
Competitive Learning with Spiking Nets and
Spike Timing Dependent Plasticity

Christian Huyck1 and Orume Erekpaine1

Middlesex University, London NW4 4BT UK
c.huyck@mdx.ac.uk

http://www.cwa.mdx.ac.uk/chris/chrisroot.html

Abstract. This paper explores machine learning using biologically plau-
sible neurons and learning rules. Two systems are developed. The first,
for student performance categorisation, uses a two layer system and ex-
plores data encoding mechanisms. The second, for digit categorisation,
explores competitive behaviour between categorisation neurons using a
three layer system with an inhibitory layer. Both are successful. The
competitive mechanism from the second system is more plausible biolog-
ically, and, by using one neuron per input feature, uses fewer neurons.

Keywords: Spiking Neurons · Spike Timing Dependent Plasticity · Cat-
egorisation · MNIST

1 Introduction

The authors have proposed, and still believe, that the best way to develop a full-
fledged, Turing test passing, general AI is to follow the human model (Huyck,
2017). This means developing embodied agents that persist for a significant
amount of time (e.g. years), are good cognitive models of most of the things
that humans do, and are based on simulated neurons that are relatively close ap-
proximations to biology. Progress can be made by using commonly used spiking
neurons, and commonly used Hebbian learning rules. These models have strong
support from biological evidence, and many of their limitations are understood
and are being actively explored (Taherkhani et al, 2020).

While there is interest in passing the Turing test, there is appreciably more
interest in machine learning. Deep nets, such as BERT (Devlin et al, 2018) and
Alpha Go (Silver et al, 2017), are widely used in modern industrial tasks. These
make use of neuron like nodes, and synapse like connections; they take advantage
of biologically implausible gradient descent methods, and vast data sets to learn
the connection weights. These “neural nets” have impressive results and it is not
surprising that they spark a great deal of interest.

They are not, however, particularly closely connected to biology. One way
to bridge the gap is to use more biologically plausible systems to solve machine
learning tasks. The systems described in this paper use simple spiking neurons,
based on point models. They learn by spike timing dependent plasticity (STDP),
a model with biological support (see section 2.1). It uses the firing times of the pre



and post-synaptic neurons to select the weight change with the weight increasing
if the pre-synaptic neuron fires first, and decreasing if the post-synaptic neuron
fires first.

This paper describes two machine learning systems, one for student perfor-
mance categorisation (section 4), and one for digit categorisation (section 5).
The student performance system is based on the authors’ earlier work (Huyck,
2020) and uses a two layer topology. The digit categorisation system makes use
of a three layer topology inspired by Diehl and Cook (2015) (see section 2.2).
Both make use of standard neural models, middleware and a neuron simulator
(see section 2.1), so that the systems can be readily used and modified1 with an
explanation of how to run the simulations to reproduce the data reported below.

2 Literature Review

The work reported in this paper is the third in a series of papers using biologi-
cally motivated simulated neurons and learning rules. The earlier papers (Huyck,
2020; Huyck and Samey, 2021) used a feed forward topology with input neurons
connected to category neurons.

Like the systems introduced in the rest of the paper, these earlier papers
used standard neural models, standard learning models, a widely used neural
simulator, and commonly used middleware. These are described in section 2.1.

Those earlier papers make use of a two layer architecture with an input
layer connected to an output layer. The neurons in the output layer act as the
categoriser, and the connections from input to output are plastic during training.
During training, an input is presented by causing the appropriate input neurons
to fire, followed by causing the appropriate categorisation neuron to fire. This
leads to a mechanism where the synaptic weight reflects the co-occurrence value
between the feature value neuron and the category neuron. The system from
section 4 also makes use of this mechanism.

Section 5 uses a different three layer topology that allows the categorisation
neurons to compete with each other. This is a modification of the work of Diehl
and Cook (2015), described more fully in section 2.2.

2.1 Standard Models and Commonly Used Systems

The simulations in the earlier papers (Huyck, 2020; Huyck and Samey, 2021) and
those described below make use of commonly used computational neuroscience
platforms. In particular, one commonly used mechanism is to use PyNN (Davison
et al, 2007) as middleware to specify the neural topology, synaptic modification
rules, neural stimulation, and recording. This acts as middleware between the
developer and existing neural simulators; there are many simulators, and the
simulations below use NEST (Gewaltig and Diesmann, 2007).

1 The code can be found on http://www.cwa.mdx.ac.uk/spikeLearn/spikeLearn.html.



In this paper, the leaky integrate and fire neural models with fixed threshold
and exponentially decaying conductance are from Brette and Gerstner (2005)
(IF cond exp in PyNN). The model is based on equations 1 and 2.

C
dV

dt
= f(V )− w + I (1)

f(V ) = −gL(V − EL) + gL∆T exp(
V − VT

∆T
) (2)

V is the variable that represents the voltage of the neuron, and T is time. C
is the membrane capacitance constant, and I is the input current. w is an adap-
tation variable that is 0 for these neurons. gL is the leak conductance constant
and EL is the resting potential constant. ∆T is the slope factor constant and VT

is the spike threshold constant.
In one set of simulations, neurons with adaptation are used. In this case,

every time a neuron fires, its adaptation variable w is increased by a constant
b. This then reverts to 0 depending on another constant a, and time as shown
in equation 3. τw is the adaptation time constant. This in effect makes it more
difficult for neurons to fire frequently.

τw
dw

dt
= a(V − EL)− w (3)

Equations 1 and 2 determine the change in V (the voltage variable), and
equation 3 manages the change in w (the adaptation variable). These variables
are also changed when V > VT and the neuron spikes; V is reset to EL, and
w is increased by a constant b for spike triggered adaptation. The simulations
described below in this paper use the default constants described by (Brette and
Gerstner, 2005).

In the brain, most if not all learning is Hebbian (Hebb, 1949). If the pre-
synaptic neuron tends to cause the post-synaptic neuron to fire, the weight will
tend to increase. There are many variations of this rule, but a great deal of
biological evidence supports STDP (Bi and Poo, 1998). Bi and Poo (1998) have
perhaps the first published example that shows the performance of the changing
efficiency of biological synapses. Song et al (2000) have developed an idealised
curve that fits the biological data.

The simulations below use the standard spike pair STDP rule described by
equation 4. The presynaptic neuron fires at tr and the post-synaptic neuron fires
at to. If the presynaptic neuron fires first, the weight is increased (modulated by
a constant c+) otherwise it decreases (modulated by the constant c−).

∆w =

{
c+ ∗ etr−to tr <= to

c− ∗ eto−tr to > tr
(4)

2.2 Unsupervised learning using STDP

Perhaps the best working example of spiking nets learning using Hebbian rules
is by Diehl and Cook (2015). This has several main differences from the authors’



earlier work in this area (Huyck, 2020; Huyck and Samey, 2021). The first is that
there are not single neurons for each category but instead a group of neurons that
are not explicitly associated with any category. Unlike Huyck and Samey (2021),
these category neurons are never explicitly fired during training, but are only
activated from the input. Additionally, there is a set of inhibitory neurons that
take input from the category neurons and in turn inhibits them. This enables
the layer of category neurons to compete. The only plastic synapses are from
the input to the category neurons. When the system is learning properly, the
neurons compete for the synaptic strength, and each fires only when a particular
type of input is presented.

This is unsupervised behaviour, and to this point the category labels have
not been presented. Once this training is complete, the category neurons are
assigned labels based on the categories of the inputs to which they respond.

This behaviour resembles that of a self organising map (SOM) (Kohonen,
1997). The nodes of the SOM are like a category neuron. The SOM nodes move
to a place that responds to particular inputs, and moves away from other nodes.
When the category neurons are learning properly, they also respond to particular
inputs and not others. If one wants to categorise with a SOM network, each of the
nodes can be assigned a particular category. Novel input can then be categorised
by the category of the node that responds.

The second difference is input. In Huyck and Samey (2021), each value for
each feature had its own neuron. In Diehl and Cook (2015), each feature has a
single neuron, and higher values lead to more activation, which leads to earlier
firing or earlier firing along with more spikes. This allows fewer neurons to be
used.

The third difference is an enforced balancing of firing for these categorisation
neurons. Category neurons have to fire roughly the same amount over several
data items. Diehl and Cook (2015) enforce this by a dynamic firing threshold
that responds to how often it has recently fired. This relates to adaptation. See
sections 3.2 and 6 for more on balanced firing.

3 Methods

Biological neuron simulations run for a period of simulated time with the neuron
behaving throughout the period. When a neuron fires, activation spreads from
it to other neurons that have synapses from it.

The systems can learn via a Hebbian learning rule, and the simulations in this
paper use one. Synaptic weights change via STDP, increasing when pre-synaptic
neurons fire before post-synaptic neurons, and decreasing when pre-synaptic
neurons fire after the post-synaptic neurons.

Both of the systems introduced in this paper work in a layered fashion, with
input neurons in the first layer and category neurons in the second. There are
no synaptic connections within layers, only between layers.

Neurons used in these simulations are leaky integrate and fire neurons. All
use the default parameters. In both systems, training is performed by a system



with plastic synapses. Data items are presented in sequence. In the Digit Cat-
egorisation task, one system variant uses leaky integrate and fire neurons with
adaptation for the categorisation neurons. This uses all the default parameters
except the adaptation increase rate b (see equation 3).

3.1 Student Performance Categorisation

The student performance system categorises based on data from the UCI ma-
chine Learning Repository (Cortez and Silva, 2014). The dataset includes per-
formances for mathematics and Portuguese separately but only the performance
for mathematics is used. The dataset contained 33 columns and 395 rows with 32
features and a numeric target. The data was originally intended for a regression
task, but classification labels were derived from the initial target column for the
categorisation task used in this paper.

Input to the student performance system is performed by a spike source
array. A spike source is specified (based on the input data) and a particular
time. The static synaptic weight from the source to the neuron is 0.1. This
causes the neuron to spike exactly once. For testing there are no spike sources
for the output layer.

Several input data encoding mechanisms are used. These and their translate
to into input neuron spikes are explained in section 4.

There are four output categories. The initial data has 21 categories, but these
have been binned: 0-5 Fail; 6-10 Pass; 11-15 Credit; and 16-20 Distinction.

The input neurons are well connected to the category neurons. Each learns
using the additive form of STDP.

3.2 Digit Categorisation

The digit categorisation experiments are based on a version of the widely used
MNIST digit categorisation benchmark (Bache and Lichman, 2013). In this ver-
sion, the digits are represented by a vector of 64 inputs (an 8x8 box) with values
between 0 and 16, a transformation of the initial 28x28 bitmap of the digit.

The input layer consists of 64 neurons, one for each vector item. Input in-
stances are given 100 ms of simulated time with neurons associated with non-zero
items given clamped input (DC current or DCSource in PyNN) from 20 to 80
ms of that 100 ms. Simulations were run with a .1 ms time step. Higher value
inputs are given a larger amount of current. The firing times of inputs are shown
in table 1.

Digit Topology The basic topology of the digit recognition system shown in
figure 1 is, like Diehl and Cook (2015), three layers. All versions of the system
have 64 inputs. The input layer is well connected to the categorisation layer (all
to all); when plastic, the synapses are STDP synapses using the multiplicative
form of the rule. During the STDP phases of training they are plastic, and during
testing they are static.



Input

?
Categorisation

?
Inhibition

�A

Fig. 1: The three layer topology has an input, a categorisation, and an inhibition
layer.

Input: Spike 1 Spike 2 Spike 3 Spike 4 Spike 5 Spike 6 Spike 7

1: 75.5
2: 55.9
3: 47.8 75.7
4: 43.0 66.1
5: 39.7 59.5 79.3
6: 37.3 54.7 72.1
7: 35.4 50.9 66.4
8: 33.9 47.9 61.9 75.9
9: 32.7 45.5 58.3 71.1
10: 31.7 43.5 55.3 67.1 78.9
11: 30.8 41.7 52.6 63.5 74.4
12: 30.1 40.3 50.5 60.7 70.9
13: 29.5 39.1 48.7 58.3 67.9 77.5
14: 28.9 37.9 46.9 55.9 64.9 73.9
15: 28.4 36.9 45.4 53.9 62.4 70.9 79.4
16: 27.9 35.9 43.9 51.9 59.9 67.9 75.9

Table 1: Table of input spike times in ms with DC clamp from 20 ms to 80 ms.

Category neurons are well connected to the inhibitory neurons, and inhibitory
neurons are also well connected back to the category neurons. These connections
are static, throughout training and testing. The inhibitory layer is activated
when neurons in the category layer fire, and if it receives sufficient activation, its
neurons fire in turn reducing activation, and, perhaps, firing in the categorisation
neurons.



Test Method After training, the synaptic matrix from input to category neu-
rons is stored; this weight matrix contains all of the parameters that have been
learned from training. For testing, the trained synaptic weights are read back in
to the now static synapses. Once trained, each category neuron is labelled with a
category. The system, with the trained but now static synapses, is presented with
some training data, and the firing behaviour of the category neurons recorded.
For each instance of the data, a winning category neuron is selected; this is the
neuron that fired first after the beginning of the instance input. (The neurons
can be referenced by number, and in the event of a tie, the lowest numbered
neuron won.)

At the end of this run, each neuron is labelled as the category it won most
frequently. In the event of a tie between categories, the neuron was given the
label of the first of which it won most. On the contrary, if the neuron never won,
it was given (really quite arbitrarily) the category 8.

During testing, the static version of the input to category synapses is read in.
An instance of the test data is presented, and the neuron that fired first (with
lower numbered neuron used to resolve ties) is the winner. The category label
associated with the winning neuron is used to predict the answer.

Balanced Firing One of the problems with early experiments on this system
was that particular category neurons would, in essence, win the overall competi-
tion. That is, each presentation would lead to a few neurons or even one neuron
firing first on each instance. In the extreme event that only one category neuron
always won, the resulting system would always predict the same category. When
only a few neurons won, the results were also extremely poor, near chance, which
is 10%.

What is needed is a mechanism to force all of the neurons to fire about the
same amount of time. This enables them to compete for particular portions of
the input space.

Diehl and Cook (2015) used a dynamic threshold based on firing to force
neurons to fire at about the same rate. Using their model would require a non-
standard neural model for NEST. While it is possible to write user defined neural
models for NEST, two other mechanisms are used. The first is a simple weight
adjustment mechanism, and the second is to use standard neural models with
adaptation.

The first balancing mechanism explicitly changes weights to balance firing.
After an STDP run, the synaptic matrix is stored and then the system rerun
with static synapses. The total number of spikes for each category neuron is
recorded. A target upper and lower bound for the number of spikes is selected. If
the category neuron is below the lower bound, all of its synapses from input are
increased proportionally to how far the number of spikes are below the target. If
the number of spikes is above the upper bound, the incoming synaptic weights
are reduced proportionally to how far the number of spikes are above that bound.
This change is all done in python code written in the PyNN script.



The second mechanism was to change the model of the categorisation neurons
to one with adaptation (Brette and Gerstner, 2005) (IF cond exp isfa ista in
PyNN). The neural model is a leaky integrate and fire model, but when the
neuron fires, an extra variable is increased. This slowly reverts to 0, but while it
is above 0, increases the firing threshold.

Digit Training and Test Method The training mechanism is to initiate the
plastic synaptic matrix from input to category neurons using weights with some
random variance. The system is then presented with data learning by STDP.
The initial weights need to be sufficiently large to enable the input neurons to
cause the category neurons to fire.

In the case of the first, compensatory mechanism, balancing is applied until
the category neurons fire within the desired range on the particular training
data.

The neurons are then labelled. The system is then presented with unseen test
data. As the data set is divided into two, there is a two-fold cross validation.

4 The Student Performance Categorisation System

In this section, a system that categorizes student performance based on data from
the UCI machine Learning Repository (Cortez and Silva, 2014) is described. A
spiking neural net learning via STDP is used. The main question to be answered
in this implementation is how well a student grade categorizer could be learned
by this type of network.

A secondary question is how the system performs with different input data
to input neuron transformation techniques. Two preprocessing techniques (one
hot encoding and integer encoding) are used for categorical inputs; up-sampling
and down-sampling are used for target class balancing; and min-max scaling and
no scaling are used for integer value features. This led to eight data encodings.

For one hot encoding, two neurons are allocated for each category, an on
neuron and an off neuron. During presentation the on neuron for the feature
value is turned on, and the off neurons for the other values. For integer encoding,
there is just one neuron per feature value.

There are four categories, class 4 has 40 entries with the others having more
including class 3, which has 169 entries. Down-sampling balances the number
in each class by making them all have 40. Up-sampling generated new artificial
data so that all classes have 169 items.

The integer encoding replaces them with the nearest integer. Min-Max scaling
is described by equation 5. The actual input value,XSC , was determined by using
the feature value X, the smallest value of that feature in the dataset, Xmin, and
the largest value, Xmax; the result was an input feature scaled between 0 and 1.

XSC =
X −Xmin

Xmax −Xmin
(5)



The neurons allocated to each feature (neurons per feature) vary depending
on the encoding mechanism used. There is also a feature breadth of 3 for in-
teger values; each integer input value has its neuron and its adjoining neurons
stimulated.

The data is split 70-30% training and test respectively in every case.
The system is a 2-layer feed-forward neural network consisting of conductance

based leaky integrate and fire neurons with fixed thresholds. The code is written
in the PyNN python package and is simulated in NEST (Davison et al, 2007;
Fardet et al, 2020)

4.1 Student Performance Spiking Net Model

The simulation time step is 1 ms. as are the minimum and maximum synaptic
delay. The time between training data items is 30 ms. All training data items are
presented four times (four epochs). Other intervals and epochs were explored but
led to long training run times. So, these values are used for the all simulations
described in the remainder of this section.

Training items are presented in time sequence 30 ms apart. At the beginning
of training item presentation, a spike is sent to the input neurons, that is followed
3 ms later by a spike to the correct category neuron. The same approach is
taken during testing, but there is no external input to the category neurons; the
synaptic weights from the firing input neurons cause the category neurons to
fire. The first to fire is the one that is used to predict the category.

The size of the input layer varied depending on the encoding mechanism;
one hot encoding generated 9 extra columns in addition to the initial 32 and
integer encoding did not. So, the total population of the input layer is neurons
per feature multiplied by number of input data columns. For the output layer
there were only 4 neurons, 1 neuron per output category.

The input and output layers are fully connected using plastic synapses that
are governed by a biphasic STDP rule for long-term potentiation (LTP) and
depression (LTD). This is a variant of the widely used Hebbian learning mech-
anism. The parameters that influenced the learning rule and their initial values
are shown in table 2.

Parameter Name: Value Description

τ+ 12.0ms Time constant required for LTP
τ− 12.0ms Time constant required for LTD
A+ 0.003 Synaptic Weight increase applied when LTP occurs
A− 0.014 Synaptic Weight reduction applied when LTD occurs
wmin 0.0 Minimum synaptic weight possible
wmax 0.03 Maximum synaptic weight possible
weight 0.0 Initial synaptic weight at start of the simulation

Table 2: Parameter values for student classification system.



When the output neuron has produced spikes, these spikes are counted and
separated into different arrays by category. Then a maximum argument rule is
used to pick the winning category from each row. So the category of any output
layer neuron with the most responses for a row is the predicted category for that
row. It is important to know that for this rule if there is a tie for most responses
the first serially occurring neuron of the tied neurons is chosen as the winner.

4.2 Results

The encoding techniques used resulted in 8 datasets in total, which were up-
sampled scaled and unscaled, down-sampled scaled and unscaled for integer en-
coding and one-hot encoding. During this phase of testing the initial values for
the STDP parameters from table 3 are used. τ+ = τ− = 16.0 are also shown.
The best results are 72.4% for one hot encoded, up sampled, unscaled data.

Data Variation τ+ = τ− = 12.0 τ+ = τ− = 16.0

Integer Encoded: Up-Sampled Unscaled 61.6% 70.9%
Integer Encoded: Up-Sampled Scaled 32.0% 23.6%
Integer Encoded: Down-Sampled Unscaled 50.0% 25.0%
Integer Encoded: Down-Sampled Scaled 29.2% 25.0%
One-Hot Encoded: Up-Sampled Unscaled 63.1% 72.4%
One-Hot Encoded: Up-Sampled Scaled 38.9% 23.6%
One-Hot Encoded: Down-Sampled Unscaled 62.5% 25.0%
One-Hot Encoded: Down-Sampled Scaled 22.9% 25.0%

Table 3: Results of data encoding experiments on the Student Performance Data.

The results of scaled data are low across the result set. The suspected rea-
son for this is that in the implementation of input to neuron mapping, scaling
resulted in floating point values for the values being scaled, which are rounded
during the mapping, which resulted in a loss of information and caused the
system to perform poorly.

For up-sampled data, the main concern is the use of ’fake’ data, as new
examples are generated to balance the classes. Down-sampling presented the
issue of having far fewer examples to train and test the system.

Parameter exploration was performed on the learning window, τ+ and τ−,
within ranges 10-17ms in steps of 1 and both equal. The best overall results are
reported in the final column of table 3 with τ+ and τ− at 16.0ms.

For performance comparison with other networks, a Multi-Layer Perceptron
(MLP) with a 3-layer feed forward architecture, logistic activation function and
a stochastic gradient solver for error correction learning was implemented using
the Scikit learn MLPClassifier that was trained and tested on the same data.
The network took 1000 epochs to reach an accuracy of 76.0% compared to the
spiking net that took 4 epochs to reach 72.4% accuracy.

Cortez and Silva (2014) evaluated systems on this data. A variety of models
were implemented, but the one most relevant for comparison to the spiking net



implemented in this paper is the 3-layer MLP. The results of that system are
49.8%. It is important to note that while the spiking net in this paper performs a
four category classification task, the system in Cortez and Silva (2014) performs
a five category classification.

5 The Digit Categorisation System

The commonly used MNIST task involves 50000 training items, each with a
28x28 grid of inputs from 0 to 256. Each item is a digitised scan of hand written
digit, with the associated correct category. This is the work that Diehl and
Cook (2015) used getting results of about 95%, on the 10000 item test set. The
experiments described here work on a smaller, less widely used version of the
task with 5620 items with an 8x8 grid of inputs from 0 to 16; this data set is
from the University of California at Irvine (Bache and Lichman, 2013); and each
64D vector is derived from the orginal 28x28 picture by translating 4x4 squares
depending on how many of them have any inputs on. So, if all the inputs are on
(say, 12 at 256, and 4 at 18) then the number is 16. If only one is on (say the
top left is 128) then it is 1. The authors have a great deal of experience with
this data set having used it as the basis of a course work for several years for
students in the final year of an undergraduate degree.

The data set is broken into two folds of 2810 items. A Euclidean distance
categorisation metric gets 98.25%. Students have used a range of multi-layer per-
ceptron learning with back propagation, and none have surpassed the Euclidean
baseline, though one using a convolutional system recently was close. The stan-
dard mechanism that does better is a support vector machine, with some getting
above 99%. The authors are unaware of any other spiking nets used to classify
this data set.

5.1 Spiking Neuron Network Model

The two parts of the data were broken into 10 281 instance sets. The first 10
were used to train the first network for one pass. Each of the 10 STDP runs
is followed by compensatory runs for the first balancing mechanism. The lower
bound for neural firing is 100, and the upper bound is 281. The first of the
ten training sets is used for labelling. Then the full test set is used. There are
100 category neurons and two inhibitory neurons. The second type of balancing
uses adapative neuron, and these runs have just one pass on the 10 parts of the
training data.

5.2 Results

It is unclear how a variant of the Diehl and Cook (2015) system would per-
form on this task. It is possible that the small training set size would limit its
performance, but a result of 95%, like the result on the larger data set, seems
reasonable. The result of the 100 category neuron test using the compensatory



rule is 33.8%. Table 4 shows these results. The result using adaptive neurons
with the adaptation rate b = 0.1 is 25.5%.

Algorithm: Result

Euclidean Distance: 98.25%
SVM: 99.1%

Diehl and Cook: ˜95.0%
Compensatory Rule: 32.1%
Adaptive Neurons: 25.5%

Table 4: Small MNIST Categorisation Results: Results from this paper are shown
in the Copmpensatory Rule and Adaptive Neurons rows. The result for Diehl
and Cook is a guess.

Clearly, the performance on the digit categorisation spiking nets described
in this paper are poor, but they are also clearly above chance, 10%. Parame-
ter exploration has been minimal, and a theory for competition has not been
developed. While it is unlikely that improved versions of these systems will sur-
pass even Euclidean distance, further parameter exploration should enable their
categorisation performance to improve significantly.

6 Discussion

The brain is a poorly understood organ, but it is clear that its 65 billion neurons
(Churchland and Sejnowski, 1999) are used to, for instance, classify digits. All
of the neurons are not critical to the task, but as it involves the primary visual
cortex, billions of neurons are. With less than 200 neurons, the digit categorisa-
tion system described above is clearly not a complete model of the human neural
network for solving the task.

Both systems have a neural model that is a reasonable, if simple, approxi-
mation to biological neurons. They use only one or two types of neurons and
they are relatively simple models, but their parameters are based on biological
evidence. Similarly, the STDP learning rule is a reasonable approximation of
some of the learning done in the brain.

However, the topologies are not reasonable. The layering and well connected-
ness between layers does not occur in biology. Moreover, the learning mechanism
in the student performance system involves forcing the output neurons to fire
at a particular time. This is clearly not biologically plausible and to some ex-
tent means that that system is not using unsupervised learning. On the other
hand, the digit system does not force the output neurons to fire, but uses their
firing behaviour as part of the search, which is a truly unsupervised learning
mechanism.

It is important that the category neurons fire at roughly the same rate over
the training period because the synaptic weights only change when the pre and
post-synaptic neurons both fire. If the post-synaptic neurons do not fire, the



weights will remain unchanged. Diehl and Cook (2015) call this homeostasis,
and it is important for a system (Hsu et al, 2007). The method first used in
this paper is to balance modify synaptic weights to force balanced firing. Diehl
and Cook (2015) use a dynamic threshold increasing the threshold when the
category neuron fires and then allow it to decay back to base. It appears that
this is a form of neural adaptation (Benda, 2021), which is similar to the second
mechanism used in this paper.

Two basic learning mechanisms have been described in this paper; the two
layer system learns co-occurrences. The three layer system is a competitive net
providing another example of this mechanism for learning to categorise. The
earlier paper (Huyck and Samey, 2021) modifies the two layer system by using
the multiplicative form of STDP, so that the synaptic weights are exact co-
occurrence values, and by forcing the category neurons that are not the answer to
fire after the input, causing a synaptic weight reduction. A reasonable extension
to this work is to try all three mechanisms on the same data set.

The most important future work is to develop a theory of competition with
spiking neurons and STDP. It seems plausible that this can be directly tied to
SOMs (Kohonen, 1997). Exploring the volume of input spiking, the inhibitory
system, and the STDP parameters and mechanisms should support a well founded
theory. Beyond this, more layers and reinforcement learning, may support im-
proved categorisation performance. Full fledged recurrence and ongoing firing
will make further advancements toward the actual biology.

7 Conclusion

These spiking systems can be used for categorisation. The digit system begins
to explore how competition between the category neurons can be used to make
each neuron “move” to recognise a particular part of the training states.

As machine learning systems, it is important that the mapping between input
data and input neuron is understood. Several mechanisms for translating the
input data are compared and contrasted in the student performance system.
The digit categorisation system uses current to one neuron instead of a spike
for the feature value. This means that the number of neurons needed as input is
reduced, though the ramifications for learning are still unclear.

Following Diehl and Cook (2015), the digit system does not force the out-
put neurons to fire, but uses their firing behaviour as part of the search. The
inhibitory layer, the input driven behaviour and the learning behaviour force
the category neurons to compete, and move to recognise particular areas of the
input space. This is more biologically realistic than forcing the output neurons
to fire at particular times.

This two layer system and three layer competitive system extend understand-
ing of neurobioloigcally realistic learning systems. The spiking neuron STDP
based systems are flawed as biological models, but may help build understand-
ing of the actual biological mechanisms. Moreover, they help build understanding
of machine learning with these systems.



Bibliography

Bache K, Lichman M (2013) UCI machine learning repository. URL
http://archive.ics.uci.edu/ml

Benda J (2021) Neural adaptation. Current Biology 31(3):R110–R116.
Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type.
Journal of neuroscience 18(24):10,464–10,472

Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity. J Neurophysiol 94:3637–3642

Churchland P, Sejnowski T (1999) The Computational Brain. MIT Press
Cortez P, Silva A (2014) UCI machine learning repository. URL
https://archive.ics.uci.edu/ml/datasets/student+performance

Davison A, Yger P, Kremkow J, Perrinet L, Muller E (2007) PyNN: towards a
universal neural simulator API in python. BMC neuroscience 8(S2):P2

Devlin J, Chang M, KLee, Toutanova K (2018) Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint p
arXiv:1810.04805.

Diehl P, Cook M (2015) Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in computational neuroscience 9:99

Fardet T, Rajalekshmi D, Mitchell J, Eppler J, Spreizer S, Hahne J, Kitayama
I, , Plesser H (2020) Nest 2.20.1. Computational and Systems Neuroscience

Gewaltig M, Diesmann M (2007) NEST (NEural Simulation Tool). Scholarpedia
2(4):1430

Hebb D (1949) The organization of behavior: A neuropsychological theory. New
York: Wiley

Hsu D, Tan A, Hsu M, Beggs J (2007) A simple spontaneously active hebbian
learning model: homeostasis of activity and connectivity, and consequences for
learning and epileptogensis. Physical Review E 76:041,909

Huyck C (2017) The neural cognitive architecture. In: AAAI Fall Symposium on
A A Standard Model of the Mind

Huyck C (2020) Learning categories with spiking nets and spike timing depen-
dent plasticity. In: International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pp 139–144

Huyck C, Samey C (2021) Extended category learning with spiking nets and
spike timing dependent plasticity. In: International Conference on Innovative
Techniques and Applications of Artificial Intelligence, pp 33–43

Kohonen T (1997) Self-Organizing Maps. Springer
Silver D, Schrittwieser J, Simonyan K, et al, Hassabis D (2017) Mastering the
game of go without human knowledge. Nature 550:354–59

Song S, Miller K, Abbott L (2000) Competitive hebbian learning through spike-
timing-dependent synaptic plasticity. Nature neuroscience 3:9:919–926

Taherkhani A, Belatreche A, Li Y, Cosma G, Maguire L, McGinnity T (2020)
A review of learning in biologically plausible spiking neural networks. Neural
Networks 122:243–272


