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Chapter 1

Analytical Model for
Prefetching and Clustering

This chapter describes in detail the analytical model for the Prefetching-

on-Demand (PonD) strategy, to estimate the average time to serve a de-

mand miss. Firstly, it starts by describing the standard models. Secondly, it

then describes a model which can represent clustering over the network and

presents two solutions. Finally, it presents preliminary results of the solved

models and concludes by describing the need to explore an operational space

where QoS for streaming applications and demand misses could be satisfied.

1.1 Analysis

From the previous analysis, we can represent the system by two queues: the

demand queue and the prefetch queue, as shown in Figure 1.1. Let λd be the

rate at which demand requests are arriving at the demand queue and let λp be

the rate at which prefetch requests are arriving at the prefetch queue. While

serving, more than one request could be taken from both queues, clustered

into a network buffer which is then sent off to the server. This can be viewed

as a type of bulk service.
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Figure 1.1: A model with a server serving two queues: Prefetch and Demand.

This analysis attempts to answer the question: Given the arrival rates

of the two queues, can we find a way to calculate the average service time

experienced by demand misses?

1.2 Literature

In order to answer the question, we looked at several polling models. A

polling model is a system of multiple queues accessed in a cyclic order by a

single server. In recent decades, polling models have been used to analyse

the performance of a variety of systems. According to [Takagi and Hideaki,

1988], in the late 1950s, a polling model with a single buffer for each queue

was used in an investigation of a problem in the British cotton industry

involving a patrolling machine repairman [C., 1957a,b]. In the 1960s, polling

models with two queues were used to analyse traffic signal control, (see a

survey by Stidham [S., 1969]). There were also some early studies from the

viewpoint of queueing theory that were apparently independent of traffic

analysis (e.g Avi-Itzhak et al. [1965]). In the 1970s, with the advent of

computer communication networks, an extensive study was carried out on

a polling scheme for data transfer from terminals on multidrop lines to a

central computer. Since the early 1980s, the same model has been revived

by Bux [1981] and others to study token passing schemes, (e.g., the token

ring and token bus), in local-area networks (LANs). It has also been used
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for resource arbitration and load sharing for multiprocessor computers [Wang

and T., 1985]. A polling model was used in a non-technical article in Scientific

American [LEISOWITZ, 1980], as an example of an interesting and important

queuing system.

The usual objective in analysing polling models is to find the message

waiting time, defined as the time from the arrival of a randomly chosen

message to the beginning of its service. The mean waiting time plus the

mean service time is the mean message response time, which is the single

most important performance measure in the most computer communication

systems [Kleinrock, 1976].

Polling models are referred to in many survey articles and books on

data communication systems [ [Bertsekas and Gallager, 1992], [Chu and Kon-

heim, June 1972.], [Hayes and Sherman, November 1971], [R. and G.], [Kobayashi,

Jan 1977], [KONHEIM, 1980], [Simon LAM January and Simon S. LAM,

1983], [PENNY, B. K., ANO BAGHOADI, A. A., 1979], [M. REISER, 1982]].

The vast majority of the literature is concerned with the two tradi-

tional service disciplines, the exhaustive and gated policies. Exhaustive ser-

vice means that a queue must be empty before the server moves on, whereas

in case of gated service only those customers in the queue at the start of

polling are served. The main drawback of these traditional policies [ [Tak-

agi and Hideaki, 1988], [Takagi, 2000], and [Takagi, 1990]] is the inability

to prioritise among the different queues for improving total system perfor-

mance. A more sophisticated service strategy offering this possibility is the

K-limited service strategy. Under this strategy the server continues work-

ing at a queue until either a predefined number of K customers is served or

until the queue becomes empty, whichever occurs first. Note that the case

K −→ ∞ is equivalent to the exhaustive service strategy. In many appli-

cations of polling systems, the objective function typically depends not only

the mean queue lengths, but on the complete marginal queue length distribu-

tions. Therefore, in 2006 van Vuuren and Winands [2006], proposed to study

the marginal queue length distributions in a continuous-time polling systems
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with K-limited service under the assumption of general arrival, service and

set-up distributions.

A feasible approximate approach for the queue length distribution in a

K-limited polling system is the decomposition method, in which the polling

system is decomposed into vacation systems, for which the vacation distribu-

tions are computed in an iterative approximate manner. At each step in the

iteration, the mathematical analysis focuses on one single queue, whereas the

other queues in the system determine the length of the vacation period. We

have to remark that these decompositions methods seem to be applicable to a

wide variety of queueing systems ( e.g., [Dallery et al., 1989], [Gershwin and

Burman, 2000], [van Vuuren M, 2005], [van Vuuren M, 2006]]). However, the

main disadvantage of this method is that time and memory requirements on

computational resources are exponential functions of the number of queues.

In our work, we believe that the streaming applications access blocks

at a constant rate. The number of blocks needed to be fetched for the prefetch

queue to provide the required QoS can be controlled. Hence, we can reduce

the model to a single queueing system based on demand requests but the

service time for the demand blocks will include the cost of fetching prefetch

blocks. We can further simplify the analysis by only prefetching when there

are demand requests in the demand queue i.e. conservative prefetching as

shown by Cao et al. [1995]. This strategy is also justified as it uses the

network more effectively.

1.3 Standard Approach (Partial Batch Model)

As a first step in analysing the average time to satisfy a demand request in

the demand queue, we will use the Partial Batch Model described in [Gross

and Harris, 1998]. In this model a server can serve up to a maximum of K

requests. If there are less than K requests in the system, the server begins

service these requests. Furthermore, when there are less than K requests
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being serviced, new arrivals immediately enter service. The amount of time

required to service requests, is an exponentially distributed random variable

with mean 1
µ
.

This model is represented in Figure 1.2. Each state of the model is

represented in terms of n and s. n is the total number of requests in the

system and s is the number of requests currently being served. It can be

seen that any new arrival enters the service immediately as long as there

are less than K number of requests being served and time taken to service

those requests is exponentially distributed to a mean value of 1
µ
. A stochastic

Figure 1.2: Partial Bulk Service model.

balance equation for the model can be written as:

0 = −(λ+ µ)pn + µpn+K + λpn−1 (n > 1) (1.1)

0 = −λp0 + µp1 + µp2 + µpK−1 + µpK

For K = 1;

0 = −(λ+ µ)pn + µpn+1 + λpn−1 (1.2)

0 = −λp0 + µp1

The above equations are the basic equations for the M/M/1 queue. Hence,
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we can say the solution for the PBM is same as the M/M/1:

pn = p0r
n

By finding the root (r) of this equation that is between 0 and 1, one

can work out the mean queue length (L) and the average waiting time (W )

for the queue, using the equations below.

L =
r

1− r
and W =

r

λ(1− r)
(1.3)

The results presented in Figure 1.5, showed that this approach is extremely

accurate for very heavy traffic, since on these occasions the server will always

be serving the maximum batch size. However, for lighter traffic loads the

model is inaccurate because according to this approach new requests will

immediately enter service when the server is serving less than the maximum

batch size which is not the case in our scenario. Here, the server only serves

the number of people in the queue at its arrival, requests arriving after this

point must be serviced in the next cycle regardless of whether or not the

maximum batch size is being served in the current cycle. Hence, the scenario

is gate-limited and not exhaustive-limited as seen in the Partial Batch Model.

1.4 Proposed Gated-Limited Model

In this section we attempt to develop a more accurate model which could

be used under operational loads. As shown in the Figure 1.3, the state of

the model is defined by two variables i.e. n and s. n is the total number of

requests in the system including the requests being served and s is the number

of requests being served at any given time. Therefore, for the maximum batch
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size s = K, s goes from 0 to K, so when s = 0, the system is empty and

when s = K up to K requests are being served at a time. Also, excluding

(0, 0), this will give rise to the K different stages as shown in Figure 1.3 with

each stage having a service rate depending on the number of blocks being

served.

Figure 1.3: A model with a server which can serve up to K demand requests
in batch mode, n = the total number of requests in the system and s = the
number of requests being served.

1.4.1 Simple Scenario

We start by looking at a simple scenario by restricting K to 2, i.e. s = 2,

as shown in Figure 1.4. Having K equal to 2 there can be only three stages:

either the server is serving 1 request or it is serving 2 requests or the queue is

empty. This means that with the exception of the transition, (2, 2) to (0, 0),

each transition can only jump one stage at a time (i.e. 1 to 2 or 2 to 1) for

e.g. (3, 1) goes to (2, 2) or (3, 2) goes to (1, 1). We will analyse each series

individually starting with Series 1.
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Figure 1.4: Two Stage Model, K = 2.

Considering Series 1 i.e. when s = 1

Let us consider Series 1 of the Figure 1.4. In Series 1, s = 1 and for n > s

i.e. n > 1, we will have:

λpn−1,1 = (λ+ µ1)pn,1 (1.4)

This implies that for any n > 1, in Series 1:

pn,1 =
λ

(λ+ µ1)
(pn−1,1)

pn,1 = (
λ

(λ+ µ1)
)n−1(p1,1) (1.5)

And for n = s i.e., n = 1, we have:

(λ+ µ1)p1,1 = λp0,0 + µ1p2,1 + µ2p3,2 (1.6)
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Finally, for n = s = 0, i.e., p0,0 will be:

λp0,0 = µ1p1,1 + µ2p2,2 (1.7)

Considering Series 2 i.e. when s = K = 2

Similarly, for s = 2, we will derive equations for n > s and n = s, using

Figure 1.4. when n > s, we have:

(λ+ µ2)pn,2 = λpn−1,2 + µ2pn+2,2 + µ1pn+1,1

(1.8)

And for n = s, we have:

(λ+ µ2)p2,2 = µ2p4,2 + µ1p3,1 (1.9)

Now using the derived equations for Series 1 and Series 2, we will try to

obtain an equation for Series 2 at point p3,2
1. We can find out the roots of

these equations as in the Partial Batch Model and thus will be able to find

out the probability of being at each point in Series 2.

(λ+ µ2)p3,2 = λp2,2 + µ2p5,2 + µ1p4,1 (1.10)

From Equation (1.5), p4,1 can be expressed as ( λ
λ+µ1

)3(p1,1). Further, from

Equation (1.7), µ1p1,1 can be expressed as λp0,0 − µ2p2,2. Therefore,

µ1p4,1 = (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3 (1.11)

1Similar techniques can be used for different points of Series 2, e.g. p2,2, p4,2, p5,2
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Substituting the value of p4,1 into the Equation 1.10, we get:

(λ+ µ2)p3,2 = λp2,2 + µ2p5,2

+ (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3

0 = −((λ+ µ2)p3,2)λp2,2 + µ2p5,2

+ (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3

(1.12)

Now, we need to find the root r which is between 0 and 1 such that it solves

the above equation, as in the Partial Batch Model.

1.5 First Attempt to Solve Series 2

In this first attempt, we primarily wanted to determine whether our proposed

model was better than the PBM model. The approach taken was to regard

our model as two separate and independent chains/series both emanating

from p0,0, so the idea is to be able to express all the values of all the states

in terms of p0,0.

By finding the root (r) which will be between 0 and 1, we can find the

probability of being at each point in Series 2 in terms of p0,0. We will use

the same approach as in the M/M/1 queueing as well as the Partial Batch

Model and so we will express pn,2 in terms of p0,0 as follows:

pn,2 = rnp0,0 (1.13)

Similarly, using Equation (1.7), we can find out the probability of

being at each point in Series 1 in terms of p0,0.
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λp0,0 = µ1p1,1 + µ2p2,2

p1,1 =
(λ− µ2r

2)

µ1

p0,0 (substituting pn,2 = rnp0,0)

p1,1 = C1,1 ∗ p0,0 where C1,1 = (λ−µ2r2)
µ1

and

pn,1 = (
λ

(λ+ µ1)
)n−1 ∗ C1,1 ∗ p0,0

(substituting value of p1,1 in Equation 1.5) (1.14)

From Equations (1.13) and (1.14), we can see that the probability at

any point in the model can be known if p0,0 is known. Also, the sum of all

the probabilities should be equal to 1. Hence, we sum the two independent

chains as follows:

∞∑
n=0

pn,1 +
∞∑
n=0

pn,2 = 1 (1.15)

Let S1 be equal to
∞∑
n=0

pn,1. From Equation 1.14, we have:

S1 =
∞∑
n=0

(
λ

(λ+ µ1)
)n−1 ∗ C1,1 ∗ p0,0

=
C1,1p0,0(λ+ µ1)

2

λµ1

(1.16)
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Similarly, let S2 be equal to
∞∑
n=0

pn,2. From Equation 1.13, we have:

S2 =
∞∑
n=0

rnp0,0

=
1

1− r
p0,0 (1.17)

S1 + S2 = 1

p0,0(
C1,1(λ+ µ1)

2

λµ1

+
1

1− r
) = 1

p0,0 =
λµ1(1− r)

(λ+ µ1)2 ∗ C1,1(1− r) + λ ∗ µ1

(1.18)

Once we know p0,0, the total number of requests, (L), in the system

can be calculated using:

L =
∞∑
n=0

n ∗ pn,1 +
∞∑
n=0

n ∗ pn,2 (1.19)

and the average time to serve a demand miss will be equal to W :

W =
L

λ
(1.20)

1.5.1 Results of the First Attempt

A simulation was developed to verify the analytical model results. In the

experiment, the number of prefetch blocks (P ) was kept constant, (P = 1),
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and the arrival rate of the demand queue was varied. The analytical results

were calculated using different points at Series 2, however, p4,2 appeared

to give the best results. The results estimate the average time to serve

a demand miss, (TD−NMS), by the Partial Batch Model and the Proposed

Model, are shown in Figure 1.5. The simulation points in the graph have

95% of confidence level with confidence interval of ±5%. It shows that the

results from the analytical model are significantly better than the Partial

Batch Model.

Figure 1.5: Estimates the average time to serve a demand miss (TD−NMS)
using Simulation, Partial Batch Model and First Attempt (Our Model).

The results from the first attempt show that the model appears to be

very accurate at medium and high loads but inaccurate at lower loads. This

is inadequate as it is unable to estimate the average time to serve a demand

miss over the network when operating over a large operational range of λd. In

addition, at very high non-operational loads the model overshoots the PBM

and the simulation (not shown above but in the UKSIM paper [Thakker
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et al., 2009] 2). We therefore need to revisit the approach of treating the

model as two independent series based around p0,0. Instead, we base each

series on its first element, i.e., p1,1 and p2,2, and we use Equation 1.7 to

include p0,0. This allows us to come up with another solution based on the

state of P2,2 instead of P0,0.

1.6 Second Attempt to Solve Series 2

In this section, we attempt to solve the Equation 1.12 based on the state

P2,2. First, we find out the roots of this equation using the same technique

that was used in the Partial Batch Model. Thus the state probabilities of

Series 2 for n >= 2 can be given by:

pn,2 = rn−2p2,2 (1.21)

Figure 1.6: Imaginary Partial Batch Model for Series 2

In order to solve the above equation, we assume the second Series to

be identical to a Partial Batch Model represented by Equation 1.12. This

is shown in Figure 1.6. However, for states where n > 2, there is no real

difference between the real or imaginary Series as Equation (1.21) is valid in

both scenarios. This means we can use the same approach taken in the Partial

2Full text in APPENDIX ??
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Batch Model to calculate r. Once this is done we can represent any state

in the second Series by the Equation 1.21. In addition, using the previous

equations, it will also be possible to represent p0,0 and Series 1 in terms of

p2,2.

Using Equation 1.7, we substitute for λp0,0 in Equation 1.6. In addi-

tion, we note that according to Equation (1.21): p3,2 = rp2,2. Rearranging,

we get: p1,1 = C1,1 p2,2 where C1,1 is given by the equation:

C1,1 = µ2(1 + r)(
λ+ µ1

λ2
) (1.22)

By substituting for p1,1 in Equation 1.7, we can get an equation for

p0,0 in terms of p2,2; i.e., p0,0 = C0,0 p2,2 where C0,0 is given by:

C0,0 =
µ1C1,1 + µ2

λ
(1.23)

1.6.1 Solving for p2,2

The sum of the all the state probabilties must be equal to 1. Let S1 be the

sum of the state probabilities for Series 1 and S2 be the sum of the state

probabilities in Series 2. So we can write:

p0,0 + S1 + S2 = 1 (1.24)
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where:

S1 =
∞∑
n=1

(
λ

(λ+ µ1)
)n−1p1,1 (1.25)

S2 =
∞∑
n=2

rn−2 p2,2 (1.26)

For S1, let m = n− 1 and substituting for p1,1

S1 =
λ+ µ1

µ1

C1,1p2,2 (1.27)

Similarly for S2, let m = n− 2

S2 =
1

1− r
p2,2 (1.28)

Summing to one we get:

p2,2 =
1

C0,0 + λ+µ1

µ1
C1,1 + 1

1−r
(1.29)

Using the value of p2,2 in Equation 1.22 and 1.23 , we can find values for p1,1

and p0,0.

The average number of people in the queue can be expressed as:

L =
∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 +

∞∑
n=2

nrn−2p2,2 (1.30)

We can further obtain an exact formula for L, as shown in the section below.
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1.6.2 Further Solving for L

From Equation 1.30, we first solve for the first term on the Right Hand Side

of the equation and then second term.

∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 (1.31)

Let q = λ
λ+µ1

=
∞∑
n=1

nqn−1p1,1 (1.32)

Now, n ∗ qn−1 = d
dq
qn

=
∞∑
n=1

d

dq
qnp1,1

=
d

dq

∞∑
n=0

qnp1,1

=
d

dq
(

1

1− q
)p1,1 (substituting

∞∑
n=0

qn =
1

1− q
)

∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 =

1

(1− q)2
p1,1 (1.33)

Now solving the second term on the Right Hand Side of the Equa-

tion 1.30.

∞∑
n=2

nrn−2p2,2 =
∞∑
n=2

(n− 1)rn−2p2,2 +
∞∑
n=2

rn−2p2,2 (1.34)

In order, to present the solution of Equation 1.34 in simple form, we
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will again solve the terms in the Right Hand Side one by one, starting with

the second term on the Right Hand Side of Equation 1.34.

∞∑
n=2

rn−2p2,2

=
∞∑
q=0

rqp2,2 ( substituting q = n− 2 )

=
1

1− r
p2,2 (substituting

∞∑
q=0

rq =
1

1− r
)

(1.35)

Now, solving the first term on the Right Hand Side of Equation 1.34:

∞∑
n=2

(n− 1)rn−2p2,2

=
∞∑
n=2

d

dr
rn−1p2,2 (substituting (n− 1)rn−2 = d

dr
rn−1)

=
d

dr

∞∑
n=1

rn−1p2,2

=
d

dr

∞∑
q=0

rqp2,2 (substituting q = n− 1 )

=
d

dr
∗ 1

1− r
p2,2 (substituting

∞∑
n=0

rq =
1

1− r
)

= (
1

(1− r)2
)p2,2 (substituting d

dr
1

1−r = 1
(1−r)2 ) (1.36)

The results expressed in the Equations 1.35 and 1.36 showed that Equa-
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tion 1.34 can be expressed as:

∞∑
n=2

nrn−2p2,2 = ((
1

1− r
) + (

1

(1− r)2
)) ∗ p2,2

= ((
1

1− r
) + (

1

(1− r)2
)) ∗ p2,2

= (
1− r + 1

(1− r)2
) ∗ p2,2

∞∑
n=2

nrn−2p2,2 = (
2− r

(1− r)2
) ∗ p2,2 (1.37)

Equation 1.30 can be expressed as:

L =
1

(1− q)2
p1,1 + (

2− r
(1− r)2

) ∗ p2,2 ( From Equations 1.33 and 1.37 )

(1.38)

The average waiting time in the demand queue, Wd = L
λd

1.6.3 Results of Second Attempt

We have used values measured from the NMS simulation to investigate the

analytical model presented. Simulation results for p = 1 and d = 2 were

obtained for different demand miss rates. The simulation results are then

compared with results from analytical model. This is shown in Figure 1.7

and also in Mapp et al. [2009] 1.

The two results are quite close in value over a wide operational range.

This indicates that the model will be useful in developing practical algo-

rithms for high-performance network-based servers. It should be noted that

the model is approximate as it depends on which state of the imaginary

1Full text in APPENDIX ??
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Chain/Series is used to calculate r. This is because the solution for r varies

slightly depending on which state is used. The best results were obtained

using the state 2, 2 which, in this case, is equal to K, the maximum batch

size.

This is shown by referring back to Equation 1.8. If n = 2, we get the

following Equation:

(λ+ µ2)p2,2 = λp1,2 + µ2p4,2 + µ1p3,1

(1.39)

Note, that p1,2 does not actually exist in the gated-model, but it is

part of the imaginary PBM.

Figure 1.7: Average time to serve a demand miss (TD−NMS) using Simulation,
Partial Batch Model and Second Attempt (Our Model).
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1.7 Towards a General Solution

In this section, we seek to extend the method used for K = 2 to a general

value of K. So a gate-limited model, where K is equal to the maximum

number of requests that can be served at any moment, can be represented

by a gated-limited model of K series or chains. Furthermore, if we represent

a given chain by m, we can express the average number of requests in that

chain, Lm, in terms of the first element of that chain, pm,m. For m < K, this

sum for that chain is given by:

Lm =
∞∑
n=m

n(
λ

(λ+ µm)
)n−mpm,m (1.40)

Expanding:

Lm =
∞∑
n=m

(n− (m− 1))(
λ

(λ+ µm)
)n−mpm,m

+(m− 1)
∞∑
n=m

(
λ

(λ+ µm)
)n−mpm,m (1.41)

Using the same technique as above and by letting rm = λ
λ+µm

, the first term

can be expressed as:

∞∑
n=m

(n− (m− 1))rn−mm pm,m =
∞∑
n=m

d

dr
rn−(m−1)
m pm,m (1.42)

Rearranging:

∞∑
n=m

d

dr
rn−(m−1)
m pm,m =

d

dr

∞∑
n=m−1

rn−(m−1)
m pm,m (1.43)
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Let p = n-m+1

=
d

dr

∞∑
p=0

rpmpm,m

=
d

dr
(

1

1− rm
)pm,m

=
1

(1− rm)2
pm,m (1.44)

The second term:

(m− 1)
∞∑
n=m

(
λ

(λ+ µm)
)n−mpm,m

= (m− 1)
∞∑
n=m

rn−mm pm,m (1.45)

Let q = n−m;

= (m− 1)
∞∑
q=0

rqmpm,m

= (m− 1)
1

1− rm
pm,m (1.46)

and thus we get the sum:

Lm =
m− (m− 1) ∗ rm

(1− rm)2
pm,m (1.47)

L =
K∑
m=1

Lm =
K∑
m=1

m− (m− 1) ∗ rm
(1− rm)2

pm,m (1.48)
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For m < K,

rm =
λ

λ+ µm
(1.49)

For m = K, we use the imaginary PBM technique to solve for rK . Further-

more, we can sum the probabilities in each chain, for m < K

Sm =
∞∑
n=m

(
λ

(λ+ µm)
)n−mpm,m (1.50)

Let q = n−m:

Sm =
∞∑
q=0

(
λ

(λ+ µm)
)qpm,m

Sm =
λ+ µm
λ

pm,m (1.51)

If we let pm,m = Cm,mpK,K , we can express pK,K as:

pK,K =
1

C0,0 +
m=K−1∑
m=1

λ+ µm
µm

Cm,m +
1

1− rk

(1.52)

For a general technique, we need to find the value of Cm,m and we can

do so using the equations for the states of pm,m in our model. For K = 2,

these equations are Equations 1.6, 1.7 and 1.8. This can be done by solving

a series of simultaneous equations. This is not further pursued in this thesis

because we are primarily interested in getting an algorithm for prefetching

and caching based on the constraints highlighted in the previous chapter.

Hence, simulation results from the simulation platform can also be used for

this purpose. However, this effort shows that it is possible to get fairly

accurate waiting time results over a wide operational range based on this

analytical model.
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1.8 Conclusion

This chapter presented an analytical model which could be used to estimate

the average time to serve a demand miss, (TD−NMS), for a given demand

arrival rate and prefetch rate. Comparison of the results from the analyt-

ical model and simulation results showed that the results estimated by the

analytical model are within the confidence range of the simulation. Hence,

the model can be used at run time to estimate the average time to serve the

demand misses for a given scenario. We will now explore the operational

space where QoS could be provided for streaming applications and demand

misses.
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