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Abstract

The present paper deals with the problem of calculating queue length distributions in a
polling model with (exhaustive) k-limited service under the assumption of general arrival,
service and setup distributions. The interest for this model is fueled by an application in the
field of logistics. Knowledge of the queue length distributions is needed to operate the system
properly. The multi-queue polling system is decomposed into single-queue vacation systems
with k-limited service and state-dependent vacations, for which the vacation distributions
are computed in an iterative approximate manner. These vacation models are analyzed via
matrix-analytic techniques. The accuracy of the approximation scheme is verified by means
of an extensive simulation study. The developed approximation turns out be accurate, robust
and computationally efficient.
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1 Introduction

A typical polling system consists of a number of queues, attended by a single server in a fixed
order. There is a huge body of literature on polling systems that has developed since the late
1950s, when the papers of [27, 28] concerning a patrolling repairman model for the British cotton
industry were published. Polling systems have a wide range of applications in communication,
production, transportation and maintenance systems. Excellent surveys on polling systems and
their applications may be found in [36, 38, 39] and in [26].

The vast majority of the literature is concerned with the two traditional service disciplines,
the ezhaustive and gated policies. Exhaustive means that a queue must be empty before the
server moves on, whereas in case of gated service only those customers in the queue at the polling
start are served. Suggested references for readers who would like to pursue their study of the
exhaustive and gated policies are [36, 38, 39]. The main drawback of these traditional policies is
the inability to prioritize among the different queues for improving total system performance. A
more sophisticated service strategy offering this possibility is the k-limited service strategy. Under
this k-limited strategy the server continues working at a queue until either a predefined number
of k customers is served or until the queue becomes empty, whichever occurs first. Note that
the case k — oo is equivalent to the exhaustive service strategy. In many applications of polling
systems, the objective function typically depends not only on the mean queue lengths, but on the
complete marginal queue length distributions (an illustrative application is described at the end
of the present section). The present paper, therefore, aims to study the marginal queue length
distributions in a continuous-time polling systems with k-limited service under the assumption of
general arrival, service and setup distributions.

To this very day, not only hardly any ezxact results for polling systems with the k-limited service
policy have been obtained [23, 33, 34, 44], but also their derivations give little hope for extensions to
more realistic systems. This deficiency of exact results is due to the fact that the k-limited service
discipline does not satisfy a well-known branching property independently ascertained by [16] and
[35]. This branching property causes a striking dichotomy in complexity across the analysis of
various polling systems, where the k-limited service policy is on the wrong side of the borderline
implying that even mean queue lengths are in general not known. In the absence of exact results
for the marginal queue length distributions, people have resorted to numerical approaches, such as
the power series algorithm [2] and techniques based on discrete Fourier transforms [24]. The main
disadvantage of both methods is that time and memory requirements are exponential functions of
the number of queues.

A feasible approximate approach for the queue length distribution in a k-limited polling system
is the decomposition method, in which the polling system is decomposed in vacation systems,
for which the vacation distributions are computed in an iterative approximate manner. At each
step in the iteration the mathematical analysis focusses on one single queue, whereas the other
queues in the system determine the length of the vacation period. This decomposition method is
adopted by the present research as well. We have to remark that these decomposition methods
seem to be applicable to a wide variety of queueing systems (see, e.g., [8, 17, 41, 42]). In the past,
some systems related to the one of the present paper have been studied by the decomposition
approach, i.e., a k-limited polling system with finite buffers under the assumption of Poisson
arrival processes [21] or a k-limited polling system in combination with a reservation mechanism
[22]. The qualitative observations of these studies seem to carry over to the system of the present
paper.

The key observation, which is at the same time the mathematical motivation of the present
study, is the fact that it is extremely important to capture the correlations among the different
queues, since these correlations have a significant impact on the performance measures. Whereas
[21] does not take these dependencies into account, [22] proposes to take a weighted sum of a
completely uncorrelated and a perfectly correlated system in each step of the iteration by using
a pre-defined mixing probability. Although the latter method clearly outperforms the procedure
that ignores the correlations, this procedure is unable to compensate for correlations in systems
with only two queues. Moreover, since the quality of the procedure strongly depends on the



mixing probability, it is rather complicated to find an expression of this probability providing
accurate results over the entire range of parameters. Further, the procedure of [22] is based
on generating functions, the numerical determination of zeros and the numerical inversion of
characteristic functions, considerably increasing the computational time of the algorithm. Finally,
due to special features of the protocol studied in [22] the correlations between the queue lengths
are relatively small compared to our system (e.g., in case all queues have a service limit of 1 the
correlations vanish), which makes the approach of [22] well suited for that particular protocol.

Therefore, the goal of the present study is the development of a computationally efficient iter-
ative approximation method for the marginal queue length distributions in the k-limited polling
model. The main challenge can be found in the estimation of the correlations between the queue
lengths in each step of the iterative algorithm. The vast majority of the literature on polling
systems is devoted to delay figures, while almost no attention has been given to the analysis of
such correlations. By using the recently developed mean value analysis for polling systems of [45]
as the starting point, [30] derives heavy-traffic asymptotics for the covariances between successive
visit times in polling system with mixtures of gated and exhaustive service under the assumption
of Poisson arrivals. Subsequently, [30] proposes simple closed-form approximations of these co-
variances for stable systems, i.e., with load less than one. However, to the best of our knowledge
no results are known for the correlations among queues in polling systems with k-limited service.

The key ideas of the approach undertaken in the present paper for polling systems with k-limited
service are as follows:

1. The dependence between the queue under consideration and the other queues is taken into
account by the introduction of conditional vacations (also called intervisit periods), i.e., the
length of the intervisit period is positively correlated to the length of the preceding visit
period.

2. The mutual dependencies of the other queues are approximated via standard probabilistic
arguments and the conditional intervisit periods.

The main contribution of the present paper is the development of a novel iterative approximation
scheme for k-limited polling systems with general arrival, service and setup distributions. The
algorithm developed in the present paper only needs information on the first two moments of all
distributions. The accuracy of the approximation scheme is verified by means of an extensive
simulation study. The approximation scheme turns out be robust and computationally efficient,
while the differences between the exact and approximate values are small within a reasonable
margin. In particular, the time complexity is only polynomial in the number of queues and the
service limits. The main building block of this algorithm is a k-limited service vacation model
with state-dependent vacations, which has not been studied before in the open literature. In
this vacation model, the vacation length depends on the length of the preceding visit period to
the queue. As a spin-off, we present an exact analysis for this vacation model with the help of
matrix-analytic techniques.

The remainder of the present section is devoted to the application that led us to this model.
Although in the past the k-limited strategy proved its merit in communication systems (see, e.g.,
[3, 7]), the specific application that raised our attention is in the field of logistics. In many stochas-
tic multi-product single-capacity make-to-stock production systems considerable setup times are
incurred, i.e., the so-called stochastic economic lot scheduling problem (SELSP) [43]. The presence
of these setup times in combination with the stochastic environment are the key complicating
factors of the SELSP. On the one hand, one aims for short cycle lengths, and thus frequent pro-
duction opportunities for the various products, in order to be able to react to the stochasticity in
the system. On the other hand, short cycle lengths will increase the setup frequency, which has
a negative influence on the amount of capacity available for production. Consequently, this effect
will hinder the timely fulfillment of demand.

In the context of the SELSP, the exhaustive service discipline has been studied under the
assumption of Poisson demand processes by [13, 14]. A major drawback of this exhaustive policy
is that one single product, for which a high demand arrives in a certain period of time, may



occupy the machine for quite a while. The impacts of this phenomenon on the other products
are stock outs, highly variable cycle lengths and high costs. The k-limited policy circumvents this
drawback and offers the possibility to the manager to control both the setup frequencies and the
cycle lengths.

The optimal base-stock levels in this system can be obtained by solving standard newsboy prob-
lems for which the complete queue length distributions in (k-limited) polling systems are required.
For more information on newsboy problems, see, e.g., [46]. Moreover, in many telecommunication
systems the single most important performance measure is often not an aggregate measure like
the mean waiting time, rather the probability that the delay exceeds a pre-defined threshold. In
view of both the described production setting and the dimensioning of a telecommunication net-
work, the importance of an accurate approximation of the complete queue length distribution, as
obtained in the present paper, is evident.

The rest of the present paper is organized as follows. Section 2 gives, besides the introduction of
the model and further notation, a high-level view of the approximation scheme. In Section 3 the
approximations for the mean and the variance of the conditional intervisit period are presented.
Building on these results, Section 4 analyses a k-limited vacation model with state-dependent
vacations. Section 5 contains an overview of the iterative procedure to calculate the performance
measures of interest. An extensive numerical study to test the accuracy of the approximation
algorithm is presented in the penultimate section. Finally, the last section describes the main
conclusions of the present research and indicates some possible directions for further research.

2 Model description and notation

We consider a system with one single server for N > 2 queues, in which there is infinite buffer
capacity for each queue. The server visits and serves the queues in a fixed cyclic order. We index
the queues by 4, ¢ = 1,2,..., N, in the order of the server movement. When visiting queue i,
1=1,2,..., N, the server continues working at this queue until either a predefined number of k;
customers is served or until the queue becomes empty, whichever occurs first. Notice that k; = oo
amounts to the standard exhaustive service policy.

Customers arrive at all queues according to independent processes, of which the mean and

second moment are denoted by E[A4;] and E[A2], i = 1,2,..., N, respectively. The service times
at queue ¢ are independent, identically distributed random variables with mean E[B;] and second
moment E[B?], i = 1,2,...,N. When the server starts service at queue i, a setup time S; is

incurred of which the first and second moment are denoted by E[S;] and E[S?], i = 1,2,...,N,
respectively. These setup times are identically distributed random variables, independent of any
other event involved. In particular, they are independent of the service times.

The mean total setup time E[S] in a cycle is given by

N
E[S] =) E[Si].
i=1
The occupation rate p; at queue 7 is defined by
_ E[Bi]
Pi= RA]

and the total occupation rate p is given by p = Zf\il pi. Note that the occupation rates do not
include the setup times. Hence, especially for small values of the service limits k; the effective
load on the system is considerably higher.

The cycle length C; of queue i, i = 1,2,..., N, is defined as the time between two successive
arrivals of the server at this queue. It is well-known that the mean cycle length is independent of
the queue involved and is given by

E[C] = —2L (1)



This identity can be proved by observing that the amount of work arriving during a cycle should
on average equal the amount of work departing during a cycle, i.e.,

PE[C] = E[C] ~ E[S]. @)

Unfortunately, higher moments of the cycle length are analytically intractable and, certainly,
depend on the queue involved.

The visit period V; of queue ¢, i =1,2,..., N, is the time the server spends servicing customers
at queue ¢ excluding setup time. Since the server is working a fraction p; of the time on queue 1,
the mean of a visit period of queue ¢ reads

E[V)] = pE[C], i=1,2,...,N. (3)

Subsequently, the intervisit period I; of queue ¢, the time between a departure epoch of the server
from queue i and its subsequent arrival to this queue, is defined as

Ii::C’i—Vi, 12172,,]\]
A necessary and sufficient stability condition reads here (see [15], for a rigorous proof in the
special case of Poisson arrivals)

1

p + E[S] <1 (4)

If the system is stable, (4) may be rewritten by using (1) as follows

E[C]
E[Ai]

< ky, i1=1,2,...,N.

In words, this means that for a stable system the average number of type-i customers arriving in
a cycle is smaller than the service limit k;, i.e., the maximum number of type-i customers served
in a cycle. Throughout the present paper, the assumption is made that stability condition (4) is
fulfilled.

Our main interest is in L;, the queue length at queue i at an arbitrary point in time, i =
1,2,...,N. The main result of the present paper is the development of an iterative scheme to
approximate the complete distribution of L;. For the special case of Poisson arrivals, our results
for the queue length distribution can be readily translated into results for the distribution of the
customer delay via the distributional form of Little’s law [19].

We continue the present section with a high-level description of our approximation method.
The key approximation idea is that we decompose the original k-limited polling system with N
queues into a set of N separate k-limited single-queue models with vacations. At each step in the
iteration the mathematical analysis focusses on one single queue 7, whereas the other queues in the
system determine the length of the vacation period (intervisit period) of queue ¢, i =1,2,...,N.
The bottleneck in this approximation is the derivation of the distribution of the intervisit period,
which will be done in an iterative way. If we assume that the distribution of the intervisit period
is known in step n of the iteration, the distribution of the visit period in step n + 1 is derived by
means of a queueing analysis for the k-limited single-queue model with vacations (see Section 4).
On its turn, the latter distribution can be used to compute the distribution of the length of the
intervisit period in step n + 1 (see Section 3).

Since it is more likely that a long (short) visit period is followed by a long (short) intervisit
period, conditional intervisit periods are introduced. That is, the length of an intervisit period
is assumed to be positively correlated to the number of customers served in the preceding visit
period. The subsequent two sections aim to answer the following questions:

1. What are the first two moments of an intervisit period for queue ¢ given that  =0,1,... k;
customers are served in queue i in the preceding visit period (see Section 3);

2. What is the distribution of a visit period for queue ¢ given the first two moments of the
conditional intervisit periods (see Section 4).



3 Intervisit period

The present section computes the first two moments of an intervisit period for queue i given
that [ = 0,1,...,k; customers are served in queue i in the preceding visit period. The input of
the present section are the stationary probabilities m;(l) that | customers are served during this
visit period of queue i. These probabilities follow from the analysis of the vacation model in the
previous iteration step as expounded in Section 4. For presentation reasons, we omit throughout
this section the superscript n in all random variables denoting the corresponding iteration step n.

3.1 First moments

The intervisit period of a queue i is obviously positively correlated to the preceding visit period of
queue i, i =1,2,..., N. Therefore, we introduce so-called conditional visit periods V;(l), intervisit
periods I;(1) and cycles C;(I) conditioned on the number of customers D; = [ served in the visit
period of queue 7, I =1,2,...,k;.

The mean conditional cycle lengths may be approximated by using approximate balance equa-
tions for C;(1) as proposed by [20],

(p — p)E[C;(1)] + IE[B;] ~E[C;()] — E[S], i=1,2,....,N, 1=0,1,....k, (5

which equate the amount of work arriving (left hand side) and the amount of work departing
during conditional cycles (right hand side). Notice the similarity with the ezact balance equation
for the unconditional cycle length. Solving (5) results in

_ LE[B]+E[S]

i=1,2,....N, 1=01,... k.
L—p+pi

E[C:()]
We extend the approximation of [20] by multiplying the individual values E[C;(l)] with a scaling
factor ¢; € R in such a way that the correct unconditional cycle length as given by (1) is maintained,
ie.,

_ E[C]
o m(DE[Ci ()]

where 7;(1) are obtained via the analysis of the vacation model in the previous iteration step (see
Section 4). This scaling obviously facilitates the convergence and stability of the algorithm.

ci ., i=12_...,N,

Then, the mean conditional intervisit periods I;(-) can be approximated in the following way,
E[L(D] = E[C;(1)] — - E[By], i=1,2,....,N, [=0,1,... k. (6)

Finally, we define a conditional visit period Vij (1) as the length of the visit period of queue j given
that in the preceding visit to queue i precisely | customers are served, [ = 0,1,...,k;. The mean
of this random variable reads

EV/()] =~ pEICA)],  i=1,2,...,N, 1=0,1,....k;, (7)
j=i+1,...,N1,...,i—1,

which completes the analysis of the conditional first moments.

We have to remark that the approximations of the present subsection only compensate for the
correlations between the visit period and the immediately following intervisit period. Although it
is not inconceivable that one may come up with more sophisticated approximations, the numerical
evaluation of Section 6 shows that our approximations are still very effective in capturing the
correlations among the queues.



3.2 Second moments

The goal of the present subsection is the development of an approximation for the variance of the
conditional intervisit periods I;(-). Starting point of our analysis are the unconditional intervisit
periods I;. Since the setup times are assumed to be uncorrelated (see Section 2), the variance of
such an unconditional intervisit period I; is given by

Var[;] = ZVar[Vj] + ZVar[Sj] +2 Z Z Cov[V;, Vi] + Z Cov[S;, Vil (8)
J#i J J#i i;ﬂ k;é

where the latter two summations include all the covariances among the various visit periods and
among the setup times, respectively, within an intervisit period of queue i. Therefore, the > sign
in this summation means that queue k is visited after queue j in this intervisit period.

The terms Var[V}] in the right-hand side of (8) represent the variance of an unconditional visit
periods V; of queue j. The second moment of such a visit period can be approximated as follows.
Conditioning on the number of customers served during the visit period of this queue and ignoring
the correlations between the length of the service times and the number of customers served during
the visit period yields

k; ki

2= mOEVAQ)] ~ Y m()(EB] +1(1 - DE[B]®), i=12,...,N,
=0 =0

with the remark that the probabilities m;(-) are still unknown at this stage. These probabilities
are obtained from the analysis of the vacation model in the previous iteration step, see Section 4.
Now, the variance of V; can be obtained via standard probabilistic arguments.

Since the terms Var[S;] are assumed to be input of the system (see Section 2), one does not
need to approximate them. By definition, the covariance terms Cov[V}, V}| appearing in (8) can

be rewritten as
Cov[Vj, Vi] = E[V;Vi] — E[V;]E[Vi],
where the terms E[V;] and E[V;] follow from (3). To compute the unknown quantity E[V;V], we
condition on the number D; of customers served in queue j during the last visit period as follows
kj

EV;Vi] = Y E[V;VilD; = lm;(1)
=0

~ S B EVE )] ()
=0

where 7;(l) follow from the analysis of Section 4 and IE[V;’C (1)] can be approximated by (7).

Finally, in case a queue k is visited before queue j in the intervisit period of queue ¢, V} and
S; are obviously uncorrelated. In case queue j is visited first, we assume independence between
setup times and visit periods as well, i.e.,

Cov[S;, Vi] = 0,

and, thus, all terms in (8) have been specified.
By definition, the coefficient of variation c;, of an unconditional intervisit period is, subsequently,

given by
v Var [Iz] .
cr, = ~——, 1=1,2,...,N.
E[1;]
We approximate the variance of the conditional intervisit periods I;(-) by assuming equality of the
coeflicients of variation of all periods, i.e.,

Var[I;(1)] ~ ¢F, - E[L;(1)]?, 1=1,2,...,k, i=1,2,...,N, (9)



where an approximation of E[I;()] is given by (6). We add that we have also experimented with
other approximations for the variance of conditional visit period such as assuming equality of the
coefficients of variation of all conditional cycle lengths. Approximation (9), however, turned out
to be the most accurate one. Finally, notice that (9) is increasing in I.

4 Visit period

The present section aims to compute the distribution of a visit period for queue ¢ given the first
two moments of the conditional intervisit periods as computed via (6) and (9) in the preceding
section. By means of matrix-analytic techniques, we analyse a single-station vacation model with
k-limited service, in which the vacation length depends on the length of the preceding visit period.
The authors are aware of only one other study in which this specific dependency is studied under
the restrictive assumption of Poisson input [25]. Comprehensive surveys on vacation models can
be found in [9, 10, 37].

Since the present section is focussing on one single queue i in a specific iteration step n, the
subscript 7 and superscript n are dropped from all random variables. Throughout the present
section, the distribution functions of the arrival and the service times are needed. However, the
only information available for these random variables are the first two moments. A common way
to obtain an approximate distribution is to fit a phase-type distribution on the first two moments
as elucidated in Appendix A (cf., e.g., [40]). In the remainder of the present section, we assume
that the fitted distributions are used as substitute for the arrival and service distributions and
that the number of phases needed equal n4 and ng, respectively.

In the preceding subsection, we have computed the first two moments of the conditional intervisit
periods I(-) conditioned on the exact number of customers served in the preceding visit period.
To keep the size of the state space for the k-limited vacation model manageable, some of these
intervisit periods are aggregated. That is, we draw a distinction between intervisit periods I(0),
I(k) and I(x) in which there have been zero, the maximum number or any other number of
customers served in the preceding visit period, respectively. In case the service limit at a queue
equals one, only (0) and I(1) have to be distinguished. The period I(x) is, thus, defined as,

k—1
I(x):= ) =(D)I(),
=1
with first two moments,
k-1 k-1
E[I(x)] = S #(EIQ)], and E[I(x)?:= > =()EL()?,

=1 =1

where 7(1) follow from the previous iteration step. We have to remark that we have tested this
aggregation of intervisit periods for a wide variety of cases, from which we concluded that it has
only negligible (negative) impact on the results, which is outweighted by the gain in efficiency.

In sum, the system under consideration is a single-server k-limited vacation model with three
different kinds of intervisit periods dependent on the number of customer served in the preceding
visit period. In order to construct these intervisit periods in an efficient way, we introduce the
auxiliary mutually independent random variables I(*) and I(k), which are independent of I(0) as
well. These random variables satisfy

I(x) =I(x)+1(0), and I(k)=1I(k)+I(%),

which is always possible since the variances of the conditional intervisit periods are increasing
in [ as shown in (9). Thereupon, phase-type distributions are fitted on I(0), I(x) and I(k) (see
Appendix A for further details) in such a way that the first two moments of I(x) and I(k) are
correct. If we assume that the number of phases needed for the description of 1(0), I(*) and I(k)



equal ny(), nj, and njy,, respectively, the total number n; of phases for the intervisit process
is given by ny = nro) + M) + Ny

The k-limited vacation model can be described by a continuous-time Markov process with states
(i,4,m). The state variable ¢ = 0, 1, ... denotes the total number of customers in the specific queue
under consideration, whereas the state variable j = 1,2,...,n4 indicates the phase of the arrival
process A. Finally, m = 1,2,...,np indicates the phase of the departure process D, which is the
combination of the service process and vacation processes I(0), I(x) and I(k). These latter two
processes can be modeled by one single variable, since the server is either serving customers or
is on vacation. When the server is serving customers, one has to keep track of the phase of the
service process and of the number of customers already served in the corresponding visit period.
On the other hand, when the server is on vacation the phase of the corresponding vacation period
is needed. Consequently, the total number of states for the departure processis np = kxng+n;y.
The phases of this departure process are grouped as follows: first, we group all phases related to
the k service processes and, then, the phases of I(k), I(x) and I(0).

Refer by level i to the set of states with ¢ customers in the system and group the states by
these levels, so that (i, j,m) precedes (i', 5/, m’) if i < i’. Within each level, the states are grouped
according to the arrival phase, so that (i,j,m) precedes (i,7',m’) if j < j'. Lastly, the states
are ordered by the departure phase, so that (i,j, m) precedes (¢,j,m’) if m < m’/. Now, one may
verify that the introduced Markov process is a quasi-birth-and-death (QBD) process where the
infinitesimal generator Q has the following block-tridiagonal structure,

Boo Bgr 0 0 0

Big A Ay 0 0

Q — 0 Ao Ay Ay 0
0 0 Ay, A A

Below we specify the submatrices in Q, where we use the concept of Markovian Arrival Process
(MAP) (see, e.g., [1]) to describe the arrival and departure processes. In general, a MAP is defined
in terms of a continuous-time Markov process with finite state space {0,--- ,m — 1} and generator
Go + G1. The element G1(4,j) denotes the intensity of transitions from i to j accompanied by
an arrival. For 7 # j element Gy(i,7) denotes the intensity of the remaining transitions from i to
j, while the diagonal elements Gy(i,4) are strictly negative and chosen such that the row sums of
Gy + G are zero.

The arrival process can be straightforwardly represented by such a MAP, the states of which
correspond to the phases of this process. Its generator can be expressed as Gé + G{!, where the
transition rates in G4 are the ones that correspond to an arrival of a customer to the system. The
transition rates of the G and G4' matrices are listed in Appendix B.

The MAP for the departure process with generator G + GP is a little more involved. All
transitions related to the vacation periods do not cause departures and are, thus, within G&.
Completion of a service process, obviously, leads to a departure implying that the corresponding
rates are in G¥. Transitions within a service process not causing departures are, of course, part
of GI. Further, we have to distinguish between the situation when there are more than two
customers in the system or not. In the first situation, if a departure is not the k** departure the
next service process is started and if it is the k** departure a new vacation period is begun. To deal
with the situations in which there are only zero or one customers present, we have to introduce
matrices ééj and é? , representing the transition within level 0 and the transitions from level 1 to
level 0, respectively. We can recognize two differences between these matrices and G +GP. First,
when a service process is completed which is not the k" service, a vacation period is commenced
instead of the next service. Second, when a vacation period is finished, we jump to process I(0)
instead of to the service process of the first customer in the visit period. The transition rates for
GP, GP, GP and GP are summarized in Appendix B.



Now, we are in the position to describe all the submatrices in Q, i.e.,

By = G{el,,,
By = Giol,, +1I,, ®GP,
By = I,,®GP,
Ay = GioI,,,
A = Gl +1,, @GP,
Ay = IWA®G]D7

where I, is the identity matrix of size n and if A is an n; X ne matrix and B an n3 X ng matrix
the Kronecker product A ® B is an nyng X ngnyg matrix defined by
A(1,1)B  --- A(l,nq)B
A®B = : :
A(nhl)B A(nl,ng)B

This completes the description of the QBD. If we let ¢; denote the equilibrium probability vector
of level 4, the corresponding balance equations are given by

Gn-140 + @ A1 + qny142 =0, n>2,

and

qoBoo + q1Bio = 0, (10)
qoBo1 + 1A1 +qA2 = 0. (11)

Introducing the rate matrix R as the minimal nonnegative solution of the nonlinear matrix equation
Ay + RA; + R*4, =0,
it can be proved that the equilibrium probabilities satisfy (see, e.g., [32])
Gn+1 =R, n>1.

To determine this matrix R we use the algorithm developed by [31] as listed in Figure 1. The
vectors qg and ¢; follow from the boundary conditions (10), (11), and the normalization condition.
This queue length distribution ¢; yields the following expression for the distribution of the length
of a visit period,

W(l)zkhi, 1=0,1,...,k, (12)

2 i=0 (@)
where h(l) is the total rate of jumps to a vacation period after serving I customers. To calculate
h(l) we have to sum all transition rates from a state where | — 1, | = 1,2,... k, customers
are served (or 0 customers when ! = 0) to a vacation, multiplied by the probability of being in
that specific state. Further, we recall that the indices of ¢.(-) within the brackets correspond to
lexicographically ordered states of the arrival and departure processes. So,

na "I(0)

h(0) = Z Z ((h((i = Dnp +knp +nj) +nj) +10) X

i=1 j=1

Boo((i = )np + knp + 1y + npy +4, (0 — Dnp + knp + gy +nj,) + 1)),

naA nNp
h(l) = D> aq((i—1np + (1= Ynp + 5)Bio((i — Ynp + (I = Dnp + 4, (i — D)np + knp + Nigy T 1),
i=1 j=1
I=1,...k—1,
naA nNp
h(k) = ) r((i = Dnp + (k= Unp + 5)A2((i = Dnp + (k= Vng + j, (i = Dnp + knp + 1),
i=1 j=1
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AT

while dif > €
{
X 1= -N-IL
Y := -NM
Z:=LY
dif := ||Z|
W:=W+Z

Figure 1: Algorithm of [31] for finding the rate matrix R, where ||.|| denotes a matrix-norm and e some
positive number.

where
o o)
r= Zqz = quRZ?l = (h(InAan - R)ila
=1 =1

which completes the analysis of the k-limited vacation model.

5 Iterative algorithm

As described at the end of Section 2, the performance characteristics of the k-limited polling
system are approximated by an iterative scheme. The algorithm is as follows.

Outline of the algorithm.

e Step 0: Choose initial characteristics for all queues.

Step 1: For i =1 to N, determine the first two moments of the conditional intervisit period
I;(+) for queue i from (6) and (9), respectively.

Step 2: For i =1 to N, determine the distribution of the visit period V; from (12).

Step 3: Repeat Step 1 and 2 until the characteristics for all queues have converged.

Step 4: For i =1 to N, compute the performance measures of interest for queue i.

0,1,...,k; and ¢ = 1,2,...,N. The assumption is made that all of these probabilities are zero
except for m;(k;), ¢ =1,2,..., N. Notice that, via the approach developed in Section 3, the correct
mean cycle lengths are obtained as computed by (1). We note that we have experimented with a
large number of initial values, from which we concluded that the starting values of the algorithm
have no, or at least negligible, impact on the results.

Initialization. In Step 0 of the algorithm, we have to choose initial values for m;(l), | =

11



| Test bed

Parameter Notation Value

low medium | high
Number of queues N 2 5 10
Load o 0.45 0.60 0.75
Service limit ki 1 5 10
SCV interarrival times A; 0.25 1 2
SCV service times B; 0.25 - 1
SCV setup time S 0.25 - 1
Imbalance interarrival times Ia, 1:1 - 1:10
Imbalance service time I, 1:1 - 1:10
Ratio service and setup times Ip,/s, 1:1 - 1:10

Number of instances 2592

Table 1: Test bed.

Convergence criterion. After Step 1 and 2 we check whether the iterative algorithm has
converged by comparing the probabilities 7;(-), ¢ = 1,2,..., N, in the (n — 1)-th and n-th step.
We decide to stop when the maximum of the absolute values of the differences is less than ¢;
otherwise we repeat Step 1 and 2. Hence, the convergence criterion is

max (7)) -7V <6, Vicioon,

where ¢ is chosen to be 1074, Of course, we may use other stop-criteria as well, e.g., mean queue
lengths or mean intervisit periods.

Complexity analysis. The complexity of this method is as follows. Within the iterative algo-
rithm, solving a subsystem consumes most of the time. In one single iteration step N subsystems
are solved. The number of iterations needed is difficult to predict, but in practice this number is
about 10 to 15 iterations. The time consuming part of solving a subsystem is the calculation of
the R-matrix. This can be done in O(n?) time, where n; is the size of the R matrix of subsystem
i. Then, the time complexity of one iteration becomes O(N max;(n3)). This means that the time
complexity is polynomial in the number of queues, the service limits and the number of phases for
each process.

6 Numerical evaluation

The present section reports on an extensive numerical study designed to assess the accuracy of the
approximation method developed. We compare the first two moments and tail probabilities of the
queue length distribution with the ones produced by discrete event simulation. Each simulation
run is sufficiently long such that the widths of the 95% confidence intervals of the performance
measures of interest are smaller than 1%. A first important remark is that the computation time
of our algorithm is considerably less than the simulation time, which can mount up to fifteen
minutes or more. This inefficiency of simulation techniques for (k-limited) polling systems has
been observed before by, e.g., [2].

6.1 Parameter setting

We use a broad set of parameters for the tests. The number of queues in the system is varied
between 2, 5 and 10, whereas the service limits are either 1, 5 or 10. The total load on the system
varies between 0.45, 0.60 and 0.75; as mentioned in Section 2 this load does not include the setup
times. Hence, especially for small values of the service limits k; the effective load on the system

12



| Errors approach of present paper |
| | Aver. (%) [ 0-10 % [ 10-20 % [ 20-30 % [ > 30% |

Mean queue lengths 7.26 76.25 17.77 5.12 0.86
SD queue lengths 8.34 71.02 20.16 5.51 3.30
0.90-quantile 6.58 75.62 14.80 5.75 3.83
0.95-quantile 7.33 73.37 15.95 6.80 3.88

Table 2: Overall results approach of present paper.

| Errors standard approach |
| [ Aver. (%) [ 0-10 % [ 10-20 % [ 20-30 % [ > 30% |

Mean queue lengths 15.40 40.95 30.94 15.61 12.50
SD queue lengths 15.26 40.37 29.98 16.91 12.74
0.90-quantile 13.45 57.95 16.52 11.69 13.84
0.95-quantile 13.26 54.02 17.10 14.08 14.80

Table 3: Overall results standard approach.

is considerably higher. For this reason, some cases are unstable, meaning that (4) does not hold,
and are thus removed from the test bed.

The squared coefficients of variation of the interarrival, service and setup times for each queue
are identical and are varied between 0.25 and 2 and between 0.25 and 1, respectively. We have to
remark that we envision production systems as the main application for the present paper (see also
Section 1). Since the variations in the setup and service times tend to be small in such systems
- in contrast to telecommunication systems where heavy-tailed random variables are common -
we only consider cases in which these variations are indeed relatively small. Furthermore, we test
cases for which the setup times are 10 times smaller than the service times and cases for which
setup and service times are equal.

Furthermore, both balanced and imbalanced polling systems are considered. In the balanced
cases we set the arrival rates of all queues equal to 1. We test imbalance in the average interarrival
times by making the load of the most heavily loaded queue 10 times higher then that of the least
heavily loaded queue, and by letting the arrival rates of the other queues change linearly such that
the overall mean arrival rate is maintained at 1. For example, in case of 5 queues we get arrival
rates (0.182,0.591, 1.000, 1.409, 1.818). Testing imbalance in the service times proceeds along the
same lines. This leads to a total of 32° = 2592 test cases, which are summarized in Table 1.
After removing the unstable cases, we end up with a total of 2088 cases. For further reference, we
have classified the values for each parameter in the categories low, medium and high.

The performance measures under consideration in the present numerical study are the mean,
standard deviation, 0.90-quantile and 0.95-quantile of the marginal queue length distributions,
where the a-quantile of the distribution of a random variable X can be defined as the smallest
value z such that

PX <z] > a.

The importance of the quantiles of the queue length distributions lies in the fact that the opti-
mal base-stock levels in the production application described in Section 1 precisely equal these
quantiles.

6.2 Results

Table 2 summarizes the performance of the approach developed in the present paper showing
the average errors and for four error-ranges the percentage of the cases which fall in that range.
Overall, we can say that for all performance measures the average error is around 7%, while
the errors are for the majority of the cases less than 10%. We believe that these errors are in
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| Errors standard approach as function of p (%) |

| | low | medium | high |
Mean queue lengths | 4.43 6.72 11.64
SD queue lengths 5.20 6.23 14.95
0.90-quantile 4.11 5.87 10.67
0.95-quantile 4.63 6.50 11.85

Table 4: Results approach of present paper as function of total utilization p.

| Errors standard approach as function of p (%) |

| | low | medium | high |
Mean queue lengths | 8.22 14.54 25.88
SD queue lengths 8.32 14.09 25.78
0.90-quantile 10.11 9.22 22.75
0.95-quantile 6.06 11.71 25.55

Table 5: Results standard approach as function of total utilization p.

general satisfactory in view of the complexity of the system under consideration: we study a k-
limited service discipline - containing the exhaustive policy as special case - under the assumption
of general arrival processes, whilst the fact that our interest is in the complete queue length
distribution constitutes an additional complicating factor.

To give this statement a more scientific basis, we compare the performance of our approach to the
standard decomposition approach. In such a standard decomposition approach the dependencies
among the individual queues are completely ignored. That is, the intervisit periods are assumed
to be independent of the length of the preceding visit period, thus the need for conditional cycles
and conditional (inter)visit periods cancels, and the correlations among the individual visit periods
are set equal to zero. Remark that the application of this standard approach to k-limited polling
systems has not been published in the open literature.

The results for the latter approach are listed in Table 3. Comparing this table to Table 2, we
can conclude that our approach not only halves the mean errors for all performance measures,
but also that the standard approach, in contrast to our approach, quite often results in more
than 30% error. This observation clearly underpins the statement made in the introduction that
it is extremely important to capture the correlations among the different queues, since these
correlations have a significant impact on the performance measures. In particular, the performance
of the standard approach significantly degrades as the total load increases as shown in Table 5,
which is in agreement with the result of [30] that the correlation between successive visit times
converges to one as the total load tends to one for the cases of exhaustive and gated polling systems
with Poisson arrivals. Table 4 shows that the accuracy of our approach decreases in heavy traffic
as well; the decrease in accuracy is, however, not so severe as for the standard decomposition
approach.

It would also be interesting to compare the performance of our approach to the one of the
alternative approach developed in [22]. In this study, it is proposed to take a weighted sum of
a completely uncorrelated and a perfectly correlated system in order to capture the correlations
among the queues. A good choice of the desired mixing probability is an interesting problem
in itself and the probability used in [22] has not been developed for the k-limited polling system
covered in the present paper, rather for a modification of this system, i.e., inclusion of a reservation
mechanism. Directly applying the same mixing probability to our setting would certainly wrong
the approach of [22] leading to an unfair comparison. FEssentially, this observation reveals a
weakness of the procedure of [22]: the quality of this procedure strongly depends on the choice of
the mixing probability. Taking the above into account, we confine ourselves to a more qualitative
comparison between the two approaches. That is, when comparing the errors reported in [22] to
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Errors mean queue lengths (%) | Errors SD queue lengths (%) |

Parameter | low | medium | high Parameter | low | medium | high
N 8.96 717 5.74 N 8.77 10.21 6.16
p 4.43 6.72 11.64 p 5.20 6.23 14.95
ki 9.35 6.91 6.39 ki 9.39 7.87 8.18
A; 6.70 6.96 8.14 A; 6.56 8.25 10.22
B; 6.79 - 7.74 B; 7.72 - 8.97
Si 6.92 - 7.61 Si 8.18 - 8.51
Iy, 7.32 - 7.19 14, 8.21 - 8.51
I, 5.17 - 9.51 I, 6.07 - 10.78
I, /s, 5.07 - 8.67 Ip,/s, 5.65 - 10.07
Table 6: Detailed results mean queue lengths. Table 7: Detailed results SD queue lengths.
| Errors 0.90-quantile (%) | | Errors 0.95-quantile (%) |
Parameter | low | medium | high Parameter | low | medium | high
N 9.50 5.87 4.49 N 7.61 9.23 5.25
p 4.11 5.87 10.67 p 4.63 6.50 11.85
ki 8.55 6.43 5.60 ki 9.29 6.90 6.60
A 6.65 5.79 7.31 A 6.59 7.51 7.87
B; 6.15 - 7.02 B; 7.02 - 7.64
Si 6.47 - 6.69 Si 7.08 - 7.57
14, 6.84 - 6.26 Iy, 7.67 - 6.90
I, 4.63 - 8.67 I, 5.04 - 9.78
Ip, /s, 5.23 - 7.45 Ip, /s, 5.85 - 8.27
Table 8: Detailed results 0.90-quantile. Table 9: Detailed results 0.95-quantile.

the ones listed in Table 2, one can conclude that they are of the same order of magnitude. The
approximation method of [22] has, however, only been tested in a system with smaller inherent
dependencies for the special case of Poisson arrivals. We have to remark that Tables 6 through 9
show that the interarrival distribution has no or at least negligible effect on the accuracy of our
approach.

More specifically, Tables 6 through 9 show the detailed results for our approach, when fixing
one parameter at a certain level. When a row is partially empty, it means that this parameter is
only tested on two levels. Our approximation method seems to be fairly insensitive to different
parameter settings. In this respect, the parameter having the largest impact on the performance is
the total utilization p as earlier illustrated in Table 5. Moreover, we observe that imbalance in the
service times and an increase in the setup times have negative impact on the accuracy, whereas
the accuracy of our approach increases as the service limits become larger. This latter observation
tempts one to use the approach of the present paper as approximation for the exhaustive policy
as well as touched upon in Section 7.

Remark 6.1. In the past, so-called pseudo-conservation laws, intensity-weighted sums of mean
delays, have been applied quite often to develop accurate and elegant approximations for mean
delays in polling systems (and, thus, mean queue lengths as well). Throughout the present paper,
we have deliberately left this approach aside, because our approach does not use this technique
and because this technique only gives approximations for mean performance measures for the
special case of Poisson arrivals (for more information see, e.g., [4] and the references therein). An
additional complexity that shows up when applying pseudo-conservations laws to polling systems
with k-limited service is that in such systems these laws still contain some unknown terms that
have to be approximated as independently shown by [5] and [11]. Note that the most accurate
algorithm [6] based on such a pseudo-conservation law can still give up to 20% errors for the mean
delays in k-limited polling systems. O
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7 Conclusions

In the present paper, we have created a novel iterative approximation scheme for k-limited polling
systems with general arrival, service and setup distributions to compute the complete queue length
distributions. The multi-queue polling system has been decomposed into single-queue vacation
systems with state-dependent vacations and k-limited service. We have analyzed this vacation
model by means of matrix-analytic techniques under the assumption of general arrival, service
and vacation processes. The main challenge was found in the computation of the correlations
among the queues in each step of the iterative scheme. The accuracy of the approximation scheme
has been validated via an extensive simulation study. The developed approximation turned out
be accurate, robust and computationally efficient. The numerical evaluation has shown that the
algorithm converged relatively fast; a rigorous proof of convergence is, however, left as subject of
further research.

With minor adjustments, the algorithm developed can be carried over to variants of the consid-
ered polling systems, e.g., systems with batch arrivals, discrete-time polling systems or systems
with finite buffers. Application of our algorithm to polling systems with so-called gated-type k-
limited service, i.e., the servers serves only k customers in a queue who arrived before the server’s
visit, is also not inconceivable. A related remark is that for deterministic service times the k-
limited coincides with the time-limited strategy with fixed time limits, i.e., each queue has a time
limit after which it relinquishes the server. By choosing service times with a negligible coefficient
of variation as input, the algorithm of the present paper can also be used for the evaluation of this
time-limited policy. Moreover, due to the efficiency of the algorithm, it could be used directly as
approximation for the standard exhaustive and gated policy as well by choosing a ’large’ value for
the service limits. In that sense, our algorithm may be considered as extension of the procedure
of [12] for exhaustive and gated polling systems, which relies on a Poisson assumption.

Finally, the algorithm of the present paper may be extended to the computation of derivatives
of performance measures with respect to the service limits. Such an extensions would allow
application of gradient methods to optimize systems performance and sensitivity analysis with
respect to these control variables. Due to the low computational complexity of the developed
procedure, it can be used as subroutine in such an optimization procedure.
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A  Appendix

To obtain an approximating distribution of a positive random variable X, one may fit a phase-type
distribution on the mean E[X] and the coefficient of variation cx by using the following approach
[40]. First of all, a random variable X is defined to have to a Coxian distribution of order k if it
has to go through up to at most k exponential phases, where phase n has rate u,, n =1,2,... k.
It starts in phase 1 and after phase n, n = 1,2,...,k — 1, it ends with probability 1 — p,,, whereas
it enters phase n + 1 with probability p,. Finally, ps is defined to equal zero.

Now, the distribution of X is approximated as follows. If ¢% > 1, then the rate and coefficient
of variation of the Coxiansy distribution matches with E[X] and cx, provided the parameters are
chosen as (cf. [29]):

m =2/E[X], p1= and o = p1p.

2¢%°
If 1/k < c% < 1/(k—1) for some k > 2, then the rate and coefficient of variation of the Erlangy_1
distribution, which is a special case of a Coxian distribution of order k, matches with E[X] and
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¢x, provided the parameters are chosen as (cf. [40]):

Pn

Pk-1

M1

= 1, n=12...,k—2,
_ 1_kc§(—\/k(1+c§()—kgc§(

1+c%
= p2=...=m = (k-pEX].

Of course, also other phase-type distributions may be fitted on the mean and the coefficient of
variation, but numerical experiments suggest that choosing other distributions only have a minor

effect on the results,

as shown in [18].

B Appendix

The transition rates of the Gé“ and G{' matrices as defined in Section 4 are given by

_/1'24 = G€(7’7Z)a 1=1,2,...,n4,
prudt = Gi(i,i+1), i=1,2,....,n4—1,
(1—pMHud = Gi,1), i=1,2,...,n4,

with p/ and p* the parameters of the fitted phase-type distributions for the arrival processes.
Subsequently, the transition rates for GJ and GP as introduced in Section 4 are

-l =
pPul =
(1—pPyul

i

I(k) Ik
Pi()/ﬁi() _

(1 —pj(k))ui(k) _

A 7

i

_ufe

pIO 1)

(1= pl)ul® =
I(0

*Mz‘( )=

HOWO =

(1— pI(O))ul(O) _

) %

and for G and GP (see again Section 4) we have

(L=p)u =

(L —p )’ =
()

I(k) Ik
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(1—pj(k))ui(k) _

i 7

e
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pi O = GP(knp +ngyy +ni, +iknp +ngg +ng., i+ 1), i=1,...,n10) — 1,
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distributions for the service and intervisit processes.

are the parameters of the fitted phase-type
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