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Abstract

The usage of network-based applications are increasing,
as the network speed is increasing. Also, the access to strea-
ming applications, e.g BBC I-Player, Youtube etc, over the
networks are increasing, as the processor speed and the
amount of memory available is increasing. These appli-
cations access data sequentially over the network. Howe-
ver, the rate at which streaming applications access data is
much faster than the rate at which the blocks can be fet-
ched from the network storage due to the availability of the
network bandwidth. Therefore, there is a need to analyse
the prefetching and clustering techniques for the network-
based storage system. In addition to sequential access, the
system also need to satisfy random access.

In this paper, we analysed the number of blocks that need
to be prefetch for the streaming applications and the num-
ber of block request that could be clustered in a network
buffer, so that the streaming applications can run without
jittering and demand misses can be satisfied in reasonable
time.

Dans ce document, nous avons analysé le nombre
de blocs qui doivent łtre prefetch pour le streaming
d’applications et le nombre de bloc de demande qui pour-
raient łtre regroupés dans un réseau de tampon, de sorte
que le streaming d’applications peuvent fonctionner sans
jittering rate et de la demande peut łtre satisfaite en délai
raisonnable

1. Introduction

Due to the increase of CPU speed and the amount of
memory available, there is an increase in the use of the mul-
timedia (streaming applications) and database applications
in the working environment. These applications access files
sequentially from the storage device (e.g disk) and need to
be served at constantly high data rates while they are ex-
ecuting, e.g. High Definition video (HD) data rate is 5

MB/Sec, MPEG-4 data rate is 2.5 MB/Sec etc. Also, due
to the increase in network speed, most of these applications
are accessed over the network rather than using a local disk
storage.

As the future access pattern is known for applications
mentioned above, prefetching could be used. Prefetching
enables the file system to bring blocks of data before they
are requested. This allows applications to run without wait-
ing for the blocks to be fetched from the storage device i.e.
without stalling, thus reducing the latency experienced by
the running application. For example, Ext2 and Ext3 file
systems used in Linux perform static prefetching whereby
a maximum depth of 128KB is used to prefetch when se-
quential access is detected.

Prefetching can only work, if it is economical. That is, if
more blocks are fetched than requested, the time to fetch ad-
ditional and requested blocks should be comparable to the
time it would take to fetch only the requested blocks. The
additional time incurred by prefetching will result in a la-
tency on waiting requests which might need to be promptly
serviced.

Clustering should be used to minimise the latency expe-
rienced. It has the ability to fetch multiple blocks simul-
taneously thereby reducing the latency when compared to
fetching them one block at a time. However, the number
of blocks clustered in a request and the reduction in latency
depends on the storage mechanism being used. This can be
exemplified using the disk hardware where the major com-
ponent of latency is the ”seek time”, the time to locate the
correct track. Once the correct track is located all the data
on the same track can be obtained without seek time. This
means that a disk can only cluster if multiple requests are
laid on the same track. Clustering on a disk can obtain up to
23 MBps compared to 200KBps 1, when blocks are fetched
one at a time.

This observation demonstrates that clustering could pro-
vide high data rates, but it is storage dependent. Also it
could be exploited by prefetching, as it allows the system to

1Assuming 5 millisecond revolution time (latency) to fetch one



prefetch blocks economically 2.
The elevator algorithm, RAID system and caching can

be used in addition to prefetching and clustering techniques.
These techniques also minimise the latency and can obtain
high data rates for the disk systems. The elevator algorithm
rearranges the requests in a way such that the disk will ex-
perience minimal amount of seek time. This is done by ar-
ranging requests in the increasing track numbers, minimis-
ing the movement of the head. RAID systems can satisfy
multiple requests in parallel and obtains high data rates.

In most operating systems, recent accesses to the disk are
stored in a memory cache such as the UNIX buffer cache.
Therefore, when blocks are needed by an application, the
cache is initially searched in order to satisfy a request. If
the block is found in the cache, no latency is experienced
by the running application 3, if it is not found it generates
demand misses which must be satisfied promptly.

Using selective or all of the above techniques discussed,
file systems can fetch blocks for streaming applications (for
sequential accesses) and demand misses from the disk stor-
age system, such that the overall latency experienced by the
running applications is minimised.

However, due to the increase in speed of the network and
their availability (e.g. 1 Gigabit networks are readily avail-
able and the availability of 10 Gigabit network speed is not
very far in the future), most of the multimedia and database
applications such as BBC I-Player, Youtube, Systems Ap-
plications and Products (SAP) etc, run over the network.
Some of the discussed techniques to obtain high data rates
and minimise latency are not relevant, as there is no seek
time involved in the network storage. Using similar tech-
niques like a RAID system to satisfy multiple requests in
parallel are not readily available for the network storage.
Caching techniques in the network storage system could re-
main similar to the disk-based systems, as the accessed data
could be cached regardless of being fetched from the disk
or network storage. In addition, prefetching and cluster-
ing techniques could also be used in network storage. As
pointed out earlier, the clustering effect depends on the stor-
age mechanism, therefore it needs to be explored.

2. Motivation

In order to explore the network characteristics the
Network Memory Server (NMS) was developed [3, 7].
The NMS server stores all the data of the clients in the
memory of the server and therefore it will not involve the
cost of fetching data from the disk. Hence, the latency
experienced in fetching a block of data will be dominated
by the characteristics of the network.

2For disk, the statement will be true, only if prefetched blocks are laid
on the same track

3Obviously, it will take time to search a block in the cache

Analysis of the network characteristics
NMS is composed of the Latency cost (L) and the constant
cost (C). The latency cost is the overhead time (going
through the stack up and down on client and server side)
and transmission time (sending network buffer to and fro
between client and server). It varies depending on the
network load. The constant cost 1 is the time taken to
search for the block and copy it into the network buffer on
the server, and to copy the block from the network buffer
into memory on the client. These two variables summate to
the time Tnet(y) which is the time taken to fetch y number
of blocks requested in a network buffer, as demonstrated by
the formula below:

Tnet(y) = L+ Cy (1)

It has been observed from experiments that the time to
read one block from NMS takes 200 µsec in which 170
µsec(L) is the Latency and 30 µsec(C) is the Constant i.e.
85% overhead to give data rate of 5MB/Sec. By this sys-
tem, if 5 blocks are requested at a time then the transfer rate
rises to 16MB/sec with a latency of 320µsec. Moreover, if
10 blocks are requested at a time then the transfer rate ob-
tained will be 33MB/Sec with a latency of 470µsec. This
analysis and experimental results are shown in the Figure 1.
They indicate that there is a huge clustering effect which can
provide high data rates that could be exploited by prefetch-
ing. The above experiments were done when there was no
other traffic on the network. However, the data rates ob-
tained through clustering could provide sustainable transfer
rates for varying network loads.

The key issue becomes whether network file systems can
take advantage of the network characteristics to improve
performance using clustering and prefetching over the net-
work. The most popular implementation of a network file
system is the Network Filing System (NFS) developed by
Sun Microsystems. The NFS is a file server in which the
client communicates with the server using file commands. It
reads and writes data one file block at a time and it does not
implement any prefetching or clustering techniques. Hence,
NFS is unable to make use of high network bandwidth that
is available to obtain high data rate.

So the research question to be addressed is: ”Can a file
system be develop using clustering and prefetching tech-
niques over the network which can be ideal for the work-
ing environment, where it can allow streaming applications
(once they are started) to run with no stalling while satisfy-
ing demand requests in reasonable time?”

1Constant cost will vary depending on the number of request waiting to
get served on the server, it is referred as constant because we assume that
there is no queue at the server-end



Figure 1. Multiple block Latency

3. Related Work

The important research work done in the area of interest
are listed below:

• Pei Cao et al.(1995) [2] proposed four rules that op-
timal integrated strategies for prefetching and caching
must satisfy. However, the prefetching work was more
theoretical and the implemented prefetching strategy
was static prefetching.

• Papathanasiou and Scott(2005) [10] argued that tech-
nological trends and emerging system design goals
have dramatically reduced the potential costs and in-
creased the potential benefits of highly aggressive
prefetching policies. The authors proposed that mem-
ory management need to be redesigned to embrace
such policies. This work motivated us to explore mem-
ory management.

These authors also came up with the efficient prefetch-
ing and caching techniques [9] to maximise power-
down opportunities (without performance loss) by cre-
ating an access pattern characterized by intense bursts
of activity separated by long idle times.

• Li et al. work(2007) [6] used the knowledge of I/O
switch time, to decide how much to prefetch, to im-
prove performance of the sequential access.

• Patterson et al. work(1995) [11] proposed the notion
of prefetch horizon i.e when to initiate prefetching for
the known reference, to use cache effectively and to
minimise the execution time of the applications.

However, Li et al. and Patterson et al. work was disk
centric and both of these research did not consider the
time taken to consume blocks by applications. We will
explore similar ideas for the network based storage.

• Rochberg and Gibson(1997) [12] extended the work
of Patterson et al. by implementing the Patterson et al.
framework over the network, but due to its limitation
on clustering similar to NFS, the Rochberg and Gibson
work did not perform as well as disk.

The distributed file systems such as the Google File Sys-
tem (GFS) [4], the OceanStore [5], the Serverless Network
File System (xFS) [1], the Sprite network operating sys-
tem [8] implemented caching techniques to improve re-
sponse time. They also used huge block sizes, to utilise the
available network bandwidth. Their work did not looked at
clustering requests or to prefetch multiple blocks of differ-
ent files at a time.

This research will build upon these efforts by looking at
the network characteristics. To develop an algorithm, using
prefetching and clustering techniques. This will guarantee
the quality of service for the applications running over the
network.

4. Proposed Work
This section analyses the design to address the research

question. In first section, it analysis how to treat streaming
applications. In second section, it talks about spare-time. In
third section, it analysis how to treat demand misses. Lastly,
it talks about developing an analytical model, which will
be used to explore proposed work boundaries and perfor-
mance.

4.1. Streaming Access

The streaming applications access blocks sequentially at
a constant rate. Knowing that streaming applications access
blocks constantly over the period of time, we will first
derive an equation to analyse how many blocks should be
prefetched so that streaming applications can run without
any jitter once they are started. Streaming applications will
not start until enough resources i.e network and prefetch
buffers, are available, we refer to this wait time as start
stall-time.

Let Tcpu be the time to consume a block for a streaming
access, then the rate at which it will consume y blocks will
be Tprocess(y) i.e.

Tprocess(y) = Tcpu ∗ y (2)

From our experiments, we have observed that the time to
fetch y blocks over the network is equal to Tnet(y) which is

Tnet(y) = L+ Cy (3)

where L is the Latency i.e. the time to set up connection
between the client and server. The L can vary depending on
the network load and the bandwidth available. However, it



can be assumed to be a constant for a given network. The y
is the number of block request in a network buffer and C is
the time taken to get one block.
Now, for an application to run without any delay or jitter,
the time taken to fetch blocks should be less than or equal
to the time taken to consume them i.e.

Tnet(y) ≤ Tprocess(y)
L+ Cy ≤ Tcpu ∗ y

L ≤ (Tcpu − C) ∗ y
L/(Tcpu − C) ≤ y (4)

The equation shows that the number of blocks prefetched
for streaming applications should be equal to or greater than
L/(Tcpu − C). And it should be fetched at an interval of
Tprocess ∗ (y), to allow them to run without stalling3.

Now if L/(Tcpu − C) = y, only double buffering
is needed to satisfy the request for streaming accesses as
shown in the Figure 2, that is to use only two sets of buffers
for prefetching and to initiate next prefetching as soon as
the first buffer is available (at an interval of (Tprocess ∗ y))
and this will not cause any jitter/delay in streaming applica-
tions, as required blocks will be prefetched just before they
are needed, this is similar to the notion of Prefetch Horizon
which was discussed in Informed Prefetching and Caching.

Figure 2. Double Buffering in steady state: Processing time is the
time taken to consume block and fetch time is the time taken to
fetch the block from the NMS. There is no spare-time as the time
to fetch blocks is equal to processing blocks.

Note having more than two network buffers will be a
waste of memory for the above condition, as the time taken
to fetch a network buffer is equal to the time taken to pro-
cess blocks. The condition will also not give us any slack to
satisfy any demand misses or to allow new streaming appli-
cations to join, as asking more blocks than y will increase
the fetch time and will incur stall/jitter in the running appli-
cations and will not obtain the quality of service needed.

In Informed Prefetching and Caching there was no need
to prefetch beyond the prefetch horizon, as the work used
parallel disk, this allowed it to satisfy demand misses as
they occurred, therefore it made sense to not prefetch be-
yond the prefetch horizon.

3It will experience start stall time to prefetch first y blocks

However in our case, networks cannot take benefit of
parallelism. Hence they are constraint. Therefore prefetch-
ing beyond the prefetch horizon would make sense when-
ever it is possible, to allow streaming applications to run
while the demand misses are being satisfied.

The only way to minimise the constraint in network is
to make sure that time taken to process prefetched blocks
should be greater than the time taken to fetch prefetch
blocks. This will leave spare time as show in Figure 3, but
having y too much greater than L/(Tcpu −C) will increase
the start stall-time. Therefore, y value should be in such a
way that it leaves enough spare-time and it minimises the
start stall-time.

Figure 3. Double Buffering in steady state: Processing time is the
time taken to consume block and fetch time is the time taken to
fetch the block from the NMS. Spare time is the time difference
between the processing and fetch time, which can allow to do more
than double buffering if needed.

In short, the Equation 4 guarantees the quality of ser-
vice for streaming applications. There will be no overload
on the network and buffering system, as it only prefetches
the required number of blocks in a cycle that are need for
streaming applications to keep them running. Therefore,
if a streaming application is cancelled in between by the
user then atmost it will only bring in the P number of un-
eccessary blocks, as from next cycle, when a stream is dis-
continued the number of P blocks fetched will be reduced.
However, we might also need to increase prefetching, to sat-
isfy increasing number of demand misses or to allow new
streaming applications to join.

4.2. Spare-time

The spare-time is very important to provide the required
level of quality of service. Spare time can satisfy demand
misses and allow new streaming applications to join the on-
going prefetching without incurring any jittering in the run-
ning applications.

Spare-time can be used in following way:

• To fetch additional blocks with ongoing prefetch, for
demand misses or for joining new streaming applica-
tions. The number of additional blocks (NAB(p +
d, j)) (Number of Additional Blocks with Prefetching,
can be Demand blocks (d) or for Joining new stream



(j)) that can be fetched with ongoing prefetching (p)
without affecting prefetching for streaming applica-
tions is equal to:

NAB(p+ d, j) = SP/C (5)

where C is the constant cost for fetching a block.
SP is the spare-time between prefetches. The greater
the spare-time more additional blocks could be fetch
without penalising streaming applications prefetch.
NAB(p+ d, j) is the maximum number of blocks that
could be clustered with ongoing prefetch cycle without
affecting the running streaming applications.

The Equation 5 shows the maximum number of block
requests that can be fetched with the ongoing prefetch cy-
cle using spare-time. This spare-time can also be increased
by doing more aggressive prefetching i.e prefetching more
than required number of blocks for the running streaming
applications as shown in the Figure 4, but this is only possi-
ble, if we have spare-time at the first place i.e. if there is no
spare time then we cannot increase spare time.

Figure 4. Prefetching Beyond Prefetch Horizon: Doing more
prefetching increases the fetch time for the cycle t and increase
the processing time for cycle t + 1. Hence increases the spare-
time at the cycle t + 1.

For example, let NAB(p + d, j) equal to 6 and the on-
going prefetching requires 2 block at an constant interval of
( Tprocess ∗ y). Now as shown in Figure 4, in cycle t − 1,
it will prefetch 2 blocks. If we prefetch 5 blocks instead of
2 blocks for streaming applications, as in cycle t, then the
fetch time will increase for the cycle t. However, fetching
more blocks at cycle t will increase the processing time for
the cycle t + 1, as extra 3 blocks are available to consume
at cycle t+ 1.

In this example, if TCPU = 400 and C = 30, then the
increase in the spare-time = 3(400 − 30) = 1110µ sec.
The analysis showed that spare-time can be used to do more
prefetching i.e buffering, therefore the Equation 5 notation
will change to:

NAB(p+ d, j, b) = SP/C (6)

where b refers that additional blocks could be for buffering
i.e more prefetching.

However, the question is how much spare-time is re-
quired for the system to provide the required quality of ser-
vice. The approach to the raised question will be discussed
later.

4.3. Demand Access

These accesses are generated by applications without
giving any prior notice and will need to be satisfied as soon
as possible.

Clustering a demand miss with ongoing fetches will add
additional 30 µsec to the fetch operation. To bring in ad-
ditional d demand misses with ongoing prefetch p will be
Tdemand(d+ p):

Tdemand(p+ d) = L+ Cp + Cd

Tdemand(p+ d) = L+ Cp+d (7)

where Cp(C ∗ p) is the time to prefetch p number of
prefetch blocks. The Cd(C ∗ d) is the time to bring in ad-
ditional blocks with on going prefetch. The number of de-
mand misses (Cd) fetched should be less than or equal to
NAB(p+ d, j, b).

Note that number of requests clustered into a network
buffer increase the time to fetch the network buffer, there-
fore adding more block requests to the network buffer will
add more delay to the demand requests. This shows that
there is a need to analyse how many requests should be clus-
tered, so that demand misses are not penalised by clustering
too many requests.

Let Tdisk represent the average time taken to satisfy the
demand requests. Twait(1), is the waiting time of a demand
request which is received first in the demand queue. Now as
long as we can guarantee that the time taken to satisfy each
demand request over the network is less than or equal to the
average time taken to satisfy a demand request in the disk,
the quality of service will be better than or equal to the disk.
From this we have,

Tdemand(p+ d) + Twait(1) ≤ Tdisk (8)

The Equation 8 shows that in fetching the network buffer,
the sum of the time taken to fetch the first received demand
request ( Tdemand(d) ) and the waiting time ( Twait(1) ) of
that request should be less than or equal to Tdisk.

Substituting Equation 7 in Equation 8 for clustering de-
mand misses.

L+ Cp+d + Twait(1) ≤ Tdisk

and

Cd ≤ NAB(p+ d, j, b) (9)

The Equation 4 and Equation 9, will guarantee the qual-
ity of service for demand requests and for running stream-
ing applications respectively. The analysis can also give us



an idea of how much to cluster when dealing with demand
requests. This means that we cluster until the Equation 8 is
satisfied.

4.4. Putting it all together

In the section 4.1 and section 4.3, we obtained an equa-
tion for the streaming applications and demand accesses in-
dividually i.e without considering each other.

Now, we will obtain an equation so that both of these
requests can be satisfied simultaneously without penalising
each other. As shown in the Figure 4, as long as the time to
consume prefetched blocks which were fetched at cycle t−1
is greater than the time to fetch blocks at cycle t, streaming
applications can run without jittering. If P(t−1) is the num-
ber of blocks fetch at cycle t− 1 then,

P(t−1) ∗ TCPU ≥ Tdemand(p+ d)t

P(t−1) ∗ TCPU ≥ (L+ Cp+d)t (10)

where Tdemand(p+d)t is the time taken to fetch, p prefetch
and d demand blocks at cycle t. Also from the Equation 9,
we should have (L + Cp+d)t + (Twait(1))t ≤ Tdisk and
(Cd)t ≤ (NAB(p+ d, j, b))t.

The Equation 10 should be satisfied at any point of time
in the system, to guarantee the needed quality of service.
However, the number of blocks that need to be prefetched
for the streaming applications under varying rate of demand
misses and network bandwidth still need to be analyse.

4.5. Towards an Analytical Model

To analyse how much spare-time is required at different
rate of demand misses and at varying network load, so that
quality of service is guaranteed, the work will develop an
analytical model. This will analyse boundaries of the over
all proposed system i.e how many ongoing streaming ap-
plications can be executed and the rate at which demand
misses can be satisfied simultaneously, given the network
bandwidth. Beyond the analysed boundaries, the proposed
work will not be able guarantee the quality of service. Cur-
rently, the development of a mathematical model will be
explored using queuing theory.

5. Conclusion
In our study we investigated prefetching and clustering

techniques for streaming applications and demand access
which run over the network. It showed that the streaming
applications can run without stalling once it is started. De-
mand access can be satisfied with on-going prefetching for
the streaming applications.

However, this design still needs to be explored using
mathematical modeling, to analyse the boundaries and sta-
bility of the proposed design.
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