
Computer Networks 216 (2022) 109214

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

IntOpt: In-band Network Telemetry optimization framework to monitor
network slices using P4✩

Deval Bhamare a, Andreas Kassler b, Jonathan Vestin b, Mohammad Ali Khoshkholghi c,∗,
Javid Taheri b, Toktam Mahmoodi c, Peter Öhlén d, Calin Curescu d

a Department of Computer Science, University of Surrey, UK
b Department of Computer Science, Karlstad University, Sweden
c Department of Engineering, King’s College London, UK
d Ericsson Research, Stockholm, Sweden

A R T I C L E I N F O

Keywords:
In-band Network Telemetry (INT)
Monitoring
P4
Network function virtualization (NFV)
Service function chain (SFC)

A B S T R A C T

The emergence of Network Functions Virtualization (NFV) is being heralded as an enabler of the recent
technologies such as 5G/6G, IoT and heterogeneous networks. Existing NFV monitoring frameworks either do
not have the capabilities to express the range of telemetry items needed to perform management or do not scale
to large traffic volumes and rates. We present IntOpt, a scalable and expressive telemetry system designed for
flexible NFV monitoring using active probing and P4. IntOpt allows us to specify monitoring requirements for
individual service chain, which are mapped to telemetry item collection jobs that fetch the required telemetry
items from P4 programmable data-plane elements. We propose mixed integer linear program (MILP) as well
as a simulated annealing based random greedy (SARG) meta-heuristic approach to minimize the overhead due
to active probing and collection of telemetry items. Using P4-FPGA, we benchmark the overhead for telemetry
collection. Our numerical evaluation shows that the proposed approach can reduce monitoring overheads by
39% and monitoring delays by 57%. Such optimization may as well enable existing expressive monitoring
frameworks to scale for larger real-time networks.
1. Introduction

Recently, various network functions such as domain name servers
(DNS), deep packet inspectors (DPI) as well as mobile core functions
such as Mobility Management Entity (MME), Home Subscriber Server
(HSS), Serving Gateway (SGW), Evolved Packet Data Gateway (ePDG)
and others are being deployed as virtual network functions (VNFs),
or simply virtual functions (VFs). Instead of being built on dedicated
hardware, network functions are now being implemented as software at
application layer that run on top of general purpose hardware through
virtualization, called as, virtualized network functions (VNFs). These
VNFs are interconnected to form service function chains (SFCs) [1–3].
As different SFCs coexist on the physical network belonging to different
tenants, it has led to another novel networking paradigm called as
network slicing (NS). NS allows to build a set of dedicated networks,
each adapted to serve one type of business customer. These dedicated

✩ This work is an extension of our previous work ‘‘IntOpt: In-band Network Telemetry Optimization for NFV Service Chain Monitoring’’ presented in IEEE ICC
2019 (Bhamare et al. 2019). The work has been significantly extended (approximately 50%) to be presented as a novel work to the current journal.
∗ Corresponding author.

E-mail addresses: d.bhamare@surrey.ac.uk (D. Bhamare), andreas.kassler@kau.se (A. Kassler), jonathan.vestin@kau.se (J. Vestin),
ali.khoshkholghi@kcl.ac.uk (M.A. Khoshkholghi), javid.taheri@kau.se (J. Taheri), toktam.mahmoodi@kcl.ac.uk (T. Mahmoodi), peter.ohlen@ericsson.com
(P. Öhlén), calin.curescu@ericsson.com (C. Curescu).

networks would permit the implementation of tailor-made functional-
ity, such as 5G/6G, IoT, and heterogeneous network operations specific
to needs of every customer [4,5].

The service flows (SFs) deployed over such network slices have
stringent service level agreements (SLAs) including end-to-end latency,
throughput, buffer sizes among others. To meet the SLAs and measure
the quality of service (QoS), network operators are mandated to con-
stantly measure the network state. The parameters supported by P4
framework and which need to be monitored include (1) queue buffer
sizes, (2) path followed by packets (arrival and departure ports at each
hop), (3) switch ID, (4) ingress and egress timestamps, (5) available
bandwidth, (6) queue delays, (7) packet arrival rate, (8) throughput
and others.

Managing and scaling service flows (SFs) in network slices require
the collection and analysis of network statistics and states in real time.
vailable online 3 August 2022
389-1286/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2022.109214
Received 10 March 2022; Received in revised form 13 July 2022; Accepted 21 July
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:d.bhamare@surrey.ac.uk
mailto:andreas.kassler@kau.se
mailto:jonathan.vestin@kau.se
mailto:ali.khoshkholghi@kcl.ac.uk
mailto:javid.taheri@kau.se
mailto:toktam.mahmoodi@kcl.ac.uk
mailto:peter.ohlen@ericsson.com
mailto:calin.curescu@ericsson.com
https://doi.org/10.1016/j.comnet.2022.109214
https://doi.org/10.1016/j.comnet.2022.109214
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109214&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 216 (2022) 109214D. Bhamare et al.
Measuring network parameters help the operators to perform quality
control, congestion control, anomaly detection, capacity planning in
data centers as well as backbone networks [6]. Measurements are
important when network state changes frequently due to the changes
in the traffic flowing through the network, addition or deletion of the
services as well as changes in the underlying physical topology. Many
factors contribute to the changes in the physical network, one of them
and the most common being link congestion or failures. Also, with
the advent of network function virtualization (NFV) [7] and service
function chaining (SFC) [8], network services have become dynamic,
changing their states quite frequently [9,10].

Network monitoring and measurement tasks demand resources in-
cluding network bandwidth, computational resources as well as mem-
ory. Introducing monitoring flows (MFs) for network monitoring in
non-optimized manner may result in additional overhead, affecting the
actual traffic and performance of the service function chains (SFCs),
which are the source of the revenue for network operators. Existing net-
work measurement solutions mainly focus on a good trade-off between
expressiveness, accuracy, speed and scalability [11,12]. Although exist-
ing works have made great contributions towards network monitoring
and measurement, they do not focus on one fundamental need, that
is, not overwhelming the network with monitoring overheads while
being expressive as well as scalable. For example, systems such as
Chimera [13] and NetQRE [14] can support a wide range of queries
using stream processors running on general-purpose CPUs, but they
incur substantial bandwidth and processing costs to do so and hence
are not scalable.

In this work, our contribution is a proposal of ‘‘IntOpt’’, a scal-
able, yet expressive active telemetry collection framework, targeted at
monitoring a set of service function chains which are deployed over
a substrate network. In our hybrid approach, the IntOpt controller
determines the set of optimal monitoring flows (MFs) which minimize
the total overhead of the network monitoring [1]. The framework then
determines the respective set of INT-sources, sinks and forwarding
nodes to collect all required monitoring items from the switches in
the substrate network on which SFCs are routed. The proposed frame-
work uses active telemetry probing [15], that is, inserting separate
monitoring probes for the MFs periodically in the network to gather
telemetry information from the data-plane using programmable data
plane elements and P4. The sink nodes in the physical network send
the probes along with the collected telemetry information back to
the controller for further analysis. The IntOpt controller executes its
commands by communicating them through the SDN controller, which
in turn communicates with the underlying physical switches through
the control plane [16].

The rest of the paper is organized as follows. In Section 2 we
discuss the related work in brief. The IntOpt architecture is explained
in Section 3. In Section 4, we have developed mixed integer linear
programming (MILP) model to formulate the problem of preparing the
monitoring flows so that all service flows are adequately monitored.
Since MILP can solve the problems with limited size due to its com-
putational complexity, we have also implemented simulated annealing
based random greedy (SARG) meta-heuristic approach in Section 5. For
input to our meta-heuristic, we benchmark the P4 INT framework using
P4FPGA [17] to approximate the delay induced by INT-operations
in Section 6. We then compare the performance of proposed SARG
approach against the optimal solution obtained by MILP model. Also,
we compare the performance gain obtained for larger topology and
bigger problem size by comparing the SARG approach with a naïve
approach which is unaware of the optimization policies and used for
the deployment of unplanned monitoring flows. Finally, Section 7
concludes the paper addressing future directions. Full forms of the
acronyms used in this paper are given in the Table 6, at the end of
2

the article.
2. Related work

Network monitoring has been an area of interest for many re-
searchers and organizations for a long time [18,19]. Standards such as
ITU-T Recommendation Y.17312007 [20] and IEEE 802.1ag-2007 [21]
have been proposed already to define protocols and practices for
OAM (Operations, Administration, and Maintenance) for network paths
through 802.1 bridges and local area networks (LANs). Such standards
are Ethernet compliant, however, they are not developed to cater the
needs of recent networking paradigms such as network function virtual-
ization (NFV) and their stringent service level agreements (SLAs). These
protocols are difficult to update according to the dynamic demands of
NFV and SFC paradigms and hence are not effective [22,23].

Protocols such as Simple Network Management Protocol (SNMP)
[24] have been in existence for long, which uses polling mechanism
to fetch the data stored in management information base (MIB). Such
protocols are, however, ineffective, especially because they are not
fast enough [11]. For example, with the recent advancements such
as NFV, network states change quite rapidly and frequently. Due to
polling, significant event or information, such as traffic spike, may be
lost. Increasing polling frequency may reduce such gap, however, it
increases the load on switch CPU significantly. This might also violate
the SLAs imposed by tenants on the network service providers (NSPs).
Hence, it is desired to have a mechanism which operates in the data
plane and can collect fine-grained information at line rate, without
significant overheads.

Many solutions have been proposed for network monitoring in
academia as well as industry recently that operate at data-plane [25,
26]. However, existing solutions mainly focus on trade-off between
expressiveness, accuracy, speed and scalability [6,11]. For example,
systems such as NetQRE [14] and others can support a wide range of
queries using stream processors running on general-purpose CPUs, but
they incur substantial bandwidth and processing costs to do so. Teleme-
try systems such Chimera [13] and Gigascope [27] are expressive in
nature by covering wide range of telemetry items, however, can only
support lower packet rates. This is because these systems process all
packets at the stream processor which can become a bottleneck.

On contrary, telemetry systems that rely on programmable switches
alone can scale to high traffic rates [28,29]. However, they can ac-
commodate a limited set of telemetry items in order to achieve the
scalability. For example, OpenSketch [30], Sketchvisor [31] and Uni-
vMon [32] can perform telemetry tasks by executing queries solely
in the data-plane at line rate, but the queries that they can support
are limited by the computational capabilities and memory in the data-
plane, scarifying the expressiveness and accuracy. Systems such as
ElasticSketch [33], Marple [34] obtain a good balance between the ex-
pressiveness and scalability, however, they incur substantial processing
overheads, delays and traffic overheads. To overcome this problem, in
this work, we propose an approach to minimize the overhead associated
with monitoring so as to make the underlying monitoring framework
scalable as well as expressiveness.

With the recent advances in programmable data-planes such as
P4 [27] along with proper compiler and hardware support [35,36],
collecting fine-grained telemetry items from the data-plane is possible
at line-rate using e.g. In-band Network Telemetry (INT) [37,38]. While
telemetry systems that rely on programmable switches alone can scale
to high traffic rates, they give up expressiveness to achieve this scal-
ability. Yu et al. [39] as well as Lahmadi and Boeglin [40] propose
use of piggyback technique to monitor network statistics. However, we
argue that recent traffic patterns in network slices, with emergence
of NFV and SFC architecture, are becoming unpredictable and hence
might come in bursts [5]. Due to this, piggybacking may fail to deliver
accurate per-flow statistics at the required fine-grained intervals as per
the SLAs. Hence, in this work, we advocate active telemetry prob-
ing [15], since it is an effective way to perform network monitoring.

It is especially effective in the dynamic network slicing architecture,

Computer Networks 216 (2022) 109214D. Bhamare et al.
since each service chain may be allocated different network slices
with different QoS requirements undergoing different treatment in the
data-plane [28]. We argue that inserting separate network monitoring
probes allows the flexibility to collect the network information at fine-
grained traffic intervals along the fixed path allocated to the network
slice [41]. It also allows to deploy the monitoring flows in more
customized as well as optimized manner enabling us to achieve reduced
monitoring overheads, as discussed in Section 4 later in this work.

Inserting active probes, however, can be expensive and may lead
to queue buildups, buffer-bloat, packet drops and network congestion
as well as delays, especially if it is performed in unplanned ad-hoc
manner. To minimize the overhead associated with active probing, in
this work, we propose mixed integer linear programming (MILP) model
for our IntOpt framework. Since MILP cannot solve the larger problem
instances without significant computational overheads, we develop
a simulated annealing based random greedy meta-heuristic (SARG)
approach, that determines the set of monitoring flows (MFs) in order
to fulfill all the monitoring requirements of service flows (SFs) in close-
to-optimal manner. In the subsequent sections we discuss our proposed
IntOpt architecture along with the proposed SARG meta-heuristic in
more details.

3. IntOpt architecture and active probing

3.1. INT — Inband Network Telemetry

In this sub-section, we describe the proposed IntOpt architecture.
The proposed IntOpt architecture is shown in Fig. 1. IntOpt controller
communicates with SDN controller using East–West interfaces. It re-
trieves information such as underlying physical topology, physical links
as well as the service flow requests to be deployed, their actual de-
ployment over the physical nodes and their monitoring demands from
the SDN controller (black double-dashed line from SDN controller).
The figure shows a network topology with six (SW1 to SW6) physical
switches. Also, two service flows, flow A–Z and flow B–Y are deployed
through these switches as shown in Fig. 1. Please note we use the terms
service function chain (SFC) and service flow (SF) interchangeably.

The IntOpt controller maps service flow (SF) telemetry items and
frequency demands to the respective physical links. It then finds out
the optimal probing frequency as well as total telemetry items which
need to be monitored for each physical link in order to cover all SFs
with minimal overhead at the data plane as well at the controller.
The controller then prepares an optimal set of monitoring flows (MFs)
so that all the given SFs are monitored along with their monitoring
demands in terms of telemetry frequency and telemetry items (as
explained in the next sub-section). The IntOpt controller performs these
tasks by executing the SARG meta-heuristic proposed in this work. The
details of the SARG meta-heuristic are explained in Section 5.

The IntOpt controller then identifies telemetry sources (SW1 in
Fig. 1), forwarders (SW2–SW5) as well as sinks (SW6), and commands
the SDN controller to populate flow tables accordingly (black dashed
line). Since we are using active telemetry probing to monitor the
network, IntOpt also commands SDN controller to send the periodic
monitoring probes for each monitoring flow as per the telemetry fre-
quency determined in the previous step (black double-dashed line to
SDN controller), to meet the telemetry demand frequency. P4 pro-
grammable switches are responsible for parsing the monitoring probes,
inserting the telemetry items and forwarding of the probes to correct
output port (red dotted line). The Controller acts as data-sink by
instructing the sink switch (SW6) of each monitoring flow to forward
the collected information to itself through SDN controller (red double
dashed line). It then maps the collected telemetry information back
to individual SF requirements to check any SLA violation, such as
exceeding the total delays or buffer queue size at the intermediate
switch etc. INT controller is responsible for executing the proposed
algorithms fast enough to meet real-time requirements of the SFCs. For
3

more details on transmission, storage and processing of decapsulated
telemetry information at the INT controller as well as the INT controller
capabilities, please refer to our work [30]. When a link or device fails
(such as the switch itself), IntOpt controller notices missing monitoring
probes due to discontinuous probe IDs. This prompts the controller
to inform IntOPt framework about broken service and the associated
links (please refer to Section 5-A for more details). Based on the con-
figuration options, IntOpt framework may prompt the administrator to
intervene or automatically transfer the service flow and the monitoring
flow on the recovery path.

3.2. Optimized active telemetry probes generation

In this sub-section, we illustrate our concept of preparing optimal
monitoring flows (MFs) with a toy example. We have considered six
different service function chains (SFCs) as service flows (SFs) as shown
in Fig. 2, with 15 virtual functions (VFs), numbered from 1 to 15. The
numbers on SFC blocks (inside circles and rectangles) indicate the VFs
that particular SFC is comprised of. Please note that SFCs may share
the VFs. SFCs may have different sizes and shapes as shown in Fig. 2.
This may be due to back and forth traffic flows among the VFs.

While deploying the monitoring flows, however, we only consider
linear flows. That is, we do not allow forking, or loop formation in
MFs. The probes can simply be forwarded on to the port which is
inserted as a next hop in telemetry header. Since we propose to perform
mapping and extraction of telemetry data at the controller, similar to
the approach proposed in [11], implementing linear MFs reduces the
controller overhead while preparing the MFs as well as gathering the
collected information from the probes and mapping it back to the SFs.
Also, this is typically handy allowing the probe forwarding logic at the
switches to be simple and fast.

Let us consider a 15-node Atlanta topology from SNDLib [42] for
deployment of the six SFs. A possible deployment of SFs over the given
substrate network is given in Fig. 2. To illustrate our approach, we
focus on a specific SF, SF1, with blue rectangular VFs. Deployment
of SF1 over the substrate network is shown in Fig. 2 with double
dashed blue lines. Let us assume for simplicity, we implement separate
monitoring flow for each SF, following its exact shape on the substrate
network. As a result, monitoring flow MF1 for SF1 will also follow the
same path as SF1. As we notice, at node 15, the MF1 has to split and
the probes gets forwarded to two nodes, node 8 and 9. If we aim to
implement simple ‘‘next-hop look-up and forward’’ functionality at the
intermediate switches, then it becomes complex to keep track of the
next forwarding port due to split-up of the MF. One way to achieve this
is to let the controller keep track of switch unique ID (such as MAC)
and its forwarding port on that switch for that MF and embed the whole
information in the probe. Each switch then performs the match and
forwards the monitoring probe accordingly.

The major drawback with such scheme is the delays incurred due
to the processing overhead at intermediate switches. Also, the probe
size increases as more data needs to be embedded (here MAC of the
switch) at every hop, adding to the overhead. Alternatively, we can
implement two linear MFs, that is, MF1 with path as (15-9-10-7-14)
and MF2 with path (15-8-1-7-14). In this case, forwarding is linear
and simple. A simple next-hop port number can be inserted in the
probe to guide the intermediate switch to forward the probe to the
next hop. However the solution is still non-optimal as the link 𝐸7,14
is covered twice unnecessarily by the probes. Such overhead due to
non-optimal deployment of monitoring flows may increase significantly
with increase in the number of service flows and complex physical
topology. In this simple case with a single SF, the optimal solution
would be to deploy two linear MFs with paths as (15-9-10-7-14) and
(15-8-1-7). In our example, we need minimum five MFs for the given
set of SFs, as shown in Fig. 3. As we note that, all the used physical
links in the topology of Fig. 2 are covered by at least one MF in Fig. 3.

Please note that mapping between SFs and MFs in not necessarily 1-to

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 1. IntOpt Architecture.
Fig. 2. Service flows and deployment over Atlanta network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
−1. That is, one monitoring flow may cover more than one SFs or one
single SF may be split into more than one MF. This is to minimize the
MF overheads and to accommodate as many physical links as possible
in one single MF. Please refer to the model presented in Section 4
(especially constraint 4 and 5). This is the reason, though node 9 is
the sink of the blue MF, although it is not part of the SF as shown in
Fig. 2 (green). We cast this as an optimization problem and develop
a simulated annealing based random greedy meta-heuristic (SARG)
approach to prepare optimal set of MFs as explained in the next section.

3.3. P4FPGA bench-marking

A VNF generally has incoming and outgoing network interfaces to
communicate with other VNFs, that is, to send/receive data packets,
in order to complete the service, or in other words, to satisfy the user
demand. We argue that it is important to evaluate the performance of
the single VNF pipeline, as it would enable researchers in the industry
as well as academia to benchmark the monitoring overheads for a single
VNF with P4 [1–3]. Also, it is equally important for network researchers
and administrators to be aware of the core as well as the edge delays
separately, as it allows them to design the edge and core part of the
network separately [3,30]. This section presents a bench-marking setup
representing a generic VNF, specifically its network interfaces. We
also demonstrate that a linear fit to bench-marking results will allow
the researchers to extrapolate the monitoring overheads for complex
4

and larger SFC topologies, even with limited knowledge of the SFCs
beforehand.

INT capable switch performs following tasks while monitoring
probes are passed through them, which cause the significant delays are
(1) encap/decap of monitoring probes with telemetry headers at the
source and the sink and (2) parse telemetry header and insert telemetry
items accordingly (which we call Forwarding or FW for simplicity). In
order to approximate the processing delays induced by INT-operations,
we performed a series of experiments using the NetFPGA-SUME hard-
ware platform. In this sub-section, we demonstrate our setup and results
to bench-mark the total monitoring overheads. Specifically, we aim to
benchmark a co-relation between total monitoring overheads for all the
monitoring flows and actual delays incurred due to such overheads by
bench-marking the P4 implementation with P4 NetFPGA. We then use
these bench-marking results to compare our proposed SARG scheme
with ad-hoc naïve approach and present our detailed results for larger
problem instances later in this section.

We have implemented a P4 program using the P4FPGA toolkit [17],
based on the INT specification, which parses incoming packets, and
pushes INT headers (encapsulation), accordingly [37]. The headers are
divided into two types, (1) Telemetry Instruction and (2) Telemetry
Data headers. Instruction headers contain a set of instructions that de-
termine, which telemetry data items should be pushed by each switch,
along with various meta-data. Telemetry data headers contain actual
INT data such as queue occupation, switch traversal latency, etc. The
P4 INT program checks incoming packets for instruction headers, and

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 3. 5 monitoring flows to cover all the service flows.
Fig. 4. NetFPGA setup for Core and edge switches.

if found one, it pushes the telemetry data specified in the instruction
header. Should a packet arrive without an instruction header, the
switch can be configured through the control plane, to either forward
it as normal packet or insert a telemetry instruction header (source
node). This is configured through a match key, such as source port or
destination address.

We ran experiments with both edge and core switch P4 programs,
pushing from zero to eight INT data headers. Edge switches were con-
figured to push both the instruction header and the configured number
of data headers, while the core switches only pushed data headers. The
setup is shown in Fig. 4. We use OSNT as a traffic generator due to
its nanosecond granularity. OSNT timestamps packets while sending
and receiving them which allows us to calculate the desired delays
incurred due to INT header operations. Fig. 5 shows the experienced
delays against the number of header fields inserted for core as well as
edge switches. As we observe, there is a linear relationship between
the telemetry data pushed in the packet and the delays observed.
The edge switch has higher latency due to additional push operation
for instruction headers. This can be justified with the fact that edge
switches are responsible for more complex configuration and security
tasks, such as MPLS/BGP handling etc. Due to such complex operations,
INT headers experience more delays at edge switches.

3.4. ONAP-IntOpt integration

Integrating InOpt into a network management platform such as
Open Networking Automation Platform (ONAP) [43], can be done in
5

Fig. 5. NetFPGA results for Core and edge switches.

two ways described in this subsection. The first option is to implement
IntOpt on the SDN controller level, the approach advocated in this
work (Fig. 1). The advantage of this approach is that IntOpt framework
remains more generic and can easily be integrated with any cloud
management platform or the framework. However, separate APIs need
to be developed for successful communication among components of
the cloud management platform and IntOpt modules. Here, ONAP
would decompose an overall service request into one or several function
chains and include the monitoring requirements in the flow setup. All
the optimization and analysis would be done at the SDN controller
level. The resulting monitoring data and messages will be consumed
by ONAP Data Collection, Analytics, and Events (DCAE) module, using
already defined protocols.

For the second option, which is more ONAP specific, we propose
utilizing ONAP components to realize different functions of the InOpt
framework. This would enable us to create monitoring flows across
multiple SDN controllers (SDNCs) and take actions on a network-wide
scale. The InOpt modules would be implemented within the DCAE
framework to keep track of monitoring requirements, optimization of
the probe locations and analysis of the data from the probes. It means,
the requirement of developing the communication APIs between IntOpt
and the components of ONAP would be minimal. This also allows us
to reuse the existing functionality of the ONAP components for the
common functionality, such as database management and others.

Computer Networks 216 (2022) 109214D. Bhamare et al.

i
t
t
a
d
𝑓
b

4

c
d

In addition, there are functionality within ONAP to create auto-
mated control loops, where policy actions can be triggered based on
measured performance. Performance data from InOpt could be used as
input to such control loops, along with other types of measurements
and events from the network.

4. Optimization model

In this section, we formulate an optimization model using mixed
integer linear programming (MILP) to minimize the total monitor-
ing overhead associated with the proposed active probing monitoring
scheme using INT framework. The symbols used in the formulation are
explained in Table 1.

4.1. Objective function

Optimization function is given in Eq. (1). Please note that, though
the two items in the optimization functions may utilize different hard-
ware resources, in Section 6, we demonstrate that, their overheads are
comparable and thus the sum can be mapped to hardware resource
utilization [44].

Minimize:
𝐹
∑

𝑓=1
(𝑎𝑓 × 𝛼) +

𝑁
∑

𝑗=1

𝑁
∑

𝑖=1

𝐹
∑

𝑓=1
(𝜙𝑓𝑖𝑗 × 𝑎𝑓 × 𝛿𝑖𝑗 × 𝛽) (1)

First term in Eq. (1) represents overheads associated with prepar-
ng the monitoring flows, that is encap–decap overheads (encapsula-
ion/decapsulation of the MFs at the source and the sink). The second
erms represents the overheads associated with header lookup as well
s insertion of the telemetry data in the monitoring probes, in terms of
elays, along the path of all MFs. 𝜙𝑓𝑖𝑗 represents the links used for MF
and 𝛿𝑖𝑗 represented the monitoring demand of the link represented

y 𝑖𝑗.

.2. Constraints

We aim to achieve the objective in Eq. (1), given all the below
onstraints are satisfied. Input variables 𝛿 and 𝜇 are explained in more
epth in Section 5.

(1) Flow conservation constraint:

• Source Node: Source node of a MF 𝑓 must not receive any
data/packet from any other node in the given MF 𝑓 .
𝑁
∑

𝑗=1
𝜙𝑓𝑗𝑖 = 0,∀𝑓 ∈ 𝐹 ,∀𝑖 ∈ 𝛹 (2)

• Destination Node: Destination node of a MF 𝑓 should not
forward the data/packet received to any other node in the
MF 𝑓 .
𝑁
∑

𝑗=1
𝜙𝑓𝑖𝑗 = 0,∀𝑓 ∈ 𝐹 ,∀𝑖 ∈ 𝛥 (3)

• Intermediate Node: Any Intermediate node must forward the
MF data/packet if and only if it has received any.
𝑁
∑

𝑗=1
𝜙𝑓𝑖𝑗 =

𝑁
∑

𝑗=1
𝜙𝑓𝑗𝑖 (4)

∀𝑓 ∈ 𝐹 ,∀𝑖 ∈ 𝑁,∀𝑖 ∉ 𝛥, 𝛹

(2) Link Integrity constraint: Any monitoring flow or a service flow
should be passed between two nodes 𝑖 and 𝑗 if and only if there
is a physical link between 𝑖 and 𝑗.

𝜙𝑓𝑖𝑗 ≤ 𝜉𝑖𝑗 ,∀𝑓 ∈ 𝐹 ,∀𝑖𝑗 ∈ 𝑁 (5)

𝑟𝑠 ≤ 𝜉 ,∀ ∈ 𝑆,∀ ∈ 𝑁 (6)
6

𝑖𝑗 𝑖𝑗 𝑠 𝑖𝑗
Table 1
Optimization model symbols.

Symbol Description

Indices

i, j, k, l Iterators for nodes in the topology s.t. i, j, k, l ∈ 𝑁

f, g Iterators for monitoring flows in the topology s.t. 𝑓 ∈ 𝐹

s, t Iterators for service flows in the topology s.t. 𝑓 ∈ 𝐹

Input Constants

N Total number of Nodes in the physical topology

F Maximum number of total monitoring-flows that may be
deployed in the system.

S Total service flows routed in the network

𝛼 Active monitoring probe encap–decap overhead in terms of
delays associated.

𝛽 Overhead associated with the instruction header lookup as
well as insertion of the telemetry data in the monitoring
probe, in terms of delays associated.

Input vectors

𝛥 Telemetry item demand 2-D matrix for physical links s.t. 𝛥 =
{𝛿𝑖𝑗 ∈ �̃�} and |𝛥| = 𝑁 ×𝑁

�̃� Telemetry frequency demand 2-D matrix for physical links
s.t. �̃� = {𝜇𝑖𝑗 ∈ �̃�} and |�̃�| = 𝑁 ×𝑁

𝛯 Physical connectivity 2-D matrix s.t.
𝛯 = {𝜉𝑖𝑗 ∈ {0, 1}} and |𝛯| = 𝑁 ×𝑁

𝜉𝑖𝑗 =

{

1, 𝜒1
0, otherwise

𝜒1: if there is physical link between node 𝑖 and node 𝑗.

𝑅 Service flow routing 3-D binary matrix, s.t.
𝑅 = {𝑟𝑓𝑖𝑗 ∈ {0, 1}} and |𝑅| = 𝑆 ×𝑁 ×𝑁

𝑟𝑓𝑖𝑗 =

{

1, 𝜒2
0, otherwise

𝜒2: if node 𝑖 forwards SF 𝑓 to node 𝑗.

𝛬 MF threshold 1-D integer vector, s.t.
𝛬 = {𝜆𝑓 ∈ �̃�} and |𝛬| = 𝐹

𝛤 Physical link threshold 2-D integer vector, s.t.
𝛤 = {𝛾𝑓 ∈ �̃�} and |𝛤 | = 𝑁 ×𝑁

Decision vectors

𝛷 Monitoring flow routing 3-D binary matrix, s.t.
𝛷 = {𝜙𝑓𝑖𝑗 ∈ {0, 1}} and |𝛷| = 𝐹 ×𝑁 ×𝑁

𝜙𝑓𝑖𝑗 =

{

1, 𝜒3
0, otherwise

𝜒3: if node 𝑖 forwards MF 𝑓 to node 𝑗.

�̃� MF activation 1-D binary vector, s.t.
�̃� = {𝑎𝑓 ∈ {0, 1}} and |�̃�| = 𝐹

𝑎𝑓 =

{

1, 𝜒4
0, otherwise

𝜒4: if MF 𝑓 is activated for monitoring.

𝛺 Link activation 2-D binary matrix, s.t.
𝛺 = {𝜔𝑖𝑗 ∈ {0, 1}} and |𝛺| = 𝑁

𝜔𝑖𝑗 =

{

1, 𝜒5
0, otherwise

𝜒5: if link 𝑒𝑖𝑗 is used for some MF.

𝛩 2-D integer matrix to check the loops, s.t.
𝛩 = {𝜃𝑖𝑗 ∈ 𝑁} and |𝛩| = 𝑁 ×𝑁

𝛹 A 2-D binary matrix indicating source node for each
data-flow
𝛹 = {𝜓𝑓

𝑖 ∈ {0, 1}} and |𝛹 | = 𝑁 × 𝐹

𝜓𝑓
𝑖 =

{

1, 𝜒6
0, otherwise

𝜒6: if node 𝑖 is a source node for MF 𝑓 .

𝜌1 , 𝜌2,
𝜌3 , 𝜌4

Binary variables to hold intermediate variable values, s.t. 𝜌1,
𝜌2, 𝜌3 , 𝜌4 = {0, 1}

Computer Networks 216 (2022) 109214D. Bhamare et al.
(3) MF convergence and non-forking constraint: A single monitoring
flow cannot be forwarded to two different nodes from a single
node, that is no forking of any MF should be allowed. Similarly,
no node can receive a single MF from two different nodes.
𝑁
∑

𝑗=1
𝜙𝑓𝑖𝑗 ≤ 1,∀𝑓 ∈ 𝐹 ,∀𝑖 ∈ 𝑁 (7)

𝑁
∑

𝑖=1
𝜙𝑓𝑖𝑗 ≤ 1,∀𝑓 ∈ 𝐹 ,∀𝑗 ∈ 𝑁 (8)

(4) Link activation constraint: We call a physical link 𝜉𝑖𝑗 activated
if and only if it carries the data of any monitoring flow 𝑓 .
We prepare a binary matrix 𝛺 indicating whether the link is
activated or not. For example, Eq. (9) makes sure that if 𝜙𝑖𝑗 is
equal to one for any flow 𝑓 , then 𝜔𝑖𝑗 should be one. Also, vice-
a-versa, Eq. (10) checks if 𝜔𝑖𝑗 is one, that is, if the link 𝜉𝑖𝑗 is
activated, then 𝜙𝑖𝑗 should be equal to one for all flows passing
through that link. This condition will be used later to formulate
some other constraints.
𝐹
∑

𝑓=1
𝜙𝑓𝑖𝑗 ≥ 𝜔𝑖𝑗 ,∀𝑖𝑗 ∈ 𝑁 (9)

𝜙𝑓𝑖𝑗 ≤ 𝜔𝑖𝑗 (10)

∀𝑓 ∈ 𝐹 ,∀𝑖𝑗 ∈ 𝑁
(5) Monitoring flow activation constraint: We maintain a separate

variable �̃�𝑓 to indicate activation of monitoring flows, which is
used in the optimization function. Below constraint makes sure
that appropriate flows are activated as per the monitoring flow
routing matrix.

𝑎𝑓 ≥ 𝜙𝑓𝑖𝑗 ,∀𝑓 ∈ 𝐹 ,∀𝑖𝑗 ∈ 𝑁 (11)

𝑎𝑓 ≤
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜙𝑓𝑖𝑗 ,∀𝑓 ∈ 𝐹 (12)

(6) Monitoring flow capacity constraint: At each hop, telemetry items
are inserted in a monitoring flow as per the monitoring demand
of the link. Total number of telemetry items inserted in a moni-
toring flow should be less than a pre-defined threshold to avoid
the MF becoming bulky. A bulky MF may affect the network
performance adversely. We take the threshold value as an input
to the model. The constraint is modeled as follows.
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
(𝜙𝑓𝑖𝑗 × 𝛿𝑖𝑗) ≤ 𝜆𝑓 ,∀𝑓 ∈ 𝐹 (13)

(7) Physical link capacity constraint: To avoid a link congestion due to
the monitoring traffic we limit the total number of MFs passing
through one single link. We take the threshold value for each
link as an input vector of size 𝑁 ×𝑁 . The constraint is modeled
as follows.
𝐹
∑

𝑓=1
𝜙𝑓𝑖𝑗 ≤ 𝛾𝑖𝑗 ,∀𝑖,𝑗 ∈ 𝑁 (14)

(8) Service flow unity constraint: This constraint makes sure that each
physical link used for every service flow is covered by at-least
one MF, that is, value of 𝜔𝑖𝑗 for each link 𝜉𝑖𝑗 should be greater
than SF routing value for link 𝜉𝑖𝑗 . Combined with link activation
constraint, this eventually makes sure that all SFs are monitored
by at-least one MF.

𝜔𝑖𝑗 ≥ 𝑅𝑠𝑖𝑗 (15)
7

∀𝑓 ∈ 𝐹 ,∀𝑖,𝑗 ∈ 𝑁
(9) No-loop constraint: It is a known fact in graph theory that a
digraph 𝐺 = (𝑉 ,𝐸) is acyclic if and only if its vertices can be
assigned numbers from 1 to |𝑉 | in such a way that 𝜃[𝑖]+1 <= 𝜃[𝑗]
for every arc (𝑖, 𝑗) in 𝐸, where 𝜃[𝑖] is a number assigned to vertex
𝑖. The constraint is modeled as shown in the equation below. It
makes sure that if there is a routing from node 𝑖 to node 𝑗 for
flow 𝑓 , then value of 𝜃𝑓𝑗 should be greater that 𝜃𝑓𝑖 . This will make
sure that there are no-loops, given value of 𝛩 cannot be greater
than 𝑁 .

(1 − 𝜙𝑓𝑖𝑗) + (𝜃𝑓𝑗 − 𝜃𝑓𝑖) ≥ 1, (16)

∀𝑓 ∈ 𝐹 ,∀𝑖,𝑗 ∈ 𝑁
(10) MF Frequency integrity constraint: This constraint makes sure that

the links covered by a specific MF have consistent monitoring
frequency demands for the service flows routed over them. We
achieve this by forcing the frequency demands of the links other
than the first link of the MF to be less than equal to the frequency
demand of the first link. The more strict constraint would be
having frequency demand for all links in a given MF to be equal.
The constraint is modeled using a set of equations below.

𝜓𝑓𝑘 ≤𝑀1 × (1 − 𝜌1) (17)

𝜙𝑓𝑘𝑙 ≤𝑀2 × (1 − 𝜌2) (18)

𝜙𝑓𝑖𝑗 ≤𝑀3 × (1 − 𝜌3) (19)

𝜇𝑘𝑙 − 𝜇𝑖𝑗 ≤𝑀4 × (𝜌1 + 𝜌2 + 𝜌3) (20)

∀𝑓 ∈ 𝐹 ,∀𝑖,𝑗,𝑘,𝑙 ∈ 𝑁

It is to be noted that 𝑀1, 𝑀2, 𝑀3, 𝑀4 are large integer constants.

4.3. MILP complexity analysis

We now analyze the complexity of the proposed MILP model. It is
easy to notice that the complexity of the proposed model is bounded
by the processing complexity of the 3-D decision variable 𝛷. All the
constraints, except the constraint 10, frequency integrity constraint, it-
erate through variables 𝐹 and twice through 𝑁 . However, as seen
from Eqs. (17)–(20) of constraint 10, we observe that, the iteration
through 𝑁 happens four times, using iterators 𝑖, 𝑗, 𝑘 and 𝑙. Hence, the
total complexity of the MILP turns out to be 𝑂(𝑁4). Due to such high
computational complexity, we could obtain the results using MILP for
a smaller physical topology with lesser number of service flows, as
explained in Section 6. To solve larger instances of real-time problems
within acceptable time frame, we propose simulated annealing based
random greedy (SARG) approach in the next section.

5. Algorithms for active probing optimization

In our previous work, we have demonstrated that the application
of the general theory of optimization by random search gives us near-
optimal results [45]. The mathematical treatment of this technique is
given in [46]. The random search algorithm implemented in SARG
approach belongs to the category of Global Optimization. In contrast
with the deterministic methods like branch and bound which guarantee
asymptotic convergence to the optimum at the high computational
effort, random search and population based meta-heuristics find a
relatively good solution quickly [47] and are usually easy to construct.
Hence, in this section we develop simulated annealing based random
greedy meta-heuristic that determines the optimal set of monitoring
flows (MFs) in order to fulfill all the monitoring requirements of service
flows (SFs) while minimizing the overhead. We also benchmark the INT

framework using P4FPGA, as explained in Section 3-C.

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 6. Service Flow demands to link demands mapping.

Fig. 7. Telemetry item demands for service flows.

Table 2
Service flow frequency and telemetry demands.

Service flow Frequency (ms) Telemetry items

SFC1 5 5
SFC2 1 6
SFC3 10 8

5.1. SARG approach

In this sub-section, we explain our SARG approach to prepare near-
optimal set of MFs. As a first step towards preparing the optimal set of
MFs, we prepare set �̃� of physical links to which logical links of service
flows are mapped. Then we map the SF telemetry items and frequency
demands to the respective physical links in �̃� and design minimum
number of monitoring flows (MFs) to monitor all those links. To achieve
this, the heuristic prepares two sets, 𝜇𝑖𝑗 and 𝛿𝑖𝑗 . 𝜇𝑖𝑗 denotes a strict
bound for the telemetry frequency demands and 𝛿𝑖𝑗 denotes a strict
bound for the telemetry item demands for all SFs passing through the
link 𝐸𝑖𝑗 (𝐸𝑖𝑗 ∈ �̃�). We implement a pre-processing step at the controller
and maintain separate data structures to keep track of 𝜇𝑖𝑗 and 𝛿𝑖𝑗 .

We now demonstrate the aforementioned steps of the SARG algo-
rithm with a simple substrate network and three service flows (SFs) as
shown in Fig. 6. Let us denote the sets of telemetry items demanded by
SFC1, SFC2 and SFC3 as set 𝑆1, 𝑆2 and 𝑆3 respectively. The frequency
and telemetry item demands for each SF are given in Table 2. For
example, SFC1 demands 5 telemetry items and the frequency of the
telemetry is desired to be 5 ms. Similarly it holds for other two SFCs
as well. Venn diagram shown in Fig. 7 demonstrates telemetry item
demands for each SFs. As shown in the figure, 𝑆2, a set of 6 telemetry
items demanded by SFC2 is a super-set of 𝑆1, 5 items demanded by
SFC1. However, 𝑆3 for SFC3 is intersecting 𝑆1 and 𝑆2 as shown in Fig. 7,
with 2 items in common with SF1 and 1 more item in common with
SFC2 (in total 3 items common with SFC2). For example, 𝑆1={switch
ID, ingress and egress timestamps, throughput, queue buffer sizes, path
followed by packets (port numbers)} and 𝑆2={switch ID, ingress and
egress timestamps, throughput, queue buffer sizes, path followed by
packets (port numbers), queue size}. In this example all the telemetry
items in 𝑆1 are covered by 𝑆2. Hence, MF covering 𝑆2 will also be
covering the demands of 𝑆1.

The pre-processing step maps SF monitoring demands to link de-
mands and fills sets 𝜇𝑖𝑗 and 𝛿𝑖𝑗 as shown in Table 3. As we observe,
if only one service flow is passing through the link, then telemetry
frequency demand mappings are straightforward (such as links 𝐸12, 𝐸56
and 𝐸). However, for links accommodating more than one SF, we
8

46
Table 3
Frequency demands mappings.

Link MF Frequency in ms (𝜇𝑖𝑗) Telemetry Items (𝛿𝑖𝑗)

𝐸12 5 𝑆1
𝐸23 1 𝑆4 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3
𝐸34 5 𝑆5 = 𝑆1 ∪ 𝑆3
𝐸35 1 𝑆6 = 𝑆1 ∪ 𝑆2
𝐸46 10 𝑆3
𝐸56 1 𝑆2

need to determine the appropriate mappings. For example, monitoring
frequency demand for link 𝐸23 should be 1 ms since, from Table 2, we
observe that it is the most strict telemetry frequency demand for all the
SFs passing through link 𝐸23. Also, it will cover the telemetry frequency
demands for other SFs, which are greater than 1 ms. Similarly, for link
𝐸34, the monitoring frequency demand should be 5 ms as it is more
strict (5 ms) compared to the other (10 ms), and so on.

Similarly, we map the telemetry item demands of the SFs to the link
demands (column 3 in Table 3). For example, we observe that on the
link 𝐸23, the set 𝑆2 with 6 telemetry items for SF2 also covers 𝑆1 with 5
items for SF1 (as S1 ⊂ S2 as mentioned earlier). However, every 1 ms,
we need to insert a new set 𝑆4 of telemetry items in the monitoring
flow over 𝐸23 such that 𝑆4 = 𝑆1∪𝑆2∪𝑆3. This is because SF3 has a few
telemetry items in 𝑆3 which are not covered by 𝑆2. As we can see, the
size of 𝑆4 is 11 telemetry items (since three items are common between
𝑆2 and 𝑆3).

Once the mapping stage is completed, Random Greedy procedure
maps link monitoring demands to MFs so that all SFs with the speci-
fied SLAs are covered while the number of total MFs are minimized.
Algorithm 1 illustrates the steps for our Random Greedy policy. The
heuristic begins by initializing an empty monitoring flow and adding
any random link from �̃� to it. We call two links as neighboring links if
they share one node in common. We keep adding more links to the MF
by selecting neighboring links sequentially from set �̃� thereafter, given
the link being added has similar or less strict monitoring demands than
the existing set of links in the given MF. Selected link is then removed
from �̃�. This is repeated until the size of the MF grows beyond the
threshold. At that instance, the heuristic terminates the monitoring flow
and start a new one. The process is repeated until all links in �̃� are
covered, that is, set �̃� becomes empty.

We also propose a simulated annealing based meta-heuristic ap-
proach as shown in Algorithm 2, which prevents the random greedy
approach from getting stuck in local-minima. The quality attribute of
the solution returns the total number of encap/decap plus forwarding
instances at the data plane due to the proposed MF deployment scheme
in the given solution. It has been used as the fitness function for
comparison of the solutions.

We have implemented an ad-hoc approach as well, which we call
as naïve algorithm, which is unaware of the optimization policies and
widely used in the current practical use. naïve algorithm just tries to
avoid forking or looping of the MFs, which is the basic requirement for
MF to be a valid flow. In the naïve implementation, we just start the
MF for each SF and follow it linearly. If there is any forking or loop
formation in the SF, we just break the existing MF and form a new
one. This is the typical approach which is generally followed in the
absence of any sophisticated algorithm for the MFs formation. Steps
for the naïve approach are given in Algorithm 3.

5.2. Heuristic complexity analysis

As explained in the beginning of this section, deterministic methods
for global optimization are NP-hard, however, on contrary, a random
search method may be executed in polynomial time. However, due
to large number of physical nodes and links associated with physical

networks, even the polynomial time complexity results in unacceptable

Computer Networks 216 (2022) 109214D. Bhamare et al.
Algorithm 1 Random Greedy Approach integrated with Simulated
Annealing
procedure Random_Greedy

�̃� ⇒ set of the edges covered by all service flows
𝜆𝑓 ⇒ monitoring flow size threshold
𝐸𝑖𝑗 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑒𝑙𝑒𝑐𝑡(�̃�)
Initialize a monitoring flow 𝑚𝑓
Monitoring Frequency(𝑚𝑓) ← 𝜇𝑖𝑗
Telemetry Items(𝑚𝑓) ← 𝛿𝑖𝑗
Set 𝐸𝑖𝑗 as a start link of 𝑚𝑓
while �̃� ≠ 𝛷 do

𝐸𝑗𝑘 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑆𝑒𝑙𝑒𝑐𝑡(�̃�)
if 𝜇𝑖𝑗 ≤ 𝜇𝑗𝑘 and 𝛿𝑖𝑗 ≥ 𝛿𝑗𝑘 then

𝑚𝑓 ← 𝑚𝑓 + 𝐸𝑗𝑘
�̃� ← �̃� - 𝐸𝑗𝑘

else
terminate 𝑚𝑓 and initiate new flow 𝑚𝑓+1
break the for loop

end if
if 𝑆𝑖𝑧𝑒(𝑚𝑓) > 𝜆𝑓 then

terminate 𝑚𝑓 and initiate new flow
break the for loop

end if
end while

end procedure

Algorithm 2 Simulated Annealing meta-heuristic steps
procedure Simulated Annealing

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ← 𝜆
𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ← 𝛼
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠𝑜𝑙 ← 𝑛𝑒𝑤_𝑠𝑜𝑙 ← 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙 ← 𝑁𝑈𝐿𝐿
while 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 1 do

𝑛𝑒𝑤_𝑠𝑜𝑙 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝐺𝑟𝑒𝑒𝑑𝑦_𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒()
if 𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙.𝑞𝑢𝑎𝑙𝑖𝑡𝑦−𝑝𝑟𝑒𝑣_𝑠𝑜𝑙.𝑞𝑢𝑎𝑙𝑖𝑡𝑦)∕𝜆 > 𝑅𝑎𝑛𝑑𝑜𝑚(0, 1) then

𝑝𝑟𝑒𝑣_𝑠𝑜𝑙 ← 𝑛𝑒𝑤_𝑠𝑜𝑙
if 𝑛𝑒𝑤_𝑠𝑜𝑙.𝑞𝑢𝑎𝑙𝑖𝑡𝑦 > 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙.𝑞𝑢𝑎𝑙𝑖𝑡𝑦 then

𝑏𝑒𝑠𝑡_𝑠𝑜𝑙 ← 𝑛𝑒𝑤_𝑠𝑜𝑙
end if

end if
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × (1 – 𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒)

end while
end procedure

delays for real-time problems. Hence, for the problem of generating
monitoring flows to cover the deployed service flows, we have taken
an approach to reduce the complexity of the heuristic by iterating only
through the physical links which are actually used to deploy the service
flows (that is the links from set �̃�) and eliminating the unused physical
links from the processing completely. Generally a set of physical links
used for the given set of service flows is much smaller than the whole
set of physical links, especially in the larger topology, reducing the
time-complexity of the heuristic significantly. However, while doing so,
we have to make sure that the solution quality is not compromised.

With the two lemma below, we prove that by eliminating un-
used physical links from preparing monitoring flows, in fact, does not
hamper the solution quality, while reducing the execution time signif-
icantly. As explained earlier in this section, we select a physical link
randomly as a starting point of the MF and keep adding neighboring
links to it from set �̃�. Considering this we state our first lemma as:

Lemma 1. To achieve minimum monitoring overhead, MF should be ex-
tended to the full extent along the neighboring links, given constraints 6, 10
(Section 4) are satisfied
9

Algorithm 3 Naïve ad-hoc Approach
procedure Naïve_Approach

𝑠 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑆𝑒𝑙𝑒𝑐𝑡(𝑅)
�̃� ⇒ set of the edges covered by service flow 𝑠
𝜆𝑓 ⇒ monitoring flow size threshold
Initialize a monitoring flow 𝑚𝑓
𝐸𝑖𝑗 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑆𝑒𝑙𝑒𝑐𝑡(�̃�)
Set 𝐸𝑖𝑗 as a start link of 𝑚𝑓
while �̃� ≠ 𝛷 do

𝐸𝑗𝑘 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑆𝑒𝑙𝑒𝑐𝑡(�̃�)
if (no loop or fork) and 𝜇𝑖𝑗 ≤ 𝜇𝑗𝑘 and 𝛿𝑖𝑗 ≥ 𝛿𝑗𝑘 then

𝑚𝑓 ← 𝑚𝑓 + 𝐸𝑗𝑘
�̃� ← �̃� - 𝐸𝑗𝑘

else
terminate 𝑚𝑓 and initiate new flow 𝑚𝑓+1
break the for loop

end if
if 𝑆𝑖𝑧𝑒(𝑚𝑓) > 𝜆𝑓 then

terminate 𝑚𝑓 and initiate new flow
break the for loop

end if
end while

end procedure

Fig. 8. Lemma 1: Extension along neighboring links.

This can be explained with Fig. 8. As shown in the figure, let us
assume that links 𝐸12 and 𝐸23 are used by a service flow 1 (SF1)
and link 𝐸34 is used by SF 2, assuming same telemetry and frequency
demands for simplicity. Also, let us assume that the monitoring flows
have large capacity threshold (for constraint 6), so that we do not have
to break the flows. As for case 1, let us assume all three links are
covered by the single MF. As shown in the table in the figure, for case
one, there will be two Encap/Decap instances (shown by solid triangles)
and 6 look-up/Forwarding instances (shown by small squares along the
links). Now let us assume we decide to split the MF into two as shown
by red-solid and blue-dotted arrows. Using two MFs instead of one
incurs additional overhead as shown in case 2 (dot-filled triangles). This
confirms the fact that the MF should be extended as much as it can be,
along the neighboring links, to have minimum monitoring overhead.

Lemma 2. Monitoring overhead always increases by combining two non-
neighboring links with a non-participant link to extend the MF, even if
constraint 6 and 10 are satisfied

This can be explained with Fig. 9, where there are six links in
the topology out of which two links (dotted black) are not used for
the deployment of any SF (non-participant links). Let us assume we
deploy two MFs to cover these two SFs, indicated by pink-solid and
blue-dotted arrows. The monitoring overheads are shown in the table
in the same figure. However, let us assume in case 2, we implement a
single MF to cover all the used physical links by considering the unused
links in the MF and extending the MF as shown in Fig. 9 with double
violet line. In this case the monitoring overheads increase as shown in
the table in Fig. 9. This confirms the fact that the solution quality is

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 9. Lemma 2: Extension by combining two non-neighboring links with a
non-participant link.

not compromised when we consider the links only from set �̃�, while
reducing the monitoring overhead as compared against considering all
the links of the physical topology, from set 𝐸.

Based on Lemmas 1 and 2, SARG maps SF link demands to physical
links with computational complexity of O(𝐿), where 𝐿 is the size of
the set �̃�, actual physical links used for deploying the SFs. SARG then
selects a physical link from �̃� and starts a MF. The MF is extended
as much as it can be, by adding neighboring links to it from �̃�. The
complexity of this step is O(𝐿) again. Check for the loop formation can
be done in O(1) (constraint 9). MF is broken if frequency or telemetry
item demands are mismatched or MF limit is reached (constraints 6
or 10 are violated). This step can also be performed in O(1). Above
steps are repeated until all links in �̃� are covered by at least one MF
(constraint 8). It means the loop is executed for O(𝐿) times. Hence the
total complexity of the random greedy approach becomes O(𝐿2). If we
assume that size of the set �̃� equals 𝑁 , then the overall complexity of
the random greedy stage turns out to be O(𝑁2). Based on the number
of iterations in the simulated annealing stage, the final complexity can
be written as O(𝑋×𝑁2), where 𝑋 is the total number of iterations
performed. 𝑋 is a configurable parameter and the effect of 𝑋 on the
total time-complexity of the proposed meta-heuristic is demonstrated
in the next section.

6. Numerical results

In the next section, we analyze the bench-marking results by im-
plementing a P4 program using the P4FPGA toolkit. In addition, we
present numerical results obtained through hardware setup that com-
pare the two meta-heuristics with the optimal solution in terms of
monitoring overheads and time complexity.

6.1. MILP vs. Heuristic

We first compare the performance of the proposed SARG heuristic
with the optimal solution. We have solved the MILP model presented
in Section 4 using MiniZinc [48] and CPLEX solver [49]. We choose
Atlanta (with 15 nodes and 22 links) as a substrate node topology from
SNDLib [42]. Then we choose a set of service flows (SFs) to be deployed
along with monitoring requirements such as monitoring frequency as
well as telemetry item demands for the given set of service flows
(SFs). A set of six random service flows, substrate network topology
and deployment of those SFs over the substrate network are shown
in Fig. 2. As mentioned earlier, we have considered different possible
complex shapes and sizes for the SFs, which are generally observed
with different application service providers (ASPs) [50]. The mapping
between the virtual links and physical links is random. Please note
that, since placement is not the goal of this paper, we do not check for
any link capacities as well as delay or cost constraints, however, we
just check the feasibility of mappings between physical links and log-
ical/virtual links of the considered SFs. Telemetry frequency demands
(in milliseconds) are chosen randomly from a set of {5, 6, 7, 8, 9, 10}.
10
Table 4
MILP and SARG comparison.

Algorithm SFs MF Encap/-
de-cap

FW/-
Lookup

Exe. time
(s)

Mon. delays
(ms)

MILP
5 SFs 4 8 42 448.80 69
6 SFs 5 10 50 1071.30 75
7 SFs 8 16 56 8123.00 83

SARG
5 SFs 4 8 44 12.00 72
6 SFs 6 12 54 20.40 78
7 SFs 9 18 60 28.50 87

Telemetry item demands (telemetry items per hop) are chosen from a
set {5, 6, 7, 8, 9, 10}.

The results are presented in Table 4 in term of total MFs deployed,
total lookup and forwarding instances and total encap/de-cap instances,
which contribute to the total monitoring overheads. We have also
noted down the total execution time taken by the MILP and the SARG
heuristic for the execution. SF placement for six sample SFs and its
corresponding optimal solution are given in Figs. 2 and 3 respectively.
Experiments were performed on Intel Xeon(R) processor with CPU E5-
2650, 2.00 GHz having total eight cores and 400 GB of memory. For
SARG, we have considered the starting temperature values as 105 and
cooling rate value as 10−5, which has been observed to be the best, as
shown in the detailed results later-on in this section.

As we observe, for the case of (15-node, 22-link topology) and 7
SFCs, MILP deployed 8 MFs to cover all the links, with 16 encap–decap
instances, 56 FW/Lookups and total monitoring delays of 83 ms. The
proposed heuristic deployed 9 MFs, with 18 encap–decap instances,
60 FW/Lookups and total delays of 87 ms. For all observed cases,
performance of the proposed heuristic (in terms of total monitoring
delays) is within 5% of the optimal solution, with significantly less
execution time. Due to the computational complexity of the MILP
model, it takes significant amount of time and hence solution can be
obtained for smaller topology only, that is, for Atlanta, and for small
number of service flows as well.

6.2. Detailed numerical analysis

We now evaluate the performance of our proposed SARG scheme
and the naïve approach, for larger real-time topology and larger num-
ber of service flows. We have used the Europe topology from SDNLib
which has 37 nodes in total and 178 links [42]. We have generated the
service chains randomly, as explained in sub-section 𝐴. We also selected
specific parameters for SFs such as average length in terms of hops,
telemetry items demands and telemetry frequency demands randomly
from specific ranges given as an input to the heuristic, explained earlier
in this section. We varied the total number of actual SFs to be deployed
in the network from 5 to 50, to observe effect on final results. Please
note that naïve approach has less processing complexity. However,
it may be noted that the solution obtained with the naïve approach
is far from the optimal, which may not be acceptable with more
stringent SLAs. Also, with the increasing processing power of the INT
controllers [30], it is now possible to implement complex algorithms,
which can reduce the gap with the optimal solution. Hence we propose
more advanced SARG approach to improve the solution quality.

We have considered two different cases for average hop-length and
telemetry item demands for the SFs. That is, the first case with average
hop-length as 10, telemetry items needed (also called as telemetry
lengths) are 5 and telemetry frequency demand as 5 ms. For the second
case, the hop-length as 10, telemetry items needed are 10 and the
telemetry frequency demand is 10 ms. For simulated-annealing heuris-
tic, initial temperature and cooling rate are kept constant at 105 and
10−5 respectively, as these values have achieved the best results, shown
later in this section. Fig. 10 shows total encap/decap plus forwarding
instances (alternatively called as monitoring or telemetry overheads) in

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 10. Total encap–decap and FW instances.
Fig. 11. Total delays against total SFs.
the given network along the 𝑌 -axis against different number of service
flows along the 𝑋-axis. In Fig. 11 we plot the graphs for the total delays
incurred due to the processing of monitoring flows. For this purpose, we
use the overhead values obtained from the experimental bench-marking
of P4 INT framework on the NetFPGA-SUME hardware as discussed in
Section 3.3.

As we observe, in Fig. 10, the monitoring overheads are minimum
for the proposed SARG scheme. For example, for 25 SFs with case 1
(10H/5L), the number is 100 (green squared solid line), however for the
naïve approach the number is 163 (red circled dotted line). For case 2
(10H/10L) the numbers are 122 and 210 for SARG and naïve approach
respectively (triangle vs. cross lines). Corresponding delays for case 1
as shown in Fig. 11 are, 300 and 700 micro-seconds for SARG and naïve
approach respectively. For case 2 the delays are observed to be 400 and
800 micro-seconds. We also observe that such delays increase with the
increase in average hop length of the SFs (green squared solid line vs.
purple triangle solid line). In Fig. 12 we keep the total number of SFs
constant to 50 and vary the telemetry item requirements along the 𝑋-
axis. We observe the linear growth, which is due to the linearly growing
monitoring overhead for the P4 header pushing and parsing operations.
Please note in Fig. 12 L represents Telemetry Frequency while in Fig. 10
and Fig. 11 it represents Telemetry Length (or telemetry items needed
to be monitored).

We performed experiments with different substrate node topology
from SNDLib to observe variance in the performance of the SARG ap-
proach with density of links (average degree of connectivity of nodes).
For this purpose, we selected six different representative topology form
11
Table 5
Topology from SNDLib.

Topology name Nodes Links DC

Zib54 54 81 Low
Germany50 50 88 Low
Pioro40 40 89 Medium
Brain 161 332 Medium
Janos-US-CA 39 122 High
Giul39 39 172 High

SNDlib, as given in Table 5. Topology are chosen to represent different
levels of degree of connectivity (DC) or the link densities.

Since placement of service flows is not the aim of this work, we
assumed random placement of VNFs on substrate nodes. Accordingly
physical links among substrate nodes are chosen by selecting one of
many paths available to map service flow logical links on physical
paths. No capacity calculations are performed as the placement is just
symbolical. We varied total SFs from 50 to 100 with steps of 25. Results
for total monitoring overhead instances and total time needed for
execution of the algorithm are shown in Figs. 13 and 14 respectively.
From the results, we observe that the monitoring overhead as well as
the total execution time increases with total number of links in the
topology as well as total number of SFs to be deployed. Since overheads
(monitoring instances) for the two cases (Janos-US-CA and Giul39) are
comparable, the total delays for 75 SFs are greater than that of 100 SFs
and this fact can be attributed to the experimental and measurement
errors.

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 12. Total delays against total telemetry items.
Fig. 13. Monitoring overhead for different topology from Table 5.
The node density or degree of connectivity has no effect on the total
delays or overheads. This is expected, as our SARG heuristic considers
only actually used physical links for the deployment of given SFs to
deploy the MFs. For example, for Germany50, the total monitoring
overhead with 100 SFs is 355 and that of Pioro40 is 356. Both topology
have 88 and 89 number of physical links respectively. However, their
node densities are low and medium. On contrary Janos-US-CA and
Giul39 have same node density (high), however, they have 122 and 172
physical links. Hence their monitoring overheads differ significantly,
that is 398 and 431 respectively. Total execution time of the heuristic
also differs from 389.04 s to 437.93 s respectively.

We now observe the effect of initial temperature and cooling rate
on the performance of SARG heuristic approach. We have selected
Germany50 topology with 100 SFs to be monitored for this purpose.
The plots of monitoring overhead and total execution time are shown in
Figs. 15 and 16. From figures we observe that as the initial temperature
in simulated annealing varies from 103 to 107, the performance im-
proves. Similarly, the performance improves as the cooling rate drops
from 10−3 to 10−5. For example, Monitoring overhead in topology Ger-
many50 for 100 SFs drops from 365 to 355 as the initial temperature
and cooling rate values change from 103 and 10−3 to 105 and 10−5

respectively. The execution time of the algorithm increases from 1.5 s
to 293.07 s. We also observe that performance improvement halts at
the values of 105 and 10−5 for initial temperature and cooling rate.
12
This might be due to the fact that either optimality has been achieved
or the heuristic is stuck in the local minima, which is difficult to
overcome. We stop the experiments at the values of 107 and 10−5 for
initial temperature and cooling rate as the execution time increases
significantly to 11676.34 s without any improvement in the solution
quality.

Comparing the SARG approach to the näive approach, results pre-
sented in this section reveal a reduction of 39% in monitoring overhead
(Encap/Decap instances) and a 57% reduction in overall monitoring
delays (actual average packet delivery delays due to Encap/Decap
operations). Numerical evaluation demonstrates that, with systematic
approach such as SARG, monitoring overheads can be reduced sig-
nificantly, which may enable existing monitoring platforms to be ex-
pressive as well as scalable. Please note that, our proposed model can
easily extended for the differentiated QoS as well. For example, the SFC
topology presented in Fig. 2 can easily be updated to add more nodes
which can present entry and exit point of the switch and within these
two nodes, different paths for different queues for differentiated QoS
levels. This will result in larger 𝛯 matrix, as it represents topology for
input SFCs. This may results in larger number of monitoring flows, as
we may need one MF per tenant/queue. The effect of the larger number
of SFCs as well as longer SFCs (more hops) on the total delays are
already demonstrated in Fig. 12. In the next section, we present our
concluding remarks.

Computer Networks 216 (2022) 109214D. Bhamare et al.
Fig. 14. SARG execution delays (seconds) for different topology from Table 5.
Fig. 15. Monitoring overhead vs. cooling rate for different starting temperatures.
Fig. 16. Execution delays vs. cooling rate for different starting temperatures.
7. Conclusions

In this work, we propose IntOpt, a scalable and expressive telemetry
framework designed for flexible VNF service chain network monitoring
using active probing and P4. IntOpt allows to specify monitoring re-
quirements for individual service flow in each network slice, which are
13
mapped to telemetry item collection jobs that fetch the required teleme-
try items from P4 programmable data-plane elements. To quantify the
gains achieved with the proposed framework, we develop mixed inte-
ger linear programming (MILP) model. We also implement simulated
annealing based random greedy (SARG) meta-heuristic approach for
near-optimal deployment of the monitoring flows (MFs) for flexible

Computer Networks 216 (2022) 109214D. Bhamare et al.

i

Table 6
List of Acronyms.

Acronyms Description

A&AI Active and Adaptive Inventory
CPU Central Processing Unit
DCAE Data Collection, Analytics, and Event
DPI Deep Packet Inspector
ePDG Evolved Packet Data Gateway
FPGA Field Programmable Gate Array
HSS Home Subscriber Server
INT In-band Network Telemetry
IoT Internet of Things
IntOpt In-band Network Telemetry Optimization
MF Monitoring Flow
MIB Management Information Base
MILP Mixed Integer Linear Programming
MME Mobility Management Entity
NFV Network Function Virtualization
NS Network Slice
NSP Network Service Provider
OAM Operations, Administration, and Maintenance
OF Optimization Framework
ONAP Open Networking Automation Platform
OSNT Open Source Network Tester
QoS Quality of Service
P4 Programming Protocol-Independent Packet Processors
SARG Simulated Annealing based Random Greedy
SDC Service De-sign Center
SDN Software Defined Networking
SDNC Software Defined Network Controller
SF Service Flow
SFC Service Function Chaining
SGW Serving Gateway
SLA Service Level Agreements
SO Service Orchestrator
TOSCA Topology and Orchestration Specification for Cloud Applications
VNF Virtualized Network Function

service function chain monitoring. In addition to our proposed SARG
meta-heuristic, we also implement an ad-hoc naïve approach, which
is generally followed in the absence of a systematic flow generation
strategy. We also benchmark monitoring overheads due to P4 telemetry
operations for a single VNF N/W pipeline. Our evaluations demonstrate
that using our proposed SARG heuristic, with proper initial tempera-
ture value and cooling rate, significantly reduces the total monitoring
overheads by finding out near-optimal deployment of monitoring flows.
This eventually reduces the delays and overheads introduced due to the
telemetry operations. We argue that such systematic approach can be
incorporated with the existing monitoring frameworks to obtain scala-
bility without losing the generality and expressiveness of the systems.
As a future work we aim to develop the integration APIs and make
them available as an open-source for the integration of IntOpt with
wide range of such network planning and automation tools. We also
aim to provide the bench-marking results for other P4 platforms such
as Netronome and others. For faster conversion, an approach based
on constraint programming can be considered as an alternative to the
proposed MILP in future.

CRediT authorship contribution statement

Deval Bhamare: Conceptualization, Methodology, Software, Writ-
ng – original draft. Andreas Kassler: Conceptualization, Supervision.
Jonathan Vestin: Data curation. Mohammad Ali Khoshkholghi: Con-
ceptualization, Methodology, Writing – review & editing. Javid Taheri:
Conceptualization, Supervision. Toktam Mahmoodi: Conceptualiza-
tion, Supervision. Peter Öhlén: Validation. Calin Curescu: Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
14
Data availability

Data will be made available on request.

Acknowledgment

The authors received partial funding from the Knowledge Founda-
tion of Sweden through the Profile HITS.

References

[1] D. Bhamare, A. Kassler, J. Vestin, M.A. Khoshkholghi, J. Taheri, IntOpt: In-band
network telemetry optimization for NFV service chain monitoring, in: ICC 2019-
2019 IEEE International Conference on Communications, ICC, IEEE, 2019, pp.
1–7.

[2] W. Ma, J. Beltran, Z. Pan, D. Pan, N. Pissinou, SDN-based traffic aware placement
of NFV middleboxes, IEEE Trans. Netw. Serv. Manag. 14 (3) (2017) 528–542.

[3] L. Gupta, R. Jain, A. Erbad, D. Bhamare, The P-ART framework for placement
of virtual network services in a multi-cloud environment, Comput. Commun.
(2019).

[4] X. Li, M. Samaka, H.A. Chan, D. Bhamare, L. Gupta, C. Guo, R. Jain, Network
slicing for 5G: Challenges and opportunities, IEEE Internet Comput. 21 (5) (2017)
20–27.

[5] X. Foukas, G. Patounas, A. Elmokashfi, M.K. Marina, Network slicing in 5G:
Survey and challenges, IEEE Commun. Mag. 55 (5) (2017) 94–100.

[6] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, S. Uhlig,
Elastic sketch: Adaptive and fast network-wide measurements, in: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication,
ACM, 2018, pp. 561–575.

[7] A. Fischer, D. Bhamare, A. Kassler, On the construction of optimal embedding
problems for delay-sensitive service function chains, in: 2019 28th International
Conference on Computer Communication and Networks, ICCCN, IEEE, 2019, pp.
1–10.

[8] J. Liu, W. Lu, F. Zhou, P. Lu, Z. Zhu, On dynamic service function chain
deployment and readjustment, IEEE Trans. Netw. Serv. Manag. 14 (3) (2017)
543–553.

[9] L.-C. Wang, S.H. Cheng, Data-driven resource management for ultra-dense small
cells: An affinity propagation clustering approach, IEEE Trans. Netw. Sci. Eng.
(2018).

[10] J.G. Herrera, J.F. Botero, Resource allocation in NFV: A comprehensive survey,
IEEE Trans. Netw. Serv. Manag. 13 (3) (2016) 518–532.

[11] A. Gupta, R. Harrison, A. Pawar, R. Birkner, M. Canini, N. Feamster, J. Rexford,
W. Willinger, Sonata: Query-driven network telemetry, 2017, arXiv preprint
arXiv:1705.01049.

[12] M. Ashour, J. Wang, N.S. Aybat, C. Lagoa, H. Che, End-to-end distributed flow
control for networks with nonconcave utilities, IEEE Trans. Netw. Sci. Eng.
(2018).

[13] K. Borders, J. Springer, M. Burnside, Chimera: A declarative language for
streaming network traffic analysis, in: USENIX Security Symposium, 2012, pp.
365–379.

[14] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, B.T. Loo, Quantitative network
monitoring with NetQRE, in: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ACM, 2017, pp. 99–112.

[15] P. Lapukhov, R. Chang, Data-Plane Probe for In-Band Telemetry Collection,
draft-lapukhov-dataplane-probe-01, Internet Engineering Task Force, 2016.

[16] R. Jain, S. Paul, Network virtualization and software defined networking for
cloud computing: a survey, IEEE Commun. Mag. 51 (11) (2013) 24–31.

[17] H. Wang, R. Soulé, H.T. Dang, K.S. Lee, V. Shrivastav, N. Foster, H. Weather-
spoon, P4FPGA: A rapid prototyping framework for P4, in: Proceedings of the
Symposium on SDN Research, in: SOSR ’17, ACM, New York, NY, USA, 2017,
pp. 122–135.

[18] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, G. Pavlou, Self-adaptive
decentralized monitoring in software-defined networks, IEEE Trans. Netw. Serv.
Manag. 15 (4) (2018) 1277–1291.

[19] S. Lee, K. Levanti, H.S. Kim, Network monitoring: Present and future, Comput.
Netw. 65 (2014) 84–98.

[20] Operation, Administration and Maintenance (OAM)Functions and Mechanisms
for Ethernet Based Networks, G.8013/Y.1731, 2011, Available at: https://www.
itu.int/rec/T-REC-Y.1731/en.

[21] IEEE Standard for Local and Metropolitan Area Networks Virtual Bridged Local
Area Networks Amendment 5: Connectivity Fault Management, IEEE Std 802.1ag
- 2007 (Amendment to IEEE Std 802.1Q - 2005 As Amended By IEEE Std 802.1ad

- 2005 and IEEE Std 802.1ak - 2007), 2007, pp. 1–260.

http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb1
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb2
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb2
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb2
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb4
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb4
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb4
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb4
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb4
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb5
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb5
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb5
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb6
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb7
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb8
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb8
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb8
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb8
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb8
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb9
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb9
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb9
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb9
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb9
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb10
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb10
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb10
http://arxiv.org/abs/1705.01049
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb12
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb12
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb12
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb12
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb12
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb14
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb14
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb14
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb14
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb14
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb15
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb15
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb15
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb16
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb16
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb16
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb17
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb18
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb18
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb18
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb18
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb18
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb19
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb19
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb19
https://www.itu.int/rec/T-REC-Y.1731/en
https://www.itu.int/rec/T-REC-Y.1731/en
https://www.itu.int/rec/T-REC-Y.1731/en
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb21

Computer Networks 216 (2022) 109214D. Bhamare et al.
[22] L. Gupta, R. Jain, M. Samaka, A. Erbad, D. Bhamare, Performance evalu-
ation of multi-cloud management and control systems, in: Recent Advances
in Communications and Networking Technology (Formerly Recent Patents on
Telecommunication), Vol. 5, (1) Bentham Science Publishers, 2016, pp. 9–18.

[23] A.G. Prieto, R. Stadler, A-GAP: An adaptive protocol for continuous network
monitoring with accuracy objectives, IEEE Trans. Netw. Serv. Manag. 4 (1)
(2007) 2–12.

[24] J. Case, M. Fedor, M. Schoffstall, J. Davin, A Simple Network Management
Protocol (SNMP), RFC, (1157) 1990, pp. 1–35.

[25] A.S. Thyagaturu, Y. Dashti, M. Reisslein, SDN-based smart gateways (Sm-GWs)
for multi-operator small cell network management, IEEE Trans. Netw. Serv.
Manag. 13 (4) (2016) 740–753.

[26] T. Kohler, F. Dürr, K. Rothermel, Consistent network management for software-
defined networking based multicast, IEEE Trans. Netw. Serv. Manag. 13 (3)
(2016) 447–461.

[27] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Programming
protocol-independent packet processors, ACM SIGCOMM Comput. Commun. Rev.
44 (3) (2014) 87–95.

[28] J. Vestin, A. Kassler, D. Bhamare, K.-J. Grinnemo, J.-O. Andersson, G. Pongracz,
Programmable event detection for in-band network telemetry, 2019, arXiv
preprint arXiv:1909.12101.

[29] R. Hark, D. Bhat, M. Zink, R. Steinmetz, A. Rizk, Preprocessing monitoring
information on the SDN data-plane using P4, in: 2019 IEEE Conference on
Network Function Virtualization and Software Defined Networks, NFV-SDN,
IEEE, 2019, pp. 1–6.

[30] M. Yu, L. Jose, R. Miao, Software defined traffic measurement with OpenSketch,
in: NSDI, Vol. 13, 2013, pp. 29–42.

[31] Q. Huang, X. Jin, P.P. Lee, R. Li, L. Tang, Y.-C. Chen, G. Zhang, Sketchvisor:
Robust network measurement for software packet processing, in: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication, ACM,
2017, pp. 113–126.

[32] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, V. Braverman, One sketch to rule
them all: Rethinking network flow monitoring with univmon, in: Proceedings of
the 2016 ACM SIGCOMM Conference, ACM, 2016, pp. 101–114.

[33] A. Kumar, M. Sung, J.J. Xu, J. Wang, Data streaming algorithms for efficient and
accurate estimation of flow size distribution, in: ACM SIGMETRICS Performance
Evaluation Review, Vol. 32, (1) ACM, 2004, pp. 177–188.

[34] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V.
Jeyakumar, C. Kim, Language-directed hardware design for network performance
monitoring, in: Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ACM, 2017, pp. 85–98.

[35] H. Harkous, M. Jarschel, M. He, R. Priest, W. Kellerer, Towards understanding
the performance of P4 programmable hardware, in: 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS, IEEE,
2019, pp. 1–6.

[36] D. Ding, M. Savi, G. Antichi, D. Siracusa, An incrementally-deployable P4-enabled
architecture for network-wide heavy-hitter detection, IEEE Trans. Netw. Serv.
Manag. 17 (1) (2020) 75–88.

[37] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L.J. Wobker, In-band network
telemetry via programmable dataplanes, in: ACM SIGCOMM, 2015.

[38] S. Tang, D. Li, B. Niu, J. Peng, Z. Zhu, Sel-INT: A runtime-programmable selective
in-band network telemetry system, IEEE Trans. Netw. Serv. Manag. (2019).

[39] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, H.V. Madhyastha, Flowsense:
Monitoring network utilization with zero measurement cost, in: International
Conference on Passive and Active Network Measurement, Springer, 2013, pp.
31–41.

[40] A. Lahmadi, A. Boeglin, Efficient distributed monitoring in 6lowpan networks,
in: Proceedings of the 9th International Conference on Network and Service
Management, CNSM 2013, IEEE, 2013, pp. 268–276.

[41] N. Alliance, Description of network slicing concept, in: NGMN 5G P, Vol. 1,
2016.

[42] S. Orlowski, M. Pióro, A. Tomaszewski, R. Wessäly, SNDlib 1.0–survivable
network design library, in: Proceedings of the 3rd International Network Op-
timization Conference (INOC 2007), Spa, Belgium, 2007, http://sndlib.zib.de,
extended version accepted in Networks, 2009.

[43] Open network automation platform, 2019, Online; retrieved on Aug. 9th 2019,
https://www.onap.org/.

[44] J.-P. Sheu, W.-T. Lin, G.-Y. Chang, Efficient TCAM rules distribution algorithms
in software-defined networking, IEEE Trans. Netw. Serv. Manag. 15 (2) (2018)
854–865.

[45] D. Bhamare, M. Krishnamoorthy, A. Gumaste, Models and algorithms for cen-
tralized control planes to optimize control traffic overhead, Comput. Commun.
70 (2015) 68–78.

[46] Z.B. Zabinsky, Random search algorithms, in: Wiley Encyclopedia of Operations
15

Research and Management Science, Wiley Online Library, 2010.
[47] H. Hamedmoghadam, M. Jalili, P. Moradi, X. Yu, A global optimization approach
based on opinion formation in complex networks, IEEE Trans. Netw. Sci. Eng.
(2018).

[48] MiniZinc, 2018, Online https://www.minizinc.org/. (Accessed 07 May 2019).
[49] IBM CPLEX, 2019, Online https://www.ibm.com/analytics/cplex-optimizer.

(Accessed 07 May 2019).
[50] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, Exploring microservices

for enhancing internet QoS, Trans. Emerg. Telecommun. Technol. 29 (11) (2018)
e3445.

Deval Bhamare is working as an assistant professor in
the University of Surrey, UK. He was working as a post-
doctoral candidate at Karlstad University, Sweden, during
development of this work. He has earned his dual Ph.D.
from IITB-Monash Research Academy, 2015. His areas of
research include Network Optimization, Middleware Archi-
tecture for Cloud Based Services, NFV-SDN, P4, In-band
network telemetry and related topics.

Andreas Kassler is a Full Professor of Computer Science
at Karlstad University, Sweden since 2005. From 2003 to
2004, he was Assistant Professor at the School of Computer
Engineering, Nanyang Technological University, Singapore.
He is co-chairing the Distributed Systems and Communica-
tion group. He is IEEE Senior Member and area editor for
Elsevier Computer Networking Journal.

Jonathan Vestin received Ph.D. degree in computer science
from Karlstad University in 2020. He is currently a Lecturer
in computer science with Karlstad University. His research
interest includes SDN and programmable networks, and
their application for 5G networks.

Mohammad Ali Khoshkholghi received his Ph.D. degree
in Computer Science from the University Putra Malaysia
in 2017. He is currently a research associate in the Center
for Telecommunication Research (CTR), Department of Engi-
neering, King’s College London (KCL), UK. Prior to joining
KCL, he worked as a postdoctoral research fellow in the
Department of Computer science, Karlstad University, Swe-
den. His research interests are Edge and Cloud Computing,
Network Function Virtualization and Machine Learning.

Javid Taheri is a Full Professor at the Department of Com-
puter Science at Karlstad University, Sweden. He received
his Ph.D. in Mobile Computing from University of Sydney
(Australia) in 2007. He is the recipient of the top 200
young researchers in the world by the Heidelberg Forum
in 2013. His research interests include Cloud Computing,
Edge/Fog Computing, Software-defined Networking, and
AI-based optimization techniques.

Toktam Mahmoodi received her Ph.D. degree in telecom-
munications from King’s College London, U.K. She was a
Visiting Research Scientist with F5 Networks, San Jose, CA,
USA, in 2013, a Postdoctoral Research Associate with the
ISN Research Group, Electrical and Electronic Engineering
Department, Imperial College, from 2010 to 2011. She is
currently the Head of the Centre for Telecommunications
Research, Department of Informatics, King’s College London.
Her research interests include 5G communications, network
virtualization, and low latency networking.

http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb22
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb23
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb23
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb23
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb23
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb23
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb24
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb24
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb24
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb25
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb25
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb25
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb25
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb25
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb26
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb26
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb26
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb26
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb26
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb27
http://arxiv.org/abs/1909.12101
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb29
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb30
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb30
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb30
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb31
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb32
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb32
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb32
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb32
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb32
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb35
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb36
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb36
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb36
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb36
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb36
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb37
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb37
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb37
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb38
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb38
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb38
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb40
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb40
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb40
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb40
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb40
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb41
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb41
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb41
http://sndlib.zib.de
https://www.onap.org/
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb44
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb44
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb44
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb44
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb44
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb45
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb45
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb45
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb45
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb45
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb46
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb46
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb46
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb47
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb47
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb47
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb47
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb47
https://www.minizinc.org/
https://www.ibm.com/analytics/cplex-optimizer
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb50
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb50
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb50
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb50
http://refhub.elsevier.com/S1389-1286(22)00297-3/sb50

Computer Networks 216 (2022) 109214D. Bhamare et al.
Peter Öhlén is a principal researcher at Ericsson Research.
In 2000 he received a Ph.D. in Photonics, also from the
Royal Institute of Technology. He has been with Ericsson
since 2005. He has worked with research and development
in transport networks, network control, SDN, fiber access
technologies, fiber-optic transmission, radio networks, op-
tical and electronic subsystem design, simulation methods,
project and program management.
16
Calin Curescu is a System Architect on Network Func-
tion Virtualization and Management with Ericsson. He is
working on various topics, such as model-based orches-
tration, algorithms and optimization for allocation in the
distributed cloud, multi-domain orchestration and manage-
ment. He holds a Ph.D. in Computer Science from Linköping
University, Sweden.

	IntOpt: In-band Network Telemetry optimization framework to monitor network slices using P4
	Introduction
	Related work
	IntOpt architecture and active probing
	INT — Inband Network Telemetry
	Optimized active telemetry probes generation
	P4FPGA bench-marking
	ONAP-IntOpt integration

	Optimization model
	Objective function
	Constraints
	MILP complexity analysis

	Algorithms for active probing optimization
	SARG approach
	Heuristic complexity analysis

	Numerical results
	MILP vs. Heuristic
	Detailed numerical analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

