Specification and Implementation of a Multi-Agent
Calculus based on Higher-Order Functions

Tony Clark
Department of Computing
University of Bradford, West Yorkshire, BD7 1DP, UK
a.n.clark@scm.brad.ac.uk

June 26, 1999

Abstract

Agents are autonomous system components that communicate using mes-
sage passing. This paper presents a higher-order agent calculus and its imple-
mentation in the lazy functional programming language EBG. The calculus is
given a semantics using a translation to the m-calculus that encodes higher-
order functions and normal order evaluation.

1 Introduction

There is increasing demand for distributed software that is able to work collabo-
ratively. The components of such a system are often referred to as agents [Jen98].
Each agent works autonomously but is able to communicate with other agents by
passing messages containing data of arbitrary complexity.

An agent is similar to a conventional program in that most of its computa-
tion is sequential and can be described using existing models. Agents differ from
conventional computation with respect to inter-agent communication mechanisms.
Messages may be sent asynchronously and are buffered in a queue by the receiver
until they are processed. An agent handles each message in turn, if there are no
waiting messages the agent suspends computation until a message arrives. This is
similar to the Actor model of computation [Agh86] [Agh91].

At any time an agent may create a new agent that will have a unique identity.
The parent and child both know the identity of the child and can therefore commu-
nicate. Once the child is created, the computation in the child and parent continue
concurrently. An agent dies (and may be garbage collected) when it chooses to
ignore all further messages.

Given the overview of agent computation given above, it is proposed that con-
ventional models may be used as the basis for computation within an agent and that
an extension is added to the model to deal with agent creation and communication.
This work aims to provide a notation for describing, executing and reasoning about
agent computations. We take a A-calculus with a normal order execution scheme
[Han94] [Plo75] as our basis and extend it with primitive operators for agents.

An agent calculus is defined by extending A-calculus terms with primitive agent
operators. The syntax is defined and its semantics is given informally in section
2. A type theory [Car84] is developed identifying the terms of the calculus that
correspond to agent programs in section 3. The calculus is given a rigorous semantics
by developing a translation to the m-calculus [Mil93] in section 4. The calculus
has been implemented as part of the lazy functional programming language EBG

[Cla99]. We give an overview of the implementation and an example of EBG agent
programs in section 5.

2 An Agent Calculus

E:=V |ANV.E|EE|CE*|QEE | E+ E |
EOE | mcase {A(; A)"} end | skip

Au=P > E

P:=CP* |V |K

The terms for variables, functions and applications are conventional A-terms. The
term C'E* represents the application of a data constructor C to arguments. Data
constructors start with capitals and variables start with lower case characters. All
other terms are evaluated with respect to a current agent. @AM N causes the creation
of a new agent with unique identity a. Both M and N are supplied with a and
continue concurrently. The new agent behaviour is Ma and the current agent
behaviour is Na. M < N causes message N to be sent to agent M. Execution
continues at the current agent without waiting for a reply. The message is added to
the target agent’s message queue. M ON causes M to be performed before N; the
value of M is ignored. mcase @ end causes the next message to be removed from
the current agent’s message queue. If the queue is empty then the agent blocks
until a message is received. Each a; consists of a pattern p; and a term M;. The
message is matched against each of the patterns in turn. If it matches a pattern
then any variables are bound and the corresponding term is evaluated. If no pattern
matches then the message cannot be handled and the mcase term has no further
effect. skip does nothing and produces the unit value.

Consider the case of a two-state switch. Each time the switch is pushed it
changes state. The switch may be queried to find out its current state. The switch
is defined in the calculus as follows:

switch state self =
mcase
Push -> switch (not state) self;
Get agent ->
agent <- state []
switch state self
end

Suppose that an agent refers to two existing agents a; and as both of which are
waiting to be sent a switch. The agent may create a new switch agent and supply
it to both a; and as: e(switch true) \s. al <- s [] a2 <- s.

3 Agent Types

Not all A-terms are correctly formed agent programs. An agent is a function that
transforms a stream of input messages to a stream of output messages. The basic
A-calculus does not impose an ordering on term reduction. An agent calculus must
impose an ordering so that the programmer can control agent communication.

We use continuation passing [Plo75] to impose an ordering on the execution of
agent programs. Agent types are:

1 = messages, . = agent identifiers, [T] = sequence of T
& = agent state,k = [u] = O = [u],a=[u] = O = &k = [y]
T1, T2,... = lypes

VEM:11 > 12

Vv mi|F M: 7o Vv N : 7
Viv:V(v) VEMNM:T =T VEMN:71
M:L— FM:e VEM:
VEN:iiZ8 N VERN:ia
VEFQ@QMN :« VFEM<«+« N:a VF MON:«
V F mcase d; end : o Vivy == T1,...,0on = Tl F M @ @
V I mcase a3 end : a FV(p)=A{vi,....on}
V F mcase end : o V F mcase a1a2 end : V Fmcasep - M end : a
V I skip: a
Figure 1: Type Theory for Agent Calculus
1 ,p).p<a>

N

(s
= (s,p).v<s, p>
1= (s,p) v p<a>.x(o).[M]
MN] = (s,p).vq ([M](s,q) | q(v).ve v<z,s,p>.1z[N])
QMN] = (5, p).(vio)[Mil(0.€) | [Nil(s.p) | Qi.0))
[M « NT = (s,p)vq (IM](s.4) | a(a) p<a>wvz (a<a> | %[N))
[MON] = (5, p).ve (IM1(5,¢) | «()-IN(5,p))
[[mcase p; — M; end] = (s,p).s(m).vqg (Mm<s,q> | Ei=1 nq(pi)-[M;](s,p))
[skip] = (s, p).p<>
Q(i,0) =vq Q'(i,q) | g<o>
Q'(i,c) = i(x).vqg (c(0).0<z>.g<o> | Q'(i,q))

w

NN AN SN N N S S S S
© 00 ~1 O Ot =
—_ O — o T

—

Figure 2: Agent Semantics

1 is the type of messages sent between agents, k is the type of agent continuations,
a is the type of agent programs and < is the type of agent states. An agent is
supplied with a stream of input messages, a state and a continuation. The agent
performs some commands, perhaps consuming and producing messages, and then
proceeds by supplying the continuation with the rest of the input messages and the
state.

All agent commands are parameterised with respect to a continuation. A lin-
earity constraint prevents the continuation from being duplicated (in the imple-
mentation the continuation is hidden from the programmer behind the agent API),
therefore the order of agent commands is fixed with respect to a single agent.

Figure 1 defines a type theory for the agent calculus. The theory defines a
relation V = M : 7 holding between an environment, mapping variables to types,
an agent calculus term M and a type 7. The intended meaning is that M has type
7 when V' associates free variables in M with their types.

4 Agent Semantics

The class of sequential programming languages is often given a semantics by a
translation into a A-calculus whose execution is described by a reduction relation
between terms. Although the agent calculus contains sequential features (the A-
calculus sub-language used to describe calculations within an agent) the inclusion of
concurrent features renders A-reduction unusable as a semantic framework [San99].
The m-calculus [Mil93] is a formal system suitable for describing concurrent
behaviour. Terms in the m-calculus represent processes that communicate using
named channels. The agent calculus is higher-order since it includes all A-terms as
a sub-language. The basic w-calculus is not higher-order but there is a standard
translation from A-terms to m-terms that encodes higher-order features [San99).

Q(i,0) | i<v1>.i<va> | o(x1).0(w2)

=Q'(i,q1) | 1<0> | i<v1>.i<va> | o(w1).0(2)

=i(z).(q1(0).0<z>.q1<0> | Q'(i,q1)) | G1<0> | i<v1>.i<v2> | 0(21).0(2)

= qi(0).0<v1>.q1<0> | Q'(i,q1) | q1<0> | 1<va> | o(z1).0(22)
o<v>.q1<o> | Q'(i,q1) | i<vi> | o(z1).0(z2)

@ <o> | i(x).(q1(0).0<z>.@a<0> | Q'(i,q2)) | i<va> | o(z2)

= @ <0> | q1(0).0<va>.@2<0> | Q'(3,¢2) | o(x2)

0<v2>.G2<0> | Q'(i,¢2) | o(z2)

G2<0> | Q'(i,q2)

Figure 3: Queue Behaviour

The agent calculus is given a semantics using a translation to the w-calculus.
The translation is an extension of that which translates A-terms with a normal order
reduction relation. The translation is defined in figure 2. The overall effect is to
translate each agent program into a process that awaits two names s and p. The
process represents a single agent. Messages sent to the agent are received at the
name s which may be thought of as identifying the agent’s thread of control. The
name p is used for co-ordination in an agent; the agent completes its current task
and then delivers the result at p.

The translation of A-terms encodes a normal order reduction strategy in the -
calculus. In (1), an agent a is supplied at p. In (2) a variable v is forced by supplying
s and p. In (3) a A-function is translated as a new channel z. When a value v is
supplied at & the body M is performed. In (4) normal order application is encoded
by evaluating M and producing the operator at q. The channel v is supplied with
a new channel z that will perform the argument N when sent a message. In (5) an
agent is created by generating a new message queue Q(i,0) using an input channel
1 and an output channel 0. The new agent, Mi continues concurrently with the
current agent Ni. The channel € is used as a message sink. In (6) the evaluation
of the message N is delayed by creating a new channel x that performs N when
sent a message. The term M is performed and produces an agent a at ¢. In (7),
evaluation of M and N are ordered using a local channel ¢. In (8) the next message
is received at s. If no message is available then the agent’s execution will halt until
a message is supplied by its buffer. A message is forced by supplying it with names
s and q. The result is supplied at g. Each arm contains a pattern p; and is encoded
as an alternative for values received at q. When a value matches a pattern, the
corresponding term M; is performed. In (9), the null operation supplies the unit
value to the continuation channel p.

Agent communication occurs through message queues. A message queue is cre-
ated using (10) and (11). Each message queue Q(i,0) contains two channels, the
input ¢ and the output o. Sequences of messages arrive at the input and are avail-
able in the same arrival order at the output. An example queue behaviour is shown
in figure 3 in which two messages v; and vy are sent and then produced in the same
order.

A rigorous semantics serves two purposes: an unambiguous way of defining
what we mean by executing terms in the agent calculus and also a way of proving
properties about agent programs. Suppose that we want to establish the following
theorem:

Theorem 1 Sequencing in agent programs is associative, i.e. MO(NOO) = (MON)OO
for all terms M, N and O.

Proof 1 The translation [.] produces the following terms for each side of the equa-

tion:

(s,p).ve ([M](s,c) | e()we ([N](s,¢) | ¢(1)-10](s,p)))
(s,p).ve (ve ([M](s,c) | ¢(0).IN](s,¢)) | ¢(-)-[O1(s,p))

Using standard properties of the m-calculus we may consistently rename locals and
lift them to an outer scope. This produces terms of the following form:

Ple1) | e1.(Q(e2) | e2.R) (1)
(P(e1) | e1.Q(c2)) | e2.R (2)

where X (¢) means perform an action using ¢ as a shared communication channel
and c.Y means accept an input on the shared communication channel c then perform
Y.

The translation [.] uses a shared communication channel p to co-ordinate execu-
tion. By inspection, p is linear since it is only used once in each equation in figure
2. Therefore, any term of the form X (c)|c has a deterministic behaviour. The fi-
nal part of the proof uses this result to show that terms 1 and 2 are behaviourally
equivalent.

Consider term 1, the behaviour is P until a result is produced at ¢y, then @ until
a result is produced at ¢y then R. Term 2 produces the same behaviour. Since the
terms are closed and each term has only one possible behaviour we conclude that
they are behaviourally equivalent as required.

5 Agent Implementation

An agent is a function that processes a stream of messages. An agent’s input stream
is provided by its environment and the resulting output stream is processed by the
environment. In addition to a stream of messages, the environment supplies data
to be used as an agent life-support system. This section describes how the agent
calculus is implemented as part of the lazy functional programming language EBG
[Cla99].

Agents communicate by sending messages. A message may be asynchronous
meaning that the source agent does not expect a return value, or may be syn-
chronous meaning that the source agent waits for a return value. A message con-
tains data and is named when the data is associated with a string (usually used for
dispatching to a message handler in the target), otherwise it is anonymous. The
EBG type message is:

type message =

Message string $;33 Asynchronous, named.
| Message0O $;33 Asynchronous, anonymous.
| Call string int $;;; Synchronous, named.
| Call0 int $;3; Synchronous, anonymous.
| Return int §; ;3; Return value.

Agent identifiers are used to refer to agents in message packets. An agent identifier
is implemented as an integer. A message packet is a triple (src,tgt,msg) where
src is the identifier of the source agent, tgt is the identifier of the target agent and
msg is the message. The type packets of message packets is defined in EBG as
follows:

type agentIld = int;

type packet = (agentId,agentld,message);
type packets = list packet;

The types agentId and packet implement the agent calculus types ¢ and p re-
spectively. An agent a is a function that is applied to 6 arguments and returns a
sequence of message packets:

a self in cont value coord os => out

where self is the agent’s own identifier, in is a sequence of input message packets,
cont is an agent continuation, value is the most recently received return value,
coord is used for co-ordinating synchronous messages, os is the identifier of the
operating system agent and out is the sequence of output message packets produced
by a.

Typically, an agent a will consume some prefix in’ of in leaving in’’ and pro-
ducing packets out’ such that out = out’ ++ out’’. The continuation cont is
then supplied with the rest of the packets in’’ and produces out’’. The continu-
ation allows agents to be composed using a sequencing operator then (see below).
The type agent is defined in EBG as follows:

type messageld = int;
type replace = agentld packets $ messageld agentId -> packets;
type agent = agentId packets replace $ messageld agentId -> packets;

The types replace and agent implement the agent calculus types x and « respec-
tively. In the calculus, the extra argument types in agent are bundled together into
a single state type <.

Agents are constructed using command primitives. The base layer of the agent
model implements agent communication. The comm operator is supplied with a
target agent identifier and a message. The message is delivered to the target. If
the message is synchronous then the source agent will wait until the return value is
received otherwise comm returns control to the agent via cont:

comm :: agentId message -> agent;
comm tgt msg = \self in cont value coord os.
case msg of
Message name data -> (self,tgt,msg):(cont self in value coord os);

MessageO data -> (self,tgt,msg):(cont self in value coord os);

Return id data -> (self,tgt,msg):(cont self in value coord os);

Call name id data -> (self,tgt,msg):(wait id self in cont coord os []);

Call0 id data -> (self,tgt,msg):(wait id self in cont coord os [])
end;

The comm operator uses wait to buffer input packets until the required return value
is received. The operator is supplied with 7 values:

wait id self in cont coord os buff => out

where id is a message identifier and buff is a sequence of packets. An agent
sends a synchronous message by producing a message Call name id data. The id
component is a message identifier supplied to the target of the message. The target
produces a return value by sending a message Return id value. The source agent
uses the id value to match the return value with the original call.

During the call, the source agent is still active and may receive messages which
are buffered by adding them to the sequence buf. There are many different possible
strategies for handling call and return. The wait operator:

wait :: messageld agentld packets replace messageld agentld packets -> agent;
wait id self in cont coord os buff =
case in of
(src,_,Return id’ data) : in’ ->
case id = id’ of
True -> cont self (buff ++ in’) data coord os;
False -> wait id self in’ cont coord os (buff ++ [head in])
end;
else wait id self in’ cont coord os (buff ++ [head in])
end;

causes the source agent to continually buffer messages until the target agent returns
a value. Once the value is received, the buffered messages are handled in the order
that they were received by adding them back into the input stream.

The agent calculus term M < N is implemented as comm M N. The agent calcu-
lus term @M N is implemented in EBG by sending the operating system a request
for a new agent and then supplying the new agent identifier to M and V:

opSys \o (agent (self \s. M s)) $then result \a. N a

In addition to a stream of message packets, an agent is supplied with values that are
used to manage messages and values. Each of the life-support values are accessed
using the primitives self, result, seqVal, incSeq and opSys. They have similar
definitions for example:

self :: (agentId -> agent) -> agent;
self fun = \self in cont value coord os.
(fun self) self in cont value coord os;

The next message is consumed by the primitive message:

message :: (packet -> agent) -> agent;
message fun = \self in cont value coord os.
case in of
message : in’ ->
(fun message) self in’ cont value coord os;
else []
end

The agent calculus term mcase p; — My;...;p, — M, end is implemented using
the message primitive:

message \m. case m of pl -> M1; ...; pn -> Mn end

Message passing is ultimately performed using the primitive comm. It is conve-
nient to provide higher level primitives that distinguish between different types of
messages. These primitives package up the information and then call comm:

send :: agentId string $ -> agent;
send target name data = comm target (Message name data);

call :: agentId string $ -> agent;
call target name data = seqVal \seq.
incSeq $then
comm target (Call name seq data);

send sends an asynchronous message; call sends a synchronous message. sendO
and callO use MessageO and CallO message constructors but are otherwise the
same as send and call. Note how synchronous message passing uses the seqVal
and incSeq primitives to associate each message with a unique message identifier
that will be used to recognise the return value if it is eventually received.

Agent control is provided using a command sequencing primitive then and an
empty command skip:

skip :: agent;
skip self in cont value coord os = cont self in value coord os;

then :: agent agent -> agent;
then cl ¢c2 = \self in cont value coord os.
cl self in
(\self in value coord os.
c2 self in cont value coord os)
value coord os;

The agent calculus term MON is implemented as M $then N. Agents are created
using the primitives agent and javaAgent. The agent primitive is used to create
agents that are based on EBG functions. The function must be of type agent.
The javaAgent primitive is used to create agents based on Java classes. The name
of the class is supplied as an argument to javaAgent. In both cases, agents are
created by sending the operating system agent a message called new. The message
is synchronous and the return value will be the agent identifier of the newly created
agent. Agent creation primitives are defined as follows:

agent :: agent -> agent;
agent behaviour = opSys \os. call os "new" behaviour;

javaAgent :: string -> agent;

javaAgent className = opSys \os. call os "

new" className;

Consider a cell that contains an integer value. The cell may be sent an asynchronous
named message inc causing the value to be incremented by 1. The cell may be sent
a synchronous named message get in which case the cell replies with its current
value. The cell behaviour is implemented as a function:

cell :: int -> agent; X .
cell n = Notice how cell uses n as its internal state. On
mcase receiving a message, cell supplies a replacement,
(_,_,Message0 "inc") ->

behaviour by calling itself with a new value for the

cell (n + 1); . ..
(stc,_,Call0 coord "get") -> state variable. On receiving get, the reply should
(reply src coord n) $then be sent to the source agent src; coord allows the
cell n; source agent to associate the reply with the origi-

else cell n nal call.
end;

We wish to create a single cell which is shared between two agents. The first
agent continually sends the cell c, supplied as an argument, requests to increment
its contents:

setter :: agentld -> agent;
setter ¢ = (send0 c "inc") $then setter c;

The setter agent has a constant state ¢ whose value is the agent identifier of a
cell. The second agent continually sends the cell requests for its value:

getter :: agentIld agentId -> agent;
getter c os =
(call0 c "get") $then
result \n.
(send os "println" n) $then
getter c os;

Since get is a synchronous message, the getter agent waits until the cell c replies
with a value. The return value is accessible using the result primitive. The getter
agent has two state components, ¢ and os, that never change.

Agents are created by supplying the agent primi-

main =
@(K (cell 0)) \c. tive (called on the left via @) with a value of type
opSys \os. agent. Since agent is implemented using call,

(agent (setter c)) $then

main waits for the cell agent c then supplies it
agent (getter c os)

setter and getter agents.

EBG uses agent primitives to provide support for state based and event driven
multi-processing within a lazy functional programming language. EBG is imple-
mented using a compiler that produces Java virtual machine byte codes. Agents
provide an ideal mechanism for mixed EBG and Java programming. The following

opl mem n =
mcase
(src,_,Message "enter" m) ->
(send src "display" ((n*10)+m)) $then
opl mem ((n * 10) + m);
(src,_,Message0 "clr") ->
(send src "display" 0) $then
opl mem O;
(src,_,Message0 "MS") -> opl n n;
(src,_,Message "operator" op) ->
op2 mem n op 0;
else opl mem n
end;

calcn "+" m = n + m; ;33 and for —,x,/

dateLoop jcalc =
opSys \os.
(call os "date" []1) $then
result \d.
(send jcalc "date" d) $then
dateLoop jcalc;

op2 mem n op m =
mcase
(src,_,Message "enter" m’) ->
(send src "display" ((m*10)+m’)) $then
op2 mem n op ((m * 10) + m’);
(src,_,Message0 "clr") ->
(send src "display" 0) $then opl mem O;
(src,_,Message0 "=") ->
let result = calc n op m
in (send src "display" result) $then
opl mem result;
else op2 mem n op m
end;

main =
(agent (opl 0 0)) $then
(result \calc.
(javaAgent "CalcInterface") $then
result \jcalc.
(agent (dateLoop jcalc)) $then
send jcalc "register" calc)

Figure 4: An EBG Calculuator Agent

is simple calculator that is implemented in both Java and EBG:

- calculator A
|ThuJun 24 16:59:23 GMT+01:00 1999 | The GUI is implemented as a Java agent; the
calculations and memory are implemented as an
|57E | EBG agent. Events are generated by AWT but-
g g y
7 ‘ 8 ‘ 5 + ‘ tons causing messages to be sent from the Java
A ‘ : ‘ : ‘ % ‘ agent to the EBG agent. Part of the EBG agent
is shown in figure 4. The op1 behaviour handles
1 ‘ 2 ‘ 3 ‘ * ‘ operations for the left hand operator and op2 for
i ‘ o ‘ i ‘ / ‘ the right. n is the current number and m is the
memory.
MS ‘ MR ‘ M+ ‘ M- ‘

Clicking a number sends an enter message from the Java CalcInterface agent
to the EBG agent. The EBG agent sends the Java agent display and date mes-
sages to update the numeric and date display regions.

6 Conclusion

This paper has defined an agent calculus and given it a semantics using a translation
to the w-calculus that encodes higher-order functions and normal order evaluation.
The calculus has been implemented in the lazy functional programming language
EBG as a collection of primitives. The primitives have been shown to support state-
based, event driven, mixed paradigm programming in terms of the implementation
of a small calculator program. Streams have been used as the basis of concurrency,
reactivity and state in functional programs, for example [Car98], [O’D85], [Tho90]
and [Wad90]. There are a number of functional programming languages such as
Concurrent ML and Concurrent Haskell that support multi-processing. This work
is novel because it is based on a simple agent calculus with a precise semantics and
is implemented in EBG and therefore supports the features of the Java VM [Ven98].

References

[Agh86]

[Agh91]

[Car84]

[Car98]

[Cla99]

[Jen98]

[Han94]

[Mil93]

[0'D85]

[Plo75]

[San99]

[Tho90]

[Ven98]
[Wad90]

Agha, G.: Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

Agha, G.: The Structure and Semantics of Actor Languages. In pro-
ceedings of REX School/Workshop on Foundations of Object-Oriented
Languages, LNCS 489, Springer-Verlag, 1991.

Cardelli L. (1984) Basic Polymorphic Type Checking. Science of Com-
puter Programming, 8(2), 147 — 72.

Carlsson M. & Hallgren T. (1998): Fudgets — Purely Functional Pro-
cesses with Applications to Graphical User Interfaces. PhD Thesis, De-
partment of Computing Science, Chalmers University of Technology.

Clark, A. N. (1999): EBG: A Lazy Functional programming Language
Implemented on the Java Virtual Machine. Technical Report submitted
to the Computer Journal.

Jennings, N. R., Sycara, K & Wooldridge M. (1998): A Roadmap of
Agent Research and Development. Autonomous Agents and Multi-Agent
Systems, 1, 7 — 38.

Hankin C. (1994) Lambda Calculi a Guide for Computer Scientists.
Clarendon Press, Oxford University Press.

Milner R. (1993): The Polyadic w-Calculus: A Tutorial. In F. L. Hamer,
W. Brauer and H. Schwichtenberg, editors, Logic and Algebra of Speci-
fication. Springer-Verlag, 1993.

O’Donnell, J. T. (1985): Dialogues: A Basis for Constructing Program-
ming Environments. SIGPLAN Notices 20(7):19 — 27.

Plotkin G. (1975) Call-by-name, call-by-value, and the A-calculus. The-
oretical Computer Science. 1, pp 125 — 159.

Sangiorgi D. (1999): Interpreting functions as w-calculus processes: a
tutorial. INRTA Technical Report RR-3470.

Thomson, S. (1990): Interactive Functional Programming. In Research
Topics in Functional Programming, ed. Turner, D. A. Addison-Wesley.

Venners B. (1998) Inside the Java Virtual Machine. McGraw-Hill.

Wadler, P. (1990): Comprehending Monads. In Proc. 19th Symposium
on Lisp and Functional Programming, Nice, ACM.

10

