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Cyclic-Service Systems with Probabilistically-Limited 
Service 

Kin K. Leung, Member, IEEE 

Abstruct-We analyze an asymmetric cyclic-service system with a 
probabilistically-limited (P-L) service policy. In such a service policy, 
the maximum number of customers served at a queue during a server 
visit is determined by a probability, which is independent of system 
states. Exhaustive, limited-k, and Bernoulli service are special cases of 
the P-L policy. Customer service times and changeover times have gen- 
eral distributions. A numerical technique based on discrete Fourier 
transforms is proposed to solve for the queue-length distributions. 
Thus, the waiting and response time distributions are obtained. A set 
of numerical examples is presented to validate the approach. 

I .  INTRODUCTION 

CYCLIC-SERVICE SYSTEM (also known as a polling A system or token-passing system) is a set of queues served 
by a single server in a cyclic manner. Excellent surveys of re- 
sults on cyclic-service systems with extensive lists of references 
have been presented by Takagi in [24] and [25]. Such consid- 
erable research attention is due to the wide applicability of these 
models in communication, computer, and production systems. 

Various service disciplines for cyclic-service systems have 
been studied, which include exhaustive, gated,  and limited ser- 
vice policies. The first two policies have been completely 
solved, in the sense that their waiting time distributions have 
been obtained (cf. [8], references in [25]), while the average 
waiting times can be computed by solving a set of linear equa- 
tions (cf. [ l l ] ,  [22]). However, the systems with limited ser- 
vice are difficult to analyze and few exact results exist. In 
particular, for symmetric systems with limited-one service (also 
known as alternating or nonexhaustive service),  the average 
waiting times have been obtained (cf. [12], [20]). Asymmetric 
systems with two queues and limited-one service have been 
solved in [3], [6], and [9]. Recently, a numerical solution for 
systems with Bernoulli service has been proposed in [l] .  Be- 
cause of the analytical difficulty, many researchers (cf. [4], [ 131, 
[ 141, [23]) approximate the average waiting times for various 
limited service policies. 

In this paper, we consider an asymmetric cyclic-service sys- 
tem with a probabilistically-limited (P-L) service policy. In such 
a service policy, the maximum number of customers served at 
a queue during a server visit is determined by a probability, 
which is independent of system states and can be different for 
various queues. 

The P-L policy is motivated by two major reasons. First, this 
policy allows a unified treatment in the analysis of systems that 
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involve several commonly-used service policies such as ex- 
haustive service, limited-k service (referred to as E-limited ser- 
vice in [ 101 and [ 13]), and Bernoulli service [23]. Such a unified 
approach is possible because these disciplines are the P-L pol- 
icy with appropriate probability settings. Second, the P-L pol- 
icy complements the inadequacy of existing policies. For 
example, these policies serve at least one customer from a no- 
nempty queue at each server visit, while the P-L policy allows 
the server not to serve the queue. Such a situation occurs on a 
processor in the 5 E S P  Switch developed by AT&T. On that 
processor, when a nonempty queue is polled, it may not serve 
the queue in that visit, depending on the state of other parts of 
the switch. 

To study the system with the P-L policy, we adopt the ap- 
proach introduced in [8] and consider imbedded Markov chains 
formed at the instants of (customer) service beginning, service 
completion, (server) visit beginning, and visit completion. (A 
visit is the period of time at which the server is continuously 
serving a particular queue. If no customer is served during a 
visit, the visit beginning and completion occur simultaneously. 
This situation occurs either if the queue is empty when it starts 
to be served, or the server chooses not to serve any customer 
despite the fact that the queue is nonempty. The instant of a 
visit beginning is also referred to as a polling instant.) We ex- 
press the queue-length distributions as functions of the prob- 
ability generating functions (pgf ’s) for the state probabilities 
observed at visit-completion instants. A numerical technique 
based on discrete Fourier transforms (DFT’s) is used to solve 
for the pgf’s, from which the response time and waiting time 
distributions are obtained. 

In the following, Section I1 describes the model and its as- 
sumptions. The pgf for the marginal queue-length distribution 
and the Laplace transforms (LT’s) for response and waiting 
times at each queue are also derived. This pgf involves other 
unknown pgf’s, for which a functional equation is developed 
in Section 111. In Section IV, a numerical technique based on 
DFT’s is proposed to solve for the unknown pgf’s. Section V 
discusses the estimates of the “maximum” queue lengths and 
correctness checks on the numerical results. A set of numerical 
examples is given in Section VI. Finally, Section VI1 presents 
our conclusions. 

11. RESPONSE A N D  WAITING TIME ANALYSIS 

Consider a cyclic-service system with M queues, indexed by 
i = 1 , 2 ,  - * *  , M, which are served by a single server in a 
cyclic manner. Customers in a queue are served in the order of 
their arrival. Each queue is assumed to have infinite waiting 
room. At each queue i ,  customers amve according to a Poisson 
process with a rate Xi, and their service times have a general 
distribution with a mean denoted by X,. The offered traffic at 
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queue i is defined as p, = XI?,. Thus, the total offered traffic in 
the system is p = Cf"= p,. 

The service discipline in use is the P-L policy, as described 
above. More precisely, each time the server polls queue i (i.e., 
at the visit beginning), the maximum number of customers to 
be served (preferred to as the service limit) during the visit is 
determined as follows. Each queue i has a set of service limit 
probabilities { a{ 1 where Cy= a{ = 1. The service limit for a 
server visit at queue i is equal to j with probability a!. The 
choices of service limits are independent of the system states. 
During a visit, when the queue in service becomes empty or its 
service limit has been reached (whichever occurs first), the 
server switches to visit (serve) the next queue. We denote the 
changeover time incurred by the server to switch from queue i 
- 1 to i by c,, which has a general distribution. It is understood 
the subscript i - 1 must be replaced by M for i = 1. 

Remark I: If ay is nonzero and queue i is nonempty when it 
is polled, it is possible that no customer from the queue is served 

Remark 2: The P-L policy includes the common service dis- 
ciplines such as exhaustive, limited-k, and Bemoulli service by 
appropriate probability settings. In fact, the P-L policy can be 
a mixed service discipline. To illustrate this, if queue i has ex- 
haustive service, then up" = 1 and a: = 0 for j < 00. If queue 
i has limited4 service, its service limit for each visit is a con- 
stant (denoted by K, ) and we have a: = 1 and a{ = 0 for j # 
K,. Further, if queue i receives Bemoulli service with a prob- 
ability p , ,  then ay = 0 and a{ = (1  - p,) p { - '  for j = 1, 2, 

9 W. U 
Given { a! } , the service limit averaged over all server visits 

at queue i is L, = ja!. We assume that each queue in the 
system is stable and define the cycle time as the time interval 
between two polling instants at the same queue. Then, by the 
balancing argument [2], the average cycle time at steady state 
is 

during the server visit. 0 

. , .  
- 

M 

c = c CJ(1 - p )  (1)  
1 = I  

where C, is the average of c,. Under the P-L policy, one can 
extend the arguments in [2] to find that the necessary and suf- 
ficient conditions forall queues being stable are p < 1 and for 
each queue i, X,C < L,. 

A. Probability Generating Functions for System State 
Probabilities 

To analyze the cyclic-service system with the P-L policy, we 
observe the system at these instants: service beginning, service 
completion, visit beginning, and visit completion. This results 
in a set of four imbedded Markov chains. In each chain, the 
system state is described by i, the queue where a service or visit 
takes place, and a vector g = ( n l ,  n,, * , nM), where nj is 
the number of customers present in queue j at an imbedded time 
epoch. Then, we recognize that the results of Section I1 in [8] 
are applicable to the system under consideration. 

Remark 3: In fact, the analysis in Section I1 of [8] is so gen- 
eral that i t  is valid for any nonpreemptive service discipline, as 
long as each queue is stable. This is because no assumption 
involving the specifics of the service policy in use is made. The 
analysis has been applied to study the performance of disk stor- 

Before continuing our discussion, let us define some nota- 
ages in [ 5 ] .  0 

tion: 

X i ( s ) :  LT for the customer service time at queue i, 
Ci(s):  LT for the changeover time ci, 
z = (Zl, 22, * * 9 ZM), 

X i ( z )  = X i (  X I  - h l z l  + * + AM - XMzM) :  pgf for the 
joint probabilities of the numbers of customers arriving at 
all queues during a queue-i customer service time, 

. . + hM - X M z M ) :  pgf for the 
joint probabilities of the numbers of customers amving at 
all queues during the changeover time,ci, 

P' , (n) :  state probability of the imbedded Markov chain 
formed at service-completion instants, 

Ci(z) = Ci( XI - X l z l  + 

a m  m 

P L ( n ) :  state probability of the imbedded Markov chain 
formed at visit-beginning instants, 

m m  m 

a'(z) = n ,  c =o n 2 = 0  c * * n M = O  c z;'ZB . * .  ?/Pb(n), 

Pb(n):  state probability of the imbedded Markov chain 
formed at visit-completion instants, 

m m  m 

P(H) = c c * * c Z l ' d '  . . .  f/Pb(n) 9 

n l = 0  n 2 = 0  n ~ = 0  

y: the long-term ratio of the number of queue-i visit comple- 
tions to the total number of (customer) service completions 
at all queues. 

Using our notation and applying (19) in [8] to our system, 
we obtain 

for i = 1, 2, , M. This relates the pgf for state probabilities 
at a service completion to those for the state probabilities at the 
preceding and the subsequent visit completions. Note that (2) 
has two unknowns: the quantity y and pgf's P ' ( z ) .  Let us first 
find y here. A recursive relation among P ' ( g ) ' s  is obtained and 
solve later. 

Since the system is stable, y can be obtained by observing 
the system behavior during an average cycle. Clearly, the aver- 
age number of service completions in an average cycle equals 
( X I  + X2 + - * + X M ) T .  This is because all arrivals are even- 
tually served, as each queue is stable. Hence, the total arrival 
rate and the completion rate are equal at equilibrium. It is also 
clear that there is one and only one queue-i visit during each 
cycle. Combing these two facts yields 

* 

y = l / [ (  X I  + X2 + . . - + X,)C]. ( 3 )  

B. Marginal Queue-Length, Response and Waiting Time 
Distributions 

, 1, z,, 
1, * * . , 1 ) is the pgf for the marginal queue-length probabili- 
ties at queue i observed at a service-completion epoch, and it 
happens that the service completion is a queue-i customer. In 
addition, d( 1 ,  . - - , 1 )  gives the probability that an arbitrary 
service completion is a service completion of a queue-i cus- 
tomer. Combining these two facts, the pgf, NI ( z,), for the mar- 
ginal queue-length probabilities for queue i when a queue-i 
customer service is just completed is given by 

By the definition of *'(I), it is clear that d( 1, * 

Ni(zi) = d ( 1 ,  . * * , 1, zi, 1, * * , 1 ) / d (  1, * * , 1).  (4)  
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Let us find T;( 1, . , 1 ). As mentioned above, the total 
amval rate and the service completion rate are identical at equi- 
librium as the system is stable. Hence, the probability of an 
arbitrary service completion being a queue-i customer is simply 
the ratio of A; to the total amval rate. That is, ri ( 1, - , 1 ) 
= A i / (  AI + . . . + A,,,,). Substituting this into (4) and using 
(2)-(3), we obtain 

1 X i (  Ai - AiZi) 
N,(Z;) = - . 

A;: zi - X ; (  A; - hiZi) 

* [ p ( l ,  * * * ,  l,Zi, 1, . . .  , 1) 

* Ci(1, . . .  , l ,z ; ,  1, . . .  , 1) 

- Pi(1, . . . , 1, z;, 1, . . . , I ) ]  ( 5 )  

where C is given in (1). Since customers at each queue are served 
in the order of their arrival, the LT for the customer response 
time (waiting plus service time) at queue i is given by 

T ( S )  = Ni(l  - S / A i ) .  (6)  

As customer service is nonpreemptive, the LT for the waiting 
time at queue i is 

K(s) = T ( S ) / X i ( S )  = Ni(1 - S / A i ) / X j ( S ) .  ( 7 )  

To obtain the queue length, response and waiting time distri- 
butions, our remaining task is to solve for P i ( z ) ' s  in ( 5 ) .  

111. A FUNCTIONAL EQUATION FOR p ' ( z )  
In this section, we first establish a recursive relationship be- 

tween p'(1) and p i - ' ( z )  f o r i  = 1,  - . * , M. Then, a func- 
tional equation for P ' ( z )  is derived. 

A .  A Recursive Relation for P ' ( r )  and P i -  I (z) 
Consider that queue i is in service. To find p ' ( z ) ,  we first 

condition that the service limit for the current visit is L .  Then, 
one needs to keep track of the system state at each service com- 
pletion at queue i. Further, one has to deal with the fact that 
the visit ends when either queue i becomes empty or the service 
limit L has been reached, whichever occurs first. To overcome 
this, we consider a modified system in which the system enters 
an absorbing state whenever queue i becomes empty and the 
server serves exactly L "customers" at queue i during the visit. 
If queue i becomes empty after j (  < L )  customers have been 
served, the rest of L - j "customers" served during the visit 
are not real customers, but rather represent a time interval at 
which the system state remains unchanged. Thus, the system 
state in the original system at the visit completion, regardless 
of its cause, is identical to that in the modified system. Finally, 
we uncondition L with its probabilities { a: } .  This is our ap- 
proach in the following. 

Let us begin with some additional notation: 

- $' = ( G I  ( j  ), $*( j ), * * . , $ M (  j 1): numbers of customers 
at all queues immediately after j service completions at 
queue i since the visit beginning (note that the index i is 
omitted from this notation for brevity), 

P $ ( g ) :  state probability that $I = 2 and queue i is in 
service, 

- 

m 

f = ( T I ,  72,  . * , T ~ ) :  numbers of customers amving at all 

1' = (0, 0, , 1, 0, . . . , 0): a zero vector, except that 

First, we note that the customers in the system at a queue-i 
visit beginning are those at the queue-( i - 1 ) visit completion 
plus the amvals during the changeover time c,. Written in terms 
of pgf's, we have a'(z) = P ' - I ( z ) C , ( z ) .  By definition, 
'ko(z) = a'(g). Thus, we also have 

queues during a queue-i customer service time, 

the ith element is 1. 

* O ( z )  = P'-'(z)c,(z). ( 8 )  

Now, let us relate the system state at a service completion to 
that at the previous completion. Consider that j customers at 
queue i have completed their service during the current visit. 
Assume that j < L .  Then, the system state at the j + 1st service 
completion can be related to that at the service completion ep- 
och of the jth customer by 

for j = 0, . . - , L - 1. Now, we can use (9) to obtain a re- 
cursive relation between *'(I) and *'+'(z), as shown 
below. 

Let I be the index of the queue at which the server is visiting. 
By definition, f $ ( g )  = Pr[$' - = g ,  I = i]. Thus, we have 

* J + l ( z )  = E [ z f I ( l + I ) Z $ 2 ( I + I )  . . . zFM"+l) I I  = i] Pr [ I  = i ]  

m m  m 

= c . . .  c E I Z f l ( ' + l ) Z p ( ' + l ) . . .  
nl - 0  "2-0 n M - 0  

ze(J+l)(f = E ,  I = i ]  Pr [ $ I  - = 11, I = i ] .  

( 10) 

Depending on whether $, ( j ) = 0 or not, replace 1' + I in (10) 
according to (9). After algebraic manipulations, we get 

f o r j  = 0, 1, * , L - 1. As discussed above, given that the 
service limit for the visit is L,  the system state at the queue-i 
visit completion is characterized by * L ( z ) .  Thus, uncondition- 
ing L with probability af- in this relation yields 

m 

It is important to recognize that P '  (z) is related to 0'-  I (z), via 
(12), ( l l ) ,  and (8), for i = 1, . . . , M. This forms a recursive 
relation between P ' ( z )  and / 3 - ' ( z _ ) ,  which leads to a func- 
tional equation, as described next. 

Remark 4: If each queue receives the limited-one service, 
one can obtain from (8), (1 l ) ,  and (12): 

forall i = 1, * - , M. 0 

. -  
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B. The Functional Equation 
Let us focus on the numbers of customers at all queues, g = 

( n l ,  at a visit completion 
of a particular queue, the state probabilities for g at the next 
visit completion of the same queue can be fully characterized 
(although it is very involved mathematically). Further, by 
steady-state arguments, the state probability for g at two con- 
secutive instants of visit completion at the same queue are iden- 
tically distributed. Formally, let Fi denote the mapping from 
P'-'(z)-to @ ' ( a ) ,  as defined by (8), ( l l ) ,  and (12). Hence, we 
have /3'(z) = Fi( /3'- '(g)) f o r i  = 1, * , M. Then, recur- 
sively replacing /3 - ' (z) in this relation by Fi - ' ( pi  - (z) ) 
yields 

, n,). We observe that, given 

* * e ) ) .  . .)). 
This is the functional equation for P i ( z )  for any given i = 1, 

Apparently, it is difficult to solve for /3'(g) from (14) ana- 
lytically because the mapping functions are so complicated. 
However, (14) can be used as a basis for an iterative procedure 
as follows. One can choose an initial guess for /3'(z) (e.g., 
corresponding to an empty system), which is input to (14) as 
the argument to generate a new result for /3'(z). Then, this pro- 
cess is repeated by substituting the new result into (14) as the 
argument again. Since the system has a steady state, after a 
sufficiently large number of iterations, /3'(z) converges to the 
steady-state solution, as one would expect. Once /3'( z) for some 
i is obtained, all other /3'( z ) ' s  also become known by applying 
the mappings on pi (  z) appropriately. Thus, the remaining task 
is to solve for /3 (z) from (14) numerically. 

, M. . . .  

IV. SOLVING p i ( z )  BY DFT TECHNIQUE 
In this section, we closely approximate O'(z) and /3'(z) by 

their corresponding DFT's, { fJ( ) }  and { B i (  ) } ,  respec- 
tively. Then, an iterative algorithm is proposed to solve 
{ b i (  . ) }  from (14). 

A. Approximation by DFT's 
Clearly, each queue has a finite queue length at steady state, 

as all queues are stable. Thus, for each queue i, one can esti- 
mate its "maximum" queue length, including the one in ser- 
vice, to be Ni (such estimation is discussed later) and make the 
following approximation: 

N I - I  N2-1 N u - I  

O J k )  = c c * .  c $Id' * * $P$(z). (15) 
n i = o  n2=0 n u = O  

Since the number of all possible states for g now becomes finite 
due to the approximation, one can use DFT's to represent 
{ P$( E )  }, instead of using z-transform in ( 1 3 ,  so that a useful 
property of DFT can be used in computation. To obtain the 
DFT's, we define wi = e-2*J/Nt for i = 1, 9 * , M where j = 
f i . (Note that j is also used as an integer index. ) Further, 
let& = ( k l , k 2 ,  - , k,) where ki = 0, * , Ni - 1, and let 
S be the set of all possible &. Let the DFT's for { P$(g) } be 
denoted by { fJ(&)}. By the definition of DFT, { fJ(&)} is 

given by 
N I - I  N2-I NU-I 

(16) 

for each & E S. Similarly, one can obtain the DFT's { b ' ( & ) }  
for { P b ( g ) }  for i = 1, , M. Further, let the DFT's cor- 
responding to C , ( z )  and X,(g) be denoted by { C l ( & ) }  and 
{ $(&)}, respectively. 

One major difficulty in dealing with the z-transform is the 
computation of OJ(g)lz,=o, and /3 ' - ' (z )  lz,=o and C , ( z )  (&=o 
fo r j  = 0 in (1 1). These pgf 's actually represent the cases where 
queue i is conditioned to he empty at the imbedded epochs. 
Such difficulty can be overcome by the appropriate use of the 
DFT's. For this, we define, for each & E S and j = 0, , 00 ,  

- 
f J ( k l ,  * * , k l - l ,  0, k1+', , k,) 

N I - I  N , - I - I  N , + I - I  N u - I  

n , = 0  n , - 1 = 0  n , + , = O  n u = O  

w:~n~ . . . w k r - ~ n , - ~ w k z + ~ n r + ~  . . . 

- c . . . c  - C . . . C  

1 - 1  1+1 

* P$(nl,  * - * , n l - l ,  0, n , + l r  * - , n M ) .  (17) 

This notation is explained below. Note that queue i is empty, 
as indicated in the argument of P'J. ( ) on the RHS. With this 
definition, one can make use of the property of the DFT [21] to 
prove that 

W k 1 ,  , k1-', e, - , kM)  

Now, let,us clarify this notation. Certainly, one could use 
another notrltion to take the place of f J  ( k l ,  * * - , k, - I ,  8, k, + I ,  

. . .  , k,) in (17) and (18). However, to simplify our notation, 
it is used to show that kJ's, except k,, are identical on both sides 
of (18). In addition, 0 is a dummy argument which takes the ith 
position (to replace k,) to indicate the fact that queue i is empty. 
Once the DFT's { @ I ( & ) }  are known, { f J ( k l ,  * , k , -  I ,  8, 
k , + ' ,  - - 

* e , kl -19  8, k l + l ,  
, k,)} are also known from (18). 

Using a similar definition for f ' ( k l ,  
, k M ) ,  we can get . . .  

b*-'(kl, e , k 1 - ' ,  e, k , + ' ,  e - , k M )  
N,-1 

N, k , = O  
= - C b 1 - I ( k 1 ,  - * , k l - l ,  k, ,  k l + l ,  * , k,) (19) 

and 
Q k I ,  , k , - l , e , k , + l ,  A)  

~ N - I  

+ A, 
I '  

= - C Ci(X, - x,w:l + . * * 
Ni k , = O  

B. An Iterative Algorithm 

Before proposing an iterative algorithm to solve for { b i  (k) } , 
one needs to keep all possible service limits at each queue finite 
so that the iterations can converge in a finite amount of time. 
To achieve this, except for exhaustive service, one can deter- 

1 1  -~ T 
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mine a service limit for queue i ,  denoted by L, such that 
ET=,+, U: is less than a very small value (e.g., If 
queue i has exhaustive service, we set L = 00. Then, the "max- 
imum" service limit for queue i ,  denoted by Ly,  can be chosen 
to be the minimum of Ni - 1 and L. (In some specific situations, 
one may choose Ly 2 N i .  See examples in Table 111.) 

Since S"(z)  and p i ( z )  are proper pgf's, (8), ( l l ) ,  and (12) 
are valid as long as I zi I 5 1 for all i = 1 ,  * * , M. Thus, one 
can replace each z, in these equations by up for any k j  = 0, 
. . .  , Ni - 1 .  As a result of using DFT's, the recursive relation 
given in terms of z-transforms can be converted into a set of 
relations in terms of DFT's. That is, for a given i = 1 ,  * * - , 
M, (8), ( l l ) ,  and (12) are equivalent to, for all 1 E S, 

f o r j  = 0, - 
$ j (  )] ,  and 

, Ly - 1 [note that the index i is omitted from 

respectively. Now, (21)-(23) become the DFT version of the 
mapping function Fi ( * ) for i = 1 ,  - * , M. Consequently, they 
allow us to solve for { b ( k )  } from (14). 

Now, let us outline the iterative approach to solving for 

* * , kM). For easy referencing during the iterations, one should 
precalculate { gi (4) } , { ci (k) } , and { ti (k"') } (from (20)) for 
i = 1 ,  . . . , M and for each k E S as they are fixed for a given 
set of system parameters. To start the iterations, we choose the 
initial guess for { b - (5) } corresponding to an empty system. 
That is, D i - ' ( & )  = 1 for each k E S. Then, { b i - ' J b ( ' ) ) }  are 
Ybtained from (191. For each k E S, b i - ' ( k ) ,  P'-'(k"'), 
X i ( k ) ,  Ci(k) ,  and C i ( k " ' )  are input into (21)-(23) to generate 
b i ( k ) .  These DFT's { b i ( k ) }  are then used as arguments to 
generate { b i +  (k) } according to (21)-(23) again. After going 
through all mappings in sequence as indicated in (14), the new 
results of { b i ( k ) }  are compared with the old ones. If for all 
k E S, their difference is less than a tolerable error (e.g., IO-*) ,  
then the iteration stops. These DFT's { b ' ( k ) }  represent the 
steady-state results. Once { b ' ( k ) }  is obtained, we can input 
them F j +  I ( * ) and then the others: as defined in (21)-(23), in 
sequence to obtain other DFT's { 0'  (k) } .  

Using { b i ( k ) }  to find Ni(zi), we set zi = up for ki = 0, 
. . .  , Ni - 1 in (5). Note that the DFT equivalences of 0'- ( 1 ,  

, l , w : ' , l , ~ ~ ~ , l ) , p i ( l . ~ ~ ~ , l , w ~ , l , ~ * ~  , 1 )  and 
~ ~ ( 1 ,  . * .  , 1, U:', 1 ,  . - * , 1 )  are b i - ' ( 0 :  . . * , 0 ,  ki,  0, 
* * * , 0 ) ,  B'(0, , k;,  0 ,  . . .  , 0), respectively, which have been obtained from the it- 
erations. For ki = 0, , Ni - 1 ,  setting zi = OF and substi- 
tueng the DFT's into ( 5 )  correspondingly yield the DFT's, 
{ N i c k i ) } ,  for the marginal queue-length probabilities at queue 
i. By inversion of DFT's from { fii ( k i )  } , we obtain the queue- 

{ b i ( k ) } .  For brevity, let & ( i )  = ( k l ,  . . . , L, e, k i + ' ,  

. . .  

, ki, 0 ,  * , 0), and Ci(O, 1 

length probabilities, { Pi,} for k, = 0, . . * , N, - 1 .  Using 
these probabilities, N, (z,) becomes 

N, - 1 

N,(z,) = $Pi,. (24) 
k , = O  

Substituting this into (6) and (7), the response and waiting time 
distributions are given by 

N ,  - I 

T , ( s )  = c Pk(l  - s / A J k 2  (25) 
k , = O  

and 
N.-I 

(26) 
1 - ' -  

W , ( s )  = - e c Pi,( l  - s/A,)", X,(s) k , = O  

respectively. Differentiating (26) at s = 0 gives the average 
waiting time at queue i: 

1 N,-l 

A, k , = O  
c kip:, - x;. (27) 

- 
)+I.=-* 

Note that one can easily obtain the moments of response/ 
waiting times from (25) and (26). However, since both series 
do not converge for all s with Re ( s )  2 0, the distribution 
functions may not be obtained from common methods of LT 
inversion. To find the response time distribution, we use the 
relation T, ( A, - A, z,) = N, ( 2 , )  where N, (z,) is given by (24). 
The complementary cumulative function for the response time 
is closely approximated by a sum of Laguerre functions 
weighted by unknown coefficients [ 181. Then, T, ( A, - A, z, ) is 
expanded into a Taylor series at z ,  = 0, in which the coefficients 
are linear functions of the unknown coefficients. Since the coef- 
ficient of e in the expansion must be equal to Pi,, the unknown 
coefficients can be recovered from solving a set of linear equa- 
tions, thus the response time distribution is obtained. Similarly, 
one can also recover the waiting time distribution. If { Pi, } are 
accurate, this new inversion method yields the distributions very 
accurately. (This has been verified on other systems for which 
exact solutions are known.) However, due to the aliasing phe- 
nomenon of the DFT's [7] and roundoff errors, our experience 
shows that, using { P i }  generated from the iterations, this 
method provides the response time distribution with an esti- 
mated relative error of a fraction of a percent. Since the LT for 
the waiting time involves X,(s) (i.e., a convolution in time do- 
main) which requires { Pi,}  to be more accurate, one can obtain 
the waiting time distribution by this method with a relative error 
of less than 1.5%. 

v. ESTIMATES OF MAXIMUM QUEUE LENGTHS AND 
CORRECTNESS CHECKS 

In this section, we consider systems with limited4 and Ber- 
noulli service. The methods proposed in [I31 or [23] can be 
used to approximate the average waiting time at each queue. 
Once the average waiting times are approximated, an estimate 
of the mean length of each queue i is known by Little's law. 
Let this quantity be A,. Now, the behavior of each queue is ap- 
proximated as an individual M/M/ 1 queue with a server utili- 
zation of pi ,  such that its mean queue length matches A i .  By 
M / M / I  results, this yields iii = p i / (  1 - 5;). Thus, pi  can be 
solved from this relation as Ai is known. Since N ,  has to be 
chosen such that the probability of reaching that queue length 
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TABLE I 
AVERAGE WAITING TIMES FOR 3-QUEUE SYSTEMS WITH LIMITED-ONE SERVICE 

3.78498 1. (51, 36, 36) 6.86406 5.45389 5.49541 
(6.80) (5.38) (5.38) 3.7848 

4.18990 4.1904 

2.96565 2.9656 

.2 ( 67, 54, 54) 11.40066 9.06770 9.10407 
(10.72) (8.30) (8.30) 
9.28629 1.87256 1.90727 

2’1  (98’ 15’ 15) (9.34) (1.89) (1.89) 
3.33234 3.3712 2,2 (281, 26, 26) 58.46543 2.32686 2.36956 

(55.70) (2.31) (2.31) 

Note: Average waiting times in parentheses are simulation results adopted from [4] and [13]. 

has a very small value 6 (e.g., 5 
length distribution, an estimate for N, can be obtained from 

by the M/M/1 queue- 

(1 - f i , ) f i ; N - ’  5 E .  (28) 

This method provides a set of initial choices for { NI } . If the 
correctness checks (to be discussed) indicate that the numerical 
results generated from these initial choices are not satisfactory, 
they can be revised accordingly. 

One simple way to check the correctness of the numerical 
results-queue-length probabilitieslis by observation. If { N, } 
is chosen properly and the computation is performed as ex- 
pected, the queue-length probabilities decay to a very small 
value (e.g.. on the order of l ow6)  as the queue length ap- 
proaches its maximum value. 

Another method to check the correctness of the results-aver- 
age waiting times-is to make use of the waiting-time conser- 
vation (pseudoconservation) laws. If the system uses the limited- 
one or Bernoulli service policy, two conservation laws have 
been proved in [27] and [26], respectively. These laws simply 
state that the weighted sum of average waiting times equals a 
constant (referred to as the Conservation constant). For the lim- 
ited-k service, one can apply another conservation law given by 
(3) in [lo]. Note that g!’’ (the second factorial moment of the 
number of queue-i customers served during each visit) in this 
law is an unknown. Nevertheless, we know that 81” 2 max (0, 
- 3,) where 2, = A, C. Substituting this into the conservation 

law yields an upper bound for the weighted sum of average 
waiting times. If the computation is performed properly, the 
average waiting times obtained from the numerical approach 
should closely satisfy the conservation laws. For the cases of 
the limited-k service, our numerical results also show that the 
upper bound for the conservation constant is tight. 

A. Two-Queue Systems with Limited-One Service 

First, we considered several two-queue systems with limited- 
one service for which the exact average waiting times have been 
obtained in Table I of [3]. Our algorithm was able to reproduce 
the average waiting times reported in the table and the CPU 
time consumption was about 0.1 s to 2 min. 

B. Three-Queue Systems with Limited-One Service 

Second, we considered a set of four 3-queue systems with 
limited-one :service. These systems correspond to Cases 1.1, 
1.2, 2.1, and 2.2 in [13]. Table I summarizes the average wait- 
ing times obtained from the numerical procedure. The weighted 
sums of these waiting times along with their conservation con- 
stants are also presented. Clearly, the average waiting times 
closely satisfy the conservation law. The CPU times consumed 
by the procedure for the first three cases was about 3, 15.5, and 
2.5 min, respectively. However, due to the extremely heavy 
load in Case 2.2, it required about 5.5 h of CPU time. By the 
conservation law, the numerical results for Case 2.2 are not as 
“exact” as in other cases, but we were not able to further im- 
prove the results. This was so because a little increase of (NI ,  
N2, N,)-from (281, 21, 21) to (281, 26, 26)-increased the 
CPU time from 2.5 to 5.5 h. However, only marginal improve- 
ment was obtained. Nevertheless, the average waiting times for 
Case 2.2 shown in Table I appear to be more “accurate” than 
the simulation results in [4] and [ 131 as the former comes closer 
to satisfying the conservation law than the latter. The response 
time distributions for queues 1 and 2 in Case 1.1 are given in 
Fig. 1. The queue-length distributions have been reported in 
1161. 

VI. NUMERICAL RESULTS C. Three-Queue Systems with Limited-k Service 

We considered four sets of numerical examples. These ex- 
amples have been previously studied by other researchers, for 
which exact or approximation results have been obtained. To 
obtain high quality results, our computation was performed on 
a CRAY X-MP computer with 64-bit words. The iteration stop- 
ping criterion was except for the second set of examples 
where the criterion was to reduce CPU time. The method 
in Section V was used to obtain the initial estimates of { Ni} 
with E = 2 x in (28). 

The third set of examples involve systems with limited-k ser- 
vice, which correspond to Cases 9.1, 9.3, 1 1.5, and 1 1.7 of the 
E-limited service in [ 131. Table I1 presents the average waiting 
times obtained from the algorithm, which were validated by 
simulation. The weighted sums of waiting times and the upper 
bounds for their respective conservation constants are also pre- 
sented. The close comparison of the weighted sums with the 
bounds shows that they are tight bounds. The CPU time con- 
sumption ranges from 0.5 to 7.6 min for these cases. The re- 
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Fig. 1. Response time distributions. 

TABLE I1 
AVERAGE WAITING TIMES FOR 3-QUEUE SYSTEMS WITH LIMITED-k SERVICE 

9.1 

9.3 

11.5 

11.7 

(27, 63, 63) 

(42, 56, 56) 

(47, 23, 23) 

(42, 30, 30) 

2.54335 
(2.5523) 
3.71966 
(3.7373 ) 
3.05708 
(3.0429) 
2.04488 
(2.0433) 

10.42245 
(10.0453) 

6.84054 
(6.8457) 
4.5877 8 

(4.6233) 
5.69626 

( 5.6840 ) 

1 0.48704 
( 10.1450) 

6.97543 
(6.9230) 
4.62628 
( 4.5967 ) 
5.80968 
( 5.7806) 

3.6282 I 

3.57088 

2.72102 

2.7 I572 

3.66959 

3.65039 

2.80239 

2.77295 

Note: Average waiting times in parentheses are new simulation results. 

TABLE I11 
AVERAGE WAITING TIMES FOR 2-QUEUE SYSTEMS WITH BERNOULLI SERVICE 

0.48983 5.76710 
(27, 30) (0.4897)* (5.7304)* 8- 1 (1,  0.5) (28, 223) 1.13032 1.13033 

1.04596 

0.96158 

0.96 158 

0.96158 

1.04597 

0.96660 

0.96366 

0.96 16 I 

0.84146 2.05188 

2.86369 0.90698 

3.332 15 0.84059 

3.34494 0.836 15 

E-2 ( 1 ,  0.75) (39, 98) (38' 73) (0.8406)* (2.0513)* 

(116, 56) ('15' 5 5 )  (3.345)** (0.8361)** 

8-4 (1,  1) (116, 56) (345' 16') (3.345)** (0.8361)** 

8-3 (1,  1 )  

8 - 4  ( 1 . 1 )  ( 2 3 1 7  'I1) (6907 330) (3,345)** (0,8361)** 

Note: * and ** are new simulation and exact results, respectively 

sponse time distributions for Case 9.1 are shown in Fig. 1. The 
queue-length distributions are given in [ 171. 

D. Two-Queue Systems with Bernoulli Service 

Finally, we considered several two-queue systems with Ber- 
noulli service. The approximate average waiting times for these 
systems have been presented in Fig. 2 and Table I of [23]. The 
system parameters are: XI = 2, X 2  = 2.5, XI = 0.05 (exponen- 

tial distribution), i2 = 0.3 (Erlang-3 distribution), and C, = C2 
= 0.045 (constant). Table 111 presents the average waiting times 
from the numerical approach for five cases that use these param- 
eters and several Bernoulli probabilities, p I  and p z .  Simulation 
or exact results for these systems along with the weighted sums 
of average waiting times and their conservation constants are 
also included in Table 111. NI and N2 for Cases B-1 to B-3 were 
obtained by the method in Section V. The maximum service 
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limits, ( L y ,  hm), for the first two cases were chosen such that 
Ly = N I  - 1 and C,”=,;+, ( 1  - p2)p$-I -= The proce- 
dure consumed about 22.5 ,  3 ,  0 . 3 ,  0 .6 ,  and 4 . 4  min of CPU 
time for Cases B-1 to B-5,  respectively. 

As shown in Table 111, our numerical results for Cases B-1 
and B-2 are correct, as they have been validated by both simu- 
lation and the conservation law. However, the results for Case 
B-3 are not satisfactory, despite that they closely satisfy the 
*conservation law. This is because, as p1 = p 2  = 1, the service 
policy become exhaustive service in this case. Due to the high 
variability of the server intervisit time under the exhaustive ser- 
vice scheme, the method in Section V no longer yields good 
estimates for { N,  }. To show the effects of maximum service 
limits, (LT,  hm) for Case B-4 are three times those for Case 
B-3,  while other parameters remain unchanged. Clearly, our re- 
sults for Case B-4 come much closer to the exact values. For 
Case B-5,  we double the ( N I ,  N2) from that of Case B-3 and 
set the maximum service limits as three times these new maxi- 
mum queue lengths. Then, the numerical results in Case B-5 
are virtually identical to the exact results. This indicates that 
the proposed approach is capable of providing correct results, 
as long as { N, } and { Ly } are chosen properly. Our study shows 
that the method in Section V generally yields good estimates 
for { N,  }, except for cases where most of the queues have ex- 
haustive service. In those cases, one should repeat the algo- 
rithm with larger values for { N I  } and { Ly } to achieve accurate 
results. 

VII. CONCLUSIONS AND FUTURE WORK 
An iterative numerical approach based on DFT’s for asym- 

metric cyclic-service systems with a P-L service policy has 
been proposed. This techqniue has been validated by the wait- 
ing-time conservation laws (if applicable) and exact/simulation 
results. Since the memory and CPU time used by the algorithm 
are exponential functions of the number of queues, we currently 
can only solve relatively small systems if the offered traffic load 
is high. Nevertheless, our method is applicable to many appli- 
cations where the number of queues involved is small. Further, 
results from the proposed approach-response and waiting time 
distributions which are often difficult to obtain via simulation- 
can be used to assess the accuracy of new approximate methods. 
For more general applications, this new technique is also ap- 
plicable to solving imbedded Markov chains with a multidi- 
mensional state description (e.g., the disk performance problem 
analyzed in [5 ] ) .  

This work can be further extended in a number of ways. First, 
the method in Section V for estimating { N,} needs to be gen- 
eralized to consider the general P-L (mixed) service policy. 
Second, we note that the proposed approach is applicable to 
cyclic-service systems with compound Poisson arrivals and/or 
correlated arrivals [ 191. This is so because X, ( c )  and C, (g) can 
be easily obtained according to these special arrival processes. 
And, the rest of the approach remains essentially unchanged. 
Further, we plan to apply the proposed technique to approxi- 
mate the average waiting times for cyclic-service queues with 
a nonpreemptive time-limited service policy. 

Finally, unless approximations are made or new techniques 
are developed, the order of magnitude of memory and CPU time 
required by the proposed approach is intrinsically O( Cy“= I Lr 
rI5 N,). As an analogy to NP-complete problems, this expo- 
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nential use of memory and CPU time provides additional in- 
sight into why cyclic-service systems with limited service are 
so difficult to solve. If the modeling problem under considera- 
tion is indeed an NP-type problem, only small systems are tract- 
able and can be solved as the proposed technique is capable of 
doing. For systems with a moderate or large number of queues, 
we should be more convinced than ever before to pursue ap- 
proximate solutions. Nevertheless, it appears that one can base 
on the proposed approach to develop new approximation tech- 
niques for analyzing cyclic-service systems with limited ser- 
vice. 
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