
Speci�cation and Implementation of a Multi-AgentCalculus based on Higher-Order FunctionsTony ClarkDepartment of ComputingUniversity of Bradford, West Yorkshire, BD7 1DP, UKa.n.clark@scm.brad.ac.ukJune 26, 1999AbstractAgents are autonomous system components that communicate using mes-sage passing. This paper presents a higher-order agent calculus and its imple-mentation in the lazy functional programming language EBG. The calculus isgiven a semantics using a translation to the �-calculus that encodes higher-order functions and normal order evaluation.1 IntroductionThere is increasing demand for distributed software that is able to work collabo-ratively. The components of such a system are often referred to as agents [Jen98].Each agent works autonomously but is able to communicate with other agents bypassing messages containing data of arbitrary complexity.An agent is similar to a conventional program in that most of its computa-tion is sequential and can be described using existing models. Agents di�er fromconventional computation with respect to inter-agent communication mechanisms.Messages may be sent asynchronously and are bu�ered in a queue by the receiveruntil they are processed. An agent handles each message in turn, if there are nowaiting messages the agent suspends computation until a message arrives. This issimilar to the Actor model of computation [Agh86] [Agh91].At any time an agent may create a new agent that will have a unique identity.The parent and child both know the identity of the child and can therefore commu-nicate. Once the child is created, the computation in the child and parent continueconcurrently. An agent dies (and may be garbage collected) when it chooses toignore all further messages.Given the overview of agent computation given above, it is proposed that con-ventional models may be used as the basis for computation within an agent and thatan extension is added to the model to deal with agent creation and communication.This work aims to provide a notation for describing, executing and reasoning aboutagent computations. We take a �-calculus with a normal order execution scheme[Han94] [Plo75] as our basis and extend it with primitive operators for agents.An agent calculus is de�ned by extending �-calculus terms with primitive agentoperators. The syntax is de�ned and its semantics is given informally in section2. A type theory [Car84] is developed identifying the terms of the calculus thatcorrespond to agent programs in section 3. The calculus is given a rigorous semanticsby developing a translation to the �-calculus [Mil93] in section 4. The calculushas been implemented as part of the lazy functional programming language EBG1

[Cla99]. We give an overview of the implementation and an example of EBG agentprograms in section 5.2 An Agent CalculusE ::= V j �V:E j EE j CE� j @EE j E E jE2E j mcase fA(;A)�g end j skipA ::= P ! EP ::= CP � j V j KThe terms for variables, functions and applications are conventional �-terms. Theterm CE� represents the application of a data constructor C to arguments. Dataconstructors start with capitals and variables start with lower case characters. Allother terms are evaluated with respect to a current agent. @MN causes the creationof a new agent with unique identity a. Both M and N are supplied with a andcontinue concurrently. The new agent behaviour is Ma and the current agentbehaviour is Na. M N causes message N to be sent to agent M . Executioncontinues at the current agent without waiting for a reply. The message is added tothe target agent's message queue. M2N causes M to be performed before N ; thevalue of M is ignored. mcase ~a end causes the next message to be removed fromthe current agent's message queue. If the queue is empty then the agent blocksuntil a message is received. Each ai consists of a pattern pi and a term Mi. Themessage is matched against each of the patterns in turn. If it matches a patternthen any variables are bound and the corresponding term is evaluated. If no patternmatches then the message cannot be handled and the mcase term has no furthere�ect. skip does nothing and produces the unit value.Consider the case of a two-state switch. Each time the switch is pushed itchanges state. The switch may be queried to �nd out its current state. The switchis de�ned in the calculus as follows:switch state self =mcasePush -> switch (not state) self;Get agent ->agent <- state []switch state selfendSuppose that an agent refers to two existing agents a1 and a2 both of which arewaiting to be sent a switch. The agent may create a new switch agent and supplyit to both a1 and a2: @(switch true) ns. a1 <- s [] a2 <- s.3 Agent TypesNot all �-terms are correctly formed agent programs. An agent is a function thattransforms a stream of input messages to a stream of output messages. The basic�-calculus does not impose an ordering on term reduction. An agent calculus mustimpose an ordering so that the programmer can control agent communication.We use continuation passing [Plo75] to impose an ordering on the execution ofagent programs. Agent types are:� = messages; � = agent identi�ers; [�] = sequence of �3 = agent state; � = [�]! 3! [�]; � = [�]! 3! �! [�]�1; �2; : : : = types2

V ` v : V (v) V [v 7! �1] `M : �2V ` �v:M : �1 ! �2 V `M : �1 ! �2V ` N : �1V `MN : �2V `M : �! �V ` N : � ! �V ` @MN : � V ` M : �V ` N : �V `M N : � V `M : �V ` N : �V `M2N : �V `mcase end : � V `mcase ~a1 end : �V `mcase ~a2 end : �V `mcase ~a1 ~a2 end : � V [v1 7! �1; : : : ; vn 7! �n] `M : �FV (p) = fv1; : : : :vngV `mcase p!M end : �V ` skip : �Figure 1: Type Theory for Agent Calculus(1) [[a]] = (s; p):�p<a>(2) [[v]] = (s; p):�v<s; p>(3) [[�v:M]] = (s; p):�x �p<x>:x(v):[[M]](4) [[MN]] = (s; p):�q ([[M]](s; q) j q(v):�x �v<x; s; p>:!x[[N]])(5) [[@MN]] = (s; p):(�io)([[Mi]](o; �) j [[Ni]](s; p) j Q(i; o))(6) [[M N]] = (s; p):�q ([[M]](s; q) j q(a):�p<a>:�x (�a<x> j x[[N]]))(7) [[M2N]] = (s; p):�c ([[M]](s; c) j c():[[N]](s; p))(8) [[mcase pi !Mi end]] = (s; p):s(m):�q (�m<s; q> j �i=1;nq(pi):[[Mi]](s; p))(9) [[skip]] = (s; p):�p<>(10) Q(i; o) = �q Q0(i; q) j �q<o>(11) Q0(i; c) = i(x):�q (c(o):�o<x>:�q<o> j Q0(i; q))Figure 2: Agent Semantics� is the type of messages sent between agents, � is the type of agent continuations,� is the type of agent programs and 3 is the type of agent states. An agent issupplied with a stream of input messages, a state and a continuation. The agentperforms some commands, perhaps consuming and producing messages, and thenproceeds by supplying the continuation with the rest of the input messages and thestate.All agent commands are parameterised with respect to a continuation. A lin-earity constraint prevents the continuation from being duplicated (in the imple-mentation the continuation is hidden from the programmer behind the agent API),therefore the order of agent commands is �xed with respect to a single agent.Figure 1 de�nes a type theory for the agent calculus. The theory de�nes arelation V ` M : � holding between an environment, mapping variables to types,an agent calculus term M and a type � . The intended meaning is that M has type� when V associates free variables in M with their types.4 Agent SemanticsThe class of sequential programming languages is often given a semantics by atranslation into a �-calculus whose execution is described by a reduction relationbetween terms. Although the agent calculus contains sequential features (the �-calculus sub-language used to describe calculations within an agent) the inclusion ofconcurrent features renders �-reduction unusable as a semantic framework [San99].The �-calculus [Mil93] is a formal system suitable for describing concurrentbehaviour. Terms in the �-calculus represent processes that communicate usingnamed channels. The agent calculus is higher-order since it includes all �-terms asa sub-language. The basic �-calculus is not higher-order but there is a standardtranslation from �-terms to �-terms that encodes higher-order features [San99].3

Q(i; o) j �i<v1>:�i<v2> j o(x1):o(x2)= Q0(i; q1) j �q1<o> j �i<v1>:�i<v2> j o(x1):o(x2)= i(x):(q1(o):�o<x>: �q1<o> j Q0(i; q1)) j �q1<o> j �i<v1>:�i<v2> j o(x1):o(x2)= q1(o):�o<v1>: �q1<o> j Q0(i; q1) j �q1<o> j �i<v2> j o(x1):o(x2)= �o<v1>: �q1<o> j Q0(i; q1) j �i<v1> j o(x1):o(x2)= �q1<o> j i(x):(q1(o):�o<x>: �q2<o> j Q0(i; q2)) j �i<v2> j o(x2)= �q1<o> j q1(o):�o<v2>: �q2<o> j Q0(i; q2) j o(x2)= �o<v2>: �q2<o> j Q0(i; q2) j o(x2)= �q2<o> j Q0(i; q2) Figure 3: Queue BehaviourThe agent calculus is given a semantics using a translation to the �-calculus.The translation is an extension of that which translates �-terms with a normal orderreduction relation. The translation is de�ned in �gure 2. The overall e�ect is totranslate each agent program into a process that awaits two names s and p. Theprocess represents a single agent. Messages sent to the agent are received at thename s which may be thought of as identifying the agent's thread of control. Thename p is used for co-ordination in an agent; the agent completes its current taskand then delivers the result at p.The translation of �-terms encodes a normal order reduction strategy in the �-calculus. In (1), an agent a is supplied at p. In (2) a variable v is forced by supplyings and p. In (3) a �-function is translated as a new channel x. When a value v issupplied at x the body M is performed. In (4) normal order application is encodedby evaluating M and producing the operator at q. The channel v is supplied witha new channel x that will perform the argument N when sent a message. In (5) anagent is created by generating a new message queue Q(i; o) using an input channeli and an output channel o. The new agent, Mi continues concurrently with thecurrent agent Ni. The channel � is used as a message sink. In (6) the evaluationof the message N is delayed by creating a new channel x that performs N whensent a message. The term M is performed and produces an agent a at q. In (7),evaluation of M and N are ordered using a local channel c. In (8) the next messageis received at s. If no message is available then the agent's execution will halt untila message is supplied by its bu�er. A message is forced by supplying it with namess and q. The result is supplied at q. Each arm contains a pattern pi and is encodedas an alternative for values received at q. When a value matches a pattern, thecorresponding term Mi is performed. In (9), the null operation supplies the unitvalue to the continuation channel p.Agent communication occurs through message queues. A message queue is cre-ated using (10) and (11). Each message queue Q(i; o) contains two channels, theinput i and the output o. Sequences of messages arrive at the input and are avail-able in the same arrival order at the output. An example queue behaviour is shownin �gure 3 in which two messages v1 and v2 are sent and then produced in the sameorder.A rigorous semantics serves two purposes: an unambiguous way of de�ningwhat we mean by executing terms in the agent calculus and also a way of provingproperties about agent programs. Suppose that we want to establish the followingtheorem:Theorem 1 Sequencing in agent programs is associative, i.e. M2(N2O) = (M2N)2Ofor all terms M , N and O.Proof 1 The translation [[:]] produces the following terms for each side of the equa-4

tion: (s; p):�c ([[M]](s; c) j c():�c ([[N]](s; c) j c():[[O]](s; p)))(s; p):�c (�c ([[M]](s; c) j c():[[N]](s; c)) j c():[[O]](s; p))Using standard properties of the �-calculus we may consistently rename locals andlift them to an outer scope. This produces terms of the following form:P (c1) j c1:(Q(c2) j c2:R) (1)(P (c1) j c1:Q(c2)) j c2:R (2)where X(c) means perform an action using c as a shared communication channeland c:Y means accept an input on the shared communication channel c then performY . The translation [[:]] uses a shared communication channel p to co-ordinate execu-tion. By inspection, p is linear since it is only used once in each equation in �gure2. Therefore, any term of the form X(c)jc has a deterministic behaviour. The �-nal part of the proof uses this result to show that terms 1 and 2 are behaviourallyequivalent.Consider term 1, the behaviour is P until a result is produced at c1, then Q untila result is produced at c2 then R. Term 2 produces the same behaviour. Since theterms are closed and each term has only one possible behaviour we conclude thatthey are behaviourally equivalent as required.5 Agent ImplementationAn agent is a function that processes a stream of messages. An agent's input streamis provided by its environment and the resulting output stream is processed by theenvironment. In addition to a stream of messages, the environment supplies datato be used as an agent life-support system. This section describes how the agentcalculus is implemented as part of the lazy functional programming language EBG[Cla99].Agents communicate by sending messages. A message may be asynchronousmeaning that the source agent does not expect a return value, or may be syn-chronous meaning that the source agent waits for a return value. A message con-tains data and is named when the data is associated with a string (usually used fordispatching to a message handler in the target), otherwise it is anonymous. TheEBG type message is:type message =Message string $;;; Asynchronous, named.| Message0 $;;; Asynchronous, anonymous.| Call string int $;;; Synchronous, named.| Call0 int $;;; Synchronous, anonymous.| Return int $; ;;; Return value.Agent identi�ers are used to refer to agents in message packets. An agent identi�eris implemented as an integer. A message packet is a triple (src,tgt,msg) wheresrc is the identi�er of the source agent, tgt is the identi�er of the target agent andmsg is the message. The type packets of message packets is de�ned in EBG asfollows:type agentId = int;type packet = (agentId,agentId,message);type packets = list packet;The types agentId and packet implement the agent calculus types � and � re-spectively. An agent a is a function that is applied to 6 arguments and returns asequence of message packets: 5

a self in cont value coord os => outwhere self is the agent's own identi�er, in is a sequence of input message packets,cont is an agent continuation, value is the most recently received return value,coord is used for co-ordinating synchronous messages, os is the identi�er of theoperating system agent and out is the sequence of output message packets producedby a.Typically, an agent a will consume some pre�x in' of in leaving in'' and pro-ducing packets out' such that out = out' ++ out''. The continuation cont isthen supplied with the rest of the packets in'' and produces out''. The continu-ation allows agents to be composed using a sequencing operator then (see below).The type agent is de�ned in EBG as follows:type messageId = int;type replace = agentId packets $ messageId agentId -> packets;type agent = agentId packets replace $ messageId agentId -> packets;The types replace and agent implement the agent calculus types � and � respec-tively. In the calculus, the extra argument types in agent are bundled together intoa single state type 3.Agents are constructed using command primitives. The base layer of the agentmodel implements agent communication. The comm operator is supplied with atarget agent identi�er and a message. The message is delivered to the target. Ifthe message is synchronous then the source agent will wait until the return value isreceived otherwise comm returns control to the agent via cont:comm :: agentId message -> agent;comm tgt msg = \self in cont value coord os.case msg ofMessage name data -> (self,tgt,msg):(cont self in value coord os);Message0 data -> (self,tgt,msg):(cont self in value coord os);Return id data -> (self,tgt,msg):(cont self in value coord os);Call name id data -> (self,tgt,msg):(wait id self in cont coord os []);Call0 id data -> (self,tgt,msg):(wait id self in cont coord os [])end;The comm operator uses wait to bu�er input packets until the required return valueis received. The operator is supplied with 7 values:wait id self in cont coord os buff => outwhere id is a message identi�er and buff is a sequence of packets. An agentsends a synchronous message by producing a message Call name id data. The idcomponent is a message identi�er supplied to the target of the message. The targetproduces a return value by sending a message Return id value. The source agentuses the id value to match the return value with the original call.During the call, the source agent is still active and may receive messages whichare bu�ered by adding them to the sequence buf. There are many di�erent possiblestrategies for handling call and return. The wait operator:wait :: messageId agentId packets replace messageId agentId packets -> agent;wait id self in cont coord os buff =case in of(src,_,Return id' data) : in' ->case id = id' ofTrue -> cont self (buff ++ in') data coord os;False -> wait id self in' cont coord os (buff ++ [head in])end;else wait id self in' cont coord os (buff ++ [head in])end; 6

causes the source agent to continually bu�er messages until the target agent returnsa value. Once the value is received, the bu�ered messages are handled in the orderthat they were received by adding them back into the input stream.The agent calculus term M N is implemented as comm M N. The agent calcu-lus term @MN is implemented in EBG by sending the operating system a requestfor a new agent and then supplying the new agent identi�er to M and N :opSys \o (agent (self \s. M s)) $then result \a. N aIn addition to a stream of message packets, an agent is supplied with values that areused to manage messages and values. Each of the life-support values are accessedusing the primitives self, result, seqVal, incSeq and opSys. They have similarde�nitions for example:self :: (agentId -> agent) -> agent;self fun = \self in cont value coord os.(fun self) self in cont value coord os;The next message is consumed by the primitive message:message :: (packet -> agent) -> agent;message fun = \self in cont value coord os.case in ofmessage : in' ->(fun message) self in' cont value coord os;else []endThe agent calculus term mcase ~p1 !M1; : : : ; pn !Mn end is implemented usingthe message primitive:message \m. case m of p1 -> M1; ...; pn -> Mn endMessage passing is ultimately performed using the primitive comm. It is conve-nient to provide higher level primitives that distinguish between di�erent types ofmessages. These primitives package up the information and then call comm:send :: agentId string $ -> agent;send target name data = comm target (Message name data);call :: agentId string $ -> agent;call target name data = seqVal \seq.incSeq $thencomm target (Call name seq data);send sends an asynchronous message; call sends a synchronous message. send0and call0 use Message0 and Call0 message constructors but are otherwise thesame as send and call. Note how synchronous message passing uses the seqValand incSeq primitives to associate each message with a unique message identi�erthat will be used to recognise the return value if it is eventually received.Agent control is provided using a command sequencing primitive then and anempty command skip:skip :: agent;skip self in cont value coord os = cont self in value coord os;then :: agent agent -> agent;then c1 c2 = \self in cont value coord os.c1 self in(\self in value coord os.c2 self in cont value coord os)value coord os; 7

The agent calculus term M2N is implemented as M $then N. Agents are createdusing the primitives agent and javaAgent. The agent primitive is used to createagents that are based on EBG functions. The function must be of type agent.The javaAgent primitive is used to create agents based on Java classes. The nameof the class is supplied as an argument to javaAgent. In both cases, agents arecreated by sending the operating system agent a message called new. The messageis synchronous and the return value will be the agent identi�er of the newly createdagent. Agent creation primitives are de�ned as follows:agent :: agent -> agent;agent behaviour = opSys \os. call os "new" behaviour;javaAgent :: string -> agent;javaAgent className = opSys \os. call os "new" className;Consider a cell that contains an integer value. The cell may be sent an asynchronousnamed message inc causing the value to be incremented by 1. The cell may be senta synchronous named message get in which case the cell replies with its currentvalue. The cell behaviour is implemented as a function:cell :: int -> agent;cell n =mcase(_,_,Message0 "inc") ->cell (n + 1);(src,_,Call0 coord "get") ->(reply src coord n) $thencell n;else cell nend;
Notice how cell uses n as its internal state. Onreceiving a message, cell supplies a replacementbehaviour by calling itself with a new value for thestate variable. On receiving get, the reply shouldbe sent to the source agent src; coord allows thesource agent to associate the reply with the origi-nal call.We wish to create a single cell which is shared between two agents. The �rstagent continually sends the cell c, supplied as an argument, requests to incrementits contents:setter :: agentId -> agent;setter c = (send0 c "inc") $then setter c;The setter agent has a constant state c whose value is the agent identi�er of acell. The second agent continually sends the cell requests for its value:getter :: agentId agentId -> agent;getter c os =(call0 c "get") $thenresult \n.(send os "println" n) $thengetter c os;Since get is a synchronous message, the getter agent waits until the cell c replieswith a value. The return value is accessible using the result primitive. The getteragent has two state components, c and os, that never change.main =@(K (cell 0)) \c.opSys \os.(agent (setter c)) $thenagent (getter c os) Agents are created by supplying the agent primi-tive (called on the left via @) with a value of typeagent. Since agent is implemented using call,main waits for the cell agent c then supplies itsetter and getter agents.EBG uses agent primitives to provide support for state based and event drivenmulti-processing within a lazy functional programming language. EBG is imple-mented using a compiler that produces Java virtual machine byte codes. Agentsprovide an ideal mechanism for mixed EBG and Java programming. The following8

op1 mem n =mcase(src,_,Message "enter" m) ->(send src "display" ((n*10)+m)) $thenop1 mem ((n * 10) + m);(src,_,Message0 "clr") ->(send src "display" 0) $thenop1 mem 0;(src,_,Message0 "MS") -> op1 n n;(src,_,Message "operator" op) ->op2 mem n op 0;else op1 mem nend;calc n "+" m = n + m; ;;; and for -,*,/dateLoop jcalc =opSys \os.(call os "date" []) $thenresult \d.(send jcalc "date" d) $thendateLoop jcalc;

op2 mem n op m =mcase(src,_,Message "enter" m') ->(send src "display" ((m*10)+m')) $thenop2 mem n op ((m * 10) + m');(src,_,Message0 "clr") ->(send src "display" 0) $then op1 mem 0;(src,_,Message0 "=") ->let result = calc n op min (send src "display" result) $thenop1 mem result;else op2 mem n op mend;main =(agent (op1 0 0)) $then(result \calc.(javaAgent "CalcInterface") $thenresult \jcalc.(agent (dateLoop jcalc)) $thensend jcalc "register" calc)Figure 4: An EBG Calculuator Agentis simple calculator that is implemented in both Java and EBG:The GUI is implemented as a Java agent; thecalculations and memory are implemented as anEBG agent. Events are generated by AWT but-tons causing messages to be sent from the Javaagent to the EBG agent. Part of the EBG agentis shown in �gure 4. The op1 behaviour handlesoperations for the left hand operator and op2 forthe right. n is the current number and m is thememory.Clicking a number sends an enter message from the Java CalcInterface agentto the EBG agent. The EBG agent sends the Java agent display and date mes-sages to update the numeric and date display regions.6 ConclusionThis paper has de�ned an agent calculus and given it a semantics using a translationto the �-calculus that encodes higher-order functions and normal order evaluation.The calculus has been implemented in the lazy functional programming languageEBG as a collection of primitives. The primitives have been shown to support state-based, event driven, mixed paradigm programming in terms of the implementationof a small calculator program. Streams have been used as the basis of concurrency,reactivity and state in functional programs, for example [Car98], [O'D85], [Tho90]and [Wad90]. There are a number of functional programming languages such asConcurrent ML and Concurrent Haskell that support multi-processing. This workis novel because it is based on a simple agent calculus with a precise semantics andis implemented in EBG and therefore supports the features of the Java VM [Ven98].
9

References[Agh86] Agha, G.: Actors: A Model of Concurrent Computation in DistributedSystems. MIT Press, 1986.[Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In pro-ceedings of REX School/Workshop on Foundations of Object-OrientedLanguages, LNCS 489, Springer-Verlag, 1991.[Car84] Cardelli L. (1984) Basic Polymorphic Type Checking. Science of Com-puter Programming, 8(2), 147 { 72.[Car98] Carlsson M. & Hallgren T. (1998): Fudgets { Purely Functional Pro-cesses with Applications to Graphical User Interfaces. PhD Thesis, De-partment of Computing Science, Chalmers University of Technology.[Cla99] Clark, A. N. (1999): EBG: A Lazy Functional programming LanguageImplemented on the Java Virtual Machine. Technical Report submittedto the Computer Journal.[Jen98] Jennings, N. R., Sycara, K & Wooldridge M. (1998): A Roadmap ofAgent Research and Development. Autonomous Agents and Multi-AgentSystems, 1, 7 { 38.[Han94] Hankin C. (1994) Lambda Calculi a Guide for Computer Scientists.Clarendon Press, Oxford University Press.[Mil93] Milner R. (1993): The Polyadic �-Calculus: A Tutorial. In F. L. Hamer,W. Brauer and H. Schwichtenberg, editors, Logic and Algebra of Speci-�cation. Springer-Verlag, 1993.[O'D85] O'Donnell, J. T. (1985): Dialogues: A Basis for Constructing Program-ming Environments. SIGPLAN Notices 20(7):19 { 27.[Plo75] Plotkin G. (1975) Call-by-name, call-by-value, and the �-calculus. The-oretical Computer Science. 1, pp 125 { 159.[San99] Sangiorgi D. (1999): Interpreting functions as �-calculus processes: atutorial. INRIA Technical Report RR-3470.[Tho90] Thomson, S. (1990): Interactive Functional Programming. In ResearchTopics in Functional Programming, ed. Turner, D. A. Addison-Wesley.[Ven98] Venners B. (1998) Inside the Java Virtual Machine. McGraw-Hill.[Wad90] Wadler, P. (1990): Comprehending Monads. In Proc. 19th Symposiumon Lisp and Functional Programming, Nice, ACM.

10

