
Chapter 1

Analysis: Queuing Modelling

This chapter describes in detail the analytical model of Prefetching on De-

mand strategy (PonD), to estimate the average time to serve a demand miss.

Firstly, it starts with describing the standard models and its operations.

Secondly, it describes the model which can represent the clustering over the

network and their solutions. Finally, it presents the preliminary results of

the solved models and it concludes the chapter with describing the need to

explore a space where QoS for streaming applications and demand misses

could be satisfied.

1.1 Analysis

From the previous analysis, we can represent the system by two queues:

the demand and the prefetch queue, as shown in Figure 1.1. Let λd be the

rate at which demand requests are arriving at the demand queue and let λp

be the rate at which prefetch requests are arriving at the prefetch queue.

While serving, more than one request could be taken from both the queues,

clustered into a network buffer which is then sent off to the server. This can

be viewed as a type of bulk service.

This analysis attempts to answer the question: Given the arrival rates

of the two queues, can we find a way to calculate the average waiting time

experienced in the demand queue?

1

Figure 1.1: A model with a server serving two queues: Prefetch and Demand
queues.

1.2 Literature

In order to answer the raised question, we looked at several polling models.

A polling model is a system of multiple queues accessed in a cyclic order by

a single server. In recent decades, polling models have been used to analyse

the performance of a variety of systems. In the late 1950s, a polling model

with a single buffer for each queue was used in an investigation of a problem

in the British cotton industry involving a patrolling machine repairman [C.,

1957a,b]. In the 1960s, polling models with two queues were used to analyse

traffic signal control (see a survey by Stidham [S., 1969]). There were also

some early studies from the viewpoint of queueing theory that were appar-

ently independent of traffic analysis (e.g. Avi-Itzhak [Avi-Itzhak et al., 1965]

). In the 1970s, with the advent of computer communication networks, an

extensive study was carried out on a polling scheme for data transfer from

terminals on multidrop lines to a central computer. Since the early 1980s, the

same model has been revived by Bux [Bux, 1981] and others to study token

passing schemes (e.g., the token ring and token bus) in local-area networks

(LANs). It has also been used for resource arbitration and load sharing for

multiprocessor computers [Wang and T., 1985]. A polling model was used

in a non-technical article in Scientific American [LEISOWITZ, 1980] as an

example of an interesting and important queuing system.

The usual objective in analysing polling models is to find the message

waiting time, defined as the time from the arrival of a randomly chosen

message to the beginning of its service. The mean waiting time plus the

2

mean service time is the mean message response time, which is the single

most important performance measure in the most computer communication

systems [Kleinrock, 1976].

Polling models are referred to in many survey articles and book chap-

ters in data communication systems [[Bertsekas and Gallager, 1992], [Chu

and Konheim, June 1972.], [Hayes and Sherman, November 1971], [R. and

G.], [Kobayashi, Jan 1977], [KONHEIM, 1980], [lam, 1983], [PENNY, B. K.,

ANO BAGHOADI, A. A., 1979], [rei, 1982]].

The vast majority of the literature is concerned with the two traditional

service disciplines, the exhaustive and gated policies. Exhaustive service

means that a queue must be empty before the server moves on, whereas in

case of gated service only those customers in the queue at the start of polling

are served. Suggested references for readers who would like to pursue their

study of the exhaustive and gated policies are [[tak, 1988], [tak, 2000], [Tak-

agi, 1990]]. The main drawback of these traditional policies is the inability

to prioritise among the different queues for improving total system perfor-

mance. A more sophisticated service strategy offering this possibility is the

k-limited service strategy. Under this K-limited strategy the server contin-

ues working at a queue until either a predefined number of k customers is

served or until the queue becomes empty, whichever occurs first. Note that

the case k −→ ∞ is equivalent to the exhaustive service strategy. In many

applications of polling systems, the objective function typically depends not

only the mean queue lengths, but on the complete marginal queue length dis-

tributions. Therefore, [van Vuuren and Winands, 2006] proposed to study

the marginal queue length distributions in a continuous-time polling systems

with k-limited service under the assumption of general arrival, service and

set-up distributions.

A feasible approximate approach for the queue length distribution in a

k-limited polling system is the decomposition method, in which the polling

system is decomposed into vacation systems, for which the vacation distribu-

tions are computed in an iterative approximate manner. At each step in the

iteration the mathematical analysis focuses on one single queue, whereas the

other queues in the system determine the length of the vacation period. This

3

decomposition method is adopted by the present research as well. We have to

remark that these decompositions methods seem to be applicable to a wide

variety of queueing systems (see, e.g.,[[dal, 1989], [ger, 2000], [vuu, 2005], [van

Vuuren M, 2006]]). However, the main disadvantage of this method is that

time and memory requirements are exponential functions of the number of

queues.

In our work, we believe that the streaming applications access blocks at a

constant rate. The number of blocks that needed to be fetch for the prefetch

queue to provide required QoS can be controlled. Hence, we can reduce

the model to a single queueing system based on demand requests but the

service time for the demand blocks will include the cost of fetching prefetch

blocks. We can further simplify the analysis by only prefetching when there

are demand requests in the demand queue i.e. conservative prefetching as

shown by Pei Cao [Cao et al., 1995]. This strategy is also justified as it uses

the network more effectively.

1.3 Standard Approach (Partial Batch Model)

As a first step to analyse the average time to satisfy a demand request in

the demand queue, we will use the partial batch model described in [Gross

and Harris, 1998]. In this model a server can serve up to a maximum of K

requests. If there are less than K requests in the system, the server begins

service on these requests. Furthermore, when there are less than K requests

being serviced new arrivals immediately enter service. The amount of time

required to service requests, is an exponentially distributed random variable

with mean 1
µ
.

This model is represented in the Figure 1.2. Each state of the model is

represented in terms of n and s. n is the total number of requests in the

system and s is the number of requests currently being served. It can be

seen from the Figure that any new arrival enters the service immediately as

long as there are less than K number of requests being served and time taken

to service those requests is exponentially distributed to a mean value of 1
µ
.

4

A stochastic balance equation for the model can be written as:

Figure 1.2: Partial Bulk Service model.

0 = −(λ+ µ)pn + µpn+K + λpn−1 (n > 1) (1.1)

0 = −λp0 + µp1 + µp2 + µpK−1 + µpK

For K = 1;

0 = −(λ+ µ)pn + µpn+1 + λpn−1 (n > 1) (1.2)

0 = −λp0 + µp1

The above equations are the basic equations for the M/M/1 queue. Hence,

we can say the solution for PBM is same as the M/M/1:

Pn = P0r
n

By finding the root (r0) of this equation that is between 0 and 1, one

can work out mean queue length (L) and average waiting time (W) for the

queue, using the equations below.

L =
r0

1− r0
and W =

r0
λ(1− r0)

(1.3)

5

The result presented in the Figure 1.5, showed that this approach is extremely

accurate for very heavy traffic, since on these occasions the server will always

be serving the maximum batch size. However, for lighter traffic loads the

model is inaccurate because according to this approach new requests will

immediately enter service, when the server is serving less than the maximum

batch size which is not the case in our scenario. Here, the server only serves

the number of people in the queue at its arrival, requests arriving after this

point must be serviced in the next cycle regardless of whether or not the

maximum batch size is being served in the current cycle. Hence, the scenario

is gate-limited and not exhaustive-limited as seen in the partial batch model.

1.4 Proposed Gated-Limited Model

In this section we attempt to develop a more accurate model which could

be used under operational loads. As shown in the Figure 1.3, the state of

the model is defined by two variables i.e. n and s. n is the total number of

requests in the system including the requests being served and s is the number

of requests being served at any given time. Therefore, for the maximum batch

size s = d, s goes from 0 to d, so when s = 0, the system is empty and when

s = K up to K requests are being served at a time. Also, excluding (0, 0), this

will give rise to the K different stages as shown in the Figure 1.3 with each

stage having service rate depending on the number of blocks being served.

1.4.1 Simple Scenario

We have started looking at a simple scenario by restricting K equal to 2 i.e.

s = 2, as shown in the Figure 1.4. Having K equal to 2 there can be only

three stages: either server is serving 1 request or it is serving 2 requests or

the queue is empty. This means that with the exception of the transition

(2, 2) to (0, 0), each transition can only jump one stage at a time (i.e. 1 to 2

or 2 to 1) for e.g. (3, 1) goes to (2, 2) or (3, 2) goes to (1, 1). We will analyse

each series individually starting with series 1.

6

Figure 1.3: A model with a server which can serve up to K number of demand
requests in a batch mode, n = the total number of requests in the system
and s = the number of requests being served.

Considering Series One i.e. when s = K = 1

Let us consider series one of the Figure 1.4. In series one, s = 1 and for n > s

i.e. n > 1, we will have:

λpn−1,1 = (λ+ µ1)pn,1 (1.4)

This implies that for any n > 1, in series one:

pn,1 =
λ

(λ+ µ1)
(pn−1,1)

pn,1 = (
λ

(λ+ µ1)
)n−1(p1,1) (1.5)

And for n = s, we have:

(λ+ µ1)p1,1 = λp0,0 + µ1p2,1 + µ2p3,2 (1.6)

7

Figure 1.4: Two Stage Model, K = 2.

Finally, for n = s = 0, i.e. p0,0 will be:

λp0,0 = µ1p1,1 + µ2p2,2 (1.7)

Considering the series two i.e. when s = K = 2

Similarly, for s = 2, we will derive equations for n > s and n = s, using the

Figure 1.4. when n > s, we have:

(λ+ µ2)pn,2 = λpn−1,2 + µ2pn+2,2 + µ1pn+1,1

(1.8)

And for n = s, we have:

(λ+ µ2)p2,2 = µ2p4,2 + µ1p3,1 (1.9)

Now using the derived equations for the series 1 and the series 2, we will try

to obtain an equation for stage 2 at point p3,2
1. We can find out the roots of

1Similar techniques can be used for different points of series 2, e.g. p2,2, p4,2, p5,2

8

these equations as in the partial batch and thus will be able to find out the

probability of being at each point in series 2.

(λ+ µ2)p3,2 = λp2,2 + µ2p5,2 + µ1p4,1 (1.10)

From the Equation (1.5), p4,1 can be expressed as (λ
λ+µ1

)3(p1,1). Further,

from the Equation (1.7), p1,1 can be expressed as λp0,0 − µ2p2,2. Therefore,

p4,1 = (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3 (1.11)

Substituting the value of p4,1 into the Equation 1.10, we get:

(λ+ µ2)p3,2 = λp2,2 + µ2p5,2

+ (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3

0 = −((λ+ µ2)p3,2)λp2,2 + µ2p5,2

+ (λp0,0 − µ2p2,2)(
λ

λ+ µ1

)3

(1.12)

Now, we need to find the root r which is between 0 and 1 such that it solves

the above equation, as in the Partial Batch model.

1.5 First Attempt to Solve Series Define in

Section 1.4

Finding out the root (r) which will be between 0 and 1, we can find out the

probability of being at each point in series 2 in terms of p0,0. We will use

the same approach as in M/M/1 queueing as well as the partial batch model

9

and so express pn,2 in terms of p0,0 as follows:

pn,2 = rnp0,0 (1.13)

Similarly, using the Equation (1.7), we can find out the probability of being

at each point in series 1 in terms of p0,0.

λp0,0 = µ1p1,1 + µ2p2,2

p1,1 =
(λ− µ2r

2)

µ1

p0,0 (substituting pn,2 = rnp0,0)

p1,1 = Const ∗ p0,0 where Const = (λ−µ2r2)
µ1

and

pn,1 = (
λ

(λ+ µ1)
)n−1 ∗ Const ∗ p0,0

(substituting value of p1,1 in Equation 1.4) (1.14)

From the Equations (1.13) and (1.14), we can see that the probability at any

point in the model can be known if p0,0 is known. Also, the sum of all the

probabilities at stages 1 and 2 should be equal to 1. Using this,

(
∞∑
n=0

pn,1 +
∞∑
n=0

pn,2

)
= 1

Substituting values for pn,1 and pn,2 from Equations (1.13) and (1.14).

p0,0 =
λµ1(1− r)

(λ+ µ1)2 ∗ C(1− r) + λ ∗ µ1

(1.15)

10

Once we know p0,0, the total number of requests (L) in the system can be

easily known using:

L =
∞∑
n=0

n ∗ pn,1 +
∞∑
n=0

n ∗ pn,2 (1.16)

and the average time to serve a demand miss will be equal to W :

W =
L

λ
(1.17)

1.5.1 Results of First Attempt

A simulation was developed to verify the analytical model results. In the ex-

periment, the number of prefetch blocks (P) were kept constant (P = 1) and

the arrival rate of the demand queue was varied. The analytical results were

calculated using different points at stage 2, however, p4,2 appeared to give

the best results. The results estimates the average time to serve a demand

miss (TD−NMS) by the Partial Batch Model and Proposed Model, are shown

in the Figure 1.5. The plotted points in the graph have 95% of confidence

level with confidence interval of ±5%. It shows that the results from the

analytical model are in-line with the results obtain from the simulation and

they are significantly better than the partial batch model.

The results from the first attempt show that the model appear to be very

accurate at medium and high loads but inaccurate at lower loads. This is

inadequate as it is unable to estimate average time to serve demand miss over

the network when operating over a large operational range of λd. Hence, we

attempt to come up with another solution based on the state of P2,2 instead

of P0,0

11

Figure 1.5: Estimates the average time to serve a demand miss (TD−NMS)
using Simulation, Partial Batch Model and Our approach.

1.6 Second Attempt to Solve Series Define in

Section 1.4

In this section, we attempt to solve the Equation 1.12 based on the state

P2,2. First, we find out the roots of this equation using the same technique

that was used in the Partial Batch Model. Thus the state probabilities of

Chain 2 for n >= 2 can be given by:

pn,2 = rn−2p2,2 (1.18)

In order to solve the above equation, we imagine the second chain to

be identical to a Partial Batch Model represented by Equation 1.12. This

is shown in Figure 1.6. However, for states where n > 2, there is not real

12

Figure 1.6: Imaginary Partial Batch Model for Chain 2

difference between the real or imaginary Chains as Equation (1.18) is valid

in both scenarios. This means we can use the same approach taken in the

Partial Batch Model to calculate r. Once this is done we can represent

any state in the second Chain by the Equation 1.18. In addition, using the

previous equations, it will also be possible to represent p0,0 and Chain 1 in

terms of p2,2. A previous attempt by the authors to solve these equations

revolved around solving other probabilities in terms of p0,0 [Thakker et al.,

2009]. However, the new approach taken here yields more accurate results.

Using Equation 1.7, we substitute for λp0,0 in Equation 1.6. In addition,

we note that according to Equation (1.18): p3,2 = rp2,2. Rearranging, we get:

p1,1 = C1,1 p2,2 where C1,1 is given by the equation:

C1,1 = µ2(1 + r)(
λ+ µ1

λ2
) (1.19)

By substituting for p1,1 in Equation 1.7, we can get an equation for p0,0

in terms of p2,2; i.e., p0,0 = C0,0 p2,2 where C0,0 is given by:

C0,0 =
µ1C1,1 + µ2

λ
(1.20)

1.6.1 Solving for p2,2

The sum of the all the state probabilties must be equal to 1. Let S1 be the

sum of the state probabilities for Chain 1 and S2 be the sum of the state

13

probabilities in Chain 2. So we can write:

p0,0 + S1 + S2 = 1 (1.21)

where:

S1 =
∞∑
n=1

(
λ

(λ+ µ1)
)n−1p1,1 (1.22)

S2 =
∞∑
n=2

rn−2 p2,2 (1.23)

For S1, let m = n− 1 and substituting for p1,1

S1 =
λ+ µ1

µ1

C1,1p2,2 (1.24)

Similarly for S2, let m = n− 2

S2 =
1

1− r
p2,2 (1.25)

Summing to one we get:

p2,2 =
1

C0,0 + λ+µ1

µ1
C1,1 + 1

1−r
(1.26)

Using the value of p2,2 in Equation 1.38, we can find values for p1,1 and p0,0.

The average number of people in the queue can be expressed as:

L =
∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 +

∞∑
n=2

nrn−2p2,2 (1.27)

14

We can further get an exact formula for L, as follows in the below section.

1.6.2 Further Solving for L

From Equation 1.27, we first solve for the first term on the Left Hand Side

of the equation and then second term.

∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 (1.28)

Let q = λ
λ+µ1

=
∞∑
n=1

nqn−1p1,1 (1.29)

Now, n ∗ qn−1 = d
dq
qn

=
∞∑
n=1

d

dq
qnp1,1

=
d

dq

∞∑
n=0

qnp1,1

=
d

dq
(

1

1− q
)p1,1 (substituting

∞∑
n=0

qn =
1

1− q
)

∞∑
n=1

n(
λ

(λ+ µ1)
)n−1p1,1 =

1

(1− q)2
p1,1 (1.30)

Now solving the second term on the Left Hand Side of the Equation 1.27.

∞∑
n=2

nrn−2p2,2 =
∞∑
n=2

(n− 1)rn−2p2,2 +
∞∑
n=2

rn−2p2,2 (1.31)

In order, to present the solution of the Equation 1.31 in the simple form,

15

we will again solve the terms in the Left Hand Side one by one, starting with

the second term on the Left Hand Side of the Equation 1.31.

∞∑
q=2

rn−2p2,2

=
∞∑
q=0

rqp2,2 (substituting q = n− 2)

=
1

1− r
p2,2 (substituting

∞∑
q=0

rq =
1

1− r
)

(1.32)

Now, solving the first term on the Left Hand Side of the Equation 1.31:

∞∑
n=2

(n− 1)rn−2p2,2

=
∞∑
n=2

d

dr
rn−1p2,2 (substituting (n− 1)rn−2 = d

dr
rn−1)

=
d

dr

∞∑
n=1

rn−1p2,2

=
d

dr

∞∑
n=0

rqp2,2 (substituting q = n− 1)

=
d

dr
∗ 1

1− r
p2,2 (substituting

∞∑
n=0

rq =
1

1− r
)

= (
1

1− r2
)p2,2 (substituting d

dr
1

1−r = 1
1−r2) (1.33)

The results expressed in the Equations 1.32 and 1.33 showed that the

16

Equation 1.31 can be expressed as :

∞∑
n=2

nrn−2p2,2 = ((
1

1− r
) + (

1

1− r2
)) ∗ p2,2

= ((
1

1− r
) + (

1

(1− r)2
)) ∗ p2,2

= ((
1− r + 1

(1− r)2
) ∗ p2,2

∞∑
n=2

nrn−2p2,2 = ((
2− r

(1− r)2
) ∗ p2,2 (1.34)

And the Equation 1.27 can be expressed as:

L =
1

(1− q)2
p1,1 + ((

2− r
(1− r)2

) ∗ p2,2 (From Equations 1.30 and 1.34)

(1.35)

The average waiting time in the demand queue, Wd = L
λd

1.6.3 Results of Second Attempt

We have used values measured from the NMS simulation to investigate the

analytical model presented. Simulation results for p = 1 and d = 2 were

obtained for different demand miss rates. The simulation results are then

compared with results from analytical model. This is shown in Figure 1.7.

The two results are quite close in value over a wide operational range.

This indicates that the model will be useful in developing practical algorithms

for high-performance network-based servers. It should be noted that the

model is approximate as it depends on which state of the imaginary Chain is

used to calculate r. This is because the solution for r varies slightly depending

on which state is used. The best results were obtained using the state 2, 2

which, in this case, is equal to K, the maximum batch size. Whether this

holds for other values of K is being investigated.

17

Figure 1.7: Average time to serve a demand miss (TD−NMS) using Simulation,
Partial Batch Model and Our approach.

1.7 Towards a General Solution

In this section, we seek to extent the method used for K = 2 to a general

value of K. So a gate-limited model, where K is equal to maximum number

of requests can be served at any moment, can be represented by a gate model

of K chains. Furthermore, we can express the average number of requests in

each chain, Ln,n, in terms of the first element of that chain, Pn,n and thus we

get the sum:

L =
K∑
n=1

∗Ln, n =
K∑
n=1

n− (n− 1) ∗ rn
(1− rn)2

Pn,n (1.36)

For n ¡ K,

rn =
λ

λ+ µn
(1.37)

18

For n = K, we use the imaginary PBM technique to solve for rK . Further-

more, we have

pK,K =
1

C0,0 +
K=n−1∑
n=1

λ+ µn
µn

Cn,n +
1

1− rk

(1.38)

where Pn,n = Cn,nPK,K . To get the general technique, we need to find the

value of Cn,n and we can do so using the equations for the state of Pn,n in

our model. This can be done by solving a series of simultaneous equations,

using matrix techniques. This is not further persuade in this thesis but the

chapter shows that it is possible to get a fairly accurate waiting time results

based on this analytical model.

1.8 Conclusion

This chapter presented an analytical model which could be used to estimate

the average time to serve a demand miss (TD−NMS) for a given demand arrival

rate and prefetch rate. Comparison of the results from the analytical model

and simulation results showed that the results estimated by the analytical

model are at 95% confidence level with confidence interval of ±5%. Hence,

the model can be used at run time to estimate the average time to serve the

demand misses for a given scenario. Using the results from the analytical

model and simulation, we would like to explore the space where QoS could

be provided for streaming applications and demand misses.

19

Bibliography

Approximate analysis of transfer lines with unreliable machines and finite

buffers, volume 34, Sep 1989. doi: 10.1109/9.35807.

A decomposition method for analyzing inhomogeneous assembly/disassembly

systems, volume 93, 2000. Annals of Operation Research.

Tr-88 Multiple Access Protocols*, 1983. Prentice Hall.

Performance evaluation of data communications systems., 1982.

Analysis and Application of Polling Models, London, UK, 2000. Springer-

Verlag. ISBN 3-540-67193-5.

Queuing analysis of polling models, volume 20, New York, NY, USA, 1988.

ACM. doi: http://doi.acm.org/10.1145/62058.62059.

Performance analysis of multi-server tandem queues with finite buffers and

blocking., volume 27, Charleston, 2005. OR Spectrum.

B. Avi-Itzhak, W. L. Maxwell, and L. W. Miller. Queuing with Al-

ternating Priorities. OPERATIONS RESEARCH, 13(2):306–318, 1965.

doi: 10.1287/opre.13.2.306. URL http://or.journal.informs.org/

cgi/content/abstract/13/2/306.

Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall, second

edition, 1992.

20

W. Bux. Local-area subnetworks: A performance comparison. Communi-

cations, IEEE Transactions on, 29(10):1465–1473, Oct 1981. ISSN 0090-

6778.

Mack C. The efficiency of N machines uni-directionally patrolled by one

operative when walking time is constant and repair times are variable.

pages 173–8, 1957a.

Mack C. The efficiency of N machines uni-directionally patrolled by one

operative when walking time is constant and repair times are constants. J

Roy Stat Soc Ser B, pages 166–172, 1957b.

Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of in-

tegrated prefetching and caching strategies. In SIGMETRICS ’95/PER-

FORMANCE ’95, pages 188–197, New York, NY, USA, 1995. ACM Press.

ISBN 0-89791-695-6. doi: http://doi.acm.org/10.1145/223587.223608.

W. W. Chu and A. G. Konheim. On the analysis and modeling of a class of

computer-communications system. IEEE Trans. Commun., vol. COM-20

(2):645–660, June 1972.

Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory (Wi-

ley Series in Probability and Statistics). Wiley-Interscience, February

1998. ISBN 0471170836. URL http://www.amazon.ca/exec/obidos/

redirect?tag=citeulike09-20\&path=ASIN/0471170836.

J. F. Hayes and D. N. Sherman. A Study of Data Multiplexing Techniques

and Delay Performance. Bell Syst. Tech. J., 51(9):1983–2011, November

1971. doi: 10.1287/opre.13.2.306.

L. Kleinrock. Queueing Systems, Volume 2: Computer Applications. Wiley,

1976.

A. Kobayashi, H.; Konheim. Queueing Models for Computer Communica-

tions System Analysis . volume 25, pages 2 – 29, Jan 1977.

A. G. KONHEIM. Mathematical models for computer data communication.

In Case Studies in Mathematical Modeling. pages 256–334, 1980.

21

M. A. LEISOWITZ. Mathematical models for computer data communica-

tion. In Case Studies in Mathematical Modeling. pages 256–334, 1980.

PENNY, B. K., ANO BAGHOADI, A. A. Survey of computer communica-

tions loop networks., journal = Computer Communications. 2(4):165–180

and 224–241, 1979.

KAYE A. R. and RICHARDSON T. G. A performance criterion and traffic

analysis for polling systems. INFOR, Can. J. Oper. Res. Inf. Process., 11

(2):93–112.

STIDHAM S. Optimal control of a signalized intersection. Technical report,

Cornell Univ, Ithaca, NY, 1969.

H Takagi. Queueing analysis of polling models: An update, Stochastic Anal-

ysis of Computer and Communication Systems. pages 267–318, 1990.

D Thakker, G Mapp, and O Gemikonakli. Modelling mixed access-patterns

in Network-Based Systems. March 2009.

M van Vuuren and E Winands. Iteractive approximation of k-limited polling

systems. May 2006.

Adan IJBF van Vuuren M. Performance analysis of assembly systems. pages

89–100, Charleston, 2006. Proceedings of the Markov anniversary meeting.

Yung-Terng Wang and Morris R. J. T. Load sharing in distributed systems.

IEEE Trans. Comput., 34(3):204–217, 1985. ISSN 0018-9340. doi: http:

//dx.doi.org/10.1109/TC.1985.1676564.

22

