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Cyclic-Service Systems with Probabilistically-Limited
Service

Kin K. Leung, Member, IEEE

Abstract—We analyze an asymmetric cyclic-service system with a
probabilistically-limited (P-L) service policy. In such a service policy,
the maximum number of customers served at a queue during a server
visit is determined by a probability, which is independent of system
states. Exhaustive, limited-k, and Bernoulli service are special cases of
the P-L policy. Customer service times and changeover times have gen-
eral distributions. A numerical technique based on discrete Fourier
transforms is proposed to solve for the queue-length distributions.
Thus, the waiting and response time distributions are obtained. A set
of numerical examples is presented to validate the approach.

[. INTRODUCTION

CYCLIC-SERVICE SYSTEM (also known as a polling
system or token-passing system) is a set of queues served
by a single server in a cyclic manner. Excellent surveys of re-
sults on cyclic-service systems with extensive lists of references
have been presented by Takagi in {24] and [25]. Such consid-
erable research attention is due to the wide applicability of these
models in communication, computer, and production systems.
Various service disciplines for cyclic-service systems have
been studied, which include exhaustive, gated, and limited ser-
vice policies. The first two policies have been completely
solved, in the sense that their waiting time distributions have
been obtained (cf. [8], references in [25]), while the average
waiting times can be computed by solving a set of linear equa-
tions (cf. [11], [22]). However, the systems with limited ser-
vice are difficult to analyze and few exact results exist. In
particular, for symmetric systems with limited-one service (also
known as alternating or nonexhaustive service), the average
waiting times have been obtained (cf. [12], [20]). Asymmetric
systems with two queues and limited-one service have been
solved in [3], [6], and [9]. Recently, a numerical solution for
systems with Bernoulli service has been proposed in [1]. Be-
cause of the analytical difficulty, many researchers (cf. [4], [13],
[14], [23]) approximate the average waiting times for various
limited service policies.

In this paper, we consider an asymmetric cyclic-service sys-
tem with a probabilistically-limited (P-L) service policy. In such
a service policy, the maximum number of customers served at
a queue during a server visit is determined by a probability,
which is independent of system states and can be different for
various queues.

The P-L policy is motivated by two major reasons. First, this
policy allows a unified treatment in the analysis of systems that
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involve several commonly-used service policies such as ex-
haustive service, limited-k service (referred to as E-limited ser-
vice in [10] and [13]), and Bernoulli service [23]. Such a unified
approach is possible because these disciplines are the P-L pol-
icy with appropriate probability settings. Second, the P-L pol-
icy complements the inadequacy of existing policies. For
example, these policies serve at least one customer from a no-
nempty queue at each server visit, while the P-L policy allows
the server not to serve the queue. Such a situation occurs on a
processor in the SESS® Switch developed by AT&T. On that
processor, when a nonempty queue is polled, it may not serve
the queue in that visit, depending on the state of other parts of
the switch.

To study the system with the P-L policy, we adopt the ap-
proach introduced in [8] and consider imbedded Markov chains
formed at the instants of (customer) service beginning, service
completion, (server) visit beginning, and visit completion. (A
visit is the period of time at which the server is continuously
serving a particular queue. If no customer is served during a
visit, the visit beginning and completion occur simultaneously.
This situation occurs either if the queue is empty when it starts
to be served, or the server chooses not to serve any customer
despite the fact that the queue is nonempty. The instant of a
visit beginning is also referred to as a polling instant.) We ex-
press the queue-length distributions as functions of the prob-
ability generating functions (pgf’s) for the state probabilities
observed at visit-completion instants. A numerical technique
based on discrete Fourier transforms (DFT’s) is used to solve
for the pgf’s, from which the response time and waiting time
distributions are obtained.

In the following, Section II describes the model and its as-
sumptions. The pgf for the marginal queue-length distribution
and the Laplace transforms (LT’s) for response and waiting
times at each queue are also derived. This pgf involves other
unknown pgf’s, for which a functional equation is developed
in Section III. In Section IV, a numerical technique based on
DFT’s is proposed to solve for the unknown pgf’s. Section V
discusses the estimates of the ‘‘maximum’’ queue lengths and
correctness checks on the numerical results. A set of numerical
examples is given in Section VI. Finally, Section VII presents
our conclusions.

II. RESPONSE AND WAITING TIME ANALYSIS

Consider a cyclic-service system with M queues, indexed by
i=1,2, -+, M, which are served by a single server in a
cyclic manner. Customers in a queue are served in the order of
their arrival. Each queue is assumed to have infinite waiting
room. At each queue i, customers arrive according to a Poisson
process with a rate A;, and their service times have a general
distribution with a mean denoted by x;. The offered traffic at
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queue i is defined as p; = N;X;. Thus, the total offered traffic in
the system is p = E¥. | p;.

The service discipline in use is the P-L policy, as described
above. More precisely, each time the server polls queue i (i.e.,
at the visit beginning), the maximum number of customers to
be served (preferred to as the service limit) during the visit is
determined as follows. Each queue i has a set of service limit
probabilities {a’} where L2, a} = 1. The setvice limit for a
server visit at queue i is equal to j with probability a/. The
choices of service limits are independent of the system states.
During a visit, when the queue in service becomes empty or its
service limit has been reached (whichever occurs first), the
server switches to visit (serve) the next queue. We denote the
changeover time incurred by the server to switch from queue i
— 1to i by ¢;, which has a general distribution. It is understood
the subscript { — 1 must be replaced by M fori = 1.

Remark 1: 1f a is nonzero and queue i is nonempty when it
is polled, it is possible that no customer from the queue is served
during the server visit. 0O

Remark 2: The P-L policy includes the common service dis-
ciplines such as exhaustive, limited-k, and Bernoulli service by
appropriate probability settings. In fact, the P-L policy can be
a mixed service discipline. To illustrate this, if queue i has ex-
haustive service, then a° = 1 and a} = 0 forj < . If queue
i has limited-k service, its service limit for each visit is a con-
stant (denoted by K;) and we have aX = 1 and @} = 0 forj #
K;. Further, if queue i receives Bernoulli service with a prob-
ability piothenad = 0and @) = (1 — p,) pi~' forj = 1, 2,

, ., g

Given {a’} the service limit averaged over all server visits
at queue i is L, = L2, jal. We assume that each queue in the
system is stable and define the cycle time as the time interval
between two polling instants at the same queue. Then, by the
balancing argument [2], the average cycle time at steady state
is

t= 2 5/(1-0) )

where ¢; is the average of c;. Under the P-L policy, one can
extend the arguments in [2] to find that the necessary and suf-
ficient conditions for all queues being stable are p < 1 and for
each queue i, \,¢ < L,.

A. Probability Generating Functions for System State
Probabilities

To analyze the cyclic-service system with the P-L policy, we
observe the system at these instants: service beginning, service
completion, visit beginning, and visit completion. This results
in a set of four imbedded Markov chains. In each chain, the
system state is described by i, the queue where a service or visit
takes place, and a vector n = (n,, np, * * * , ny), where n; is
the number of customers present in queue j at an imbedded time
epoch. Then, we recognize that the results of Section II in [8]
are applicable to the system under consideration.

Remark 3: In fact, the analysis in Section II of [8] is so gen-
eral that it is valid for any nonpreemptive service discipline, as
long as each queue is stable. This is because no assumption
involving the specifics of the service policy in use is made. The
analysis has been applied to study the performance of disk stor-
ages in [5]. 0

Before continuing our discussion, let us define some nota-
tion:

X;(s): LT for the customer service time at queue i,

C;(s): LT for the changeover time ¢;,

2=(2,2, """, ),

X (2) = Xi(A, — M2y + <+ Ay~ Ay2y): pgf for the
joint probabilities of the numbers of customers arriving at
all queues during a queue-i customer service time,

Ci(2) = Ci(N — Mgy + © 4+ Ay — Ay2y): pef for the
joint probabilities of the numbers of customers arriving at
all queues during the changeover time c;,

Piq n): state probability of the imbedded Markov chain
formed at service-completion instants,

oo

T2 = 2 X

=0 m

o

'

nm=0

< ZEPL(n),

Pi(n): state probability of the imbedded Markov chain
formed at visit-beginning instants,

W)= X 8 - 3 Q- P,

=0 n2=0 nM=
Pj(n): state probability of the imbedded Markov chain
formed at visit-completion instants,

oo

Zz"

nm=0

oo oo
Ble)= X X P 4 P(n),
m=0nm=0
~: the long-term ratio of the number of queue-i visit comple-
tions to the total number of (customer) service completions
at all queues.

Using our notation and applying (19) in [8] to our system,
we obtain

i Xz i
#@) = 20500 - @] @)
4 - X(2)
fori=1,2, , M. This relates the pgf for state probabilities

at a service completion to those for the state probabilities at the
preceding and the subsequent visit completions. Note that (2)
has two unknowns: the quantity y and pgf’s B'(z). Let us first
find v here. A recursive relation among 8'(z)’s is obtained and
solve later.

Since the system is stable, iy can be obtained by observing
the systém behavior during an average cycle. Clearly, the aver-
age number of service completions in an average cycle equals
(N + N + © 4+ Ay )<. This is because all arrivals are even-
tually served, as each queue is stable. Hence, the total arrival
rate and the completion rate are equal at equilibrium. It is also
clear that there is one and only one queue-i visit during each
cycle. Combing these two facts yields

=1/[(M+ M+ + M) (3)
B. Marginal Queue-Length, Response and Waiting Time
Distributions

By the definition of 7' (z), it is clear that ' (1, , 1,z
1, -+ - -, 1) is the pgf for the marginal queue-length probabili-
ties at queue i observed at a service-completion epoch, and it
happens that the service completion is a queue-i customer. In
addition, ='(1, , 1) gives the probability that an arbitrary
service completion is a service completion of a queue-i cus-
tomer. Combining these two facts, the pgf, N;(z;), for the mar-
ginal queue-length probabilities for queue / when a queue-i
customer service is just completed is given by

Ni(z) = #'(1, D/a'(1, -, 1) (4)

B A
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Let us find #'(1, - -+ , 1). As mentioned above, the total
arrival rate and the service completion rate are identical at equi-
librium as the system is stable. Hence, the probability of an
arbitrary service completion being a queue-i customer is simply
the ratio of A, to the total arrival rate. That is, 7='(1, *++ -, 1)
= N/(N + - -+ + A\y). Substituting this into (4) and using
(2)-(3), we obtain

1 Xi(N — Nzy)

Ni(z) = MNe 7 — XN — N2)
R [Bi—l(l, eyl z 1, o 1)
G, o Lz 1, e, 1)
- B, 1z, 1, 1] (5)

where ¢ is given in (1). Since customers at each queue are served
in the order of their arrival, the LT for the customer response
time (waiting plus service time) at queue i is given by

Ti(s) = Ni(1 = s/N). (6)

As customer service is nonpreemptive, the LT for the waiting
time at queue i is

Wi(s) = Ti(s)/Xi(s) = Ni(1 = s/N)/Xi(s).  (7)

To obtain the queue length, response and waiting time distri-
butions, our remaining task is to solve for 8'(z)’s in (5).

III. A FUNCTIONAL EQUATION FOR B(z)

In this section, we first establish a recursive relationship be-
tween B'(z) and 8°~'(z) fori = 1, - -+, M. Then, a func-
tional equation for 8'(z) is derived.

A. A Recursive Relation for 8°(z) and '~ '(z)

Consider that queue i is in service. To find 8(z), we first
condition that the service limit for the current visit is L. Then,
one needs to keep track of the system state at each service com-
pletion at queue i. Further, one has to deal with the fact that
the visit ends when either queue i becomes empty or the service
limit L has been reached, whichever occurs first. To overcome
this, we consider a modified system in which the system enters
an absorbing state whenever queue i becomes empty and the
server serves exactly L ‘‘customers’’ at queue i during the visit.
If queue i becomes empty after j( <L) customers have been
served, the rest of L — j ‘‘customers’’ served during the visit
are not real customers, but rather represent a time interval at
which the system state remains unchanged. Thus, the system
state in the original system at the visit completion, regardless
of its cause, is identical to that in the modified system. Finally,
we uncondition L with its probabilities {a’}. This is our ap-
proach in the following.

Let us begin with some additional notation:

¥ = (1 (J) ¥2(j), * * -, ¥u(j)): numbers of customers
at all queues immediately after j service completions at
queue { since the visit beginning (note that the index i is
omitted from this notation for brevity),

P)(n): state probability that y/ = n and queue i is in
service,

¥/(z) = % i

nj

CX A BrP(n),
nm=0

7' = (7, T2 * * * , Tpy): Numbers of customers arriving at all
queues during a queue-i customer service time,

1=(0,0,-++,1,0, - - -, 0): a zero vector, except that
the ith element is 1.

First, we note that the customers in the system at a queue-i
visit beginning are those at the queue-(i — 1) visit completion
plus the arrivals during the changeover time c¢;. Written in terms
of pgf’s, we have o'(z) = B'7'(z)Ci(z). By definition,
¥0z) = o' (z). Thus, we also have

¥(z) = B (2)C(2). (8)

Now, let us relate the system state at a service completion to
that at the previous completion. Consider that j customers at
queue i have completed their service during the current visit.
Assume that j < L. Then, the system state at the j + 1st service
completion can be related to that at the service completion ep-
och of the jth customer by

g ¥ if yi(j) = 0 )
- Y+ -1 ify(i) =1
forj =0, ---,L — 1. Now, we can use (9) to obtain a re-

cursive relation between ¥/(z) and ¥/*!(z), as shown
below.

Let I be the index of the queue at which the server is visiting.
By definition, P/, (n) = Pr[y’/ = n, I = i]. Thus, we have

‘I,j+l(z) — E[Z‘fl(j+])ZgZ(j+l) e Z*,]M(j+”|l - l] Pr [1 = l]
o ® oo
= > X - 2 E[zf‘“*”zg:”“""
n=0nm=0 ny=0

Z¢MMU+1)|£;' =n,1=i]Pr [y =n,1=il.
(10)

Depending on whether ¢,(j) = 0 or not, replace y/* ' in (10)
according to (9). After algebraic manipulations, we get

j j Xi(2) i "
V() = V()| _, + 7 [¥(2) - ¥(2)],_,] (11)
forj =0,1, --+,L — 1. As discussed above, given that the

service limit for the visit is L, the system state at the queue-i
visit completion is characterized by ¥ “(z). Thus, uncondition-
ing L with probability @’ in this relation yields
B'(z) = Z al¥(2). (12)
It is important to recognize that ' (z) is related to 8’ ' (z), via
(12), (11), and (8), fori = 1, - - - , M. This forms a recursive
relation between B'(z) and 8’7 '(z), which leads to a func-
tional equation, as described next.
Remark 4: If each queue receives the limited-one service,
one can obtain from (8), (11), and (12):

g =1~ @} {6"“(;)c,.(;)}|u=o

. Mﬁi—l(g)ci(z)

i

foralli=1, -+ , M. O

(13)
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B. The Functional Equation

Let us focus on the numbers of customers at all queues, n =
(ny, - -+, ny). We observe that, given n at a visit completion
of a particular queue, the state probabilities for n at the next
visit completion of the same queue can be fully characterized
(although it is very involved mathematically). Further, by
steady-state arguments, the state probability for n at two con-
secutive instants of visit completion at the same queue are iden-
tically distributed. Formally, let F; denote the mapping from
B~ '(z)to B'(z), as defined by (8), (11), and (12). Hence, we
have 8'(z) = F,(B*~'(z)) fori = 1, - -+ , M. Then, recur-
sively replacing 8°~'(z) in this relation by F; _,(8'7%(2))
yields

Bi(2) = F(F( o Fy(Fu(- - Finr(B'(2))

)))) (14)

This is the functional equation for 8°(z) for any given i = 1,
, M.

Apparently, it is difficult to solve for 87(z) from (14) ana-
lytically because the mapping functions are so complicated.
However, (14) can be used as a basis for an iterative procedure
as follows. One can choose an initial guess for 8'(z) (e.g.,
corresponding to an empty system), which is input to (14) as
the argument to generate a new result for 8°(z). Then, this pro-
cess is repeated by substituting the new result into (14) as the
argument again. Since the system has a steady state, after a
sufficiently large number of iterations, 3°(z) converges to the
steady-state solution, as one would expect. Once 3 i(2) for some
i is obtained, all other 8/(z)’s also become known by applying
the mappings on B(z) appropriately. Thus, the remaining task
is to solve for 8°(z) from (14) numerically.

IV. SOLVING B8'(z) BY DFT TECHNIQUE

In this section, we closely approximate v/ (z) and Bi(z) by
their corresponding DFT’s, {¥/(-)} and { B+ }, respec-
tively. Then, an iterative algorithm is proposed to solve

{B'(+)} from (14).

A. Approximation by DFT’s

Clearly, each queue has a finite queue length at steady state,
as all queues are stable. Thus, for each queue i, one can esti-
mate its ‘‘maximum’’ queue length, including the one in ser-
vice, to be N; (such estimation is discussed later) and make the
following approximation:

) Ni—1N-1 Nu-1
V()= 2 % ccc o4 4iPy). (15)

Since the number of all possible states for n now becomes finite
due to the approximation, one can use DFT’s to represent
{P)(n)}, instead of using z-transform in (15), so that a useful
property of DFT can be used in computation. To obtain the
DFT’s, we define w; = e 2%/ fori =1, -+ -, M where j =
v=1. (Note that j is also used as an integer index.) Further,
letk = (ky, k3, ©++ , kyy) where k; = 0, - - -, N; — 1, and let
S be the set of all possible k. Let the DFT’s for { P/,(n)} be
denoted by {¥/(k)}. By the definition of DFT, {¥/(k)} is

given by
Ni—=1N2-1 Nu—1 A
Viy= X X2 2k e WP (n)
m=0 m=0 nm=0
(16)
for each k € S. Similarly, one can obtain the DFT’s { Bi(k)}
for {P5(n)} fori = 1, - - - , M. Further, let the DFT’s cor-

responding to C;(z) and X;(z) be denoted by {C:(k)} and
{X;(k)}, respectively.

One major difficulty in dealing with the z-transform is the
computation of ¥/(2)|,-0, and B'7'(2) |40 and C;(2) ;=0
forj = 0in (11). These pgf’s actually represent the cases where
queue i is conditioned to be empty at the imbedded epochs.
Such difficulty can be overcome by the appropriate use of the
DFT'’s. For this, we define, foreachke Sandj =0, - - -, oo,

‘i,j(kh v ki 0k, k)
Ni—1 Ni-t=1 Ni+v1—1 Nu—1
- mz=0 n;-z|;=0 nr~Z|;=0 o "EO
w'f’"' e wfi:llnf—lwf;:llni+| e wl'c';’urlu
‘P{b(nl’.”vni—l907ni+|»"',nM). (17)

This notation is explained below. Note that queue i is empty,
as indicated in the argument of PQ( *) on the RHS. With this
definition, one can make use of the property of the DFT [21] to
prove that

\i’i(kly cer ks, 0, ki, ,kM)
Tt
=ﬁkz_;0 Wiky, - ki ki kit s k). (18)

Now, let. us clarify this notation. Certainly, one could use
another nottion to take the place of ¥/ (ky, -+ * , ki1, 0, ks,
<+, ky) in (17) and (18). However, to simplify our notation,
it is used to show that ;’s, except k;, are identical on both sides
of (18). In addition, 6 is a dummy argument which takes the ith
position (to replace k;) to indicate the fact that queue i is empty.

Once the DFT’s {¥/(k)} are known, {¥/(k;, - - -, k;_,, 0,
kiv1> = - -, ky) } are also known from (18).
Using a similar definition for ¥/(k,, - -« , ki, 0, ki1,
+++, ky), we can get
Bi—l(kl’ e 7ki~—l’ 07 kH—I, e, kM)
1M
=ﬁh§06'_l(kh"',k.‘—hki,kwl,"”kM) (19)
and
C,-(k., c ki, 0, ki, ykm)
1 Ni—~1
=— 2 G(N =N+ - N
N,- ki=0
D WS SIS WD WoE )N (20)

" B. An Iterative Algorithm

Before proposing an iterative algorithm to solve for { Bik)},
one needs to keep all possible service limits at each queue finite
so that the iterations can converge in a finite amount of time.
To achieve this, except for exhaustive service, one can deter-
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mine a service limit for queue i, denoted by L, such that
L .41 @ is less than a very small value (e.g., <107°). If
queue i has exhaustive service, we set L = oo. Then, the ‘‘max-
imum’’ service limit for queue i, denoted by L', can be chosen
to be the minimum of N; — 1 and L. (In some specific situations,
one may choose L = N,. See examples in Table III.)

Since ¥/(z) and B‘(z) are proper pgf’s, (8), (11), and (12)
are valid as long as | z;| < 1foralli = 1, , M. Thus, one
can teplace each z; in these equauons by w! for any k; = 0,

», N; — 1. As a result of using DFT’s, the recursive relation
given in terms of z-transforms can be converted into a set of
relations in terms of DFT’s. That is, fora giveni =1, + - -,
M, (8), (11), and (12) are equivalent to, for all k € S,

¥(k) =B~ (k) Ci(k), (21)
‘i’jH(IS) zl: X(k)jl‘yj(kh s ki 0k ’kM)
+2 B (22)
forj =0, -+, L" — 1 [note that the index i is omitted from
¥/(-)], and
L
B(k) = X al¥(k), (23)
j=

respectively. Now, (21)-(23) become the DFT version of the
mapping function F;( ) fori = 1, , M. Consequently, they
allow us to solve for {B(k) } from (14).
Now, let us outline the iterative approach to solving for
{ﬁ (k)} For brevity, let k0 = (k;, * -+, ki_y, 0, ki1,
, ky). For easy referencing during the iterations, one should
precalculate {X:(k)}, {C;(k)}, and { C;(k")} (from (20)) for
i=1, , M and for each k € S as they are fixed for a given
set of system parameters. To start the iterations, we choose the
initial guess fot { B~ (k)} corresponding to an empty system.
That is, 3~ '(k) = 1 for each k € S. Then, {B'_'(k"’)} are
obtained from (19). For each k € §, B'"‘(k) B (k'),
X.(k), C;(k), and C;(k‘"?) are input into (21)- -(23) to generate
B (k). These DFT’s { B'(k)} are then used as arguments to
generate { 37* ' (k)} according to (21)-(23) again. After going
through all mappings in sequence as indicated in (14), the new
results of { B°(k)} are compared with the old ones. If for all
k € S, their difference is less than a tolerable error (e.g., 107%),
then the iteration stops. These DFT’s { 3'(k)} represent the
steady-state results. Once { B'(k)} is obtained, we can input
them F;, () and then the others, as defined in (21)-(23), in
sequence to obtain other DFT’s { 8" (k) }.
Usmg {B (k)} to find N;(z;), we set z; = wf for k;, = 0,
, N; = 1in (5). Note that the DFT equlvalences ofﬁ‘ ',
lw,, ,c0 L D), B, ,Lwf 1, - 1) and
1, w,,l,-~,1)area"—'(o, ,o,k,,o,
0)8(0 <k, 0, -+ ,0),and Ci(O, - - -, k, O,
, 0), respectlvely, which have been obtained from the it-
erations. Fork; = 0, , N; — 1, setting z; = «f and substi-
tuting the DFT’s into (5) correspondingly yield the DFT’s,
{N;(k;)}, for the marginal queue-length probabilities at queue
i. By inversion of DFT’s from { N;(k;) }, we obtain the queue-

C,-(]

length probabilities, {P},} fork, = 0, - -+, N; — 1. Using
these probabilities, N;(z;) becomes
Ni—1
Ni(zi) = kz—lo Zi'Pi,- (24)
Substituting this into (6) and (7), the response and waiting time
distributions are given by

Ni—1

T(s) = Z PL(1 = s/\)" (25)
and
W) = 5 (B P — SN2

respectively. Differentiating (26) at s = 0 gives the average
waiting time at queue i:
Ni—1

kPl — X;.
ki=0

=

w, =

L (27)
4

Note that one can easily obtain the moments of response/
waiting times from (25) and (26). However, since both series
do not converge for all s with Re (s) = 0, the distribution
functions may not be obtained from common methods of LT
inversion. To find the response time distribution, we use the
relation T;( \; — N;z;) = N;(z;) where N;(z;) is given by (24).
The complementary cumulative function for the response time
is closely approximated by a sum of Laguerre functions
weighted by unknown coefficients [18]. Then, T;( N; — N\;z;) is
expanded into a Taylor series at z; = 0, in which the coefficients
are linear functions of the unknown coefficients. Since the coef-
ficient of z¥ in the expansion must be equal to P}, the unknown
coefficients can be recovered from solving a set of linear equa-
tions, thus the response time distribution is obtained. Similarly,
one can also recover the waiting time distribution. If { P} } are
accurate, this new inversion method yields the distributions very
accurately. (This has been verified on other systems for which
exact solutions are known.) However, due to the aliasing phe-
nomenon of the DFT’s [7] and roundoff errors, our experience
shows that, using {P}} generated from the iterations, this
method provides the response time distribution with an esti-
mated relative error of a fraction of a percent. Since the LT for
the waiting time involves X;(s) (i.e., a convolution in time do-
main) which requires { P} } to be more accurate, one can obtain
the waiting time distribution by this method with a relative error
of less than 1.5%.

V. ESTIMATES OF MAXIMUM QUEUE LENGTHS AND
CORRECTNESS CHECKS

In this section, we consider systems with limited-k and Ber-
noulli service. The methods proposed in [13] or [23] can be
used to approximate the average waiting time at each queue.
Once the average waiting times are approximated, an estimate
of the mean length of each queue i is known by Little’s law.
Let this quantity be A;. Now, the behavior of each queue is ap-
proximated as an individual M /M /1 queue with a server utili-
zation of p;, such that its mean queue length matches 7i;. By
M/M /1 results, this yields #; = p;/(1 — p;). Thus, §; can be
solved from this relation as 7, is known. Since N, has to be
chosen such that the probability of reaching that queue length
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TABLE I
AVERAGE WAITING TIMES FOR 3-QUEUE SYSTEMS WITH LIMITED-ONE SERVICE
5 ___ Conservation
Cases  (N,, N, N3) W, W, Wy o et = Nelw Constant

6.86406 5.45389  5.49541

1.1 (51, 36, 36) (6.80) (5.38) (5.38) 3.78498 3.7848
11.40066  9.06770  9.10407

1.2 (67, 54, 54) (10.72) (8.30) (8.30) 4.18990 4.1904
9.28629  1.87256  1.90727

2.1 (98, 15, 15) (9.34) (1.89) (1.89) 2.96565 2.9656
58.46543  2.32686  2.36956

2.2 (281, 26, 26) (55.70) (2.31) (2.31) 3.33234 3.3712

Note: Average waiting times in parentheses are simulation results adopted from [4] and [13].

has a very small value e (e.g., =1077), by the M/M /1 queue-
length distribution, an estimate for N; can be obtained from

(1 -5)p)""'=e (28)

This method provides a set of initial choices for {N;}. If the
correctness checks (to be discussed) indicate that the numerical
results generated from these initial choices are not satisfactory,
they can be revised accordingly.

One simple way to check the correctness of the numerical
results—queue-length probabilities-—is by observation. If { N;}
is chosen properly and the computation is performed as ex-
pected, the queue-length probabilities decay to a very small
value (e.g., on the order of 107%) as the queue length ap-
proaches its maximum value.

Another method to check the correctness of the results—aver-
age waiting times—is to make use of the waiting-time conser-
vation (pseudoconservation) laws. If the system uses the limited-
one or Bernoulli service policy, two conservation laws have
been proved in [27] and [26], respectively. These laws simply
state that the weighted sum of average waiting times equals a
constant (referred to as the conservation constant). For the lim-
ited-k service, one can apply another conservation law given by
(3) in [10]. Note that g (the second factorial moment of the
number of queue-i customers served during each visit) in this
law is an unknown. Nevertheless, we know that gi = max (0,
g’ — g;) where g; = \; C. Substituting this into the conservation
law yields an upper bound for the weighted sum of average
waiting times. If the computation is performed properly, the
average waiting times obtained from the numerical approach
should closely satisfy the conservation laws. For the cases of
the limited-k service, our numerical results also show that the
upper bound for the conservation constant is tight.

VI. NUMERICAL RESULTS

We considered four sets of numerical examples. These ex-
amples have been previously studied by other researchers, for
which exact or approximation results have been obtained. To
obtain high quality results, our computation was performed on
a CRAY X-MP computer with 64-bit words. The iteration stop-
ping criterion was 107%, except for the second set of examples
where the criterion was 10~ to reduce CPU time. The method
in Section V was used to obtain the initial estimates of {N;}
with e =2 x 107% in (28).

A. Two-Queue Systems with Limited-One Service

First, we considered several two-queue systems with limited-
one service for which the exact average waiting times have been
obtained in Table I of [3]. Our algorithm was able to reproduce
the average waiting times reported in the table and the CPU
time consumption was about 0.1 s to 2 min.

B. Three-Queue Systems with Limited-One Service

Second, we considered a set of four 3-queue systems with
limited-one service. These systems correspond to Cases 1.1,
1.2, 2.1, and 2.2 in [13]. Table I summarizes the average wait-
ing times obtained from the numerical procedure. The weighted
sums of these waiting times along with their conservation con-
stants are also presented. Clearly, the average waiting times
closely satisfy the conservation law. The CPU times consumed
by the procedure for the first three cases was about 3, 15.5, and
2.5 min, respectively. However, due to the extremely heavy
load in Case 2.2, it required about 5.5 h of CPU time. By the
conservation law, the numerical results for Case 2.2 are not as
‘‘exact’’ as in other cases, but we were not able to further im-
prove the results. This was so because a little increase of (N,
N,, N;)—from (281, 21, 21) to (281, 26, 26)—increased the
CPU time from 2.5 to 5.5 h. However, only marginal improve-
ment was obtained. Nevertheless, the average waiting times for
Case 2.2 shown in Table I appear to be more ‘‘accurate’’ than
the simulation results in [4] and [13] as the former comes closer
to satisfying the conservation law than the latter. The response
time distributions for queues 1 and 2 in Case 1.1 are given in
Fig. 1. The queue-length distributions have been reported in
[16].

C. Three-Queue Systems with Limited-k Service

The third set of examples involve systems with limited-k ser-
vice, which correspond to Cases 9.1, 9.3, 11.5, and 11.7 of the
E-limited service in [13]. Table II presents the average waiting
times obtained from the algorithm, which were validated by
simulation. The weighted sums of waiting times and the upper
bounds for their respective conservation constants are also pre-
sented. The close comparison of the weighted sums with the
bounds shows that they are tight bounds. The CPU time con-

“ sumption ranges from 0.5 to 7.6 min for these cases. The re-
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Fig. 1. Response time distributions.

TABLE 11
AVERAGE WAITING TIMES FOR 3-QUEUE SYSTEMS WITH LIMITED-k SERVICE

— — — £ p"[l - E} W, Corlliz‘;s;tisozugilﬁ(s):ant
Cases (N, N3, N3) W, W, Wy K;
1.5 (47,23, 23) i a9 Py St Py 2.72102 2.80239
b seon M seme i
Note: Average waiting times in parentheses are new simulation results.
TABLE III
AVERAGE WAITING TIMES FOR 2-QUEUE SYSTEMS WITH BERNOULLI SERVICE
Conservation
Cases (pi» P2) (Ni, Ny) (L, L) W, W, Lr pll = NE(l = p)1w, Constant
B-1 (1,0.5) (28,223) (27, 30) (%‘;8899873) LIS 113032 1.13033
B2 (1,075) (39, 98) (38,73) ((())'.Ss‘rslog* (22'%55‘@%* 104597 1.04596
B-3 (1, 1) (116, 56) (115, 55) (23-23356)3* (%43566918)** 0.96660 0.96158
B4 (LD (16,56) (45,165 St (0.eaerret 0.96366 0.96158
BS (11 (231, 111) (690, 330) (33'.33‘24;9)”;* O 0.96161 0.96158

Note: * and ** are new simulation and exact results, respectively.

sponse time distributions for Case 9.1 are shown in Fig. 1. The
queue-length distributions are given in [17].

D. Two-Queue Systems with Bernoulli Service

Finally, we considered several two-queue systems with Ber-
noulli service. The approximate average waiting times for these
systems have been presented in Fig. 2 and Table I of [23]. The
system parameters are: \; = 2, A\, = 2.5, X, = 0.05 (exponen-

tial distribution), X, = 0.3 (Erlang-3 distribution), and ¢, = ¢,
= 0.045 (constant). Table III presents the average waiting times
from the numerical approach for five cases that use these param-
eters and several Bernoulli probabilities, p; and p,. Simulation
or exact results for these systems along with the weighted sums
of average waiting times and their conservation constants are
also included in Table III. N, and N, for Cases B-1 to B-3 were
obtained by the method in Section V. The maximum service
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limits, (L7, L3'), for the first two cases were chosen such that
Ly =N, — land 52 m,y (1 = pp)p4~' < 107°. The proce-
dure consumed about 22.5, 3, 0.3, 0.6, and 4.4 min of CPU
time for Cases B-1 to B-5, respectively.

As shown in Table III, our numerical results for Cases B-1
and B-2 are correct, as they have been validated by both simu-
lation and the conservation law. However, the results for Case
B-3 are not satisfactory, despite that they closely satisfy the
‘conservation law. This is because, as p, = p, = 1, the service
policy become exhaustive service in this case. Due to the high
variability of the server intervisit time under the exhaustive ser-
vice scheme, the method in Section V no longer yields good
estimates for { N;}. To show the effects of maximum service
limits, (LT, LT) for Case B-4 are three times those for Case
B-3, while other parameters remain unchanged. Clearly, our re-
sults for Case B-4 come much closer to the exact values. For
Case B-5, we double the (N,, N,) from that of Case B-3 and
set the maximum service limits as three times these new maxi-
mum queue lengths. Then, the numerical results in Case B-5
are virtually identical to the exact results. This indicates that
the proposed approach is capable of providing correct results,
as long as { N;} and { L]"} are chosen properly. Our study shows
that the method in Section V generally yields good estimates
for {N;}, except for cases where most of the queues have ex-
haustive service. In those cases, one should repeat the algo-
rithm with larger values for { N;} and {L"} to achieve accurate
results.

VII. CONCLUSIONS AND FUTURE WORK

An iterative numerical approach based on DFT’s for asym-
metric cyclic-service systems with a P-L service policy has
‘been proposed. This techgniue has been validated by the wait-
ing-time conservation laws (if applicable) and exact/simulation
results. Since the memory and CPU time used by the algorithm
are exponential functions of the number of queues, we currently
can only solve relatively small systems if the offered traffic load
is high. Nevertheless, our method is applicable to many appli-
cations where the number of queues involved is small. Further,
results from the proposed approach—response and waiting time
distributions which are often difficult to obtain via simulation—
can be used to assess the accuracy of new approximate methods.
For more general applications, this new technique is also ap-
plicable to solving imbedded Markov chains with a multidi-
mensional state description (e.g., the disk performance problem
analyzed in [5]).

This work can be further extended in a number of ways. First,
the method in Section V for estimating { N;} needs to be gen-
eralized to consider the general P-L (mixed) service policy.
Second, we note that the proposed approach is applicable to
cyclic-service systems with compound Poisson arrivals and/or
correlated arrivals [19]. This is so because X;(z) and C;(z) can
be easily obtained according to these special arrival processes.
And, the rest of the approach remains essentially unchanged.
Further, we plan to apply the proposed technique to approxi-
mate the average waiting times for cyclic-service queues with
a nonpreemptive time-limited service policy.

Finally, unless approximations are madé or new techniques
are developed, the order of magnitude of memory and CPU time
required by the proposed approach is intrinsically O(EX, L
II}LI N;). As an analogy to NP-complete problems, this expo-

nential use of memory and CPU time provides additional in-
sight into why cyclic-service systems with limited service are
so difficult to solve. If the modeling problem under considera-
tion is indeed an NP-type problem, only small systems are tract-
able and can be solved as the proposed technique is capable of
doing. For systems with a moderate or large number of queues,
we should be more convinced than ever before to pursue ap-
proximate solutions. Nevertheless, it appears that one can base
on the proposed approach to develop new approximation tech-
niques for analyzing cyclic-service systems with limited ser-
vice.
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