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ABSIXACT 

This paper considers a multiqueue system with a cyclic-server 
and a class of limited service policies. In particular. exhaustive 
limited (EL), gated limited (GL) and general decrementing 
(GD) service policies are investigated. The major results in this 
paper are the derivations of the expected amount of work left in 
the queue at the server departures for these three policies. These 
results are all in terms of unknown boundary probabilities. 
Using corresponding server vacation models, these unknown 
probabilities are estimated. Pseudo-conservation laws for these 
policies are subsequently obtained. Numerical results obtained 
for the EL policy are noted to be very accurate compared with 
simulation results. Finally, conservation laws with mixed 
service plicies, and exact expressions of mean waiting times in 
symmemc systems are given. 

1. INTRODUCTION 

Token-passing protocols in local-area networks, using bus or 
ring topologies, are often modeled as Cyclic-Server. Multi- 
Queue systems (CSMQs) for performance evaluation. B w  uses 
a discrete-time model of CSMQ to compare the performances of 
single-token and multiple-token operations in a symmetric 
token ring [4]. Colvin [7] and Sach [28] use two different 
analytic models of CSMQs to obtain approximate mean waiting 
times for a single access class in the IEEE 802.4 token bus. 
Brooks and Yue use an approximate model of a symmetric 
CSMQ to investigate the impact of the token holding time 
constraint on the performance of the Automation Manufacturing 
Protocol (MAP) [3,351. Karvelas applies a CSMQ model to 
obtain the average data delay in the Fiber Distributed Data 
Interface (FDDI) network [22]. 

Ll CvcliC-Semer. Multiaueue Svstem 

A description of CSMQ, with one-to-one correspondence to 
the parameters in token-passing protocols, is given as follows. 
A CSMQ consists of N queues: Ql,Q2, ...,QN (network 
stations) with infinite capacities (buffers) and a single server 
(token). Customers (messages) arrive at the queues according 
to independent Poisson processes with rate Xi for Q. The 
single server visits the queues in a predeteded,  cyclic order. 
When the server visits Q, the customers are served on a first- 
come-fist-served basis and the service times (transmission 
times) are assumed to be generally dismbuted with fvst 
moment bi and second moment b?. The server utilization of Q, 
is denoted as pi (A+bi) and the total server utilization p E Z l p i ) .  

According to a certain service policy (medium access control 
protocol), the server switches from Q to the next queue with a 
non-zero walk time (propagation delay) which is assumed to be 
generally distributed with first moment and second moment 
s?. Let the first moment of the total walk time be s (zglsi) 
and its second moment ~(2) .  We assume that the arrival, service 
and switch-over processes are independent. 

With the same system parameters, the CSMQs differ from 
one another in the service policies. The service policy 
determines when the server will switch from one queue to 
another. The earlier analyses of CSMQs concentrated on the 
exhaustive (E), gated (G), decrementing (D). and non- 
exhaustive (NE) service policies [8,25]. In the E policy, the 
server switches only when the queue is empty. In the G policy, 
the server switches after serving all the messages in the queue 
upon his arrival. Those messages which arrive after the server 
arrival will be served in the next server visit. In the D policy, 
the server switches when the queue length decreases to one less 
than the queue length at the server arrivals. In the NE policy, 
the server switches after one message is served. However, the 
recent standards for token-passing protocols impose limits on 
the token holding times [14.21,26]. In order to provide more 
accurate performance models for the protocols. more flexible 
limited service policies need to be investigated. 

U A C l i w d h & d  Service Pohclea 
Here we consider a class of limited service policies for the 

CSMQs. These policies impose limits on the number of 
messages to be served consecutively in any queue, by varying 
parameter Ki for Qi. If the server finds Qi empty upon his 
arrival, he will immediately switch to the next queue. Otherwise 
the server will act as follows. depending on the service policy: 

1. Exhaustive limited (EL): the server switches when either K, 
messages are served consecutively in Qi or the queue is 
empty, whichever occurs first. 

2. Gated limited (GL): let Li be the queue length of Qi upon 
the server arrival. The server switches after serving 
min(Ki,Li) messages in Qi. 

3. General decrementing (GD): the server switches when the 
queue length of Qi decreases to either (Li-Ki) or zero, 
whichever occurs first. 

Note that these three policies cover all other service policies 
described previously. Furthermore we also allow mixed policy 
in the CSMQs. For instance, Q1 may employ the EL policy 
while other queues employ the G policy. Nevertheless, we 
assume in this paper that the same service policy is applied to 
all queues, unless otherwise stated. We adopt the following 
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notation in the rest of this paper: E(Ni): mean queue length of 
Qi (including the one in service); Emi):  mean message waiting 
time for Qi (not including the service time); E(%): mean queue 
length of Qi when the server leaves; and E(Ui): mean amount of 
work left in Qi when the server leaves. 

J.3 Pseudo-Conservation Laws 

In general, queueing analysis of CSMQs is a difficult 
problem. For the E and G policies, numerical algorithms are 
available to compute the exact mean waiting times by solving 
O(N2) linear equations [15]. At the same time, others also 
suggest to use simpler approximate models [5,10,27]. The 
queueing analyses for other service policies are even more 
difficult. Exact mean waiting times are not available even for 
symmetric systems, i.e. system parameters are independent of 
i, except for the NE and D policies [19,31,32]. For asymmetric 
systems, a number of approximate models are recently 
proposed for the NE policy [1,20,30], and there are few 
heuristic approximations suggested for the EL and GL policies 
[11,12,17]. On the other hand, Watson has derived simple 
analytic expressions for a weighed sum of mean waiting times 
at individual queues in the CSMQs for the E, 6 ,  and NE 
policies [34]. Later, Boxma and Groenendijk have generalized 
these results into the following form and they are referred to as 
pseudo-conservation laws [2]: 

where 

Note that A is independent of the service policies, and only 
E(Ui) reflects the differences in the service policies. Clearly, 
E(Ui)=O for the E policy. Using probabilistic arguments and 
Little’s law, Boxma and Groenendijk have derived E(Ui) for 
the G, NE, and D policies [2]: 

his 
1-P 1-P 

E(UJ = pi-E(Wi)+”-p’ NE (1.3) 

The corresponding pseudo-conservation laws can then be 
obtained by substituting E(Ui)s into (l.l), and the results for 
the E, G, NE policies agree with the results in [15,34]. When 
the walk times are zero, the first term in A is the only non-zero 
term, thus reducing to the Kleinrock’s law of conservation for 
priority queues [ 231. 

These pseudo-conservation laws are proved to be very useful 
in understanding the CSMQs. First, the conservation laws give 
exact expressions of mean waiting times in symmetric systems. 
Second, they are the bases for a number of simple and yet 
accurate approximate models of the asymmetric CSMQs: E and 
G policies [IO]; NE policy [1,30]; EL and GL policies 
[ 1 1,12,17]. Third, they provide validity check for the accuracy 
of simulation models [30]. Fourth, they can be used for 
asymptotic analyses when queues are heavily loaded or the 
number of queues in the system becomes very large [34]. 
Nevertheless, the derivations of E(UJ for the EL, GL, and CD 
policies do not seem to be as straightforward as others. 

Fuhrmann derives upper bounds on E(Ui) for both EL and GL 
policies [16]. By modifying the derivation in [16], Semi and 
Yao obtain an lower bound on E(UJ for the EL policy [29]. In 
this paper, we derive exact expressions of E(Ui) for the EL, 
GL, and GD policies. It turns out that the expressions of E(Ui) 
for these three policies are all in terms of Kiunknown 
boundary probabilities for Qi. These probabilities can then be 
estimated by using the results in the corresponding server 
vacation models. We recently discover that Everitt has also 
derived pseudo-conservation laws for the EL and GL policies. 
The expressions are in terms of the second moments of the 
number of messages served during a server visit. He then 
estimates the second moment from a truncated negative 
binomial distribution [9,13]. 

The rest of this paper is organized as follows. In section 2, 
we present some basic results of CSMQs and stability 
conditions for these policies. Section 3 presents the derivation 
of E(Ui) for the EL policy. The pseudo-conservation laws 
using the estimated probabilities are shown to be very accurate 
when compared with simulation results. An assessment of the 
performance of the upper and lower bounds on the weighed 
sum of mean waiting times is also given. Section 4 presents the 
derivation of E(Ui) for the GL and GD policies. In section 5, 
we give the pseudo-conservation law for mixed service 
policies, and the exact mean waiting times in symmetric 
systems. Finally we conclude this paper in section 6, with a 
discussion on future research. 

2. STABILITY CRITERIA, 

In this paper, we consider stable CSMQs in which all queue 
lengths are finite. We first define some important parameters 
for the CSMQs. Cycle time of Qi is the time between two 
successive visits at Qi by the server. It is well known that the 
mean cycle time, E(C), is independent of i and is given by [24] 

Visit period of Qi, Ti, is the total time that the server spends at 
Qi during each visit. Using a balancing argument, the mean 
visit per id  of Qi is also equal to the total mean amount of work 
aniving d h g  a cycle. Therefore 

Intervisit time of Qi, Vi, is the period of time between the 
server anival at Qi and his last departure h m  Qi. Since a cycle 
time is the sum of a visit period and an intervisit time, E(Vi) can 
be obtained as 

E(C) = E(Vi)+pi”- 3 E(Vj) = 5 s  (2.3) 

For the E and G policies, p<l is the only condition to ensure 
stability. However, p<l is only a necessary condition for the 
limited service policies, and additional conditions are required 
for stability. For the EL and GL policies, we need the 
following additional conditions: 

1-P 1-P 

This reflects the fact that the mean number of message arrivals 
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at Qi during a cycle should be less than Ki, since the number of 
messages is reduced at most by during a cycle. For the GD 
policy, the additional conditions are: 

Here the system is stable if the mean number of message 
arrivals at Qi during an intervisit time is less than Ki, since the 
number of messages at the server arrivals is at most reduced by 
Ki at the end of a visit period. 

3. EXHAUS TIVE LIM ITED SERVICE POLICY 

Lemma 1: 

tive limited service policy with parameter IC,, then 
Consider a stable CSMQ system where Qi employs exhaus- 

where j=l,  ..., Ki-1 are the joint proba0ilities that at the 
instant of a message departure, the message is the jth message 
served during a visit period and Qi is empty. 

Proof: 
We observe Qi at the service completion epoches. Denote a 

message at Qi as a j-message if it is the jth message served by 
the server during a visit. Let pi,kj be the joint probability that at 
the instant of a message departure, the message is a j-message 
and Qi is empty. Therefore 

The mean queue length of Qi is hence given by 

where can be interpreted as the mean queue length of Qi 
when a j-message leaves the queue. From the structure of the 
EL policy, we note that the server will perform a g'th service if 
Qi is non-empty at the departure of a (j-l)-message, for 
j=2,.. .,Ki. Therefore 

Let qi,j ckzopi,k,, for j=I, ...,& and rewrite (3.3a) as 

$i,j-l-Pi,O,j-l = $i,j j=&...,Ki (3.3b) 

From (3.3b), we can therefore express %,j in terms of q i , ~ i ,  for 
j=  1 ,. ..,Ki- 1 : 

$ij =$i,~i+z2;'pi,o,~ j=l,...Xi-I (3.4) 

Also by adding @i,Ki with #i,j in (3.41, for j=1, ..., Ki-1, we 
obtain an equality for this system: 

Multiply both sides in (3.5) by &s/(l-p): 

The right hand side of (3.6) is the mean number of message 
arrivals at Qi during a cycle. Therefore, for a stable CSMQ, the 
left hand side of (3.6) should be equal to the mean number of 
messages served during a server cycle time. This implies that 
[hi~/(l+)]pi,oj is the conditional probability that Qi is empty 
and j messages have been served consecutively when the server 
departs, for j=1,2, ..., Ki-I. Similarly, [his/( l+)]Pi,k,Ki is the 
conditional probability that the queue length of Qi is k and Ki 
messages have been served consecutively when the server 
departs, for k=0,1,2, .... Thus the mean queue length of Qi 
when the server leaves is given by 

and the mean amount of unfinished work in Qi when the server 
leaves is 

The remaining step is therefore to obtain an exact expression 
of @ i , ~ ~ .  Again from the structure of the exhaustive limited 
policy. If the queue length of Qi at the departure of a 
(j-l)-message is non-zero, then the queue length at the 
departure of a j-message is equal to the queue length at the 
departure of a 0-1)-message, minus one, and plus the total 
number of message arrivals during a service time. Thus 

From (3.91, we can therefore express @i,j in terms of o ~ , ~ ~ ,  for 
j = 1,. . . ,Ki- 1 : 

Qpij = @i,~+( l -p i )Cglc .~; lp i ,k , l  j=I ,  ..., Ki-I (3.10) 

Substituting (3.10) into (3.2), for j=l ,  ..., Ki-1, we obtain 

E(N;) = Ki@i,Ki+(l-pdz ~ i ~ ~ ~ ' j P i , k , j  (3.1 1) 

Using (3.8) in (3.1 1) yields 

Using Little's law: E(Ni)=h,[E(Wi)+bi] in (3.12) and rearrange 
the terms, we obtain 

Using (3.4) to express qij in terms of qi,Ki.  for j=l ,  ..., Ki-1 
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and (3.5) to express + i ,~ i in  terms of pi,oj, ...,&- 1: 

(3.15) 

Lemma 1 is thus proved by substituting (3.15) into (3.13).$ 

the EL policy is 
Using Lemma 1 and (1 .l), the pseudo-conservation law for 

Note that the last term in (3.13) is positive. The upper bound in 
[ 161 can therefore be obtained by ignoring the last term. It can 
also be shown that [~+s/(~-p)]Cgl  )pi,k;<l, for j= l  ,..., KiTl. 
Therefore, the lower bound in [29] can Le obtained by setung 
that term to 1 in (3.14). Therefore 

If Ki=- for all i, (3.16) reduces to the result for the E policy. 
If Ki=l for all i, (3.16) reduces to the result for the NE policy. 
For other cases, there are still Ki-1 unknown boundary 
probabilities for Qi, i=1, ..., N. Here we propose to use the 
MIGIl queue with vacations and EL policy to estimate these 
probabilities. In the setting of the vacation model, the server 
intervisit time of Q, can be interpreted as the server's vacation 
from the queue. However, the successive vacation periods in 
the vacation model are assumed to be independent, but this is 
not true for the server intervisit times in the CSMQs. By adding 
subscripts i to the parameters in the vacation model for Q and 
assuming exponentially distributed vacation periods, then the 
resulting vacation model can readily be used to estimate the 
boundary probabilities. The estimation of the probabilities for 
Qi involves the solutions of a Kith order polynomial equation 
and a set of Ki linear, independent equations [6],  [33]. NOW 
we give numerical examples of the conservation laws for the 
EL policy. We f i t  define the percentage error of an approxi- 
mation as 

~ 1 0 0 %  (3.19) Simulation result -Approximation 
Simulation result % Error = 

Tables 1-3 present Simulation (results), Estimate: (3.16) With 
estimated probabilities, Upper Bound: (3.17) and Lower 
Bound (3.18). The percentage errors are given in parentheses. 
We note that the errors in the column of Estimate are less than 
2% for most of the cases. Both bounds are exact for &=l, and 
the upper bound is also exact for K,=. For other values of y. 
the upper bound is reasonably tight (within 10%). However, it 
is reported that the performance of the upper bound begins to 
deteriorate when the walk times increase [16]. This result is 
confmed in Table 2, and the percentage errors can be as high 
as 40%. On the other hand, the performance of the lower 
bound is quite poor, and it sometimes give negative values in 
which cases we assume zero for the bound. 

4. GATED E IMITED AND G -DECREMENT ING 
SERVICE POLICIES 

Lernma2 

limited service policy with parameter q, then 
Consider a stable CSMQ system where Qi employs gated 

where 9ik is the steady-state probability that the queue length 
of Qi is k at the server arrivals, for k=0,1, ..., q-1. 

Proof: 

Qi is k when the server arrives. Therefore 
Let Q+ be the steady-state probability that the queue length of 

cr=Oqi.k= (4.1) 
According to the policy, the probabilities that k messages are 
served in a visit period is also equal to for k=O, 1, ..., Ki-1. 
Thus, the probability that Ki messages are served in a visit 
period is (l-Z&?qi.J. As a result, we obtain an expression 
for the mean number of messages served in a visit per id  which 
should also equal to the mean number of message arrivals 
during a cycle: 

The mean queue length of Qi at the server arrivals is equal to 
the sum of the mean queue length at the server departures and 
the mean number of message arrivals during an intervisit time. 
Thus we have 

(4.3) 

and the mean amount of work left in Q when the server leaves: 

(4.4) 

Recall that a j-message is the jth message served by the server 
during a visit. Likewise, we denote a visit period of k services 
as k-visit period. Next we let Ai,k be the events that a random 
message in Qiis served in a k-visit period, k=l, ..., Ki; Bi, the 
events that a random message in Qiis a j-message, j=l,  ..., Ki; 
and Fi,k the events that the queue length of Qi at the server 
arrival is k, k=0,1,2 .... Conditioned on the events Ai,k, the 
queue length of Qi when a random message departs is: 

Given the probabilities qi,k. the lengths of visit periods are 
independent, identically distributed, and we can therefore use 
the standard length biasing argument in renewal theory for 
h'(Ai,k), k=B ,..., Ki-1: 
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Using the same argument for k2Ki: 

For E(NilAi,k), k=l,  ..., Ki-1, we change the conditioning to 
Ai.knf3i.j. Further, given a visit period of k services, it is equal 
likely that a random message comes from any one of the k 
services. Therefore 

Combining (4.5) to (4.9): 

From (4.10), we can express the mean queue length at the 
server arrivals in terms of other parameters: 

Using Little’s law, and (4.2) in (4.11): 

Lemma 2 is thus proved by substituting (4.12) into (4.4).§ 

the GL policy is 
From Lemma 2 and (1.1), the pseudo-conservation law for 

[33]. Note that the last term of E(Ui) in Lemma 2 is non- 
negative, and the upper bound in 1161 can therefore be obtained 
by ignoring the last term: 

This bound in (4.14) is exact for both Ki=l and Ki=-. 
According to the results in [16], the upper bound on the 
weighed sum of mean waiting times for the GL policy is less 
accurate than the upper bound for the EL policy in (3.17). 

Lemma 3: 
Consider a stable CSMQ system where Qi employs general 

decrementing service policy with parameter K, then 

bi{ Cz;’k(k- 1 )qi,k+ K;(K,- 1 )[ 1-c F&$’qi.kI} - 
2Ki 

where qi,k is the steady-state probability that the queue length 
of Qi is k at the server arrival, for k 4 , I  ,..., y-1, 

Proof: 
qi,k is again defined as the steady-state probability that the 

queue length of Qi at the server arrivals is k, k=0,1,2 .... 
According to this policy and by changing the order of service, 
the length of the visit period will consist of k busy periods of a 
standard WG/1 queue (where each of them is initiated by a 
single service) if the server finds k<Ki messages upon his 
arrival. For the case of k2&, the length of the visit period will 
consist of Ki busy periods. Therefore, we can obtain an 
expression of the mean number of messages served in a visit 
period which is also equal to the mean number of message 
arrivals during a cycle: 

where l/(l-pi) is the mean number of messages served during a 
busy period, initiated by a message. And the mean queue length 
of Qi when the server leaves is 

By using (4.15) in (4.16), we again obtain the same expression 
for E(Ui) as in (4.4): 

Here we follow similar procedures as in the proof of Lemma 
2. But we first modify the definitions of the k-visit period and 
j-message. We redefine k-visit period to be a visit period that 
consists of k busy Deriods (instead of k services) and a 
j-message to be theone served in a jth busy period (instead of a 
jth service). The events Ai,k and B; are also redefined 

note that the expressions of E(N, I Ai,k) for k=1, ..., K, in (4.8) 
and (4.9) also apply here. That is, given k busy periods in  a 
visit period, it is equally likely for d random message to come 
from any one of these busy periods. Using the standard length 

If K;= for all i, (4.13) reduces to the result for the G Policy. 

Policy. Similar to the EL Policy, the Kiunknown boundary 
probabilities can be estimated from the corresponding vacation 
model. This again involves solving of a yth order polynomial 
equation and a set of & linear, independent equations 1181, 

If &=I for all i, (4.13) corresponds to the result for the NE according to the these new definitions. JGe Start with (4.5) and 
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biasing argument for h(Ai,k), k=l, ..., Ki-1, we have 

(4.18) 

and for H i :  

Substituting (4.8), (4.9), (4.18), and (4.19) into ( 4 3 ,  we 
have 

Notice that both E(NiIAi,knBi,j) for k=l,  ..., Ki-1 and 
E(NiIAi,knBi,jnFi,k) for k X ,  consist of two independent 
components: (k-j), and the mean queue length in a standard 
M/G/1 queue with parameters and bi. Therefore 

Using (4.21) and Little's law, we can express the mean queue 
length of Qi at the server arrivals as 

Lemma 3 is thus proved by substituting (4.22) into (4.17). 0 

From Lemma 3 and (l . l) ,  the pseudo-conservation law for 
the GD policy is: 

If Ki=l for all i, then (4.23) reduces to the result for the D 
policy. If Ki=- for all i, then (4.23) reduces to the result for 
the E policy. The K, unknown boundary probabilities can be 
approximated by solving the corresponding vacation model. As 
in the cases with the EL and GL policies, the equations here 
also involve a Kith order polynomial equation and a set of Ki 
licear, independent equations for Qi [33]. Similarly, an upper 
bound on E(Ui) for the GD policy can be obtained by ignoring 
the last term in Lemma 3, and it is exact for &=1 and K,=: 

5. OTHER RELATED RESUL TS 
5.1 CSMQ with Mixed Service Policieg 

As mentioned before, the set of EL, GL and GD policies 
cover all other service policies mentioned in this paper, by 
adjusting the parameter &. Therefore, a new result for the 
mixed services, which is more general than the result in [2], is 
stated in the following theorem: 

Theorem 1: 

GE, or GD policies, then 
Consider a stable CSMQ in which the queues can employ EL, 

where 

and the probabilities are defined in the Zemmas 1,2 and 3. 

5.2 Smmetric CSMQ 

The pseudo-conservation laws readily give exact expressions 
of mean waiting times in symmetric CSMQ for the EL, GL, 
and GD policies. k t  &=h, bi=b, &=K, E(Wi)=E(W) for all i, 
but the definitions of p, s, s(2) and are unchanged. In addition, 
pi is set to pOj for all i in the EL policy, and qi,k is set to & 
fdr'all i in 6 L  and GD policies. The indices i in E(Wi) denote 
the service policy. From (3.16), (4.13) and (4.23), the exact 
mean waiting m e s  are 
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6. CONCLUS ION AND FU'JWR E RESEARCY 

In this paper, we have derived exact expressions of E(Ui)s 
for the exhaustive limited, gated limited, and general 
decrementing service policies in the CSMQs. Substitutions of 
E(U;)s into (1.1) give the pseudo-conservation laws for these 
policies which are in terms of Ki unknown boundary 
probabilities (Ki-1 for EL). Then we propose to use the 
corresponding server vacation models to estimate these 
probabilities for those queues with 1<Ki<=. The pseudo- 
conservation law for the EL policy using these estimated 
probabilities are shown to be very accurate, when compared 
with the simulation results. Subsequently, we also give a 
pseudo-conservation law for mixed services and exact mean 
waiting times in symmetric CSMQs. 

Given the results in this paper, there are two potential areas 
for the future research. The first area is the results of pseudo- 
conservation laws for time-limited service policies. Similar to 
the EL and GL policies, exhaustive-timed limited (ETL) and 
gated-time limited (GTL) are two viable time-limited service 
policies. In these policies, there is a maximum allowed visit 
time for each queue: Si,max for Qi, i=l, ..., N. In the ETL, the 
server continues to serve Qi until either Sblax is reached or the 
queue is empty, whichever comes first. In the GTL policy, the 
server will switch to the next queue when either Sismax is 
reached or the server has served all those messages in the queue 
upon his arrival, whichever comes first. If the message service 
times are deterministic and Si max is an integral number of the 
service times, then Lemma 1 (iemma 2) for the EL (GL) policy 
can be directly applied to the ETL (GTL) policy. Furthermore, 
conservation laws for other more complicated time-limited 
policies, such as the timed token rotation protocols in FDDI and 
MAP, need to be investigated. The second area is the need for 
accurate Conservation law-based approximations of the mean 
waiting times. For the E, G and NE policies, approximate mean 
waiting time can be expressed as a linear function of the mean 
residual cycle time. By ignoring the small differences in the 
second moments of the cycle times, the mean residual cycle 
time can be obtained from the pseudo-conservation law. Hence, 
approximate mean waiting times at individual queues can be 
obtained. For the EL, GL, and GD policies, similar linear 
relationships also exist, however, these expressions are much 
more complex. 
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Tablel: Numerical Results of Pseudo-Conservation Law for 
Exhaustive Limited Policy: Case 1 

Three queues with asymmetric arrival rates: K1=3, Kz=K3=1; hl=O.6, 
h2=h3=0.2; exponentially distributed service times with equal means; 
deterministic walk times, Si. 

Simulation Estimate Upper bound Lower bound 

0.3 I 0.0954 1 0 .0942 (1.26) I 0.1021 (-7.06) I 0.000 (100.0) 11 11 0.5 I 0 .3760 I 0.3754 (0.201 I 0.3970 (-5.53) I 0.047 (87.51) 

Table 2: Numerical Results of Pseudo-Conservation Law for 
Exhaustive Limited Policy: Case 2 

Three queues with asymmetric arrival rates: K1=3, K2=K3=l; exponentially 
distributed service times with bi=0.2 Vi; deterministic walk times, si which 
are greater than the mean service times. 

Table 3: Numerical Results of Pseudo-Conservation Law for 
Exhaustive Limited Policy: Cases 3 

Sixteen queues with asymmetric arrival rates: K1= ..&= 3, K5= ...= K16=1; 
)cl.= ...= 74=0.16, h5=...=k16=0.03; exponentially distributed service times 
with equal means; deterministic walk times, s ia .05 Vi. 

1 o simulation Estimate Umer bound Lower bound 1 
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