

18 MSOR Connections 18(2) – journals.gre.ac.uk

CASE STUDY

Programming in Groups: developing industry-facing software

development skills in the undergraduate mathematics

curriculum

Matthew M. Jones, Department of Design Engineering and Mathematics, Middlesex University,
London, UK. Email: m.m.jones@mdx.ac.uk.
Alison Megeney, Department of Design Engineering and Mathematics, Middlesex University,
London, UK. Email: a.megeney@mdx.ac.uk.

Abstract

Programming is increasingly becoming an expected graduate skill for mathematics students. We

argue in this article that programming should be given the same priority as any other graduate skill.

Given the practical and philosophical constraints placed on undergraduate mathematics curricula,

however, we acknowledge the difficulty in introducing, in a meaningful way, many of the core ideas

of programming. We therefore present a case study of a second year course on an undergraduate

mathematics programme that introduces Object Oriented Programming and aspects of software

design, as well as key practical skill such as version control. We will argue that group assessment

in this context is a more natural setting for students to be working and reflects more closely the

experience of programming in industry; furthermore, it serves as a convenient platform to introduce

students to aspects of software design and practical programming considerations. We will present

an example of the type of assessment that can be used and how Version Control Systems like Git

can be used to give students a more realistic experience of programming with the advantage of

allowing tutors and other group members to track student work.

Keywords: Programming, Group assessment, Employability, Graduate Skills

1. Programming as a Graduate Skill

Historically, computing has been embraced by mathematicians as a tool for studying and solving

problems in mathematics. The introduction of the NAG Libraries for FORTRAN in 1970 and TeX in

1979 serve as very early examples of its contributions. In different ways both of these had a

significant impact on mathematics. However, they also highlight a common attitude of

mathematicians to programming. According to Sangwin and O’Toole (2017) programming, as

currently taught in undergraduate mathematics curricula across UK HEIs, largely reflects this natural

order, often being introduced and taught in mathematics courses as a tool for solving specific

problems: numerical solutions to ODEs/PDEs, numerical analysis, mathematical and statistical

modelling and many other areas. This is likely the reason why the authors’ findings suggest that

languages such as MATLAB or R are amongst the more popular languages taught. The authors

highlight a number of gaps, however, in the current offering by mathematics departments, not least

the fact that programming paradigms such as Object Oriented Programming or Functional

Programming may not be introduced to students in any meaningful way (p. 1145):

It is therefore somewhat surprising that [programming paradigms] are not currently taught

and since they are at best optional, the vast majority of undergraduate students will never

encounter these programming paradigms as part of their undergraduate education.

mailto:m.m.jones@mdx.ac.uk
mailto:a.megeney@mdx.ac.uk

MSOR Connections 18(2) – journals.gre.ac.uk 19

In contrast the most popular languages for computing degrees (see Murphy et al., 2017) are Java,

C (and its successors C++ and C#), and Python; R is not being taught at all and MATLAB is taught

in fewer than 3% of computing courses. This difference is explained by the fact that computing

degrees have a clearer career progression, however it is also likely due to the relationship many

professional mathematicians have with programming: it is a tool for solving specific problems or

simplifying calculations. This is corroborated in Murphy et al. (2017) where the authors asked

respondents why they chose their particular language. The most prevalent response, independent

of the language, was its relevance in industry. Since the second most popular career choice for

mathematics graduates is IT, according to Prospects (2019), and programming is increasingly

becoming an important skill, we argue that it should be considered a graduate skill and that as

mathematicians we should be mindful of this in curriculum design, even to the point of taking the

lead from computing degrees. However, we also appreciate that mathematics degrees are, of

course, not computing degrees and there are a number of hurdles to introducing graduate skills in

mathematics curricula. Indeed, as Waldock (2011, p. 5) says,

There are significant barriers involved when seeking to modify Mathematics

programmes to encourage the development of graduate skills. One is fundamentally

philosophical, as some will wish to retain the pure, theoretical nature of their courses.

Another is the practical difficulty of finding space for graduate skill development in a

crowded curriculum.

The view of students entering degree programmes in the UK has changed significantly in the last 20

years. The days when a university degree was seen as the sole route to career success have gone.

In the most recent Global Learner Survey (Pearson, 2019), only 17% of UK respondents agreed with

the statement that a college degree is essential to achieving a successful and prosperous career.

This demonstrates a significant shift from previous studies. For example, a YouGov poll in 2012

found that 81% of respondents thought going to university was essential for them to pursue their

career (Adediran, 2015). Additionally, in the Global Learner Survey, 66% of UK respondents believed

a degree or certificate from a vocational college or trade school is more likely to result in a good job

with career prospects than a university degree.

These changes in student attitude come at a time when the STEM skills shortage is highly publicised

and a source of concern. UK government policy has in the last 10-15 years attempted to close this

gap, and the extent to which universities should be responsible for addressing the shortage has been

controversial in areas such as mathematics. However, with the publication of the so-called Augur

report in May 2019 (Department for Education, 2019), there is a clear move to a situation where

degree value is measured by graduate prospects rather than on its own merit. As a result, it is likely

that graduate skills will become ever more important and will need to be transparent in the curricula

of mathematics degrees in the future.

In this climate it is, therefore, becoming necessary for subjects like mathematics to reaffirm their

position as career-facing subjects and, we would suggest, challenge the complacency that

mathematics is, by some measure, top-of-the-pile in terms of its employability status. It is with this

in mind that we have reconsidered how we teach programming on undergraduate mathematics

degrees at Middlesex University, aiming to include specific, industry standard skills training that

students can highlight to potential employers. And we have done this in a way that minimises the

encroachment into the standard curriculum.

2. Context

The course we discuss in this case study is a second year undergraduate course on the BSc

Mathematics programme. Students learn either R or Python in their first year and are introduced to

20 MSOR Connections 18(2) – journals.gre.ac.uk

Java in their second-year. As is recommended in Sangwin and O’Toole (2017) this design means

programming is taught throughout the first two years of the students’ degree rather than in isolated

courses, and remains optional in their third year. The course in question is a skills-based course,

Problem Solving Methods, that introduces students to a wide range of techniques in applied

mathematics as well as techniques to develop mathematical problem solving skills in pure

mathematics (see Jones and Megeney, 2018). Workshops are inquiry-led, sometimes employing the

Moore method (see Parker, 2005), to encourage students to develop their problem-solving skills and

confidence. The content of the module ranges from areas of applied mathematics including

optimisation, mathematical modelling, numerical methods and analysis, to areas of pure

mathematics including number theory and real analysis. Students work weekly on different problems,

developing strategies to solve abstract and unfamiliar problems, building a set of robust, internalised

tools for enquiry. Programming is used as one such tool for examining problems and conjecturing

solutions, and students are encouraged to see it as one of many avenues of progress. The structure

of the workshops is heavily influenced by Pólya (1957), although expanded to include, as tools for

examining problems, the use of software or programming. Whereas when Pólya wrote his work on

solving problems he wrote about examining examples to get a better understanding of a problem,

we encourage students to do the same using computers. The use of programming thus becomes

one of the many integral tools available to students to study problems.

Students arrive in their second year with a good grounding in basic procedural programming and

have developed some appreciation and experience of algorithm design. Introduction to a new

language is therefore a matter of learning a new syntax (although further specific differences must

also be mastered such as might be expected when learning a compiled, statically typed language).

Although the course content is taught in an informal workshop setting, many of the initial

programming laboratories are taught more traditionally. Topics are introduced by the tutor and

students work in pairs using the driver/navigator model, as described in Hannay et al. (2009) and

Brown and Wilson (2018). There is an emphasis on teaching students many of the formal concepts

from computer science that are necessary to implement object oriented design principles. We do not

aim to teach aspects of functional programming; although Java does incorporate this paradigm in

some sense, the course team does not believe it is in the interest of the students to confuse object

oriented programming and functional programming. The taxonomy outlined in Figure 1, influenced

by Selby (2015) and our own experience, is used as reference; it models the cognitive journey and,

especially, our aspirations for where they will reach. The Aesthetics alluded to in the figure are not

taught explicitly – instead students see aspects of them in the problems they solve and the

assessment. The assessment of the course consists of individual coursework and group coursework;

it is the latter that we wish to discuss here.

Students become accustomed to working in teams and presenting their work in class. This helps

alleviate some of the issues common in group work as discussed, for example, in MacBean et al.

(2004).

3. Structure of the group assessment

The philosophy of object-oriented programming lends itself naturally to group work,

compartmentalisation of code allows group members to work independently of one another whilst

still being part of a team. Indeed, aspects of high-level design such as design patterns, abstraction

and inheritance are given a heightened importance – students must design the structure of the

programme before they start coding in order to maintain compatibility.

MSOR Connections 18(2) – journals.gre.ac.uk 21

Figure 1: Programming taxonomy

In software design, design patterns are pre-packaged solutions to common problems, a classic

reference to these is the so-called Gang-of-Four (Gamma et al., 1995). In our opinion one of the

most accessible design pattern for teaching is the Factory Design pattern (and, to a lesser extent,

the Abstract Factory Design). We focus on this in our design of suitable assessment since it serves

as a useful platform to further enquiry into design patterns. However it should also be noted that this

is only our personal preference and other design patterns might also lend themselves naturally to

group work.

The coding for the group assessment must be of the following form:

1. Decomposable into smaller problems

2. Each smaller problem should be solvable independently of the others

3. There should be an interface that ensures compatibility of code

4. The solution should lend itself to the Factory Design pattern (Figure 2).

Groups are arranged with a lead who will be responsible for the interface and acts as a client for the

software – i.e. queries, runs and presents output. Other members of the group are responsible for

solving the smaller parts of the problem.

As an example we might have groups write software that solves numerically an ordinary differential

equations. Groups would normally be expected to use different numerical techniques such as Huen’s

method, or various other levels of precision of Runge-Kutta to find solutions. Individual group

members can then take responsibility for each of the techniques used and the lead takes

responsibility for the overall design.

22 MSOR Connections 18(2) – journals.gre.ac.uk

Figure 2: UML diagram for the factory design pattern

The advantage of structuring assessment in this form is that, with appropriate feedback, students

will naturally discover that something approximating a factory design pattern must be used. Tutors

then introduce students to Design Patterns or at least the Factory Design Pattern. Note at this stage

students will have already encountered many design patterns in the course of their learning of object

oriented programming, although may not have recognised them as such. For example the Iterator

Design is built in to Java, and students will have seen the Adapter pattern when implementing data

structures.

An important aspect of designing assessment that is decomposable like this is that students need to

address the issue of version control – how does one know one is working on the current version of

the code, or how does one avoid clashing with other work done. Version Control Systems are

numerous, but the most common is Git. The university uses a local Git repository provided by GitLab.

We do not advise students to use their own GitHub accounts to complete group assessment since

elsewhere we promote GitHub as a convenient place for students to document a portfolio of work,

so only final versions of software are made available on GitHub. Students are trained in the use of

Git to maintain software, and the log from individual Git forks are used to ensure comparability of

work effort in the final submission, thereby mitigating against the problem of ‘coasting’.

4. Reflection and Concluding Remarks

Our approach to group assessment in programming discussed in this article is still in its initial stages

with only two cohorts having been assessed this way. In a future article we expect to be able to

evaluate the effectiveness using longitudinal data. However we are not yet at this stage.

Initially our main concern was that mathematics students would not feel comfortable learning

technology like Git, especially those that were not aiming to go on to careers in software

development. However, we have found that students have reacted positively to the opportunity of

learning it. The following student’s response summarises views on the usage of Git:

Being introduced to Git within the [undergraduate] degree is also helpful as the student can set

up their own GitHub profile, load up their coursework and use this as a portfolio which is amazing

for employability.

In our experience students look favourably on opportunities to develop outward-facing exhibits of

their work for employers and so even those not thinking of careers at this point see the advantage

of using a tool like this.

MSOR Connections 18(2) – journals.gre.ac.uk 23

We were also concerned that students would not be able to make the link between the structure of

the assessment and the factory design pattern at all. Instead, in all cases, groups naturally designed

their code with some of the notions of these patterns embedded. This helped improve confidence in

their coding significantly and when, during formative feedback sessions, students were introduced

to the formal factory design pattern it was evident that they made a significant connection to what

can be an abstract idea. In some cases students went on to research more about design patterns

and algorithm design.

Group work can be fraught with problems such as coasting, and a perceived increase in plagiarism.

Indeed, there is growing scepticism amongst undergraduate students that it is worth the effort.

Whereas plagiarism can be mitigated to some extent by assessment design, the coasting effect is

certainly still an issue for some students using the approach described in this article. We prefer a

proactive approach to dealing with these problems, intervening when needed. Communicating the

use of Git to measure mutual effort has been useful, but we have not yet taken the approach of

weighting group members’ marks based on this. Given the approach described in this article is still

evolving, we may well need to take a more authoritarian approach to this if necessary in the future.

In conclusion, considered as a pilot, our approach to introducing more advanced programming

techniques in a group setting has been successful. In our experience students are well-suited to

independently discover practical aspects of programming. It should be noted however that we have

not yet encountered a situation where students have not independently discovered the ideas we

have intended them to, and this will need to be considered in future.

5. Acknowledgments

This paper was presented at the “Programming in the Undergraduate Mathematics Curriculum”

workshop held at Middlesex University on 27th June 2019. We would like to thank the sponsors of

the event: IMA and Middlesex University.

6. References

Adediran, M., 2015. Students value university education over costs. Available at:

https://yougov.co.uk/topics/politics/articles-reports/2015/05/01/students-value-university-education-

over-costs [Accessed 30th January 2020].

Brown, N.C.C. and Wilson, G., 2018. Ten quick tips for teaching programming. PLoS

Computational Biology, 14(4). https://doi.org/10.1371/journal.pcbi.1006023.

Department for Education, 2019. Independent panel report to the Review of Post-18 Education and

Funding. Available at: https://assets.publishing.service.gov.uk [Accessed 30th January 2020].

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995. Design patterns: elements of reusable

object-oriented software. Addison-Wesley.

Hannay, J.E., Dybå, T., Arisholm, E., Sjøberg, D.I.K., 2009. The effectiveness of pair programming:

a meta-analysis. Information and Software Technology, 51(7), pp. 1110-1122.

https://doi.org/10.1016/j.infsof.2009.02.001.

Jones, M. and Megeney, A., 2018. Problem solving methods in undergraduate mathematics. In:

CETL-MSOR Conference 2018 Evidencing Excellence, 05-06 Sept 2018, University of Glasgow,

Scotland.

https://yougov.co.uk/topics/politics/articles-reports/2015/05/01/students-value-university-education-over-costs
https://yougov.co.uk/topics/politics/articles-reports/2015/05/01/students-value-university-education-over-costs
https://doi.org/10.1371/journal.pcbi.1006023
https://assets.publishing.service.gov.uk/
https://doi.org/10.1016/j.infsof.2009.02.001

24 MSOR Connections 18(2) – journals.gre.ac.uk

MacBean, J., Graham, T. and Sangwin, C., 2004. Group work in mathematics: a survey of

students’ experiences and attitudes. Teaching Mathematics and its Applications, 23(2), pp. 49-68.

https://doi.org/10.1093/teamat/23.2.49.

Murphy, E., Crick, T. and Davenport, J.H., 2017. An Analysis of Introductory Programming Courses

at UK Universities. The Art, Science, and Engineering of Programming, 1(2).

https://doi.org/10.22152/programming-journal.org/2017/1/18.

Parker, J., 2005. R. L. Moore: Mathematician and Teacher. Mathematical Association of America.

Pearson, 2019. The Global Learner Survey. Available at:

https://www.pearson.com/content/dam/global-

store/global/resources/Pearson_Global_Learner_Survey_2019.pdf [Accessed 30th January 2020].

Pólya, G., 1957. How to Solve It. Princeton, NJ: Princeton University Press.

Prospects, 2019. What do graduates do? Available at: https://luminate.prospects.ac.uk/tag/reports

[Accessed 30th January 2020].

Sangwin, C.J. and O’Toole, C., 2017. Computer programming in the UK mathematics curriculum.

International Journal of Mathematical Education in Science and Technology, 48(8), pp.1133-1152.

https://doi.org/10.1080/0020739X.2017.1315186.

Selby, C., 2015. Relationships: computational thinking, pedagogy of programming, and Bloom’s

Taxonomy. The 10th Workshop in Primary and Secondary Computing Education, United

Kingdom. pp. 80-87. https://doi.org/10.1145/2818314.2818315.

Waldock, J., 2011. Developing Graduate Skills in HE Mathematics Programmes - Case Studies of

Successful Practice. Birmingham: Maths, Stats and OR Network. Available at:

http://www.mathcentre.ac.uk/resources/uploaded/gradskills.pdf [Accessed 30th January 2020].

https://doi.org/10.1093/teamat/23.2.49
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://www.pearson.com/content/dam/global-store/global/resources/Pearson_Global_Learner_Survey_2019.pdf
https://www.pearson.com/content/dam/global-store/global/resources/Pearson_Global_Learner_Survey_2019.pdf
https://luminate.prospects.ac.uk/tag/reports
https://doi.org/10.1080/0020739X.2017.1315186
https://doi.org/10.1145/2818314.2818315
http://www.mathcentre.ac.uk/resources/uploaded/gradskills.pdf

