 1464 1735 * 

RP tiedown kN 14.04 14.14 14.48 14.62 14.66 14.54 14.52 14.42 14.28 12.64 13.98 

peak time ms 120 105 110 110 110 110 110 110 110 115 110 

RP wheel kN 14.85 15.73 15.47 15.49 15.53 14.62 14.44 14.35 14.12 13.91 13.68 

peak time ms 120 120 120 120 120 120 120 120 120 120 120 

FP wheel kN 9.98 9.96 10.45 9.78 9.86 9.51 9.17 7.99 7.62 7.38 7.19 

peak time ms 120 120 115 115 120 115 115 115 115 115 115 

Shld Port kN 11.12 11.12 7.24 6.39 7.79 7.71 9.79 9.39 9.89 9.72 10.64 

peak time ms 140 135 115 100 95 105 105 105 110 120 115 

Lap Port kN 5.07 4.49 4.04 3.67 3.51 3.91 4.84 4.61 5.02 5.61 5.45 

peak time ms 100 95 95 95 90 95 95 95 100 105 100 

L/D Buckle kN 12.41 9.78 10 10.02 11.22- 9.67 11.05 10.52 11.37 12.43 15.11 

Notes: peak time is the moment öfter the onset of impact at which maximum accélération occurs 

The model results are shown in Table 9.1a. The load investigation was 

conducted, for example, the Shoulder belt portside (diagonal top strap) and starboard 

(diagonal bottom strap) loads are shown as 'Shld Port' and 'Shld ST' respectively, lap 

belt loads are 'Lap Port' and 'Lap ST', buckle loads are 'L /D Buckle', and portside 

rear and front wheel loads are 'RP wheel* and 'FP wheel' respectively. 

From this model, it has been observed that the dummy movements are very 

sensitive to the belt attachment points on the dummy. These attachment points are 

functions of the anchorage locations. It should also be noted that the belt attachment 

points on the dummy are fixed in the multibody belt simulation. This multibody belt 

model has been replaced by finite élément belt model in ISO frontal impact model. 

161 



CHARTER 9 

• The différence between portside and starboard side Shoulder belt load is 

reduced with the increasing angles of Shoulder belt from 0 to 45-degree. This 

indicated that the dummy did not show too much twisting within this angle ranges 

(Figure 9.1c). The relative lower value of should belt load was found around angle 

ranges of negative 30 and 45-degree. This is explained as the wheelchair rocking 

effect resulted in the highest wheel loads at the same positions (Figure 9.If). 

• The différence between portside and starboard side lap belt load increases with 

the increased angle from (-60) degree to 0 degree. This indicated that the dummy did 

show twisting from starboard to portside within this angle ranges (Figure 9.ld, Figure 

9.1e). 

From this model, the optimum position (+17 degree) was determined by the 

best (minimum loads) and worst (maximum loads) method (Table 9.1b). This position 

was also comprehensively determined by minimum load différence between portside 

and starboard, as it would cause less injury to the occupant and less damage to the 

wheelchair. The différence between the sied test and computer model at B pillar 

configuration is compared in Table 9.1c. 
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Table 9.1b Optimised configuration of a diagonal strap 

Loads Min. 

(Best) 

Max. 

(Worst) 

Min. load difference between 

portside and starboard 

Lap Port Odeg (+)60 (+)17,(+)30, Bpil lar 

Shld Port O30 Floor, (+)90 (+)90,(+)60 

Buckle (+)17 (+)90 (+)17 

Table 9.1c Comparison of sied test and CVS model results 

(peak value of B pillar diagonal strap configuration) 

Parameters Units WTORS (45-degree rear tiedown angle) - 32 km/h, 18g 

Set up 

conditions 

FP 

wheel 

RP 

wheel 

RP 

tiedown 

L/D 

Buckle 

Lap: 

PT 

Shld: 

PT 

Test kN 10.9 10.8 14.8 12.1 6.9 9.1 

CVS kN 9.2 14.4 14.5 11.1 4.8 9.8 

difference % 15.6 33.3 2 8.3 30.4 7.7 
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9.2 ISO Frontal Impact Mode! 

ISO frontal impact model consisted of ISO surrogate wheelchair (ISO-SWC, 

90 kg) with an Anthropomorphic Test Dummy (ATD). The webbing 4-point surrogate 

tiedown Systems were simulated using beam segments. The final simulation set-up 

was identical to the actual test sel-up (Chapter 5) to facilitate sied test results and to 

debug the computer model. 

9.2.1 CVS modelling of ISO-SWC using DYNAMAN 

This model was initially written within the D Y N A M A N package. A i l 

segments placed in the wheelchair were incorporated in the model by scaling their 

mass. The following three Systems were built in this model. 

lnertial system: A sied was modelled by one plane. 

System 1 : The wheelchair was modelled using 27 segments and 6 planes 

(Figure 9.2a). The securement points were simulated by four 

segments. 

System 2: Hybrid II dummy data was developed and added in ISO-SWC 

model. 

165 



C H A R T E R 9 

Beyond of the capability of D Y N A M A N package to simulate the complète 

wheelchair-dummy model (over 43 segments), some of segments of the wheelchair 

had to be removed beforc simulation. 

9.2.2 Interpretation of ISO model using M A D Y M O 

The ISO model was also conducted using M A D Y M 0 3 D program. The data File 

was written and interpreted as follows (Figure 9.2b): 

Figure 9.2b ISO model by M A D Y M O 

- System 1: wheelchair model 

The origin of the wheelchair was defined in position at the centre of the 

wheelchair directly between the two rear wheel contact points to the sied. A moment 

of inertia (kgm2) was obtained from the calculation in Appendix 2. 

LNERT1A 
MOMENTS OF INERTIA (KGM 2) WAS OBTAINED FROM THE CALCULATIONS 
MASS IXX IYY IZZ 
90 9.24 11.66 9.47 

-999 
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The centre of gravity (CG) of the wheels was assumed to be at the origin of 

their semi-axles since the wheel geometry is symmetrical about the principal axle. No 

hystérésis was included in front solid wheel, as it was virtually rigid requiring no 

loading functions. The rear wheel stiffness (90 kN/m) was initially used to produce the 

function block for the rear wheel model, and then tuned by dynamic tests by adding the 

deflection/force data: 55 mm/50 kN to take into account of the wheel rim contacted to 

the floorboard. 

ELLIPSOIDS 
scmi-axcs (m) centrc of gravity 
BODY A B C MX MY MZ DEC LO UNLO HYS ID 

1 0.1610.05 0.161 0-0.295 0.161 2 1 00 REAR.LH.WHEEL 
1 0.161 0.05 0.161 00.295 0.161 2 100 REAR.RH.WHEEL 
I 0.120.0350.12 0.38-0.275 0.12 2000 FRONT.LH.WHEEL 
1 0.120.035 0.12 0.38 0.275 0.12 2000 FRONT.RH.WHEEL 

-999 
FUNCTIONS 
8 
0 0 0.008 400 0.015 800 0.022 1200 0.039 2000 + 
0.045 2400 0.05 2600 0.055 $0000 

-999 

No initial velocity was imposed on WTORS as the wheelchair was connected 

to the sied. 

[NITIAL CONDITIONS 
X Y Z VX VY V Z C H O 
0 0 -0.008 0 0 0 0 

- System 2: Hybrid II dummy model 

The Hybrid II (or called PART 572) dummy database was appended using 

M A D Y M O dummy databases. The dummy model was defined as System 2. The 

peripheral dement of a branch was defined and dement 1 (lower torso) was attached 

to inertial space in the module CONFIGURATION. 

CONFIGURATION 
5 4 3 2 1 
7 6 3 2 1 
9 8 3 2 1 
II 10 1 
13 12 1 

The flexion-torsion joint model was applied in torso, spine, neck and head and 

the Carden joint model (bail and sockets) was applied in the rest parts of dummy. 
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GEOMETRY 
RJX Y 

0.000 0.000 0 000 
0.000 0.000 0.000 
0.000 0.000 0132 
0.065 0.000 0.318 
0.000 0.000 0.124 
0.030 0.189 0.260 
0.000 0.000 -0.261 
0.030 -0.189 0.260 
0.000 0.000-0.261 
0.042 0.087 -0 072 
0.000 0.008 -0.405 
0.042 -0.087 -0.D72 
0.000 -0.008 -0.405 

-999 

2 CGX Y 
0.026 0.000 -0.079 
0.033 0.000 0.072 
0.029 0.000 0.162 
0.000 0.000 0.063 
0.006 0.000 0.028 
Û.000 0.000-0.122 
0.000 0.000 -0.167 
0.000 0.000-0.122 
0.000 0.000 -0.167 
0.000 0.006 -0.207 
0.016 0.000-0.272 
0.000 -0.006 -0.207 
0.016 0,000-0.272 

Z ID 
LOWER TORSO 
SPINE 
UPPER TORSO 
NECK 
HE AD 
UPPER ARM LEFT 
LOWER ARM LEFT 
UPPER ARM RIGHT 
LOWER ARM RIGHT 
UPPER LEG LEFT 
LOWER LEG LEFT 
UPPER LEG RIGHT 
LOWER LEG RIGHT 

The orientation in the y-axis direction has been amended to the head inertial 

co-ordinate System (42-degree). This rotated the inertial of head in the rearward 

direction compensating for the main mass of the head brain. The joint head was 

relative to the preceding body in the branch (ICH = 0). The successive rotations (IOR 

= 1) was about y-axis of 0.733 rad. 

ORIENTATIONS 
BODY ICH IOR PARI PAR2 
5 0 12. -0.733 
-999 

The Cardan joint characteristics were defined by three standard joint forces: 

non-linear elastic torque M c , viscous damping M¿ and Coulomb friction torque Mf in 

three principal directions (Bryant angles - PHI, T H E T A and PSI). 

CARDAN JOINTS 
ELASTIC DAMPING FRICTION 
EL LO UNL HYS XEL L U H X L U H X PHI THETA PSI PHI THETA PSI 

10 100.0. 200.0. 300.0. 6.006.005.00 39.39.12. 
12 1 0 0.0. 4 0 0.0. 3 0 0.0. 6.00 6.00 5.00 39.39.12. 
11 500.0. 600.0. 600.0. 5.007.504.00 12. 
13 500.0. 600.0. 600.0. 5.007.504.00 12. 
6 7 0 0.0. 6 0 0.0. 8 0 0.0. 2.00 4.00 4.00 12.0.12. 
8 7 0 0.0. 6 0 0.0.-900.0. 2.004.004.00 12.0.12. 
7 10 0 0.0. 6 0 0.0. 11 00.0. 2.00 4.00 2.00 4. 0. 4. 
9 10 0 0.0. 6 0 0.0. 11 00.0. 2.00 4.00 2.00 4. 0. 4. 

-999 

The référence segment of dummy, such as lower torso (LT), was positioned in 

relative to the local co-ordinate System of the sied (inertial) (ICH = -1). 
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INITIAL CONDITIONS 
X Y Z V X V Y V Z C H O 
0.24 0.0 0.71 
ORIENTATIONS 
BODYICHIOR PAR 

1-1 I 2. -0.5236 
2 -1 1 2.-0.3236 
3 -1 1 2. -0.2236 
4 - 1 1 2 . 0.35 
5 - 1 1 2 . 0.35 
6 -1 1 2. -0.3926 
7 -1 1 2.-1.57 
8 -1 l 2.-0.3926 
9-1 1 2 . -1.57 
10 -1 1 2.-1.6708 
11 -1 1 2. 0.0873 
12 -1 1 2 -1.6708 
13 -1 I 2. 0.0873 

-999 

- Force model 

Acceleration field model 

The acceleration field was applied to all bodies of all Systems (SYS = 0). 

Linear interpolation function was used (function code > 0). The last time point (250 

ms) was set larger than the total of Simulation end time (TE) and time step (TS). 

FORCE MODELS 
ACCELERATION FELDS 
SYS BODY FUNCX Y Z 
0 0 1 0 2 

-999 
FUNCTIONS 

T2996 PULSE: ACCELERATION (M/S**2) AS A FUNCTION OF TTME (S) 
42 

0 0 0.005 -1.9 0.010 -0.6 0.015 0.5 + 
0.020 -0.1 0.025 19.2 0.030 101.4 0.035 109.5 0.040 150.3 + 
0.045 144.5 0.050 172.4 0.055 173.2 0.060 185.3 0.065 189.8 + 
0.070 175.5 0.075 211 0.080 167.3 0.085 150.6 0.090 139.1 + 
0.095 152.1 + 
0.100 153 0.105 1 21.6 0.110 137.1 0.115 1 09.1 0.120 70.5 + 
0.125 26.7 0.130 -9.5 + 
0.135 -7.4 0.140 -19.1 0.145 -19.1 0.150 -29.2 0.155 -20.9 + 
0.160 -17 0.165 -4.3 0.170 -0.7 0.175 7.4 0.18 17.7 + 
0.185 6.5 0.19 6.4 0.195 7.5 0.2 4.7 0.25 6 

2 
0 -9.8 0.25 -9.8 

-999 

Contact interaction model 

In the wheelchair-sied contact, X E L represents the hystérésis elastic limit 

characteristics. The boundary area (FIN = 0.01 m) was allowed for contact correction. 

A correction factor (COR) was applied to allow for the initial pénétration into the 
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plane. CHO is sélection parameter for elastic contact characteristics. CHO = 1 was 

selected to use the characteristics of the ellipsoid. FRI is a parameter of contact 

friction. FRI = 0.7 was used to limit wheelchair move further. DAFR is sélection 

parameter for damping and friction. The damping coefficient equals the product of the 

function values specified by di and d2 corresponding to the velocity and amplified 

elastic force dépendent factor respectively. 

CONTACT INTERACTlONS 
PLANE-ELUPSOID 
WHEELCHAIR - SLED CONTACT 

SY PL SY EL CHO LO UNL HYS X E L DI FRI FTN COR DAFR DAMP2(D2) 
-1 I 1 1 4 1 0 0 0 0 0.7 0.01 0 0 
-I 1 1 2 4 l 0 0 0 0 0.7 0.01 0 0 
-1 1 1 3 4 1 0 0 0 0 0.7 0.01 0 0 
-1 1 1 4 4 l 0 0 0 0 0.7 0.01 0 0 
WHEELCHAIR - OCCUPANT 
I 1 2 1 4 2 0 0 0 0 0.7 0.01 0 0 
1 1 2 11 4 0 0 0 0 0 0.7 0.01 0 0 
1 1 2 14 4 0 0 0 0 0 0.7 0.01 0 0 
1 3 2 3 4 0 0 0 0 0 0.3 0.01 0 0 
1 3 2 2 4 0 0 0 0 0 0.3 0.01 0 0 
1 3 2 1 4 0 0 0 0 0 0.3 0.01 0 0 
1 4 2 13 4 0 0 0 0 0 0.3 0.01 0 0 
1 4 2 16 4 0 0 0 0 0 0.3 0.01 0 0 

-999 
FUNCTIONS 

2 
0 0 0.001 35000 

2 
0 0 0.001 80000 

-999 
ELLIPSOID-ELLIPSOID 

SY EL SY EL CHO LO UNL H X Dl FRI COR DAFR DAMP2(D2) 
2 6 2 7 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 8 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 9 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 10 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 1 1 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 12 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 13 2 1 0 0 0 0.3 0,01 0 0 
2 6 2 14 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 15 2 I 0 0 0 0.3 0.01 0 0 
2 6 2 16 2 1 0 0 0 0.3 0.01 0 0 

999 
FUNCTIONS 

3 
0 0 0.01 375 0.02 1000 

-999 
END CONTACT INTERACTIONS 

Multibody belt force model 

The belt model route was to attach a belt segment to the upper torso on his left 

Shoulder, attach the next segment to the lower torso on the right side, to the belt 

buckle on the right side, lap belt to lower torso on the left side and to the sied 
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floorboard. COR (=1) was belt correction factor specified to allow for fixing point 

déformation. If it was reduced to 0, the belt elongation would be reduced and belt load 

could be higher to increase belt pénétration into the dummy and increase the seat 

loads. A D D L E N (400 mm) was the added belt length allowing for the section across 

the chest We attached one point next to the hip, allowing slip to occur between the 

two segment. If belt tension of two segment was larger than 1 N , slip would occur 

from lower segment to the higher one. PRET was pre-tension of the belt. The slack 

(58 mm) was given to simulate the 75 mm3 block attached between chest and belt. 

BELTS 
SYl BODl XI Y l ZI SY2B0D2X2Y2Z2 LO UNL HY5 XEL FRIC PRET ADDLEN COR ID 
-1 0 -0.085 0.35 1.185 2 3 0.105 0.09 0.267 1 2 1790000 0.4 0.4 - 0.058 0.4 1 diag. top (Bpillar-iii) 
2 3 0.105 0.08 0.292 2 1 0.09 -0.164 0.0 1 2 1790000 0.4 0.4 0 0.4 1 diag. bott (ut-ltright) 
-999 
FUNCTIONS 
4 
0 0 0.04 8000 0.L8 18000 0.2 20000 

3 
0 0 0.1 0 0.23 8000 

-999 
BELTS 

SYl BODl XI Y l ZI SY2 BOD2 X2 Y2 Z2 LO UNL HYS XEL FRIC PRET ADDLEN COR ID 
2 1 0.10 0.155 0 -1 0 -0.085 0.35 0.00 I 2 1790000 0.4 0.4 0 0 1 läppt (Itleft-floorpi) 
-1 0 -0.085 -0.35 0.00 2 l 0.1 -0.155 0 1 2 1790000 0.4 0.4 0 0 1 lapst (floorst-ltright) 

-999 
FUNCTIONS 
4 
0 0 0.04 8000 0.18 18000 0.2 20000 

3 
0 0 0.1 0 0.23 8000 

-999 

- Output Parameters 

The components of the linear acceleration were expressed with respect to the 

inertial co-ordinate system (IWO = 0). Fx, Fy, and Fz were parameters for the 

correction of the calculated linear acceleration for a prescribed deceleration field. Fx 

= 1 prescribed acceleration field in x direction which was subtracted from the 

calculated acceleration. A HIC value of less than 1000 was considered acceptable. 

U N A C C 
S Y S B O X Y Z F X Y Z IWO ID 

2 5 0 0 0.063 1 0 0 0 head centre 
230.02900.162 10 10 ehest 

-999 
INJURY PARAMETERS 
HIC 

l 0.036 
-999 

END INJURY PARAMETERS 
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9.3 Taxi Rearward Facing Frontal Impact Model 

A combination of the M A D Y M O multibody techniques with finite élément 

analysis validated by dynamic sied tests allowed a more detailed description of the 

contact interactions with the wheelchair-occupant system in a taxi Rearward Facing 

Frontal (RFF) impact model. 

Figure 9.3a Taxi model set-up 

9.3.1 Model Set-up 

The following six Systems were written in a taxi model within M A D Y M 0 3 D 

package (Figure 9.3a): 

System 1: ISO wheelchair or manual wheelchair; 

System 2: Hybrid II dummy; 

System 3: sternum; 

System 4: bell buckle; 

System 5: wheelchair tiedown inertia réel; 

System 6: Y shape tiedown knot. 

9.3.2 Model descriptions 

- Vehicle (sied) model 

Due to the one dimensional nature of the vehicle motion in the sied tests, the 

sied mass, moment of inertia and centre of gravity were not defined. The sied was 

simplified by one plane in the model. Input for the simulation was the same velocity 
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data to the sied tests, while a various accélération field was applied to simulate 

impact. 

- The bulkhead and a headrest modei 

A simplified bulkhead was modelled by one plane. In addition, the headrest 

was taken into account with one ellipsoid and the contact characteristics were 

estimated. 

- Wheelchair model 

The wheelchair was represented in the présent model by one System. The mass 

of the wheelchair was located in the centre of gravity. The total mass of the ISO-SWC 

was set at 83 kg and the manual wheelchair at 15 kg. The dimensions of the 

wheelchairs were based on actual measurements, whilst the moment of inertia and 

centre of gravity were determined using the finite élément code, PAFEC. The 

wheelchair geometry was represented by four planes:.one seat plane, one seat front 

panel and both sides of foot rests. The six ellipsoids represented four wheels of the 

wheelchair, one chair backrest and one chair seat. In addition, two ellipsoid were 

defined to represent both sides of handlcs in a manual wheelchair. 

Force-deflection characteristics of the wheels were determined using static 

compression tests. As no local stiffness data were available for the wheelchair and the 

taxi's bulkhead, model parameters for thèse contacts, such as, the chair backrest 

contact with back support belt, were estimated by the webbing belt déformation 

during static tension tests. A coulomb friction coefficient of 0.3 was specified for the 

contacts with the wheelchair. 

- Dummy model 

A 50th% Hybrid II adult dummy database ( M A D Y M O 5.2) was used in the 

model while a finite élément lap belt was attachcd to the dummy. In addition, the 

dummy positions were adjustcd to sit in the wheelchair. 
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- Y shape webbing tiedown mode! 

The wheelchair with a Y shape tiedown restraint system was modelled using a 

multibody module. This model consisted of two independent Systems, one single 

inertia réel and one knot of a webbing. This model approach allowed the actual Y 

shape tiedown to be taken into account. 

- A back support belt model 

The wheelchair back support belt which underwent large déformations was 

designed using finite élément models within M A D Y M 0 3 D program to allow a more 

detailed analysis of those parts and a more detailed description of the contact 

interactions (Figure 9.3b). Ninety-six (96) membrane éléments were used in the finite 

élément belt model in order to be able to model contact between the critical dummy 

parts and the wheelchair. 

Figure 9.3b A back support FE belt model and lap FE belt 

9.3.3 Summary 

The RFF impact of the wheelchair-occupant System demonstrated more 

effective capacities for protecting the occupant than the FFF impact (Gu and Roy, 

1995). Analysis of the dynamic sied tests (Appendix 5D) and computer models helped 

to draw the following summary: 
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• The simulation produced by the CVS model compared reasonably well to the 

actual test results from the full scale dynamic sied tests. The close approximation was 

made even more accurate by adjusting the various stiffness functions, friction 

pénétration factors, and correction factors, although it is difficult to produce a 

simulation true to life because the exact properties of the various parts could not be 

taken into account, e.g. the transverse webbing belt buckle déformation. 

• Further computer modelling of the rearward facing manual wheelchair-

occupant System needs to be conducted in a parameter study. In the previous tests and 

model, the bulkhead stiffness was assumed rigid. This needs to be modified to the 

actual taxi structure stiffness. The dynamic variations obtained according to the 

position of the rear tiedown will be further investigated. 

9.4 Modelling Discussions 

The problems during modelling of WTORS are explained as follows: 

• Sied floating 

In the initial ATB modelling of WTORS, the rear anchorage position was 

defîned as four duplicated segments. This resulted in rear tiedown acting as a rigid 

beam, which pushed the wheelchair forward or backward. This problem was solved 

using two segments instead of four. 

• WTORS submarining 

The problem that could be noted in the previous D Y N A M A N model was that 

the rear wheel seemed to sink into the sied floorboard (Figure 9.4). It was latter found 

that this was due to the improper function block given to the rear wheels. The static 

compressing of wheels only allowed to interpolate the value of 1,600 N force 

specified. From video footage review and A T B / D Y N A M A N output check, it was 

found that the force sustained was much higher than this value, but the M A D Y M O 

program assumed the same deflection rate. During impact, the rear wheels were 

subjected to the weight transfer of the wheelchair and dummy. Another observation 

from the tests was that the tyre section of the wheel was compressed almost to the 

wheel rim at the point where the rear wheel was in contact with the sied floorboard. 
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Also the spoke section of the wheel was deflected because the wheel had an elliptical 

shape at the point of maximum weight transfer, at this point the wheel became solid, 

no more compression took place. It proved that the wheel compression test was 

inadéquate. 

Therefore the functions block was modified to account for the wheel becoming 

almost solid (50 kN) once the métal ri m was reached (55 mm pénétration). The rail 

friction of tyre (Roll FRIC) was adjusted to be 0.5. The wheel loads decreased with 

the coefficient of friction in the range of 0.8 and 0.4. The value of the wheel floor 

stiffness was varied until the model prédictions showed sufficient agrecment with 

actual expérimental results. 

• Higher wheelchair accélération 

After examining ail the results of wheelchair model, it was found that the 

value of wheelchair accélération was higher than the test results. This was because of 

the lower tiedown static stiffness used in the initial model. The dynamic 

I H D. 

Figure 9.4 Wheelchair submarining 
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characteristics of the webbing tiedown showed that the rear tiedown stiffness has a 

major effect on wheelchair accélération. 

• Wheelchair seat pénétration 

By examining the frames of high speed video footage, it could be seen that the 

occupant was drawn into the wheelchair backrest. The upper legs also penetrated into 

the seat. This could be expected due to the déformation of both these planes and the 

limbs themselves. The input was also modified to include plane-ellipsoid contacts 

between the upper legs and the seat plane, lower torso (LT) and the chair backrest, 

ellipsoid-ellipsoid contacts between dummy's head and the legs, dummy's arms and 

LT. A correction factor (COR) was given to reduce the pénétration into the seat and 

backrest in the wheelchair. The initial position was also adjusted to keep the System 

equilibrium. 

• Lap and Diagonal (L/D) belt rupture 

The next problem was found in the L/D belt System when comparing the 

motion of the dummy in the füll scale test with the kinematics obtained in the 

Simulation. In the actual TRL test the dummy's right Shoulder is thrown forward, 

while in the model the dummy's movement was too restrained. This was mainly due 

to the belt attachment configuration to the body of the dummy. Düring the frontal 

impact, the occupant's lap and diagonal belt would slide on ehest, the waist and the 

hip. Because of the limitation of A T B / D Y N A M A N programs, the only way to get 

around this to obtain a reasonable simulation was to design the configuration of a belt, 

which would be smoothly tangent to the body. The first position of belt had to be 

changed while the Shoulder belt angle varies, such as, the floor mounted 

configuration. The finite élément belt was of benefit to allow the belt to slide on 

dummy's body, 

9.5 Summary 

• The initial simulation produced by A T B / D Y N A M A N package did not 

compare reasonably well to the actual test results from the füll scale sied tests unless 
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the certain CVS techniques were involved. It is difficult to produce a simulation true 

to life because of the limitation of the package. The uncontrollable factors during 

impact are difficult to model, such as the belt buckle and reel deformations. 

• Additional study using more sophisticated program, M A D Y M O is of benefit 

in furthering the subject. One of the areas in which an improvement had been 

achieved was a means of modelling of the contact and friction forces exerted between 

the ground and the pneumatic tyres. Another area for improvement was the modelling 

of belt restraint systems by FE belt mesh using M A D Y M 0 3 D code. 

• The study of impact properties has been conducted to get a better correlation 

between the models and experiments by design and model correlations. 

Computer modelling of the crash performance of WTORS will be constructed 

and validated by the crash tests in the next Chapter. 
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CHARTER 10: CVS M O D E L VALIDATION AND ANALYSIS 

10.1 Model Post-Process 

The computer modelling post-process work is an integral process, which 

combines almost all software applications shown in Figure 10.1a. CVS model 

validation could be established if the model prédictions correlate acceptably with 

observed facts. More precise defined methods of validation are available in CVS 

models. The model tuning loop is defined in Figure 10.1b. 

Validation processes include four stages: peak value comparison, kinematic 

comparison, loading trace comparison and interprétation of model results (analysis 

and assessment). The kinematics of model was compared with the video footage 

adjusted by dummy lower torso to simúlate the trajectory of dummy's head and Upper 

torso. The corrélation was made accurately by adjusting the various stiffness functions 

(CHO contact characteristics), friction pénétration factors (FRI) and correction factors 

(COR). The initial position equilibrium analysis and structure model were also 

conducted for initial design corrélation. 

INPUT 
D A T A 
FILE 

A s c n 
D A T A 
FILE 

SPREAD-
SHEETS 

BITMAP WORD 
FILE PROCESS OR¡ 

M O D E L 
REPORTS 

A N D 
PAPERS TUNING 

REPORTS 
A N D 

PAPERS 

Figure 10.1a C V S model post-process 
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Component 
tests 

Models 
• FEA 
• CVS 

Model tunine 

Design corrélation 
• Initial equilibrium analysis 
• structure 

Model corrélation 
• CUO • F Ri •COR 

i 

Model tunine 

Design corrélation 
• Initial equilibrium analysis 
• structure 

Model corrélation 
• CUO • F Ri •COR 

Figure 10.1b Model tuning loop 

10.2 TRL Frontal Impact Model Validation 

TRL Forward Facing Frontal (FFF) impact model was used to analyse the 

effect of changing the fixing position of the restraints for both wheelchair and 

occupant. The rear tiedown angle was varied between 30-degree and 45-degree. From 

this model, the optimum position was determined, which would cause less injury to the 

occupant and less damage to the wheelchair. 

Expérimental results at M U R S E L were used to validate the robustness of the 

model. The TRL model simulation was compared with the füll scale sied tests. The 

head, wheelchair P point and wheel centre movement were then recorded using the 

D Y N A M A N post-processor. The movement of thèse points relative to the local co-

ordinate System of the inertial Space was measured. A graphical représentation of thèse 

. results could be seen in the following diagrams in TRL model (Figure 10.2a - 10.2s). 

The resulting maximum responses were compared to the actual test data (Table 10.2a 

and 10.2b). 
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Table 10.2a Comparison of TRL test and CVS resuïts - Level III 

Parameters (peak) Units TEST RESULTS CVS RESULTS 

Set up conditions 30-deg 45-deg 30-deg 45-dcg 30-deg 45-deg 30-deg 45-deg 

WTRS WTRS WTORS WTORS WTRS WTRS WTORS WTORS 

Test number T2818 T2819 T2820 T2821 

Sied puise g 19.8 20.1 16.1 17.7 11.1 20.1 16.1 17.7 

Delta ' V km/h 32.7 32.1 31.5 31.4 32.7 32.1 31.5 31.4 

OUTPUT: 

w/c FP wheel kN 6.2 4.7 11.4 11.1 4.7 7.1 11.2 11.4 

w/c FS wheel kN 11.6 11.4 7.7 11.8 11.3 7.2 11.1 11.3 

w/c RP wheel kN 7.1 11.7 7.7 11.1 11.7 14.2 11.2 13.3 

w/c RS wheel kN 11.1 12.4 6.1 11.5 7.1 13.0 11.1 13.3 

Single rear wheel kN 7.1 11.1 6.1 11.2 7.1 13.1 11.4 13.3 

Peak Time ms 120 111 115 110 120 111 115 110 

RP tiedown kN 6.5 7.4 6.5 7.3 6.1 11.1 6.0 6.1 

RS tiedown kN 6.5 6.5 6.5 6.0 6.7 7.1 6.1 6.1 

Single rear tiedown kN 6.5 7.0 6.5 6.5 6.11 11.0 6.1 6.1 

Peak Time ms 111 111 111 110 115 115 115 115 

L/D lap load kN # # 6.3 6.1 # # 4.1 5.2 

L/D diagonal load kN # # U .2 11.1 # # 11.2 11.6 

Table 10.2b The différence between TRL tests and CVS model 

Parameters Units WTORS (45-degree rear tiedown angle) 
Set up conditions FP wheel |FS wheel RP wheel RS wheel RP t'down RS t'down Lap Diag. 
Test kN 11.1 ; 11.8 11.1 11.5 7.3 6.0 6.1 11.1 
CVS kN | 11.4 1 11.3 ! 13.3 I 13.3 \ 6.1 | 6.1 5.2 [ 11.6 
différence % 2.7 | 4.2 19.8 15.6 16.4 1.7 14.7 4.5 

The rear tiedown angle 30-degree WTRS results (Level I) are compiled in 

Figure 10.2a - Figure 10.2d. 
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Figure 10.2a Comparison of the Single rear wheel loads for TRL tests (T2779) 
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Figure 10.2b Comparison of the single rear wheel loads for TRL tests (T2780) 
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Figure 10.2c Comparison of the singlc rear wheel loads for TRL tests (T2781) 
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Figure 10.2d Comparison of the Single rear wheel loads for TRL tests (T2782) 

The rear tiedown angle 30-degree WTRS results (pulse level II) are shown in 

Figure 10.2e - Figure 10.2h. 
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Figure 10.2e Comparison of the single rear wheel loads for TRL tests (T2793) 
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Figure 10.2f Comparison of the single rear wheel loads for TRL tests (T2794) 
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Figure 10.2h Comparison of the Single rear wheel loads for TRL tests (T2796) 

The rear tiedown angle 45-degree WTRS results (pulse level I) are shown in 

Figure 10.2i - Figure 10.21. 
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Figure 10.2i Comparison of the single rear wheel loads for TRL tests (T2783) 
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Figure 10.2J Comparison of the single rear wheel loads for TRL tests (T2786) 
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Figure 10.2k Comparison of the Single rear wheel loads for TRL tests (T2787) 
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Figure 10.21 Comparison of the Single rear whecl loads for TRL tests (T2788) 
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The rear tiedown angle 45-degree WTRS results (pulse level II) are shown in 

Figure 10.2m - Figure 10.2p. 
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Figure 10.2m Comparison of the single rear wheel loads for TRL tests (T2789) 
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Figure 10.2n Comparison of the single rear wheel loads for TRL tests (T2790) 
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Figure 10.2o Comparison of the single rear wheel loads for TRL tests (T2791) 
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Figure 10.2p Comparison of the single rear wheel loads for TRL tests (T2792) 

The rear tiedown angle 30-degree results of WTRS (crash severity of Level III 

without dummy) are compared with 45 degree shown in Figure I0.2q and Figure 10.2r. 

189 



CHAPTER 10 

c — 
o u 

2 I 
U 
4) O 
"O ^ 
CI O) 

tfí S 

20 

16 

12 

8 

. / _ ¿ . 

W 0 

-4 

T 2 8 1 8 ( 3 0 D e g . r e a r t i e d o w n a n c h o r ) 

( N o m i n a l D e l t a ' V = 3 3 K m / h ) 

Sled Dec. (T2818 ) 

A TB model ( mean ) 

•Test RPwheel ( 30 deg.) 

— Test RS wheel 

25 50 75 100 125 150 175 200 

T i m e ( m s ) 

Figure 10.2q Comparison of the single rear wheel loads for T R L tests (T2818) 

T 2 8 1 9 ( 4 5 D e g . r e a r t i e d o w n a n c h o r ) 

( N o m i n a l D e l t a V = 3 3 K m / h ) 

25 50 75 100 125 150 175 200 
T i m e ( m s ) 

Figure 10.2r Comparison of the single rear wheel loads for TRL tests (T2819) 
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Two rear tiedown angles results of WTORS (crash severity of Level III with 

dummy) are shown in Figure 10.2s. 

( A) 30 degree rear tiedown 
• f — . — i — 

.1 1 L / l l - , 

IV. 

SledDec.( 30 deg.) 
RP Wheel (30 dcg.) 
CVS model 

25 50 75 100 125 150 175 200 225 
Time ( ms) 

(B ) 45 degree rear tiedown 
SledDec.(45 deg.) 
RP Wheel (45 deg.) 

• CVS model 

0 25 50 75 100 125 150 175 200 225 
T i m e ( m s ) 

Figure 10.2s Schematic comparison of testand CVS model in WTORS (Level III) (A & B) 

Figure 10.2t shows the kinematics of TRL wheelchair with TNO-10 dummy in 

TRL front impact. 
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10.3 ISO Frontal Impact Model Validation 

The ISO Forward Facing Frontal (FFF) impact models were set-up using both 

D Y N A M A N (CVSl ) and M A D Y M 0 3 D (CVS2). As seen from Table 10.3, most of 

the peak results obtained were in gênerai agreement with the dynamic test results, 

except the peak value of the diagonal bottom strap tension (T2), which was selected at 

the différent time of T i . It was expected that the multibody belt model was difficult to 

simulate the belt buckle déformation at the anchorage of a diagonal bottom strap. The 

validation was conducted precisely using time-history traces (Figure 10.3a). The 

simulated diagonal top strap tension in CVS model mirrored the test results. 

Table 10.3 Comparison of ISO tests and CVS model results 
(Peak values, B pillar, 51 km/h, 21g) 

Test CVSl CVS2 diff 1 diff 2 
Output units % % 
Chest -x g 38.3 26.3 32.7 31 15 
Chest Res. g 46.6 38.1 53.0 18 14 

Diag. top (Tt) kN 6.9 7.2 7.9 4 14 
Diag. bot (TÎ) kN 5.0 5.5* 7.5* 10 50 

Lap (T3) kN 6.1 7.2 6.3 18 3 

Buckle (T4) kN . 11.1 14.3 13.8 29 24 

Seat Sum (Ct) kN 26.4 26.3 34.7 0 31 

* This peak value was selected at the différent time ofT¡. 
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Al l peak strap tensions in the CVS models were generally higher than the test 

results and had a relatively sharper peak response. The contact functions of the wheels 

had a significant effect on this difference. Furthermore the CVS 1 model did not allow 

for the effect of belt slippage which was evident in the experimental results. The 

CVS2 model seems more close to the test results than CVS1 model. The kinematics of 

ISO wheelchair with Hybrid TJ dummy in ISO frontal impact is shown in Figure 10.3b. 

Figure 10.3b Kinematics of ISO wheelchair with Hybrid II dummy 
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10.4 Rearward Facing Frontal Impact Model Validation 

In gênerai, the kinematics of Rearward Facing Frontal (RFF) impact of 

WTORS (Figure 10.4) appear to be vcry well in agreement with observations from the 

high speed video records (Appendix 5D). For instance, the différence in head 

trajectory between head and headrest, and also, between wheelchair handles and the 

taxi bulkhead are well illustrated by the model. 

Table 10.4a Comparison of taxi tests and CVS results (Séries I & II) 

Séries I & II Unit Séries I Model I Séries II Model II diff diff 

I % II % 

Sied puise g 21 21 17 17 

km/h 32 32 32 32 

Acc. ehest g 72.9 58.0 * 43.2 20 * 

Acc. head g 50.6 51.2 50.1 40.9 1 18 

Back (Pt.) kN 3.8 2.6 5.5 4.2 32 24 

Back (St.) kN 3.9 2.8 3.3 3 28 9 

Whcel Pt. kN 13.2 10.8 37.2 37.8 18 2 

Whcel St. kN 13.2 16.6 * 38.6 26 * 

RearT/D kN 4.3 4.8 5.2 5.6 12 8 

Notes: * test datafailure 

Table 10.4b Comparison of taxi tests and CVS results (Séries III & IV) 

Séries III & Unit Séries III Model I I I Séries Model diff diff 

I V I V I V n i % I V % 

Sied puise g 19 21 19 21 

km/h 33 32 33 32 

Acc. ehest ë 75.1 60.5 51.6 50.9 19 1 

Acc. head g 75.8 52.0 74.7 50.6 31 32 

Back (Pt.) kN 3.9 3.4 5.2 5.3 13 2 

Back (St.) kN 2.6 1.6 3,3 3.2 38 3 

Whecl Pl . kN 10.7 10.5 10.1 10.5 2 4 

Wheel Si. kN 10.9 12.6 10.7 11.1 16 4 

Rear T/D kN 2.1 2.9 1.6 2.1 38 31 
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Table 10.4a and 10.4b show a comparison between sied test séries peak values 

and the relative models. The discrepancy between the M A D Y M O model and 

experiments (Séries LT) in the back support belt loads (Back Pt and Back St) is up to 

24 percent, occurred at différent time. The contact-interaction was correlated by 

dynamic test results. 

Oms 50 ms 100 ms 

Figure 10.4 Simulatcd kinematics of a RFF impact of WTORS (Séries I) 

10.5 Simulation Analysis 

10.5.1 FFF impact model analysis 

The response parameters of a frontal impact model are a function of many 

input parameters. These inputs include the dynamic conditions of the crash, the 

physical properties of the System, and the overall test set-up. 

• As expected the overall variability in the model was greater than the 

expérimental results. This is due to the variability of expérimental results attributable 

to uncontrollable errors in test set-up and measurement, such as, the belt buckle and 

load cell Connecting parts déformations, in addition to sied puise variations. In 
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computer simulation, thèse uncontrollable random errors associated with the test set-

up are eliminated. It means that outputs are a function of the crash puise exclusively. 

• The ability of this model to predict actual results was good, especially for 

predicting of loads of WTORS during impact. The relatively large différences 

between the model prédictions and the expérimental results were found in the rear 

wheel loads (less than 38%). The simulation prcdicted the wheel load going to a peak, 

particularly in level III (Figure 10.2s). A i l expérimental results have indicated that the 

pneumatic wheel actually rocked during impact. This will be further investigated 

using finite élément tyre model. 

• The différences between the model and the expérimental results were primarily 

due to the structure différences between the multibody-modclled wheels and the actual 

pneumatic tyres. The A T B / D Y N A M A N model was a highly simplified représentation 

of the actual tyres, and the dynamic responses were différent. 

Once calibrated with dynamic tests, the frontal impact model was used to 

simulate différent restraint configurations to find the optimum positions of restreint 

anchorage. It will help manufacturers to design the best Systems and reduce permanent 

injury. 

10.5.2 RFF impact model analysis 

• Comparison oftxvo configurations in the same manual wheelchair without and 

with headrest (Séries 1 and III) 

Transducer outputs for two configurations (Séries I: without headrest; Séries 

III: with headrest) are shown from Figure 10.5a to Figure 10.5g. The peak values of 

chest résultant accélération in two configurations were about same while the values of 

head résultant accélération were variable. The total loads acting on the taxi bulkhead 

were summed from the loads of both sides of the wheels and back support level 

occurred at the same time. At a AV of 32 km/h and sied décélération of 20g (Level V), 

the maximum bulkhead load was recorded on impact of 28.5 kN without headrest and 

25.4 kN with headrest, a tiedown load on rebound of 4.3 kN without headrest and 2.1 

kN with headrest. The relatively large différences between wheelchair with headrest 

and one without headrest were found in the head résultant accélération (> 20g). 
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Figure 10.5a Comparison of hcadrcst effect Figure 10.5b Comparison of headrest effect 

on ehest acccleration on head acceleration 

Figure 10.5c Comparison of headrest effect Figure I0.5d Comparison of headrest effect 

on wheelchair back load (Pt) on wheclchair back load (St) 

Figure 10.5e Comparison of headrest effect Figure lO.Sf Comparison of headrest effect 

on wheelchair wheel load (Pt) on wheelchair wheel load (St) 
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Figure 10.5g Comparison of head rest effect on rear tiedown load 

# Comparison of two types of wheelchair: Surrogate and manual wheelchair 

(with headrest) (Séries II and Iii) 

Transducer Outputs for two différent mass of wheelchairs are shown in Figure 

10.5h - 10.5n. The ISO-SWC is 83 kg (Séries II) and a manual wheelchair is 15 kg 

(Séries III). The peak values of both ehest and head résultant accélération in two types 

of wheelchair were variable. At a AV of 32 km/h and sied décélération of 17g (crash 

severity Level IV), the maximum bulkhead load was recorded on impact at 75 kN in 

the Surrogate and 25.4 kN in the manual. The relatively large différences between ISO 

Surrogate wheelchair and manual wheelchair were found in the wheel loads (> 20 kN). 

Figure 10.5h Comparison of wheelchair type Figure 10.5Î Comparison of wheelchair type 

effect on ehest accélération effect on head accélération 
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Figure 10.5j Comparison of wheelchair type Figure 10.5k Comparison of wheelchair type 

effeet on wheelchair back loatl (Pt) effeet on wheelchair back load (St) 
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Figure 10.51 Comparison of wheelchair type Figure 10.5m Comparison of wheelchair type 

effeet on wheelchair wheel load (Pt) effeet on wheelchair wheel load (St) 
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Figure 10.5n Comparison of wheelchair type effeet on rcar tiedown load 
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It was observed frorn the high speed video records that this was due to the rear 

wheel of the Surrogate wheelchair being compressed until the rigid wheel rim 

contacted the floor load cells during impact. On the other hand, the flexible wheel rim 

of the manual wheelchair deformed during impact and hence reduced the peak load 

values. 

Test séries II revealed modes of hardware failure, such as cutting of a 

transverse webbing at the areas of high stress concentration. The dummy's movements 

were more uncoordinated when the ISO wheelchair was used. 

* Comparison oftwo modes of a manual wheelchairs: with and without Handies 

(with headrest)(Séries III and IV) 

In order to avoid the second collision between the wheelchair handles and the 

taxi bulkhead, the handles were removed in test séries IV. This configuration was 

compared with the standard manual wheelchair (Séries IH). Transducer Outputs for 

two modes of wheelchairs are shown in Figure 10.5o - 10.5u. The peak values of head 

résultant accélération in two configurations were about same while the values of ehest 

résultant accélération were variable. The relatively large différences between a 

wheelchair without handles and one with handles were found in the ehest résultant 

accélération (> 30g) at the crash severity Level V. 

Figure lO.So Comparison of wheelchair Figure lO.Sp Comparison of wheelchair 

handle effect on ehest accélération handle effect on head accélération 
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Figure lO.Sq Com pari so n of wheclchair Figure 10,5r Comparison of wheelchair 

handle effect on wheelchair back load (Pt) handle effect on wheelchair back load (St) 

Figure 10.5s Comparison of wheelchair Figure 10.5t Comparison of wheelchair 

bandle effect on wheelchair wheel load (Pt) handle effect on wheelchair wheel load (St) 

— Series III 

- Seties W 

Tim*(( ii) 

Figure 10.5u Comparison of wheelchair handle effect on rcar tiedown load 
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10.6 Summary 

The wheelchair-occupant restraint model was developed by the author and 

proved to be a good estimator of actual expérimental results. The comparison between 

CVS model and expérimental results gives the following summaries. 

• The model was utilised to study the relative effects of crash pulse différences 

on the variability of maximum responses. 1t was found that crash pulse variations 

accounted for much of the overall variation in loads and décélérations, while having a 

negligible influence on maximum excursions. 

• In the CVS models, the un-controllable random errors associated with the test 

set-up were neglected, such as, belt buckle and réel déformations, sied platform 

stiffness, test apparatus accuracy including instrumentation, etc. The détails of tiedown 

anchorage déformation and testing adjustment i.e. axial bending and belt slippage 

during impact will be ftirther modelled using finite element models. 

• It was unrealistic to think that the D Y N A M A N model could be capable of 

predicting expérimental results with a high degree of précision because of its limitation. 

What the validation study proved, however, was that this model was sufficient for 

observing gross phenomena and determining approximate loads, décélération, and 

excursions, making it useful for a variety of applications. Parameter studies can be 

conducted by this model to investigate a wide range of cause and effect relationship. 

• The validation process is not completed. The objective of TRL model 

development is not to obtain a very accurate corrélation with a real vehicle impact, but 

rather to be designed as the methodology of a sied simulation of vehicle impact. Now 

this preliminary step has been successfijlly accomplished. This study has also 

proceeded with a systematic investigation by varying the différent parameters, which 

were included in the FFF impact model, taxi RFF impact model. All thèse models 

exhibited the structure design objectives, which would offer a better protection to the 

occupant. 

• Further dynamie testing to validate the prédictions of the computer model will 

serve to enhance the model's credibility. Once this is accomplished, computer 

simulation could become an integral tool in WTORS design and test spécification. 
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C H A P T E R 11: G E N E R A L DISCUSSIONS OF WTORS 

This Chapter provides explanations to common dynamic phenomena observed 

in WTORS impact tests and computer models. The velocity profile and the natural 

frequency of WTORS were used to explain why the wheelchair and dummy 

experienced a higher accélération. The accélération amplifications could be expressed 

in temns of a response spectrum to provide a good sensé of how varying System 

parameters affect the amount of wheelchair amplification. What is the effect of 

variations in the crash puise within the specified tolérances on the simulation results? 

The shoulder loads both in the B pillar and floor-mounted configurations were 

calculated by a beam élément analysis method. The shoulder belt load at floor-

mounted configuration was found to be higher than that at B pillar configuration. A 

four-point tiedown restraint System was analysed and used to explain how quasi-static 

analysis in the past underestimated the peak tiedown loads. Energy principles were 

applied to show why 30-degree tiedown configuration générâtes lower tiedown loads 

than 45-degree configuration? Finally, the rebound of the sied was analysed to 

investigate the spring deflection and stop distance, and also to explain why the rebound 

velocity could be neglected in a mass-spring model. 

11.1 Investigation of the Amplification Effect 

In a crash environment, the wheelchair and its occupant exerted peak 

accélération in excess of the peak décélération of the sied. This phenomenon is called 

the amplification effect. Both the sied and the wheelchair were initially travelling at v 0 

prior to impact. The wheelchair relative to the sied allowed the wheelchair to continue 

moving forward at Vo when the sied started slowing down. The chair continued to 

move at nearly a constant velocity until the restraint system started to take effect, and 

the chair began to slow down at a high rate. The slope of the chair's velocity curve at 

this time was higher than at any other point on the sied* s velocity profile, thus the 

chair's peak accélération was higher than the sied. When the chair reached its 

maximum forward movement corresponding to the maximum tiedown elongation, the 
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chair was essentially connected to the sied platform rigidly. From this point on, the 

chair and the sied decelerated at the same level. 

The sied was Coming to a stop while the chair and dummy continued 

translation. The increased accélération occurred due to the relative movement of the 

chair and dummy with respect to the sied. Accélération amplifications led to a more 

severe crash environment, causing higher head and ehest accélérations, resulting in 

the potential for more serious injury, severe occupant restraint loads, excessive 

occupant excursions, and a greater chance of impact with interior vehicle structures. 

Computer models suggested that the amplification effect was a function of the 

tiedown compliance (Chapter 6). It was found that the degree of accélération 

amplification was detetmined by the natural frequency of the System given by the 

wheelchair mass and tiedown stiffness (am = um*rjûn2, Cûn2 = k/m), in addition to the 

crash pulse shape and puise duration. As the compliance of the wheelchair tiedown 

restraint System increased, the associated amplification increased, resulting in a greater 

chair accélération amplification. Theoretically, an infinitely stiff wheelchair restraint 

System would resuit in no amplification so that the chair's accélération would be 

identical to the sied. For occupant lap belt Systems, accélération amplification of the 

head and ehest is greater to cause jack-knifing. When a Shoulder belt is added to 

restrain the upper torso, the whipping and jack-knifing action of the head and ehest 

relative to the lower torso is reduced, and as a resuit, the peak accélération are 

decreased. 

11.2 Beam Element Analysis of Shoulder Loads 

The belt loading distribution around the dummy upper torso can be expressed 

in Figure 11.2a. The axial tensile forces in the Shoulder belt are equal if friction was 

neglected. The Shoulder reaction force Sf = T\ + T 2 , resolved in the direction of torso 

centre line. In the frontal impact of WTORS, The dummy upper torso reaction was 

simulated using three beam éléments. The beam élément 1 and 2 linked to form new 

élément 3. 

In order to compare the crash performance of two Shoulder belt anchorage 

positions (B pillar and floor-mounted configurations), the following parameters were 

considered: 
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A V : Sied velocity change; 

t: Time of peak diagonal top strap tension (Ti); 

a: Diagonal top strap angle to the horizontal at the time of t; 

ß: Occupant torso forward angle from vertical at the time of t; 

y: Diagonal top strap angle with référence to a vertical plane parallel to the sied 

fore and aft centre line; 

H e x c : Dummy head target maximum excursion; 

T i : Diagonal top strap tension; 

T 2 : Diagonal bottom strap tension; 

T3: Lap strap tension; 

T4: Buckle strap tension; 

Cf: Wheelchair seat sum load; 

Sf(B): Occupant Shoulder load function in B pillar configuration; 

Sf(F): Occupant Shoulder load function in floor-mounted configuration. 

Figure 11.2a Static analysis of Shoulder belt loads 

The occupant Shoulder load functions were computed in the direction of the 

torso centre line in order to obtain a value of the downward load on the Shoulder of 

the dummy. It should be noted that T i did not lie in a vertical plane parallel to the sied 

centre line, whilst T 2, T3 and T 4 did (Figure 11.2b). It is difficult to measure the dummy 

forward angle (ß) as the thorax of the dummy twisted during the impact. Some 

assumptions were made to simplify the model. The same angle of 44 degrees to the 

horizontal was assumed for both the diagonal bottom strap and lap belts. The angle y was 
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estimated from the EktaPro records and the initial setting of the Hybrid II dummy. The 

shoulder load functions in two configurations are defined as follows: 

S r (B) = Tj Cos y Sin ((3 - a) + T 2 Sin (44 + p) (11.2-1) 

Sf (F) = Ti Cos y Sin (ß + a) + T 2 Sin (44 + ß) (11.2-2) 

Figure 11.2b Free body diagram for occupant torso 

The dummy shoulder loads were estimated and the results are listed in Tables 

11.2a and 11.2b. 

Table 11.2a Shoulder load calcul ation at B pillar configuration 
( at the timc of peak T) load) 

AV t a ß Y H t K C T, T 2 T 3 c f SKB) 
km/h ms deg deg deg mm kN kN kN kN kN 

15 165 5 4 17 168 2.50 1.63 1.40 4.54 1.17 
18 145 5 4 10 216 2.99 2.23 1.40 4.72 1.61 
20 135 5 10 13 254 3.67 2.87 2.18 5.63 2.63 
23 125 5 10 8 256 3.90 2.72 2.30 6.53 2.54 
25 125 5 16 8 269 3.92 2.90 2.82 8.46 3.25 
27 125 5 16 8 272 4.10 2.77 3.28 9.78 3.17 
34 120 5 16 8 296 4.77 2.57 3.56 11.3 3.13 
40 115 8 20 6 304 5.41 2.69 3.85 11.8 3.54 
45 95 10 22 31 369 5.98 4.57 5.39 12.6 5.24 
51 95 10 30 32 384 6.51 4.01 6.24 14.7 5.74 
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Table 11.2b Shoulder load calculation at floor-mounted configuration 
(at the time of peak T] load) 

AV t a ß 7 T, T 2 T 3 Cr SKF) 
km/h ms deg deg deg mm kN kN kN kN kN 

15 210 28 10 <1 272 3.02 0.68 0.68 4.59 2.41 
18 200 23 15 <3 312 3.17 0.85 0.79 4.87 2.68 
20 190 23 16 <2 360 3.73 1.03 0.93 5.60 3.24 
23 175 23 20 <1 360 3.79 1.33 0.87 6.63 3.78 
25 155 20 22 <2 368 4.04 1.21 1.76 8.01 3.81 
27 155 20 28 4 392 4.18 1.43 1.67 8.77 4.46 
34 145 15 35 6 450 5.89 1.68 1.75 9.11 6.14 

* The diagonal strap belt configurations 

The diagonal strap belt were used either by floor-mounted configuration in one 

case (denoted subscript 'floor') or by B pillar configuration (denoted subscript 'B ' ) . 

Thèse are non-linear Systems. The kinetic energy theory is not be able to explain the 

effect of upper diagonal strap configurations on diagonal top strap load (Ti) and to 

give the following conclusion: 

( T i W > (Ti) B (H.2-3) 

Comparison of values in Table 11.2a and 11.2b, shows that at the same crash 

severity of 34 km/h, 13g, the floor-mounted T i is 5.89 k N . The diagonal bottom strap 

load (T2) is only about one third of T i , while B pillar case T 2 =1/2 T i , the total 

shoulder belt load is about same in both configurations. The peak value of T i for the B 

pillar anchored System occurred 25 ms before that of floor-mounted System. 

• Occupant restraint and seat loads as a function oftime 

Figure 11.2c shows that in the B pillar configuration the peak values of buckle 

strap tension ( T 4 ) , both diagonal top and bottom tensions (Ti and T2) occur around the 

same time of 120 ms. Fig 11.2d shows that in the floor-mounted configuration, the 

peak value of Ti reached at the time of 170 ms. It lagged the peak seat sum (Cf) and 

T 4 by about 35 ms. This delayed response of Ti was supported by observations from 

the EktaPro video record of the greater forward displacement of the dummy torso, 
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thus causing mass transfer to the front of the chair. The greater value of the front 

wheel loads for the floor-mounted configuration also support this observation. 
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Figure 11,2c Load distribution in B pillar 
configuration (11g, 27 km/h) 

Figure 11.2d Load distribution in floor-mounted 
configuration (11g, 27 km/h) 

• Occupant restraint and seat loads as a function of sied velocity change 

Fig 11.2e and Fig 11.2f suggest that the peak loads such as overall seat (Cf), 

diagonal top (Tj), lap belt (T3), and Shoulder loads [Sf(F) and Sf(B)] generally increase 

with the velocity change (Delta ' V ' ) in two configurations. 

15 20 25 34 45 
Delta ' V (km/h) 

Figure 11.2e Peak parameter variation 
(B pillar configuration) 
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Figure 11.2f Peak parameter variation 
(floor-mounted configuration) 
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113 Load Characteristics in WTORS 

Manufacturers in the past have designed wheelchair structure to withstand 

loads produced in a 48 km/h-20g frontal impact based on a simple quasi-stalic 

calculation (Figure 11.3a). The force balance is written as: 

T r Sin9 r + mg = N r + N r (11.3-1) 

H(Nr + Nf) + T r Cos 8 r = mas (11.3-2) 

wherc: mas equals the mass of the chair times the peak décélération of vehicle or sied 

as, Nf and N r are wheelchair's frontal and rear wheel loads respectively, T r is the rear 

tiedown load, 9 r is the horizontal angle of the rear tiedown strap. 

This function underestimated the actual loads and oversimplified the force 

distribution given by the free body diagram as the amplification effect was not 

accounted for. Obviously, the peak accélération of the chair is not equal to the peak 

décélération of the vehicle. 

Figure 11.3a Static analysis of whecl loads 
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A more appropriate force décomposition is shown in Figure 11.3b. It was 

assumed that the ATD did not transfer any loads to the chair. The effects of the 

wheelchair amplification, the frontal tiedown loads (Tr) and the dummy's interaction 

with the chair are now considered. The force balance is resolved vertically and 

horizontally as follows: 

T r SinGr + T f Sin0r+ (m, + md) g + (T, + T2) Sina = N r + N f (11.3-3) 

T R CosSr - T f Cos9r+ ( T Î + T2) Cosa + u,(Nr + N f) = mcac + mdad (11.3-4) 

where: mcac is the mass of the chair times the peak accélération of the chair ac, mdad 

equals the mass of the dummy times the peak ehest accélération of dummy ad, T r and 

Tf represent the rear and frontal tiedown loads respectively. 

Figure 11.3b Further analysis of whecl loads 

If we résolve accélérations at the angle ß for the ATD and y for the wheelchair 

vertically and horizontally, the équations (11.3-3 and 11.3-4) can be written as 

follows; 

T r Sin0r + TrSin6f+ (n»c + md) g + (Ti + T 2 ) Sina 

= mca f Sin y + nijad Sin ß + N r + N f (11.3-5) 
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T r CosO r - T f Cos8r+ (Ti + T 2 ) Cosa + u.(Nr + N f) 

= rricac Cos 7 + mdad Cos ß (11.3-6) 

An examination of the load time histories for the frontal and rear tiedown 

revealed that the frontal tiedown experienced a smail load at the same time when the 

rear tiedown experienced its maximum load (at approximately 120 ms). The frontal 

tiedown is loaded because the tiedown attachment points above the chair C G créate a 

moment and allows the chair to pitch. The frontal tiedown load is relatively low 

because the dummy slides forward on the seat of the chair and its weight is shifted to 

the front of seat during the FFF impact. Unfortunately, the relative influence of 

friction between the dummy and the chair could not be determined easily as the 

dummy was twisted uncertainly under dynamic conditions. The dummy-seat and 

wheel-floorboard interactions were modelled as the point contact in a multibody 

model. Further study will be focused on the bearing área contact characteristics using 

finite élément seat and tyre models. 

11.4 Energy Analysis of Tiedown Loads 

The computer models suggested that the rear tiedown angles were 

significantly effect on tiedown and wheel loads. One of the most important design 

criteria for the tiedown Systems is the détermination of tiedown stiffness 

characteristics. The tiedown stiffness is related to the resulting amplification effect 

and it also determines the amount of the tiedown load. For a given mass to restrain, 

experiments showed that stiffer tiedown, such as, in the 45-degree rear tiedown angle 

configuration, were exposed to higher loads compared to more compliant tiedown in 

the 30-degree configuration. The following kinetic energy theory analysis offers the 

same explanation. 

A given wheelchair system is restrained by 45-degree rear tiedown in one case 

(denoted subscript '45') and by 30-degree rear tiedown (denoted subscript '30'). The 

kinetic energy of the wheelchair is managed by the wheelchair tiedown system and 

the wheelchair itself. Writing in the form of an energy balance, 
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K - Kyedown + Kchair (11.4-1) 

The kinctic energy associated with the 45-degree is the same as the 30-degree 

if the identical chairs are travelling at the same velocity v 0, 

K = Vi m v 0

2 = K4s =K 3 0 (11.4-2) 

Substituting (11.4-2) into (11.4-1) 

(Kuedown + Kchair)45 = (Ktjedown + Kchair)30 (11.4-3) 

Assuming identical chairs are used, the energy managed by the chair, is 

the same in the 45 and 30 cases, that is, ( K c h a i r ) 4 5 = (KChair)30, therefore 

(Kticdown)4S = (Ktiedown)30 (11.4-4) 

The energy transferred to the tiedown is either dissipated through plastic 

déformation and frictional losses (Kdiss), or stored as potential energy (J) due to 

elastic déformation of webbing belt: 

Ktiedown = Kdiss + J (11.4-5) 

The more stiff the tiedown is, the less energy is dissipated and the more load it 

is subject to. That is, 

(Kdi»)* < « U s ) » (H-4-6) 

For linear Systems, the potential energy is equal to the square of the elongation 

of the spring (Ss) times the spring stiffness (k). Thus (11.4-4) can be written as: 

( K ^ + Vi k ô s

2 ) 4 5 = (Kdta, + Vi k 6s

2)3o (11.4-7) 
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The relationship given by (11.4-7) indicates that the potential energy 

associated with the 45-degree tiedown must be greater than the potential energy of the 

30-degree tiedown, that is, 

( V 2 k 8 s

2 ) 4 5 > ( V 2 k ô s

2 ) 3 o (11.4-8) 

Hooke's Law for linear Systems is given by T = kÔs. Substituting this 

expression into (11.4-8), it is proven that the force experienced by the 45-degree 

tiedown must be greater than the force experienced by the 30-degree, that is: 

T 4 S > T 3 0 (11.4-9) 

Depending on the duration of the crash event, the stiffness of tiedown system 

may lead to excess chair accélération. This analysis indicates that the load in the 

tiedown system could be reduced if energy is dissipated by some mechanical 

geometry. 

11.5 Rebound Characteristics in a Sied Simulation 

The déformation of the chair backrest on dummy rebound allowed excessive 

rearward excursions. Although rebound is not addrcssed in the current standards, it 

appears that it can be a common mechanism for occupant injury and therefore should 

be addressed in the future. Figure 11.5a represents a sied mass-spring model. The d r 

represents the sied rebound and is the déviation between di and d 2, that is, 

d r = (dj - d2) 

di - the distance where the olives touch the tapered polyurethane tubes within spring 

deflection Ô before impact; 

d 2 - the distance where the olives stop inside the polyurethane tubes by the way of 

friction within 5 after impact; 

L - initial position of the sied before triggering; 

L r - final position of the sied after triggering. 
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S represents stop distance of the sied. It is the déviation between initial 

position and final position and also in account of the sied rebound, that is, 

The points (1), (2), and (3) indicate three positions in the interval of motion. 

Point (1) is the initial position of the block of WTORS. Point (2) is the position of 

maximum deflection of the spring within the block at rest. Point (3) is the rest position 

of the block after rebound. The block mass M represents the total mass of WTORS 

and sied. The spring stiffness k represents contact stiffness between the polyurethane 

tube and the olive, which it is used to simulate the sied puise. The vi is the initial 

velocity of sied. The following three éléments are considered hère: 

S = (L - L r ) + d r 

(1) L 5 (2) 
h* 

(3) 

0 

Figure 11.5a A sied mass-spring model 

Figure 11.5b Loads from position 1 to 2 

As shown in Figure 11.5b, the work 

done between (1) and (2) is given by 

W = -n*N-(L + ô) N = M g 
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Using the work energy équation: 

W = ( K 2 - K 1 ) + (J 2 .J 1 ) 

The positive root is used, and we get 

ô = u.-Mg/k + [(u.-Mg)2 - k-L(ji-M-g) + kM(vi)2/2]%/k (11.5-1) 

Formula (11.5-1) indicates that the maximum travel distance of the olive (Ô) is 

the function of the total mass on the sied (M), stiffness of polyurethane tubes (k), the 

sied starting position (L), the sied initial velocity (vO and sied friction (|i). If the 

values of M, L, Vi, and p. are constant, 8 only dépends on k, which could be 

determined by olive size and the type of tubes and surrounding température. 

Elément 2: the maximum travel ofthe sied after rebound, Lr 

V3 v2=0 The energy terms at position 2 and 3 are 

K 2 = 0 (as v2 = 0) K 3 = Vi M(v3)2 

J 2 = Vrkô 2 J 3 = 0 

Figure 11.5c Loads from position 2 to 3 
As shown in Figure 11.5c, the work 

done between 2 and 3 is 

W = -p-N-(Lr + 5) 

Using the work energy équation, 

W = ( K 3 - K 2 ) + (J 3 -J 2 ) 

L r s [k-ô2 - M(v3)2]/2u.Mg - 5 (11.5-2) 
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If U > L the sied cornes to the rest to the left of its initial position. 

Elément 3: the rebound velocity vr 

Assuming of two masses, nu is the mass of sied and niB is the mass of spring. 

From impact conservation of momentum équation: 

mA-(vA)i + mB(vB)i = mA.(vA)2 + niB.(vB)j 

As (vA)2 = (vB)2 = vr, we get: 

mA(vA)i + mB-(vB)i = (mA + mB)-vr (vB)i = 0 

vr = mA.V!/(mA + mB) (11.5-3) 

As the spring mass is much small than the total mass on the sied (mB « mA), 

the vr could be considered as equal to the vi, that is, the rebound velocity could be 

neglected. 
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C H A P T E R 12: CONCLUSIONS AND F U R T H E R W O R K 

This research has been concemed with the effects to which the occupant of a 

wheelchair secured by a WTORS is subjected in a frontal impact. Both occupant 

Forward Facing Frontal (FFF) and Rearward Facing Frontal (RFF) impact 

configurations have been considered. Three tools have been employed in the research 

programme as follows: 

• Accident investigation 

• Expérimental crash investigation using M U R S E L test rig and sub-system test 

equipment at Middlesex University 

• Mathematical models using PAFEC computerised Finite Element Analysis 

(FEA) model and two Crash Victim Simulation (CVS) programs: 

A T B / D Y N A M A N and M A D Y M 0 3 D . 

12.1 Research Progresses 

Details of research progress are described as follows: 

• A review of fatal accident statistics has highlighted the desirability of 

investigating the impact performance of WTORS. 

• It is the first comprehensive study of WTORS dynamic performance, which 

has confirmed the expected improvements in frontal impact performance, such as 

wheel loads, occupant Shoulder load and bulkhead loads, etc. 

• The crash performance of différent types of wheelchairs has been summarised. 

Work has been conducted to investigate some of the parameters affecting injury 

potential to the occupant spinc and Shoulder. 

• Three comprehensive research projects (TRL, ISO and Taxi) have been 

undertaken and the results in terms of chair wheel loads, occupant Shoulder loads and 

bulkhead loads have been presented respectively in three international papers 

[1][2][3] and also contributed to the ISO working group. The paper of FEA model [4] 

was published in the böok, Modem Practice in Stress and Vibration Analysis. The 
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application of finite dement module in M A D Y M 0 3 D to tyre model was presented in 

a paper [6]. 

• Work, has commenced on the effect of side impact of Child Restraint System 

(CRS) by a CVS model using M A D Y M 0 3 D package. The results have been 

presented in a paper [5]. This CRS model will be further extended to WTORS. 

• The différent anchorage configurations (B pillar and floor-mounted) in FFF 

impact have been firstly presented to make comparisons with the performance of the 

current Systems. Analysis of the results suggested that despite significant 

improvements in many aspects, attention should be focused on the Shoulder loading 

experienced by occupants in some types of LTD occupant restraint configurations. 

• The new concept of taxi RFF impact of WTORS has been presented. The 

methodology of experimental and computer models have been designed by the author. 

It comprises the development of an improved wheelchair model to represent a 

variation of wheelchair structure, an FEA model of seat belt and a modelling of 

pneumatic wheelchair tyres. 

• Experimental work has been carried out using both stiff and relatively flexible 

production wheelchairs both in FFF and RPF impacts. This work has been validated 

and supported by FEA model and CVS models. 

• TNO-10 dummy datábase was developed using static test results and Hybrid II 

dummy datábase. 

• One of the areas in which an improvement was achieved is a means of 

modelling of the contact and friction forces exerted between the ground and the 

pneumatic tyres. This has been conducted using non-linear spring tyre model. Another 

area for improvement was the modelling of belt restraint Systems. This has been 

simulated by Finite Element (FE) belt mesh using M A D Y M 0 3 D code. 

• The velocity profile analysis helped to explain why the wheelchair and 

dummy expérience accélération amplification relative to the sied. Considération of 

forces using the computer model showed why quasi-static analysis is insufficient in 

WTORS design. Energy principies were used to explain why steeper tiedown Systems 

subject restraints to a more severe crash environment. Empirical observation of 
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kinemetic response of WTORS was employed to explain why Shoulder belt load at 

floor-mounted configuration exerts higher load than that at B pillar configuration. 

The above research progresses have been made to help advance the field of 

WTORS simulation technology, so that one day, the disabled people in the vehicles 

can be guaranteed the same level of protection to the able-bodied occupant in the 

event of an accident. 

12.2 Expérimental Conclusions 

A quantitative assessment of the test results was performed using a standard 

Statistical analysis of maximum Outputs for a given test séries. A time history post-

processor plotted Outputs at discrète intervais over the course of the entire event. This 

qualitative assessment provides a better évaluation of repeatability because output 

parameter responses could agrée in différent levels and in certain time. 

The test programme proved conclusively to replicate test results when using a 

füll chair-dummy System. It should be noted that injury mechanism study has been 

only conducted in investigation of WTORS restraint injury using A T D résultant 

accélération results and visual observations of impact tests. A comparative injury 

parameter Aa has been proposed and defined as the absolute values of the déviation 

between the peak résultant accélération forces applied to the ehest and head within 30 

ms time period for a given input severity. It has been used to estimate the potential for 

a particular injury mechanism, and then to evaluate the design of wheelchair and its 

restraint Systems. Further computer models will be used to validate this proposai. 

The effect of the following five éléments (including sied crash puise) on the 

loads in WTORS evaluated both by expérimental work and computer models, led to the 

following conclusions. 

12.2.1 Wheelchair structure 

• The Surrogate wheelchair testing based on the TRL design indicated that the 

rear axle and front castors in the T R L Surrogate wheelchair were insuftïciently 

reinforced. 

• Production wheelchairs were crash tested both in FFF and RFF impacts. They 

validated the Surrogate system's ability to simulate the real crash dynamics. The 
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production wheelchair tests provided insight into possible modes of structural failure 

of the chair seat and backrest, which may cause injury to the occupant. 

• Expérimental tests indicated that the tyres in the wheelchairs were shown to 

have significant effect on WTORS crash performances. 

• Analysis suggested that the wheelchair backrest material and structure should 

be improved to minimise occupant injury when the occupant rebounded during FFF 

impact. This could be satisfied by using an energy absorbing backrest during an 

impact. At présent, no wheelchair designs satisfy this requirement. The higher 

hystérésis backrest model was developed to meet this requirement. A quasi-static sub­

System test of the wheelchair backrest was conducted during the initial engineering 

phase. 

• ISO test results indicated that the peak value of the total vertical load on the 

seat (seat sum load) in the ISO Surrogate wheelchair (ISO-SWC) was 26.4 kN at crash 

severity of 51 km/h, 21g. Il was expccted to be considerably higher than those in the 

manual wheelchair (M-W/C). This suggested that the seat cushion in the M-W/C 

absorbed some energy from impact and reduced the peak seat loads. 

• At a AV of 32 km/h and sied décélération of 17g (crash severity Level IV) 

RFF impact, the maximum bulkhead load was recorded on impact as 75 kN in the 

ISO-SWC and 25.4 kN in the M-W/C. The increase in mass ratio of 4.5 from 15 kg to 

83 kg, resulted in about double increase of bulkhead loads. Relatively large 

différences between ISO-SWC and M-W/C were found in the wheel loads (> 20 kN). 

• The relatively large différences between a wheelchair without handles and one 

with handles were found in the ehest résultant accélération (> 30g) at the crash 

severity Level V of RFF impact. 

12.2.2 Wheelchair tiedown Systems 

• The single rear tiedown load generated in the 45-degree rear tiedown 

configuration (3.7 kN at crash severity of 32 km/h, 18g) was higher than those in the 30-

degree case, the maximum différence being 12 % of the 30-degree values. 

• The geometry of restraint Systems in T R L tests indicated that a single rear wheel 

load generated in the 45-degree case (9.5 kN at crash severity of 32 km/h, 18g) was 
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higher than that in 30-degree case, the maximum différence being 56 % of the 30-degrec 

values. 

12.2.3 Occupant 

• TRL test results indicated that the single rear wheel load (12.4 kN at crash 

severity of 32 km/h, 20g) was greater than the frontal one (8.4 kN) in the WTS (without 

dummy). When the dummy was présent (WTORS) the effect of mass transferred from 

the rear to the front partially reduced the rear wheel loads 23% at the same crash 

severity. 

• Few A T D dummies existing today would give an appropriate response of 

spinal injury assessment in a crash test. Further Computer Interfaced Dummy (CID) 

mathematical models nced to be developed with the sub-system tests, combined with 

geometry requirements in order to address différent disabled occupant postures. The 

relative movements between adjacent vertebrae and in the occipital joint should be 

minimised. The curvature of the spine should change as little as possible during the 

impact. 

12.2.4 Occupant restraint System 

ISO test results indicated that the diagonal top strap anchorage configurations 

had a significant effect on the dummy's Shoulder load, the values of the diagonal strap 

tensions, dummy movement and front wheel loads. AU thèse values were measured at 

the time of peak T i load. 

• At ail values of sied velocity change the floor-mounted configuration 

exhibited a peak Shoulder load greater than that for the B pillar configured System. At 

a crash severity of 34 km/h, 13g the value (6.14 kN) was higher by 96 %. 

The floor-mounted diagonal top strap load (Ti) is 5.89 kN, the diagonal 

bottom strap load (T 2) is only about one third of T i , while in the B pillar case T 2 =1/2 

T i , the total Shoulder bclt load (Ti + T 2 ) is about same value (7.6 kN) both floor-

mounted and B pillar configurations. 

• At ail values of sied velocity change, the floor-mounted configuration 

exhibited a maximum dummy head target excursion greater than that for the B pillar 

configured system. At a crash severity of 34 km/h, 13g the value of head excursion 
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(450 mm) was higher by 52%. This value was not reached by the B pillar System. At a 

crash severity of 27 km/h, 1 lg the value of the head excursion (392 mm) was higher 

by 44%. 

The frontal wheel loads exhibited similar variations. The peak value was 4.7 

kN (about double the value of B pillar system). It indicated that the mass was 

transferred to the front of the wheelchair in the floor mounted shoulder belt system as 

the maximum head target forward excursion was reached. 

• In gênerai the total peak load in the wheelchair seat for the floor-mounted 

configuration was 9.11 kN at a crash severity of 34 km/h, 13g, which was 19% 

smaller than that in B pillar configuration. The loading phase for the former acted 

over 25 ms longer period (145 ms) than the latter one. 

Taking into account the implications of the above conclusions on the occupant 

and the wheelchair it is considered that the B pillar anchorage of the occupant 

diagonal strap is superior to the floor-mounted configuration. 

• It is important to ensure there is adéquate support for the wheelchair 

occupants head and back. This means in practice that the headrest needs to be fixed 

on the bulkhead reaching at least a height of 1,200 mm from the taxi floorboard. At a 

AV of 32 km/h and sied décélération of 20g (Level V) RFF impact, the maximum 

bulkhead load was recorded on impact of 28.5 k N without headrest and 25.4 kN with 

headrest, a tiedown load on rebound of 4.3 kN without headrest and 2.1 kN with 

headrest. The chest résultant accélération (73g) at time (100 ms) is higher than the 

head value (50g). If the headrest was put on, the peak value of head accélération was 

increased to about the same value of chest accélération (75g), due to higher stiffness 

material characteristics used in the headrest. The relatively large différence between 

wheelchair with headrest and one without was found in the head résultant accélération 

(> 20g). 

• The webbing restraint device used in RFF impact has potential as it is simple, 

rapid to install and has very few risks of incorrect use. The enormous advantage of a 

webbing device is that it does not occupy too much space. 
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12.2.5 Sied crash puises 

• TRL test results indicated that for the crash severity 25 km/h, 7g (Level I) and 25 

km/h, 10g (Level II) the front wheel loads (2.6 kN and 5.6 kN) were less than those at 

the rear ones (9.4 kN and 12.8 kN). However, when sied décélération increased to Level 

IH (32 km/h, 18g), the test results suggested that dummy mass transferred to the frontal 

wheelchair, relatively increased the frontal wheel loads 278% to about the same value of 

rear wheel load (10.8 kN). 

• It can be seen from ISO test results that the wheelchair seat loads varied 

considerably as a function of crash puise. From the crash severity of 34 km/h, 13g to 

51 km/h, 21g the total vertical load on the seat increased 47% to 26.4 kN, and more 

load occurred in the frontal seat than the rear. 

12.3 Mathematical Mode! Conclusions 

The F E A and CVS models provided an efficient tool for the investigation of 

the impact properties in a WTORS presented in this thesis. 

- FEA model conclusions 

• The value solutions, such as, CG, MOI and loading positions, can be estimated 

from this model to investigate différent parameter effect on the wheelchair structure. 

• The interconnection between the FEA program and CVS multibody system 

within M A D Y M O environment was achieved using support and contact conditions. 

- CVS model conclusions 

The simulation produced by D Y N A M A N compared reasonably well to the 

actual test results from the full-scale sied tests providing some corrélation had been 

conducted. It is difficult to produce a simulation true to life because of the limitation of 

this software. The wheelchair-occupant model using M A D Y M 0 3 D program proved to 

be a good estimator of actual expérimental results. The model was utilised to study the 

relative effects of crash puise différences on the variability of maximum responses. It 

was found that crash puise variations account for much of the overall variation in loads 

and décélération, while having only a negligible influence on maximum excursions. 
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• The CVS modelling of the TRL wheelchair considered eleven (11) anchorage 

locations for shoulder belt restraint in the FFF impact. The optimum position was 

shown to be 17-degree above the occupant shoulder level which is lower the current 

typical B pillar position. 

• The CVS models generated higher loads than those generated in the sled tests, 

except in the case of the resultant chest acceleration although CVS model replicated 

the bouncing behaviour of the ISO-SWC. It can be expected by rigid multibody model 

used. The increase of diagonal top strap tensión (Ti) is in the order of 14% of the 

experimental valué. The máximum chest x-component acceleration difference 

between WTORS model and sled experimental results was 31% smaller using 

D Y N A M A N and 15% smaller using M A D Y M O . 

• One effect that has so far been neglected is the belt slippage because of 

anchorage deformation and T R L surrogate wheelchair axle bending during impact. 

This effect is a non-linear effect that could not be avoided. It is rather awkward to 

handle using CVS multibody models and it will be further simulated using explicit 

finite element models. 

• The major limitations of the CVS technique come by the lack of explicit 

structural models although some finite element modules are available in 

M A D Y M 0 3 D . The wheelchair structure presented in CVS model here was 

effectively modelled as a rigid structure. In reality the production wheelchair was 

susceptible to both elastic and plástic deformation. The finite element model of the 

wheelchair and occupant restraint system will be coupled with CVS model in the 

future. 

12.4 Further Work 

The computer modelling and validation process are not completed although 

research projects have been successfully accomplished. The current model is being 

refined. The objective of WTORS model development is to design the methodology 

to simúlate WTORS impact. The next step of this study is to proceed with a 

systematic investigation by varying the different parameters, which are included in the 

model, and then to exhibit the structure design objectives. WTORS researches need to 

be continued in the following áreas: 
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• Children with disabilities 

Currently there are no requirements in UK legislation for the performance of 

occupant restraints for children with disabilities. What does exist is a Code of 

Practice: the safety of passengers in wheelchairs on buses (VSE 87/1). It is recognised 

that some systems for children with disabilities might comply with more stringent 

requirements. 

• Computer modelling technique development 

An important future application of CVS technique will be in the development 

computer modelling of the RFF impact protection as there are specific injury risks 

associated with this impact crash. Another application of CVS technique will be in the 

development of different restraint systems, such as head restraint and airbag. The 

explicit FEA modelling of the wheelchair seat and backrest need to be developed to 

interconnect with CVS models. Belt slippage will also be modelled using the explicit 

F E A method. A biomechanical simulation of an occupant will be developed with a 

segmented spine simulation of human-like motion to ensure that the design 

characteristics result in benefits to reduce risk of spinal injury. 

• Optimisation technique development 

The technique of optimising occupant protection will be used in WTORS 

model. The injury assessment functions will be improved to assess the risk of injury 

from impacts, especially for spinal injury. Some new injury parameters will be further 

investigated. The bearing area contact algorism will be optimised to meet the 

requirements of occupant safety. This will be conducted by experimental work in 

association with commercial industry. 

• Wheelchair occupant injury database and wheelchair crash impact database 

The wheelchair occupant injury database will be created using different 

sources, such as wheelchair and minibus manufacturers, police accident reports, 

insurance company reports, hospital injury reports, questionnaire to wheelchair users, 

crash test data, etc. 
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The wheelchair crash impact database will be further developed using 

computer models and industry impact test results. 
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Appendix 1A 

Appendix 1A: ISO Standards for WTORS 

A Committee Draft standard, ISO/CD 10542-1, has been produced by the 

International Standards Organisation (ISO) for Wheelchairs Tiedown and Occupant 

Restraint Systems (WTORS). The crash pulse in this standard, based on that of the US 

Minivan (People Carrier), has a velocity change of 48 km/h and a peak décélération of 

28g. Current thinking of the severity of the crash pulse suggests that a mini bus 

exhibits a velocity change of 32 km/h and peak décélération of 20g whilst a large 

transit bus 32 km/h and 10g respectively. Thus the severity of the crash pulse used in 

ISO/CD 10542-1 exceeds that of a typical bus crash. It would be expected that any 

restraint system whose performance is satisfactory in terms of the criteria in ISO/CD 

10542-1 would be appropriate for use in buses. The Shoulder belt positions on dummy 

are defmed in this standard and shown in Figure 1A . 

This Standard, prepared by Technical Committee ISO/TC 173, places 

particular emphasis on design requirements, test procedures, and Performance 

requirements with regard to the dynamic Performance of WTORS in a frontal impact. 

The Performance of WTORS with rearward facing wheelchairs involved in frontal 

impacts, Performance of WTORS in rear, side, and rollover impacts, and Performance 

Figure 1A Shoulder belt positions on dummy 
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Appendix 1A 

of WTORS with wheelchair-seated children will be addressed in other parts of this 

Standard. Transportation related requirements for wheelchairs that remain occupied 

during motor vehicle transportation are specified in another Working Draft ISO 

standard (ISO W D 7176/19). 

The basic requirements and excursion limits specified in ISO draft standard 

10542 are indicated in Table 1 A, which forms a checklist written in test reports. These 

limits are based on a typical safe ride down envelope available in a bus. 

Table 1A: WTORS requirements (ISO/CD 10542-1) 
Section 6 Requirements results 

6.1 Did the A T D remain in thc wheelchair and thc wheelchair remain in an 
upright position on the sied? 

y/n 

6.2 Did any componenls with a mass in exccss of 100 gm delach? y/n 

6.3 Did any adjustablc parts movc from their pre-test positions? y/n 

6.4 Was there any leakage from thc batteries? y/n 

6.5 Did any load bearing part of thc wheelchair fracture completcly? y/n 

6.7 Was the A T D releascd from thc occupant restraini and removed from the 
wheelchair without the use of tools? 

y/n 

6.8 Was thc wheelchair removed from the sied without thc use of tools? y/n 

6.9 Was thc horizontal movement of thc wheelchair (X w c ) less than 200 
Was Üie horizontal movement of dummy knec (X]^ ) less than 375 mm? 
Was the horizontal movement of dummy head (X h e a d ) less than 650 mm? 

y/n 

6.10 Was the ratio X^JX^ >1.1 ? y/n 

remark If the system met the requirements of 6.1 to 6.10, it could be considered lo 
have exhibited a satisfactory crash performances 

conclusion The system met (or not mel) the requirements of 6.1 to 6.10 . y/n 

Notes: 

X w c is the horizontal distance relative to the sied platform between thc contrast target placed at or ncar 

point P on the S u r r o g a t e wheelchair at time lo, to the point-P target at the time of peak wheelchair 

excursion. 

Ximet is thc horizontal distance relative to the sied platform between thc A T D knee-joint target at time 

to, (o the knee-joint target at the time of peak, knee excursion. 

Xhead is the horizontal distance relative to the sied platform between thc ATD's head above the nose at 

time lo, to thc most forward point on the ATD' s head at the time of peak head excursion. 
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Appendix IB: Crash Victim Simulation (CVS) Programs 

Recently, there has been significant progress in increasing the reliability and 

accuracy of computer simulation of crashworthiness in various crash modes. These 

are due to improvement both computer hardware and computational software. Crash 

Victim Simulation (CVS) can be used to simulate crash situations to a high degree of 

accuracy and to assess injuries. It can also be used to assess various restraint systems, 

including seat belts and wheelchair tiedown restraint system. The multibody 

technique has been used for the simulation of the gross motion of systems of bodies 

connected by complicated kinematic joints and the finite element techniques for the 

simulation of structural behaviour. 

Articulated Total Body (ATB) was developed by Biomechanics Branch, 

Biodynamics & Bioengineer Division, Harry G. Armstrong Aerospace Medical 

Research Laboratory (Ohio, USA). A T B creates compatible binary files, such as, time 

intervals print file (.006) for results and error messages, picture file (.001), time 

history file (.008) and restart file (.009). The post-processor, ATBPP, has three basic 

functions: View, Plot and Tables. A T B is a lumped mass model for simulating three 

dimensional (3D) motions of connected rigid elements. The model uses a hybrid 

analytical formulation based on Newton's equations of motion with constants. The 

various body segments are represented by lumped mass elements connected joints. 

Each rigid element is assigned the mass and inertia properties of the equivalent body 

segment. The D Y N A M A N package (Version 3.0) is a menu version of the A T B 

( D Y N A M A N User's Manual, 1991), developed by General Engineering and Systems 

Analysis Company (GESAC, USA). D Y N A M A N has four modules: Input (DYNfPP), 

Simulation (DYNASIM), Output (DYNOPP), and Generator of body data 

(BODGEN). D Y N A M A N use vector exponential variable time step integrator. Screen 

resolution was set in E G A lower resolution (640x200) or EGA high resolution 

(640x350) or V G A (640x480). 

In 1993 the first commercially available version of M A D Y M O was released 

from TNO, the Netherlands (Lupker et al, 1991). The most recent M A D Y M O version, 
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v5.3, was released in 1998. M A D Y M O crash simulation package has proved to be a 

very valuable tool in the development of the new occupant restraint system, in 

comparison with expensive and time consuming sied testing. 

Computer simulation is a valuable tool for providing insight into the effects of 

crash puises variations on output parameters. The results of the simple spring model 

were only considered as référence because they are based on simplifications of a very 

complicated System and environment. Based on the knowledge of the theory of 

mechanical vibration and energy principles (Appendix 6), the spring model was 

developed using dynamic program, such as F E A approach, A T B / D Y N A M A N models 

and M A D Y M O models. The modelling flow diagram using CVS programs was 

designed in Figure 1B.1. Figure 1B.2 introduces three CVS programs to be used in 

test design and in the dynamic analysis of the wheelchair occupant System. The 

accurate représentation of this system requires component testing, model validation 

and user expérience. The structure of the D Y N A M A N input file is designed in Figure 

1B.3. The segment structure of the program is displayed in Figure 1B.4. 
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Theory estimâtes, 

Componcnt test data, 

F E A model results 
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Input 
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processor 
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Select ^ 
Functional tablc/graph 
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Simulation ̂  
A T B / 
n v M Ä \A A M 

r Output ^ 
Posl-processor 
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Figure 1B.1 C V S modelling flow diagram 
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ATE 
Data cards 

' A 
RUN 

CONTROL 

INPUT 
DATA 

DYN A M A N 

A TB MENÜ 
VERSION 

B. 
OCCUPANT 
DESCRIPTION 

D. 
CONTACT 
DEFINITIONS 

T. 
C. 

VEHICLE 
MOTION 

E. 
FUNCTION 

F. 
ALLOWED 
CONTACTS 

G. 
INITIAL 

CONDITIONS 

Z 
H. 

TIME HISTORY 
SPECIFICATIONS 

END 
INPUT 

M A D Y M O 
Input 

INERTIAL SPACE & 
NULL SYSTEMS 

SYSTEMS 

FORCE 
MODELS 

F E M 
MODELS 

CONTACT 
INTERACTION [ 

I 

OUT 
CONTROL 
PARAMETERS 

BELTS 

zu 
IN JURY 

PARAMETER 

Figure 1B.2 Structure of CVS models input file: Overview 
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General 
Input Data 

RUNINFO 

SEGMENT 

MOTION 
(Sied pulse) 

ENVIRONMENT 
(Plane, harness) 

FUNCTION 
(Plane, ellipsoids) 

CONTACT 

SET-UP 

Figure 1B.3 Structure of DYNAM AN input file: Overview 
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SEGMENT 

RUNINFO 

Data 

Jt. Type & 
Location 

Jt. Torque 
Properties 

( Jt. Viscous 1 
Propertics | 

Inertial 
Properties 

Semi-axes 

Ellipsoid 
Positions 

Definition 
(Jt. type) 

Location 

Orientation 

1 
Torsion L Flexure Torsion 

Spin Initial angle Spin Initial angle 

Process, Notation, Spin, General 

Figure 1B.4 Structure of DYNAMAN input file: Segment 

248 



Appcndix 2 

Appendix 2: Modification of ISO Surrogate Wheelchair (SWC) 

This Appendix provides design, dimensions, material, and performance 

spécifications for the TSO Surrogate Wheelchair (SWC). Thèse spécifications provide 

a repeatablc and reusable device that represents a typical adult sized power 

wheelchair. Détails for the design, fabrication, and maintenance of a suitable surrogate 

wheelchair are available in Surrogate Wheelchair Manual (1994). 

A2.1 ISO Surrogate Wheelchair Requirements 

The surrogate wheelchair should meet the following requirements: 

a. be of rigid durable construction, so that there is no permanent déformation of 

the frame, seat surface, or seat back in a 48 km/h, 20g frontal impact test with 

a 76.3 kg ATD positioned and restrained in the SWC, 

b. have a total mass of 85 ± 1 kg, 

c. comply with the dimensions shown in the drawings (DRG No. ISO-01, 02, 03) 

d. allow for adjustment to accommodate components and end fittings of différent 

types of tiedown Systems, 

e. provide two front securement points and two rear securement points for four-

point strap-type tiedowns, 

f. provide pelvic restraint anchor points on both sides of the surrogate 

wheelchair, 

g. have a centre of gravity located 142 ± 25 mm forward of the rear axle and 287 

± 25 mm above the ground plane for the range of frame-to-floor clcarance 

adjustments allowed, 

h. have a rigid, flat seat surface with dimensions that is oriented at an angle of 4 

±1.5 degrees to the horizontal (front end up) when the SWC tires are inflated 

as specified in (m) and (n) below and are resting on a flat horizontal surface, 
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I. have a rigid oriented at 8 ± 1.5 degrees to the vertical when the inflated tires of 

the SWC are Ínflate as specified in (m) and (n) below and are resting on a flat 

horizontal surface, 

j . have a 20 to 30 mm thick firm rubber pad fixed to the front surface of the rigid 

seat back, 

k. have a détachable but rigid mounting plate for placement of a side-view target 

at the location of référence point P outboard of tiedown and restraint System 

components on either sidc of the SWC, 

1. have pneumatic front tyres that, when inflated to 760 ± 15 kPa with the 

unoccupied surrogate wheelchair resting on a flat horizontal surface, have a 

diameter of 230 ± 10 mm, a width of 75 ± 5 mm, and a sidewall height of 54 ± 

5 mm, 

m. have pneumatic rear tyres that, when inflated to 415 ± 15 kPa with the 

unoccupied surrogate wheelchair resting on a fíat horizontal surface, have a 

diameter of 325 ± 10 mm, a width of 100 ± 5 mm, and a sidewall height of 

70 ±5 mm. 

A2.2 Modification of ISO Surrogate Wheelchair 

The earlier version of ISO surrogate wheelchair (refcrred to as ISO-before) 

seems not suitable to general requirements of European wheelchair occupants as it is 

too big, which it is 50 mm higher than the conventional power wheelchairs in UK. lt 

is désirable to modify the ISO-before (DRG No. ISO-01, ISO-02, ISO-03). The 

modified wheelchair (ISO-after) is shown in D R G No. ISO-04 and ISO-05. This 

modified SWC was considered to be more représentative of power wheelchairs than 

the ISO-before model, which was under considération. This Appendix describes 

modifications to the ISO-before model so that it conforms to the dimensions in the 

standard. The geometry modification of ISO-SWC are summarised as follows: 

• The wheel base was shortened 

• The centre of gravity was lowered 
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• The securement points were lowered and moved closer together on the same 

level 

• The seat length was shortened 

• The seat was lowered 

• The armrests and footrests were modified similar to the ISO-before seat 

A2.3 Moment of Inertia (MOI) Calculations for the Modified Wheelchair 

The time required for the system to reach a given speed of rotation is 

proportional to the mass Am and to the distance r. The product r 2Am provides a 

measurement to the inertial of the system (résistance). This product is called the 

moment of inertia of the mass Am with respect to the axis (I). 

1 = Jr 2dm (A2-1) 

AU moment of inertia are relevant to the centre of its mass. The C G position of 

the wheelchair was found from a suspension lifting method. It was also calculated and 

validated using weight measurement method. An ISO surrogate wheelchair consists of 

the following three basic éléments: 

1) Tubes (IIollow cylinder): SAE 1010, (j) 22 mm, thickness t = 2.8 mm (0.109"), tube 

length L, tube volume: 

V = k (R2 - r 2 ) L = 7t t (2R -t) L 

The weight of tube: 

W = p V 

The mass of tubes: 

m = W/g 

put the mass values into the following formula and get Ix, Iy, and I z (see DRG. No. 

ISO-01 and ISO-02). 

I x = 1/2 m (R2- r2) Ix = I x + my'2 (A2-2) 
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Iy> = 1/12 m[3 (R2- r2) + L] Iy = Iy, + mx'2 (A2-3) 

Iz. = 1/12 m[3 (R2- r2)+ L] Iz = lr + m(x'2 + y / 2) (A2-4) 

2) Prism: S A E 1020, 22 x 22 mm, length L 

put the mass values into the following formula: 

Ix = 1/5 m b 2 (A2-5) 

Iy = 1/12 m (L 2 + b2) (A2-6) 

I7 = 1/12 m (L 2 + b2) (A2-7) 

3) Rod: S A E 1020, $ 22 mm 

Rod volume: 

V = JtR 2 L 

The mass of tubes: 

m = W/g 

put the mass values into the following formula: 

Ix = 1/2 m r 2 (A2-8) 

Iy = \} = 1/12 m (3r2 + L 2) (A2-9) 
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S2 
VS1 

DRAWINGN BY SIGN: T I T L E : DRG. NO. 

M I D D L B S E X 
U N I V E R S I T V 

Jun Gu 
ISO SWC (before modification: 
ISO-before) 

ISO - 01 

RSEI. MATER 1 A L DIMENSIONS IN: mm (in) ISSUE DATE CHANGE 
MME DATA: 10/08/96 TOLERANCES: ± 5 mm DRG. NO. 

ro 
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C l SET HO SU (S) 279 11 11 1 91 279 597 VS1 SID VR SU (S) 11 11 152 1 144 79 85 
C2 FR SET T U 11 218 11 1 24 520 544 VP1 SID VR SU (P0 11 11 152 1 144 79 85 
C3 SET HO SU (P) 279 11 11 1 91 279 597 SS3 SID DI SU (F) 11 11 191 ] 74 417 491 
C4 RR SET T U II 218 11 1 24 6 32 PP3 SID DI SU (R) 11 11 191 1 74 417 491 
B l B A K T U (S) 11 11 229 1 938 853 85 BDSS B A K DIAG SU (S) 11 11 203 1 68 79 147 
B2 B A K LO T U II 381 11 1 215 15 229 BDSP B A K DIAG SU (P) 11 11 203 1 68 79 "Ï47 

B22 B A K LO T U 11 381 11 1 215 15 229 FHS FOOT SUP (S) 11 11 0 15 126 268 
B3 B A K T U (P) TT 11 229 1 938 853 85 FSTS FOOT SUP (S) 11 11 191 1 ' 62 679 ~Ya\ 
B4 B A K UP T U 11 218 11 I 24 6 32 FHP FOOT SUP (P) 11 11 15 126 268 
P2 BOT FR RD (P) 318 11 11 265 1241 1505 FSTP FOOR SUT () 11 11 191 ] 62 679 741 
P3 FR A R M T U (V) 11 11 292 1 326 232 153 FOOT FOOR SUT () 11 229 II i 26 11 17 1144 
P4 FR A R M T U (H) 254 11 11 1 85 232 509 XF1 LO X F R A M E (F) 11 254 11 1 85 435 520 
PS B A T FR SU 11 227 11 11348 18 11366 XF2 LO X F R A M E (F) 11 254 11 1 88 435 520 

PSI FOOT RST 11 227 11 1 26 541 567 XR1 LO X F R A M E (R) 11 254 11 1 88 47 132 
PS 2 B A T RR SU 11 227 11 11348 168 11516 XR2 LO X F R A M E (R) 11 254 11 

. . . . 

88 47 132 
BRS B A T SU RD (S) 127 11 11 1 94 44 138 PP2 SID DI SU (P) 0 0 0 1 74 115 188 
BRP B A T SU RD (P) 127 11 11 1 94 44 138 WH1 REAR W H (P) 152 76 152 0 15 147 15 
SI B A K T U B E (S) 11 11 310 1 379 276 171 WH2 R E A R W H (S) 152 76 152 3 15 147 15 
S2 BOT FR RD (S) 318 II 11 265 1241 1505 WH3 FRONT W H (P) 113 61 113 2 3 59 3 
S3 FR A R M T U (V)-S 11 11 292 1 326 232 153 WH4 FRONT W H (S) 113 61 113 " 2 3 59 3 
S4 FR A R M T U (H)-S 254 11 11 1 85 235 509 
PI B A K T U B E (P) ~11 l ï 310 1 379 276 171 

SS1 A R M DI SU (S) 11 11 254 1 97 303 403 
SS2 SID D I S U II 11 216 1 74 115 188 
PP1 A R M DI SU (P) 11 11 254 1 97 303 403 

X Y Z Ixx Iyy Izz X Y Z Ixx Iyy IZZ 
SEG. DESCRIPTION SEMI AXIS DIM. Wt. MOI SEG. | DESCRIPTION SEMI AXIS DIM. Wt. MOI 

M I D D L E S B X 
UN1VERBITY 

RSEL 
M M E 

DRAWINGN BY 

Jun Gu 

MATER IAL 

DATA: 10/08/96 

SIGN: 

MOI unit: kg mm1 

DIMENSIONS IN: mm 

TOLERANCES: ± 5 mm 

T1TLE: 

ISO SWC (bcforc modification: ISO-bcforc) 

DRG. NO. 

ISO • 02 

ISSUE 

DRG. NO. 

DATE CHANGE 
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454(17.9) 

DRAWINGN BY S1GN: TITLE: DRG. NO. 

MIDDLHSEX 
UNivanarrr 

Jun Gu 
ISO Surrogate Wheelchair 
(before modification) 

ISO - 03 

RSEL MATERIAL DIMENSIONS IN: mm (in) ISSUE DATE , CHANGE 
M M E DATA: 10/08/96 TOLERANCES: ± 5 mm DRG. NO. 



Appendix 2 

B A T T E R Y C O N F I G U R A T I O N , S T A N D A R D 

1. Wheelchair mass measured: 90 kg (198 Ib) 
2. Principal Moment (lb in2) and X - Y - Z direction 

about centroid: 
I x x = 8.2E6 kg mm 2 (28.3E3 lb in2) 
I y y =11.7E6 kg mm 2 (39.8E3 lb in2) 
I z z = 9.5E6 kg mm 2 (32.3E3 lb in2) 

3. Battery box is supported with two bars attached 
to the axle block 

4. Battery weighs: 4.16 kg (9.16 lb) 

DRAWINGN B Y SIGN: T I T L E : DRG. NO. 

M I O D L E S E X 
U N I V E R 3 I T T 

Jun Gu 
ISO S W C (after modification: 
ISO-aftcr) 

ISO - 04 

RSEL MATERIAL DIMENSIONS IN: rnm (in) ISSUE DATE CHANGE 
M M E DATA: 10/08/96 TOLERANCES: ± 5 mm DRG. NO. 

OS 
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454 (17.9) 

Notes: 
1. CG location relative to the rear wheel axle, tolérance is ±25 mm 
2. Italie dimensions are those after modification 

DRAWINGN BY SIGN: TITLE: DRG. NO. 

M I D D L G S E K 
U N I V E R S I T Y 

Jun Gu 
ISO SWC 
(after modification: ISO-after) 

ISO - 05 

RSEL MATER! AL DIMENSIONS IN: mm (in) ISSUE DATE CHANGE 
MME DATA: 10/08/96 TOLERANCES: ± 5 mm DRG. NO. 

K> 
-0 
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Áppendix 3: Load Cell Theory and Design 

A3.1 Wheel Load Plate 

During a Forward Facing Frontal (FFF) impact, 

the restrained whcelchair moves forward, and may 

even twist. The movement of the chair requires load 

cells to have a relatively large surface área over which 

vertical loads can be measured accurately and are able 

to withstand the inertial loads of the crash 

Figure 3A.1 wheel load plate e r i v i r o n m e r i L Unfortunately, typical load cells require 

the force points of application to remain constant and 

uniaxial, making them insufficient for recording wheel contact loads during a 

wheelchair crash. 

The initial design at the University of Strathclyde, U K was to measure vertical 

loads under hospital bed castors. Prior research at University of Virgina (UVA) was to 

record the vertical load under the wheelchair wheels (Figure 3A.1). 

A3.2 Wheel Load Plate Design 

According to the U V A prior design, the load plate was made at M U R S E L . A 

254 x 254 mm (10" x 10") plate of médium carbón steel (instead of aluminium 7075) 

was milled according to the spécifications of Figure 3A.2. Two cantilever sections, 

each 70 mm (2.75") width, are separated by a 254 x 114 mm (10" x 4.5") loading 

surface. The load plate was instrumented with K Y O W A strain gauges (RI, R3 on top 

and R2, R4 on bottom) arranged in a 4-arm Wheatstone Bridge Circuit. When the 

plate is loaded, the bending of the cantilever sections and the resulting strain causes 

unbalance in the bridge circuit. The location of strain gauges and the corresponding 

design of the Wheatstone Bridge Circuit ensure that only strains associated with the 

vertical loads produce a non-zero output milli-voltage (mV). The load plate was 

calibrated in standard materials testing machine to derive sensitivity relating the 

output (mV) to the load. 
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Unit: mm 

57 
44.5 

R4 

44.5 

R2 

w 

57 114 70 

Figure 3A.2 Load plate dimensions and strain gauge placement 

The load plates were redesigned at MURSEL. The thickness (b = 25 mm) was 

selected based on a maximum over-estimated vertical load of 24.5 kN. 

A maximum stress theory and classic beam bending theory were used, which 

assumed plastic deformation occurred when the maximum yield stress of the material, 

<Ty, was exceeded: 

omax < crv 
(A3.1) 

where Oy= 542 MPa (78,600 lbs/in2) for medium carbon steel. 

According to classic beam bending theory, 

CTmax — 
Mmaxy 

I (A3.2) 
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Where: Mmax is the maximum moment associated with the maximum load, 

Mmax ~ Vmax L 

Vmax is the maximum vertical load; 

L is the maximum moment arm 165 mm (6.5"); 

y = b/2 is the distance from the neutral axis where maximum strain 

occurs; b is the beam (plate) thickness 25.4 mm (1"); 

I = w b3/12 is the bending moment of inertia; 

w is the width of the beam section 70 mm (2.75"). 

substituting the above terms into (A3.2), the Vmax is: 

v _ b w amax 

'max — 
6 L (A3.3) 

Substituting the numerical values into (A3.3) and noting <jmtiX = Oy, we obtain Vmax = 

24.7 kN. If vertical loads exceed above 24.7 kN the load plate will be yielded. This 

design is a method of measuring vertical wheel loads only. The wheel load plate cells 

need to be modified through geometry (b, w, L) and mechanical design (<Tm a x) so that 

it could sustain over 40 k N vertical loads, which could happen in the rearward facing 

frontal impact of ISO surrogate wheelchair. 

The load plate was calibrated using a general compression testing machine. 

The sensitivities were verified by recording the output voltages using the M U R S E L 

data acquisition system during the calibration procedure. In this procedure, the plates 

were loaded in compression from 0 to 22.25 kN in a stepwise fashion, and the load at 

each increment was recorded. Each plateau in the output voltage time history was 

averaged. This average output voltage corresponded to the recorded load at the given 

plateau. 

A3.3 Tensile Load Cell ('dogbone') 

In order to measure the end loads at the anchorage of a belt, a tensile load cell 

in the form of 'dog bone' was designed in M U R S E L . The 'dogbone' is characterised 

in two ends bigger than the middle part. While it is loaded (pulled or compressed), the 
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middle part is initially deformed. The deformation could be measured in strain gauges 

bonded in the surface of the middle part. 

The transducer is manufactured from a fully heat treated aluminium alloy 

(HP15 WP). The plan of the transducer is in the form of 'dogbone' (12.5 mm 

thickness) and is shown in Figure 3A.3. On both parallel sections, 90 degree strain 

gauges rosettes are bonded. The gauges are connected in a full bridge circuit (RI, R3 

in the top, and R2, R4 in the bottom). 

( r t h i c k ™ 1 r 
R1/R3 

i — RIP. 
5 .5mn i s-

n ( . 

5 \ 

J 

59 nr 

T ^ i J 

59 nr _ 

i J 

Figure 3A.3 A 'dogbone' dimensions and gauge placement 

It was noted from the test results that 'dogbone1 was working well to provide 

results within 10% of those obtained from the Denton load cell. In this research 

programme, the 'dogbone' load cell was used to measure wheelchair tiedown end 

loads. The lap and diagonal belt loads were measured using standard Denton load 

cells. 
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Appendix 4: Running M A D Y M O and EASi -MAD 

M A D Y M O stands for MAthematical DYnamic MOdel, which has been 

developed by Crash-Safety Research Centre of TNO Road-Vehicles Research 

Institute, the Netherlands for the simulation of occupant response in vehicle impact. 

EASi -MAD is a pre- and post-processor for M A D Y M O , developed by EASi 

Engineering, USA. 

M A D Y M O V5.1.1 (1995) was initially installed on SUN station, Crunchl 

(UNIX system V release 4.0) in Middlesex University. The post-processors M A P P T 

could not run on SUN Workstation properly as the configuration failed in the 

University. The following administrative work and technical support were condueted 

by author before running M A D Y M O and E A S i - M A D . 

A 4 . 1 Administrative Work 

M A D Y M O V5.2 (1996) was installed on a Silicon Graphics Workstation 

(SGI), quark, based on Bounds Green Campus. M A D Y M O V5.2.1 (1997) and V5.3 

(1998) were installed in SGI, iris, based on M U R S E L , Hendon Campus. The machine 

was firstly networked through the path (/etc/config) and host address resolver 

configuration file. The interpreter for the postscript languages, Ghostscript 3.33 was 

downloaded via Internet to convert RGB image to PS file so that colour image could 

be printed out. The swapping area was defined for installation. The dials & buttons 

was connected to get dialbox on M A P P K . The x resources were also speeified for 

MAPPT. The user interface of MAPPT was implemented using x liberia. The x server 

resource database utility (xrdb) was used to add the spécifications: 

InstallDir/etc/mappt/config/platform/Xdefaults. 

The SGI iris (R4000 séries, sgi53 platform) uses the IRIX5.3 UNIX operating 

system and F O R T R A N 77 compiler (Table 4A.1). 
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Table 4A.1 Summary of SCI station 

MIPS R4600 Operating System Platform 

Memory (RAM): 32 Mb; 

Graphic: Indy 9-bit 

Processor: 132 MHz 

24 bit z buffer for hardware 

shading 

Implementation: IRIX ( 1991 ) 

Release: 5.3 

Provider: Silicon Graphics Inc. 

Designation: IP22 

System Identifier (printhid): 

1762245998 

Platform (local Host name, sys_id): 

Iris 

Local HosL Internet id (hostid): 

9e5c59ca 

A4.2 Setting Environment on Iris for MADYMO and EASi-MAD 

M A D Y M O and E A S i - M A D programs were installed in the super user, root. 

The environment variable M D H O M E has to be defined. In order to make this 

environment setting permanently, the following commands were written to 

${HOME}/.cshrc to run M A D Y M 0 3 D . The listing of .cshrc file is as follows: 

******* cshrc#rooi's csh setüngs## "SRcvision; 1.12 
ff source /setup_madymosource /sctenv_casi 
ff source /setcnv_madymo96sourcc /sctcnv_madymo52l 
setenv DISPLAY iris:Oalias madymo521 /rnadymo5-2-l/madymo_521/rnadyrno521******** 
sctcnv_casisetcnv EMHOME/madymo96/EASi-MAD17/EASi-MAO_l .7 
set paih = ( Spalh SEMHOME/bin )***«•»**** 
setenv_madymo52]sctcnv MDHOME/madymo5-2-l/madymo_521/sgi53 
set path = ( Spath SMDHOME/bin )**********«****** 

The environment DISPLAY should be set to iris before post-processor 

programs, M A P P K and M A P P T can be run. Two environment setting files have to be 

created: setenv_madymo521 and setenv_easi. 

The program M A D Y M O and E A S i - M A D were downloaded to the relative 

directories, madymo5-2-l and madymo96 respectively by the tape archiver (tar). The 

path structures listed in Figure 4A.1. 

The hostid 6909BD6E can be found in the program printhid in 

${MDHOME}/bin directory. The password file called pwfil in the directory 

S{MDHOME}/etc must be initialised before it could be run. The M A D Y M O 

password string was issued by TNO and edited in the following file pwfil: 

:5.2:6909BD6E:971031:FCFC7:CKZQARHB4MY74:M1DDLESEX SGI IRIS: 
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[root]: [madvmo521]: 

[madymoS-2-1] [sgi53] [appl] 

ïbinl mappk 

mappt 

$MDHOME 

[dbs] 

Tetcl 

madymo3d 

pwfil 

[inc] 

[Hb] 

fmaint 

[public) 

[usrl 

[root]: l E A S i - M A D 17]: 

[madymo96] [EASi_MAD_1.7]_em 

[binl em 

SEMHOME [res] 

letcl pwfil 

[sys] 

Figure 4A.1 The path structure of M ADYM O and EASi-MAD 

A4.3 Running MADYMO and EASi-MAD on Iris 

The input file for M A D Y M O , called D A T file, can be created using either 

standard text editor or E A S i - M A D program. The simulation command, madymo521, 

is used to run the DAT file. A System L O G file is created when the batch job is run. 

This file contains the commands which have been executed and any System error 

messages. Once the simulation completed, a report file (REP) will be created. This 

file contains an annotated listing of the input file and any error or warning messages 

that have occurred. Ai l other output files are optional and are specified in the input 

listing. 
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The actual CPU time dépends on simulation time required for the models. The 

elapsed time to complète the simulation varied depending on the simulation size. 

A4.4 Post-processor Output from MADYMO 

M A D Y M 0 3 D program itself only Outputs numerical and text files. A post-

processor, MAPPK, yields graphical Outputs which provide a visual représentation of the 

simulation. The configuration file was written to define différent colours of ellipsoids and 

planes to visual properly, The KFN3 file is one of the optional files that must be specified 

in the M A D Y M O input data. MAPPK can also hardcopy images into RGB file from the 

graph display. Once the pictures were displayed in a hardcopy menu, the picture could be 

directed to a postscript file or to postscript printer HP DeskJet 1600 C M . The command, 

'rgbtops', can be used to convert hardcopy files (RGB) to postscript format (PS), which it 

is black and white version. The interpolator program X V was used to transfer a RGB 

image to a postscript file (PS) on Crunch 1 by colour-map editing. 

In order to create time-history plot a separate post-processing System, MAPPT, was 

required. The output files from M A D Y M O are ordinary ASCII text, which are organised in 

a row format rather than a column format, which makes it difficult to use in a spreadsheet or 

similar software package. It is necessary to use a software programme to re-arrange the 

M A D Y M O data files into a différent format. This can be achieved in two ways, either by 

use of a PC based package called ASYST or by use of MAPPT. The latter one (MAPPT) 

was more convenient to use. Once the file was converted to a more accessible format, it 

could be read by any spreadsheet package. The data was then presented and analysed at 

will. The executive command to run MAPPT program is Smappt -graph LINACC. 

The processes of running M A D Y M O are summarised in Figure 4A.2. In addition 

to the MAPPT and M A P P K programs, six other software were implemented to présent 

the results. The kinematic pictures were taken from the monitor screen using a caméra 

mounted on a tripod for a steady images. A 100 mm lens was considered to minimise 

screen curvature. A slow shutter speed (1/30 sec or less) was set to eliminate screen 

blanking. A small aperture (fl/16) was also set to ensure the picture in focus. The images 
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were scanned and captured using Paintshop-Pro program, which it can be used to edit the 

image with colour professional. The edited images were pasted into Word documents. 

Create 

lnput fües 

Kuii 

MADYMü 

For tiine-hislory plots 

Files downloaded from SGI 
to PC via FTP or Kennit 

Specify 

X resources for MAPPT (xrdb) 
Run post-processor M A P P T 
forüme-history: LINACC, 
A N G A C C . FORCES etc. 

Présent 

the data by PC 
MS software 

Run 

Post-processor 
M A P P K for KN3 

For hardcopy 

Hardcopy 

RGB Images 
or Camera 

Converting 

RGB to PS format via 
Tops or Ghostcript, or 
X V on SUN station 
printing on PS printers 

Screen 
grabs 

Figure 4A.2 The processus of running M A D Y M O 

In order to présent the data using PC document files, the files on SGI Workstation 

were downloaded to PC using two ways, either by FTP or by Kermit (Table 4A.2). 
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Table 4A.2 Transferring files via FTP or Kermit 

Transfer crunchl files Lo V A X Transfer V A X files to PC via Kermil 

crunchl>ftp alphal 

ftp>put [files] 

ftp>quit 

crunchl>telnet vaxa 

vaxa>kermit 

mc-kcrmh>send [files] [altk]/ 

ms-kcrmit>record [files] 

ms-kcrmil 
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Appendix 5 A : Interprétation of Industry Test Results 

Test Séries: Depending on test requirements 

Set up: Production wheelchairs, surrogate or commercial restraint Systems, 

TNO-10 or Hybrid II and child dummy, sied puise within ISO/CD 

10542-1, Forward Facing Frontal (FFF) impact. 

Goals. • To test the performance of différent types of production wheelchairs 

on the behalf of industrial clients 

• To test production wheelchairs under the identical crash conditions, 

which were used to test the surrogate System 
• To produce a référence level against the surrogate results 

Table 5A.1 A sample of test report for clients 

TEST No: CLIENT: 
DATE: 
TIME(GMT): RUN No: 
TEST OBJECTIVE: 

TEST PULSE: ISO Draft Standard 10542 

WHEELCHAIR: Manufacturer: 
Modcl: 
Samplc/tcsts: 1/1 
Configuration: 

WHEELCHAIR 
TIEDOWN : Manufacturer: 

Description; 
Modcl: 
Samplc/tests: l / l 
Configuraùon: 

OCCUPANT 
RESTRAINT: Manufacturer: 

Description: 
Modcl: 
Sample/tcsts: 1/1 ' 
Attchocage: 

DUMMY: TNO 10/HYBRID I1/TN03-4 75 kg/15 kg 
TRANSDUCERS: Sied Accclcrometer Endevco uniaxial 7232C/CE38 
PHOTOGRAPHY: Video EktaPro 1000 High Speed Video 

C a mera/Analyser Stills Pcntax SFX 
TEST DATA: SLED Vclocity change (km/h)(AV): 

Stop distance (mm)(S): 
peak dcccleraiion (g): 
mcan deceleration(g) (AV2/2gS): 

DUMMY excursion(mm) Head: 
Knee; 

Whcclchair Max. forward mpvcment (mm): 
RESULTS Thcre arc (or not ) load carrying parts becamc fractured or separatcd during the impact. Bolh 

head and knee excursions werc within (or not wtthin ) the limits prescribed in ISO draft 
standard 10542 

CONCLUSION Salisfactory (or Not satisfactory) performance 
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M U R S E L carnes out work orí the behalf of industrial clients on wheelchair 

restraint systems in facing forward and rearward impact to simúlate real Ufe vehicle 

situations using a high speed impact rig. The result is observed in detail by high speed 

cameras, which can later be used to observe the impact in slow motion frame by 

frame. The data are recorded on a computer and graphs of the impact are analysed. It 

is comparable with the surrogate system under the identical conditions. A l l tests 

should meet the standard requirements of ISO/CD 10542-1 or ISO WD7176/19. The 

test repon is presented after testing and a sample of test report is shown in Table 

5A.1. The typical test results of Buddy wheelchairs are Usted in Table 5A.2. 

Table 5A.2 Buddy wheelchair test resulte 
Test/ 
run no. 

w/c type &-
supplier 

Sct-up Impact 
direction 

AV Mean 
Sled 

Peak 
Sled 

Stop 
distance 

Results 

km/h E g mm 

3192 
/RRSOl 

Buddy Buggy 
(25.3 kg, rear 
Wriedel 92, 
wheelbasc 550) 
Radchffc 
Rehabilitation 
Services 

ISO WD7176719 
W/C tiedown: UNWIN 
slottcd floor rail 
Dummv restraint: 
UNWIN double inertia 
rcel rail 
Dummv: TNO 3-4 (15kß) 

FFF 51.2 20.8 24.7 484 Xm 139 mm 
Xknn 253 mm 
.Yhead 416 mm 

Passed 

The typical test results of Sunrise wheelchairs are selected in Table 5A.3. It 

was found from the video footage that at the point (86 ms) all the loads (dummy and 

chair) were being taken by the lap and diagonal occupant belt. Henee the dummy is 

being forced back into the chair resulting in the chair backrest failure. 

The test measurements and test results of Cirrus wheelchairs are listed in 

Table 5A.4 and UNWIN restraint system are listed in Table 5A.5. The test results of 

manual wheelchairs are listed in Table 5A.6. The test results of Invarcare and S C N 

wheelchairs are listed in Table 5A.7 and Table 5A.8 respectively. 

In the above tables, the wheelbase is defined as the distance between the 

backward axle of the front wheel and the rear wheel axle. V is measured relative to 

the rear tyre axle, 'y' measured relative to the sied fore and aft centre line and 'z ' 

measured relative to the sied floorboard. The angle of shoulder belt is projected side 

view to horizontal, measured above the shoulder. The head excursion is the total 

forward change in position of the front nose of the head measured at the initial 

position prior to impact and at the time of maximum forward leading edge of the head 
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level. The P point is a "référence point that lies at the cross-sectional centre of a 100-

mm diameter cylinder positioned with the longitudinal axis perpendicular to the 

wheelchair référence plane such that the curved surface of the cylinder contacts with 

the backrest and the upper surface of the seat" (ISO/CD 10542-1, 1996). 

Table 5A.3 Suririse wheelchair test results 
Test/ 

run No. 
w/c t>pe 

& supplier 
Scc-up Impact 

direction 
Dclia 

• y 
Mean 
Sied 

Peak 
Sied 

Stop 
distance 

Results 

km/h R R mm 
3028/ 
S R M 4 

Power Tec 
F50 

(57 kg) 
Sunrisc 
Médical 

U d . 

ISO/CD 10542-2 
W / C tiedown: UNWIN 

fronl - lenglhcned 
standard sirap 

rcar - standard two ring 
on track clip 

Dummv restraint: 
Double inertia recl 
Dummv: TNO-10 

forward 
facing 

50.5 23.7 25,9 422 X„ 296 mm 
X*„ 214 mm 

portside tyre 
punctured 

backrest deformed 
rcarward 25° 

failcd 
3029/ 
S R M 5 

Spirit wilh 
S A E 

bracket 

ISO/CD 10542-2 
W / C tiedown: UNWIN 

- Rcarlok 
Dummv restraint: 

automatic double inertia 
réel 

Dummv: TNO-10 

forward 
facing 

50.1 20.4 23.3 485 X„ 48 mm 
XfcMr 177 mm 

front seat support 
frame deformed; 

backrest deformed 
battery box was 

rclcased from tray 
failcd 

3030/ 
S R M 6 

Power Tec 
F40 

ISO/CD 10542-2 
W / C tiedown: UNWIN 

bell 
front - standard strap 

rcar - standard webbing 
with karabiners 

Dummv restraint; 
Double inertia recl 
Dumrny : TNO-10 

forward 
facing 

51.1 21.7 26.3 450 N/A 
N/A 

Starboard armrest 
rotatcd outwards; 

rear frame rivets in 
the upper and lowcr 

rails failcd. 

failed 
3187/ 
SRM7 

New sprit 
M T - l 

(13.3 kg, 
whcclbase 

470) 

ISO/CD 10542-2 
W / C tiedown: UNWIN 
front - heavy duty belt 

rcar - two rings on track 
clip + karabiners 

Dummv restraint: 
Double inertia) réel 3pt 

Dummy: TNO-10 

forward 
facing 

50.5 20.9 24 469 X„ 48.8 mm 
Xt„ 125.5 mm 
X h Œ l J S78.5 mm 

rear portside wheel 
punctured, rear 

wheel axle bend 

failed 
3188/ 
SRM8 

New spril 
MR-3 

( i l kg,big 
wheel. 

whcclbase 
400) 

ISO/CD 10542-2 
W / C tiedown: UNWIN 
front - heavy duty bell 

rcar - two rings on track 
clip + karabiners 

Dummv restraint: 
Double inertial réel 3 pt 

Dummv: TNO-10 

forward 
facing 

49.6 19.4 22 490 X„. 97.7 mm 
Xtn 83.8 mm 
X htM4 495.6 mm 

rear axle littlc bent. 
shldbelt come off 

failcd 
3189/ 
S R M 9 

Sun RF2 
(64.8 kg, 
no tube, 

whcclbase 
530) 

ISO/CD 10542-2 
W / C tiedown: UNWIN 
front - heavy duty bell 

rcar - two rings on tracx 
clip + karabiners 

Dummv restraint: 
Double inertial réel 3 pt 

Dummv: TNO-10 

forward 
facing 

48 18.3 21 484 X„ 49.9 mm 
Xintt 135.7 mm 
X bud 535.5 mm 

battery corne out, 
backrest deformed 

failcd 
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Table 5A.4 Sied tests for Citrus wheelchairs (12/02/97) 
Handicare W/c units Cirrus Classic (widc) c-15699 

wide +D ring attachment 
+ neck resl 

Cirrus Classic (widc) c-
15692 wide+ Head rest 

Cirrus Classic (wide) c-
15691 widc + head rest 

Tesi/mn No: T3316/Siml T3317/Sim2 T3318/Sim3 

Wheclchair mass kg 37 37 37 

Rear wheel pressure kPa 276 276 276 
Wheclbasc mm 480 480 480 

backrest angle 10 vertical deg 30 15 15 
Seat pan angle to horizontal deg 15 15 15 

Seat surface height (St.) mm 560 560 560 
Rear wheel target: 

x: relative to target on sied mm 670 740 760 
z: mm 610 610 610 

P point target: 

x: relative to target on sied mm 650 650 650 
z: mm 587 590 590 

Wheelchair Tiedown Q'straint (Q5001-T 116139B) UNWIN restraint: 4-pt 
webbing and double inertial 

reel (3 pt) 

Q'straint (Q5001-113935)-
4- eye bolts 

Front tiedown: 
x: on floor/on chair mm 710/510 730/400 810/410 
y: on floor/on chair mm 280 165 280/200 

z: mm 250 290 290 

6f (40 - 60 deg) deg 46 36 35 
Rear tiedown length: mm 460 522 475 

x: on floor/on chair mm 400/80 470/50 420/60 
y: on floor/on chair mm 170/190 170/160 170 

z: mm 330 310 310 
Gr (30 -50 deg) deg 50 35 35 

Occupant Restraint 
H pillar: 

Angle of shld belt: 
behind ATD Shoulder (S,) 
above ATD Shoulder (S,) 

deg 
mm 
mm 

no slack, 
30 
280 
180 

UNWIN 
15 

400 
180 

no slack, 
15 

420 
180 

x: mm 470 370 500 

y: mm 310 310 310 
z: mm 1200 1200 1200 

Angle of pelvic belt to 
horizontal (lap belt) 

deg 50 43 45 

ATD Positioning TNO-10 TNO-10 TNO-10 

Head front nose: 
x: relative to target on sied mm 650 645 650 

/.: mm 1090 1090 1090 
Knee target: 

x; relative to target on sied mm 100 250 230 
7. mm 650 650 650 

TEST RESULTS 
Delta ' V km/h 48.9 48.9 49.2 

peak g g 24 23 24 

stop distance mm 431 484 472 
Excursion (from video) l pixel (pxl) = 7.14 mm l pxl = 7.40 mm 1 pxl = 7.55 mm 

X w c (< 200) mm 63 45 66 

X w (< 375) mm 243 235 185 
X h e i û (<650) mm 322 319 333 

visual observations Neck rest (350 g) out 
dummy back 20 deg morc 

Front middle tubc bent, Front middle tubc bent; 

271 



Appendix 5A 

Table 5A.5 Sied tests for UNWIN restraint System (18/02/97) 
TEST SET-UP unils T3320/UN56 T3321/UN57 T3322/UN58 

Wheelchair model Rossci Bonnyman/Travcl 
(black) 

Sunrisc Medical/ Spirit 
(green) 

ISO Surrogate 
(modified) 

Mass kg 24 (no armrest) 38 with armrest 85 

Rear whecl pressure kPa 276 276 414 

Wheclbase mm 445 485 530 

Backrest angle to vcrlical deg 10 10 10 

Seat pan angle to horizontal deg 10 10 0 

Seat surface height (St. cross) mm 450 460 470 

Rcar wheel target: 

x: relative to target on sied (datum) mm 780 775 1200 
z; mm 140 150 155 

P point target: no armrest 

x: relative to target on sied mm 670 850 

z: mm 505 525 

Wheelchair Tiedown UNWIN double lock clamp UNWIN double lock clamp Easilok II NUB14/77 

Clamps or Easilok Q/ATF/DL/310/R Q/ATF/DL/3I0/R 
x: on floor/on chair mm 178/182 225/227 380/80 

y: on floor/on chair mm 165/230 165/225 165 
z: mm 230 240 200 

Occupant Restraint UNWIN 2-inertia recl UNWIN 2-incrtia reel Static L/D 

Under B pillar Ring: 
Angle of shld belt: top/botiom 

bchind ATD Shoulder: 
above ATD Shoulder: 

deg 
mm 
mm 

3-ptQ[R/3H/ATF/WH 
0/50 
200 
0 

3-pl QIR/3H/ATF/WH 
-13/56 

180 
0 

5/55 
slack 75 block. 

B pillar 
x: mm 325 330 480 

y- mm 300 300 180 

z: mm 1200 1200 1150 

Lap belt: slotted floorrail slotted floor rail slotted floor rail 

Angle of pelvic belt to horizontal deg 45 45 45 

ATD Positioning TNO-10 TNO-10 TNO-10 

Head front nosc: 

x: relative to target on sied (H„) mm 650 650 650 
z: mm 1102 1205 1165 

Knce target: 

x: relative to target on sied (K,) mm 270 217 380 
7. mm 575 605 575 

Hip target: 

x: relative to target on sied (K ( ) mm 668 - 790 
7. mm 510 - 570 

TEST RESULTS 
Delta ' V km/h 49.9 49.4 48.3 

peak g g 24 23 23 

stop distance mm 478 502 511 

Excursion (measured from video) 1 pxl - 7.69 mm 1 pxl = 7.55 mm 

X B [ (<200) mm 138.4 105.7 -

Xta« (<375) mm 306,7 416.9 -

X B m i 1 (<650) mm 380.8 383.4 -

V i s u a l Observation̂  clamp hook (75 g) fly out; 
both tubes bent at clamp 

Position; 
Front whecl axle deformed 

both tubes bent at clamp 
Position; 

cushion pushed down 

rear tiedown broken 
lap belt broken 

failed 
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Table 5A.6 Sied tests for manual wheelchairs (12/03/97) 
Manual Wheelchairs unils Rampley 9L, 

BH53349 
Bcncraft 8L-

25370 
Rempley9Lmk(l-

hugel back fixed arms 
Bcncraft 4L-

JMKN 

Tcst/run No. T3349/TRL602 T3350/TRIJ603 T3351/TRL604 T3352/TRL605 
Wheelchair mas s 15.7 18.2 15.7 15.7 

Rear wheel pressure kPa 276 262 262 262 

Wheelbasc mm 405 423 400 350 

Backrcsi angle to vertical deg 10 10 10 10 

Seat pan angle to horizontal deg 10 10 10 10 

Seal surface height (St) mm 440 440 440 440 

Rear wheel larget: 

x: relative to target on sied (datum) mm 720 745 722 715 

z: mm 155 288 150 150 

P point target: 

x: relative 10 target on sied (P.) mm 650 652 660 625 
z: mm 480 480 480 480 

Wheelchair Tiedown UNWIN track UNWIN track UNWIN track 

Front tiedown: CLAMP Q L / A T F / D L / R 

x: on fioor/on chair mm 800/465 810/470 200 
y: on flooi/on chair mm 330/450 330/440 400 

z: mm 265 265 240 

Gr (40-60 deg) deg 40 42 

Rear tiedown Icngth: mm 408 518 N/A N/A 

x: on floor/on chair mm 380/50 450/50 clamp clamp 

y: on floor/on chair mm 330/450 330/460 

z: mm 240 330 

8, (30 -50 deg) deg 32 32 

Occupant Restraint double inertia rccl UNWIN UNWIN UNWIN 
B pillar: 

Angle of shld belt: 
behind ATD Shoulder 
above ATD Shoulder: 

deg 
mm 
mm 

0 ring 
20 
230 
20 

O ring 
20 

'230 
20 

0 ring 
20 
230 
20 

O ring 
20 
230 
20 

x: mm 270 350 270 380 

y: mm 330 330 330 330 

z: mm 1200 1200 1200 1200 

Lap bclt: adult 4 pt hamess adult 4 pt hamess adult 4 pt hamess adult 4 pt 
hamess 

Angle of pelvic bclt to horizontal deg 50 40 50 50 

Head front nose: H Y B R I D II H Y B R I D II TNO-10 TNO-10 

x: relative to target on sied (H,) mm 650 650 650 650 

z: mm 1110 1115 1150 1135 

Knec target: 

x: relative to target on sied (K.) mm 240 250 260 190 

z mm 605 610 555 555 

Delta ' V km/h 49.1 49.8 49.1 49.5 

peak g g 20 20 20 20 

stop distance mm 471 514 474 495 

Excursion (measured from video) 

X « (<200) mm 104.4 131.1 

X t o H (< 375) mm 252.9 267.9 

Xbaa (<650) mm 423.2 387.8 

visual observations dummy left arm 
broken; 

rear axlc bending; 
seat down 70 mm; 

w/c back (pt) 
bend; 

dummy left arm broken; 
rear axlc bending; 
seat down 70 mm ; 
w/c back (pt) bend; 
rear tiedown (pt) slippec1 

30 mm; panel >100g 

w/c collapsed 
castor (st) broken 

down; 
castor tube cracked; 

seat bar broken; 
failed 

w/c collapsed 
castor (st) 

broken down; 
castor tube 
cracked; 

seat bar broken; 
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Table 5A.7 Invacare wheelchair test results (05/97) 
Invacare w/c units manual manual manual power power power 

Test No. T3416 T3417 T34L8 T3419 T3420 T342L 
Wheelchair model Action 

2000 
C54 Zipper Phoenix Storni 

X L 
Comct 

Mass kg 20 20 13.2 50 106 50 

Rear wheel pressure kPa 447 447 no 276 no 276 
Wheelba5C mm 370 410 450 450 455 415 

Backrest angle lo vertical deg 8 8 8 8 8 8 
Seat pan angle to horizontal deg 8 8 8 8 8 8 

Seat surface height (si. cross)-before 
after (Ave) 

mm 415 
400 

470 
465 

455 
438 

465 
370 

480 
405 

420 
380 

Rcar wheel target: 

x: relative to larget on sied (darum) mm 780 772 866 880 860 935 
z: mm 300 305 155 145 165 150 

P point target: 
x: relative to larget on sied (P,) mm 780 743 754 763 837 

l: mm - 510 490 505 475 
Wheelchair Tiedown 

(4 pi QB20/2/CU1 heavy) 
UNWTN UNW1N UNWIN UNWIN UNWIN UNWIN 

Clamps or rear webbing length mm clamp 457 422 461 520 416 
x: on floor/on chair mm 120/110 345 250 255/80 470/115 250/80 

y: on floor/on chair mm 330/430 330/440 330430 330/450 330/460 330/300 
z: mm 220 300 340 430 380 380 

6, deg - 40 47 47 43 47 

Front tiedown 
(2 double lock clamps Q-

/ATF/DL/245/R) 
X 810/450 750/550 800/510 730/540 740/450 

y 330/380 330/440 330/480 330/460 330/300 
z 250 260 270 330 290 

ef 
deg 37 47 37 45 37 

Occupant Haslrain! 
(3 pt double inertia QIP/34/WH) 

B pillar -x: mm 350 350 260 250 280 200 

B pillar - v. mm 1210 1210 1210 1210 1210 1210 
Lap bell - x mm 367 350 240 250 250 250 

Angle of pelvic bell 10 horizontal deg 45 45 60 45 45 45 
ATD Positioning TNO-10 TNO-10 TNO-10 TNO-10 TNO-10 P10 
Heed front »ose: 

x; relative lo target Dn sied (H,) mm 650 650 794 670 585 903 
z: mm 1072 1150 1140 1130 1175 1040 

Knee target: 
x: relative to target on sied (K,) mm 347 310 350 341 264 543 

z mm 560 595 570 610 618 

Delta ' V km/h 51.2 49.7 50 49.2 48.2 50.2 

peak g % 25.3 22,7 25.3 24.1 25.0 23.1 
stop distance mm 492 510 519 495 502 

Excursion (mcasured from video) 
X* c (< 200) mm 210 

X * « (< 375) mm 372 

Xhad (<650) mm 319 
Visual observations rcar wheel 

punetured 
clamp 

collapsed 

backrest 
collapsec 

rcar whec 
punetured 

armrcsi 
broken 

both 
wheel 

cotlapsc 

come 
apart 

failed 

rcar wheel 
collapsed 

274 



Appendix 5A 

Table 5A.8 SCN wheelchair test résulte (13/05/97) 
SCN w/c units power power power manual manual manual 

Tes t/mn No. T3430/S1 T3431/S2 T3432/S3 T3433/S4 T3435/S5 T3436/S6 

Wheelchair mode) TORNADO CORBIE POPULÄR COMFORT A) light 
60333 

Al light 
60333 

Mass kg 68 80 52 40 15.8 20.5 
Rear whccl pressure kPa 276 207 276 345 447 447 

WTieclbase mm 470 460 470 410 420 410 
Backrest angle to vertical de g 5 5 5 5 8 5 

Seat pan angle tu horizontal deg 15 15 15 15 15 10 
Seat surface height (sQ-

beforc/aftcr : 
mm 530 560/550 470/460 525/520 50 mm 

cushion 
470 

440/425 
Rear wheel target: 

x; relative to laigct on sied (daium) mm 885 896 895 770 798 744 
z: mm 150 170 155 300 300 300 

P point target : H 
x; relative to target on sied (PJ mm 814 694 755 610 798 700 

z: mm 570 605 505 610 555 510 

Wheelchair tiedown: 
Rear webbing length mm 442 539 445 467 517 492 
x: on floor/on chair mm 405/40 405/80 415/40 460/120 410/20 390/0 
y: on floor/on chair mm 330/420 330/330 330/380 330/380 330/420 330/40 

z: mm 250 430 240 320 340 300 
9r deg 33 36 32 45 38 40 

Front tiedown 
x: on floor/on chair mm 750/530 810/500 790/540 790/500 800/440 620/40 
y: on floor/on chair mm 330/440 330/420 330/450 330/550 330/440 330/40 

z: mm 250 270 270 270 270 250 

6r deg 46 36 43 42 36 42 
B pillar 

x: mm 260 290 240 370 430 390 
z: mm 1210 1210 1210 1210 1210 1210 

Lap bclt: ihrough 
back 

X mm 260 290 240 260 315 390 
Angle of pclvic belt to horizontal deg 60 60 60 60 55 46 

ATD Positioning TNO-10 TNO-10 TNO-10 TNO-10 H-II H-II 

Hcad Frt. nose: 
x: relative to target on sied (H„) nun 734 764 708 565 777 597 

z: mm 1240 1250 1160 1220 1230 1105 
Knec target: 

x: relative to target on sied (K„) mm 353 286 344 210 354 178 
z mm 570 640 595 660 585 585 

Delta ' V km/h 48-4 48.6 49.7 48.7 50.5 50.4 
peak g g 23.3 23.8 23.8 24 26.7 26.3 

stop distance mm 464 475 482 474 441 455 
Excursion (measured from video) 

X„c (<200) mm 110 87.6 
Xto« (< 375) mm 365 259.6 
X ^ (<650) mm 483 344 

visual observations lap broken 
battery off 

failed 

stalk buckle 
failed 

cushion 
down 

St. armrcst out 
pt back lie 

down 
passcd 

passed 

dummy out 
lapbclt 
failed 

pi leg off; 
dummy oui 

failed 
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Appendix 5B: Interpretation of T R L Test Results 

Test Séries: Phase I, Phase II and Phase III 

Set up: T R L Surrogate wheelchair; 4-point Surrogate webbing tiedowns, 

TNO-10 dummy, three sied pulse levels (Level I, Level II and 

Level III), Forward Facing Frontal (FFF) impact 

Goals: • To assess rigidity and durability of T R L Surrogate wheelchair and 

occupant restraint loads by varying the rear tiedown angles 

• To establish test procédures and C V S model 

In the following tables and figures, FP represents front portside, FS is front 

starboard, RP is rear portside and RS is rear starboard. 

Table 5B.1 Load differences between Level I and II (mean peak values) - Phase II 

Set up Units WTORS ( TRL W/C + TNO-10 dummy ) 

Pulse levels j Level I Level II 
Rear tiedown angles 30-deg 45-deg diff % 30-deg 45-deg diff % 

INPUT: 

Sied pulse g 7.82 7.0 11.4 10.2 10.7 4.6 

A V km/h 25.7 25.7 0.1 25.6 25.6 0.2 

OUTPUT: 

w/c FP wheel load kN 2.97 2.86 3.8 6.75 5.94 12 

w/c FS wheel load kN 1.68 2.17 29.2 5.06 5.20 2.5 

Single front floor loads kN 2.30 2.51 16.5 5.91 5.57 7.3 

w/c RP wheel load kN 7.18 10.80 50.4 9.78 13.90 42.2 

w/c RS wheel load kN 5.31 7.96 50 8.17 11.83 44.8 

Single rear wheel load kN 6.25 9.40 50.2 8.97 12.87 43.5 

RP tiedown kN 2.80 3.54 25 4.50 5.57 23.7 

RS tiedown kN 2.74 2.77 1.1 4.10 4.71 14.6 

single rear tiedown load kN 2.78 3.15 13.1 4.30 5.14 19.2 

L/D lap load kN 2.65 3.28 23.4 4.10 5.16 25.8 

LTD diagonal load kN 3.88 3.92 0.8 5.80 6.25 7.9 
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Table 5B.2 Load différences between WTS and WTORS 

(mean peak values) • Phase III 

Parameters ( peak ) Units TEST RESULTS ( Level III ) 

Set up conditions | 30-deg 45-dcg diff % 30-deg 45-dcg diff % 

| WTS WTS WTORS WTORS 
. 

1NPUT: • 1 1 
1 

Sied puise g 19.8 20.1 1.5 16.9 17.7 4.7 

AV km/h 32.7 32.8 0.3 31.5 31.4 0.3 

OUTPUT: 1 \ ' 1 ! 

w/c FP wheel kN 6.2 4.7 24.2 9.5 10.9 14.7 

w/c FS wheel kN 8.6 8.4 2.3 7.6 9.8 28.9 

w/c RP wheel kN 7.1 9.7 36.6 7.7 10.8 40.3 

w/c RS wheel kN 8.9 12.4 39.3 6.1 9.5 55.7 

Single rcar wheel kN 8 11.1 38.8 6.9 10.2 47.8 

Peak Time ms (120ms) (110ms) | (105ms) (100ms) 

RP tiedown kN 6.5 7.4 13.8 6.6 7.4 12.1 

RS tiedown kN 6.5 6.6 1.5 6.5 6.0 7.7 

Single rear tiedown kN 6.5 7 7.7 6.5 6.5 3.1 

Peak Time ms (110ms) (110ms) (110ms) (100ms) 

L/D lap load kN # # # 6.3 6.9 9.5 

LTD diagonal load kN # # # 9.1 9.1 1.1 

Table 5B.3 Load différences among Level I, II and III 

Parameters Units WTORS (45 degree rear tiedown angle 
Set up conditions Level I Level II Level III I&II diff % I&III diff % 

Sied Puises g 7 10.7 17.7 52.9 152.9 
Rear Wheel Loads kN 9.4 12.8 10.2 36.2 8.5 
Front Wheel Loads kN 2.6 5.6 j 10.4 115.4 300 
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( A ) RP Side Wheel Loads 

o RP Wheel ( 30 deg. ) 

Sled Dec. ( 45 deg. ) 

RP Wheel ( 45 dcg. ) 

ÏÏ 
g s 

|U CD 

20 

16 

12 

8 

4 

0 

-4 

0 25 50 75 100 125 150 175 200 225 

Time ( ms ) 

( B ) RS Side Wheel Loads 
Sled Dec. ( 30 deg.) 
RS Wheel ( 30 deg. ) 
RS Wheel ( 45 deg. ) 

I 

- i o' °°odcir> ;." _ _ | 

0 25 50 75 100 125 150 175 200 225 

T i m e ( m s ) 

Figure 5B.2 Dynamic testing of rear wheel loads in WTORS (Level III) 
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Appendix 5C: Interprétation of ISO Test Results 

Test Séries: Séries I, II, and III 

Set up: The pre-designed ISO Surrogate Wheelchair (SWC), TNO-10, Hybrid 

II dummy and surrogate tiedown restraint Systems were used. It was 

varied by shoulder belt anchorage positions to investigate the effect on 

shoulder bclt load on dummy responses. 

Goals: • To détermine the crashworthiness of ISO surrogate wheelchair 

in Forward Facing Frontal (FFF) impact. 

• To develop régulations for FFF impact of wheelchair occupants 

In ISO crash test, the séquence of motion was divided into the following three 

phases: 

Phase 1 - The dummy slid across the seat plate essentially in the horizontal plane 
whilst the effect of the rear tiedowns was to compress the rear tyres and rotate the rear 
seat pancake load cells downwards. This was verified by the increasing of the loads 
monitored by the rear pancake load cells. The wheelchair front wheels lifted off the 
sied floorboard. 
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Phase 2 - The dummy continued to slide horizontally and loaded the occupant 
restraint straps whilst the wheelchair rear tyres recovered and the front wheels moved 
down onto the sied and compressed. 

Phase 3 - The dummy reached its furthest forward movement, the tensions in the 
occupant restraint straps reached their maximum values, and weight transferred from 
the dummy to the front pancake load cells and the front wheels. Finally the cantilever 
load cells under the front wheels exhibited an increased value. And then the front 
tyres started to recover and rebound commenced. 
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A test protocol for WTORS testing was developed based on the results of 

twenty-fîve (25) sied tests. Tables 5C.1 and Table 5C.2 are summary for the ISO test 

results. The peak values are given for each parameter. The différence (diff %) 

indicates the déviation from B pillar to floor configuration expressed as a percentage. 

The values of front and rear seat are the total seat loads of two load cells on each side. 

The wheel sum is a total of the four appropriate wheel load plate transducers. The 

dynamic testing of Level III (B pillar configuration) concentrated on the investigation 

of the seat load distribution (Table 5C.3). 

Table 5C.1 ISO test results (Level I: 6 g, 15 km/h) 

Configurations B pillar Floor diff % 

Parameters units 

Chest Res. g 12.23 . 11.40 6.8 

T Ï kN 2.50 3.10 24.0 

T 2 kN 1.70 1.40 17.6 

T 3 kN 1.86 1.32 29.0 

Front seat kN 4.04 3.20 20.8 

Rcar seat kN 4.31 3.60 16.5 

FP wheel kN 1.70 4.90 188.2 

FS wheel kN 1.80 3.90 116.7 

RP wheel kN 11.40 10.80 5.3 

RS wheel kN 11.50 10.70 6.9 

Wheel Sum kN 26.40 30.30 14.8 
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Table 5C.2 ISO test results (Level II: 11 g, 27 km/h) 

Configurations B pillar Floor diff % 

Parameter units 

Chest Res. g 21.40 19.00 11.2 

T i kN 4.10 4.50 9.7 

T 2 kN 3.00 2.10 30.0 

T 3 kN 3.38 3.27 3.3 

Front seat kN 6.01 5.80 3.5 

Rear seat kN 6.47 6.20 4.2 

FP wheel kN 2.30 4.70 104.4 

FS wheel kN 0.90 3.50 288.9 

RP wheel kN 23.30 22.70 2.6 

RS wheel kN 19.90 20.60 3.5 

Wheel Sum kN 46.40 51.50 11.0 

Table 5C.3 ISO test results (Level III: 13 - 21 g, 34 - 51 km/h) 

Delta ' V km/h 34 40 45 51 

Sied pulse g 13 16 17 21 

OUTPUT: 

Chest Res. g 49.10 34.00 39.94 46.6 

T, kN 4.77 5.41 5.98 6.5 

T 2 kN 3.78 4.38 4.65 5.0 

T 3 kN 4.10 4.90 5.20 6.1 

FP seat kN 4.80 5.10 6.50 7.7 

FS seat kN 5.90 5.80 6.60 8.3 

RP seat kN 3.90 4.40 5.40 5.9 

RS seat kN 3.40 4.40 4.10 4.5 

Seat Sum kN 18.00 19.70 22.60 26.4 



Appendix 5D 

Appendix 5D: Interpretation of Taxi Test Results 

Test Series: Senes I, II, III, IV, and V 

Set up: The modified ISO Surrogate Wheelchair (SWC) and production 

wheelchairs, Hybrid II dummy and Surrogate rear restraint Systems 

were uscd. The structures of the wheelchair and headrest have been 

varied to investígate the effect on taxi bulkhead loads and dummy 

responses. 

Goals: • To determine the crashworthiness of wheelchair Systems in the 

Rearward Facing Frontal Impact (RFF) 

• To develop régulations for the carriage of rearward facing 

wheelchair occupants by taxi and contribute to the ISO Standards. 

Series I: Standard Manual Wheelchairs (wühout headrest) 

Visual Observation of the wheelchair and dummy movements at the moment 

of impact are reproduced in the following four phases at the crash severity Level V . 

Failure of the backrest and cushions in the wheelchair occurred on the starboard side. 

Slight déformation of the rear wheels of the wheelchair was also observed. The results 

from représentative tests are shown in Table 5D. 1. 

In the Table 5D.1: 

Acc. head: peak résultant head accélération filtered according to ISO standards 

time: moment of impact at which maximum accélération occurs 

Bulkhead: the total loads acting on the taxi bulkhead. It is summed from both 

sides of the rear wheeî loads and back support restraint loads, occurred 

at the same time. 

Aa: the absolute values of the déviation between the peak résultant 

accélération forces applied to the ehest and head within 30 ms time 

period for a given input severity, Aa = | arc - a m | . 
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t=0 ms, starting oF impact 

Phase I: The clearance between the wheelchair handles and the vertical bulkhead was 
set at 300 mm. The backrest of the wheelchair was set against the transverse webbing 
belt and the rear wheels against the vertical load plates. 

1=58 ms, rear wheel maximum deformed 

Phase II: The wheelchair is found to tip upwards around the axle of the large wheels, 
causing the castors to rise approximately 53 mm off the floorboard. The castors turn 
approximately 20 degree from the portside (Pt.) to starboard (St.) after impact. 
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t= 96 ms, maximum excursions of head and knee 

Phase III: Tipping of the wheelchair upwards causes the knees to rise. The thighs lift 
off the seat of the wheelchair and the feet lift off the footrests. The arms rise up from 
the armrests. The head and chest of the dummy are thrown forwards causing the 
wheelchair to rotate around the axis of the large wheels. The dummy's trajectory is up 
towards the wheelchair backrest, until it is in contact along the entire spinal column. 
The back of dummy and wheelchair are together pushed against the transverse-
webbing belt. The webbing flexes by 50 mm at the horizontal level. Because the 
headrest was not put on the frame, the back of the dummy's head made a slight 
contact with the frame, causing the second peak value. 

1=532 ms, bead maximum movement, (rebound) 

Phase IV (rebound phase): the legs and arms move rearwards, as the wheelchair 
rebounds. 
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Table SD.l Taxi test results (peak) - Seríes I 

Series I Unit Level I Level II Level V 

Sied pulse 
AV 

g 
km/h 

11 
25 

13 
30 

21 
32 

Acc. ehest 
lime 

g 
ms 

32.3 
120 

55.5 
110 

72.9 
100 

Acc. head 
time 

g 
ms 

28.5 
130 

55.8 
130 

50.6 
115 

Aa g 3.8 0.3 22.3 

Back (Pt.) 
Lime 

kN 
ms 

3.2 
125 

3.5 
110 

3.8 
100 

Back (St.) 
time 

kN 
ms 

2.7 
125 

3.6 
120 

3.9 
100 

Whccl Pt. 
Lime 

kN 
ms 

7.7 
130 

8.2 
105 

13.2 
80 

Whcel St. 
time 

kN 
ms 

8.7 
125 

9.7 
105 

13.2 
80 

RearT/D 
lime 

kN 
ms 

1.5 
300 

3.7 
280 

5.3 
275 

Bulkhead 
time 

kN 
ms 

21.2 
130 

• 23.9 
105 

28.5 
105 

Excursión: 

Wheelchair mm. 11.9 36.9 61.5 

Head mm 196.5 190.5 281.8 

Series II: Modifled ISO Surrogate Wheelchair (with headrest) 

The performance of the wheelchair-occupant system is described in the 

following four phases (Level III: 32 km/h, 15g). Results from representative tests are 

shown in Table 5D.2. 
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t=0 ms, starting of impact 

Phase I: The clearance between the wheelchair handles and the vertical bulkhead was 
set at 280 mm. The backrest of the wheelchair was set against the transverse webbing 
belt and the rear wheels against the vertical load plates. 

t= 55 ms, rear wheel maximum deformed 

Phase H : forward rotation of the wheelchair occurs around the axis of the large 
wheels. The castors of the wheelchair rise 100 mm off the floor. The rigid wheel rims 
contact the load plate as a result of tyre compression during the impact. 
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t = 102 i m , head und knee maximum excursions 

Phase III: the head hits the headrest causing it bend slightly. This mechanism seems 
to prevent the wheelchair from tipping over completely and thus stops the dummy 
from falling out forwards. The lower limbs of dummy and the front of the wheelchair 
continue to rise. The angle of the inclination of the wheelchair reaches 30 degree with 
respect to the horizontal. The feet lift off the footrests. 

t = 552 ms, head maximum movement (rebound) 

Phase IV (rebound phase): the head slides off the headrest. The dummy slides to the 
front of the wheelchair. 
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Table 5D.2 Taxi test results (peak) - Series II 

Series II Unit Level I Level II Level III Level IV 

Slcd pulse g 11 13 15 17 
AV km/h 32 32 32 32 

Acc. ehest g 51.8 75.2 61.0 96 
time ms 120 120 110 110 

Acc. head g 51.2 57.6 37.3 50.1 
time ms 150 130 110 120 
Aa g 0.6 17.6 23.7 45.9 

Back (Pt.) kN 5.7 5.5 5.5 5.5 
time ms 120 125 115 105 

Back (St.) kN 2.8 3.1 3.0 3.3 
Lime ms 125 125 100 105 

Whcel Pt. kN 19.1 25.5 - 37.2 
lime ms 100 90 90 

Wheel St. kN • 17.1 25.7 33.7 -
time ms 100 90 85 

RearT/D kN 3.7 3.3 7.0 5.2 
time ms 190 170 165 170 

Bulkhead kN 51.1 55.3 58.1 59.9 
time ms 105 90 85 90 

Excursión: 
Chair mm 63.8 53.8 53.6 79.8 
Knee mm 162.5 152.8 170.8 189.9 
Head mm 355.1 328.1 299.1 367.5 

Table 5D.3 Taxi test results (peak) - Series III 
Series III Unit Level II Level III Level IV Level V 
Slcd pulse g 13 15 17 19 

AV km/h 33 33 33 33 
Acc. ehest g 55.6 55.6 52.9 75.1 

time ms 105 95 100 100 
Acc. head g 58.1 59.7 58.9 75.8 

Lime ms 115 105 110 105 
Aa g 2.5 4.1 6 0.7 

Back (Pi.) kN 3.6 3.5 5.2 3.9 
time ms 105 105 110 100 

Back (St.) kN 2.2 2.5 2.2 2.6 
time ms 105 100 100 100 

Whecl Pt. kN 9.7 10.2 10.2 9.7 
time ms 85 115 110 105 

Whecl St. kN 7.7 10.8 11.9 10.9 
time ms 85 120 110 110 

RcarT/D kN 3.5 1.7 1.7 2.1 
Lime ms 265 185 190 265 

Bulkhead kN 23.5 25.6 28.5 25.5 
1 time ms 105 115 110 110 
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Series III: Standard Manual Wheelchair (with headrest) 

Results from représentative tests are shown in Table 5D.3. 

Series IV and Series V: Modified Manual Wheelchair (with headrest) 

In the test series IV, a modified manual wheelchair (without handles) was 

employed to further investigate the Aa, as a comparison with the results of series III. 

Data from représentative tests of series IV are shown in Table 5D.4. The results from 

the test series V to investigate the AV effect on WTORS performance are shown in 

Table 5D.5. 

Table 5D.4 Taxi test results (peak) - Series IV 

Series IV Unit Level II Level III Level IV Level V 

Sied pulse g 13 15 17 19 
AV km/h 33 33 33 33 

Acc. ehest g 122.9* 127.5* 55.5 51.6 
time ms 110 115 105 105 

Acc. hcad g 56.7 79.3 65.7 75.7 
ümc ms 130 125 120 115 
Aa g * * 10.2 24.1 

Back (Pt.) kN 3.7 5.3 5.6 5.2 
time ms 110 105 110 120 

Back (St.) kN 2.7 3.6 3.5 3.3 
time ms 130 110 110 115 

Whee) Pt. kN 9.9 9.5 9.5 10.1 
time ms 115 80 105 115 

Wheel St. kN 9.5 8.7 10.3 10.7 
time ms 110 80 105 80 

RcarT/D kN 2.7 1.6 2.1 1.6 
time ms 165 220 265 170 

Bulkhead kN 25.7 19.2 27.9 25.2 
time ms 115 80 105 115 

Notes: * lest data failurc 

291 



Appendix 5D 

Table 5D.5 Taxi test results (peak) - Seríes V 
Series V Unit Test 1 Test 2 Test 3 Test 4 

Sied pulse £ 13 16 19 22 
A V km/h 21 25 29 33 

Acc. ehest g 53.0 38.5 85.5 77.9 
time ms 135 120 105 95 

Acc. head g 31.5 50.6 59.3 68.5 
time ms 155 130 115 110 

Back (Pt.) kN 3.9 5.1 3.7 3.9 
time ms 150 120 120 100 

Back (St.) kN 2.5 3.1 3.2 3.2 
time ms 135 130 120 105 

Whccl Pt. kN 3.9 8.8 9.2 11.7 
time ms 130 120 85 100 

Whecl St. kN 8.2 9.3 9.7 9.8 
time ms 130 120 105 100 

Rcar T/D kN 2.3 2.9 . 3.5 3.7 
time ms 175 165 150 150 

Bulkhead kN 18.1 25.2 25.9 27.5 
time ms 135 120 105 105 

Excursión 
Chair mm 21.0 - 21.1 15.9 
Hcad mm 238.3 - 268.9 275.5 
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Appendix 6: Dynamic Vibration Theory and Applications 

A6.1 Vibration Systems 

Most vibrations in mechanical impact structures are undesirable because the 

increased stresses and energy losses will accompany them. They should be eliminated 

or reduced as much as possible by appropriate design. A wheelchair occupant restraint 

System can be designed as a mechanical vibration System, which is displaced from a 

position of stable equilibrium during impact. 

The analysis of vibration has become increasingly important in récent years 

due to the current trend toward higher speed impact and lighter structures. If the 

motion is maintained only by the restoring forces such as elastic forces or 

gravitational forces, the vibration is said to be a free vibration. When a periodic force 

is applied to the System, the resulting motion is described as a forced vibration. If the 

effects of friction could be neglected, the vibrations are said to be undamped. 

However, all vibrations are actually damped to some degree. 

A6.2 Work-Energy M et h od s 

Further to discussion of a spring-damper system, the fundamental définition of 

the work done change (dW) when a force (F) acts through a displacement change 

(du) is: 

d\V = -Fdu F = k-u (A6.1) 

W = I,_>2 (-ku)du = Vi-ni-(iii)2 - '/2-m-(u2)2 (A6.2) 

where k is the spring constant, with the units of force per unit length. 

The work of the elastic force dépends only upon the initial and final 

deflections of the spring, u = ui, u - u2 (Figure 6A. 1). 
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The potential energy (J), kinetic energy (K) and conservation of energy (W) 

are discussed as follows. The symbol J is used to represent the potential energy of a 

mass élément. The change of the potential energy, A J , is defined to be 

A J = J 2 - J i (A6.3) 

F 
4 

F = k*u y 
V \ 

J, « 1/2 kfu,)1 

h = 1/2 k(Uî)2 

w 
* 

w w 
U 

Figure 6A.1 The potential energy, J 

where the subscripts 1 and 2 represent the initial and final endpoints of the interval of 

motion of interest respectively. One of the potential energy, the energy stored in a 

spring because of the deflection of this élément, is defined in WTORS model. The 

following équation illustrâtes this effect. The change in the potential energy as the 

spring is stretched from 1 to 2 is 

AJ = !4-k(u2)2 - Vrk(ui) 2 (A6.4) 

From Newton's second law in the tangential direction, 

F = nv(dv/dt) = mv (dv/du) (A6.5) 

where v is the scalar magnitude of the velocity of the particle. The symbol K is used 

to designate the kinetic energy of the particle. 

K = J i ^ F-du = Vvnv{y2)2 - '/i-m-Cv,)2 (A6.6) 
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The work of the force is independent of the path followed and is equal to the 

sum of the changes in the potential energy and the kinetic energy. The force that 

satisfïes this is said to be a conservative force. 

We write 

W = A K + A J = (K 2 - K i ) + (J 2 - J,) = 0 (A6.7) 

that is, 

K 2 + J 2 = K Ï +Jj (A6.8) 

It indicates that when a system of particles moves under the action of 

conservative forces, the sum of the kinetic energy and of the potential energy of the 

System remains constant. The sum K + J is called the total mechanical energy of the 

System and is donated by E M . In the example of sied impact, if the impact is perfectly 

plastic, E M = 0, the sied and tube block move together after the impact. 

A6.3 Wheelchair Impact Application 

In effect the motion of wheelchair can be described as a damped forced 

vibration, where the tiedown restraint force occurs over a period of time and the 

System seules down into a steady state after an initial transient period, providing that 

the force is periodic. 

During an impact the first period of a forced vibration is transient. The 

velocity and the accélération could be obtained by differentiating the displacement 

équation once to attain velocity (v) and differentiating the velocity again to obtain 

accélération. Even with no applied damping in the real world there will always be 

some friction and air résistance. The transient solution will die out. 

The sied and TRL wheelchair impact results are interpreted in Figure 6A.2. 

The sied starts to decelerate approximately 35 ms before wheelchair évidence of the 

visco-elastic effects of the belt tiedown, which rear wheels of the wheelchair start to 

compress the load plates (about 75 ms). It can also be noticed that there is a 

pronounced second smaller peak for the wheelchair, this is the rebound value and can 

be attributed to the visco-elastic properties of the tiedown. 
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Theoretically the maximum load on the tiedown belts could occur at the same 

time as the peak acceleration of the wheelchair because it is at this point that the 

wheelchair can not move any forward. 
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Figure 6A.2 Sied and T R L wheelchair impact 
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Appendix7A: Running P A F E C and F E A Model Input Data 

A7.1 Running PAFEC and Associated Programs 

PAFEC program was developed by PAFEC Ltd, UK and run on the A L P H A 

system in Middlesex University. The OUT file contains ail run results (10 phases) and 

error messages. Phase 1 in PAFEC model includes ail about loads, materiał, 

P A F B L O C K , IN and OUT D R A W . Phase 6 tell you about mass and inertia, loads and 

moments. Phase 7 is about displacement for loadcases and displacement al nodes. 

Phase 9 is about principal stresses. 

The PIGS postprocessor program runs both on a V A X station and a networked 

PC. In a networked PC, TCP on Telnet (Nevell TCP/IP Transport V4.2) was loaded 

and Exceed w4.1 was run. As the upper memory block (UMB) code space could not 

be allocated, R A M was relocated. 

Data modules are stored on the backing store file (BS files) which could be 

retrieved by post-processor program, PIGS. The L O A D C A S E function key (FA) in 

PIGS was implemented to get the différent loading results. The view angles (VS5) 

was selected x, y, z as 15,-15,1.5 to get 3D clear view. The analysis module (AN) was 

used to translate the model results. The post-process procédure was listed as follows: 

AN3 —» AN10 —» FAI 

In PIGS, the images were transferred into BS format file. The screen capture 

and Paintshop-Pro or Paintbrush programs were also used to transfer BS format into 

bitmap (BMP) files, which were pasted into document files. 

A7.2 The Complète FEA Model Input Data 

P A F B L O C K was used to generate éléments with no more than one mid-side 

node. The complète finite element analysis of manuał wheelchair model file is listed 

as follows: 

297 



Appendix 7A 

PAFBLOCK WJIEELCHAIR FRAME STRUCTURE NON-LINEAR ANALYStS-MODES DUSS 8L Wt£EELCHlAR:BRAZING VARIOLS PRE-SHAPED 

TUBULAR VARTS TO KORM A RJGID FRAME5 (BS5S63;1978)- - WR!TTEN BY JUN C U . in 1996 " 

CONTROL 

SKIP-COLLAPSE 

C O NC A T E N A T E .OUTPUT 

FULL. CONTROL 

PHAS£= 1,2.4.6.7,9 

STOP 

CONTROL. EN D 

NODES 

NODE.NUM X Y 7. 

1 0 0 0 

2 .300 

3.52.095 0 

4.52 .16 n 

5 .52 -.0045 0 

6.46328.1<1672 ü 

7 .04172.1*672 0 

8 .1)3 .27 0 

9 0.24 0 

10.03 .3 0 

11 .475.3 0 

12 .03 .345 0 

13-.04355 .6290 

14 -.2 .6S2 0 

15 0.1580 

NODE=l-15 =16-30 

160 0.455 

17.3 0.455 

18 .52 .095 .455 

\9 ,52.16*55 

20.52-.0045 .455 

21 .46328.14672.455 

22 ,04172,14672 .455 

23 .03 .27 .455 

24 0.24.453 

25 .03 .3 .455 

26 .475 .3 .455 

27 ,03 .345 .455 

28 -.04355 .629 .455 

29 -.2 .652.455 

30 0.158 .455 

NODE=3!-35 CROSS 

31 ,224 0 0 

32 ,224 0 .455 

33 .224.15.2275 

34 .224 .3 .435 

35 .224.3 0.02 

NODE=ll(36.3S). 10(37.191 

36 .475 .3.02 

37 .03.3 .02 

38 .475 .3 .435 

39 .03 .3.435 

40 -.12 0 

41 ..120.455 

REAR WHEEL CENTRE 

42 0.158-05 

43 0.158.505 

44 .07 .135 

45 .435.135 

46 .475 .175 

47 .03 .175 

48 .07 .135 .455 

49 435.135.455 

298 



Appendix 7A 

50.475.175 .455 

51.03.11S .455 

52.475 .3.02 

53 .03 .3 .02 

54 .475 .3 .435 

55 .03.3.435 

56 .435.175 0 

57 .07 .175 0 

5S.435.173 .455 

59 .07.175 .455 

60-.1D716.5520 

fil -.10716.552 .455 

62-.009 .5710 

63 -.10716.6520 

64-.009.571.455 

65.10716.652 .455 

66 .225.158 -.(15 

67.159 .317 -.05 

68 0 383 -.05 

69-.159 .317-.05 

70 -.225 .158 .03 

71 - . ¡59 - .001 -.05 

72 0-.067-.05 

73.159-001 -.05 

74.225.158 .505 

75 .159 .317 .503 

76 t>.383 .505 

77 -.159 .317 .505 

78 -.225.158 .505 

79-.159..001 .505 

80 0 -.067 .505 

RI .159 -.001 .505 

82.52-.0045-.01 

83.52 -.0045 .465 

84 .5825 -.0043 -.01 

85 .564.0395 -.01 

86 .52 .058 -.01 

K7 .476 .0195 -.01 

88 .4575 -.0045 -.01 

89.476-.04869 -.01 

9(1.52 -.067 -.01 

91 ,564-.04869-.01 

92 .3825 -.0045 .465 

93 .564 .0392 .465 

94,52.058 .465 

95 .476 .0395 .465 

96 ,4576 -.0045 .465 

97 .476 -.04869 .465 

98 .52-.067 .465 

99.564 -.04869.465 

PAFBLOCK 

T Y P E =6 

BLOCK E L E M E N T . T Y P E PROPERTIES NI TOPOLOGY 

1 34000 11 131 

2 34000 11 2 3 

3 34000 3 1 3 fi 

4 34000 3 1 34 

5340003 1 45 

6 34000 2 1 44 45 

7 340Û0 2 1 46 H 

8 34000 1 1 52 35 

9 34000 2 1 12 10 

10 34000 2 1 10 8 

11 34000 2 1 8 9 
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13 34000 2 1 S 47 

1334000 2 1 15 1 

FRONT E L E M E N T FINE DEFINED 

14 34000 2 3 12 62 

15 34000 2 1 63 H 

16340002 1 9 15 

17 34000 1 I 16 32 

18 34000 1 117 18 

1934000 3 1 18 21 

20 340003 1 18 19 

21 34000 3 1 [9 20 

22 34000 2 I 48 49 

23 34O0Ü 2 I 50 26 

24 34000 1 1 34 54 

25 34000 2 1 27 25 

26 34000 2 1 25 23 

27 34000 2 ! 23 24 

28 34000 2 I 13 51 

FRONT E L E M E N T FINE DEFINED 

29 34000 2 3 30 16 

30 34000 2 1 11 64 

31 3400021 65 29 

32 34O00 2 1 24 30 

33 34000 1 1 31 2 

34 34000 ! 1 32 17 

35 34000 11 35 53 

36 34000 1 1 34 55 

37 340004 1 31 33 

38 34000 4 1 33 34 

39 34000 4 1 33 35 

40 34000 4 [ 32 33 

41 34000 11 I 40 

42 34000 1 1 16 41 

43 34100 5 1 15 42 

44 341005 1 3043 

45 341001 1 U 36 

46 341001 1 10 37 

47 34100 1 1 2(138 

48 34100 I 1 25 39 

49 34300 6 1 4: 6 

50 343006 1 646 

5 1 34300 7 1 44 7 

52 34300 7 L7 47 

53 343008 149 21 

54 34300 8 1 21 50 

55 343009 1 4 Ï 2 2 

56 343009 1 22 51 

57 34300 10 1 62 13 

58 34300 10 I L3 63 

59 34300 11 1 64 28 

60 3430011 ) 28 65 

61 34301112 1 66 67 

62 34300 12 1 67 68 

63 34300 12 1 68 69 

64 34300 12 1 69 70 

65 34300 12 1 70 71 

66 34300 12 1 11 72 

67 34300 12 1 72 73 

68 343O0 12 1 73 66 

69 34300 13 1 74 7S 

70 34300 13 1 75 76 

71 3430013 1 76 77 

72 34300 13 1 77 78 

73 34300 13 1 78 79 
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74 34300 13 1 79 80 

75 34300 13 1 5081 

76 34300 13 1 8174 

77 34300 14 1 8 4 8 5 

78 34300 14 ! 85 86 

79 3430O 14 1 86 87 

80 34300 14 1 87 88 

81 34300 14 1 SS 89 

82 34300 1 4 1 59 9 0 

83 34300 14 190 91 

84 34300 14 1 91 84 

83 34300 15 192 93 

86 34300 15 193 94 

87 34300 15 1 94 95 

88 3430015 1 95 96 

89 34300 15 1 9 6 97 

90 34300 15 1 97 98 

91 34300 15 1 98 99 

92 34300 15 1 99 92 

93 34000 5 1 5 82 

94 340005 1 20 83 

95 340005 1 82 84 

96 34000 5 1 82 B5 

97 34000 5 1 82 86 

98 34000 5 1 82 87 

99 34000 5 1 82 88 

1 0 0 34000S 1 82 89 

101 34000 5 1 82 90 

102 3400U3 1 8291 

103 34000 5 1 83 92 

104 340005 I 83 93 

103 340005 1 83 94 

106 340005 1 83 95 

107 34000 5 1 83 96 

108 1 4 0 0 0 5 1 83 97 

109 34000 5 1 83 98 

110 34000 5 1 83 99 

H L 340005 1 42 66 

112 34000 5 1 42 68 

113 340005 1 42 70 

114 340005 1 42 72 

115 340005 1 43 74 

1 1 6 34000 5 1 43 76 

117 34000 5 1 43 78 

118 34000 5 1 43 m 

M E S H 

REFE SPAC.LIST 

I 1 

33 

BEAMS 

SECTION.NUM IVY 1ZZ AXIS.NUM BETA TORSIONAL.CONSTANT AREA NODE. S U M 

1 ,31E-8 .31E-8 0 90 .62E-8 .797E-4 0 

2 . 4 4 5 E - 8 .445E 8 0 90.89E-8 .B1E-40 

3 I.69E-8 1.69E-8 0 90 3.38E-B 2.99E-4 0 

4 1.25E-8 1.25E-S0 90 3.3BE-B I.68E-40 

5 l l E - S . 1 I E - 8 0 9 0 22E8 9SE-40 

fi . 4 4 5 E - 8 .445E-8 0 0 .89E-B .S1E-4 56 

7 .445E-8 .445E-8 0 0 .89E-8 .81E-4 57 

8 .445E-8 .445E-8 00 .89E-8 81E^1 5Î 

9 445E-8 .445E-8 00 .89E-8 .B1E-4 5 9 

10 .445E-8 .445E-8 0 0 .S9E-8 .B1E-4 60 

11 .445E-8 .44JE-8 00 .89E-B .81E-4 61 

12 .44SE-8 .445E-8 0 0 . 8 9 E - F .81E-4 42 

13 .445E-8 .445E-8 0 0.89E-B .S1E-4 43 
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I4.31E-8.31E-8 0O.62E-8.797E-4 82 

15 -31E-8 .31E-8 0 0 .62E-8 .797E-4 83 

AXES 

AX1SNO RELAXISNO TYPE N O D E NO ANG1 ANG2 AN03 

T Y P E ^ l CARTES) AN AXIS SET USED IN T H E S A M E X DIRECTIONS; 2=CYLIND POLAR 

16 1 1 31 D -90 -45 

17 1 1 32 0-90 45 

RESTRAlNTS 

NODE.NUM DIRECTION 

15 23 

30 23 

42 23 

43 23 

523 

20 23 

82 23 

83 23 

MEMBER.LOADS 

ELEMENT. NU M LOAD.CASE T Y P E DISTANCE DIRECTION ONE 

CASE=1 UNIFORME DISTRIBUTION. IGNORE CROSS-BRACED SEAT SUPPORT MEMHER 

81 102 1200 

35 I 1 02-1900 

24 1 1 02-1200 

361 1 02-1900 

CASE=2 T H E WORSE CASE IN T H E FRONT 

ï 2 00 2 -500 

242002-500 

CASE3 TO DETERMINE T H E JOINTS W1TH T H E HIGHEST BENDING M O M E N T SO T H A T T H E S E 

JOINTS ON T H E REAL WC C O U L D H A V E STRAIN G AUGE APPLIED TO T H E M 

NODE=FRONT 3.6.8 REAR B O T T O M 1.15 

15 3 00 1 1200 

31 300 1 1200 

25 3 0 0 l 2400 

9 3 0 0 1 2400 

HINGE5.AXD.SUDES 

NI N2 DIRECTION 

36 52 123 

37 53 123 

38 54 123 

39 55 123 

GRAPH 

FRAME=I 

TOLERANCE=. 1 

GRAPH T Y P E LIST 

1 1 1-99 

2 2 1-99 

3 201-99 

! N.DRAW 

TYPE.NUM IN FOR M ATION, NU M ORIENTATION 

TYPE=3 SOLID BOUDARY. BROKEN INTERIOR 

INF=l NODE CIRCLES. 3=ELEMENT NUMS 5-RESTRAINT 9=ELEMENT MATERIAL PROPERTY 

3 1359 4 

OUT.DRAW 

PLOT.TYPE CASE. NU M ORIENT!ON 

TYPE 1 =D[SPLACED SI fAPE. 4=X.Y,Z COMPONENTS OF DISPLACEMENT A T A L L NODE 

ORIENTIONS 4 DIFFERENT VIEWS 

143010 1 4 

143010 2 4 

143010 3 4 

END. OR D A T A 



Appendix 7B 

Appendix 7B: Contact Characteristics in CVS Models 

The input data for CVS model requires force functions for ail of the contact 

interactions. In addition the joint in a System must have a stifTness function defined for 

ail degrees of freedom of that joint. Thèse functions could be estimated based on good 

knowledge of the subject. Some of the functions were measured experimentally in a 

quasi-static method. It has certain errors because the real crash is a dynamic situation. 

For accurate results some of the functions were obtained by finite élément model 

calculations adjusted by functions from the published papers (Deng, et al, 1993). Since 

no structural séparation was observed in WTORS sied test, the spring was assigned a 

higher stifTness. 

The joint stifTness for the dummy System was included in the Hybrid II database 

as supplied by TNO with the M A D Y M 0 3 D package. The force functions required to 

construct the model are as follows: 

* Adult seat belt stiffmss 

* Wheelchair tiedown stiffness 

• Contact between dummy and wheelchair seat 

• Wheelchair lyre stiffiiess 

7B.1 Adult seat belt and wheelchair tiedown stifTness 

In order to measure adult seat belt (Figure 7B.1) and wheelchair tiedown 

webbing stifTness (Figure 7B.2), a standard Avery tensile test machine was used. 

Measu rement s of the elongation of a sample of 300 mm length webbing belt were taken 

at given load intervais and thus the force-extension functions were found. The static test 

results were adjusted by sied testing of WTORS, using physical measurement of 

webbing extension after impact and comparing with the certain video footage 

investigation. The CVS model input was also improved by individual model set-up. 

M A D Y M O models require the relative elongation of the function to be in terms of 

extension to the original length. The CVS model input force functions for the L/D seat 

belt are shown in Figure 7B.3 and 7B.4. As 4-belt rear tiedown configuration geometry 
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were designed in M A D Y M O model, the stifFness characteristics of each belt was 

considered about half values of the tiedown stitïness in the D Y N A M A N models (Figure 

7B.5 and 7B.6). The conventional belt model and a finite élément belt model have been 

physically compared (Chapter 8). 

y = 35.999xc 

— 15 
5064 

0 B 1 1 1 1 1 

0 0.05 0.1 0.15 0.2 0.25 

Relative elongation 

Figure 7B.1 L/D sent belt characteristics 

Relative elongation 

Figure 7B.2 Whcclchair tiedown characteristics 
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25 

* bad H unload 
y = 3 5 . 9 9 9 x ° M 4 9 

20 - U D b e l t M A D Y M O i n p u t 

z 
JÉ 

15 • 

u 
o u. 10 

5 • 

0 -

c 0.05 0.1 0.15 

Relative elongation 

! 1 

0.2 0.25 

Figure 7B.3 LVD seat helt M A D Y M O input 

80 T 

0 0.05 0.1 0.15 0.2 0.25 

Relative elongation 

Figure 7B.4 L/D seat helt D Y N A M A N input 
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0 0.02 0.04 0.06 0.08 0.1 0.12 

Relative elongation 

Figure 7B.6 Wlicclchuir ticdon'ii D Y N A M A N input 
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7B.2 Contact between the dummy and wheelchair seat 

Contact occurs at the bearing area between the dummy at the lower torso/upper 

leg and wheelchair seat interface. In order to gain a reasonably accurate measurement of 

the contact function at this area it is necessary to load (quasi-static) either the wheelchair 

or the dummy. In the taxi model, the manual wheelchair was loaded by the actual 

dummy using an object of similar bearing area to the dummy. The test methodology was 

to load an area of the chair seat, where the dummy was thought likely to contact, with 

static load provided in the form of an increasing number of finite weights. The deflection 

of the seat was measured using a dial gauge placed at under the seat at the centre of the 

load. In the ISO model, the surrogate wheelchair seat contact was estimated to be stiffer. 

The results of this estimation were correlated by seat gauge plates (pancake type load 

cells) in dynamic modelling of ISO model (Chapter 9). 

7B.3 Wheelchair tyre stiffness 

In order to ensure a suitable crashworthiness for WTORS, the proposed ISO 

standard (ISO/CD 10542-1:1995E) specifies that the ISO surrogate wheelchairs 'have 

pneumatic front tires that, when inflated to 759 kN/m2 (7.59 bar), have a diameter of 230 

+/-10 mm, a width of 75 +/- 5 mm, and a sidewall height of 54 +/- 5 mm, have 

pneumatic rear tires that, when inflated to 414 kN/m 2 (414 kPa), have a diameter of 325 

+/- 10 mm, a width of 100 +/- 10 mm, and sidewall height of 70 +/- 5 mm, include hard 

rubber stops located inboard of each rear wheel to limit rear tire compression to 45 +/- 5 

mm during the frontal impact test'. 

Before performing the following static test the wheels were inflated to the 

specified pressure using a foot pump, rear tyre 410 kN/m2, a sidewall height measured 

65 mm, frontal tyre 720 kN/m2, a sidewall height measured 50 mm. The force function 

was initially estimated by experiment in a quasi-static method and then modified using 

dynamic sled tests and CVS models. The apparatus used in this programme was: 

1) Avery compressive test machine (Model 7108 DCN, Max. 60 kN) 

Range: 0 - 2400 N in ION divisions 

2) A dial test indicator (DTI) 

Range: 0 - 30 mm, 1 revolution = 0.2 mm with 0.002 mm divisions 

3) A magnetic stand (MERCER Series 590) 
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Figure 7B.7 Static testing of wheelchair tyres 

After checking that all the apparatus was functionally correctly, the compressive 

machine was set to a given range. The DTI was mounted on the magnetic stand. The 

wheel was placed between the compression plates of the test machine. The upper plate 

lowered down to touch the wheel's upper surface (Figure 7B.7). The DTI was set to 

zero. The wheel was then loaded in increment of 40 N. The rear wheel of ISO Surrogate 

Wheelchair (ISO-SWC) was compressed in two steps. The first step was up to 1000 N 

and the second was up to 1760 N (Table 7B). 

The static test was carried out both the front and rear wheels of the ISO surrogate 

wheelchair. The rear wheel stiffness was found to be 52 kN/m from Figure 7B.8. This is 

the result under the condition of two-point contact. In the real contact with sled 

floorboard, only one point contact was found during impact. Thus approximately double 

value of rear wheel stiffness (90 kN/m) was initially used to produce the function block 

for the rear wheel model, and then tuned by dynamic tests by adding the deflection/force 

data: 55 mm/50 kN to account for the wheel rim contacted to the floorboard. The frontal 

tyre of the wheelchair was compressed in an Avery compressive test machine up to 1600 

N . The front wheel stiffness was assumed about 25% higher than the rear one as the 

diameter of the front tyre is about three-fourth of the rear one in ISO wheelchair. It 

should be noted that this is only point contact and the bearing area contact condition 

should be used in contact algorithm in M A D Y M 0 3 D or simulated using finite element 

model. 
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Table 7B Wheel compressive test results 

T R L rear wheels ISO wheels (1st step) 

Load Unload ISO/RW ISO/FW ISO wheels (2nd step) 

Force Deflection Deflection Deflection Deflection ISO/RW ISO/FW 

(N) (mm) (mm) (mm) (mm) Force Deflection Deflection 

0 0 0 0 0 (N) (mm) (mm) 

40 3.62 3.66 4.03 1.87 1040 24.23 20.39 

80 7.56 6.01 4.75 3.06 1080 25.25 20.9 

120 9.39 8.2 6 4,15 1120 26.1 21.62 

160 10.95 10.08 7.18 5.29 1160 27.18 22.13 

200 12.25 11.68 8.15 6.04 1200 28.49 22.75 

240 13.55 13.53 8.99 7.02 1240 29.03 23.34 

280 14.86 15.04 9.59 8.01 1280 29.66 23.85 

320 16.23 16.39 10.31 8.85 1320 30.32 24.5 

360 17.43 17.83 10.93 9.78 1360 31.06 25.21 

400 18.65 19.32 12.63 10.49 1400 31.66 25.55 

440 19.83 20.51 12.73 11.22 1440 32.45 25.98 

480 20.94 21.74 12.88 11.74 1480 33.22 26.62 

520 22.12 23.04 13.03 12.44 1520 33.96 26.85 

560 23.27 24.23 13.69 12.98 1560 34.78 26.85 

600 24.36 25.36 14.31 13.62 1600 35.58 26.85 

640 25.58 26.42 15.08 14.3 1640 36.4 

680 26.52 27.61 15.88 14.88 1680 37.26 

720 27.73 28.59 16.68 15.46 1720 38.3 

760 28.88 29.96 17.37 16.09 1760 39.05 

800 30.14 30.58 18.18 16.67 

840 31.5 31.55 19.06 17.2 

880 32.67 32.54 20.02 17.81 

920 33.79 33.52 20.64 18.45 

960 35.01 34.41 21.82 18.95 

1000 36.22 36.22 23.98 19.76 
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ISO-SWC r e a r t y r e t r e n d l i n e 

a d j u s t e d b y s l e d t e s t s 

5 10 15 20 25 30 35 40 

deflection (mm) 

Figure 7B.8 Wheelchair stiffness in ISO surrogate wheelchair 
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The TRL prototype surrogate wheelchair (TRL-SWC) was manufactured by 

Transport Research Laboratory (TRL), UK. The TRL wheelchair rear wheels were also 

compressed in the same way and the results are shown in Figure 7B.9 and Table 7B. 

Concerning of the dynamic impact facts, the D Y N A M A N tyre contact function was 

adjusted by adding three sets of deflection/force data: 45 mm/10 kN, 50 mm/15 kN and 

55 mm/27 kN. 

It was found from sled test results that the value of rear wheel stiffness had a 

significant effect on the floor reaction force. Therefore a correlation of stiffness between 

static and the dynamic loading is necessary to improve the CVS models. In addition to 

the wheel stiffness the damping coefficient was also specified in CVS models. 
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Appendix 9A T R L Frontal Impact Model Data File 

The following code is an example of A T B / D Y N A M A N program which was 

used to obtain the füll scale WTORS model (TRL wheelchair + TNO-10 dummy). 

JAN. 03 1995 0 00.000000 A.1 

T2S2I REAR 4 5 DEG. 

S LED D E L T A - V 31.4 KM/PH. 1 7 , 7 G . T R L WHEELCHAIR - W r i l l c n b j - Z u n G u 

1 N L B S S E C 0.000000 0.000000 386.0880 Ü.00O0O0 

6 48.0050000.0002500.0010000.0001250 

2010 200 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 

4 2 41 TN'OM/RSEL D U M M Y B . l 

L T 644.4602.1173.728001.46715.00007.00004.7500-l.iXW.OOOOO.OOOOO 1 B.2 

.0O0O0.QO00O.00O0O 

MT 54.89m.03890.0389O.0194O4.OOœ6.5OOO4.000Ol.OO0O.0OOOO-1.000 1 

.00000.00000.00000 

UT1 436.0002.00401.5690 L42R04.75006.50009.0CKXH .0000.000001.0000 1 

.00000.00000.00000 

UT2 39.2160.62000 48300.406004.00007.25002.500(11.0000.00000-3.500 1 

.000004.9900180.00 

NK 22.6680.02540.02570.008401.75001.75001.7500.00000.00000.51000 1 

.0OWX)(W00O¡8O.00 

HD 19.9210.14O80.21280.1956(R25O03.00OCM.0000.50OO0.0OOO0.ft0000 1 

.00000-26.58180.00 

RUL 716.400.60860.59610.1D6B03.00003.00007.2500.00000 OOOOO.OOOOO 1 

.000004.1300-1800 

L U L 016.400.60860.59610.106803.00003.00007.2500.00000.00000.00000 l 

.000004.1300180.00 

M L L 116.500.67O80.6745U.039702.25001000O9.7500.0O000.0O00020001) 1 

.00000- 1.90U-1B0.0 

RUA 34.5970.10240.09970.010902.00001.75006.0000.00000.OO00O-.5O00 1 

.00000-1.310180.00 

LUA54 .5970 .1 I ÎMaO9970 .01 l jm0OOO1.75œ6 .O0^ 1 

.00000-1.310180.00 

CHR .S0000.0S000.05000.05000.8O0OO.B0000.80000.000()O.O00O0.0O0O0 0 

C l 1.6500.31000.950002.03008.5000.40000.400008.0000.00000.00000 0 

C2 1.2900.083001.77001.8500.4(XXX».0000.40000.00000-9.000.00000 0 

C3 1.6500.3l000.95000Z03008.50t».4OO00.4O0on8.0000.0O000.0O0œ C 

B l 1-58003.19002.9000.30000.40000.400007.0^00^ 0 

B 2 2.2500.73000.05400.78000.400009.0000.40000.00000-9.000.00000 0 

B 3 1.SÍ003.190Û2.9000.30000.40000.400007.0000.0OO0O.00000-6.000 0 

B4 1.2900.08300.02100.10400.400009.0000.40000.000009,0000.00000 0 

P I l.83001.2903.94000.5Bom400O0.4ODO09.0^ 0 

P 2 1.65D0.3100u.950002.O3OÜ8.0OTO.4OOm.4000O9. 0 

P3 1.72001. U00.7900O.52000.4O00O.4O0OO9.0Ü00.0O0O0.O00OO-8.0O0 0 

P4 1.5400.29000.790001.73008.2000.40000.40000-7.500.00000.20000 0 

PS 1,3400.100001.84001,9300.400009.0000.4Ono0.0O0OW.O0O0.00000 0 

PS1 1.3400.100001.84001.9300.4O0Xm0000.40O00.00OW^ 0 

5 1 l .83001.290014tm.5WXX1.40000.4OCO09.0000.00000.00000-8.«JO O 

5 2 1.6500.31000.950O02.03œ8,OO0O.4OO00.400009.OOœ.0OOO0.0O000 0 

5 3 1.73001.1100.79000.52000.40000.400009.0000.CO000.00000-B.000 0 

5 4 1.54O0.29000.796001.73008.20IXl.4O000.4000a7.500.On00O.200On 0 

551 1.7500.330001.03001.3700.40000.400TO8,8000.IWOOO.00000-9.000 0 

552 l.3500.250O0.390On.64(m4OOO0.40O0O9.0000.0OOO0.O0Û00-ia.00 (I 

PP1 1.7500.330001.03001.3700.40000.400008.8000.00000.00000-9,000 0 

PP2 1.3500.25O00.390O0.6400O.4OOO0.4OO0O9.00œ.O0OO0.0OOO0-10.00 0 

C t R l U1.4015,00Û18.000l6.OO0,5OO0O.50O00.5Oû00.0XI0OO.OO0O0.O0000 0 

312 

http://0000.4Ono0.0O0OW.O0O0


Appendix 9A 

WHl 5.00O0.O50OO.50000.05O0O6.30001.00006.3000.00000.00000.00000 0 

WH2 5.0000.0500050000.050006.30001.00006.3000.0^ 0 

WH3 Ł Û O O O . O l 0 0 0 . 2 0 0 0 0 . 0 1 C K B 3 . 7 4 œ . 4 O O œ 3 . 7 4 0 0 . 0 0 0 0 0 . 0 

WH4 2.0000.01000.20000.010003-74W.4üOOQ3.7400.OOOOO. OOOOO .OOOOO 0 
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W 2 -4-.3S0O.0OO0O-256O-.89OO.00O005.S500 0.00000.00000 
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S23 12 -418.0009.0000-4,500.00000.00000.00000 0,00000.00000 

,00O00.0O0O0.00OO0.OD0œ55.0œ.00O00.O0O0a0O0O0.0OOO03 2 13 2 1 

S34 12 -4L6.0009.ÛCIOO-20.50.00000.00000.00000 O.OOOOO.OOOOO 
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.00000,00000 

,00000.00000 

.00000,00000 

00000.00000 

.00000.00000 

.00000.00000 

,00000.00000 

.00000,00000 

.00000.00000 

,00000.00000 

.00000.00000 

.00000.00000 

.00000.00000 

.•JOCW.OOOOtl 

OODOO.OOCOO 

.00000,00000 

.00000.00000 

,00000.00000 

.00000.00000 

.OUXM.QOWW 

.00000.00000 

,00000.00000 

,00000.00000 

.00000.00000 

.00000.00000 

,00000.00000 

.00000,00000 

,00000.00000 

.00000.00000 

.00000,00000 

,00000.00000 

.00000.00000 

.oortm.ooooo 

.00000.00000 

,00000.00000 

.00000.00000 

.00000.00000 

.00000.00000 

,00000.00000 

.00000.00000 

.1)0000.00000 

.00OO0.0O0OÍI 

.00000.00000 

,00000,00000 

.O00OO.0tKIO0 

.00000.00000 

.00000.00000 

OOOOO.OOOOO 

.00000.00000 

.00000.00000 

OOOOO.OOOOO 

.00000,00000 

.00000,00000 

.COOOO.DOOOO 

.0OOO0.0O0OU 

316 



Appendix 9 A 

.ooooo.ooooo.ooooaciooo^ooooo .OOOOO.OOOOO 

.ooooo.ooooo.onooo.00000. ooooo .00000,00000 

.Oixm OOOOO.0000000000.00000 .00000.00000 

.ím».í»ÍXXVíXtOOOOOO«V .1XMOO.UO0O0 

.OOOOO.DOOœ.OOOOO.00000.00000 ,00000.00000 

OOOOO.OCOOO.OOOOO.OOOOO OOOOO .00000-00000 

,00000.00000.0000000000. ooooo ,00000.00000 

.00000. OOOOO. OOOOO.OOOOO.OOOOO .00000.0000(1 

.ooooo ooocifl.ooooo.ooooo.onooo OOOOO.OOOOO 

.00000.00000.00000. (IO000.00OCW,00O00.0050aœ500.œ50ft 00100.00100.00100B.6 

,00000. OOOOO. OOOOO OOOOO. OOOOO .00000.0(15IX) 00500.00300.00000 00000.00000 

,00000. OOOOO. OOOOO. OOOOO.00000.00000.00500,00500.00500.00000. OOOOO. OOOOO 

.00000.00000.00000.00000.000^.00000.0050000500^ 

«woQ . o o o c w . o o o o o . ooaof t . o o n œ . 0^ 

,ooooo . o o o o o .ooooo , o o o o o .ocooo-ocioœ.oo50o . m 

.00000.00000.00000.00000.00000.0OOQ0.00S0O.005W 

.00000. OOOOO. OOOOO.OOOOO. OOOOO. OOOOO .Otó 00.00500.00500. OOOOO-riOOOO-00000 

,00O00.00000.00O00,0O000.00CKX).0OO00.0(1500 M500.<K150O.COOœ.«X)00.00000 

o o o o o . o o o ( x i . o o o o a o o o ( ) o . o o o o o . o o o ^ 

,(10000.00000.Clt)000.0O000.00000.0O00O.O0SM 

. ( x x x x > . o o o o o .oooro . o o o o o o o o o o . c o o m o o 5 o a . o o s w . o o 5 o o . o o o o o . o o o r o ^ 

. n o o o o . c a x w . r o o o o . o o ( K ) o . i x w ) o . o o o œ , o i o o o . o î o o o ^ 1000.00000,00000.00000 

,00000.00000,00000-00000.00000.00000.01000.010OO.0 !000.00000.00000.00000 

,ooooo . o o o o o . o o o o o . o o o o o . o n r i o o .O(X > o o . o i o o o o 

. n o o M .coooo . o o o o o .ooooo . o o o o o .ou 

.OOOOQ.OOOOÜ.OOOTO.OOOOO.OOOOO.OOOOO.Ol000.01000.0100O 00000.00000.00000 

.«Xjœ.OOOOO.OOOûO-OOOOO.OOOOO.OOOOO.OlCW^ 

.ooooo.ooooo.oooœ.oocw.ooooo.oooœ.01000.01000.01000.00000.00000,00000 

.OOOœ.OOOOO.OOOOO.00000.00000.00000.01000.01 OOO.OigOO.OQOOO.OOOOU.00000 

. o o o o o . o o o o o . o o o œ . o o o o o . o o o œ . o o o o o . o i m 

. o o ( X » , o o o o o , o o o o o . o o o o o . o o o o o - 0 0 o o o . o i o o o . o i o o o . o 1 ooo.oooœ.00000.00000 

. couco. o o o o o . o o o o o.ooooû- 00000. ooooo. 01000.01000.01 Doo .ooooo, 00000,00000 

.00000.00000.00000.00000.00000. OOOOO. 0100001000.01000.00000.00000.00000 

-00000.00000,00OO0.OO0tXl.0O000.OOOM 

. o o o » . o o o o o . o o o o o . o o c r w . o o o r a 

.OOOOO.OOOOO.OOOW.OOOOO.OOOOO.OOOOO^̂  

,0O0O0.00000.0D0OO.0O000.0DH».0DO0û.01l^ 

,00000.00000.00OO0.0CK)O0.00000.(XXlOO.0100O.01O00.01<m0O(X)O.O0OOO.OOClOO 

.00000.00000.00000.00000. ( KJOOO.00000.01000.01000,01000.00000, OOOOO. OOOOO 

.CIOOOO.OOOOO.ÖOOOO.OOOOO.OOOOO.ODDOO.O 1000,01000.0100a 00000.00000,00000 

.OOOOO.OOOOO.COOOO.COOrtf.OOOM^ 

.00000 00000. ocooo .ooooo. 00000. 00000.01 OTO ;O 1000.01000. coooo.00000.00000 

.OOOOO.OOOOO.OOOOO.OOOOO.OOOOO.OOOOO.œiOO.O^ 

.OOOOO. OOOOO. OOOOO. OOOOO. OOOOO. OOOOO ,00300 00500.00500.00000.00000.00000 

.OOOOO.OOOOO.DOOOO.OOOoaiXXXXJ.O^^ 

.00000. OOOOO.OOOOO. OOOOO.OOOOO.OCOOO.ÜOOOO.OOOOO.OOOOO. OOOOO 00000.00000 

.OOOW.OOOOO.OOOOO.OOOCtVO^ 

.00000.0O0O0.0O000.0OO00.00OOO.00O00.0Ö1TO 

.1(0000. OOOOO. OOOOO.OOOOO. OOOOO. OOOOO. OOCTÔ  

. OOOOO-OOOOO.00000-00000. OOOOO- OOOOO. OOOOO. OOOOO. OOOOO.OOOOO-OOOOO. OOOOO 

. OOOOO.OOOOO, OOOOO.OOOOO, OOOOO. OOOOO. COOOO DO 

S L E D D E L T A - V 31.5 K M / P I I. \7.7 GT2R21 

.O000O.O0O0O.0OO00343.O0.0OO0O.O0OO0.0Ott».O0OOO 41.00000.00500 0C.2 

.00(mi3000.100Oa.l0OQ-.lUO0-.13OO-.I5O3-.23 

13.26Ol5.53D16.8OO17.650Rfi9O16.Simi5.93niX 

3.63OO4.80OO4 65004,6100.87000.53000.19000-.3400-56000.89000.40000-,7700 

-1.360.06000,03700-21000,8B000 

R U O O O O 2 O 6 0 n. l 

1 CALIBRATION BAR O O D.2 

65.00000 20.00000 0.000000 

65.00000 19.00000 0.000000 

65.00000 20.00ÜOO 30.00000 

2 FLOOR 1-V 0 0 D . 2 

0.000000 -22.44000 -1.770000 
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0.000000 22.44000 -1.770000 

69.00000 - 2144000 1.770000 

3 FOOTREST-S 0 0 

26.00000 9.000000 0 4375690 

26.00000 1.000000 0.4375690 

33.00000 9.000000 -1.053431 

4 FCOTREST-P 0 0 

26.00000 -9.000000 0.437SIÎ90 

26.00000 -1.000000 0.437Í69Ü 

33.00000 -9.000000 -1.053431 

5 SEAT CL'SHION-W I) 0 

1.500000 -9.000000 -12.95000 

1.500000 9.000000 -12.95000 

17.50000 - 9.000000 -13.92000 

6 SEAT B A C K 1-W 0 0 

0.3900000 -9.000000 -20.00000 

-1.657000 -9.UOO000 - 32.00000 

0.3900000 9.000000 -20.00000 

7 A R M REST - S 0 0 

0.5699000 8.000000 -19.15000 

16.00000 8.000000 -20.80000 

0.5699000 10,00000 -19.15U00 

8 A R M REST -P 0 0 

0.569900O -8.000000 -19,15000 

16.00000 -8.000000 - 20.80000 

0.5699000 -10.00000 -19.15000 

0 0 0 0 0 0 0 0 0 0 0 0 0 

o o o o o o u o o o o o o 

0 0 0 0 0 0 

1 SEAT C U S H FDP (0) 1 1 

0.000000 -3.000000 0.000000 

7 

0.000000 0.000000 0.5O00O0O 

1,000000 1000.000 1.500000 

3,000000 15000.00 

2 SEAT B A C K FDF (O) 1 1 

0.000000 "4.000000 0.000000 

6 

0.000000 0.000000 1.000000 

2.000000 2000-000 3.000000 

3 FLOORBOARD F D F (O) ! 

0.000000 -8,000001.1 0000000 

6 

0.000000 0.000000 1.000000 

3,000000 2270.000 4.000000 

4 SEAT PAN FDF (O) 1 1 

0.000000 -1.000000 0,000000 

3 

0,000000 0.000000 0.2000000 

5 SHLD B E L T FDF 3 1 

0.000000 -0.1200000 0.000000 

2 

0.000000 0.000000 0.1200000 

6 LAP BELT DFD 3 1 

0.000000 -0,1200000 D.0O000O 

2 

0.000000 0.000000 0.1200000 

7 TIRE F D F (REAR) 1 ! 

0.000000 -2.160000 0.000000 

9 
0.000000 0.000000 0.3000000 

0.8900000 \35.O0OO 1.190000 

1.780000 2250.000 1.970000 

8 CHEST FDF 1 1 

D.2 

D.2 

D.2 

D.2 

D.I 

D.2 

0 0 0 0 0 

0 0 0 0 0 

E.1 

0.000000 o . o o o o o n 

100.0000 0.7500000 400.0000 

3000,000 2.000000 6000.00(1 

E l 

0.000000 0.000000 

500.0000 1.500000 1000.000 

5000.000 4,000000 ¡0000.00 

1 E.1 

0.000000 1.000000 

860.0001 2.000000 1690.000 

2380.000 8.000000 2380.000 

E.1 

0.000000 1.000000 

2000.000 1.000000 20000.00 

E l 

0,000000 0.000000 

2500.000 

E.1 

0.000000 0.000000 

3S00.OCO 

E I 
0.000000 1.000000 

45.00000 0.59OOOOO 90.00000 

iSO.OOOO 1.480000 225,0000 

3375.000 1.160000 6075.000 

E.1 

318 



Appendix 9A 

D.000000 -1.5UOOD0 O.COOOOO 0.000000 0000000 

6 

0.000000 0.000000 02500000 50.0MKK) 0 5000000 200.0000 

1.000000 3000.000 1.200000 7000.(100 1.500000 15000.00 

9 Spring Func 5 1 E J 

-4,000000 -2,000000 0.000000 0,000000 0.000000 

7 

-4.000000 -4000,000 -2.000000 -2000000 -1 000000 0.000000 

0.000000 0.000000 1.000000 0.000000 1.500000 5000,000 

2.000000 10000.00 

!0 B E L L Y FDF 1 1 E.I 

0.000000 -1.000000 0.000000 O.OVIOOO 0.000000 

3 

0.000000 O.COOOOO 0.2500000 5000.000 1.000000 15000.00 

11 SEAT CUSHION R 1 3 E.I 

0.000000 0.000000 0.1000000 0.000000 0.000000 

12 SEAT BACK R (O) 1 3 E.I 

0.000000 0.000000 0.1000000 O.DOOOOO 0.000000 

13 R.OORBOARD R (O) 1 3 E.I 

0.000000 0.000000 0.1000000 0.000000 0.000000 

U CHEST R 1 3 E.I 

{1.000000 0,000000 0,7000000 0,000000 0000000 

15 B E L T R ( M G A ) 3 3 E.1 

0.000000 0.000000 O.IOOOOOO O.COOOOO 0.000000 

16 TIEDOWN F (REAR) 3 1 E.I 

0.000000 -0.2000000 0.000000 0 000000 0.000000 

2 

0.000000 0.000000 0.2000000 2600,00(1 

17 TIEDOWN F (FRONT) 3 0 E.I 

0,000000 -0.2000000 0.000000 0000000 0.000000 

2 

0.000000 0.000000 0,2000000 2O00.ÜO0 

18 CHEST G 1 4 E . I 

0.000000 0.000000 0.5000000 0.000000 0.000000 

19 TIRE FDF (FRONT) 1 1 E. 1 

0.000000 -2.160000 O.COOOOO 0.000000 1 000000 

9 

0.000000 0.000000 0.3000000 45.DO000 0,5900000 90.00000 

0.8900000 135.0000 1.190000 180.0000 1.480000 225.0000 

1.780000 2250.000 1,970000 3375.000 2.16IXXX1 6075.000 

21 S E A T C U S H C ( O ) 1 4 E l 

0.000000 0.000000 0.5000000 0.000000 0.000000 

22 SEAT BACK G (K) 1 4 E.I 

0.000000 0.000000 0.5000000 0.000000 0.000000 

23 FLOORBOARD G (O) I 4 K.l 

0.000000 0.000000 0.8800001 0.000000 0.000000 

24 BELT G (MG A) 3 4 E.I 

0.000000 0.000000 0.3000000 0.000000 0.000000 

25 BAR R 2 3 E.I 

0,000000 0.000000 0.70OO0OO 0,000000 0.000000 

30 TIRE ROLL FRIC 1 5 E.1 

0.000000 0.000000 0.5000001) (1.000000 1.000000 

31 S E A T C U S H C F ( O ) 1 5 E.I 

0.000000 O.00O0OU 0,3000000 0,000000 0.5000000 

32 BELT FRIC B 3 5 E.I 

0.000000 0,000000 0.2500000 0,000000 0.000000 

33 BELT FRIC C 3 S E.I 

u . o o o o o a o o o o o o o 0.8000000 0000000 0.1000000 

34 BELT FRIC D 3 5 E.I 

0.000000 0.000000 10.00000 0.000000 0.1000000 

35 MID CF1.K) \ 5 E.I 

0.000000 0.000000 1.000000 0.0OO0U) 1 000000 

i6 BELT CF(K) 3 5 E.I 

O.0OOOOD 0.000000 0.8OOO0O0 0,000000 0.000000 
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3? TIRE RIO) 1 3 R I 

0.000000 0.000000 0.1000000 0,000000 0,000000 

38 TIRE G (0) 1 4 E.l 

0.000000 0,000000 0.3000000 0.000000 0,000000 

39 TIEDOWNR(O) 3 3 E , l 

0,000000 0.000000 O.IOO0U0O 0.000000 0.000000 

40 TTEDOWN G (O) 3 4 E . l 

0.000000 (1.000300 O.30OUÜ00 0.000000 0,000000 

999 

41 RIGHT SHOULDER JOINT 6 0 E.7 

0.000000 0.000000 0.000000 0.000000 0.000000 

-4 8 

151.0000 noooooo 8790000 0.000000 

75.00000 0.000000 13700.00 0,000000 

0.000000 0.000000 -312.0000 11800.00 

66.00000 0.000000 7780.000 3010000. 

68.00000 0.000000 22200.00 376000.0 

89.00000 0.000000 22000,00 0.000000 

111.0000 0.000000 2470.000 17600.00 

153.0000 0.0Û000O 1ÎO0O.00 0.ÜCWCO 

42 LEFT SHOULDER JOINT 6 0 E.7 

0.000000 Ü.0OOO0O ÛOOOOOO 0.000000 O.CXIOOOO 

.4 8 

151.0000 0.000000 87900.00 0.000000 

153.0000 0.000000 13000.00 0.000000 

111.0000 0.000000 2470.000 17600.00 

89.00000 0000000 22000.00 Q.OOOOÛÛ 

68.00000 0.000000 22200,00 376000.0 

66.00000 0.000000 7780.000 301000Q. 

0,000000 0.000000 - 312.0000 11800.00 

75.00000 aOOOOOO 13700,00 0.000000 

43 SITTING RIGHT HIl* 6 0 E.7 

0.000000 0.000000 0.000000 0,000000 0.000000 

19 4 

noooooo 7,000000 22.00000 52.00000 112.0000 232.0000 

472.0001 952.0002 1910.000 3830.000 7670.000 15400.00 

30700.00 61400.00 123000,0 2460UO-0 492000.0 983000.0 

1970000. 

0,000000 17.00000 51.00000 1190000 255,0000 Î27.0U00 

1070.000 2160.000 4340.000 8690.002 17400.00 34900,00 

69700.00 139000.0 279000 0 5570OO.Û 11IO0O0. 2230000. 

4460000. 

0,000000 8.000000 17.00000 28.00000 50.00000 94,00000 

1B2.0000 358.0000 710.0000 1410.000 2820,000 564O.0O0 

11300.00 22500.00 45100.01 90100,02 180000.0 360000.0 

721000.0 

0,000000 7.000000 13.00000 18.00000 23.00000 33.00000 

53.0OOOO 93.00000 173.0CO0 333.0000 653.0000 1290.000 

2570.000 5130,000 10300.00 20500,00 41000.00 81899.98 

164OO0.0 

44 SITTING LEFT IIB1 6 0 E.7 

0.000000 0.000000 0.000000 0.000000 0.000000 

19 4 

0,000000 7.000000 22.00000 52.00000 112.0000 232,0000 

472.0001 952.0002 1910.000 3830.000 7670.000 15400,00 

30700.00 61400.00 123000,0 2460000 492000.0 9B30O0.0 

1970000. 

0.000000 7.000000 13.00000 18.00000 23.00000 33,00000 

53.00000 93.00000 173.0000 333.0000 653.0000 1290.000 

2570.000 5130,000 10300,1X1 20500,00 41000.00 81899.98 

164000.0 

0.000000 8.000000 17.00000 28.00000 50.00000 94,00000 

182.0000 358,0000 71O.DOO0 1410,000 2820,000 5640.00(1 

11300.00 22500.00 45100.01 90100.02 ÍSOOOO.O 360000,0 
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721000.0 

0.000000 17.00000 51.00000 119.0000 255.0000 527.0000 

1070.000 2160.000 4340,000 8690,002 17400.00 34900.00 

69700.00 139000.0 279000,0 557000,0 1110000. 2230UOO 

4460000. 

45 srrnxG L U M B A R S P Í N E S 0 E.7 

o . o o o o o o 0,000000 0.000000 0,000000 0.000000 

19 4 

0.000000 2200.000 4400.000 6600.000 8800.000 11000.00 

13200.00 15400.00 17600.00 19800,00 24200.00 33000.00 

50600.00 85800.00 156200 0 297000.0 578600.0 

2268200. 

0.000000 2200,000 4400.000 6600.000 8800.000 n o o o . o o 

13200.00 1S400.D0 17600.00 19800.00 24200.00 33000 00 

50600,00 85800.00 156200.0 297000.0 578600.0 1141800. 

2268200, 

0,000000 1920.000 3840,000 5760,000 7680 .000 9600,000 

11520.00 13440.00 15360.00 17280.00 21120.00 28800.00 

44160.00 14880.00 136320.0 259200.1 504960.0 996480,0 

1979520. 

0,000000 22UO.OOO 4400.000 6600.000 8800.000 1100000 

13200.00 15400.00 17600.00 19800,00 24200.00 33000,00 

50600.00 85800.00 156200.0 297000.0 578600.0 1141800 

2268200. 

46 N E C K 6 0 E . 7 

0.000000 0000000 0.000000 0.000000 0.000000 

19 4 

0,000000 700.0000 1400.000 2100.000 2800.000 3500.000 

4200.000 4900000 5600,000 6300.000 7000.000 7700000 

8400.000 9800.000 12600.00 18200.00 29400.00 51800.00 

• 96600.00 

O.OOOOOO 600.0000 1200.000 1800.000 2400.000 3000.000 

3600.000 4200.000 4800.000 5700.000 6000,000 6600.000 

7200.000 8400000 10800.00 15600.00 25200.00 44400.00 

82799.98 

0,000000 300.0000 600.0000 900.0000 1200.000 1500.000 

1800.000 2100.000 2400.000 2700.000 3000.roo 330O000 

3600.000 4200000 5400.000 7 8 0 0 0 0 0 12600.00 22200.00 

41400.00 

0,000000 600.00110 1200.000 1800.000 2400.000 3000.000 

3600.000 4200.000 4800.000 5400.000 6000.000 6600.000 

7200.000 8400.000 10800.00 15600,00 25200 ,00 4440D.OO 

82799,98 

1 4 1 1 4 3 1 E . l 

1 43 1 1 1 0 11 21 31 -1 

2 43 35 35 7 0 37 38 30 -1 

2 43 36 36 7 0 37 38 30 1 

2 43 37 37 19 0 37 38 3 0 -1 

2 43 38 38 19 0 37 38 30 -1 

3 12 9 9 3 0 13 23 35 1 

4 12 9 9 3 0 13 23 35 1 

5 12 1 l 1 0 11 21 31 l 

5 12 6 6 1 0 0 0 31 1 

5 12 8 8 l 0 11 21 31 1 

5 12 7 7 1 0 11 21 31 1 

6 12 1 1 2 0 12 22 31 1 

6 12 6 6 1 0 0 0 31 1 

6 12 2 2 2 0 12 22 31 1 

7 12 1 1 2 0 12 22 31 1 

8 12 2 2 2 0 12 22 31 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F . 3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0F .4 
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0 0 c o o o o o o o o o u O O 0 II o 

0 0 0 0 0 

O O P O O O D O O O O D O O O O O 0F.5 

0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 

0 0 0 0 0 

2 6 F.8.A 

9 9 F.S.B 

5 O 1Î 24 O 0.500000 0 0 0 

43 O 1 I 0 0 0 0 0 19.909178 -8.80S765 -49.473431 

0.000000 0.000000 U.OtXXOO 0.000000 0.000000 -1.000000 

4 4 O O 8 O 14 18 34 2.818949 -2.422708 -0.83ZO97 

0.000000 0.000000 0.000000 0.000000 0000000 OOOOOOO 

4 4 O O 8 O 14 IB 34 3.981118 -0.826067 2.232970 

0.000000 0.000000 0.000000 OOOOOOO 0.000000 0.000000 

3 3 O O 8 O 14 18 34 4.369034 0.610670 -0.390206 

0.000000 0.000000 0.000000 0.000000 0.000000 ooooooo 

3 3 0 O 8 O 14 IB 34 4.3228B3 1.409031 0.944O90 

0.OÛ00O0 0.000000 0.000000 0,000000 0.000000 0.00O0OO 

3 3 O O 8 O 14 18 34 4.236056 3.00557 S 3.389913 

0.000000 0.000000 0.000000 0.000000 D.O00000 OOOOOOO 

3 3 O O 8 O M IB 34 Î.005R62 4.123076 5.471999 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

3 3 O O 8 O 14 18 34 1.178110 4.921412 7.257435 

0.000000 0.000000 0.1X0000 0.000000 0.000000 0.000000 

43 O 1 1 O O O O O 16.500000 12.500000 0.000000 

0.000000 0.000000 OOOOOOO 0.000000 OOOOOOO -l.OOOOWO 

6 O 15 24 O 0.000000 0 0 0 

43 O l 1 O O O O O 16.500000 -12.500000 0.000000 

0.000000 0.000000 0.000000 0.000000 0.000000 -1.000000 

1 1 O O 10 O 14 18 32 2.117691 -5.879315 0.459376 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

I 1 O O 10 O 14 18 33 3.587214 -4.761753 -0.853525 

0.000000 0.000000 0.000000 OOOOOOO 0.000000 0.000000 

1 1 O O 10 O 14 18 33 4.708301 -2.901662 -1.685729 

0.000000 0.000000 0.000000 OOOOOOO OOOOOOO OOOOOOO 

1 1 O O 10 O 14 18 33 4.793403 -0.027878 -1.204061 

0.O00OOÍ1 OOOOOOO 0.000000 0.000000 0.000000 0.000000 

1 1 O O 10 O 14 18 33 4.708301 2.526587 -1.685729 

0.000000 OOOOOOO 0.000000 0.000000 0.000000 0.000000 

1 l O O 10 O 14 18 33 3.372296 4.657859 -0.907 i04 

0.000000 0.000000 0.000000 0,000000 0.000000 0.000000 

1 ! O O 10 O 14 18 32 1117886 6.254417 0.459429 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

43 O 1 1 0 0 0 0 0 16.500000 12.500000 0.000000 

0,000000 0.000000 0.000000 0,000000 OOOOOOO 1.000000 

2 2 2 2 2 2 F.S.B 

16 O 39 40 Q 0.000000 0 0 0 

43 O 1 1 0 0 0 0 0 16.77OOO0 -B.OOOOOO OOOOOOO 

0.000000 0.000000 OOOOOOO 0.000000 0.000000 -1.000000 

39 39 I 1 O O O O O 0.900000 0.000000 -0.900000 

0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 

16 O 39 40 O 0.000000 0 0 0 

43 O 1 1 0 0 0 0 0 16.770000 -8,000000 0.000000 

0.000000 0.000000 0.000000 ooooooo oonnooo -loooono 

39 39 1 1 O O O O O 0.900000 0.000000 -0.90000U 

0.000000 0.000000 0.000000 0.1)00000 0.000000 -1.000000 

16 O 39 40 O 0.000000 0 0 0 

43 O ! 1 0 0 0 0 0 16.770000 8.000000 0.000000 

0.00001» O.DOOOOO 0.000000 O.DOOOOO 0.000000 -1.000000 

40 40 1 1 0 0 0 0 0 0.900000 0.000000 -O.900000 

0.000000 0.000000 0,000000 0,000000 0.000000 -1.000000 

16 O 39 40 O 0.000000 0 0 0 

43 O 1 1 0 0 0 0 0 16.770000 B.OOOOOO 0.000000 

0.000000 0.000000 0,000000 O.DOOOOO 0.000000 -1.000000 
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Appendix 9 B 

Appendix 9B ISO Frontal Impact Model Data File 

The following code is an example of M A D Y M 0 3 D program which was used 

to obtain the füll scale WTORS model (ISO wheelchair + Hybrid II dummy). 

RUN 1 
WTORS SLED TEST 
WR1TTEN BY JUN GU MAR 4 1996 

* GENERAL INITIAL. INFORMATION * 

TO T E 
0.0OOO0.230O 

4Lh ordcr nmge-kuua wiih fiicd liaic slcp 
INT TS(s) TOL 
0 5.0E-4 0.005 0.002 

RAMPl(raü/s )RAMP2RAC0l RAC02(m/sj 
0.0000 0.5000 0.0100 0.1000 

* D E H N E A SLED AS THE INBTIAL SPACE -1 * 

IN"ERT1AL SPACE 
x-forwanj y-siarboard /-donu 
RS E L HENDON SLED 
PLANES 
tssumc slcti u i snlid ngid enlity 
BODYX1 Y l 21 X2 Y2 21 X3 Y3 Z3 LO UNLIIYS !D 
0 -1.0 .5700 0.000 1.00-.5700 0.0000 1.0 0.570 0.000 0 0 0.0 SLED 
•<m 
END INERT!AL SPACE 

* D E H N E T H E WHEELCHAIR AS SYSTEM I • 

SYSTEM 1 
ISOSURROGATE. CHAIR 
CON FIG U RAT! ON 
1 

G E O M E T R Y 
R J X Y 7 . C G X Y Z ID 

0 0 0 0.21800.363 WH.CH.RE 
-999 
K E R T I A 

MASS IXX IYY VO. 
90 8.2411.66 9.47 

-999 
ELLIPSOtDS 
jemi-axei (m) cenut: of giavii)! 
B O D Y A B C MX MY M2 DEG L O UNLO HYS ID 

1 0.1610.050.161 0-0.295 0.161 2 1 00 REAR.LH.WHEEL 
1 0.161 0.05 0.161 00.295 0.161 2 1 00 REAR.RH.WHEEL 
1 0.120.035 0.12 0.38-0.275 0.12 2 0 0 0 FRONT.LH.WHEEL 
1 0.120.035 0.12 0.38 0.275 0.12 2 0 0 0 FRONT.RH.WHEEL 

-999 
EUNCTIONS 

E 
0 0 0.008 400 0.015 800 0.022 1200 0.039 2000 
0.045 2400 0.05 2600 OMS 50000 

-999 
PLANES 

B Û D Y X 1 Y l ZI X2 Y2 Z2 X3 Y3 7J L O U N E H Y S I D 
1 0.064-0.220.581 0.559-0.220.6O2 0.559 0.22O.6O2 1 00 PANCAKE 
1 0.064-0.220.521 0.559-0.22 0.542 0.559 0.22 0.542 l 00 SEATPL 
1 0,064-0.22 1.07 0.102-0.22 0.533 0.102 0.22 0.533 1 00 UPBACK 
1 0.6R5-0.220.16 0.838-0.22 0.216 0.838 0.22 0.216 0 0 0 FOOTUP 

-999 
FUNCTIONS 

2 
0 0 0.001 50000 

-999 

• INITIAL POSITION AND V E L O O T Y OF W/C ' 

INITIAL CONDITIONS 
X Y 7. V X V Y V Z C H O 
0 0 -0.O0S 0 0 0 0 

END SYSTEM 1 

* DEF1NE T H E D U M M Y AS SYSTEM 2 

SYSTEM 2 
PART 5 72 
CONFIGURATION 
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5 4 3 2 1 
- S 3 2 1 
9 S 3 2 1 
11 10 1 
13 12 1 

-999 
CEO.METRY 

RJX Y 
0.000 0.000 0.000 
0000 0.000 0.000 
0.000 0.000 0.132 
0065 0.000 0.318 
0.000 0.000 0.124 
0.030 0.189 0.260 
0.000 0.000 -0.261 
0030-0.189 0.260 
0.000 0.000 -0.261 
0.042 0.087 -0.072 
0.000 0.008 0.405 
0.042 -0.087 0.072 
0.000-0.008 -0.405 

-999 
INVERTI A 
MASS 1XX IYY 

0.1297 0.08)7 0.1393 
0.0140 0.0159 D.018fi 
0.2352 0.1896 0.1508 

0.01 0 01 0.01 
0.0248 0.0307 0.0164 
0.0161 0.0156 0.01 
0.0311 0.0301 0.01 
0.0161 0.0156 00.1 
0.0311 0.0301 0.01 
0.1300 0.1387 0.0170 
0.1315 0,1271 0.01 
0.1300 0,1387 D.0170 
0,1315 0.1271 0.01 

Z 
0.026 0,000 -0.075 
0033 0.O00 0.072 
0.029 0.000 0.162 
0.ÜOÜ 0.000 0.063 
0.006 0.000 01)28 
D.DO0 0.000-0.122 
0 000 0.000-0.167 
0.000 0.000-0.122 
0.000 0,000-0.167 
0.000 0.006 -0,207 
0016 0.0000.27; 
OOOO-0,006 -0.207 
0.016 0.000-0.272 

IZZ 

C G X Y Z 
LOWER TOHSO 
5 PI NE 
UPPER TORSO 
NECK 
H E A D 
UPPER A R M L E F T 
LOWER A R M LEFT 
UPPER A R M RIGHT 
LOWER A R M RIGHT 
UPPER L E G LEFT 
LOWER L E G L E F T 
UPPER L E G RIGHT 
LOWER L E G RIGHT 

11.76 
2.69 
17.36 
0.88 
4,42 
2.22 
2.15 
2 22 
2.15 
9 68 
4.42 
9,68 
4,42 

-999 
ORIENTATIONS 
BODY ICH IOR PARI PAR2 
5 0 1 2. -0.733 
-999 
CARDAN JOINTS 
EL LÛ U N L HYS X E L L U H X 

10 100.0. 200.0. 300.0. 
12 1 00.0 400.0. 300.0, 
11 500,0, 600,0. 600,0. 

L U H X PHI T H E T A PSI 
6.00 6.005.00 39.39-12. 
6.006.005.00 39.39. 12. 
5.0O7.5O4.OÛ 12. 

PHI T H E T A PSI 

13 500.0, 600.0. 600,0. S.007,504,00 12. 
6 7 0 0.0. 60 0.0. 8 0 0.0. 2.00 4,00 4.00 12, 0.12, 
8 700.0. 600,0. 900.0. 2.00 4.00 4,00 12. 0.12. 
7 1000.0, 600,0 , 1100,0. 2.004,002.00 4, y. 4. 
9 10 0 0.0. 6 0 0.0. 1100.0. 2.00 4.002-00 4. 0. 4. 

-999 
ORIENTATIONS 
BODY ICHIOR PAR 

10 1 1 3. 1.5708 
10 10 1 3. 1.5708 
12 1 ! 3. 1.5708 
12 12 1 3, 1.5708 
11 10 1 3, 1,5708 
11 11 1 3, 1.5708 
13 12 1 3. 1.5708 
1 3 13 1 3, 1,5708 
6 3 1 1. 1.5708 2, 1.5708 
6 6 1 1. 1,5708 2, 1.5708 
8 3 1 1. 1.5708 2, 1.5708 
8 8 1 I. 1.5708 2, 1.5708 
7 6 1 2. - 1.5708 1. -1,5708 
7 7 1 1 - 1.5708 1. -1.5708 
9 8 1 2.- 1.5708 l 1.5708 
9 9 1 . 2,- 1.5708 1. -1.5708 

-999 
FUNCTIONS 

-3.280 - 5 4 C i -2.280 -40. -1,570 0. 
0,000 0. 1.000 500. 

-1.880 -568. -D.8S0 -68. 0000 0. 
0,175 14, 1.175 514. 

4 
-2.000 -500. - 1 . 0 0 0 0. 1.000 0 
2,000 

c 
500. 

J 
-1.175 - 5 1 4 , -0.175 -14. 0.000 0. 
0.880 

J 
68. 1.880 568. 

-1.000 -500. 0.000 0 2,300 0. 
3,300 500. 

2 
-1.000 -500. 1.DO0 500. 

4 
-4.120 -500. -3.120 0. 1.260 0 
2.260 500. 

3 
0.000 0. 2.500 0, 3,500 500. 

326 



Appendix 9B 

-3.500 -51X1. -2,500 

4.880 
1.880 

-500. 
500. 

-0.88 

-600. 
-10. 

-2.300 
0.000 

-3.300 
.1.000 

999 
H £ X ION-TORSION 
ELASTICttW (lorsion) 
E L L O U N L HYS X E L L 

0. 0.000 0. 

0. 0.880 0. + 

-100. -2.000 -35. 
0. 1.000 500. 

2 l 0 0.0 2 0 0. 0. 
3 1 00.0. 200.0. 
4 3 0 0. 0. 4 0 0. 0. 
5 300.0 . 400.0. 

-999 
ORIE NT AT IONS 

BODY ICH IOR PAR 
4 3 1 2 . 0.35 
999 
FUNCTIONS 

2 

DAMPiNG FRICTION 
U H X {Nmsfrad) 

3.00 
3.00 
1.00 
1.00 

(No) 

0.000 0. 1.000 317. 

-1.000 
1.000 

-126. 
126. 

-0.175 -40. 0.175 40. + 

0.000 0. 1.000 154. 

-1.000 
1.000 

-103. 
103. 

-0.175 -28. 0.175 28. + 

-999 
ELLIPSOIDS 
BODY A 

0.1150.165 0.115 
0.1100.150 0.110 
0.120 0.155 0.175 
0.050 0.2100.050 
O0400.040 0.065 
0.0900 078 0115 
0.047 0 042 0.14] 
0.040 0.040 0.235 
0.047 0.042 0.141 
0.040 0.040 0.235 
0.080 0.085 0.2775 
0.060 0.047 0.270 
0.130 0,045 0.040 
Q.0800.0R5 0,2775 
0.0600.0470.270 
0.1300.0450.040 

B C 
0.045 0.000-0.045 
0.024 0.000 0.O66 
0.024 0.000 0,163 
0.030 0.000 0.260 
0.000 0.000 0.062 
0.0225 0.000 0.025 

9 
10 
11 
II 
12 
13 
13 

-999 
INITIAL CONUmONS 

X Y 2 
0.24 0.0 0.71 

ORIENTATtONS 
BODY ICH IOR PAR 

I -1 1 2, -0.5236 
1 -0.3236 
2.-0.2236 
2. 0,35 
2. 0.35 
1 -0.3926 
2. -1.57 
2. -0.3926 
2,-1.57 

10 -1 I 2. -1.6708 
II -1 I 3 0.0873 
12 -1 1 2 -1.6708 
13-1 12. O.OS73 

999 
END SYSTEM 2 

MX MY MZ 
2. 000, LOWER TORSO 
2. 000. SPINE 
2. 000. UPPER TORSO 
2. 000. SHOULDERS L&R 
2- 00 0. NECK 
2. 000. HEAD 

0.000 0.000-0,1305 2. 0 0 0. UPPER A R M L E F T 
0.000 0-000-0.185 2. 0 0 0. LOWER A R M L E F T 
0.000 0.000-0.1305 2. 0 0 0, UPPER A R M RIGHT 
0.000 0.OO0-O.185 2. 0 0 0. LOWER A R M RIGHT 

0-000 0.000-0,1925 2. 0 0 0, UPPER L E G L E F T 
0.000 0.000-0.180 2. 0 0 0. LOWER L E G L E F T 
0.100 0000 -0.455 2. 00 0. FOOr LEFT 
0.000 0.000-0.1925 2. 0 0 0. UPPER L E G RIGHT 
0.000 0.000-0.180 2. D00. LOWER L E G RJGHT 
0.100 0.000-0.455 2. 0 0 0. FOOT RIGHT 

DEG LO UNLO HYS CD 

V X V Y V Z CHO 

2 -1 
3 -1 
4 -1 
5 -1 
6 -1 
7 -1 
8 -1 
9 -1 

FORCE MODELS - FTELDS - BELTS 

FORCE MODELS 
ACCELERATION FIELDS 

SYS BODY FUNCX Y Z 
0 0 1 0 2 
-999 
FUNCTIONS 
42 

0 0 0.005 -1.9 0.010 -0.6 0,015 0.5 * 
0.020 -0.1 0.025 19.2 0.030 101.4 0,035 109.5 0.040 150.3 + 
0.045 144.5 0.050 172.4 0.035 173.2 0.060 185,3 0,065 189 8 
0.070 175,5 0.075 211 0.080 167.3 0085 150,6 0,090 138.1 +• 
0.095 152,1 * 
0.100 153 0.105 121.6 0,110 137,1 0.U5 109,1 0.120 70.5 • 
0.125 26.7 0.130 -S-5 + 
0.135 -7.4 0.140 -18.1 0,145 -18.1 0,150 -29.2 0.155 -20.9 * 
0.160 -17 0.165 -4.3 0.170 -0.7 0.175 7.4 0.18 17,7 + 
0.185 6.5 0.19 6.4 0.195 7.5 0.2 4.7 0.25 6 

2 
0 -9.8 0.25 -9.8 

•999 
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"INITIAL CONT ACTS BETWEEN D U M M Y - W / C * 

CONTACT I N T E R A C n O N S 
PLANF.-ELLIPSOID 
WHEELC11A1R - SLED CONTACT 

SY PL SY E L C H O L O U N L HYS X E L D] FK1 F1N COR DAFR DAMP2(D2) 
-1 1 1 1 4 1 0 0 0 0 0.7 0.01 I) fl 
- l 1 1 2 i i 0 0 0 0 0.7 0.01 0 0 
-1 1 1 3 4 I 0 0 0 0 0.7 0.01 0 0 
-1 1 1 4 4 1 0 0 0 0 0.7 0.01 0 0 
WHEELCHA1R - OCCUPANT 
1 1 2 1 4 l 0 0 0 0 0,7 0.01 0 0 
1 1 2 11 4 0 0 0 0 0 0.7 0.01 0 0 
1 1 2 14 4 0 0 0 0 0 0.7 0.01 0 0 
1 3 2 3 4 0 0 0 0 0 0.3 0.01 0 0 
1 3 2 2 4 0 0 0 0 0 0.3 0.01 0 0 
1 3 2 1 4 0 0 0 0 0 0.3 0.01 0 0 
1 4 2 13 4 0 0 0 0 0 0.3 0.01 0 0 
1 4 2 16 4 0 0 0 0 0 0.3 0.01 0 0 

-999 
njNCTIONS 

2 
0 0 0.001 35000 

2 
00 0.001 801100 

-999 
E L L I PS OID • ELL1PSO 03 

SY EL SY EL CHO L O UNL H X Dl FR1 COR DAFR DAMP2(D2) 
2 6 2 7 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 8 2 1 0 0 0 0.3 0.01 0 0 
2 « 1 9 2 1 (1 0 0 0.} 0.01 0 0 
2 6 2 10 2 1 0 0 0 0.3 0,01 0 0 
2 6 2 11 2 I 0 0 0 0.3 0.01 0 0 
2 6 2 12 2 1 0 0 0 03 0.01 0 0 
2 6 2 13 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 14 2 1 0 0 0 0.3 0,01 0 0 
2 6 2 15 2 1 0 0 0 0.3 0.01 0 0 
2 6 2 16 2 1 0 0 0 0.3 0.01 0 0 

•999 
FUNCTIONS 

3 
000.01 375 0.02 1000 

-999 
END CONTACT D.TERACTION S 

* BELT CONT ACTS BETWEEN OCCUPANT-SLED • 

BELTS 
SY1 BOD1 XI Y l Z I SY2BOD2X2 Y 2 Z2 LO UNL HYS X E L FRIC PRET A D D L E N COR ID 
-1 0 -0085 0.35 I.1BS 2 3 0.105 0.09 0 , 2 6 7 1 2 1790000 0.4 0 . 4 -0.058 0.4 1 diag. top |Bpill*r-ui) 
2 3 0.105 0.08 0.292 2 1 0.09 - 0 1 6 4 0.0 1 2 1790000 0.4 0 . 4 0 0 . 4 1 diag. hott (ui-hrighi) 
-999 
FUNCTIONS 
4 

0 0 0.04 8000 0.18 18000 0 . 2 20000 
3 

0 0 0.1 0 0,23 8000 
-999 
BELTS 

SY1 BOD1 XI Y l ZI SY2 BOD2 X2 Y2Z2 LO UNL HYS X E L FRIC PRET A D D L E N COR ID 
2 I 0 . 1 0 0.155 0 -1 (J 0.085 0.35 0 . 0 0 1 2 1790000 0.4 0.4 0 0 1 läppt Oitri-naorpL) 

-1 0 -0.085 -0.35 0 . 0 0 2 1 0.1 -0,155 0 1 2 1790000 0.4 0.4 0 0 1 lapsl (iloorsL-ltrighl) 
-999 
FUNCTIONS 

4 
0 0 0 . O 4 8000 0.18 18000 0 . 2 20000 

3 
0 0 0.1 0 0.23 8000 

-999 
BELTS 
-1 0 -0.33 0.25 0 . 0 1 l -0.022 0 . 2 2 0,38 l 2 1300000 0.04 + 
0,4 0 0 1 OUT REAK RP1 
1 1 -0.022 0 . 2 2 0.38 -I 0 -0.33 0.165 0 , 0 1 2 1300000 0.04 * 

0 .4 0 0 I INN REAR RP2 
-999 
FUNCTIONS 

4 
0 0 0.02 3500 0.03 4500 0.105 9000 

3 
0 0 0.05 0 0.08 2000 

-999 
BELTS 
-1 0 -0.33 0.25 0 0 0 1 1 -0.022 - 0 . 2 2 0,38 \ 1 1300000 0.04 + 

0.4 0 0 1 OUT REAR RS 1 
1 1 -0.022 - 0 . 2 2 0.38 -1 0 -0.33 -0.165 0 1 2 1300000 0.04 -
0.4 0 0 1 OUT REAR RS2 

-999 
FUNCTIONS 

4 
0 0 0.02 3500 0,03 4500 0,105 9000 

3 
0 0 0.05 0 0.08 2000 

-999 
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Appendix 9B 

BELTS 
-1 0 0.901 0.165 0.00 l 1 0.62 0.22 0.47 1 2 1300000 0.04 + 
0.4 0 0 1 FRTFPT1EDOWN 

-999 
FUNCTIONS 

4 
0 0 0.02 3500 0.03 4500 0.105 9000 

3 
0 0 0 05 0 0,08 2000 

•999 
BELTS 

-1 0 0.902 -0.165 0.00 1 1 062 -0.22 0.47 1 2 1300000 0.04 * 
0.4 0 0 I FRTFSTJEOOWN 

-999 
FUNCTIONS 

4 
0 0 0,02 3500 0.03 4500 0.105 9000 

3 
0 0 0.05 0 0.08 2000 

-999 
E N D FORCE MODELS 

OUTPUT FILES 

O U T P U T CONTROL PARAMETERS 
10UTIK1N TSfQN IPTK1N TSOUT 
0 00.005 30.005 
LIND1S 

S Y S ! B O l XI Y l ZI S2 B21D 
25000.063-10 bcadccnire 
1 1 0.401 -0.22 0,466 -1 0 «poim 
1 10 0,2750.16-lOrcwwh.ccEirc 

-999 
U N A C C 
SY5 BO X Y Z FX Y Z rW0 ID 

2 5 00 0.063 100 0 hcad ctmrc 
2 30.02900.162 1 0 10 ehest 

•999 
FORCES 

BELT LOADS 
4 l 
42 
PANCAKE-LT 
1 5 

-999 
INJURY PARAMETERS 

H1C 
1 0,036 

-999 
END IN JURY PARAMETERS 

E N D OUTPUT C O N T R O L 
E N D INPUT DATA 
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