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Abstract

The usage of network-based applications is increasing, as network speeds in-

crease, and the use of streaming applications, e.g BBC iPlayer, YouTube

etc., running over network infrastructure is becoming commonplace. These

applications access data sequentially. However, as processor speeds and the

amount of memory available increases, the rate at which streaming appli-

cations access data is now faster than the rate at which the blocks can be

fetched consecutively from network storage. In addition to sequential ac-

cess, the system also needs to promptly satisfy demand misses in order for

applications to continue their execution.

This thesis proposes a design to provide Quality-Of-Service (QoS) for stream-

ing applications (sequential accesses ) and demand misses, such that, stream-

ing applications can run without jitter (once they are started) and demand

misses can be satisfied in reasonable time using network storage. To im-

plement the proposed design in real time, the thesis presents an analytical

model to estimate the average time taken to serve a demand miss.

Further, it defines and explores the operational space where the proposed

QoS could be provided. Using database techniques, this region is then en-

capsulated into an autonomous algorithm which is verified using simulation.

Finally, a prototype Experimental File System (EFS) is designed and imple-

mented to test the algorithm on a real test-bed.
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Chapter 1

Introduction

1.1 Introduction

Due to the increase in CPU speeds and the amount of main memory available,

there has been an increase in the use of multimedia streaming applications in

today’s computing environment. These applications access files sequentially

from the storage device (e.g. disk) and need to be served at constantly high

data rates while they are executing, e.g. High Definition (HD) video data

rate is 5 MB/Sec, MPEG-4 data rate is 2.5 MB/Sec etc. Also, due to the

increase in network speeds, most of these applications are accessed over the

network rather than from local storage.

Since these applications access data sequentially, their future access

patterns are known, and hence prefetching can be used. Prefetching enables

the file system to bring in blocks of data before they are requested. This

allows applications to run without waiting for the blocks to be fetched from

the storage device i.e. without stalling, thus reducing the latency experienced

by the running application. For example, Ext2 and Ext3 file systems, used

in the Linux environment, perform static prefetching whereby a maximum

depth of 128KB is used to prefetch when sequential access is detected.

1



Prefetching can only work if it is economical. That is, if more blocks

are fetched than requested, the time to fetch additional and requested blocks

should be comparable to the time it would take to fetch only the requested

blocks. The additional time incurred by prefetching will result in increased

latency on waiting requests which might also need to be promptly serviced.

Clustering should be used to minimise the latency experienced. It

has the ability to fetch multiple blocks simultaneously thereby reducing the

latency when compared to fetching them one block at a time. However, the

number of blocks clustered in a request and the reduction in latency depends

on the storage mechanism being used. This can be exemplified using disk

hardware where the major component of latency is the “seek time”, the time

to move to the correct track. Once the correct track can be accessed, all the

data on that track can be obtained without further seek time. This means

that a disk can optimally cluster if multiple requests are laid on the same

track. Clustering on a disk can obtain up to 23 MBps compared to 200 KBps1

when blocks are fetched one at a time.

This observation demonstrates that clustering can provide high data

rates, but it is storage dependent. Also it could be exploited by prefetching,

as it allows the system to prefetch blocks economically.

In addition to clustering techniques on disk systems, the elevator algo-

rithm, Redundant Array of Inexpensive Disks (RAID) systems and caching

can also be used. These techniques also minimise the latency and can achieve

high data rates for disk systems. The elevator algorithm rearranges the re-

quests in such a way that the disk will experience a minimal amount of seek

time. This is done by arranging requests in increasing or decreasing track

numbers, hence minimising the movement of the head. RAID systems can

satisfy multiple requests in parallel and so achieve high data rates.

In most operating systems, recent accesses to the disk are stored in a

memory cache such as the UNIX buffer cache. Therefore, when blocks are

1Assuming 5 millisecond revolution time (latency) to fetch one block
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needed by an application, the cache is initially searched in order to satisfy a

request. If the block is found in the cache, minimal latency is experienced

by the running application2, if it is not found, it generates a demand miss

which must be promptly satisfied.

Using selective or all of the above techniques discussed, file systems can

fetch blocks for streaming applications (for sequential accesses), and demand

misses from the disk storage system, such that the overall latency experienced

by the running applications is minimised.

However, due to the increase in the speed and availability of networks

(e.g. 1 Gigabit networks are readily available and the availability of 10 Gi-

gabit network speed is not very far in the future), most of the multimedia

and database applications such as BBC iPlayer, YouTube, Systems applica-

tions and Products (SAP) etc., can now run over the network. Some of the

discussed techniques to obtain high data rates and minimise latency are not

relevant in networking environments. Similar techniques, like a RAID system

to satisfy multiple requests in parallel, are not readily available for network

storage. Caching techniques in network storage systems could remain sim-

ilar to disk-based systems, as the accessed data could be cached regardless

of being fetched from the disk or network storage. In addition, prefetching

and clustering techniques could also be used in network storage. As pointed

out earlier, the clustering effect depends on the storage mechanism, therefore

clustering on different network storage devices needs to be explored.

In general, a network storage server manages a huge amount of memory

blocks in the server. These blocks are used by the other computers over

the high-speed network. The network storage server only provides blocks of

storage to its clients. The blocks could be used by the client to store anything,

for example, it could be used to store file system meta-data, to store data

from an actual file or to store media data etc. Network storage servers can

either work at the file level or at the block level. One such network storage

server is the Network Memory Server (NMS) [Mapp et al., 2004], [Mapp et al.,

2Obviously, it will take time to search for a block in the cache
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2007]. It is being developed by Glenford Mapp, Dhawal Thakker and David

Silcott from Middlesex University. The NMS server stores all the data of its

clients in the main memory of the server. Hence, the latency experienced

in fetching a block of data will be dominated by the characteristics of the

network. Unlike the Network File System (NFS), the NMS works at the

block level whereas NFS works at the file level.

In this thesis, we propose to explore the network characteristics and

clustering effects over the network using the NMS and investigate the opera-

tional constraints involved in this set-up. It also analyses different prefetching

strategies to come up with a strategy which can exploit the explored cluster-

ing effects in order to use the network and buffering systems effectively. The

clustering techniques will be applied at the block level while a prefetching

strategy will be executed at the file system level. In order to demonstrate and

analyse the working of the proposed algorithm, we also propose to develop

an Experimental File System (EFS).

The research question to be addressed is:

“Can a file system be developed using clustering and prefetching

techniques over the network which can be used in the working envi-

ronment, to allow streaming applications (once they are started) to

run with no jitter3 while satisfying demand requests in reasonable

time?”.

1.2 Structure of the Thesis

This thesis is structured in the following way:

• Chapter 2 reviews the literature of most relevance to the research ques-

tion. This includes the following areas:

3Jitter is an unwanted variation observed in video (streaming application)
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1. A description of the important prefetching strategies, though most

of them are disk-oriented.

2. A review of several major distributed file systems, in order to

investigate how these systems implement mechanisms to decrease

the latency experienced in fetching data over the network.

3. Finally, it presents the design of the Network Memory Server.

• Chapter 3 introduces the fundamental approach to address the research

question and shows how to treat streaming applications and demand

misses. It also describes the different prefetching strategies that could

be used.

• Chapter 4 reviews different analytical models and then proposes a new

analytical model, to estimate the average time to satisfy a demand

miss, using a Prefetch-On-Demand Strategy (PonD) over the network.

• Chapter 5 puts together the results achieved from Chapters 3 and 4 and

explores the operational space where the required QoS for streaming

applications and demand misses could be provided.

• Chapter 6 shows how to use the explored operational space in a real

system in order to provide the required QoS. It also demonstrates the

design and implementation of an algorithm which satisfies the required

constraints.

• Chapter 7 summarises the findings and contributions of this effort and

discusses directions for future research.
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Chapter 2

Literature Review

INTRODUCTION
Prefetching has proven to be a very effective way of reducing the latency for

accessing data on slow devices such as hard drives. Its basic objective is to

speed up system calls by prefetching some information into memory before

it is required, rather than reading it from disk or over the network when it is

required. One of the most important aspects of memory management is its

prefetching policies, which have a great impact on file system performance

and play a central role in file system research.

2.1 A Study of Integrated Prefetching and

Caching Strategies

Prefetching and caching are effective techniques for improving the perfor-

mance of a file system, but for a long time, they had not been studied in an

integrated fashion. Cao et al. [1995], first proposed four rules that optimal

integrated strategies for prefetching and caching must satisfy.

The four rules for optimal prefetching and caching are given below:
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1. Optimal Prefetching: Every prefetch should bring into the cache the

next block in the reference stream that is not (already) in the cache.

2. Optimal Replacement: Every prefetch should discard the block whose

next reference is furthest in the future.

The first two rules uniquely determine what to do, once the decision

to prefetch has been made. However, they say nothing about when to

fetch: the next two rules address that question.

3. Do No Harm: Never discard block A to prefetch block B when A will

be referenced before B. A prefetch that disobeys this rule does more

harm than good, as it can only increase the program’s running time.

Unfortunately, existing prefetching algorithms do not always satisfy

this requirement, because they separate caching from prefetching, and

separate cache replacement decisions from prefetching decisions.

4. First Opportunity: Never perform a prefetch and replace operation

when the same operations (fetching the same block and replacing the

same block) could have been performed previously.

The algorithm must perform each operation at the first opportunity. A

new opportunity may arise when either a) a fetch completes or b) the

block that would be discarded was just referenced in the previous unit.

Taken together, the four rules provide some guidance on when to

prefetch and what to discard. These were integrated into two strategies:

The Conservative Strategy: The conservative prefetching strategy

tries to minimise the elapsed time while performing the minimum number of

fetches. This means that prefetching is only done when a cache miss occurs.

The Aggressive Strategy: The aggressive prefetching strategy al-

ways prefetches the next missing block at the earliest opportunity consistent

with the four rules. In order to bring in the next missing block, it replaces

the block whose next reference is furthest in the future.
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Results showed that both strategies are close to optimal in theory

and that these strategies can reduce the running time of applications by up

to 60%. This was explored by using an experimental file system, but only

static prefetching in which a fixed number of blocks were prefetched was

implemented. Our research will explore more dynamic prefetching techniques

to improve the performance of the overall system.

2.2 Aggressive Prefetching: An Idea Whose

Time has Come

Papathanasiou and Scott [2005] argued that technological trends and emerg-

ing system design goals have dramatically reduced the potential costs and

increased the potential benefits of highly aggressive prefetching policies i.e.,

prefetching blocks whenever it is possible, in which prefetching is done at

every opportunity. The authors proposed that the memory management of

operating systems should to be redesigned to embrace such policies.

Having understood the changes in technological trends, the authors

explored different research challenges for computer systems in relation to

prefetching. They are listed below:

• Device-Centric Prefetching: Traditionally, prefetching has been application-

centric i.e. previous work only explored the control prefetching strategy

to minimise the latency of disk accesses experienced by running appli-

cations. Such an assumption is not applicable in modern systems. In

today’s systems, the performance, power, availability and reliability

characteristics of devices must be exposed to prefetching algorithms.

This point was further explored by Papathanasiou and Scott [2004].

This work is discussed in this literature review.

• Characterisation of I/O demands: Revealing device characteristics is
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not enough. To make an informed decision the prefetching and memory

management system will also require high level information on access

patterns and other application characteristics. Using access pattern

information was further explored by Li et al. [2007].

• Coordination: Non-operational low-power modes depend on long idle

periods in order to save energy. Uncoordinated I/O activity generated

by multitasking workloads reduces periods of inactivity and frustrates

the goal of power efficiency.

• Prefetching and caching metrics: Traditionally, cache miss ratios have

been used to evaluate the efficiency of prefetching and caching algo-

rithms. The usefulness of this metric, however, depends on the as-

sumption that all cache misses are equal which is not the case. Power

efficiency, availability and varying performance characteristics lead to

different costs for each miss.

To summarise, Papathanasiou and Scott explored the traditional meth-

ods of handling prefetching techniques which were centred on the use of the

buffer cache, I/O bandwidth and device congestion. They argued the case

that there is a need to change this approach as available resources have in-

creased in volume and speed. For example 1 GB of Memory and 1 Gbps

network speed are readily available on laptops and desktops. Therefore there

will be a resultant change in the cost of I/O service time experienced due to

each subsystem, for example prefetching more data into memory would be

less costly than disturbing disk idle time or using a network.

This observation motivated us to explore prefetching as it highlighted

that resources have improved and hence the need to review how to use them

effectively, for example, network and memory. Also, the authors’ observation

about the increase in the usage of multimedia applications due to improved

resources motivated us to explore how we can satisfy the demands for mul-

timedia streaming which require high data rates to allow the user to watch

videos without jitter.
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2.3 Energy Efficient Prefetching and Caching

Papathanasiou and Scott [2004], proposed new rules for prefetching and

caching that maximised power-down opportunities in disk systems without

performance loss by creating an access pattern characterized by intense bursts

of activity separated by long idle times.

This is done by re-examining the four rules described by Cao et al.

[1995]. However, Papathanasiou and Scott replaced the 4th rule and added

the 5th rule, to accommodate the requirements of energy efficiency. These

rules are stated below:

4’ Maximize Disk Utilization: Always initiate a prefetch operation after the

completion of a fetch, if there are blocks available for replacement (with

respect to rule 3 ).

5’ Respect Idle Time: Never interrupt a period of inactivity with a prefetch

operation unless the prefetch has to be performed immediately in order

to maintain optimal performance.

Rule 4’ guarantees that a soon-to-be idle disk will not be allowed to become

inactive if there are blocks in the cache that may be replaced by blocks

that will shortly be accessed. This way, disk utilization is maximized and

short intervals of idle time that cannot be exploited for energy efficiency are

avoided.

Rule 5’ attempts to maximise the length of a period of inactivity with-

out degrading performance. Note that the rule implies that the prefetching

algorithm should take into account additional delays due to disk activation

or congestion as well as the time required for a fetch to be completed.

An algorithm that follows rules 4’ and 5’ will lead to the same hit ratio

and execution time as an algorithm following the rules stated by Cao et al.

[1995], but will exhibit fewer and longer periods of disk inactivity whenever

possible.
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Experimental results showed that, for the slower application, with

even a small amount of memory dedicated to prefetching, significant energy

savings can be achieved. Just 5 MB of memory prefetching leads to over

50% energy savings, even for “false-positive” (prefetched blocks that are not

needed after all) to “true-positive” (prefetched blocks that turn out to indeed

be needed )ratio as high as 20 to 1 i.e., even if they prefetch more than 20

times as much data as is actually used. For faster applications, a 50% saving

in disk energy can be achieved with a 25 MB prefetch buffer for“false-positive”

to “true-positive” ratios of up to 5 to 1. Larger ratios require significantly

more prefetch memory.

Papathanasiou and Scott concentrated on saving energy used by the

storage device, using prefetching techniques which respect the disk idle time.

Our research will explore prefetching techniques for the NMS so that the

network is used effectively, so as not to keep the network busy.

2.4 Competitive Prefetching for Concurrent

Sequential I/O

During concurrent I/O workloads, sequential access to one I/O stream can be

interrupted by accesses to other streams in the system. Frequent switching

between multiple sequential I/O streams may severely affect I/O efficiency

due to long disk seeks and rotational delays of disk-based storage devices. To

overcome these, Li et al. [2007] proposed a competitive prefetching strategy

that controls the prefetching depth so that the overhead of disk I/O switch-

ing and unnecessary prefetching are balanced. The proposed work does not

require a priori information of the data access pattern, and achieves at least

half the performance (in terms of I/O throughput) of the optimal off-line

policy.

Li et al. presented an analytical model which showed that when the
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prefetching depth is equal to the amount of data that can be sequentially

transferred within the average time of a single I/O switch, the total disk

resource consumption of an I/O workload is at most twice that of the optimal

off-line strategy.

In order to accommodate random accesses without penalising the over-

all performance of the system by prefetching excessively, the competitive

prefetching policy employs a slow-start phase i.e., prefetching takes place

with a relatively small initial prefetching depth. On the detection of a se-

quential access pattern, the depth of each additional prefetching operation is

increased until it reaches the desired competitive prefetching depth.

Overall evaluation demonstrated that competitive prefetching can im-

prove the throughput of real applications by up to 53%. It did not incur

noticeable performance degradation on a variety of workloads. However, the

competitiveness of the proposed prefetching strategy is not applicable in the

presence of high memory contention, because in the case of extreme con-

tention, the previously cached or prefetched blocks may be evicted before

they are accessed.

Li et al. proposed to improve the performance for sequential accesses

which is normally affected by frequent I/O switches. Analysing optimal

prefetching depth i.e. how much to prefetch, for sequentially accessed data

is important. It can increase the throughput of the storage mechanism, al-

lowing applications to run smoothly and efficiently use the available memory

without loading up excessive blocks.

Their work focused on storage devices which have disk-like charac-

teristics. Similarly, we would like to explore the prefetching depth for the

streaming applications which access data sequentially at high data rates over

the network; therefore, prefetching a minimum number of blocks from the

server to achieve the same features presented in this work, but for network-

based storage.
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2.5 Informed Prefetching and Caching

Patterson et al. [1995] described application-disclosed access patterns (hints)

to expose and exploit I/O parallelism, and how to dynamically allocate file

buffers among four competing demands: prefetching hinted blocks, caching

hinted blocks1 for reuse i.e. the hinted blocks which were prefetched and are

already referenced and then cached for future reference, and caching recently

used data for unhinted accesses i.e., cache references which were generated

due to demand access, and satisfying demand misses. The approach estimates

the impact of alternative buffer allocation strategies on the application exe-

cution time and applies cost-benefit analysis to allocate buffers where they

will have the greatest impact.

Cost-benefit analysis for I/O management

Figure 2.1: Design of Informed Prefetching and Caching

As shown in the Figure 2.1, to acquire cache buffers there are two con-

sumers: demand accesses that are misses in the cache, and the prefetching

of hinted blocks. Holding out are two buffer suppliers: the Least Recently

1blocks that are prefetched based on access hints and will be referenced in near future
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Used (LRU) 2 cache, and the cache of hinted blocks. The I/O manger must

resolve this tension between buffer consumers and suppliers, using a concept

of prefetch horizon. The Prefetch Horizon is defined as a point at which the

prefetching should be initiated for a block, such that it is available for use,

just before it is required. Each potential buffer consumer and supplier has

an estimator which independently computes the value of its use of a buffer.

The authors analysed each of the estimators, starting with the notion

of the prefetch horizon. In their model, a cache hit experiences time Thit to

read the block from the cache and the computation time TCPU , i.e., the time

to consume/process a block. In the case of a cache miss, Tmiss, the block

needs to be fetched from the disk before it can be delivered to the applica-

tion. In addition to the latency of the fetch, Tdisk, these requests suffer the

computational overhead, Tdriver, of allocating a buffer, queuing the request

at the drive, and servicing the interrupt when the disk operation completes.

• Prefetch Horizon: The benefit of adding prefetching buffers starts out

high, because if a hinted block is not prefetched in time for its con-

sumption, the application will stall for more than Tdisk
3.

As the prefetching depth increases, the benefit of increasing it fur-

ther diminishes quickly. However, after a certain depth the benefit of

prefetching further blocks will be zero, this point is referred to as the

Prefetch Horizon. Prefetching beyond the prefetch horizon will not

increase the benefit, because the application will not be able to con-

sume blocks immediately and also the blocks will be in the cache for

a longer period of time, occupying cache memory which could be used

for caching some other data.

2The LRU algorithm keeps an ordered list of cached pages with the most recently used
at the top of the list. It replaces pages at the bottom of the list i.e. the least recently
used.

3 Tdisk is the latency to fetch the block from the disk; this suffers from the computational
overhead Tdriver of allocating a buffer, queuing the request at the drive, and servicing the
interrupt when the disk operation completes
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Finally, since the authors modelled disk accesses as constant-time oper-

ations (where that constant is Tdisk), and it takes at least Thit to read a

block i.e., when it is in the cache, a prefetched block will always arrive

in time if it is prefetched at P (TCPU):

P (TCPU) =
Tdisk

TCPU + Thit + Tdriver
(2.1)

P (TCPU), is the time taken to fetch a block from the disk divided by

the time to access and use the block once the block is in memory. When

prefetching is initiated at P (TCPU) accesses beforehand, then the stall

time experienced by the application in accessing that prefetched block

is zero.

• Allocating a buffer for prefetching: The prefetching estimator estimates

the benefit of allocating an additional buffer so that the system can

prefetch one buffer further ahead of the application’s current position.

The benefit of using an additional buffer to prefetch one access deeper

is the change in the service time:

4Tpf (x) = Tstall(x+ 1)− Tstall(x) (2.2)

where Tstall is the time the application has to wait, if the prefetch is

initiated before x and x+1 accesses. To solve the above equation Tstall

must be calculated.

A key observation is that the application’s data consumption rate is

finite. Typically, the application reads a block from the cache in time

Thit, does some computation, TCPU , and pays an overhead, Tdriver, for

future accesses currently being prefetched. Thus, even if all intervening

accesses hit in the cache, the soonest we might expect a block, x accesses

into the future, to be requested is x(TCPU + Thit + Tdriver). Under the

assumption of no disk congestion, a prefetch of this xth future block

would complete in Tdisk time. Thus the stall time when requesting this
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block is at most:

Tstall(x) ≤ Tdisk − x(TCPU + Thit + Tdriver) (2.3)

The above equation is an upper bound of the stall time experienced by

the xth future access assuming that the intervening accesses are cache

hits and do not stall. Unfortunately, it overestimates the stall time in

practice. In steady state, multiple prefetches are in progress and a stall

for one access masks latency for another so that, on average, only one

in x accesses experience the stall i.e

Tstall(x) ≤ Tdisk − x(TCPU + Thit + Tdriver)

x
(2.4)

When Tstall(x) is zero, the distance at which prefetching was initiated

for that block is called the prefetch horizon. Now putting Equation 2.4

into Equation 2.2, we have:

4Tpf (x) =


x = 0 −(TCPU + Thit + Tdriver)

x < P (TCPU) −Tdisk/x(x+ 1)

x ≥ P (TCPU) 0

(2.5)

The above equation showed the change in the service time when initi-

ating prefetching for a block at x and x+1 distances. When x = 0, the

change in service time ((x+ 1)−x) is equal to −(TCPU +Thit +Tdriver)

(the minus sign indicates that the stall time for x + 1 is less than x,

because the block is being fetched one access earlier). If x < P (TCPU),

then the increase in the service time is equal to −Tdisk
x(x+1)

. Finally once

x > P (TCPU), the change in the stall time is always equal to zero, be-

cause the application will not stall once x > P (TCPU), so prefetching

one access before in this region will have no effect. This is why the au-

thors suggested not to prefetch beyond the prefetch horizon as it does

affect the service time.
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• Allocating cache blocks for demand reads: An unhinted read or a hinted

read whose data has not yet been prefetched is a demand read. Because

the application will stall indefinitely unless it receives resources to sat-

isfy a demand read, there is no estimation involved with demand reads

- it always makes sense to allocate blocks for them.

• Shrinking or growing the LRU cache: The framework also maintains

a traditional LRU cache to satisfy many unhinted accesses without

fetching from storage. The LRU estimator keeps track of what the

hit rate in the LRU cache would be for several LRU cache sizes, and

uses this information, coupled with the disk-model cost of an additional

cache miss which is:

4TLRU(n) = TLRU(n− 1)− TLRU(n) (2.6)

where n is the number of buffers in the cache. The LRU cache estimator

dynamically estimates the number of hits, when n and (n− 1) number

of buffers are available. The Equation 2.6 estimates the benefit or cost

of making the LRU cache larger or smaller, respectively.

• Shrinking or growing the hinted cache: Finally, the framework tracks

cache blocks for which future accesses are hinted. If the system allows

such a cached and hinted block to be ejected, it will later have to stall

the application for at least Tpf (x) − Thit to read the block back into

memory i.e., the same block is prefetched again, x accesses before it

is required and minus the Thit, as it is known the block is evicted and

there is no need to search the cache, which is calculated as:

4Teject(x) = Tpf (x)− Thit
= Tdriver + Tstall(x) (2.7)

where Tpf (x) = Thit + Tdriver + Tdisk. Remember, Tstall(x) = 0, when x

is greater than prefetch horizon.

17



The cost of ejecting a block, 4Teject(x), does not affect every access;

it only affects the next access to the ejected block. Thus, to express

this cost in terms of the common currency, the authors averaged this

change in I/O service over the accesses that a buffer is freed.

4Teject(x, y) =
Tdriver + Tstall(x)

y − x
(2.8)

where y indicates the block will be read in y accesses and the prefetch

happens x accesses in advance.

Since the benefit of avoiding this driver work is amortized over all

accesses until the block is fetched, the cost of allowing such a block

to be ejected decreases from Tdriver as the number of accesses before

the block will be fetched back increases.

The above framework is for informed prefetching and caching based

on a cost-benefit model of the value of a buffer. The authors have showed

how to make independent local estimates of the value for caching a block in

the LRU queue, prefetching a block, and caching a block for hinted. This

framework was further simplified.

To reduce estimation overhead and increase tolerance of both varia-

tions in application inter-access computation, TCPU , and the need to prefetch

other blocks, the authors assume TCPU = 0 and discount the overhead of

prefetching other blocks, Tdriver to arrive at Thit, which is constant. They

also used the concepts of ghost buffers and marginal hit ratio [Patterson

et al., 1995] to reduce overhead and estimation variations in calculating cost

of losing an LRU buffer.

Finally, to eliminate the overhead of determining the value of x dy-

namically for Equation 2.8, Patterson et al. simplified this expression by

assuming that the prefetch will occur at the prefetch horizon and if the block

is already within the prefetch horizon, the authors assume that the prefetch

will occur at the next access. This simplified version was then implemented
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to find out the real time performance of the framework and was referred to

as TIP.

Informed prefetching with an least four disks reduces the elapsed time

of the applications which include text search, data visualization, database join

etc., by between 20% and 85%. For the computational physics application,

which repeatedly reads a large file sequentially, OSF/1’s aggressive read-

ahead does as well as informed prefetching. However, informed caching’s

adaptive policy devalues recently used blocks more than older blocks and so

”discovers” an MRU-like policy, where the most recently used block is first

evicted from the cache. This improves the performance by up to 42%.

The idea of having a prefetch horizon i.e., when to initiate prefetching

was very interesting, as it allows prefetched blocks to be brought in just before

they are needed. This guarantees that the cache will not be overloaded with

prefetch blocks, hence will not hurt caching performance and will also allow

applications to run without waiting for the request to be fetched from the

disk. However, the derived concept of prefetch horizon is disk-oriented.

This model assumes that there are enough disks available to fetch

data at any given point of time i.e., no constraints on disk. Based on this

assumption, there is no benefit in prefetching beyond the prefetch horizon

and it only prefetches one block at a time. However, this may not be true in

a real working environment, as the storage device or disk may have a number

of requests waiting to be served and we might need to prefetch beyond the

prefetch horizon and prefetch more than one block, to allow applications to

run without stalling while the storage device is busy serving other requests.

The above work only considered the time to fetch a block from the

disk, it did not consider the time taken to consume, TCPU , which is equally

important. It assumed TCPU is constant for all applications, which is not

true. For example, TCPU of HD stream is 200µsec whereas TCPU of MPEG-4

video is 400µsec. Our research will explore the relationship between the time

to fetch the block and the time to consume that block so that the required
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number of blocks are fetched at a time, hence benefiting from clustering

rather than just fetching one block at a time.

2.6 Prefetching Over a Network: Early Ex-

perience With CTIP

CTIP by Rochberg and Gibson [1997], is an implementation of a network

filesystem extension of the successful TIP informed prefetching and cache

management system. CTIP uses hints to aggressively prefetch file data from

a NFS file server and to make better local cache replacement decisions.

CTIP is a minimal extension of the TIP model to a network storage

system. It treats the network file server as a disk with longer latency. Two

modifications to the local TIP system are: the first is the addition of a set

of routines for prefetching from an NFS server and the second is a new set

of estimates for the time required to retrieve data from storage.

In order to serve multiple requests at a time i.e., to emulate the parallel

disk approach, the authors substantially increased the number of NFS I/O

daemon processes and threads on both the client (from the suggested 7 to

64), and the server (from the suggested 16 to 70), enough to handle all

the asynchronous threads on the client plus a few additional synchronous

requests.

Experiments done with this model showed that for remote storage, the

hinted versions of the applications experience reductions in elapsed execution

time of 17%− 62%. The magnitude of these savings suggests that informed

prefetching and caching are worthwhile, even if application data must be

accessed over a network. CTIP provides a speed-up of 2.0 compared with a

speed-up of 2.2 for TIP, which suggests that hints benefit from local storage

about 10% more than they do from remote storage. The point to be noted
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Parameter Local(TIP) Remote(CTIP)

Tdisk 13.6ms 15ms

Tdriver 580µsec 877µsec

Thit 190µsec 190µsec

Table 2.1: Storage model parameters for TIP and CTIP. Because of a fast
network, Tdisk for the remote case is surprisingly close to Tdisk for the lo-
cal case. CTIP must send its request through an expensive set of protocol
stacks while TIP uses a faster SCSI stack. Because of this difference, Tdriver,
the client CPU time cost to retrieve an 8 KB block, is substantially higher
for CTIP. This increased cost translates into longer run times for remote
applications.

is that unlike xFS or NFS, CTIP has the ability to implement prefetching

techniques by using daemon processes.

However, the principal limitations of CTIP are increased CPU cost

of going through the longer code path required to access network storage as

shown in Table 2.6, increased latency of unhinted network accesses, and the

standard NFS interface, which makes it difficult to express information about

hints, I/O priorities, clustering, and load balancing.

The work showed that by using prefetching techniques the perfor-

mance of accessing data over the network could be improved. However, the

performance result was not good enough compared to TIP due to its inabil-

ity to do clustering, as it uses NFS which does not have the ability to do

clustering because it is a file-based server. In the local system, the I/O sys-

tem coalesces, or clusters, requests for contiguous blocks into larger requests.

This clustering has two effects: it allows the disk to transfer data more effi-

ciently and it allows the client to amortize some of the driver cost over more

data. Therefore, our research will explore the characteristics of network, us-

ing block-based network storage which will allow us to exploit the effects of

clustering.
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2.7 Other Distributed File Systems

In this section, the literature will be reviewed in brief covering distributed

file systems (DFS):

2.7.1 The Google File System

The Google File System (GFS) [Ghemawat et al., 2003], is a scalable dis-

tributed file system for large distributed data-intensive applications including

fast web searching. It provides fault tolerance while running on inexpensive

commodity hardware, and it delivers high aggregate performance to a large

number of clients.

A GFS cluster consists of a single master and multiple chunk servers

and is accessed by multiple clients, as shown in the Figure 2.2.

Figure 2.2: GFS Architecture.

Clients interact with the master for meta-data operations, but all data-

bearing communication goes directly to the chunk-servers. Most of the ap-

plications access huge files sequentially thus neither the client nor the chunk-

server caches file data. This simplifies the client and the overall system by

eliminating cache coherence issues (clients do cache meta-data, however). By

not caching file data, the GFS showed a performance gain for huge files that
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are mostly appended to and read sequentially. This work showed that se-

quential access is becoming important and it should be treated differently.

However, it did not look at the prefetching techniques for sequential access.

2.7.2 OceanStore: An Architecture for Global-Scale

Persistent Storage

Kubiatowicz et al. [2000] have published a concept for global scale persistent

storage by using untrusted infrastructure and by caching data anywhere and

at any time. The OceanStore authors have also discussed basic issues such

as naming and access control (Restricting Readers and Restricting Writers),

data location and routing strategies. Cache coherence is the biggest issue, as

the data can be cached anywhere. Basically, the authors of OceanStore have

proposed access to data throughout the globe and to cache data anywhere,

at anytime to improve the response time and availability of the data.

In general, this idea is similar to our Network Memory Server. How-

ever, promiscuous caching, complex cache coherency algorithms and strong

encryption must be used in OceanStore, as any machine can cache and serve

data. In our NMS, only authorised servers can cache and serve blocks of

data to particular clients, hence simpler caching techniques can be used.

OceanStore showed that extensive caching is needed to build large geograph-

ically distributed file systems. Similar to GFS, OceanStore did not look at

prefetching techniques for distributed file systems which is important to im-

prove the performance of sequential access.

2.7.3 Serverless Network File System

The Serverless Network File System (xFS) [Anderson et al., 1995] distributes

storage, cache, and control over cooperating workstations. This approach
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contrasts with traditional file systems such as Netware [Major et al., 1994],

NFS [Sandberg et al., 1985], Andrew [Howard et al., 1987], and Sprite [Nelson

et al., 1988] where a central server machine provides all file system services.

Such a central server is both a performance and reliability bottleneck. A

serverless system, on the other hand, distributes control processing and data

storage to achieve scalable high performance, migrates the responsibilities

of failed components to the remaining machines to provide high availability,

and scales gracefully to system management.

The xFS design attempted to make extensive use of both memory

and local on-disk caches at client nodes and used sophisticated cache co-

herency algorithms to eliminate the need for a central server at the core of

the system. BitTorrent, which allows peer-to-peer file sharing, uses similar

techniques [Legout et al., 2007]. The xFS work showed that one xFS client

can significantly outperform one NFS client by benefiting from the bandwidth

(high data rate), of multiple disks and from co-operative caching, therefore

removing the need for a central server.

Similar to NFS, xFS communicates at the file level i.e blocks of a

particular file at a time. This restricts the implementation of prefetching

and clustering techniques which can fetch multiple blocks from different files

to achieve high data rates and use network bandwidth effectively.

2.7.4 Caching in the Sprite Network File System

The Sprite network operating system [Nelson et al., 1988] uses large main-

memory disk block caches to achieve high performance with its file system.

It provides no-write-through file caching on both client and server machines.

A simple cache consistency mechanism permits files to be shared by multiple

clients without the danger of stale data. In order to allow the file cache

to occupy as much memory as possible, the file system of each machine

negotiates with the virtual memory system over physical memory usage and
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changes the size of file cache dynamically.

To provide good performance under a wide variety of workloads, phys-

ical memory on a Sprite workstation is dynamically partitioned between the

virtual memory subsystem and the file cache.

Similar to NFS, this work tried to exploit the available network band-

width by transferring data in bulk. They used large packet sizes, typically

8 KB. Having a large packet size can bring in unnecessary data which may

not be required, for example, for random access and could occupy the net-

work for longer periods of time. Therefore, large block sizes can have adverse

effects on caching and network performance. Also, this only fetches more

data for the same file at a time and not multiple blocks of different files at a

time. Therefore, there is a need to explore clustering effects where multiple

blocks of different files can be brought into the client, using the caching and

networking subsystems effectively.

2.7.5 Recent Research Efforts

CRISP

The Caching and Replication for Internet Service Performance (CRISP) [Gadde

et al., 1997] project looked at a new Internet caching paradigm to serve the

needs of ISPs with thousands or tens of thousands of users. It used shared

caching proxy servers to store read-only objects. The mapping of these ob-

jects to the proxy servers where they were stored was done by a mapping

service, using central servers.

Results showed that caches for sharing should be large for such com-

munities as data is frequently evicted from a small cache due to its size. For

large caches, the more users were allowed to access the caches the higher the

degree of sharing among the users.
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A trace from the workstations of the Digital Equipment Corporation

(DEC), revealed that there was a 37% hit ratio exclusively due to sharing

and hits on shared objects accounted for 60% of all hits in the trace. These

results showed that caching is extremely important for the future growth of

the Internet. However, it did not look at prefetching techniques to further

improve the performance.

Parallel NFS

Parallel NFS (pNFS) [Gibson, 2008] is a part of the emerging NFS 4.1 [She-

pler et al., 2003] standard which allows NFS clients to directly obtain data

from storage servers. In effect, pNFS attempts to separate the meta-data or

file management part of NFS from the reading and writing of data. There-

fore, the storage servers do not need file-based interfaces but can also have

block-based or object-based interfaces which could be used to exploit clus-

tering. This is an emerging standard and therefore it will take some time

before it is commonly used but throws a favourable light on this research.

2.7.6 Memory Mobile Memory Cache and the Persis-

tent Storage Server

Mobile computing devices such as smart PDAs and ultra-light laptops with

several networking interfaces are becoming commonplace. Users of these de-

vices will expect to be always connected, with seamless switching between

available systems. This is being made possible by the development of an ar-

chitectural framework for heterogeneous networking with support for vertical

hand-overs [Mapp et al., August 2006].

The proposed work is also justified by the development and deploy-

ment of high-speed networks. Network interfaces of 1-10 Gbps are now com-

monplace and are fairly inexpensive. In addition, wireless technology has
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moved on to 802.11n. This delivers 540 Mbps over-the air speeds and Media

Access Control, Service Access Point speeds of 200 Mbps [802]. It should be

noted that at these speeds, it is commonly faster to get data from the mem-

ory of a remote machine than from a local hard disk [Felton and Zahorjan,

March 1991].

As a part of the Network Memory Server project, a design was pro-

posed for a Storage Architecture for Mobile Heterogeneous Devices [Mapp

et al., 2007] based on a two-component approach. The first component is

the Mobile Memory Cache (MMC) which is a memory server similar to the

NMS and the second is a Persistant Storage Server (PSS) which provides

persistent storage.

The Design of the Mobile Memory Cache, and the Persistent Stor-

age Server

The MMC has been designed with the following core properties: Firstly, the

mobile node viewpoint, all actions performed by its MMC are atomic. This

means that calls to the MMC either succeed completely or fail completely.

Secondly, the MMC operates in a stateless manner. It does not keep track of

former requests from the mobile node. It is assumed that the MMC works

over a reliable transport protocol. At present TCP/IP is used.

All references returned by the MMC should be regarded as immutable

and must not be changed. The security tag in the BlockID structure will

be used to detect when a BlockID has been modified. The core operations

supported by the MMC are creating and deleting ClientIDs, creating and

deleting data blocks, and reading from and writing to data blocks using

BlockIDs.

The design of the Persistent Storage Server is similar to the MMC.

However, MMCs are the only clients of a PSS; its services are not directly

available to mobile nodes. In addition, while the MMC uses the memory on a
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network server, the PSS uses disk blocks on a hard disk to provide persistent

storage and so must run a file system in order to achieve this. Therefore, a

simple file server known as the Block File System (BFS) was built. The BFS

takes a BlockID, a PSS ClientID and maps it to disk blocks on the hard disk.

It maintains these mappings in the meta-data part of the system.

In this work, the design of a storage system for mobile devices was

proposed and a test-bed was built to evaluate the performance of the MMC.

It showed that the performance achieved for reading and writing over the

network was comparable with using a local disk. It also showed that by using

write buffers, the performance of the write operations could be improved

significantly.

In our research, the data for the streaming applications and demand

misses should be fetched from the network storage device. To implement

and to investigate prefetching / clustering techniques over the network, we

require a network based storage system. We will use the MMC or NMS for

memory storage. The PSS, which is also referred to as the Network Storage

System, will provide persistent storage. In the next section, we present the

network characteristics obtained for the Network Memory Server.

Exploring Network Characteristic using NMS

We explored the performance of the NMS by creating large partitions and

reading from / writing to these partitions. The cost of using the NMS is

composed of a latency cost ( L) and a constant cost ( C). The latency cost

is the overhead time, (going up and down the protocol stack on client and

server sides), and the transmission time, (sending a network buffer between

client and server). It varies depending on network load. The constant cost4

is the time taken to search for the block and copy it into the network buffer

4Constant cost will vary depending on the number of requests waiting to get served
on the server, it is referred as constant because we assume that there is no queue at the
server-end
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Figure 2.3: Multiple Block Latency

on the server, and to copy the block from the network buffer into memory

on the client. These two variables sum to the time Tnet(y) which is the time

taken to fetch y blocks requested in a network buffer, as demonstrated by

the formula below:

Tnet(y) = L+ Cy (2.9)

It has been observed from experiments using the Linux 2.4 kernel

platform, that the time to read one block from NMS takes 200µsec in which

170 µsec(L) is the latency and 30µsec(C) is the constant i.e. 85% overhead

to give a data rate of 5 MB/Sec, when fetching one block. The size of each

block is 1024 bytes. In this system, if 5 blocks are requested at a time then

the transfer rate rises to 16 MB/sec with a latency of 320µsec. Moreover, if

10 blocks are requested at a time then the transfer rate obtained will be 33

MB/Sec with a latency of 470µsec. This analysis and experimental results

are shown in Figure 2.3. They indicate that there is a huge clustering effect

which can provide high data rates that could be exploited by prefetching. The

above experiments were undertaken when there was no other traffic on the

network. However, the data rates obtained through clustering could provide

sustainable transfer rates for varying network loads.
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We will use the above obtained results to provide the proposed QoS

for streaming applications and demand misses over the network.

2.8 Summary

The section summarises the reviewed literature.

• Cao et al. [1995], proposed four rules that optimal integrated strate-

gies for prefetching and caching must satisfy. However, the prefetching

work was more theoretical and the implemented prefetching strategy

was static prefetching i.e., where only a fixed number of blocks are

prefetched.

• Papathanasiou and Scott [2005], argued that technological trends and

emerging system design goals have dramatically reduced the potential

costs and increased the potential benefits of highly aggressive prefetch-

ing policies. The authors proposed that memory management needs to

be redesigned to embrace such policies.

These authors also came up with efficient prefetching and caching tech-

niques [Papathanasiou and Scott, 2004] to maximise power-down op-

portunities, (without performance loss), by creating an access pattern

characterized by intense bursts of activity separated by long idle times,

thus resulting in saving energy used by disk systems.

• Li et al. [2007] used the knowledge of I/O switch time, to decide how

much to prefetch, to improve performance of sequential access.

• Patterson et al. [1995] proposed the notion of prefetch horizon i.e., when

to initiate prefetching for a known reference, to use the cache effectively

and to minimise the execution time of applications.

However, the work done by Li et al. and Patterson et al. was disk-

centric and both these efforts did not consider the time taken to con-
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sume blocks by applications. We will explore some of these ideas for

network-based storage and will propose similar techniques which will

consider the network characteristics of network storage devices.

• Rochberg and Gibson [1997] extended the work of Patterson et al. by

implementing the TIP, (CTIP), framework over the network, but due to

the limitation on clustering similar to NFS, this work did not perform

as well as TIP.

Distributed file systems such as the Google File System [Ghemawat

et al., 2003], OceanStore [Kubiatowicz et al., 2000], the Serverless Network

File System [Anderson et al., 1995], and the Sprite network operating sys-

tem [Nelson et al., 1988] implemented caching techniques to improve response

time. They also used large block sizes instead of prefetching or clustering

techniques, to utilise the available network bandwidth. However, the pre-

vious research work did not look at clustering requests or fetching multiple

blocks from different files at the same time.

This research will build upon these efforts by looking at the network

characteristics. Most importantly, the Network Memory Server [Mapp et al.,

2007], showed that clustering can provide high data rates and hence, will be

used to investigate prefetching techniques over the network.
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Chapter 3

Approach and Constraints

This chapter analyses the approach and constraints needed to address the

research question. The first section of this chapter recalls the research ques-

tion. The second section presents the environment which will be required

to answer the research question. The third section discusses the approach

and analyses the constraints for streaming applications. The fourth section

discusses the concept of spare-time. The fifth section discusses the approach

and investigates the constraints for demand misses. Lastly, the chapter de-

scribes different prefetching strategies and their pros and cons. The chapter

concludes by describing the need for an analytical model.

3.1 Proposed Work

We propose to investigate prefetching and clustering techniques over the net-

work, to develop a mechanism/algorithm that can guarantee the quality of

service for the streaming requests and the demand requests i.e. it should

prefetch/cluster enough blocks, so that it can allow streaming applications,

(once they are started), to run without jitter 1, while satisfying demand re-

1Jitter is an unwanted variation of the inter-arrival time of data observed in streaming
applications
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quests in reasonable time 2, using the networking and buffering sub-systems

effectively.

3.2 Required Environment

In this research, the data for streaming applications and demand misses

should be fetched from the network storage device. Hence, the Network

Memory Server will be used.

In the NMS, all the data of the client is brought into the memory of

the NMS from Network Storage Server (NSS), when the client connects to

the NMS. This is similar to Video-On-Demand (VOD) services, where the

entire requested video is loaded into the memory of the server before it begins

to serve to clients. Hence, the NMS represents the commercial environment.

Also, having all the data of the client in the memory of the server before it

is requested by the client means that the time taken in fetching the blocks

from NMS to the client will largely incur network transaction time, (going

to and fro between the client and the NMS), and will be only affected by

the network load 3. Hence, this makes it easier to analyse the parameters

involved in fetching blocks from the NMS, as the latency experienced to fetch

any block from the memory is same.

In order, to start to analyse the approach / constraint for the stream-

ing application, there should be a way to represent the time taken to fetch y

blocks over the NMS. As shown in Equation 2.9, the time to fetch y blocks

over the NMS is equal to L+Cy, where L is equal to network protocol pro-

cessing time and transmission time between the client and the NMS and C is

the constant time involved in fetching a block, (copying and searching), and

could be used to analyse the approach for streaming applications. Similarly,

2As long as the time taken to satisfy the demand request over the network is less than
or equal to the time taken by disk

3Assuming the number of clients connected to the server is reasonable.
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for demand misses, let TD−NMS represent the average waiting time experi-

enced in satisfying a demand miss over the NMS and will be used to analyse

the approach / constraint for demand misses. Having these parameters for

the NMS, we can now begin to look at the approach and constraints involved

in providing required QoS. Further details of the NMS can be found in the

papers [Mapp et al., 2004], [Mapp et al., 2007].

3.3 Streaming Access

Streaming applications access blocks sequentially at a constant rate. Know-

ing that streaming applications access blocks constantly over a period of

time, we will first derive an equation to analyse how many blocks should be

prefetched so that streaming applications can run without jitter once they

are started. Streaming applications will not start until enough resources i.e.,

network and prefetch buffers, are available. We refer to this wait time as

start stall-time.

As pointed out in the literature review, Tcpu, (time to consume one block),

is different for each application, therefore we will start with Tcpu to find out

how long an application will take to consume y blocks.

Let Tcpu be the time to consume a block for a streaming application,

then the rate at which it will consume y blocks will be Tprocess(y) i.e.,

Tprocess(y) = Tcpu ∗ y (3.1)

From our experiments, we have observed that the time to fetch y blocks over

the network is equal to Tnet(y) which is

Tnet(y) = L+ Cy (3.2)

where L is the Latency i.e., the time to go up and down the protocol stack
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on the client and server, plus the packet transmission time between client

and server, y, is the number of block requests in a network buffer and C is

the constant time taken to fetch a block from the NMS server. The variable

L depends on the network bandwidth available and the load on the network

at a given time. Now, for an application to run without any delay or jitter,

the time taken to fetch blocks should be less than or equal to the time taken

to consume them i.e.,

Tnet(y) ≤ Tprocess(y)

L+ Cy ≤ Tcpu ∗ y

L ≤ (Tcpu − C) ∗ y

L/(Tcpu − C) ≤ y (3.3)

The equation shows that the number of blocks prefetched for streaming ap-

plications should be equal to or greater than L/(Tcpu − C). It should be

fetched at an interval of Tprocess ∗ (y), to allow them to run without jitter4.

If L/(Tcpu−C) = y, only double buffering is needed to satisfy requests

for streaming accesses as shown in Figure 3.1, that is to use only two sets of

buffers for prefetching and to initiate the next prefetch as soon as the first

buffer is available, (at an interval of ( Tprocess∗y) ), and this will not cause any

jitter/delay in streaming applications, as required blocks will be prefetched

just before it is needed, this is similar to the notion of the Prefetch Horizon

which was discussed in Informed Prefetching and Caching [Patterson et al.,

1995]. Note, having more than two network buffers will be a waste of memory

for the above condition, as the time taken to fetch a network buffer is equal

to the time taken to process blocks. However, this situation will not give

any additional time or slack to satisfy any demand misses or to allow new

streaming applications to join, as asking for more blocks than y will increase

the fetch time and will incur stall/jitter in the running applications and will

not achieve the quality of service needed.

4It will experience start stall time to prefetch the first y blocks
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Figure 3.1: Double Buffering in steady state: Processing time is the time
taken to consume the block and fetch time is the time taken to fetch the
block from the NMS. There is no spare-time as the time to fetch blocks is
equal to processing blocks.

In Informed Prefetching and Caching there was no need to prefetch

beyond the prefetch horizon as their work used parallel disks; this allowed

them to satisfy demand misses as they occurred, therefore it made sense in

their work to not prefetch beyond the prefetch horizon.

However in our case, networks cannot benefit from such parallelism.

Hence they are constrained. Therefore prefetching beyond the prefetch hori-

zon would make sense whenever it is possible, to allow streaming applications

to run while the demand misses are being satisfied.

The only way to minimise this constraint in the network is to make

sure that time taken to process prefetched blocks should be greater than the

time taken to fetch prefetched blocks. Hence, in the Equation 3.4, there

will not be an equal sign. Also, as the service time over the network varies

for each operation, operating at the maximum level would not be an ideal

strategy.

L/(Tcpu − C) < y (3.4)

The above condition will leave spare time as shown in Figure 3.2, but having
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y much greater than L/(Tcpu−C) will increase the start stall-time. Therefore,

the value of y should be such that it leaves enough spare-time and it minimises

the start stall-time. In short, Equation 3.4 guarantees the quality of service

Figure 3.2: Beyond Double Buffering in steady state: Processing time is the
time taken to consume the block and fetch time is the time taken to fetch the
block from the NMS. Spare time is the time difference between the processing
and fetch time, which can allow more than double buffering if needed.

for streaming applications and there will be no overload on the network and

buffering sub-systems, as it only prefetches the required number of blocks

that are needed for streaming applications and only prefetches more blocks

according to requirements of spare-time to satisfy demand misses or to allow

new streaming applications to join, thus using buffers effectively.

3.4 Spare-time

The spare-time is very important to provide the required level of quality-

of-service. Spare time can satisfy demand misses or allow new streaming

applications to join the ongoing prefetching without incurring any jitter in

the running applications.

Spare-time can be used to fetch, in the same operation, additional

blocks with ongoing prefetch, for demand misses or for new streaming ap-

37



plications: The number of additional blocks (NAB(P + D, j)) (Number of

Additional Blocks with Prefetching, can be demand blocks D or for a new

stream, (j)) joining the ongoing prefetching P without affecting prefetching

for streaming applications, is equal to:

NAB(P +D, j) = SP/C (3.5)

where C is the constant cost for fetching a block. SP is the spare-time be-

tween fetches. The more the spare-time, the more additional blocks could be

fetched without penalising streaming applications. NAB(P+D, j) is the max-

imum number of blocks that could be clustered within an ongoing prefetch

cycle without affecting the running streaming applications.

The above equation shows the number of block requests that can be fetched

with the ongoing prefetch cycle using spare-time.

The spare-time in the current cycle can be increased by doing more

aggressive prefetching i.e., prefetching more blocks than the required number

of blocks for the running streaming applications in previous cycles as shown

in Figure 3.3. But this is only possible, if the spare-time is available in the

first place i.e. if there is no spare time to start with, then additional spare

time cannot be created. For example, suppose we have NAB(P + D, j) is

Figure 3.3: Prefetching Beyond Double Buffering: More prefetching increases
the fetch time for the cycle t and increases the processing time for cycle t+1.
Hence, it increases the spare-time from cycle t+ 1 onwards.
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equal to 6 and the ongoing prefetching require 2 blocks at constant interval

of ( Tprocess ∗ y). Now as shown in the Figure 3.3, in cycle t − 1, it will

prefetch 2 blocks. If we prefetch 5 blocks rather than 2 blocks for streaming

applications, as in cycle t, then the fetch time will increase for the cycle t.

However, fetching more blocks at cycle t will increase the processing time for

the cycle t+ 1, as 3 extra blocks are available to consume.

In this example, if TCPU = 400/musec and C = 30/musec, then the

increase in the spare-time= 3(400 − 30) = 1110µsec. Analysis showed that

the spare-time can also be used to do more prefetching i.e buffering, hence,

the Equation 3.5 notation will change to:

NAB(P +D, j, b) = SP/C (3.6)

where b refers to additional blocks that could be used for buffering i.e more

prefetching.

However, the question comes down to, how much spare-time is required

for a system to provide the required QoS for a given rate of demand misses. In

other words, how many blocks, given by P , should be prefetched for streaming

applications and how many blocks, given by D, should be fetched for demand

misses in a network operation, for a given demand arrival rate.

3.4.1 Demand Access

Demand accesses are generated by applications without giving any prior no-

tice and will need to be satisfied as soon as possible, as the application may

be waiting on that block to continue its execution.

Clustering a demand miss with ongoing fetches will add an additional

Cµsecs to the fetch operation. To bring in an additional D demand blocks
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with ongoing P prefetch blocks will be Tdemand(P +D):

Tdemand(P +D) = L+ CP + CD

Tdemand(P +D) = L+ CP+D (3.7)

where CP (C ∗ P ) is the time to prefetch p number of prefetch blocks. The

CD(C ∗ D) is the time to bring in additional demand blocks with ongoing

prefetch. The number of demand misses (CD) fetched should be less than or

equal to NAB(P +D, j, b).

Note that the number of requests clustered into a network buffer in-

creases the time to fetch the network buffer, therefore adding more block

requests to the network buffer will add more delay to the demand requests.

This shows that there is a need to analyse how many requests should be

clustered, so that demand misses are not penalised by clustering too many

requests.

Let Tstorage represent the average time taken to satisfy a demand re-

quest on the commonly used storage device. Twait, is the average waiting time

experienced by a demand request in the demand queue. Now, as long as we

can guarantee that the time taken to satisfy each demand request over the

network, in this case NMS, TD−NMS, is less than or equal to the average time

taken to satisfy a demand request on the commonly used storage device, the

Quality-Of-Service will be better than or equal to the commonly used storage

device. From this we have,

TD−NMS ≤ Tstorage

Tdemand(P +D) + Twait ≤ Tstorage (3.8)

Equation 3.8 shows that in fetching the network buffer, the sum of the time

taken to fetch a demand request, ( Tdemand(D) ), and the average waiting time

(Twait) of that request should be less than or equal to Tstorage i.e. TD−NMS ≤
Tstorage
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Substituting the Equation 3.7 in Equation 3.8 for clustering demand

misses:

L+ CP+D + Twait < Tstorage

(3.9)

The total number of blocks that could be fetched for a given demand rate

and prefetch rate is equal to the number of blocks being prefetched plus the

number of blocks that could be fetched using spare time should be less than

Tstorage, which is,

L+ CP+D + Twait +NAB(P +D, j, b) < Tstorage

(3.10)

Equation 3.4 and Equation 3.10, will guarantee the quality-of-service for

demand requests and for running streaming applications respectively. The

analysis indicates how many requests should be clustered into a network

buffer so that demand requests do not get penalised too heavily for specific

demand miss and prefetch rates.

3.5 Using Different Prefetching Strategies

In the previous section, we analysed the constraints that need to be satisfied

by clustering and prefetching techniques in order to provide the required QoS

for demand requests and streaming applications. Demand requests cannot be

controlled as they happen randomly. Streaming applications consume blocks

at a constant rate and therefore the prefetch rate can be controlled. Hence

the prefetching could be achieved in a controlled way while making use of

resources i.e. network, memory etc., effectively. In order to study the effects

of prefetching on the resources, we need to look at well-known prefetching
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strategies and they are:

• Aggressive Prefetching: In this strategy, prefetching will be done at

the earliest opportunity, i.e. whenever the network and memory are

available. Papathanasiou and Scott [2005], proposed that aggressive

prefetching is the way forward for today’s modern computers, because

huge amounts of memory and network bandwidth are now available,

and processors are faster.

However, though network bandwidth and memory have increased, the

aggressive prefetching is still not an optimal prefetching strategy, as it

will keep the network busy most of the time and could overload the

memory. Also, using aggressive prefetching for streaming applications

can penalise demand misses heavily. Using simulation, we have studied

the effect of aggressive prefetching on the demand misses. This will be

discussed later in Section 3.6.

• Just-In-Time (JIT): In this strategy, prefetching will be done such that

the block is available in the system just before it is required by the ap-

plication, as discussed in Informed Prefetching and Caching [Patterson

et al., 1995], hence, using the memory and network effectively. This

work used the concept of parallel disks in order to satisfy requests.

Using parallel disks, a demand block request could be processed in-

stantaneously as there will always be a free disk available to satisfy a

request.

In our work, the data is located over the network in memory servers

and once the requests are being processed no other request could be

sent until the first set of requests are satisfied. Hence, the JIT prefetch-

ing strategy would not be able to guarantee the required QoS, as the

network might not be available all the time. However, we will study

and compare the effects of JIT strategy on the demand misses using

simulation.

• Prefetch-on-Demand miss (PonD): In this strategy, prefetching for the

streaming applications will only be done if there is a demand miss
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to be serviced. This is also known as conservative prefetching, which

was explored in Cao et al. [1995], where Cao tried to minimise the

number of fetch operations while reducing the application execution

time. The results showed that the conservative strategy performs close

to the theoretical optimum. Also, Papathanasiou and Scott [2004],

proposed that minimising the fetch operation can result in a reduction

of the energy used.

Using the PonD strategy results in the least number of fetches over

the network. Thus, it will therefore have minimal effect on the average

waiting time experienced by demand misses compared to Aggressive

and JIT prefetching strategies. This makes the PonD strategy environ-

mentally friendly and ideal for the network environment.

In order to maintain the QoS for streaming applications using PonD

strategy, buffering will be used. Buffered blocks can be used by stream-

ing applications when there are no demand misses. The buffering strat-

egy will be analysed based on the demand rates i.e. the number of

prefetch blocks that need to be fetched during an operation will de-

pend on the rate at which demand misses occur.

3.6 Evaluating Prefetching Strategy

In order to study the effects of the three different prefetching strategies above

on demand misses, we developed a simulation which can simulate the Net-

work Memory Server environment. Tests were carried out using simulation

for different arrival rates of demand misses with each prefetching strategy.

The results are shown in Figure 3.4, where PonD, represents the Prefetch-On-

Demand prefetching strategy, Aggressive, represents the Aggressive prefetch-

ing strategy and JIT represents the Just-In-Time prefetching strategy.

It showed that aggressive prefetching always keeps the network very

busy and therefore the average time experienced to serve a demand miss,
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(TD−NMS), is much higher compared to the PonD and JIT strategies. There

is not much difference in the average time experienced to serve a demand

miss when using the JIT and PonD prefetching strategies. However, the JIT

prefetching strategy will not be able to provide the required level of QoS.

The results from the simulation and the work of Pei Cao and Papathana-

siou and Scott showed that the conservative prefetching is the way forward,

and therefore, we believe that PonD prefetching strategy could be an ideal

prefetching strategy in the network environment. Using the PonD strategy

Figure 3.4: PonD vs Aggressive Prefetching: Comparison of average waiting
time experienced by demand misses using PonD

shows that networks will be used effectively. However, the effect on memory

is still unknown, as more buffering will be required for the lower rates of

demand misses and less buffering will be done for higher rates of demand

misses.
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3.7 Towards an Analytical Model

Prefetching for streaming applications could be controlled, once the total con-

sumption rate of running streaming applications is known. Demand misses

are random and need to be satisfied in a reasonable time. The average time

experienced to satisfy a demand miss, TD−NMS, needs to be analysed in order

to provide QoS for demand misses .

In order to estimate the average time to satisfy a demand miss for

a given scenario we propose to develop an analytical model using queueing

theory, which can estimate the average time to satisfy a demand miss using

the PonD strategy. This will allow us to balance the number of prefetch and

demand blocks being fetched in one operation at runtime and will also allow

us to analyse boundaries, i.e., how many ongoing streaming applications

can be executed and number of demand misses should be satisfied in one

operation. Beyond the analysed boundaries, the proposed work will not be

able to provide the required quality of service.

3.8 Conclusion

This chapter outlined the required environment and approach that will be

used to address the research question. It discussed different prefetching

strategies for streaming applications and proposed that the Prefetch-On-

Demand strategy is a very good prefetching strategy for a network-based

service. Finally, it also showed that there is a need to develop an analytical

model for the PonD strategy, to calculate the average time to service demand

misses, TD−NMS, and to explore boundaries based on established constraints.
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Chapter 4

Analytical Model for
Prefetching and Clustering

This chapter describes in detail the analytical model for the Prefetch-On-

Demand (PonD) strategy, to estimate the average time to serve a demand

miss. Firstly, it starts by describing the standard models. Secondly, it

then describes a model which can represent clustering over the network and

presents two solutions. Finally, it presents preliminary results of the solved

models and concludes by describing the need to explore an operational space

where QoS for streaming applications and demand misses could be satisfied.

4.1 Analysis

From the previous analysis, we can represent the system by two queues: the

demand queue and the prefetch queue, as shown in Figure 4.1. Let λd be the

rate at which demand requests are arriving at the demand queue and let λp be

the rate at which prefetch requests are arriving at the prefetch queue. While

serving, more than one request could be taken from both queues, clustered

into a network buffer which is then sent off to the server. This can be viewed

as a type of bulk service.
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Figure 4.1: A model with a server serving two queues: Prefetch and Demand.

This analysis attempts to answer the question: Given the arrival rates

of the two queues, can we find a way to calculate the average service time

experienced by demand misses?

4.2 Literature

In order to answer the question, we looked at several polling models. A

polling model is a system of multiple queues accessed in a cyclic order by a

single server. In recent decades, polling models have been used to analyse

the performance of a variety of systems. According to [Takagi, 1988], in the

late 1950s, a polling model with a single buffer for each queue was used in an

investigation of a problem in the British cotton industry involving a patrolling

machine repairman [Mack, 1957a,b]. In the 1960s, polling models with two

queues were used to analyse traffic signal control, (see a survey by Stidham,

1969). There were also some early studies from the viewpoint of queueing

theory that were apparently independent of traffic analysis (e.g Avi-Itzhak

et al., 1965). In the 1970s, with the advent of computer communication

networks, an extensive study was carried out on a polling scheme for data

transfer from terminals on multidrop lines to a central computer. Since the

early 1980s, the same model has been revived by Bux [1981] and others to

study token passing schemes, (e.g., the token ring and token bus), in local-

area networks (LANs). It has also been used for resource arbitration and load
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sharing for multiprocessor computers [Wang and Morris, 1985]. A polling

model was used in a non-technical article in Scientific American [Leisowitz

and Konheim, 1980], as an example of an interesting and important queuing

system.

The usual objective in analysing polling models is to find the message

waiting time, defined as the time from the arrival of a randomly chosen

message to the beginning of its service. The mean waiting time plus the

mean service time is the mean message response time, which is the single

most important performance measure in the most computer communication

systems [Kleinrock, 1976].

Polling models are referred to in many survey articles and books

on data communication systems such as Chu and Konheim [June 1972.],

Dimitri and Robert [1992], Hayes and Sherman [November 1971], Kaye and

Richardson, Kobayashi [Jan 1977], Leisowitz and Konheim [1980], Penny and

Baghoadi [1979], Reiser [1982], Simon LAM January and Simon S. LAM

[1983].

The vast majority of the literature is concerned with the two tradi-

tional service disciplines, the exhaustive and gated policies. Exhaustive ser-

vice means that a queue must be empty before the server moves on, whereas

in the case of gated service only those customers in the queue at the start of

polling are served. The main drawback of these traditional policies [Takagi,

1990, 1988, 2000] is the inability to prioritise among the different queues for

improving total system performance. A more sophisticated service strategy

offering this possibility is the K-limited service strategy. Under this strategy

the server continues working at a queue until either a predefined number of

K customers is served or until the queue becomes empty, whichever occurs

first. Note that the case K −→ ∞ is equivalent to the exhaustive service

strategy. In many applications of polling systems, the objective function

typically depends not only the mean queue lengths, but on the complete

marginal queue length distributions. Therefore, Vuuren and Winands, 2006,

proposed to study the marginal queue length distributions in a continuous-
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time polling systems with K-limited service under the assumption of general

arrival, service and set-up distributions.

A feasible approximate approach for the queue length distribution in a

K-limited polling system is the decomposition method, in which the polling

system is decomposed into vacation systems, for which the vacation distri-

butions are computed in an iterative approximate manner. At each step in

the iteration, the mathematical analysis focuses on one single queue, whereas

the other queues in the system determine the length of the vacation period.

We have to remark that these decompositions methods seem to be applicable

to a wide variety of queueing systems ( e.g., [Dallery et al., 1989, Gershwin

and Burman, 2000, Van Vuuren and IJBF, 2006, Van Vuuren et al., 2005]).

However, the main disadvantage of this method is that time and memory

requirements on computational resources are exponential functions of the

number of queues.

In our work, we believe that the streaming applications access blocks

at a constant rate. The number of blocks needed to be fetched for the prefetch

queue to provide the required QoS can be controlled. Hence, we can reduce

the model to a single-queue system based on demand requests but the service

time for the demand blocks will include the cost of fetching prefetch blocks.

We can further simplify the analysis by only prefetching when there are

demand requests in the demand queue i.e. conservative prefetching as shown

by Cao et al. [1995]. This strategy is also justified as it uses the network

more effectively.

4.3 Standard Approach (Partial Batch Model)

As a first step in analysing the average time to satisfy a demand request in

the demand queue, we will use the Partial Batch Model described in [Gross

and Harris, 1998]. In this model a server can serve up to a maximum of K

requests. If there are less than K requests in the system, the server begins
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service these requests. Furthermore, when there are less than K requests

being serviced, new arrivals immediately enter service. The amount of time

required to service requests, is an exponentially distributed random variable

with mean 1
µ
.

This model is represented in Figure 4.2. Each state of the model is

represented in terms of n and s. n is the total number of requests in the

system and s is the number of requests currently being served. It can be

seen that any new arrival enters the service immediately as long as there

are less than K number of requests being served and time taken to service

those requests is exponentially distributed to a mean value of 1
µ
. A stochastic

Figure 4.2: Partial Bulk Service model.

balance equation for the model can be written as:

0 = −(λ+ µ)pn + µpn+K + λpn−1 (n > 1) (4.1)

0 = −λp0 + µp1 + µp2 + ....+ µpK−1 + µpK

For K = 1;

0 = −(λ+ µ)pn + µpn+1 + λpn−1 (4.2)

0 = −λp0 + µp1

The above equations are the basic equations for the M/M/1 queue. Hence,
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we can say the solution for the PBM is same as the M/M/1:

pn = p0r
n

By finding the root (r) of this equation that is between 0 and 1, one

can work out the mean queue length, Ns and the average waiting time (W )

for the queue, using the equations below.

Ns =
r

1− r
and W =

r

λ(1− r)
(4.3)

The results presented in Figure 4.6, showed that this approach is extremely

accurate for very heavy traffic, since on these occasions the server will always

be serving the maximum batch size. However, for lighter traffic loads the

model is inaccurate because according to this approach new requests will

immediately enter service when the server is serving less than the maximum

batch size which is not the case in our scenario. Here, the server only serves

the number of requests in the queue at its arrival, requests arriving after this

point must be serviced in the next cycle regardless of whether or not the

maximum batch size is being served in the current cycle. Hence, the scenario

is gate-limited and not exhaustive-limited as seen in the Partial Batch Model.

4.4 Proposed Gated-Limited Model

In this section we attempt to develop a more accurate model which could be

used under operational loads. As shown in Figure 4.3, the state of the model

is defined by two variables i.e. n and s. n is the total number of requests in

the system including the requests being served and s is the number of requests

being served at any given time. Therefore, for the maximum batch size s =

51



K, s goes from 0 to K, so when s = 0, the system is empty and when s = K

up to K requests are being served at a time. For reasons of tractability, the

network buffer is assumed to be of infinite length. Also, excluding (0, 0), this

will give rise to the K different stages as shown in Figure 4.3 with each stage

having a service rate depending on the number of blocks being served.

Figure 4.3: A model with a server which can serve up to K demand requests
in batch mode, n = the total number of requests in the system and s = the
number of requests being served.

4.4.1 Simple Scenario

We start by looking at a simple scenario by restricting K to 2, i.e. s = 2,

as shown in Figure 4.4. Having K equal to 2 there can be only three stages:

either the server is serving 1 request or it is serving 2 requests or the queue is

empty. This means that with the exception of the transition, (2, 2) to (0, 0),

each transition can only jump one stage at a time (i.e. 1 to 2 or 2 to 1) for

e.g. (3, 1) goes to (2, 2) or (3, 2) goes to (1, 1). We will analyse each series

individually starting with Series 1.
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Figure 4.4: Two Stage Model, K = 2.

Considering Series 1 i.e. when s = 1

Let us consider Series 1 of the Figure 4.4. In Series 1, s = 1 and for n > s

i.e. n > 1, we will have:

λpn−1,1 = (λ+ µ1)pn,1 (4.4)

This implies that for any n > 1, in Series 1:

pn,1 =
λ

(λ+ µ1)
(pn−1,1)

pn,1 = (
λ

(λ+ µ1)
)n−1(p1,1) (4.5)

And for n = s, i.e., n = 1, we have:

(λ+ µ1)p1,1 = λp0,0 + µ1p2,1 + µ2p3,2 (4.6)
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Finally, for n = s = 0, i.e., p0,0 will be:

λp0,0 = µ1p1,1 + µ2p2,2 (4.7)

Considering Series 2 i.e. when s = K = 2

Similarly, for s = 2, we will derive equations for n > s and n = s, using

Figure 4.4. when n > s, we have:

(λ+ µ2)pn,2 = λpn−1,2 + µ2pn+2,2 + µ1pn+1,1

(4.8)

And for n = s, we have:

(λ+ µ2)p2,2 = µ2p4,2 + µ1p3,1 (4.9)

Now using the derived equations for Series 1 and Series 2, we will try to

obtain an equation for Series 2 at point p3,2
1. We can find out the roots of

these equations as in the Partial Batch Model and thus will be able to find

out the probability of being at each point in Series 2.

(λ+ µ2)p3,2 = λp2,2 + µ2p5,2 + µ1p4,1 (4.10)

From Equation (4.5), p4,1 can be expressed as ( λ
λ+µ1

)3(p1,1). Further, from

Equation (4.7), µ1p1,1 can be expressed as λp0,0 − µ2p2,2. Therefore,

µ1p4,1 = (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3 (4.11)

1Similar techniques can be used for different points of Series 2, e.g. p2,2, p4,2, p5,2
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Substituting the value of p4,1 into the Equation 4.10, we get:

(λ+ µ2)p3,2 = λp2,2 + µ2p5,2

+ (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3

0 = −(λ+ µ2)p3,2 + λp2,2 + µ2p5,2

+ (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3

(4.12)

Now, we need to find the root r which is between 0 and 1 such that it solves

the above equation, as in the Partial Batch Model.

4.5 First Attempt to Solve Series 2

In this first attempt, we primarily wanted to determine whether our proposed

model was better than the PBM model. The approach taken was to regard

our model as two separate and independent chains/series both emanating

from p0,0, so the idea is to be able to express all the values of all the states

in terms of p0,0.

By finding the root (r) which will be between 0 and 1, we can find the

probability of being at each point in Series 2 in terms of p0,0. We will use

the same approach as in the M/M/1 queueing as well as the Partial Batch

Model and so we will express pn,2 in terms of p0,0 as follows:

pn,2 = rnp0,0 (4.13)

Similarly, using Equation (4.7), we can find out the probability of

being at each point in Series 1 in terms of p0,0.
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λp0,0 = µ1p1,1 + µ2p2,2

p1,1 =
(λ− µ2r

2)

µ1

p0,0 (substituting p2,2 = r2p0,0)

p1,1 = C1,1 ∗ p0,0 where C1,1 = (λ−µ2r2)
µ1

and

pn,1 = (
λ

(λ+ µ1)
)n−1 ∗ C1,1 ∗ p0,0

(substituting value of p1,1 in Equation 4.5) (4.14)

From Equations (4.13) and (4.14), we can see that the probability at

any point in the model can be known if p0,0 is known. Also, the sum of all

the probabilities should be equal to 1. Hence, we sum the two independent

chains as follows:

∞∑
n=0

pn,1 +
∞∑
n=0

pn,2 = 1 (4.15)

Let S1 be equal to
∞∑
n=0

pn,1. From Equation 4.14, we have:

S1 =
∞∑
n=0

(
λ

(λ+ µ1)
)n−1 ∗ C1,1 ∗ p0,0

=
C1,1p0,0(λ+ µ1)

2

λµ1

(4.16)
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Similarly, let S2 be equal to
∞∑
n=0

pn,2. From Equation 4.13, we have:

S2 =
∞∑
n=0

rnp0,0

=
1

1− r
p0,0 (4.17)

S1 + S2 = 1

p0,0(
C1,1(λ+ µ1)

2

λµ1

+
1

1− r
) = 1

p0,0 =
λµ1(1− r)

(λ+ µ1)2 ∗ C1,1(1− r) + λ ∗ µ1

(4.18)

where r is the root between 0 and 1 of Equation 4.12 expressed in

terms of 4.13.

Once we know p0,0, the total number of requests, (Ns), in the system

can be calculated using:

Ns =
∞∑
n=0

n ∗ pn,1 +
∞∑
n=0

n ∗ pn,2 (4.19)

and the average time to serve a demand miss will be equal to W :

W =
L

λ
(4.20)
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4.5.1 Simulation

A simulation was developed to verify the analytical model results. It is

written in C++ and is a discrete event based simulation. There are two

types of events supported and they are service and arrival events.

On an arrival event, the next arrival event is generated and the current

arrival event is placed in the demand queue and the time of arrival is also

stored. A service event indicates that the request at the head of the queue has

been served and its waiting time is calculated. Further, if the queue is empty

the server is set to free or the next service event is generated (depending

on the values of P,D,L,C). This procedure continues untill the required

number of jobs have been served. The flow chart of the simulation is shown

in the Figure 4.5

In the simulation the values of P , D(MaxD), L and the iteration

(JOBS) can be set. The full code for the simulation can be found in AP-

PENDIX C.

4.5.2 Results of the First Attempt

In the experiment, the number of prefetch blocks (P ) was kept constant,

(P = 1), and the arrival rate of the demand queue was varied. The analyt-

ical results were calculated using different points at Series 2, however, p4,2

appeared to give the best results. The results estimate the average time to

serve a demand miss, (TD−NMS), by the Partial Batch Model and the Pro-

posed Model, are shown in Figure 4.6. The simulation points in the graph

have 95% of confidence level with confidence interval of ±5%. It shows that

the results from the analytical model are significantly better than the Partial

Batch Model.

The results from the first attempt show that the model appears to

be very accurate at medium and high loads but inaccurate at lower loads.
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Figure 4.5: Working Of Simultaion

This is inadequate as it is unable to estimate the average time to serve a

demand miss over the network when operating over a large operational range

of λd. In addition, at very high non-operational loads the model overshoots

the PBM and the simulation (not shown above but in the UKSIM paper

[Thakker et al., 2009]). We therefore need to revisit the approach of treating

the model as two independent series based around p0,0. Instead, we base

each series on its first element, i.e., p1,1 and p2,2, and we use Equation 4.7 to

include p0,0. This allows us to come up with another solution based on the

state of p2,2 instead of p0,0.
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Figure 4.6: Estimates the average time to serve a demand miss (TD−NMS)
using Simulation, Partial Batch Model and First Attempt (Our Model).

4.6 Second Attempt to Solve Series 2

In this section, we attempt to solve the Equation 4.12 based on the state p2,2.

First, we find out the roots of this equation using the same technique that

was used in the Partial Batch Model. Thus the state probabilities of Series

2 for n >= 2 can be given by:

pn,2 = rn−2p2,2 (4.21)

In order to solve the above equation, we assume the second Series to

be identical to a Partial Batch Model represented by Equation 4.12. This

is shown in Figure 4.7. However, for states where n > 2, there is no real

difference between the real or imaginary Series as Equation (4.21) is valid in
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Figure 4.7: Imaginary Partial Batch Model for Series 2

both scenarios. This means we can use the same approach as was taken in

the Partial Batch Model to calculate r. Once this is done we can represent

any state in the second Series by the Equation 4.21. In addition, using the

previous equations, it will also be possible to represent p0,0 and Series 1 in

terms of p2,2.

Using Equation 4.7, we substitute for λp0,0 in Equation 4.6. In addi-

tion, we note that according to Equation (4.21): p3,2 = rp2,2. Rearranging,

we get: p1,1 = C1,1 p2,2 where C1,1 is given by the equation:

C1,1 = µ2(1 + r)(
λ+ µ1

λ2
) (4.22)

By substituting for p1,1 in Equation 4.7, we can get an equation for

p0,0 in terms of p2,2; i.e., p0,0 = C0,0 p2,2 where C0,0 is given by:

C0,0 =
µ1C1,1 + µ2

λ
(4.23)
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4.6.1 Solving for p2,2

The sum of all the state probabilties must be equal to 1. Let S1 be the sum of

the state probabilities for Series 1 and S2 be the sum of the state probabilities

in Series 2. So we can write:

p0,0 + S1 + S2 = 1 (4.24)

where:

S1 =
∞∑
n=1

(
λ

(λ+ µ1)
)n−1p1,1 (4.25)

S2 =
∞∑
n=2

rn−2 p2,2 (4.26)

For S1, let m = n− 1 and substituting for p1,1

S1 =
λ+ µ1

µ1

C1,1p2,2 (4.27)

Similarly for S2, let m = n− 2

S2 =
1

1− r
p2,2 (4.28)
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Summing to one we get:

p2,2 =
1

C0,0 + λ+µ1
µ1

C1,1 + 1
1−r

(4.29)

Using the value of p2,2 in Equation 4.22 and 4.23 , we can find values for p1,1

and p0,0.

The average number of requests in the queue can be expressed as:

Ns =
∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 +

∞∑
n=2

nrn−2p2,2 (4.30)

We can further obtain an exact formula for Ns, as shown in the section below.

4.6.2 Further Solving for Ns

From Equation 4.30, we first solve for the first term on the Right Hand Side

of the equation and then second term.

∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 (4.31)

Let q = λ
λ+µ1

=
∞∑
n=1

nqn−1p1,1 (4.32)

63



Now, n ∗ qn−1 = d
dq
qn

=
∞∑
n=1

d

dq
qnp1,1

=
d

dq

∞∑
n=0

qnp1,1

=
d

dq
(

1

1− q
)p1,1 (substituting

∞∑
n=0

qn =
1

1− q
)

∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 =

1

(1− q)2
p1,1 (4.33)

Now solving the second term on the Right Hand Side of the Equa-

tion 4.30.

∞∑
n=2

nrn−2p2,2 =
∞∑
n=2

(n− 1)rn−2p2,2 +
∞∑
n=2

rn−2p2,2 (4.34)

In order to present the solution of Equation 4.34 in simple form, we

will again solve the terms in the Right Hand Side one by one, starting with

the second term on the Right Hand Side of Equation 4.34.

∞∑
n=2

rn−2p2,2

=
∞∑
q=0

rqp2,2 ( substituting q = n− 2 )

=
1

1− r
p2,2 (substituting

∞∑
q=0

rq =
1

1− r
)

(4.35)

64



Now, solving the first term on the Right Hand Side of Equation 4.34:

∞∑
n=2

(n− 1)rn−2p2,2

=
∞∑
n=2

d

dr
rn−1p2,2 (substituting (n− 1)rn−2 = d

dr
rn−1)

=
d

dr

∞∑
n=1

rn−1p2,2

=
d

dr

∞∑
q=0

rqp2,2 (substituting q = n− 1 )

=
d

dr
∗ 1

1− r
p2,2 (substituting

∞∑
n=0

rq =
1

1− r
)

= (
1

(1− r)2
)p2,2 (substituting d

dr
1

1−r = 1
(1−r)2 ) (4.36)

The results expressed in the Equations 4.35 and 4.36 showed that Equa-

tion 4.34 can be expressed as:

∞∑
n=2

nrn−2p2,2 = ((
1

1− r
) + (

1

(1− r)2
)) ∗ p2,2

= (
1− r + 1

(1− r)2
) ∗ p2,2

∞∑
n=2

nrn−2p2,2 = (
2− r

(1− r)2
) ∗ p2,2 (4.37)

Equation 4.30 can be expressed as:

Ns =
1

(1− q)2
p1,1 + (

2− r
(1− r)2

) ∗ p2,2 ( From Equations 4.33 and 4.37 )

(4.38)

where q = λ
λ+µ1

and r is the root between 0 and 1 of Equation 4.12 expressed

in terms of Equation 4.21.
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The average waiting time in the demand queue, Wd = Ns

λd

4.6.3 Results of Second Attempt

We have used values measured from the NMS simulation to investigate the

analytical model presented. Simulation results for p = 1 and d = 2 were

obtained for different demand miss rates. The simulation results are then

compared with results from analytical model. This is shown in Figure 4.8

and also in Mapp et al. [2009]. In addition, the results are also shown in

terms of utilization rather than arrival rates in Figure 4.9.

The two results are quite close in value over a wide operational range.

This indicates that the model will be useful in developing practical algo-

rithms for high-performance network-based servers. It should be noted that

the model is approximate as it depends on which state of the imaginary

Chain/Series is used to calculate r. This is because the solution for r varies

slightly depending on which state is used. The best results were obtained

using the state 2, 2 which, in this case, is equal to K, the maximum batch

size.

This is shown by referring back to Equation 4.8. If n = 2, we get the

following Equation:

(λ+ µ2)p2,2 = λp1,1 + µ2p4,2 + µ1p3,1

(4.39)

where p1,1comes from the imaginary PBM chain and not from the gate-limited

service model.

66



Figure 4.8: Average time to serve a demand miss (TD−NMS) using Simulation,
Partial Batch Model and Second Attempt (Our Model).

4.7 Towards a General Solution

In this section, we seek to extend the method used for K = 2 to a general

value of K. So a gate-limited model, where K is equal to the maximum

number of requests that can be served at any moment, can be represented

by a gated-limited model of K series or chains. Furthermore, if we represent

a given chain by m, we can express the average number of requests in that

chain, Nm, in terms of the first element of that chain, pm,m. For m < K, this

sum for that chain is given by:

Nm =
∞∑
n=m

n(
λ

(λ+ µm)
)n−mpm,m (4.40)
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Figure 4.9: Utilization, ρ

Expanding:

Nm =
∞∑
n=m

(n− (m− 1))(
λ

(λ+ µm)
)n−mpm,m

+(m− 1)
∞∑
n=m

(
λ

(λ+ µm)
)n−mpm,m (4.41)

Using the same technique as above and by letting rm = λ
λ+µm

, the first term

can be expressed as:

∞∑
n=m

(n− (m− 1))rn−mm pm,m =
∞∑
n=m

d

dr
rn−(m−1)m pm,m (4.42)
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Rearranging:

∞∑
n=m

d

dr
rn−(m−1)m pm,m =

d

dr

∞∑
n=m−1

rn−(m−1)m pm,m (4.43)

Let p = n-m+1

=
d

dr

∞∑
p=0

rpmpm,m

=
d

dr
(

1

1− rm
)pm,m

=
1

(1− rm)2
pm,m (4.44)

The second term:

(m− 1)
∞∑
n=m

(
λ

(λ+ µm)
)n−mpm,m

= (m− 1)
∞∑
n=m

rn−mm pm,m (4.45)

Let q = n−m;

= (m− 1)
∞∑
q=0

rqmpm,m

= (m− 1)
1

1− rm
pm,m (4.46)

and thus we get the sum:

Nm =
m− (m− 1) ∗ rm

(1− rm)2
pm,m (4.47)
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Ns =
K∑
m=1

Nm =
K∑
m=1

m− (m− 1) ∗ rm
(1− rm)2

pm,m (4.48)

For m < K,

rm =
λ

λ+ µm
(4.49)

For m = K, we use the imaginary PBM technique to solve for rK , which is

given in its general form:

pn,K = rn−KpK,K (4.50)

Furthermore, we can sum the probabilities in each chain, for m < K

Sm =
∞∑
n=m

(
λ

(λ+ µm)
)n−mpm,m (4.51)

Let q = n−m:

Sm =
∞∑
q=0

(
λ

(λ+ µm)
)qpm,m

Sm =
λ+ µm
µm

pm,m (4.52)

If we let pm,m = Cm,mpK,K , we can express pK,K as:

pK,K =
1

C0,0 +
m=K−1∑
m=1

λ+ µm
µm

Cm,m +
1

1− rk

(4.53)

For a general technique, we need to find the value of Cm,m and we can

do so using the equations for the states of pm,m in our model. For K = 2,
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these equations are Equations 4.6, 4.7 and 4.8. This can be done by solving

a series of simultaneous equations. This is not further pursued in this thesis

because we are primarily interested in getting an algorithm for prefetching

and caching based on the constraints highlighted in the previous chapter.

Hence, simulation results from the simulation platform can also be used for

this purpose. However, this effort shows that it is possible to get fairly

accurate waiting time results over a wide operational range based on this

analytical model.

4.8 Conclusion

This chapter presented an analytical model which could be used to estimate

the average time to serve a demand miss, TD−NMS, for a given demand arrival

rate and prefetch rate. Comparison of the results from the analytical model

and simulation results showed that the results estimated by the analytical

model are within the confidence range of the simulation. Hence, the model

can be used at run time to estimate the average time to serve the demand

misses for a given scenario. We will now explore the operational space where

QoS could be provided for streaming applications and demand misses.
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Chapter 5

Exploring the Boundaries

This chapter brings together the results achieved from Chapters 3 and 4 to

define the operational space that needs to be explored. Using the analysed

equations / constraints, it explores the operational space where the QoS for

streaming applications and demand misses could be provided and obtains

optimal operational points. Finally, it describes how to put all the optimal

operational points into a database in order to develop an autonomic system.

5.1 Putting It All Together

This section brings together the results achieved from Chapter 3 and Chap-

ter 4. In Chapter 3, Section 3.3 and Section 3.4.1 obtained the equations

for streaming applications and demand accesses individually, i.e., without

considering each other, to provide QoS to each of them. Also, in Chapter 3,

we proposed to use the Prefetch-On-Demand strategy as it uses network and

memory resources efficiently. Further, we developed a simulation to simulate

the Prefetching and Clustering strategy over network, using the Network

Memory Server.

In Chapter 4, we derived an equation which could be used to estimate
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the average time, (TD−NMS), to serve a request on the demand queue when

using the PonD strategy, for a given value of C (constant cost), P (number

of prefetched blocks) and D (number of demand blocks).

Now, using the PonD strategy and the equations derived in Chapters 3

and 4, we need to explore the space where the required QoS for streaming

applications and demand misses could be provided over the network. As a

first step in exploring the space, we need to define the space itself.

5.2 Defining the Operational Space

This space will consist of three variables. The first variable is the number

of prefetched blocks being fetched. The second variable is the rate at which

demand misses are occurring. The third variable is the average time expe-

rienced in fetching both prefetch and demand blocks in one operation. The

average time experienced to serve requests in the prefetch and demand queues

will depend on the number of D and P blocks being fetched in a single oper-

ation. This region could be viewed as a 3-dimensional object. The three axes

of the space consist of the prefetch rate (λp), represented as the number of

blocks p, on the x-axis, the demand miss rate (λd), (y-axis) and the average

time experienced to serve a demand miss TD−NMS, (z-axis). This is repre-

sented in Figure 5.1. Since the rate at which demand arrival occurs cannot

be controlled, we need to analyse the other two variables i.e., the number

of prefetch blocks that could be fetched and the average time experienced

to serve a demand miss for a given demand miss rate. This demand arrival

rate should be measured at a given time. Given the demand arrival rate, we

should analyse the number of prefetch blocks that could be fetched and the

average time experienced to serve a demand miss, keeping the fixed value of

D and varying the value of P .

Hence, we can represent the above 3D space in 2D space for each

demand arrival rate. In 2D space, the two axes will be the number of prefetch
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Figure 5.1: Visualisation of the Space in 3D.

blocks P and the average time experienced to serve a demand miss for a given

demand arrival rate and for a given D. Further, we then apply the constraints

to obtain the Working Space. The Working Space is the space where QoS

for streaming applications and demand misses could be provided for a given

arrival rate of demand miss and prefetch rate. For example, it can be seen

from Figure 5.2 that for a given demand arrival rate is 0.002857 blocks per

microsecond (mean arrival time 350µsec) and having D = 2 blocks, we can

find the average time experienced to serve a demand miss on the demand

queue for different values of P . We can obtain these results either by using

simulation or by using an analytical model. Since we have built a simulation

platform and the simulation results are readily available for different values

of D, we will use the results from the simulation to analyse the average time

experienced on a demand miss, for a given value of demand arrival rate and

values of P and D.
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Figure 5.2: Exploring space for demand arrival rate of 0.002857 blocks per
µsec (2857 blocks per second, where 1 block is 1024 bytes)

5.3 Fundamental Constraints

Once the space is derived by our simulation results, we will apply constraints

on the space so that the Working / Operational Space could be derived.

The fundamental constraints consist of the time taken to serve a de-

mand request on the demand queue and the service rate experienced at the

prefetch queue.

Demand Requests

For the demand queue, the average time taken to serve a demand miss,

(TD−NMS), over the NMS should be less than the average time experienced

on a commonly used storage device, for example, a local hard-disk. This is

referred to as the Storage Constraint.

TD−NMS < T storage (5.1)

where, T storage is the average time experienced to serve a request on com-
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monly used storage for a demand miss.

Prefetch Requests

For given values of D and P , the average time experienced to serve a demand

miss on the demand queue over the NMS can be estimated using simulation.

As we are using PonD prefetching techniques, the average time experienced

in fetching P prefetch blocks will be the same as the average time experi-

enced in satisfying a demand miss. Therefore, the prefetch rate would be

equal to P
TD−NMS

blocks per µsec. For the prefetch queue, the service rate

experienced at prefetch queue ( P
TD−NMS

) should be greater than the rate at

which blocks are consumed ( 1
Tcpu

) by streaming applications. This is referred

to as the Prefetch Constraint, as shown in the below equation:

Prefetchrate > Consumerate (5.2)

P

TD−NMS

>
1

Tcpu
TD−NMS

P
6 Tcpu

In other words, for the prefetch constraint, the time to fetch P blocks should

be less than the time to consume P blocks, or the average time experienced

to satisfy a demand miss should be less than or equal to the time to consume

P prefetched blocks in one operation i.e.

TD−NMS 6 Tcpu ∗ P (5.3)

Once these constraints are applied to the explored space, the Working Space

can be obtained.
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5.4 Applying the Constraint to Explore Space

In this section, we will apply the discussed constraints on the results mapped

out by the simulation. The two constraints are: the storage constraint and

the prefetch constraint.

• Storage Constraint: The Storage Constraint would really depend on

the QoS that we would like to provide to demand misses using the NMS

compared to other storage devices. The question is what type of storage

device should be considered in order to carry out the comparative study.

However, the concept of a storage constraint would be valid regardless

of the storage device being used to do the comparison with NMS.

There are various types of storage devices used to store data over the

network or on the local disk. Some of the available techniques to

store data over the network are Network File System (NFS), Storage

Area Network (SAN), etc. However, the results from previous research

by Rochberg and Gibson [1997], showed that the performance of NFS

is slower than the local disk and for a SAN to be implemented, it needs

special hardware and therefore cannot be readily implemented. Hence,

it is not commonplace.

The most commonly used storage device is the local hard-disk. There

are different types of hard-disks available, for example, IDE, SATA,

etc., each having a different cache size on it. In our research, for a

comparative study for demand misses, we have used a SATA hard drive,

as it is much faster than IDE. The SATA hard drive has 32MB cache

size and 7200rpm and it is now the de-facto industrial standard. Hence,

the storage constraint will be referred to as the Disk Constraint, (Tdisk).

The average time experienced to serve a demand miss for those hard-

disks is 7.8 milliseconds, i.e., Tdisk is 7.8 milliseconds. Although, the

popularity of Solid State Drives, (SSD) is increasing due to its high

read/write speeds and fault tolerance, they are very expensive and still

not commonly used.
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Applying the first constraint, i.e., the disk constraint in Figure 5.2,

we obtain Figure 5.3, where, Tdisk, is the average time experienced to

Figure 5.3: Applying the Disk Constraint on the explored space for demand
arrival rate of 0.002857 blocks per µsec (2857 blocks per second, where 1
block is 1024 bytes), having D = 2 blocks and Tdisk is 7.8 milliseconds.

serve a demand miss on the SATA hard-drive and PonD, is the time

experienced to serve a demand miss (TD−NMS) for a given demand

arrival rate of 0.002857 blocks per µsec, having D = 2 blocks and

prefetching different number of P prefetch blocks.

From Figure 5.3 the maximum number of prefetch blocks P that can be

fetched at demand arrival rate of 0.002857 blocks per µsec and having

D = 2 blocks, is equal to 17 prefetch blocks. Fetching less than or

equal to 17 prefetch blocks for a given scenario, will be able to provide

the required QoS for the demand misses using the NMS, as shown by

Equation 5.1. Fetching more than 17 prefetch blocks will increase the

time experienced to serve a demand miss on the demand queue and

will not be able to satisfy the QoS for demand misses.

• Prefetch Constraint: Similar to the disk constraint, the prefetch

constraint also depends on the type of video being executed, as differ-
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ent types of video will consume blocks at different rates and hence will

require different prefetching rates. For example, the time to consume

a block in HD video is 200µsec (5000 blocks per second, where 1 block

is 1024 bytes) and the time to consume a block of MPEG-4 video is

400µsec (2500 blocks per second, where 1 block is 1024 bytes). Simi-

larly, the consumption rates for MPEG-2 and MPEG-3 are different.

However, MPEG-4 video is the most commonly used type of video.

Therefore, in our example, we assume that the running streaming ap-

plication is using MPEG-4 video, and hence the time to consume a

block is 400µsec. Also, the HD videos are becoming quite popular, but

to provide QoS to HD video, the network infrastructure needs to be

improved in terms of speed and so a large amount of storage space will

be required.

Figure 5.4: Applying the Prefetch Constraint on the explored space for de-
mand arrival rate of 0.002857 blocks per µsec (2857 blocks per second, where
1 block is 1024 bytes), having D = 2 blocks and Tcpu = 400µsec.

Applying the second constraint i.e. the prefetch constraint, in Fig-

ure 5.2, we obtain Figure 5.4, where, the consumption time is the time

taken by the streaming applications to consume P blocks and the time
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taken to fetch P blocks is given by the PonD simulation results.

Figure 5.4 shows that when the number of prefetch blocks being fetched

is less than 19 blocks then the time to fetch those P prefetch blocks,

for a given scenario, is much less than the time taken to consume those

blocks by a given streaming application and hence, the required QoS

for streaming applications could be provided, as in Equation 5.3.

However, once the number of prefetch blocks being fetched is more than

19 blocks, the time to fetch P (P > 19) blocks would be greater than

the time to consume P blocks and hence, the streaming application will

experience jitter or will stall and therefore will not be able to obtain

the required QoS.

Figure 5.5: Applying the Disk and Prefetch Constraints on the explored space
for demand arrival rate of 0.002857 blocks per µsec (2857 blocks per second,
where 1 block is 1024 bytes) and having D = 2 blocks where Tdisk = 7.8
milliseconds and Tcpu = 400µsec.

• Applying both the constraints: Applying both constraints from

Figure 5.2, we obtain Figure 5.5. From Figure 5.5, it can be seen that

the prefetch constraint intersects with the average service time, when
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P = 19 blocks and the disk constraint intersect with the average service

time, when P = 17 blocks. However, fetching more than 17 prefetch

blocks will not guarantee the QoS for demand misses. Therefore, our

maximum number of prefetch blocks, Pmax, that could be fetched in a

single operation for this scenario would be 17 prefetch blocks, which

would satisfy both the constraints and is referred to as the working

space. In this example the disk constraint dominates the prefetch con-

straint.

In contrast, in Figure 5.6, it can be seen that the prefetch constraint

dominates the disk constraint, where the demand arrival rate is 0.004

µsec (4000 blocks per second, where 1 block is 1024 bytes) and D = 2

blocks. In this case, the number of prefetch blocks should be less than

or equal to 6 blocks in an operation and is referred to as the explored

working space.

This section explores the space consisting of different values of P (prefetch

blocks) with demand misses for a given scenario. However, there is still

a need to analyse the optimal operational points i.e., optimal value

of Popt for a given value of demand arrival rate and the given value of

D.

5.5 Optimal Operational Points

This section first analyses the optimal number of prefetch blocks, Popt, that

should be fetched for a given value of demand arrival rate and the value of D.

Secondly, it analyses the optimal consumption time, Toct, for the streaming

applications that could be supported for given values of D, P and demand

arrival rate.

1. Optimal number of prefetch blocks: In the previous section, we

explored the working space for a given demand arrival rate and for a

given value of D. The space consists of different values of P and is
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Figure 5.6: Applying the Disk and Prefetch Constraints on the explored space
for demand arrival rate of 0.004 blocks per µsec (4000 blocks per second,
where 1 block is 1024 bytes), having D = 2 blocks, Tdisk = 7.8 milliseconds
and Tcpu = 400µsec.

bounded by the maximum number of P , i.e., Pmax. This means that

the QoS could be provided for a system for P less than or equal Pmax.

However, in our work, we would always like to operate at Pmax for a

given D, because we are using the PonD strategy where prefetching

is only done when demand misses occur. Hence, the system should

attempt to prefetch the maximum number of prefetch blocks when there

is a demand miss, as we would not know when the next demand miss

will occur. Also, fetching the maximum number of prefetch blocks will

allow network bandwidth to be used effectively. Hence, for a given

demand arrival rate and value of D, the optimal point for prefetch

blocks (Popt) is always the maximum number of prefetch blocks Pmax

that can satisfy both constraints, as shown in Figure 5.7.

If Pmax is set by the dominant disk constraint, as in Figure 5.7, then it

will always buffer some prefetch blocks, as the time to consume blocks is

more than the time to fetch those blocks. As the number of fetch cycle
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Figure 5.7: Showing the optimal prefetch number of blocks for demand arrival
rate of 0.002857 blocks per µsec (2857 blocks per second, where 1 block is 1024
bytes) at D = 2 blocks, where Tdisk = 7.8 milliseconds and Tcpu = 400µsec.

increases, the number of buffered blocks will increase, hence increasing

the buffering.

If Pmax is set by the dominant prefetch constraint, as in Figure 5.6, then

the time to consume blocks will be equal to the time to fetch blocks and

hence, the system will operate like a JIT prefetching strategy. However,

this leads to very small values of P and hence the network bandwidth

will not be used effectively for prefetching. The only way to increase

the value of Pmax is to increase the value of D blocks being fetched.

In order to use the maximum strength of prefetching on a demand

miss and hence, using the network bandwidth and buffer effectively, we

would ideally like to operate at a point where the average time to serve

a demand miss over the NMS, (TD−NMS), is equal to the average time

experienced on commonly used storage, (Tdisk). In mathematical form,

the optimal number of prefetch blocks, Popt, for a given demand arrival

rate and given value of D, should be set when TD−NMS = Tdisk.

For example, in the Figure 5.6, we would ideally like to use Popt = 7
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blocks for the given value of demand arrival rate (0.004 µsec) and value

of D = 2 blocks. However, using P = Popt = 7 blocks, would not be

able to provide the QoS for streaming applications, because the time

to fetch 7 prefetch blocks is greater than the time to consume those 7

prefetched blocks.

2. Optimal Consume Time: The optimal consume time for a given

value of D is the point, i.e. the number of prefetch blocks, where

the two constraints are satisfied such that TD−NMS = Tdisk and also

P ∗ Tcpu = Tdisk. At this point P number of blocks should be equal

to Pmax blocks i.e. P = Pmax = Popt, and Tcpu becomes the ideal

consume time for the streaming applications, Toct, which also means

Popt ∗ Toct = Tdisk and therefore, the optimal consume time for given

demand arrival rate, D and Popt can be calculated by the following

equation:

Toct =
Tdisk
Popt

(5.4)

From Figure 5.8 that the optimal consumption time (Toct) of the stream-

ing applications for a given scenario (D = 2 blocks, Popt = 7 blocks and

demand arrival rate (0.002857 µsec) should be equal to 350µsec and

not 400µsec. Similarly, in the Figure 5.9, the optimal consumption

time per block (Toct) of the streaming application should be equal to

980µsec and not 400µsec.

However, the rate at which the prefetch blocks are consumed depends

on the applications being executed and it cannot be controlled once

the applications have been started. Therefore, we would like to anal-

yse the optimal number of prefetch blocks (Popt) and optimal consume

time (Toct) that could be supported at different values of D for a given

demand arrival rate. Given this data, we can always set the value of

P = Popt, where the rate at which blocks are consumed by stream-

ing applications is close to the rate at which they can be fetched from

the storage device ( NMS ) i.e., Tcpu u Toct. Also, using Toct for the

streaming applications can also minimise the buffer requirements, as it
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Figure 5.8: Shows the optimal prefetch number of blocks and optimal con-
sume rate of streaming applications for given demand arrival rate of 0.002857
blocks per µsec (2857 blocks per second, where 1 block is 1024 bytes) atD = 2
blocks, where Tdisk = 7.8 milliseconds, Tcpu = 400µsec and optimal-Tcpu
= 350µsec.

operates in a similar manner to the JIT prefetching strategy.

It can be seen from Figures 5.6 and 5.10, that having only data for D = 2

blocks, the system would only prefetch 6 prefetch blocks in one operation.

Having the results of the average time taken to serve a demand miss, for D

equal to 1 to 4 blocks, as in Figure 5.10, we can set the value of D, where

the rate at which blocks are prefetched is approximately equal to the rate at

which the blocks are consumed by the streaming applications and P = Popt.

In this case D = 3 blocks, P = Popt = 19 blocks and Tcpu u Toct, hence

prefetching at maximum rate and using bandwidth and buffers effectively.
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Figure 5.9: Shows the optimal prefetch number of blocks and optimal con-
sume rate of streaming applications for given demand arrival rate of 0.004
blocks per µsec (4000 blocks per second, where 1 block is 1024 bytes) at
D = 2 blocks, where Tdisk = 7.8 milliseconds, Tcpu = 400µsec and optimal-
Tcpu = 980µsec.

5.6 More Detailed Results

This section determines the optimal number of prefetch blocks, Popt and Toct,

the optimal consume time that could be supported, for the various demand

arrival rates and for different values of D. Having seen the preliminary re-

sults, we believe that the values of D will vary from 1 to 7 blocks 1 and values

of P will vary from 1 to 40 blocks. The arrival rates of the demand misses

was set, in decreasing order, to 0.0125 (12500 blocks per second (blkps)),

0.01 (10000 blkps), 0.0066 (6600 blkps), 0.005 (5000 blkps),

0.004 (4000 blkps), 0.0033 (3300 blkps), 0.00285 (2850 blkps),

0.0025 (2500 blkps), 0.00222 (2220 blkps) blocks per microsecond.

The following are the results for demand arrival rates 0.01 and 0.0022

1For the graphs to look clear, we have only represented the values of D from 1 to 5
blocks in the graph.
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Figure 5.10: 2D space: demand arrival rate of 0.004 blocks per µsec (4000
blocks per second, where 1 block is 1024 bytes).

blocks per microsecond with the disk constraint applied on it. It shows the

Popt and Toct that should be used for the given demand arrival rate and the

value of D. Here, we present the observations made from these results:

• It can be seen from Figures 5.11 and 5.12 that as the number of D

demand blocks fetched in an operation increases for a given demand

arrival rate, the number of prefetch blocks (Popt) that could be fetched

increases. For example, in Figure 5.11, as the number of D increases

from the 1 to 7 blocks, the value of Popt increases from 2 to 15 blocks.

Similar effects can be seen in Figure 5.12. Table 5.1 and Table 5.2

show the optimal consume time (Toct) that can be supported for the

each value of D and Popt, for a given demand arrival rate.

• Being able to increase or decrease the number of prefetch blocks i.e.

increase or decrease the prefetch rate, that could be fetched in an op-

eration for a given value of demand arrival rate, allows us to set the

value of D such that the prefetching rate is approximately equal to the

rate at which blocks are consumed by streaming applications, hence,

87



The Optimal value of Popt for a given value of demand arrival rate and D
λd No. D blocks Poptblocks Toctµsec

0.01 blocks per µsec (10000 blocks per second)

1 2 2700
2 4 1600
3 6 1140
4 8 860
5 11 690
6 13 600
7 15 520

Table 5.1: This table shows the values of Popt and Toct for different values of
D and a given demand arrival rate of 0.01 blocks per microsecond.

The Optimal value of Popt for a given value of demand arrival rate and D
λd No. D blocks Poptblocks Toctµsec

0.0022 blocks per µsec (2200 blocks per second)

1 13 550
2 25 300
3 35 210
4 47 159
5 56 135
6 64 121
7 71 110

Table 5.2: This table shows the values of Popt and Toct for different values of
D and a given demand arrival rate of 0.0022 blocks per microsecond, (2200
blocks per second).
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Figure 5.11: Shows optimal prefetch rate that should be for a demand rate
of 0.01 blocks per microsecond (10000 blocks per second) and given value of
D.

using network bandwidth and buffering effectively.

For example, for the demand arrival rate equal to 0.0022 blocks per

microsecond, if the streaming applications consume prefetched blocks

at the rate approximately equal to 1
550

( 1
Toct

) blocks per µsec, then the

value of D should be set to 1 block and the value of P equals to 14

blocks, as shown in Figure 5.12. Similarly, if the rate at which blocks

are consumed by the streaming applications is approximately equal to
1

159
( 1
Toct

) blocks per µsec, then the value of D and Popt will be equal to

4 and 48 blocks respectively. These shows that the prefetch rate could

be adjusted based on the value of D.

• These experimental results also verified Equation 5.4, i.e. in Fig-

ure 5.12, for the given value of demand arrival rate of 0.0022 blocks per

µsec and value of D = 4 blocks, Popt = 48 blocks and Tdisk = 7800µsec.

Now from Equation 5.4, we have Toct is equal to Tdisk
Popt

and therefore,

Toct will be 162.5µsec. The results from the experiment showed that

the value Toct = 159µsec. This indicates that having the value of Popt
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Figure 5.12: Shows optimal prefetch rate that should be for a demand rate
of 0.0022 blocks per microsecond (2200 blocks per second) and given value
of D.

for the each value of D, for a given demand arrival rate, the value of

Toct can be calculated on “the fly”.

• It can be also seen from Figures 5.11 and 5.12, as the arrival rate of the

demand miss decreases, the amount of buffering required increases i.e.,

number of prefetch Popt blocks that need to be fetched increases. This

is because when using the PonD strategy, prefetch is only done on a

demand miss, as demand miss rates decrease the amount of time needed

to serve streaming applications without a fetch operation increases,

hence more blocks must be fetched in each operation.

5.7 Using the Explored Space

This section describes how to use the analysed data, (Popt and Toct), to de-

velop an autonomous system which dynamically adjusts to changing values
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of the demand miss rate. It first proposes to incorporate the data into a

database such that it can be retrieved when required.

In order to do this, the database should be designed such that for

a given value of demand arrival rate, it should be possible to obtain the

optimal consumption time (Toct) that could be supported for each value of

D, where D is equal 1 to 7 blocks. Depending on the running streaming

applications, the consumption rate of these applications should be known.

By comparing the consumption rate of those running streaming applications

with the consumption rate that can be supported for a given demand arrival

rate, the optimal value of D and Popt could be found such that the QoS for

the streaming applications and demand misses could be provided.

5.8 Conclusion

This chapter defined the operational space and represented it as a 3-D figure.

It showed how the 3-D space could be explored as 2-D spaces for discrete

values of the demand arrival rate. It showed how the working space could be

obtained by applying storage and prefetch constraints. However, the values

of the constraints depend on the storage device and streaming applications.

It analysed the optimal prefetch point (Popt) and optimal consumption time

(Toct), for the streaming applications for a given demand arrival rate and

given values of D so that the QoS for streaming applications and demand

misses could be satisfied. Furthermore, it explored the optimal operational

points for different values of demand arrival rates and for values of D from

to 1 to 7 blocks. Finally, it proposed to develop an autonomous algorithm to

use the analysed data, (Poct and Toct), in a real system.
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Chapter 6

Database and Implementation
Design

In the previous chapter, we analysed the optimal operational points, in terms

of Popt and Toct, for given demand arrival rates and for different values of D.

The next challenge is to use these operational points in a real system in or-

der to provide the required QoS. In order to do this, we propose to store the

derived operational points in a database such that data can be retrieved effi-

ciently. Furthermore, the database will be used in the simulation to develop

and to verify the working of the developed algorithm. Once the algorithm is

developed and verified, the design and implementation of the proposed work,

using the Network Memory Server (NMS) and the Experimental File System

(EFS) are presented and used to show that the algorithm can be implemented

on normal computer systems.

6.1 Database Design

In this section, we propose the design of a database such that the data can

be retrieved efficiently and could be used in a real system. The design of the

database could be implemented using any database system such as MY-SQL,
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MS-SQL, MS-ACCESS etc, or as a hash table.

As an initial step in designing the database, we need to analyse the

number of fields that will be involved and which of them need to be stored.

Once all the fields are analysed then they can be stored in tables such that the

database structure is suitable for general-purpose querying and free of certain

undesirable characteristics-insertion, update, and deletion anomalies - that

could lead to a loss of data integrity. This is prevented by using normalization

techniques in which each record of the data is uniquely identifiable using the

primay key, as defined by E.F.Codd [Codd, June 1970], [Codd, August 31st,

1971], [Codd, April 23rd, 1974].

In this research, the fields that need to be stored are the demand

arrival rates, (λd), and the values of the prefetch rates, (λp), for a given value

of demand arrival rate, (λd), and for each value of D, where D ranges from

1 to 7. Since the results explored in the previous chapter are in units of

time, (microseconds and milliseconds), rather than rates, the database will

also have the values in units of time, i.e., the values of mean arrival time of

demand misses ( 1
λd

) and the values of optimal consume time per block (Toct)

for the streaming applications that could be supported.

The optimal consume time, (Toct), for the streaming applications that

could be supported for the given mean arrival time depends on the number

of prefetch blocks, (Popt), being fetched in a network operation. Further, the

number of prefetch blocks, (Popt), that could be fetched in a network opera-

tion depends on the number of demand misses being satisfied in a network

operation for a given demand arrival rate. Hence, the fields that we are in-

terested in storing are the mean arrival time for the demand misses, ( 1
λd

),

Toct and values of Popt and D. However, once the value of Popt is stored, for

the corresponding value of 1
λd

and D then the value of Toct can be calculated

by using equation 5.4. Hence, the value of Toct will not be stored in the

database.

Once the fields that need to be stored are analysed, they need to be
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stored in tables such that the design of the tables adheres to the rules of nor-

malisation. We would like to store the value of Popt for each value of a demand

arrival rate and D. In order to satisfy these requirements and to make sure

that the database is normalised, we have designed two tables: ArrivalRates

and OptimalPs.

The fields for the ArrivalRates table are the A id and the arrivalrate,

where A id is the primary key for the table. In the ArrivalRates table, we

have all the arrival rates listed for which we have analysed the corresponding

values of Popt and D. In the OptimalPs table, we have the values of Popt, D

and A id. The value of D and A id together correspond to the primary key

of the OptimalPs table, and A id is the foreign key for the table OPtimalPs.

The structure of the tables with the fields and the data types are shown in

Figure 6.1. It can be seen from Figure 6.1 that all the fields could be stored

Figure 6.1: Diagram of Tables ArrivalRates and OptimalPs.

in the OptimalPs table, (by replacing the field A id in the table OptimalPs

by Arrivalrate), then the question is why does the database design have a

separate ArrivalRates table? The reason is that in future we might want to

store more information like the network bandwidth, load on the client system
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and load on the server, available memory, etc., along with the demand arrival

rates, to select the value of Popt and D. Hence, the database is designed

such that the ArrivalRates table can describe environments with the demand

arrival rate value, as shown in Figure 6.2.

Figure 6.2: Further fields that may need to be stored.

6.2 Algorithm

This section proposes an algorithm, to fetch the appropriate values of Popt

and D from the database designed in the previous section, for a given value

of mean arrival time of demand misses and the streaming application per

block consume time.

The code represented in Listing 6.1, adjusts the measured mean de-

mand arrival time to the boundaries of multiples of 25µsecs. This is because

we have only obtained the values of Popt and D for the mean arrival time

where mean arrival time is a multiple of 25µsec, as shown in APPENDIX A.

For example, for the measured mean arrival time of 229µsec (4366

blocks per second), the code in the Listing 6.1 will adjust the mean arrival

time to 225µsec (4444 blocks per second). Because this is the lower value

of the mean arrival rate that is closest to 229µsec and hence will satisfy the
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stability of the demand queue.

Listing 6.1: adjusting arrival rate to boundaries of multiple of 25

int Quo = Darr iva l t ime / 25 ;

Ca lArr iva l t ime = (Quo ∗ 2 5 ) ;

Once the mean arrival time of demand misses is a multiple of 25µsec then the

data from the database can be fetched such that all the values of Popt and D

are known for each value of D and for a given value of demand arrival rate.

For example, for an adjusted mean arrival time of demand miss as 225µsec,

the values of Popt are fetched for D is equal to 1 to 7 blocks, as shown in the

Figure 6.3. Knowing the values of Popt and D for a given mean arrival time of

Figure 6.3: Diagram of Tables ArrivalRates and OPtimalPs

demand misses, we can then pick the values of D and Popt such that Tdisk
Popt

is

less than or equal to the per block consume time of streaming applications, in

ascending order of D. As the value of D increases the higher consume rate for

the streaming applications could be supported i.e. more prefetch blocks are

fetched in a read operation. We would like to prefetch close to the required

consumption rate and hence we will start with the value of Popt where D = 1
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and then increment as required. The algorithm below represents the same

logic.

Algorithm 1 Picking up the optimal value of D and Popt
{/* The row object is an array, having all fields (Popt and D) for a given
demand arrival rate */}
while row 6= NULL do

SET Pmax = row[0]
SET Dmax = row[1]
if Tdisk

Pmax
≤ Consumetime then

SET P = Pmax
SET D = Dmax
BREAK

end if
row++

end while

6.3 Results

The proposed database and the algorithm were integrated into the simulation,

to verify if the required QoS could be provided by the proposed work.

6.3.1 Streaming Applications

In the experimental set-up, the demand arrival rate was regularly changed

and the value of the streaming applications’ per block consume time was kept

constant. Given this, the value of Popt and D were dynamically picked by

the simulation from the database based on the streaming applications’ per

block consume time and the measured demand mean arrival time. Below

we have presented the results from two such experiments. In this set-up,

the required prefetch rate of the streaming application to execute without

jitter was set to 0.004 blocks per microsecond (where 1 block is 1024 bytes,
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Figure 6.4: Required Prefetch Rate (4 MB per second) vs Achieved Prefetch
Rate having different demand arrival rate.

4 MB per second ). It can be seen from Figure 6.4 that the prefetch rate

experienced by the system was just above 0.004 blocks per microsecond for

different mean arrival time of demand misses. This means that the requested

prefetch rate and the achieved prefetch rate were very close, hence, using the

memory and the network bandwidth effectively, (as it will only prefetch on

a demand miss). Similar results are shown in Figure 6.5, for the streaming

applications which need the prefetch rate of 0.006 blocks per microsecond

(where 1 block is 1024 bytes, 6 MB per second ) to run without jitter.

6.3.2 Demand Misses

In the experimental set-up, the prefetching rate was varied, for a given de-

mand mean arrival time. As above, the simulation dynamically picked the

values of D and Popt for each scenario. The results show that the average time

taken to serve a demand miss while varying the prefetch rate is always less

than Tdisk. Below we have presented the results from two such experiments.

In this set-up, the demand arrival rate was set to 0.0025 blocks per
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Figure 6.5: Required Prefetch Rate (6 MB per second) vs Achieved Prefetch
Rate having different demand arrival rate.

microsecond (2500 blocks per second) and the results are shown in Figure 6.6.

The demand arrival rate was reset to 0.004 blocks per microsecond (4000

blocks per second) and the results are shown in Figure 6.7. The results

show that the QoS for streaming applications and demand misses could be

provided by using the proposed design. In the next section, we will look at

implementing the proposed algorithm in a real system, to provide the same

level of QoS.

6.4 Implementation Design

The previous section showed promising results using the proposed design in

the simulation. We would like to take this further and explore the working

of the proposed design in a real system. In order to implement the proposed

prefetching and clustering strategies on network-based storage, a network-

based storage system and a file system are used. A network-based storage

system such as the NMS will allow us to implement clustering over the net-

work. The file system will be required in order to implement prefetching
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Figure 6.6: The average time to service a demand miss, NMS vs Disk, having
demand arrival rate = 0.0025 blocks per µsec (2500 blocks per second)

techniques, as the prefetch requests are generated at the file layer. To achieve

this, we could have modified any existing file system to implement prefetch-

ing strategy, but doing so would require that we understood all parts of the

file system such as journalling, meta-data caching etc. Hence, we propose to

develop an Experimental File System (EFS) using prototype UXFS [Pate,

January, 2003].

6.4.1 Design of Experimental File System (EFS)

This section looks at the design of the Experimental File System (EFS).

The EFS file system creates two major directories on the device/partition,

as shown in Figure 6.8. The first is called the SEQUENTIAL directory;

the files stored in this directory will have prefetching enabled i.e. the file

system will prefetch blocks for those files. The rate of prefetching will depend

on the analysed consumption rate of running streaming applications. The

second is called the DEMAND directory, the files in this directory will not

be prefetched.

Now the two key questions are: where to implement the prefetching
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Figure 6.7: The average time to service a demand miss, NMS vs Disk, having
demand arrival rate = 0.004 blocks per µsec (4000 blocks per second)

and clustering techniques, and how to store and return the prefetch blocks

to the system when they are required. In order to answer these questions, it

is necessary to understand how read calls are made to the file system using

the page cache, which is explained in the next section.

6.4.2 Read Calls to File System through Page Cache

The page cache is - as the name suggests - a cache of physical pages. In

the UNIX world, the concept of a page cache became popular with the in-

troduction of SVR4 UNIX, where it replaced the buffer cache for data IO

operations.

While the SVR4 Page Cache is only used for filesystem data cache and

thus uses the struct vnode object and an offset into the file as hash parame-

ters, the Linux Page Cache is designed to be more generic, and therefore uses

a struct address space, (explained below), as the first parameter. Because the

Linux Page Cache is tightly coupled to the notation of address spaces, we

need at least a basic understanding of address spaces to understand the way

the page cache works. An address space is a structure that allows memory
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Figure 6.8: Design of Experimental File System.

to be effectively assigned to processes. Hence, it maps all pages of one object

(e.g. inode) to another currency (typically physical disk blocks). The struct

address space is defined in include/linux/fs.h as:

Listing 6.2: Definition of address space structure

struct addre s s space {
struct l i s t h e a d c l ean page s ;

struct l i s t h e a d d i r ty page s ;

struct l i s t h e a d locked pages ;

unsigned long nrpages ;

struct a d d r e s s s p a c e o p e r a t i o n s ∗ a ops ;

struct inode ∗ host ;

struct vm area st ruct ∗i mmap ;

struct vm area st ruct ∗ i mmap shared ;

s p i n l o c k t i s h a r e d l o c k ;

} ;

To understand the way address spaces work, we only need to look at a
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few of its fields: clean pages, dirty pages and locked pages are double linked

lists of all clean, dirty and locked pages that belong to this address space,

nrpages is the total number of pages in this address space. a ops defines the

methods supported by the address space structure and host is a pointer to

the inode which is used to map data into the address space. A NULL host

pointer is associated with the swapper address space (mm/swap state.c,).

The address space operations are defined by the file system and they are

called by the system whenever the data belonging to a page needs to be

written to or read from the storage device.

The usage of clean pages, dirty pages, locked pages and nrpages is ob-

vious, so we will take a closer look at the address space operations structure,

defined in the same structure:

Listing 6.3: Definition of address space operations structure

struct a d d r e s s s pa c e o p e r a t i o n s {
int (∗ writepage ) ( struct page ∗ ) ;

int (∗ readpage ) ( struct f i l e ∗ , struct page ∗ ) ;

int (∗ sync page ) ( struct page ∗ ) ;

int (∗ prepa r e wr i t e ) ( struct f i l e ∗ , struct page ∗ ,

unsigned , unsigned ) ;

int (∗ commit write ) ( struct f i l e ∗ , struct page ∗ ,

unsigned , unsigned ) ;

int (∗bmap) ( struct addre s s space ∗ , long ) ;

} ;

For a basic view of the workings of address spaces and the page cache we

need to understand the readpage function.

It may be understood what the address space operations methods do

by virtue of their names alone; nevertheless, they do require some explana-

tion. Their use in the course of filesystem data I/O, by far the most common

path through the page cache, provides a good way of understanding them.

Unlike most other UNIX-like operating systems, Linux has generic file op-
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erations, (a subset of the SYSVish vnode operations), for data I/O through

the page cache. This means that the data will not directly interact with the

file-system for read/write/mmap calls, but it will be read from / written to

the page cache whenever possible. The page cache has to get the data from

the actual low-level file-system in case the user wants to read from a page

not yet in memory, or write data to disk when memory gets low.

In the read path, the generic methods will first try to find a page

that matches the wanted inode/index tuple, then it tests whether the page

actually exists, as shown in listing 6.4.

Listing 6.4: Searching for the page in the Page Cache

hash = page hash ( inode−>i mapping , index ) ;

page = f in d p a g e n o l o c k ( inode−>i mapping , index ,∗ hash ) ;

If it does not exist, it allocates a new free page, and adds it to the

page cache hash, as shown in listing 6.5.

Listing 6.5: Allocating a Page and adding it to the Page Cache

page = p a g e c a c h e a l l o c ( ) ;

add to page cache ( page , mapping , index , hash ) ;

After the page is hashed, it then uses the readpage function from the ad-

dress space operation to actually fill the page with data, as shown in list-

ing 6.6.

Listing 6.6: adjusting arrival rate to boundaries of multiple of 25

e r r o r = mapping−>a ops−>readpage ( f i l e , page ) ;

Finally, we can copy the data to user space. Note that the readpage function

is defined by the file system and it will be called when the data is not found

in the cache but is required. Similarly, the writepage function from the

address space operations will be called when the system needs to write pages

to the storage device.
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Having this knowledge, we can now start looking at how to insert the

proposed designed into a real system.

6.4.3 Insertion

In a common file system, readpage function will call block read full page func-

tion which allocates the buffer to the newly allocated page and then calls

get block function, (defined by the file system), which returns the sector num-

ber and maps the buffer to the sector number. Our intention is to modify

the get block function so that it will not only map the buffer to the block

number but it also copies the data into the buffer. If the file block belongs

to a sequential file then it will also initiate prefetching for that file, i.e. in

the get block function, it will generate a demand request for the requested

block and then it generates prefetching requests for that file.

6.4.4 Working of the EFS and the NMS

Figure 6.9 shows the way the request is processed. It can be seen from the

figure that there are two queues: the Demand queue (Dq) and the Prefetch

queue (Pq). When the get block function is called, it will add the requested

block to the Demand queue. If the block requested is from the sequential

file then it will generate another Popt number of prefetch requests and then

will add it to the prefetch queue, depending on the value of Popt analysed.

If the block request is not from the sequential file then it will only add

the requested block to the demand queue. The entries in these queues are

made up of fetch blk info structures. The fetch blk info structure is defined

below:

Listing 6.7: Allocating a Page and adding it to Page Cache

struct f e t c h b l k i n f o {
int s t a tu s ; /∗ AVAILABLE or IN PROCESS ∗/
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Figure 6.9: Implementation of Prefetching and Clustering.

int s e c t o r ;

int l en ;

int o f f s e t ;

char ∗data ; /∗ w i l l be e i t h e r p o i n t i n g to the

system b u f f e r or to our b l o c k in c i r c u l a r l i s t ∗/

int Type ;

/∗ i s i t a P r e f e t c h Request or Demand Request ∗/

struct f e t c h b l k d a t a ∗ ptr data ;

/∗ data b l o c k in the c i r c u l a r l i s t ∗/

wait queue head t wa i t on f e t ch ;

/∗ w i l l wai t on t h i s event ∗/
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}

Most of the variables in the Listing 6.7 are self-explanatory. If the block

request is a demand miss, the data pointer will point to the system buffer.

However, if the request is a prefetch request then the data pointer will point to

a buffer allocated by our file system and is managed by struct fetch blk data,

i.e. ptr data pointer in the fetch blk info structure.

Once the requests are added to the respective queues, the get block

function will give a signal, i.e. a wakeup call, to the multiread thread to

wake up and start processing the requests in the queue. The application

thread will sleep until the requested block is fetched.

There is a small routine that calculates the current demand arrival rate

and then the proposed algorithm dynamically calculates Popt and D based

on the current demand arrival rate and the average per block consumption

time of streaming applications.

The multiread thread will cluster requests into a buffer based on the

calculated values of Popt and D. The buffer is then passed to the multiread

function defined and exported by the NMS device driver. This function

will satisfy all the clustered requests in one network operation. Once the

requested blocks are returned, the required data will be in the system and

the thread will give the necessary wakeup calls to the application threads

waiting on the those blocks.

Hence, the multiread will read the demand blocks but will also prefetch

blocks using clustering. The demand block will be copied into the system

buffer directly, while the prefetch blocks will be copied into the buffers al-

located by the file system. The next time the readpage function is called,

and a sequential block is required, the file system looks into the hash table

to see if the block has already been prefetched. If the block is available, the

file system can copy the data directly into the user space buffer rather then

calling multiread operation. Once data is copied from the prefetch buffer to
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the user space buffer the prefetched buffer is freed, as the block belongs to a

sequential file and will not be used again. This shows that the clustering will

be implemented by the NMS device driver whereas prefetching techniques

will be implemented by the file system. We have implemented this design

and have a working prototype. Refer to the Appendix B for further details

on using the NMS and the EFS.

6.4.5 Evaluation of PonD strategy on the NMS and

the EFS

In order to use the proposed algorithm in the working environment we need to

measure the current rate of demand misses (λd). This is done when a demand

miss occurs and the ux get block function is called to read in the block. A

function called calculatelambda, which uses time val structures along with a

diff time function and the do gettimeofday call, is then used to calculate λd

by measuring the number of demand misses over a given period. The time

period is reset, if there have been over 20 demand misses or a 2 millisecond

period has expired.

The function that implements the PonD strategy, (ux get Popt D), is

then called to calculate the optimal values of P and D based on the measured

λd and the consume time of the streaming applications. This uses the values

of the parameters that were obtained from the simulation which are placed

in a hash table, (instead of a database), indexed by the current demand miss

rate λd. Hence, from this function we get P and D which is used to assemble

the request packets that are then sent to the multiread function.
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6.4.6 Testing the Prototype System

In order to test the prototype system, an MPEG-4 video player called totem

was imported onto the EFS and placed in the DEMAND directory, because

it is an application program. However, two MPEG streams were placed in

the SEQUENTIAL directory and the Toct was set to 400µsec which is the

consume time for MPEG-4 videos. Then the totem program was started and

instructed to show the videos in the SEQUENTIAL directory. As predicted,

the current demand miss rate was measured as the totem program executed

and this was used to invoke the ux get Popt D function which calculated Popt

and D dynamically and so the required blocks were prefetched accordingly,

hence showing that the algorithm works on a normal computer system, as

shown in Figure 6.10.

This figure shows the totem program playing one of the videos, the

EFS measures the demand arrival rate using the calculatelambda function.

The consume time is set to 400µsec since MPEG video is being viewed. The

function ux get Popt D calculates the values of Popt and D based on the

measured demand arrival rate, which is then used by the multiread thread to

cluster the prefetch and demand blocks into a network buffer. This clearly

demonstrates that the algorithms developed in this thesis can be easily im-

plemented in real networking environments.

6.5 Conclusion

This chapter presented the database design to store operational points and

proposed an algorithm to select the values of Popt and D dynamically for a

given demand arrival rate. Most importantly, it showed that the proposed

QoS for the streaming applications and the demand misses could be provided.

The chapter concluded by showing a mechanism to implement the proposed

work on a real system.
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Chapter 7

Conclusion and Future work

In this chapter, a summary of the work done in this thesis is given where

the major contributions are highlighted. This is followed by a conclusion

resulting from this work and a discussion on the directions for future research

is presented.

7.1 Summary of the Work Done

As the network speed increases and memory becomes cheaper, the usage of

network-based applications increases. In addition, the trend of using mobile

devices such as Net-Books and Smart Phones, also increases the usage of

network-based applications. In this thesis, we have looked at clustering and

prefetching techniques over the network so that streaming applications can

run without jitter and demand accesses can be satisfied in reasonable time.

Experimental evaluation demonstrated that the proposed design can provide

the required QoS. It also showed that it can be easily integrated into existing

infrastructure, at the file system level and at the block level.
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7.2 Contribution to Knowledge

The main contribution of this research is the idea of using clustering and

prefetching techniques, in order to provide quality-of-service to today’s network-

based applications. The contributions of the thesis can be summarised as

follows:

1. In Chapter 1, we began by motivating the need to look at prefetching

and clustering techniques for network-based applications. Chapter 2,

discussed and reviewed the existing prefetching and clustering tech-

niques and it showed that the previous work did not focus on prefetch-

ing and clustering techniques over the network. Most of the work was

based on disk systems.

2. In Chapter 3, the approach to providing quality-of-service was analysed

and simple but very important equations were derived, in order to

provide required QoS. The chapter showed that there was a need for

an analytical model which can estimate the average time experienced

to serve a demand miss at run time.

3. In Chapter 4, the chapter presented an important breakthrough for

the research by presenting an analytical model which can represent

clustering and prefetching over the network. The model was able to

estimate the average time taken to serve a demand miss, given the time

to bring a block over the network and the arrival rates of prefetching

and demand misses. The results from the analytical model were close

to the results obtained by simulation. It was also shown to be effective

over a wide operational range. In addition, the model itself, which is

gate-limited, can be applied to several other areas including transport

where gate-limited service, for e.g. in buses or trains, is common. In

addition, a general solution was outlined.

4. Chapter 5 described and explored the operational space using the fun-

damental constraints discussed in Chapter 3. Using the results derived
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from the simulation and by applying the fundamental constraints, it

showed how to derive the optimal operational points. These were de-

rived for different values of demand arrival rates and prefetch rates.

Finally, it proposed the development an autonomic algorithm, which

could be used in a real system.

5. In Chapter 6, we stored the optimal points derived in Chapter 5, in a

database and showed that they can be used dynamically to satisfy dif-

ferent demand arrival rates. Furthermore, it demonstrated the design

and implementation of an Experimental File System in which the al-

gorithm was implemented. This showed that this work can be directly

applied to current networking environments.

7.3 Conclusion

In conclusion, the thesis showed that based on the networking environment

it is possible to provide QoS for streaming applications to run without jitter

and demand misses to be satisfied in reasonable time over modern computer

networks which answers the research question in this thesis.

7.4 Future Work

This dissertation has raised various issues that need to be addressed. Several

interesting problems are discussed below as well as potential avenues for

further research.
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7.4.1 Exploring the Effects of Network Loads

We have looked at prefetching and clustering techniques over the network by

using the NMS and the EFS. However, the performance of the NMS and,

prefetching and clustering techniques relied on the underlying network. In

our work we assumed that the network was lightly loaded, i.e. that there was

no other traffic other than NMS-related traffic on the network.

Researchers, at Middlesex University, have studied the workings of

the NMS using analytical models, to analyse the effect on the performance

and availability of the NMS server due to the other traffic on the network

(non-NMS related).

They also varied the service time experienced using the NMS server

which consists of: the service time experienced on the network, (µ1), and the

actual time to serve the request on the NMS server s(µ2) [Gemikonakli et al.,

2006]. The study showed that effective client caching strategy should be used

in order to reduce the traffic generated by reading over the network and to

improve the performance of the NMS. In this thesis, caching and buffering

on the client were not examined and so more work needs to be done in this

area.

Furthermore, this work was extended to look at parallel processors

with break-downs and repairs, [Gemikonakli et al., 2007]. This method makes

extensive use of spectral expansion techniques, [Chakka and Ru, 1995], which

assumes that server availability increases or decreases in a monotonic fashion.

However, this is not true for the analytical model for gate-limited service

developed in this thesis, where the number of servers available is dependent

on the number of requests at the end of the previous service time. Therefore,

more work is needed to integrate these models to get an accurate picture of

the overall effects of network loads on prefetching and clustering.

Another way of improving the overall performance is to reduce the

latency experienced over the network. The work being carried out by Silcott
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[2005], at Middlesex University, is looking at decreasing the latency expe-

rienced due to protocol processing, hence enabling higher throughputs to

be achieved. Furthermore, the increase in the usage of I-Phones, Blackber-

rys etc., also increases the use of network-based applications over wireless

networks. The issue of network bandwidth for wireless networks could be

resolved by using Next Generation technology such as 802.11n technology

and by providing QoS to different applications as explored in the work done

by Shaikh et al. [2007] .

7.4.2 Managing Multiple Streams

Our work proposed and evaluated a design to provide QoS to streaming

applications while satisfying demand misses. However, there is still work to

be done to support multiple streams especially the starting and stopping of

streams which must be smoothly handled. The transition mechanism should

allow the new streaming application to be added to existing streams without

compromising the QoS for already running applications and at the same

time providing the QoS to the new application. Similarly, when a streaming

application terminates the number of blocks being fetched should be adjusted

accordingly.

7.4.3 Effects of Prefetching on Caching on the Client

Machine

In our work, we assumed that there is a huge amount of memory available on

the client side and hence, we proposed to prefetch as many blocks as we can

for streaming applications on a demand miss, i.e., prefetching enough number

of blocks so that streaming applications can run without jitter. However, the

reduced availability of memory buffers due to prefetching might affect the

performance of the UNIX buffer cache. Also, mobile devices will not have a
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huge amount of memory, so prefetching too many blocks into mobile devices

will not be an ideal strategy. We believe that this needs to be looked at

urgently.

7.4.4 Towards an Explicitly Caching File System

One of the ways of improving the overall performance is to allow applications

to indicate the kind of access they require to files. Our Experimental File

System can be used to allow an application to indicate which files it will

access sequentially by placing them in the sequential directory allowing these

files to be prefetched and not cached. We can extend this idea to look at

other access patterns such as looping.

7.5 Final Statement

BBC-iPlayer / You-Tube are rapidly becoming the main method of personal

interaction in society. Also, as the speed of the network increases, there is

an increasing demand for storing data over the network. In order to allow

streaming applications and to satisfy demand misses over the network, we

have proposed a framework where streaming applications can run without

jitter and demand misses can be satisfied in reasonable time. However, this

contribution represents a small step towards the fundamental goal of provid-

ing QoS support for network applications.
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Appendix A

Case Study - Database

The data below shows the number of prefetch requests and demand requests

that could be clustered into a network buffer for a given network condition

and demand arrival rate.

It could be seen from the Figure A.1 that for a given demand arrival

rate of 0.005( 1
200

) blocks per µsec (5000 blocks per second) and the value of

D = 4, the number of prefetch blocks that should be fetch is equal to 20

blocks, supporting Tcpu = Tdisk
Popt

= 7800
20

= 390µsec ( supporting prefetch rate

of 2.5 MB per second ).
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Figure A.1: Shows the analysed values of Popt and D for a demand mean
arrival time, where demand mean arrival time is a multiple of 25µsec and
greater than 100µsec.
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Appendix B

Using the NMS and the EFS

The following are the steps to use the NMS and the EFS. The development

is distributed in three source packages and they are the NMS server, NMS

client and EFS file system modules. The kernel version required for these

packages to work is 2.6.27, any other kernel version will require porting of

the above packages to the corresponding kernel version.

1. Compiling: First step is to compile the above packages. Each package

has its own Makefile file. If you have the right kernel version, then make

command will compile the source package to get the corresponding

module.

2. Installing: In order to install the above compiled modules, you will

need to use the insmod command. For example, for NMS server, it

would be: insmod nms.ko.

NMS SERVER

The server module can be installed without passing any parameters,

if it is installed without passing any parameters, then it will use the

default values for the TCP port number and the memory that needs to

be allocated. However, if there is a need to specify these parameters
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i.e. the TCP port number and memory to be allocated, you can pass

parameters while installing the module. The information on passing

parameters for each module could be known by using command mod-

info modulename.ko e.g. modinfo nms.ko.

NMS CLIENT

While installing the NMS client module, one has to pass the IP-address

of the NMS server as a parameter. Remember, if the NMS server’s IP

address is not specified then it will assume that the NMS server is run-

ning on the same system. The NMS server should be installed before

a client is installed, as client will communicate with the NMS server

on its installation. For security reasons, each client have a user id

and password which is stored in a file. This file is stored on a TFTP

server. Hence, you will also need to pass IP address of the TFTP

server as a parameter, while loading a NMS client. A common exam-

ple of installing NMS client: insmod nmssneh.ko servip=192.168.10.1

tftp ip=192.168.10.4

EFS

Installing the EFS file system is very simple. Once the EFS source

package is compiled the module will be available to install. Use com-

mand insmod uxfs.ko, to install. For it to install successfully, you need

to make sure that NMS client is installed, as the EFS code is referencing

to the multiread function, which is exported by the NMU client.

3. Creating Partition: Once all the above modules are installed. The

/dev/nmu device will be created in your system to communicate with

the NMS server. If it is not created, then you will need to create it

manually by finding out the major and minor number of the NMS server

module and using the mknod command. Once /dev/nmu is available,

you can treat /dev/nmu as any other block device such as /dev/sda or

/dev/hda. Creating partitions on this device, would be simple as using

command fdisk /dev/nmu.

4. Creating File System: The partition created above could have any

file systems by using command mkfs -t fs /dev/nmu1. Note that the
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device will be /dev/nmu1 and not /dev/nmu. We will the use the EFS

file system on the partition created.

In order to create the EFS file system, you will need to change to the

cmd directory under the EFS source directory. Compile the mkfs.c file

found in the cmd directory by using command, gcc -o mkfs mkfs.c and

then create the EFS file system on the device, using command: ./mkfs

/dev/nmu1.

5. Mounting File system: The device can be mounted as any other stor-

age devices, using command: mount -t uxfs /dev/nmu1 /media/nmu1,

where /media/nmu1 is the mount point, that you will need to create

using command mkdir /media/nmu1. Once the device is mounted, any-

thing read/written to the mount point will be read/stored from/to the

NMS server.
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Appendix C

Simulation Code

In this APPENDIX, we have presented the detail of the simulation code

which represents Network Memory Server.

Listing C.1: Simulation Code Representing NMS: simulation PonD.cpp

1 #include "Request.h"

2 using namespace std ;

3

4 list<Request> QDemand ;

5 list<Request> QServed ;

6 list<Event> QEvent ;

7 list<Event> QFreeEvent ;

8

9 /∗ Var iab le de f ined , which are need in the func t i on

10 to avoid the s tack over f low

11 ∗/
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12

13 double timetoserve = 0 ;

14 int noreq = 0 ;

15 list<Request > : : reverse_iterator rev_i ;

16 int reqno =0, count = 0 ;

17 int reqsize = 0 ;

18

19 int main ( )

20 {

21 int i = 0 , ret = 0 ;

22 CalculateD ( ) ; /∗ t h i s w i l l s e t the maximum number o f D ←↩

that can be served given P and Latency ( Delay ) and ←↩

Tprocess ∗/

23 #ifde f Database

24 Connect2Database ( ) ;

25 SearchValueofPD ( ARR_T , P_CONSUMET , MaxD , P ) ; /∗ we need←↩

to s e t va lue o f P and MaxD ∗/

26 printf ("Value assing from database for MaxD = %d, and P←↩

= %d" , MaxD , P ) ;

27 #endif

28

29 #ifndef Database

30 MaxD = 7 ;

31 P = 1 ;

32 #endif

33 i f (P == 0) {
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34 cout<<"when P = 0, there will be no vacation event"<<←↩

endl ;

35 cout<<"This simulation yet does not simulate this ←↩

scenairo"<<endl ;

36 cout<<"We need to set MaxD Manually"<<endl ;

37 return −1;

38 }

39 lemda = ( 1 . 0 / ARR_T ) ;

40 Mu = ( 1 . 0 ) / ( Delay + (P + MaxD ) ∗ C ) ;

41

42 i f ( lemda >= (Mu ∗ MaxD ) ) {

43 cout<<"Arrival rate is greater than Service Rate ! ! ←↩

! !, I am going to exit" <<endl ;

44 cout<<"Lemda = "<<lemda<<", Mu * MaxD = "<<(Mu ∗ MaxD←↩

)<<endl ;

45

46 exit (0 ) ;

47 }

48

49 now_time = 0 ;

50 srand ( (unsigned ) time ( NULL ) ) ; /∗ seed ∗/

51 GenerateEvent ( ARRIVAL , ARR_T , 0) ;

52

53 while ( NumberOfJobServed<JOBS ) {

54

55 switch ( phase ( ) )
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56 {

57 case ARRIVAL :

58 // cout<< ”ARRIVAL”;

59 ret = DealWithArrival ( ) ;

60 i f ( ret < 0)

61 break ;

62 break ;

63

64 case SERVICE :

65 // cout<< ”SERVICE ”;

66 DealWithService ( ) ;

67 break ;

68

69 case −1:

70 cout<<"Switich Error"<<endl ;

71 break ;

72

73 }

74 i++;

75 }

76 printout ( ) ;

77 #ifdef Database

78 CloseDatabase ( ) ;

79 #endif

80 return 0 ;

81 }
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82

83

84 int phase ( )

85 {

86 /∗ Take the f i r s t event and

87 ∗ re turn what time o f event

88 ∗ we are going to dea l with

89 ∗/

90 i f ( QEvent . empty ( ) ) {

91 cout<<"The event queue is empty, Somthing has gone ←↩

wrong"<<endl ;

92 return −1;

93 }

94 Event Etmp = QEvent . front ( ) ;

95 i f ( Etmp . Type == ARRIVAL )

96 return ARRIVAL ;

97 else i f ( Etmp . Type == SERVICE )

98 return SERVICE ;

99

100 return −1;

101 }

102

103 int DealWithArrival ( ) {

104 Event Etmp = QEvent . front ( ) ;

105 timetoserve = noreq = 0 ;

106 i f ( Etmp . Type == ARRIVAL ) {
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107 /∗ put the reques t in to the demand queue ∗/

108 /∗ and a l s o c r e a t e next event f o r the a r r i v a l ∗/

109 now_time = Etmp . Event_time ;

110 Request Dnew ( ARRIVAL , now_time ) ;

111 QDemand . push_front ( Dnew ) ;

112 QEvent . pop_front ( ) ;

113 GenerateEvent ( ARRIVAL , ARR_T , 0) ;

114 i f ( SERVER_STATE == SERVER_BUSY )

115 return 1 ;

116 else {

117 // cout<<”Server i s f r e e and w i l l s e rve probably 1 ←↩

r eque s t ”<<endl ;

118 CountNoServerIdeal++;

119 SERVER_STATE = SERVER_BUSY ;

120 timetoserve = Service ( noreq ) ;

121 GenerateEvent ( SERVICE , timetoserve , noreq ) ;

122 }

123 }

124 else {

125 cout<<"DealWithArrival: Wrong Call to DealWithArrival←↩

"<<endl ;

126 return −1;

127 }

128 return 1 ;

129

130 }

136



131

132 int DealWithService ( ) {

133

134 /∗ Take out the jobs from the Demand Q, as s e r v i c e ←↩

Completion ∗/

135 /∗ a l s o c r e a t e next event f o r the s e r v i c e complet ion ∗/

136 timetoserve = noreq = 0 ;

137 Event Etmp = QEvent . front ( ) ;

138 now_time = Etmp . Event_time ;

139 i f ( Etmp . Type == SERVICE ) {

140 /∗ On complet ion o f S e r v i c e ; We now remove r e q u e s t s ←↩

from DemandQ∗/

141 i f ( Etmp . NoReq != 0) RemoveReqDemandQ ( Etmp . NoReq ) ;

142 else cout<<"DealWIthService: Error with NoReq"<<endl ;

143 QEvent . pop_front ( ) ;

144

145 /∗ Going Forward , As Glenford Says

146 ∗ I f QDemand i s not empty then c r e a t e another ←↩

s e r v i c e

147 ∗ complet ion event , e l s e a s s i g n SERVER STATE == FREE

148 ∗/

149

150 i f ( QDemand . size ( ) >0){

151 timetoserve = Service ( noreq ) ;

152 GenerateEvent ( SERVICE , timetoserve , noreq ) ;

153 }
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154 else {

155 SERVER_STATE = SERVER_FREE ;

156 }

157 }

158 else {

159 cout<<"DealWithService: Wrong Call to DealWithService←↩

"<<endl ;

160 return −1;

161 }

162

163 return 0 ;

164

165 }

166

167 int GenerateEvent ( int type , double interval , int noreq ) {

168 i f ( type == ARRIVAL | | type == VACATION ) {

169 double exp = exponential ( 1 . 0 / interval ) ;

170 interval = exp ;

171 }

172 interval += now_time ;

173 Event Enew (type , interval , noreq ) ;

174 /∗ we cannot j u s t s t i c k the r eque s t at the end

175 ∗ or f r o n t o f the queue

176 ∗ i t has to be order based on the s t a r t time ∗/

177 QEvent . push_back ( Enew ) ;

178 QEvent . sort ( ) ;
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179 // pr intoutEvent ( ) ;

180 return 0 ;

181 }

182

183 double Service ( int& noreq )

184 {

185 reqno = count = 0 ;

186 timetoserve = 0 ;

187 i f ( QDemand . empty ( ) ) {

188 cout<< "There is no demand request in the queue"<<←↩

endl ;

189 return −1;

190 }

191 /∗ check the queue s i z e i f queue s i z e > D ∗/

192 reqno = QDemand . size ( )>MaxD?MaxD : QDemand . size ( ) ;

193 timetoserve = Tnet (P + reqno ) ;

194 // cout<<”Timetoserve”<<t imetoserve<<endl ;

195 timetoserve = exponential ( 1 . 0 / timetoserve ) ;

196 /∗ take the l a s t d r e q u e s t s from the Queue ∗/

197 count = 0 ;

198 for ( rev_i=QDemand . rbegin ( ) ; count < reqno ; ++rev_i , ←↩

count++) {

199 (∗ rev_i ) . ReqWaitingT = ( now_time − (∗ rev_i ) .←↩

ReqArrived ) ;

200 (∗ rev_i ) . ReqServiceT = ( timetoserve ) ;

201 }
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202 servicecount++;

203 noreq = reqno ;

204 return ( timetoserve ) ;

205 }

206

207 int RemoveReqDemandQ ( int Number )

208 {

209 MeanD += Number ;

210 NumberOfJobServed += Number ;

211 reqsize = QDemand . size ( )−Number ;

212 /∗ d e l e t e the tmp entry from the QDemand and add i t to ←↩

the QServed ∗/

213 for ( int i = 0 ; i< Number ; i++){

214 Request tmp = QDemand . back ( ) ;

215 tmp . served = true ;

216 tmp . ReqTotalWaitingT = tmp . ReqWaitingT + tmp .←↩

ReqServiceT ;

217 tmp . WaitingReq = reqsize ;

218 QServed . push_back ( tmp ) ;

219 QDemand . pop_back ( ) ;

220 }

221 return 0 ;

222 }

223 int CalculateD ( )

224 {

225
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226 MaxD= ( ( Tprocess ∗ P ) − Tnet (P ∗ NoApp ) ) / C ;

227 cout<<"Maximum Number of demand request that can be ←↩

served() = " << MaxD << endl ;

228 return 0 ;

229 }

230

231 double Tnet ( int y )

232 {

233 return ( ( Delay + C ∗ y ) ) ;

234 }

235

236

237 int printoutEvent ( ) {

238

239 list<Event> : : iterator i ;

240 int count = 1 ;

241 cout <<"Number of Events " << QEvent . size ( ) <<endl ;

242 /∗ once the time i s over we need to p r in t out the i n f o ←↩

∗/

243 cout << "Please note all the time measurements are in ←↩

micro seconds" << endl ;

244 for (i=QEvent . begin ( ) ; i != QEvent . end ( ) ; ++i , count++) ←↩

{

245 cout << count <<"\t\t" <<∗i << " " ; // p r i n t a l l

246 }

247 return 0 ;
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248 }

249

250

251 int printout ( ) {

252

253 list<Request > : : iterator i ;

254 int count = 1 ;

255 cout <<"Number of Requests Served " << QServed . size ( ) ←↩

<<endl ;

256 total_wait_S_T = 0 ;

257 total_wait_T = 0 ;

258 total_len = 0 ;

259

260 /∗ once the time i s over we need to p r in t out the i n f o ←↩

∗/

261 cout << "Please note all the time measurements are in ←↩

micro seconds" << endl ;

262 cout<<"Job Number\t" << "Arrival time\t" << "Waiting ←↩

Time\t\t" << "Service Time" << "No. Waiting Request ←↩

" << endl ;

263 for (i=QServed . begin ( ) ; i != QServed . end ( ) ; ++i , count←↩

++) {

264 // cout << count <<”\t \ t ” <<∗ i << ” ”; // p r i n t a l l

265 total_wait_S_T += (∗i ) . ReqTotalWaitingT ;

266 total_wait_T += (∗i ) . ReqWaitingT ;

267 total_len += (∗i ) . WaitingReq ;
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268 total_serv += (∗i ) . ReqServiceT ;

269 }

270 /∗ We are s u b s t r a c t i n g ARRIVAL from count to n e g l i f y ←↩

the e f f e c t o f z e r o s when the s imu la t i on s t a r t s ∗/

271

272 cout<<"Job Number\t" << "Arrival time\t" << "Waiting ←↩

Time\t\t" << "Service Time" << "No. Waiting Request ←↩

" << endl ;

273 cout<< "Tprocess = " << Tprocess << ", Number of ←↩

Prefetch = " << P << ", C = " << C << ", MaxD = "<< ←↩

MaxD << ", Arrival Rate: " << ( ARRIVAL ∗ 1000000 ) /←↩

ARR_T << " blocks/sec" << " , DELAY = " << Delay <<←↩

endl ;

274 cout<< "Time to serve "<< P << "p blocks and " << MaxD ←↩

<< "d blocks is equal to " << ( Delay + C ∗ (P+MaxD ) )←↩

<<"musec" << endl ;

275 cout<<"Number of service generated: "<< servicecount <<←↩

", Total NUmber of Jobs Served: "<< ←↩

NumberOfJobServed << ", Total wait "<< total_wait_T ←↩

<<endl ;

276 MeanWT = ( total_wait_T / NumberOfJobServed ) ;

277 cout<< "Mean Waiting time (Excluding Service Time)" << ←↩

MeanWT << endl ;

278 TotalWT = ( total_wait_S_T / NumberOfJobServed ) ;

279 cout<< "Mean Waiting time (Including Service Time)" <<←↩

TotalWT << endl ;
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280

281

282 cout<< "Mean Length: " << ( total_len / ←↩

NumberOfJobServed ) << endl ;

283 MeanServiceTime = ( total_serv / NumberOfJobServed ) ;

284 cout<< "Mean Service Time : "<< MeanServiceTime <<endl ;

285 MeanD = MeanD/servicecount ;

286 cout<< "Mean D: " <<MeanD<<endl ;

287 formula ( ) ;

288 D = MaxD ;

289 cout<<"Calculated Using Bulk Service Model"<<endl ;

290 BulkService ( ) ;

291 return 0 ;

292 }

293

294 double formulaR (double r1 )

295 {

296 ret = ( (Mu ∗ ( pow (r1 , D+1) ) ) − ( lemda + Mu ) ∗ r1 + ←↩

lemda ) ;

297

298 return ret ;

299 }

300

301 void formulaL ( )

302 {

303 L = r / ( 1 . 0 − r ) ;
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304 }

305

306 void formulaW ( )

307 {

308 W = ( L / lemda ) ;

309 }

310

311 void formulaWq ( )

312 {

313 Wq = W − ( 1 . 0 / Mu ) ;

314 }

315 void formulaLq ( )

316 {

317 Lq = L − ( lemda / Mu ) ;

318 }

319

320

321 void BulkService ( ) {

322 double i , ans ;

323 for (i = 0 ; i < 1 ; ) {

324 ans = formulaR (i ) ;

325 i f ( ans < 0 ) {

326 // cout<<”ans i s l e s s than zero : ” << ans<<endl ;

327 i = i + 0.000001 ;

328 continue ;

329 }
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330 else i f ( ans < least ) {

331 least = ans ;

332 r = i ;

333 }

334 i = i + 0.000001 ;

335 }

336

337 cout<<"R = "<<r<<", Least = "<<least<< endl ;

338

339 formulaL ( ) ;

340 formulaW ( ) ;

341 formulaWq ( ) ;

342 formulaLq ( ) ;

343 cout<<"Lemda = "<<lemda<<", Mu = "<<Mu<<" Using D = "<<←↩

D<<", MU*D = "<<(Mu∗D )<<endl ;

344 cout <<"L = "<<L<<", W = "<<W<<", Wq = "<<Wq<<", Lq = "←↩

<<Lq<<endl ;

345 double per = ( (W − TotalWT ) /TotalWT ) ∗ 100 ;

346 cout<<"Error Percentage: "<<per<<"%"<<endl ;

347 cout <<"W + (Mean Service Time / 2 ) : " << (W + (←↩

MeanServiceTime / 2 ) )<<endl ;

348 cout <<"Wq + (Mean Service Time / 2 ) : " << (Wq + (←↩

MeanServiceTime / 2 ) )<<endl ;

349 }
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Listing C.2: Simulation Code Representing NMS: Request.h

1 #include <iostream>

2 #include <s t d i o . h>

3 #include <s t d l i b . h>

4 #include < l i s t >

5 #include <s t r i ng>

6

7 #include <math . h>

8

9 //#d e f i n e Database /∗ UN COMMENT t h i s l i n e ; i f database ←↩

i s used ;

10 /∗ Type o f r eque s t ∗/

11 #define ARRIVAL 1

12 int ARRIVAL1 = 1 ; /∗ 1 means Demand (ARRIVAL i s DEMAND)←↩

∗/

13 #define PREFETCH 2 /∗ 2 means Pre f e tch ∗/

14 #define SERVICE 3

15 #define VACATION 4 /∗ vacat ion f i n i s h e d ∗/

16 #define FREE F 5 /∗ s e r v e r f r e e f i n i s h e d ∗/

17

18 #define ARR T 250 /∗ demand miss : mean a r r i v a l time . In ←↩

microsec , in microsecond ∗/

19 #define P CONSUMET 350 /∗ Pre f e tch per block consume ←↩

time ∗/

20

21 unsigned int P = 0 ;
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22 unsigned int MaxD = 0 ;

23 unsigned int CountNoServerIdeal = 0 ;

24 #define Tprocess 200

25 #define NoApp 1

26 #define Delay 0

27 #define C 30

28 #define JOBS 10000000

29

30 int CalculateD ( ) ;

31 int printout ( ) ;

32 double Tnet ( int y ) ;

33 double Service ( int& noreq ) ;

34 int GenerateEvent ( int type , double interval , int noreq ) ;

35 int phase ( ) ;

36 int DealWithArrival ( ) ;

37 int DealWithService ( ) ;

38 int DealWithVacation ( ) ;

39 int DealWithServerFree ( ) ;

40 int deleteanEvent ( int Event_type ) ;

41 int printoutEvent ( ) ;

42 int RemoveReqDemandQ ( int Number ) ;

43 #ifde f Database

44 #include "Database.h"

45 int Connect2Database ( ) ;

46 int CloseDatabase ( ) ;
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47 int SearchValueofPD ( int Darrivaltime , int Consumetime , ←↩

unsigned int &D , unsigned int &P ) ;

48 #endif

49 double TotalWT = 0 . 0 ;

50 double total_wait_S_T = 0 ;

51 double total_wait_T = 0 ;

52 double total_len = 0 ;

53 double now_time = 0 ;

54 double MeanD = 0 ;

55 double total_serv = 0 ;

56 double MeanWT = 0 ;

57 double D = 0 . 0 ;

58

59 int NumberOfJobServed = 0 ;

60 int SERVER_FREE = 1 ;

61 int SERVER_BUSY = 2 ;

62 /∗ f o r vacat ion ∗/

63 int SERVER_ON_VACATION = 3 ;

64 int SERVER_STATE = SERVER_ON_VACATION ;

65 int vac_time = Delay + (P ∗ C ) ; /∗ i t has to be s e t a f t e r←↩

P ∗/

66

67 double servicecount = 0 ;

68 /∗ For Bulk S e r v i c e ∗/

69 void BulkService ( ) ;

70 double L = 0 , Lq = 0 , W = 0 , Wq = 0 ;
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71 double lemda , Mu , least = 1 . 0 , ret , r ;

72 double MeanServiceTime = 0 ;

73

74 using namespace std ;

75 class Event

76 {

77

78 friend ostream &operator<<(ostream &, const Event &) ;

79 public :

80

81 int Type ; /∗ 1 = Arr iva l

82 2 = S e r v i c e

83 3 =

84 ∗/

85 double Event_time ;

86 int NoReq ;

87 Event ( int& type , double& Etime , int& No ) ;

88 Event ( int& type , double& Etime ) ;

89 int operator<(const Event &rhs ) const ;

90

91 } ;

92

93 Event : : Event ( int& type , double& Etime , int& No ) {

94 Type = type ;

95 Event_time = Etime ;

96 NoReq = No ;
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97 }

98

99 Event : : Event ( int& type , double& Etime ) {

100 Type = type ;

101 Event_time = Etime ;

102 NoReq = 0 ;

103 }

104

105 // This func t i on i s r equ i r ed f o r bu i l t−in STL l i s t ←↩

f u n c t i o n s l i k e s o r t

106 int Event : : operator<(const Event &rhs ) const

107 {

108 // i f ( th i s−>Star t t ime == rhs . S ta r t t ime ) re turn 1 ;

109 i f ( this−>Event_time < rhs . Event_time ) return 1 ;

110 return 0 ;

111 }

112

113 ostream &operator<<(ostream &output , const Event &E )

114 {

115 output << "Event time " << E . Event_time << "\t \t \t←↩

" <<"\t \t Type: " << (E . Type )<<endl ;

116 return output ;

117 }

118

119 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

120
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121 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

122 class Request

123 {

124 friend ostream &operator<<(ostream &, const Request ←↩

&) ;

125 public :

126

127

128 int type ; /∗ 1 = Demand , 2 = Pre f e tch ∗/

129 bool served ;

130 double ReqArrived ;

131 double ReqWaitingT ;

132 double ReqServiceT ;

133 double ReqTotalWaitingT ;

134 double WaitingReq ;

135

136 Request ( ) ;

137 Request ( int t , double ReqA ) ;

138 Request ( const Request &) ;

139 Request &operator=(const Request &copyin ) ;

140 } ;

141

142 Request : : Request ( )

143 {

144 type = 0 ;

145 ReqArrived = 0 ;
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146 ReqWaitingT = 0 ;

147 ReqServiceT = 0 ;

148 served = fa l se ;

149 ReqTotalWaitingT = 0 ;

150 WaitingReq = 0 ;

151 }

152

153 Request : : Request ( int t , double ReqA )

154 {// cout<< ”Request Constructor ” << ReqA<< endl ;

155 type = t ;

156 ReqArrived = ReqA ;

157 ReqWaitingT = 0 ;

158 ReqServiceT = 0 ;

159 served = fa l se ;

160 ReqTotalWaitingT = 0 ;

161 WaitingReq = 0 ;

162 }

163

164 Request : : Request ( const Request &copyin ) // Copy ←↩

cons t ruc to r to handle pass by value .

165 {

166 // cout<<”Copy Constructor i s c a l l e d ”<< endl ;

167 type = copyin . type ;

168 ReqArrived = copyin . ReqArrived ;

169 ReqWaitingT = copyin . ReqWaitingT ;

170 ReqServiceT = copyin . ReqServiceT ;
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171 served = copyin . served ;

172 ReqTotalWaitingT = copyin . ReqTotalWaitingT ;

173 WaitingReq = copyin . WaitingReq ;

174 }

175

176

177 Request& Request : : operator=(const Request &copyin )

178 {

179 this−>type = copyin . type ;

180 this−>ReqArrived = copyin . ReqArrived ;

181 this−>ReqWaitingT = copyin . ReqWaitingT ;

182 this−>ReqServiceT = copyin . ReqServiceT ;

183 this−>served = copyin . served ;

184 this−>ReqTotalWaitingT = copyin . ReqTotalWaitingT ;

185 this−>WaitingReq = copyin . WaitingReq ;

186 return ∗ this ;

187 }

188

189 ostream &operator<<(ostream &output , const Request &R )

190 {

191 output << R . ReqArrived << "\t \t \t" << (R . ReqWaitingT )←↩

<< "\t \t"<< R . ReqServiceT <<"\t \t "<< R .←↩

WaitingReq <<endl ;

192 return output ;

193 }

194
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195 double uniform ( )

196 {

197 int high = 10 ;

198 int low = 1 ;

199 return ( (double ) rand ( ) / (double ) RAND_MAX ) ;

200 }

201

202

203

204 double exponential (double mean )

205 {

206 double u ;

207 double ret ;

208 do{

209 u = uniform ( ) ;

210 }while (u == 0.0 | | u == 1 . 0 ) ;

211 ret = (−1.0/mean∗log (u ) ) ;

212 i f ( ret < 0)

213 ret = −(ret ) ;

214 return ( ret ) ;

215 }

216

217 void formula ( )

218 {

219 cout<<"Calculated Using simple M/M/1 queue Model"<<endl←↩

;
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220 double WaitT = 0 , num , denom ;

221 num = ( Delay + ( (P +MaxD ) ∗ C ) ) ;

222 cout <<"Numerator: " << num << endl ;

223 denom = ( MaxD − ( ( num ) ∗ (double ) ( 1 . 0 / ARR_T ) ) ) ;

224 cout << "Denomenator: "<<denom<<endl ;

225 WaitT = ( num / denom ) ;

226 cout<<"Waiting Time calculate by formula:"<<WaitT<<←↩

endl ;

227 }

Listing C.3: Simulation Code Representing NMS: Database.h

1 #include <sys / time . h>

2 #include <s t d i o . h>

3 #include <iostream>

4 #include <s t d l i b . h>

5 #include <mysql . h>

6 #include <s t r i ng>

7 using namespace std ;

8

9 MYSQL_RES ∗result ;

10 MYSQL_ROW row ;

11 MYSQL ∗connection , mysql ;

12 int state ;

13 int Quo , rem ;

14 int Tdisk = 7800 ;
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15

16 int Connect2Database ( ) {

17 mysql_init(&mysql ) ;

18 connection = mysql_real_connect(&mysql , "localhost" ,"←↩

root" ,"computer" ,"Research" , 0 , 0 , 0 ) ;

19 i f ( connection == NULL )

20 {

21 printf ( mysql_error(&mysql ) ) ;

22 return −1;

23 }

24 return 0 ;

25 }

26

27 int CloseDatabase ( ) {

28 mysql_free_result ( result ) ;

29 mysql_close ( connection ) ;

30 }

31

32 int SearchValueofPD ( int Darrivaltime , int Consumetime , ←↩

unsigned int &D , unsigned int &P ) {

33 int CalArrivaltime = 0 ;

34 int Quo = Darrivaltime / 25 ;

35 char qstring [ 2 5 5 ] ;

36 P = D = 0 ;

37 unsigned int Pmax = 0 ;

38 unsigned int Dmax = 0 ;
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39 unsigned int arrivalr = 0 ;

40 CalArrivaltime = ( Quo ∗ 25) ;

41

42 printf ("CalArrivaltime = %d, Darrivaltime = %d \n" , ←↩

CalArrivaltime , Darrivaltime ) ;

43 sprintf ( qstring , "SELECT Pno, Dno, arrivalrate FROM ←↩

OptimalPs , ArrivalRates where OptimalPs.A_id = ←↩

ArrivalRates.A_id and arrivalrate = %d ORDER BY ←↩

arrivalrate , Dno ASC" , CalArrivaltime ) ;

44 printf ("%s \n" , qstring ) ;

45 state = mysql_query ( connection , qstring ) ;

46 i f ( state !=0)

47 {

48 printf ( mysql_error ( connection ) ) ;

49 return −1;

50 }

51 result = mysql_store_result ( connection ) ;

52

53 printf ("Rows:%d\n" , mysql_num_rows ( result ) ) ;

54

55 while ( ( row=mysql_fetch_row ( result ) ) != NULL )

56 {

57 Pmax = atoi ( row [ 0 ] ) ;

58 Dmax = atoi ( row [ 1 ] ) ;

59 arrivalr = atoi ( row [ 2 ] ) ;

60 printf (" %s, %s\n" , ( row [ 0 ] ) , ( row [ 1 ] ) ) ;
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61 printf ("Pmax = %d, Dmax = %d, arrivalrate = %d \n" , ←↩

Pmax , Dmax , arrivalr ) ;

62 i f ( ( Tdisk/Pmax ) <= Consumetime ) {

63 P = Pmax ;

64 D = Dmax ;

65 break ;

66 }

67 }

68 i f (P == 0) {

69 printf ("Error: Could not support, hence could not ←↩

find the value of P and D for arrivaltime = %d and←↩

consume time = %d\n" , Darrivaltime , Consumetime ) ;

70 return −1;

71 }

72 cout<<"Calculated Consume time = "<<(Tdisk/P )<<", ←↩

Consume time="<<Consumetime<<endl ;

73 cout<<"The value of Max P = "<<P<<" The value of ←↩

Corresponding D = "<<D<<", Pmax * Consumetime = "<<(←↩

P ∗ Consumetime )<<endl ;

74 return 0 ;

75 }

Listing C.4: Simulation Code Representing NMS: Makefile

1 BINDIR=/usr/local/bin

2 OBJS = Request . o
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3 CC = g++

4 CFLAGS = −Wall −O −g

5 DFLAGS1 = −I/usr/include/mysql

6 DFLAGS2 = /usr/lib/mysql/libmysqlclient . so

7

8 Request . o : Request . h simulation_PonD . cpp \$ ( DFLAGS2 )

9 clear

10 \$ (CC ) −o myprog \$ ( CFLAGS ) \$ ( DFLAGS1 ) \$ ( DFLAGS2 ) ←↩

simulation_PonD . cpp

11 clean :

12 rm ∗ . o myprog
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