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Chapter 1

Analytical Model for
Prefetching and Clustering

This chapter describes in detail the analytical model for the Prefetching-
on-Demand (PonD) strategy, to estimate the average time to serve a de-
mand miss. Firstly, it starts by describing the standard models. Secondly, it
then describes a model which can represent clustering over the network and
presents two solutions. Finally, it presents preliminary results of the solved
models and concludes by describing the need to explore an operational space

where QoS for streaming applications and demand misses could be satisfied.

1.1 Analysis

From the previous analysis, we can represent the system by two queues: the
demand queue and the prefetch queue, as shown in Figure 1.1. Let Ay be the
rate at which demand requests are arriving at the demand queue and let A, be
the rate at which prefetch requests are arriving at the prefetch queue. While
serving, more than one request could be taken from both queues, clustered
into a network buffer which is then sent off to the server. This can be viewed

as a type of bulk service.
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Figure 1.1: A model with a server serving two queues: Prefetch and Demand.

This analysis attempts to answer the question: Given the arrival rates
of the two queues, can we find a way to calculate the average service time

experienced by demand misses?

1.2 Literature

In order to answer the question, we looked at several polling models. A
polling model is a system of multiple queues accessed in a cyclic order by a
single server. In recent decades, polling models have been used to analyse
the performance of a variety of systems. According to [Takagi and Hideaki,
1988], in the late 1950s, a polling model with a single buffer for each queue
was used in an investigation of a problem in the British cotton industry
involving a patrolling machine repairman [C., 1957a,b]. In the 1960s, polling
models with two queues were used to analyse traffic signal control, (see a
survey by Stidham [S., 1969]). There were also some early studies from the
viewpoint of queueing theory that were apparently independent of traffic
analysis (e.g Avi-Itzhak et al. [1965]). In the 1970s, with the advent of
computer communication networks, an extensive study was carried out on
a polling scheme for data transfer from terminals on multidrop lines to a
central computer. Since the early 1980s, the same model has been revived
by Bux [1981] and others to study token passing schemes, (e.g., the token

ring and token bus), in local-area networks (LANs). It has also been used



for resource arbitration and load sharing for multiprocessor computers [Wang
and T, 1985]. A polling model was used in a non-technical article in Scientific
American [LEISOWITZ, 1980], as an example of an interesting and important

queuing system.

The usual objective in analysing polling models is to find the message
waiting time, defined as the time from the arrival of a randomly chosen
message to the beginning of its service. The mean waiting time plus the
mean service time is the mean message response time, which is the single
most important performance measure in the most computer communication
systems [Kleinrock, 1976].

Polling models are referred to in many survey articles and books on
data communication systems [ [Bertsekas and Gallager, 1992], [Chu and Kon-
heim, June 1972.], [Hayes and Sherman, November 1971], [R. and G.|, [Kobayashi,
Jan 1977], [KONHEIM, 1980], [Simon LAM January and Simon S. LAM,
1983], [PENNY, B. K., ANO BAGHOADI, A. A., 1979], [M. REISER, 1982]].

The vast majority of the literature is concerned with the two tradi-
tional service disciplines, the ezhaustive and gated policies. Exhaustive ser-
vice means that a queue must be empty before the server moves on, whereas
in case of gated service only those customers in the queue at the start of
polling are served. The main drawback of these traditional policies | [Tak-
agi and Hideaki, 1988], [Takagi, 2000], and [Takagi, 1990]] is the inability
to prioritise among the different queues for improving total system perfor-
mance. A more sophisticated service strategy offering this possibility is the
K-limited service strategy. Under this strategy the server continues work-
ing at a queue until either a predefined number of K customers is served or
until the queue becomes empty, whichever occurs first. Note that the case
K — o0 is equivalent to the exhaustive service strategy. In many appli-
cations of polling systems, the objective function typically depends not only
the mean queue lengths, but on the complete marginal queue length distribu-
tions. Therefore, in 2006 van Vuuren and Winands [2006], proposed to study

the marginal queue length distributions in a continuous-time polling systems



with K-limited service under the assumption of general arrival, service and

set-up distributions.

A feasible approximate approach for the queue length distribution in a
K-limited polling system is the decomposition method, in which the polling
system is decomposed into vacation systems, for which the vacation distribu-
tions are computed in an iterative approximate manner. At each step in the
iteration, the mathematical analysis focuses on one single queue, whereas the
other queues in the system determine the length of the vacation period. We
have to remark that these decompositions methods seem to be applicable to a
wide variety of queueing systems ( e.g., [Dallery et al., 1989], [Gershwin and
Burman, 2000], [van Vuuren M, 2005], [van Vuuren M, 2006]]). However, the
main disadvantage of this method is that time and memory requirements on

computational resources are exponential functions of the number of queues.

In our work, we believe that the streaming applications access blocks
at a constant rate. The number of blocks needed to be fetched for the prefetch
queue to provide the required QoS can be controlled. Hence, we can reduce
the model to a single queueing system based on demand requests but the
service time for the demand blocks will include the cost of fetching prefetch
blocks. We can further simplify the analysis by only prefetching when there
are demand requests in the demand queue i.e. conservative prefetching as
shown by Cao et al. [1995]. This strategy is also justified as it uses the

network more effectively.

1.3 Standard Approach (Partial Batch Model)

As a first step in analysing the average time to satisfy a demand request in
the demand queue, we will use the Partial Batch Model described in [Gross
and Harris, 1998]. In this model a server can serve up to a maximum of K
requests. If there are less than K requests in the system, the server begins

service these requests. Furthermore, when there are less than K requests



being serviced, new arrivals immediately enter service. The amount of time
required to service requests, is an exponentially distributed random variable

with mean i

This model is represented in Figure 1.2. Each state of the model is
represented in terms of n and s. n is the total number of requests in the
system and s is the number of requests currently being served. It can be
seen that any new arrival enters the service immediately as long as there
are less than K number of requests being served and time taken to service

those requests is exponentially distributed to a mean value of i A stochastic

Figure 1.2: Partial Bulk Service model.

balance equation for the model can be written as:

0 = —(A+p)pn+ Wppsk + APu1 (n21) (1.1)
0 = —Apo+ up1 + ppa + pUpr—1 + UpK
For K = 1;
0 = —(A+@)pn+ ipns1 + Apn (1.2)
0 = —Apo+ up

The above equations are the basic equations for the M/M/1 queue. Hence,



we can say the solution for the PBM is same as the M/M/1:

Pn = pOTn

By finding the root (r) of this equation that is between 0 and 1, one
can work out the mean queue length (L) and the average waiting time (W)

for the queue, using the equations below.

r r
= — 1.
1—r and W A1 =) (13)

The results presented in Figure 1.5, showed that this approach is extremely
accurate for very heavy traffic, since on these occasions the server will always
be serving the maximum batch size. However, for lighter traffic loads the
model is inaccurate because according to this approach new requests will
immediately enter service when the server is serving less than the maximum
batch size which is not the case in our scenario. Here, the server only serves
the number of people in the queue at its arrival, requests arriving after this
point must be serviced in the next cycle regardless of whether or not the
maximum batch size is being served in the current cycle. Hence, the scenario

is gate-limited and not exhaustive-limited as seen in the Partial Batch Model.

1.4 Proposed Gated-Limited Model

In this section we attempt to develop a more accurate model which could
be used under operational loads. As shown in the Figure 1.3, the state of
the model is defined by two variables i.e. n and s. n is the total number of
requests in the system including the requests being served and s is the number

of requests being served at any given time. Therefore, for the maximum batch



size s = K, s goes from 0 to K, so when s = 0, the system is empty and
when s = K up to K requests are being served at a time. Also, excluding
(0,0), this will give rise to the K different stages as shown in Figure 1.3 with
each stage having a service rate depending on the number of blocks being

served.
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Figure 1.3: A model with a server which can serve up to K demand requests
in batch mode, n = the total number of requests in the system and s = the
number of requests being served.

1.4.1 Simple Scenario

We start by looking at a simple scenario by restricting K to 2, i.e. s = 2,
as shown in Figure 1.4. Having K equal to 2 there can be only three stages:
either the server is serving 1 request or it is serving 2 requests or the queue is
empty. This means that with the exception of the transition, (2,2) to (0,0),
each transition can only jump one stage at a time (i.e. 1 to 2 or 2 to 1) for
e.g. (3,1) goes to (2,2) or (3,2) goes to (1,1). We will analyse each series
individually starting with Series 1.



Figure 1.4: Two Stage Model, K = 2.

Considering Series 1 i.e. when s =1

Let us consider Series 1 of the Figure 1.4. In Series 1, s = 1 and for n > s

ie. n > 1, we will have:

APn-1,1 = (A + p1)pn1 (1.4)

This implies that for any n > 1, in Series 1:

A

Pn1 = m(pn—l,l)
A 1
n1 = (—mm)"" 1.5
Pn 1 ((/\ + ,ul)) (pl,l) ( )
And for n = s i.e., n = 1, we have:
(A4 p1)pr1 = Apoo + fapa1 + opPso (1.6)



Finally, for n = s =0, i.e., poo will be:

ADo0 = [1D1,1 + HaD22 (1.7)

Considering Series 2 i.e. when s = K =2

Similarly, for s = 2, we will derive equations for n > s and n = s, using

Figure 1.4. when n > s, we have:

(A + 112)Pn2 = APn—1,2 + HoPnt2,2 + 1Dnt11
(1.8)

And for n = s, we have:

(A + p2)p22 = poPas + f1ps 1 (1.9)

Now using the derived equations for Series 1 and Series 2, we will try to
obtain an equation for Series 2 at point p3o'. We can find out the roots of
these equations as in the Partial Batch Model and thus will be able to find
out the probability of being at each point in Series 2.

(A+ p2)ps2 = Apa2 + pops2 + pipas (1.10)

From Equation (1.5), py; can be expressed as (ﬁ):i(pl’l). Further, from

Equation (1.7), p1p11 can be expressed as Apgo — pope,2. Therefore,

A
At

H1P41 = ()\po,o - M2p2,2)( )3 (1-11)

Similar techniques can be used for different points of Series 2, e.g. pa.2, pa2, P52



Substituting the value of p,; into the Equation 1.10, we get:

(A + p2)ps2 = Apa2 + o5 2

A
+ (Apo,o — H2p22)( )3
A+ (1.12)
0= —((A+ p2)p32) D22 + f12Ps5.2
A
4 (Apoo — 3
( D0,0 M2p2,2)()\ T Ml)

Now, we need to find the root r which is between 0 and 1 such that it solves

the above equation, as in the Partial Batch Model.

1.5 First Attempt to Solve Series 2

In this first attempt, we primarily wanted to determine whether our proposed
model was better than the PBM model. The approach taken was to regard
our model as two separate and independent chains/series both emanating
from pg o, so the idea is to be able to express all the values of all the states

in terms of pg .

By finding the root (r) which will be between 0 and 1, we can find the
probability of being at each point in Series 2 in terms of poo. We will use
the same approach as in the M/M/1 queueing as well as the Partial Batch

Model and so we will express p, o in terms of pg o as follows:

Pn2 = T"Po0 (1.13)

Similarly, using Equation (1.7), we can find out the probability of

being at each point in Series 1 in terms of pg .

10



APoo = H1p1,1 + HoPa2

A — por? L
P11 = U&po,o (substituting pno = 7"pop)
1
P11 = 0171 * Po,o where 01,1 = ()\_LL—ng)
and
A 1
1 = (——)"" " x Oy %
Pn1 <(/\+M1)) 1,1 * Do,0
(substituting value of p; ; in Equation 1.5) (1.14)

From Equations (1.13) and (1.14), we can see that the probability at
any point in the model can be known if py is known. Also, the sum of all
the probabilities should be equal to 1. Hence, we sum the two independent

chains as follows:

> paat Y paa=1 (1.15)
n=0 n=0

Let S7 be equal to me. From Equation 1.14, we have:

n=0

o 0] )\
S, = E 7 ywly
1 n:O((A_‘_:ul)) "R

_ Chapoo(A + p11)?
A

(1.16)

11



Similarly, let Sy be equal to Z Dn,2. From Equation 1.13, we have:

n=0
Sy = Zr”po,o
n=0
_ (1.17)
1 rpo,o .
S;+S5y=1
Cl 1()\ -+ M1>2 1
: =1
Pl Al 1— ’r)
A (1 —17)
— 1.18
Poo ()\+M1)2*0171(1—7”)+)\*1u1 ( )

Once we know pg, the total number of requests, (L), in the system

can be calculated using:

L:Zn*pn,1+zn*pn,2 (119)
n=0 n=0

and the average time to serve a demand miss will be equal to W

>

(1.20)

1.5.1 Results of the First Attempt

A simulation was developed to verify the analytical model results. In the

experiment, the number of prefetch blocks (P) was kept constant, (P = 1),

12



and the arrival rate of the demand queue was varied. The analytical results
were calculated using different points at Series 2, however, pso appeared
to give the best results. The results estimate the average time to serve
a demand miss, (Tp_nus), by the Partial Batch Model and the Proposed
Model, are shown in Figure 1.5. The simulation points in the graph have
95% of confidence level with confidence interval of +5%. It shows that the
results from the analytical model are significantly better than the Partial
Batch Model.
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Figure 1.5: Estimates the average time to serve a demand miss (Tp_nps)
using Simulation, Partial Batch Model and First Attempt (Our Model).

The results from the first attempt show that the model appears to be
very accurate at medium and high loads but inaccurate at lower loads. This
is inadequate as it is unable to estimate the average time to serve a demand
miss over the network when operating over a large operational range of A\4. In
addition, at very high non-operational loads the model overshoots the PBM
and the simulation (not shown above but in the UKSIM paper [Thakker

13



et al., 2009] 2). We therefore need to revisit the approach of treating the
model as two independent series based around pg. Instead, we base each
series on its first element, i.e., p;; and pys, and we use Equation 1.7 to
include pgo. This allows us to come up with another solution based on the

state of P, instead of Fp .

1.6 Second Attempt to Solve Series 2

In this section, we attempt to solve the Equation 1.12 based on the state
P, 5. First, we find out the roots of this equation using the same technique
that was used in the Partial Batch Model. Thus the state probabilities of

Series 2 for n >= 2 can be given by:

Pr2 = 1""?pay (1.21)

Figure 1.6: Imaginary Partial Batch Model for Series 2

In order to solve the above equation, we assume the second Series to
be identical to a Partial Batch Model represented by Equation 1.12. This
is shown in Figure 1.6. However, for states where n > 2, there is no real
difference between the real or imaginary Series as Equation (1.21) is valid in

both scenarios. This means we can use the same approach taken in the Partial

2Full text in APPENDIX ??

14



Batch Model to calculate r. Once this is done we can represent any state
in the second Series by the Equation 1.21. In addition, using the previous

equations, it will also be possible to represent pyo and Series 1 in terms of

D2,2.

Using Equation 1.7, we substitute for Apgo in Equation 1.6. In addi-
tion, we note that according to Equation (1.21): p3s = 7pao. Rearranging,

we get: p11 = C11 p2o where (' 5 is given by the equation:

Cra = pa(1+7)( (1.22)

By substituting for p;; in Equation 1.7, we can get an equation for

Do, in terms of pyo;ie., poo = Coo p2,2 Where Cy is given by:

mCra + p
000: 1VY1,1 2

, | (1.23)

1.6.1 Solving for ps»

The sum of the all the state probabilties must be equal to 1. Let S; be the
sum of the state probabilities for Series 1 and S5 be the sum of the state

probabilities in Series 2. So we can write:

poo + 51+ 52 =1 (1.24)

15



where:

For Sy, let m = n — 1 and substituting for p; ;

At

H1

S

01,1]92,2

Similarly for Sy, let m =n — 2

1

S, =
2 1—17r

D22

Summing to one we get:

1
Ap 1
Coo + i Ci1+ 1=

D22 =

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

Using the value of p; 5 in Equation 1.22 and 1.23 , we can find values for p; ;

and p0,0-

The average number of people in the queue can be expressed as:

[eS) A 00
I = § n—1 E n—2
TL( ()\ +PJ1)) pl,l + nr p2,2

n=1 n=2

(1.30)

We can further obtain an exact formula for L, as shown in the section below.

16



1.6.2 Further Solving for L

From Equation 1.30, we first solve for the first term on the Right Hand Side

of the equation and then second term.

o] )\ -
Z ”(m) P11

n=1

Let q = FA,UJ
[oe)
Z ng" 'pia
n=1
Now, n % ¢"~ Czlq"

= Zdi q P11
= d_q;%qnpl’l

dq(l

in(—)n_lpm = ! 5P1,1
— (At m) (1—q)

P11 (substituting q =
IR >

(1.31)

(1.32)

1

1—g¢q

(1.33)

Now solving the second term on the Right Hand Side of the Equa-

tion 1.30.

o0

Z nrn—2p272 = Z(TL — 1 p2 5+ Z r’ p2 9
n=2

n=2

(1.34)

In order, to present the solution of Equation 1.34 in simple form, we

17



will again solve the terms in the Right Hand Side one by one, starting with
the second term on the Right Hand Side of Equation 1.34.

9]
n—2

E P22

n=2

= Z rpas  ( substituting g =n —2)
q=0
! (substitutin i e ! )
= 1 =
11— rp2’2 & pur 1—r
(1.35)
Now, solving the first term on the Right Hand Side of Equation 1.34:
Z(n — 1)7"71_2])272
n=2
- d r d, .n—1
= Z e "pap  (substituting (n — 1)r"~2 = Lpn=1)
n=2
d o
= ar Z p2 2
_ 4 3 bstituti = 1
= d_z “pyo  (substituting g =n—1)
=0
d 1 - 1
= R P22 (substituting Z rd = . ’r)

n=0

T

= ((1 — T)Z)pm (substituting 4L = ﬁ) (1.36)

The results expressed in the Equations 1.35 and 1.36 showed that Equa-

18



tion 1.34 can be expressed as:

S pms = () 1T ) # P22

= 2—r
D> oy = 3) * P22 (1.37)
n=2

Equation 1.30 can be expressed as:

1 2 —
L = me + ((1 — :)2) *poo ( From Equations 1.33 and 1.37)

(1.38)

The average waiting time in the demand queue, W,; = /\%

1.6.3 Results of Second Attempt

We have used values measured from the NMS simulation to investigate the
analytical model presented. Simulation results for p = 1 and d = 2 were
obtained for different demand miss rates. The simulation results are then
compared with results from analytical model. This is shown in Figure 1.7
and also in Mapp et al. [2009] *.

The two results are quite close in value over a wide operational range.
This indicates that the model will be useful in developing practical algo-
rithms for high-performance network-based servers. It should be noted that

the model is approximate as it depends on which state of the imaginary

1Full text in APPENDIX ??
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Chain/Series is used to calculate r. This is because the solution for r varies
slightly depending on which state is used. The best results were obtained

using the state 2,2 which, in this case, is equal to K, the maximum batch

size.

This is shown by referring back to Equation 1.8. If n = 2, we get the

following Equation:

(A + p2)p22 = Ap12 + popas + paps
(1.39)

Note, that p; o does not actually exist in the gated-model, but it is
part of the imaginary PBM.
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Figure 1.7: Average time to serve a demand miss (7p_n5) using Simulation,
Partial Batch Model and Second Attempt (Our Model).
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1.7 Towards a General Solution

In this section, we seek to extend the method used for K = 2 to a general
value of K. So a gate-limited model, where K is equal to the maximum
number of requests that can be served at any moment, can be represented
by a gated-limited model of K series or chains. Furthermore, if we represent
a given chain by m, we can express the average number of requests in that
chain, L,,, in terms of the first element of that chain, p,, ,,,. For m < K, this

sum for that chain is given by:

L, = i n(#)”’mpm’m (1.40)

Expanding;:
Ln= 3" (0 (m = D)5 "
f— (A + ftm) 7
—m (A + Lm) 7
Using the same technique as above and by letting r,, = ﬁ, the first term
can be expressed as:
i(n = (m = 1) " Pmm = i L onemty, (1.42)
n=m " ’ n=m d’f‘ " 7
Rearranging:
2 n—(m—1) _ n—(m—1) 1.43

21



Let p = n-m+1

d oo
= r%pm,m
dr ]32:;

d 1
dr

1 _ rm )pm,m

T

The second term:

n=m - Mm)
=(m-—1) " Dimm
Let g =n —m;
= (m - 1) ngnpmm
q=0
1

and thus we get the sum:

22

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)



For m < K,

A
=N

(1.49)

'm

For m = K, we use the imaginary PBM technique to solve for rg. Further-

more, we can sum the probabilities in each chain, for m < K

5 = Z(#)n—mpmvm (1.50)

Let g =n —m:

A m
S, — J&“ Pram (1.51)

If we let ppym = CrumDi K, We Can express pg i as:

1

m=K-1
Z A+ Lo, 1
C Cmm
o0t 7. m+ 1—rg

PrK = (1.52)

m=1

For a general technique, we need to find the value of (), ,,, and we can
do so using the equations for the states of p,,, in our model. For K = 2,
these equations are Equations 1.6, 1.7 and 1.8. This can be done by solving
a series of simultaneous equations. This is not further pursued in this thesis
because we are primarily interested in getting an algorithm for prefetching
and caching based on the constraints highlighted in the previous chapter.
Hence, simulation results from the simulation platform can also be used for
this purpose. However, this effort shows that it is possible to get fairly
accurate waiting time results over a wide operational range based on this

analytical model.
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1.8 Conclusion

This chapter presented an analytical model which could be used to estimate
the average time to serve a demand miss, (Tp_nars), for a given demand
arrival rate and prefetch rate. Comparison of the results from the analyt-
ical model and simulation results showed that the results estimated by the
analytical model are within the confidence range of the simulation. Hence,
the model can be used at run time to estimate the average time to serve the
demand misses for a given scenario. We will now explore the operational
space where QoS could be provided for streaming applications and demand

misses.

24



Bibliography

B. Avi-Itzhak, W. L. Maxwell, and L. W. Miller. Queuing with Al-
ternating Priorities. OPERATIONS RESEARCH, 13(2):306-318, 1965.
doi:  10.1287/opre.13.2.306. URL http://or.journal.informs.org/
cgi/content/abstract/13/2/306.

Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall, second
edition, 1992.

W. Bux. Local-area subnetworks: A performance comparison. Commumni-
cations, IEEE Transactions on, 29(10):1465-1473, Oct 1981. ISSN 0090-
6778.

Mack C. The efficiency of N machines uni-directionally patrolled by one
operative when walking time is constant and repair times are variable.

pages 173-8, 1957a.

Mack C. The efficiency of N machines uni-directionally patrolled by one
operative when walking time is constant and repair times are constants. J
Roy Stat Soc Ser B, pages 166-172, 1957b.

Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of in-
tegrated prefetching and caching strategies. In SIGMETRICS '95/PER-
FORMANCE 95, pages 188-197, New York, NY, USA, 1995. ACM Press.
ISBN 0-89791-695-6. doi: http://doi.acm.org/10.1145/223587.223608.

W. W. Chu and A. G. Konheim. On the analysis and modeling of a class of

25


http://or.journal.informs.org/cgi/content/abstract/13/2/306
http://or.journal.informs.org/cgi/content/abstract/13/2/306

computer-communications system. IEEE Trans. Commun., vol. COM-20
(2):645-660, June 1972.

Y. Dallery, R. David, and X.-L. Xie. Approximate analysis of transfer lines
with unreliable machines and finite buffers. volume 34, pages 943-953, Sep
1989. doi: 10.1109/9.35807.

S. B. Gershwin and M.H. Burman. A decomposition method for analyzing
inhomogeneous assembly /disassembly systems. volume 93, pages 91-115.
Annals of Operation Research, 2000.

Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory (Wi-
ley Series in Probability and Statistics). Wiley-Interscience, February
1998. ISBN 0471170836. URL http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20\&amp;path=ASIN/0471170836.

J. F. Hayes and D. N. Sherman. A Study of Data Multiplexing Techniques
and Delay Performance. Bell Syst. Tech. J., 51(9):1983-2011, November
1971. doi: 10.1287/opre.13.2.306.

L. Kleinrock. Queueing Systems, Volume 2: Computer Applications. Wiley,
1976.

A. Kobayashi, H.; Konheim. Queueing Models for Computer Communica-

tions System Analysis . volume 25, pages 2 — 29, Jan 1977.

A. G. KONHEIM. Mathematical models for computer data communication.
In Case Studies in Mathematical Modeling. pages 256-334, 1980.

M. A. LEISOWITZ. Mathematical models for computer data communica-
tion. In Case Studies in Mathematical Modeling. pages 256-334, 1980.

M. REISER. Performance evaluation of data communications systems. pages
171-196, 1982.

Glenford Mapp, Dhawal Thakker, and Orhan Gemikonakli. Exploring gate-

limited analytical models for high performance network storage servers.

26


http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/0471170836
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/0471170836

volume 0, pages 1-5, Los Alamitos, CA, USA, 2009. IEEE Computer
Society. doi: http://doi.ieeecomputersociety.org/10.1109/ICCCN.2009.
5235246.

PENNY, B. K., ANO BAGHOADI, A. A. Survey of computer communica-
tions loop networks., journal = Computer Communications. 2(4):165-180
and 224-241, 1979.

KAYE A. R. and RICHARDSON T. G. A performance criterion and traffic
analysis for polling systems. INFOR, Can. J. Oper. Res. Inf. Process., 11
(2):93-112.

STIDHAM S. Optimal control of a signalized intersection. Technical report,
Cornell Univ, Ithaca, NY, 1969.

Simon LAM January and Simon S. LAM. Tr-88 multiple access protocols*. In
Computer Communications, Volume I: Principles, Englewood Cliffs, NJ.
Prentice Hall, 1983.

Takagi and Hideaki. Queuing analysis of polling models. volume 20, pages
5-28, New York, NY, USA, 1988. ACM. doi: http://doi.acm.org/10.1145/
62058.62059.

H Takagi. Queueing analysis of polling models: An update, Stochastic Anal-
ysis of Computer and Communication Systems. pages 267318, 1990.

Hideaki Takagi. Analysis and application of polling models. In Performance
Fuvaluation: Origins and Directions, pages 423-442, London, UK, 2000.
Springer-Verlag. ISBN 3-540-67193-5.

D Thakker, G Mapp, and O Gemikonakli. Modelling mixed access-patterns
in Network-Based Systems. March 2009.

M van Vuuren and E Winands. Iteractive approximation of k-limited polling
systems. May 2006.

Adan IJBF van Vuuren M. Performance analysis of assembly systems. pages

89-100, Charleston, 2006. Proceedings of the Markov anniversary meeting.

27



Resing-Sassen SA van Vuuren M, Adan IJBF. Performance analysis of multi-
server tandem queues with finite buffers and blocking. volume 27, pages
315-338, Charleston, 2005. OR Spectrum.

Yung-Terng Wang and Morris R. J. T. Load sharing in distributed systems.
IEEFE Trans. Comput., 34(3):204-217, 1985. ISSN 0018-9340. doi: http:
//dx.doi.org/10.1109/TC.1985.1676564.

28



Appendices

29



	Analytical Model for Prefetching and Clustering
	Analysis
	Literature
	Standard Approach (Partial Batch Model)
	Proposed Gated-Limited Model
	Simple Scenario

	First Attempt to Solve Series 2
	Results of the First Attempt

	Second Attempt to Solve Series 2
	Solving for p2,2
	Further Solving for L
	Results of Second Attempt

	Towards a General Solution
	Conclusion

	Appendices

