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ABSTRACT

This paper considers a multiqueue system with a cyclic-server
and a class of limited service policies. In particular, exhaustive
limited (EL), gated limited (GL) and general decrementing
(GD) service policies are investigated. The major results in this
paper are the derivations of the expected amount of work left in
the queue at the server departures for these three policies. These
results are all in terms of unknown boundary probabilities.
Using corresponding server vacation models, these unknown
probabilities are estimated. Pseudo-conservation laws for these
policies are subsequently obtained. Numerical results obtained
for the EL policy are noted to be very accurate compared with
simulation results. Finally, conservation laws with mixed
service policies, and exact expressions of mean waiting times in
symmetric systems are given.

1. INTRODUCTION

Token-passing protocols in local-area networks, using bus or
ring topologies, are often modeled as Cyclic-Server, Multi-
Queue systems (CSMQs) for performance evaluation. Bux uses
a discrete-time model of CSMQ to compare the performances of
single-token and multiple-token operations in a symmetric
token ring [4]. Colvin [7] and Sach [28] use two different
analytic models of CSMQs to obtain approximate mean waiting
times for a single access class in the IEEE 802.4 token bus.
Brooks and Yue use an approximate model of a symmetric
CSMQ 1o investigate the impact of the token holding ttme
constraint on the performance of the Automation Manufacturing
Protocol (MAP) [3,35]. Karvelas applies a CSMQ model to
obtain the average data delay in the Fiber Distributed Data
Interface (FDDI) network [22].

1.1 Cydlic-S Multi s

A description of CSMQ, with one-to-one correspondence to
the parameters in token-passing protocols, is given as follows.
A CSMQ consists of N queues: Q,,Q3,...,Qn (network
stations) with infinite capacities (buffers) and a single server
(token). Customers (messages) arrive at the queues according
to independent Poisson processes with rate A; for Q;. The
single server visits the queues in a predetermined, cyclic order.
When the server visits Q;, the customers are served on a first-
come-first-served basis and the service times (transmission
times) are assumed to be generally distributed with first
moment b; and second moment b‘%’. The server utilization of Q;

is denoted as p; (A;b;) and the total server utilization p (C¥,p,).
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According to a certain service policy (medium access control
protocol), the server switches from Q; to the next queue with a
non-zero walk time (propagation delay) which is assumed to be
generally distributed with first moment s; and second moment

s, Let the first moment of the total walk time be s (XN ;s;)

and its second moment s(2). We assume that the arrival, service
and switch-over processes are independent.

With the same system parameters, the CSMQs differ from
one another in the service policies. The service policy
determines when the server will switch from one queue to
another. The earlier analyses of CSMQs concentrated on the
exhaustive (E), gated (G), decrementing (D), and non-
exhaustive (NE) service policies [8,25]. In the E policy, the
server switches only when the queue is empty. In the G policy,
the server switches after serving all the messages in the queue
upon his arrival. Those messages which arrive after the server
arrival will be served in the next server visit. In the D policy,
the server switches when the queue length decreases to one less
than the queue length at the server arrivals. In the NE policy,
the server switches after one message is served. However, the
recent standards for token-passing protocols impose limits on
the token holding times [14,21,26]. In order to provide more
accurate performance models for the protocols, more flexible
limited service policies need to be investigated.

1240 f Limited Service Polici

Here we consider a class of limited service policies for the
CSMQs. These policies impose limits on the number of
messages to be served consecutively in any queue, by varying
parameter K; for Q;. If the server finds Q; empty upon his
arrival, he will immediately switch to the next queue. Otherwise
the server will act as follows, depending on the service policy:

1. Exhaustive limited (EL): the server switches when either K;
messages are served consecutively in Q; or the queue is
empty, whichever occurs first.

2. Gated limited (GL): let L; be the queue length of Q; upon
the server arrival. The server switches after serving
min(K;,L;) messages in Q;.

3. General decrementing (GD): the server switches when the
queue length of Q; decreases to either (Li—K;) or zero,
whichever occurs first.

Note that these three policies cover all other service policies
described previously. Furthermore we also allow mixed policy
in the CSMQs. For instance, Q; may employ the EL policy
while other queues employ the G policy. Nevertheless, we
assume in this paper that the same service policy is applied to
all queues, unless otherwise stated. We adopt the following
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notation in the rest of this paper: E(N;): mean queue length of
Q; (including the one in service); E(W;): mean message waiting
time for Q; (not including the service time); E(M,): mean queue
length of Q; when the server leaves; and E(U;): mean amount of
work left in Q; when the server leaves.

P - i

In general, queueing analysis of CSMQs is a difficult
problem. For the E and G policies, numerical algorithms are
available to compute the exact mean waiting times by solving
O(N2) linear equations [15]. At the same time, others also
suggest to use simpler approximate models [5,10,27]. The
queueing analyses for other service policies are even more
difficult. Exact mean waiting times are not available even for
symmetric systems, i.e. system parameters are independent of
i, except for the NE and D policies [19,31,32]. For asymmetric
systems, a number of approximate models are recently
proposed for the NE policy [1,20,30], and there are few
heuristic approximations suggested for the EL and GL policies
[11,12,17]. On the other hand, Watson has derived simple
analytic expressions for a weighed sum of mean waiting times
at individual queues in the CSMQs for the E, G, and NE
policies [34]. Later, Boxma and Groenendijk have generalized
these results into the following form and they are referred to as
pseudo-conservation laws [2]:

NpEW) =A+Y N EWU) (1.1)
where
N (2)
=1 b @
B 1—111“‘5 ) S fZ_N?
A =p 2(1_p) il 2s T 2(l—p)\p Zl=lp1)

Note that A is independent of the service policies, and only
E(U;) reflects the differences in the service policies. Clearly,
E(U,)=0 for the E policy. Using probabilistic arguments and
Little's law, Boxma and Groenendijk have derived E(U;) for
the G, NE, and D policies [2]:

S
E(U) = pp? G (1.2)
}'is S 2
) = pim— )+—" 1.3
E(U) =p; 1_pE(W,)+ 1—pp‘ NE (1.3)
As(1-py) 2@
E(U) = pi——I%E(Wi)—piﬁ b (1.4)

The corresponding pseudo-conservation laws can then be
obtained by substituting E(U;)s into (1.1), and the results for
the E, G, NE policies agree with the results in [15,34]. When
the walk times are zero, the first term in A is the only non-zero
term, thus reducing to the Kleinrock's law of conservation for
priority queues [23].

These pseudo-conservation laws are proved to be very useful
in understanding the CSMQs. First, the conservation laws give
exact expressions of mean waiting times in symmetric systems.
Second, they are the bases for a number of simple and yet
accurate approximate models of the asymmetric CSMQs: E and
G policies [10]; NE policy [1,30]; EL and GL policies
[11,12,17]. Third, they provide validity check for the accuracy
of simulation models [30]. Fourth, they can be used for
asymptotic analyses when queues are heavily loaded or the
number of queues in the system becomes very large [34].
Nevertheless, the derivations of E(U;) for the EL, GL, and GD
policies do not seem to be as straightforward as others.

Fuhrmann derives upper bounds on E(U;) for both EL and GL
policies [16]. By modifying the derivation in [16], Servi and
Yao obtain an lower bound on E(U;) for the EL policy [29]. In
this paper, we derive exact expressions of E(U;) for the EL,
GL, and GD policies. It turns out that the expressions of E(U;)
for these three policies are all in terms of K;unknown
boundary probabilities for Q;. These probabilities can then be
estimated by using the results in the corresponding server
vacation models. We recently discover that Everitt has also
derived pseudo-conservation laws for the EL and GL policies.
The expressions are in terms of the second moments of the
number of messages served during a server visit. He then
estimates the second moment from a truncated negative
binomial distribution [9,13].

The rest of this paper is organized as follows. In section 2,
we present some basic results of CSMQs and stability
conditions for these policies. Section 3 presents the derivation
of E(U;) for the EL policy. The pseudo-conservation laws
using the estimated probabilities are shown to be very accurate
when compared with simulation results. An assessment of the
performance of the upper and lower bounds on the weighed
sum of mean waiting times is also given. Section 4 presents the
derivation of E(U;) for the GL and GD policies. In section 5,
we give the pseudo-conservation law for mixed service
policies, and the exact mean waiting times in symmetric
systems. Finally we conclude this paper in section 6, with a
discussion on future research.

2, STABILITY CRITERIA

In this paper, we consider stable CSMQs in which all queue
lengths are finite. We first define some important parameters
for the CSMQs. Cycle time of Q; is the time between two
successive visits at Q; by the server. It is well known that the
mean cycle time, E(C), is independent of i and is given by [24]

s
E(C)= FEry 2.1)
Visit period of Q;, T;, is the total time that the server spends at
Q; during each visit. Using a balancing argument, the mean
visit period of Q; is also equal to the total mean amount of work
arriving during a cycle. Therefore

S

7\.iS
E(T) =bj=——= piT:E 2.2)

i 1_p

Intervisit time of Q;, V;,is the period of time between the
server arrival at Q; and his last departure from Q,. Since a cycle
time is the sum of a visit period and an intervisit time, E(V;) can
be obtained as

1-p;
- s 2.3)

E(C)=E(Vi)+pi1i—p = E(V)=

For the E and G policies, p<1 is the only condition to ensure
stability. However, p<1 is only a necessary condition for the
limited service policies, and additional conditions are required
for stability. For the EL and GL policies, we need the
following additional conditions:

A<k, = Ol
i <K = —‘Ki(l—p)<

i N (24

i=1,.

This reflects the fact that the mean number of message arrivals
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at Q; during a cycle should be less than K, since the number of
messages is reduced at most by K; during a cycle. For the GD
policy, the additional conditions are:

1-p; As(1=0:
A pls<K- = 0<1 i$(1-p)

i l—p i - Ki(l—P) < .N

i=1,... (2.5)

Here the system is stable if the mean number of message
arrivals at Q; during an intervisit time is less than K;, since the
number of messages at the server arrivals is at most reduced by
K; at the end of a visit period.
T IT ERVICE POLI
Lemma 1:
Consider a stable CSMQ system where Q; employs exhaus-

tive limited service policy with parameter K;, then

Ais
E(U) = le(l )E(w)+p,-—2K(1 =

{ 1-ppY. X5 J(Ki—j)pi,o,j—[Ki—1-—(Ki+1)pi]}

where p; g, j=1.....K;-1 are the joint probabllmes that at the
instant of a message departure, the message is the jth message
served during a visit period and Q; is empty.

Proof:

We observe Q; at the service completion epoches. Denote a
message at Q; as a j-message if it is the jth message served by
the server during a visit. Let p; ; be the joint probablhty that at
the instant of a message departure, the message is a j-message
and Q; is empty. Therefore

Zf:ozjglpi.k.j =1 3.1
The mean queue length of Q; is hence given by
E(N; )-—2 12 k=1KPik —Z 219 (3.2)

where @;; can be interpreted as the mean queue length of Q;
when a J-message leaves the queue. From the structure of the
EL policy, we note that the server will perform a jth service if
Q; is non-empty at the departure of a (j-1)-message, for
j=2,..,K;. Therefore

Y Pik 1= peoPik 720Ky (3.3a)
té; ;= 2y 0Diy; for j=1,....K; and rewrite (3.3a) as
Let ¢;; = X4=op; . for j=1 d ite (3.3a)
9i-17Pioj-1 = 9i; =2, K (3.3b)

From (3.3b), we can therefore express ¢;; in terms of ¢; k;, for

j=1,...K-1:

6= ¢i.Ki+2 rK=‘j_1Pi.o.r =LK1 3.4

Also by adding ¢; g, with ¢;;in (3.4), for j=1,..K;-1, we
obtain an equality for this system:

2 5 ipi0 2 ioKiPixk, = 1 (3.5)
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Multiply both sides in (3.5) by A;s/(1-p):

l ?\. S K-ls
2]—1 .]1 pp101+2k‘0K|1 pplkl(l (3.6)
The right hand side of (3.6) is the mean number of message
arrivals at Q, during a cycle. Therefore, for a stable CSMQ, the
left hand side of (3.6) should be equal to the mean number of
messages served during a server cycle time. This implies that
[Ais/(1-0)1pi0 X is the conditional probability that Q; is empty
and j messages have been served consecutively when the server
departs, for j=1,2,...K;-1. Similarly, [Ais/(1-p)]pi k K; is the
conditional probability that the queue length of Q; is k and K;
messages have been served consecutively when the server
departs, for k=0,1,2,.... Thus the mean queue length of Q;
when the server leaves is given by

A;s
E(Ml)_zk—lkl ppka— 1— —-p 1K‘ (37)
and the mean amount of unfinished work in Q; when the server
leaves is

E(U) bE(M)— (3.8)

Pik,

The remaining step is therefore to obtain an exact expression
of ®;; Again from the structure of the exhaustive limited
policy. If the queue length of Q; at the departure of a
(j-1)-message is non-zero, then the queue length at the
departure of a j-message is equal to the queue length at the
departure of a (j-1)-message, minus one, and plus the total
number of message arrivals during a service time. Thus

D= (Di.j—l“(l‘Pi)E k=1Pikj-1 =2, Kj 3.9

From (3.9), we can therefore express ®; ; in terms of D x;» for
j=1,...Ki-1:

@;5= ik +H1-p) Y 1 2 05 Pier J=LKim1 (3.10)

Substituting (3.10) into (3.2), for j=1,...,K;-1, we obtain
E(Ny = Ki‘bi,l(;"(l—pi)z pEPIR S (3.11)

Using (3.8) in (3.11) yields

—E(N) KEU+E ZHZ,=1 ik (3.12)

Using Little's law: E(N;)=A,[E(W;)+b;] in (3.12) and rearrange
the terms, we obtain

Tipik, j]
(3.13)
By interchanging the summations in 2 pr; Z}fé‘lljpi_k'j, we get

EU)=5 (1 [ AEWHp~(1-p) Y 1 2 Ke

Zk-lz_]—-l .]kaj"q’) 1+ +(K 1)¢1K 1’2 1 Jpl 0,5 (3.14)

Using (3.4) to express ¢;;in terms of ¢; x,, for j=1,... . Kj~1
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and (3.5) to express ¢; g, in terms of p; g5, j=1,... K- 1:

Zﬁlzﬁ‘fljpi.k.j:

Lemma 1 is thus proved by substituting (3.15) into (3.13).§

Ki-l Ivkije -
——3 2K Dpio;  (3.15)

Using Lemma 1 and (1.1), the pseudo-conservation law for
the EL policy is

Ais ] P;
N ol e lE(W)= A+——YN L
i=1pi(l K,-(l-p))E(W*) A+1_p2,:12Kix

{(1—pi)2}§q‘j(Ki—j)pi,o,l-[Ki—1-(Ki+1)pi]} (3.16)

Note that the last term in (3.13) is positive. The upper bound in
[16] can therefore be obtained by ignoring the last term. It can
also be shown that [As/(1-p)1 221 )pix <1, for j=1,..Ki-1.
Therefore, the lower bound in [29] can be obtained by setting
that term to 1 in (3.14). Therefore

2
Npi

=g = UB (3.17)

Ass S
N ol 1e——i— EW)<A+——
Zi=1pl(l (=) )E(W,)SA+ T

;\.iS (Kl—l)(l—pl)bl
glpi[1-m)ﬁ(wi)zua-z fil——z——(a.ls)

If K== for all i, (3.16) reduces to the result for the E policy.
If K;=1 for all i, (3.16) reduces to the result for the NE policy.
For other cases, there are still K{—1 unknown boundary
probabilities for Q;, i=1,...,N. Here we propose to use the
MIGI1 queue with vacations and EL policy to estimate these
probabilities. In the setting of the vacation model, the server
intervisit time of Qj can be interpreted as the server’s vacation
from the queue. However, the successive vacation periods in
the vacation model are assumed to be independent, but this is
not true for the server intervisit times in the CSMQs. By adding
subscripts i to the parameters in the vacation model for Q; and
assuming exponentially distributed vacation periods, then the
resulting vacation model can readily be used to estimate the
boundary probabilities. The estimation of the probabilities for
Qi involves the solutions of a Kjth order polynomial equation
and a set of Kj linear, independent equations [6], [33]. Now
we give numerical examples of the conservation laws for the
EL policy. We first define the percentage error of an approxi-
mation as

Simulation result —Approximation
Simulation result

% Error = x100% (3.19)

Tables 1-3 present Simulation (results), Estimate: (3.16) with
estimated probabilities, Upper Bound: (3.17) and Lower
Bound: (3.18). The percentage errors are given in parentheses.
We note that the errors in the column of Estimate are less than
2% for most of the cases. Both bounds are exact for K;=1, and
the upper bound is also exact for K;=e. For other values of K,,
the upper bound is reasonably tight (within 10%). However, it
is reported that the performance of the upper bound begins to
deteriorate when the walk times increase [16]. This result is
confirmed in Table 2, and the percentage errors can be as high
as 40%. On the other hand, the performance of the lower
bound is quite poor, and it sometimes give negative values in
which cases we assume zero for the bound.
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4 I E -DE 1

SERVICE POLICIES

Lemma 2:
Consider a stable CSMQ system where Q; employs gated
limited service policy with parameter K;, then

E(U = pro— B (W 2L
L ¥ B T

by1+p{ K k(- 1)y KK~ DI1-Y. Kt gy}
2K,

1

where q;, is the steady-state probability that the queue length
of Q; is k at the server arrivals, for k=0,1,....K;-1.

Proof:
Let g;, be the steady-state probability that the queue length of
Q, is k when the server arrives. Therefore

Z?:o‘h.k =1 (4.1)

According to the policy, the probabilities that k messages are
served in a visit period is also equal to g; for k=0, 1,...K;-1.
Thus, the probability that K; messages are served in a visit
period is (I—Elﬁi:‘()lqi'k). As a result, we obtain an expression
for the mean number of messages served in a visit period which
should also equal to the mean number of message arrivals
during a cycle:

7\.iS

Y Kalkq+ K=Y, figlg; ) = jun 4.2)

The mean queue length of Q; at the server arrivals is equal to
the sum of the mean queue length at the server departures and
the mean number of message arrivals during an intervisit time.
Thus we have

(1—Pi)5

EM) =), f:lk%,k—li_l_‘p_ 4.3)

and the mean amount of work left in Q; when the server leaves:

(1-pys

E(U)=b,), ;=1in,k_pi'_1'__—p— 4.4)

Recall that a j-message is the jth message served by the server
during a visit. Likewise, we denote a visit period of k services
as k-visit period. Next we let A be the events that a random
message in Q;is served in a k-visit period, k=1,...,Kj; B the
events that a random message in Q;is a j-message, j=1,...Kj;
and Fjy the events that the queue length of Q;at the server
arrival is k, k=0,1,2.... Conditioned on the events Ay, the
queue length of Q; when a random message departs is:

E(NY =Y K E(NIA; )Pr(A )

+2 ik EON{A x "FidPr(A g (Fi)  (4.5)

Given the probabilities q; . the lengths of visit periods are
independent, identically distributed, and we can therefore use
the standard length biasing argument in renewal theory for
Pr(Ai,k), k=1,...,Ki—11
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kql k ql k
Pr(A;) = 4.6
* > Kilka Ky =K ik " -p) @6
Using the same argument for k2Kj:
K.q.‘k
Pr(A; g NFyp) = m 4.7
1

For E(NjlA;x), k=1,...,.K;-1, we change the conditioning to
AixnBi;. Further g;ven a visit period of k services, it is equal
likely that a random message comes from any one of the k
services. Therefore

E(NjJA; ) =2 & J_lkzz(N J1A;xNB;) (4.8)
Similarly for E(NilA;x;nF; x), k2Ki:

E(NjJA; g, OF; 0 =2, % < BN, JA;x "B NF;p)  (4.9)
Combining (4.5) to (4.9):

'_E(N ) z ] q: kz_]:l(k—,”-pl J)
+X ek Sleitp ) (4.10)

From (4.10), we can express the mean queue length at the
server arrivals in terms of other parameters:

)\.iS
2f=1k%,k= Ki(l E(N1’ Z
(1- pl)(1+K)

Pi -
+(1_T(Li)21§éllk‘h,k

Using Little's law, and (4.2) in (4.11):

(k1)

a-Y Kglg;) (@11

5(4)

(U+py) YK kle-1)g; 1+ Ki(Ki- DY, Kiglg; ) ]
7K,

1

Zk—lkqx K (1-p) (1 ) ——[ME(W; )+p1]+

(4.12)

Lemma 2 is thus proved by substituting (4.12) into (4.4).§

From Lemma 2 and (1.1), the pseudo-conservation law for
the GL policy is
bi(1+pi)
X

P1

[Zk_zlk(k—l)qi'k+K-l(Ki-1)(1—z biw qi,k)]} (4.13)

If Ki== for all i, (4.13) reduces to the result for the G policy.
If ;=1 for all i, (4.13) corresponds to the result for the NE
policy. Similar to the EL policy, the K; unknown boundary
probabilities can be estimated from the corresponding vacation
model. This again involves solving of a K;th order polynomial
equation and a set of K; linear, independent equations [18],

264

[33]. Note that the last term of E(U;j) in Lemma 2 is non-
negative, and the upper bound in [16] can therefore be obtained
by ignoring the last term:

N (1 7&15 J<A
i=1Pj Kl(l_p) s At

This bound in (4.14) is exact for both K;=1 and K;=e.
According to the results in [16], the upper bound on the
weighed sum of mean waiting times for the GL policy is less
accurate than the upper bound for the EL policy in (3.17).

8
Tpombe @19

Lemma 3:
Consider a stable CSMQ system where Q; employs general
decrementing service policy with parameter K;, then

As(l-pp slizbim
B =pampy PV PR
bi‘{ D K Kk~ 1g; e+ Ki(Ki=DI1-, ]k("ialqi,k]}
- 2K;

where q;; is the steady-state probability that the queue length
of Q, is k at the server arrival, for k=0,1,... K;-1.

Proof:

q; is again defined as the steady-state probablhty that the
queue length of Q; at the server arrivals is k, k=0,1,2...
According to this policy and by changing the order of service,
the length of the visit period will consist of k busy periods of a
standard M/G/1 queue (where each of them is initiated by a
single service) if the server finds k<K; messages upon his
arrival. For the case of k2K, the length of the visit period will
consist of K; busy periods. Therefore, we can obtain an
expression of the mean number of messages served in a visit
period which is also equal to the mean number of message
arrivals during a cycle:

2k

where 1/(1-p;) is the mean number of messages served during a
busy period, initiated by a message. And the mean queue length
of Q; when the server leaves is

iS

qak"'z k—KlKll “dik = T (4.15)

E(M) =Y, ek +1(k—K)g; ¢ (4.16)

By using (4.15) in (4.16), we again obtain the same expression
for E(U;) as in (4.4):

(1 p)

E(U) = b 11k -pi——a— @417

Here we follow similar procedures as in the proof of Lemma
2. But we first modify the definitions of the k-visit period and
j-message. We redefine k-visit period to be a visit period that
consists of k busy periods (instead of k services) and a
j-message to be the one served in a jth busy period (instead of a
jth service). The events Ajyx and B;;are also redefined
according to the these new definitions. We start with (4.5) and
note that the expressions of E(N; 1 Ajy) for k=1,....K; in (4.8)
and (4.9) also apply here. That is, given k busy periods ina
visit period, it is equally likely for a random message to come
from any one of these busy periods. Using the standard length
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biasing argument for Pr(A;x), k=1....,Ki-1, we have

kq;
Pr(A;) = T =pys/(1—p) (4.18)
and for k=2Kj:
a Kidix
Pr(A,-_Kj AF; ) = m 4.19)

Substituting (4.8), (4.9), (4.18), and (4.19) into (4.5), we
have

(- )
- SE(N)_Zk-l G SE(N;IA;NB;))

+Y kGl SRE(NIA 4By F; ) (4.20)

Notice that both E(NjlAj knBIJ) for k=1,...,K;-1 and
E(NilAj xnB; JmFl k) for k2K consist of two mdependent
components: (k—j), and the mean queue length in a standard
M/G/1 queue with parameters A; and b;. Therefore

x(l p.>s L
EMNp =Y Kilg;, > 5 (k J+2(1 o) 1P )

kzb(z)

RTINS (k eyt ) @21)

Using (4.21) and Little's law, we can express the mean queue
length of Q; at the server arrivals as

A= p)s(
K(1-p)

2

ATBE ) Ai(l-pps
ME(W) 2(1p))T 1-p

k(=g K (K- DI-Y, Kiglg; 1]
2K;

Yiika =

(4.22)

Lemma 3 is thus proved by substituting (4.22) into (4.17). §

From Lemma 3 and (1.1), the pseudo-conservation law for
the GD policy is:
s?‘.izbim

As(1-py)
N
i=tP '( K.(1-p )E(W) AXE { PR (1-p)

b;{z S k(k-1)q; 0+ Ki(K-DI1-3 K Olqlk]}
* 2K,

1

} (4.23)

If K;=1 for all i, then (4.23) reduces to the result for the D
policy. If K;=e for all i, then (4.23) reduces to the result for
the E policy. The K; unknown boundary probabilities can be
approximated by solving the corresponding vacation model. As
in the cases with the EL and GL policies, the equations here
also involve a K;th order polynomial equation and a set of K;
linear, independent equations for Q; [33]. Similarly, an upper
bound on E(U)) for the GD policy can be obtained by ignoring
the last term in Lemma 3, and it is exact for K;=1 and K;=c-:

210;(1

2,

S( pl 11
Ripig— 429)

Ki(l—]E(w )< A

1 -p
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1 CSMQ with Mix rvice Polici

As mentioned before, the set of EL, GL and GD policies
cover all other service policies mentioned in this paper, by
adjusting the parameter K;. Therefore, a new result for the
mixed services, which is more general than the result in [2], is
stated in the following theorem:

Theorem 1:
Consider a stable CSMQ in which the queues can employ EL,
GL, or GD policies, then
Ass(1-p;)
pi( )E(W " ( )E(W A
ieg’GL K; (1 p) 1526'139 K;(1-p)
s
{(1 Px)z =1 J(Kl J)Plor[K ~1- (K+l)p1 }
5 b+p) (G?)}_ 2{ pisrib® +biE(Gi2)}
ie GL l—p 2K; V) dopl 2Kil-p) - 2K;
where

B(G]) =2 {53 k- Dy KK D=2 £ 4300
and the probabilities are defined in the Lemmas 1, 2 and 3.
5.2 Symmetric CSMQ
The pseudo-conservation laws readily give exact expressions
of mean waiting times in symmetric CSMQ for the EL, GL,
and GD policies. Let A=A, b;=b, K;=K, E(W=E(W) for all i,
but the definitions of p, s, 5(2) and are unchanged. In addition,
Pi,0,; is set to po; for all i in the EL policy, and q;  is set to gy
for all i in GL a.nd GD policies. The indices i in E(W;) denote

the service policy. From (3.16), (4.13) and (4.23), the exact
mean waiting times are

@ @
_ 1 b 8T ps..
BWe) = 1k P HIP 3tz VN G
[(1 p/N)Z K- §)pg,~[K-1~ (K+1)p/N]]}
1 [ b(2) ps
EWo) = 15wk | P26 1 p) (141N (5.2)
(1+p/N)(1-p) _ 5
"‘psz’[ Koot KK-1D(1-3 55 qk)]}
( - b o) Sesps(1- 1)
E(Wgp) = H1-p)=—+
o) l-p—?\.s(l—p/N)/K{pzb TR
sxzb(z) 1-p % }
~ S K K1) &-D(- X 53 ](5 X

Authorized licensed use limited to: MIDDIL ESEX UNIVERSITY. Downloaded on Mav 5 2009 at 09:17 from |EEE Xbplore Restrictions anplv



T F ESE

In this paper, we have derived exact expressions of E(U;)s
for the exhaustive limited, gated limited, and general
decrementing service policies in the CSMQs. Substitutions of
E(Ups into (1.1) give the pseudo-conservation laws for these
policies which are in terms of K; unknown boundary
probabilities (K;-1 for EL). Then we propose to use the
corresponding server vacation models to estimate these
probabilities for those queues with 1<K;<e. The pseudo-
conservation law for the EL policy using these estimated
probabilities are shown to be very accurate, when compared
with the simulation results. Subsequently, we also give a
pseudo-conservation law for mixed services and exact mean
waiting times in symmetric CSMQs.

Given the results in this paper, there are two potential areas
for the future research. The first area is the results of pseudo-
conservation laws for time-limited service policies. Similar to
the EL and GL policies, exhaustive-timed limited (ETL) and
gated-time limited (GTL) are two viable time-limited service
policies. In these policies, there is a maximum allowed visit
time for each queue: S; .4 for Q;, i=1,...,N. In the ETL, the
server continues to serve Q; until either S, ,,,, is reached or the
queue is empty, whichever comes first. In the GTL policy, the
server will switch to the next queue when either S; . is
reached or the server has served all those messages in the queue
upon his arrival, whichever comes first. If the message service
times are deterministic and S; ,,,, is an integral number of the
service times, then Lemma 1 (Lemma 2) for the EL (GL) policy
can be directly applied to the ETL (GTL) policy. Furthermore,
conservation laws for other more complicated time-limited
policies, such as the timed token rotation protocols in FDDI and
MAP, need to be investigated. The second area is the need for
accurate conservation law-based approximations of the mean
waiting times. For the E, G and NE policies, approximate mean
waiting time can be expressed as a linear function of the mean
residual cycle time. By ignoring the small differences in the
second moments of the cycle times, the mean residual cycle
time can be obtained from the pseudo-conservation law. Hence,
approximate mean waiting times at individual queues can be
obtained. For the EL, GL, and GD policies, similar linear
relationships also exist, however, these expressions are much
more complex.
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Tablel: Numerical Results of Pseudo-Conservation Law for
Exhaustive Limited Policy: Case 1

Three queues with asymmetric arrival rates: K;=3, K;=K3=1; 1;=0.6,
A2=A3=0.2; exponentially distributed service times with equal means;
deterministic walk times, sj.

p Simulation Estimate Upper bound Lower bound
$;=0.05 Vi

0.3 0.0674 0.0672 (0.34) 0.0703 (-4.30) | 0.000 (100.0)

0.5 0.3140 0.3144 (-0.11) | 0.3235 (-3.00) | ©0.000 (100.0)

0.8 2.8031 2.8094 (-0.22) T 2.8500 (-1.69) | 2.434 (13.15)
$;i=0.10 Vi

0.3 0.0954 0.0942 (1.26) 0.1021 (-7.06) | 0.000 (100.0)

0.5 0.3760 0.3754 (0.20) 0.3970 (-5.53) | 0.047 (87.51)

0.8 3.0401 3.0468 (-0.21) | 3.1408 (-3.30) | 2.725 (10.38)

Table 2: Numerical Results of Pseudo-Conservation Law for
Exhaustive Limited Policy: Case 2

Three queues with asymmetric arrival rates: K;=3, K;=K3=1; exponentially
distributed service times with b;=0.2 Vi; deterministic walk times, s; which
are greater than the mean service times.

Cases Simulation Estimate Upper bound Lower bound
=15, 2p=23=0.5; | 0.4209 | 0.4187 (0.53) | 0.5410 (-28.54) | 0.4010 (4.72)
5i=0.3 Vi
A1=1.2,A0=23=0.4; | 0.3381 | 0.3332 (1.44) | 0.4469 (-32.20) | 0.2949 (12.76)
si=0.4 vi
M=L.0, 22=A3=0.3; [ 0.3133 | 0.3096 (1.18) | 0.4455 (-42.19) | 0.2855 (8.87)
5i=0.6 Vi

Table 3: Numerical Results of Pseudo-Conservation Law for
Exhaustive Limited Policy: Cases 3

Sixteen queues with asymmetric arrival rates: K;=...K4=3, Ks=...=K;6=1;
A1=...=24=0.16, A5=...=116=0.03; exponentially distributed service times
with equal means; deterministic walk times, s;=0.05 Vi.

o Simulation Estimate Upper bound Lower bound
0.3 0.1981 0.1939 (2.13) 0.2088 (-5.41) | 0.000 (160.0)
0.5 0.6052 0.5989 (1.04) 0.6453 (-6.63) | 0.000 (100.0)
0.8 3.7922 3.8150 (-0.60) | 4.1301 (-8.91) | 1.340 (64.67)
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