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Lies can have a negating impact on governments, companies, and the society as a whole. Understanding the
dynamics of lying is therefore of crucial importance across different fields of research. While lying has been
studied before in well-mixed populations, it is a fact that real interactions are rarely well-mixed. Indeed, they
are usually structured and thus best described by networks. Here we therefore use the Monte Carlo method to
study the evolution of lying in the sender-receiver game in a one-parameter family of networks, systematically
covering complete networks, small-world networks, and one-dimensional rings. We show that lies which benefit
the sender at a cost to the receiver, the so-called black lies, are less likely to proliferate on networks than they
do in well-mixed populations. Honesty is thus more likely to evolve, but only when the benefit for the sender is
smaller than the cost for the receiver. Moreover, this effect is particularly strong in small-world networks, but
less so in the one-dimensional ring. For lies that favor the receiver at a cost to the sender, the so-called altruistic
white lies, we show that honesty is also more likely to evolve than it is in well-mixed populations. But contrary
to black lies, this effect is more expressed in the one-dimensional ring, whereas in small-world networks it is
present only when the cost to the sender is greater than the benefit for the receiver. Lastly, for lies that benefit
both the sender and the receiver, the so-called Pareto white lies, we show that the network structure actually
favors the evolution of lying, but this only when the benefit for the sender is slightly greater than the benefit for
the receiver. In this case again the small-world topology acts as an amplifier of the effect, while other network
topologies fail to do the same. In addition to these main results we discuss several other findings, which together
show clearly that the structure of interactions and the overall topology of the network critically determine the
dynamics of lying.

I. INTRODUCTION

The conflict between lying and truth-telling is at the core of
any social or economic interaction with asymmetric informa-
tion. Lying, while sometimes interpreted as a sign of intelli-
gence in children [1] and a relatively common occurrence in
adults to get out of awkward situations, can be detrimental to
people, governments, organizations, firms, and ultimately to
human societies as a whole. The cost of tax evasions in the
USA alone, for example, has been estimated at 100 billion per
year [2]. Lying negatively affects also close personal relation-
ships, being associated with marital dissatisfaction and friend-
ship dissolution [3, 4]. Thus not surprisingly, researchers have
sought to understand factors that determine dishonest behav-
ior for years [5–19].

Here we advance this subject by using methods of statisti-
cal physics. Indeed, the past two decades have significantly
expanded the scope of physics beyond its traditional bound-
aries. Various aspects of economics [20] and social sciences
[21–25] have benefited from the Monte Carlo method [26, 27]
and the coming-of-age of network science [28–31]. In partic-
ular the social dynamics in general [21], as well as more spe-
cific aspects of modern human societies, such as crime [22],
gossiping [32], epidemics [23], vaccination [24], and coopera-
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tion [25], have all been successfully studied using methods of
physics and the gist of the ‘physics approach’ [33], which is to
rationally select the key components of a system until the lat-
ter is fit to describe the essence of the problem at hand. These
preceding developments certainly invite physics research into
the realm of other types of moral behaviors [34], including
lying and honesty [35].

Part of the success of the Monte Carlo method relies on the
fact that it can be used in evolutionary game theory to sim-
ulate the strategic evolution of the nodes of a network. The
nodes are occupied by players that interact through a strategic
game and then, after the accumulation of payoffs, update their
strategies through a suitable imitation, replication, or explo-
ration rule. In fact, this method has proven extremely useful
to study the evolution of cooperation on lattices and heteroge-
nous networks in social dilemmas [36–41], as well as to study
strategic fairness in the ultimatum game [42–51]. However, to
the best of our knowledge, no previous work has explored the
evolution of honesty and lying on networks.

Here we make a first step in this direction. As a relatively
simple but complete mathematical model of lying, we use the
sender-receiver game [16, 52]. As we will show in the Math-
ematical model section, this paradigm is fundamentally dif-
ferent from previous games studied using the Monte Carlo
method, such as the prisoner’s dilemma and the ultimatum
game. At the same time, it is particularly suitable for the
application of the Monte Carlo method, and it allows us to
study the evolution of four different types of lies. Namely,
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black lies, altruistic white lies, Pareto white lies, and spiteful
lies (the Mathematical model section has all the definitions).
While we have previously studied the evolution of lying us-
ing the sender-receiver game in well-mixed populations [35],
it remains an open question whether and to what degree the
fact that our interactions are commonly structured rather than
well-mixed impacts the results. The evolution of lying in well-
mixed populations was found to be strongly dependent on the
type of lie, and it also displayed complex character that pre-
cluded generalizations over different parameters of the game.
Since human interactions are not random, as we are more
likely to interact within our social circles, such as with family,
friends, or within our workplace with colleagues and cowork-
ers, it is thus important to go beyond well-mixed populations
and to study the evolution of lying in networks.

To that effect, we study the evolution of lying in a large fam-
ily of networks, known as LASW networks [53]. LASW net-
works are a one-parameter family of networks spanning from
the one-dimensional ring to the complete network, as follows.
One starts from the one dimensional ring and then adds each
of the missing edges with probability p ∈ [0, 1]. Therefore,
if p = 0, one remains with the one-dimensional ring, while
p = 1 returns a complete graph. When p varies from 0 to 1
one obtains a number of intermediate cases of great theoreti-
cal and practical interest, such as small-world networks [54],
which are thought to underline several sociological phenom-
ena [55, 56].

The paper is structured as follows. The Mathematical
model section contains all the definitions. These definitions
are grouped in three subsections. In the sender-receiver game
subsection we describe the definition of the sender-receiver
game, in the LASW network section we describe in self-
sufficient detail this family of networks, and in the Monte
Carlo method section we described the details of the model
how it is simulated. The Results section reports all the main
results and findings, whereas in the Discussion section we
compare these to the results in the existing literature, and we
also point out avenues for future research.

II. MATHEMATICAL MODEL

A. The sender-receiver game

To study the evolution of dishonesty, we use the sender-
receiver game. Among the many decision problems and
strategic games that behavioral scientists have introduced to
study people’s dishonesty [5, 19, 57], the sender-receiver
game is particularly suitable for the application of the Monte
Carlo method, because it is a game with two players and (prac-
tically) two strategies [35]. This game was initially introduced
by Uri Gneezy in [52]. Here, we adopt a subsequent version
developed by Erat and Gneezy [16]. There are two poten-
tial allocations of money between the sender and the receiver,
Option A and Option B. Without loss of generality, we can
normalize the payoffs such that A = (0, 0) and B = (r, s),
with r, s ∈ [−1, 1]. The first component represents the pay-

off of the receiver; the second component that of the sender.
The sender privately rolls a six-face dice and looks at the out-
come. Then the sender chooses a message to send to the re-
ceiver among six possible messages: “The outcome was i”,
with i ∈ {1, 2, 3, 4, 5, 6}. After receiving the message, the re-
ceiver guesses the true outcome of the roll of the dice. If the
receiver guesses the true outcome, then Option A is imple-
mented as a payment; if the receiver does not guess the true
outcome of the roll of the dice, then Option B is implemented.

Therefore, the sender has essentially two strategies: he ei-
ther sends a truthful message, or not. Similarly, the receiver
has essentially two strategies: she either believes the message
sent by the sender, or not. If the receiver believes the sender,
she reports the same number as the one sent by the sender; oth-
erwise, if the receiver does not believe the sender, she draws
randomly a number from the remaining five numbers of the
dice. Therefore, the sender-receiver game can be written us-
ing the following bi-matrix:

B N
T 0, 0 s, r

L s, r 4
5s , 45r

where T stands for “Truth”, L stands for “Lie”, B stands for
“Believe”, andN stands for “Not Believing”. The ratios 4

5 de-
scend from the fact that, when the sender lies and the receiver
does not believe the sender’s message, then the receiver does
not guess the true outcome of the roll of the dice with prob-
ability 4

5 . Therefore, these ratios directly descend from the
formulation of the sender-receiver game proposed by Erat and
Gneezy [16]. In the discussion section, we will mention po-
tential extensions to be explored in future research.

Another positive sides of the sender-receiver game, com-
pared to other measures of dishonesty, is that it allows to study
different types of lie. Following the taxonomy introduced by
Erat and Gneezy [16], we introduce four types of lies, depend-
ing on whether lying harms or benefits the agents:

• Pareto white lies are those that benefit both the sender
and the receiver: r, s > 0.

• Altruistic white lies are those that benefit the receiver
and harm the sender: r > 0, s < 0.

• Black lies are those that benefit the sender and harm the
receiver: r < 0, s > 0.

• Spiteful lies are those that harm both the sender and the
receiver: r, s < 0.

1. Equilibrium analysis

The distinction among different types of lie turns out to be
useful for the equilibrium analysis. In order to find the equi-
libria of the game, it is convenient to describe it as a symmet-
rical two-player game. Since, in our model, each player acts
as both sender and receiver, we have in practice four com-
posed pure strategies σ ≡ (Xs, Xr), where Xs ∈ {T, L}
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and Xr ∈ {B,N} are the basic strategies as a sender and re-
ceiver, respectively. As we are going to illustrate in Sec. II C,
we have a population undergoing an evolutionary dynamics,
which implies that the Nash equilibria can be found by means
of the replicator equations [58]:


ẋσ = xσ · (Πσ − Π̄)

∑
σ xσ = 1 ,

(1)

where xσ and Πσ are the densities and the average payoffs
of each strategy σ, respectively, and Π̄ is the average global
payoff. The normalization condition in Eq. (1) represents the
conservation of the population’s size. After some laborious
but easy calculation the quantities Πσ and Π̄ can be com-
puted, and by imposing the stationary condition on Eqs. (1)
it is straightforward to find the equilibria.

In case of spiteful lies, there are two equilibria in pure
strategies (that is, configurations where all the agents share
the same strategy) (T,B) and (L,N), and one mixed equilib-
rium x(T,B) = 1/6, x(L,N) = 5/6. In case of altruistic or
black lies, there is only one equilibrium in mixed strategies,
which is, again, x(T,B) = 1/6, x(L,N) = 5/6. Finally, in case
of Pareto white lies, there are two equilibria in pure strate-
gies, (T,N), (L,B), and one equilibrium in mixed strategies,
which is, once again, x(T,B) = 1/6, x(L,N) = 5/6. The
cases r = 0 and/or s = 0 are straightforward, because the
corresponding agents are indifferent between the two avail-
able strategies.

This analysis also highlights the fundamental difference be-
tween the sender-receiver game and the previous games that
have been studied using the Monte Carlo method, the pris-
oner’s dilemma and the ultimatum game, which have radically
different set of equilibria.

B. LASW networks

A LASW network is defined starting from a regular one-
dimensional ring with N nodes, each one connected to its 2m
(m ∈ N) nearest neighbours, so that there are mN links (or
edges). The topology is then modified by adding new links,
that is, we add each of the [N(N−1)/2−mN ] initially miss-
ing edges with probability p. Therefore, by varying p we can
tune the topology from euclidean to the complete-network as
desired [53]. In particular, we have regular, one-dimensional
lattice for p → 0+, the Watts-Strogatz (WS) small-world
topology [54] for 0 < p <∼ p∗, a random network (RN) [59]
for p∗ <∼ p < 1, whilst for p → 1− we get a complete graph
(that is, we recover the mean-field configuration); the critical
link adding probability is p∗ = 2m/N [53].

The main topological differences among these four regimes
can be described by the behaviour of the diameter D and the
clustering coefficient χ of the network. D is defined as the
mean shortest path between two random nodes; χ is defined
as the probability that two nodes that share a neighbour are
also neighbour themselves. A ring has high diameter (with the

exception of the case m = 1) and high clustering coefficient;
a WS network is instead characterized by small diameter and
high clustering coefficient; in random networks both quanti-
ties are small; finally, in a complete graph, one hasD = 1 and
χ = 1.

C. The Monte Carlo method

We consider the sender-receiver game among N agents,
who interact pairwise in a LASW network. At each round
of the game, one agent plays in the role of the sender, and
the other agent plays in the role of the receiver. The role of
an agent is randomly determined at the beginning of the in-
teraction. When playing as a sender, an agent can either tell
the truth (T ) or lie (L); when playing as a receiver, an agent
can either believe (B) the message sent by the sender, or not
(N ). This results in four different strategies: (T,B), (T,N),
(L,B), and (L,N). Initially, each agent is randomly assigned
to either T or L (when she plays as a sender), and to either B
or N (when she plays as a receiver).

We simulate the game using the Monte Carlo method. The
following elementary steps apply. First, an agent x is ran-
domly drawn from the population. Agent x then plays the
sender-receiver game with four randomly chosen neighbours
in a pairwise manner as described above, thereby obtaining
the payoff πx. Note that, for p = 0, each agent has ex-
actly four neighbours, therefore, in this case, there is no ran-
dom selection, and x plays with all his neighbours; when p
increases, the number of neighbours statistically increases,
and therefore in this case, there is an actual random selec-
tion of the four neighbours with whom x plays. Then, an-
other agent y is randomly drawn from the population, and he
also plays the sender-receiver game with four randomly se-
lected neighbours, thereby obtaining the payoff πy . Finally,
agent y imitates the strategy of agent x with the probability
w = {1 + exp[(πy − πx)/K]}−1, where K encapsulates
the uncertainty during the strategy adoption process. When
K → ∞, payoffs lose importance and strategies change at
random; conversely, when K → 0, agent y imitates x only
if πx > πy; between these two limits, the strategies of bet-
ter performing agents tend to be imitated, although under-
performing strategies are imitated as well, with non-zero prob-
ability. In reality, this may be due to errors in the decision
making, imperfect information, and external influences that
may adversely affect the computation of the other player’s
payoff. Without loss of generality, we set K = 0.1, in agree-
ment with previous work showing this to be a representative
value [25].

The time is measured in Monte Carlo steps (MCS),
whereby one MCS corresponds to executing all three elemen-
tary steps N times. During one MCS, each agent changes
strategy, on average, once. For a systematic numerical anal-
ysis, we have determined the fraction of strategies in the sta-
tionary state when varying the values of s and r. In order to
obtain adequate accuracy, we have used large system sizes,
varying from N = 500 to 1000, as well as long enough ther-
malization and sampling times, varying from 104 to 106 MCS.
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FIG. 1: Final density of liars in a) the well-mixed network, b) the one-dimensional ring, and two small-world networks with c) p = 0.00025
and d) p = 0.001. Systems of size N = 500. Averages over 300 independent realizations.

To further remove statistical fluctuations, we have averaged
the final outcome over up to 2000 independent realizations.

III. RESULTS

A. Final densities of liars and believers across lie type and
networks

As a first step of our analysis, we look at the final densities
of liars and believers, as a function of lie type (parameters r
and s) and network (parameter p). In this and in the following
analyses, we focus on four prototypical values of p: p = 0
(ring), p = 0.00025 p = 0.001 (two small-world networks),
and p = 1 (well-mixed population). We conducted numer-
ical simulations also with several other p values, but the re-
sults do not qualitatively differ from the above cases. Specifi-
cally, when p < 0.1 (small-world networks), the pattern of re-
sults is qualitatively very similar to the cases p = .00025 and
p = .001; in case of values of p greater than 0.1 (random net-
works), numerical simulations show that the differences with
the complete network become tinier and tinier, therefore we
report directly the limit, well-mixed, case, p = 1.

We start with the liars. Figure 1 highlights several differ-
ences between the final densities of liars in small-world net-
works (lower left panel: p = 0.00025; lower right panel:
p = 0.001) and the final densities of liars in well-mixed pop-
ulations (upper left panel). Specifically, both in the domain
of black lies (r < 0, s > 0) and in the domain of altruistic
white lies (r > 0, s < 0), the evolution of lying is disfavored
in the two small-world networks, compared to the complete

network, but only below the diagonal r = −s. By contrast, in
the domain of Pareto white lies (r, s > 0), the differences be-
tween the small-world networks and well-mixed populations
tend to be concentrated right above the diagonal r = s; in par-
ticular, lying is favoured in small-world networks compared to
the complete network. The case of spiteful lies is trivial: hon-
esty evolves with frequency 1 independently of the network.

Moving to the case of the one-dimensional ring (p → 0+,
upper right panel). In this case, we note that the most evident
differences, compared to the well-mixed population, appear
in the domain of altruistic white lies (r > 0, s < 0) and, to a
lesser extent, in the domain of Pareto white lies (r, s > 0) and
in the domain of black lies (r < 0, s > 0). Specifically, com-
pared to the well-mixed population, altruistic white lies are
less frequent than they are in the one-dimensional ring. In the
domain of black lies, lying appears to evolve with very similar
frequency in the two networks. By contrast, Pareto white lies
are more frequent in the one-dimensional ring, compared to
the well-mixed population, but this happens only just above
the diagonal r = s; for other values of r and s in the same
quadrant, the two networks behave roughly the same. Finally,
in the domain of spiteful lies (r, s < 0) the two networks be-
have identically.

Coming to the evolution of believers, Figure 2 highlights
that the evolution of believers mirror the evolution of liars
discussed above, although with some differences. For p =
0.00025 (lower left panel) and p = 0.001 (lower right panel)
the differences between the two small-world networks and the
complete network are concentrated in the domains of altru-
istic white lies, black lies, and Pareto white lies. In the first
two domains, the differences are concentrated in the region in
which s is very small, where believing the sender’s message
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FIG. 2: Final density of believers in a) the well-mixed network, b) the one-dimensional ring, and two small-world networks with c) p =
0.00025 and d) p = 0.001. Systems of size N = 500. Averages over 300 independent realizations.

is more likely to evolve. In the third domain, the differences
are concentrated right above the diagonal r = s, where, again,
believing the sender’s message is more likely to evolve, com-
pared to the well-mixed case.

As in the case of liars, the one-dimensional ring (p = 0, up-
per right panel), gives rise to slightly different results. Specif-
ically, in the domain of black lies, the evolution of believers
is favored in the one-dimensional ring, compared to the well-
mixed case, especially for values of s close to 0 or values of
r close to 1. In the case of Pareto white lies, instead, the
evolution of believers somewhat reflects the evolution of liars
observed above: the evolution of believers is favored in the
one-dimensional case, compared to the well-mixed case, but
only just above the diagonal r = s; in the other parts of the
Pareto white lies quadrant, there are no major differences be-
tween the two networks.

B. Time evolution of liars and believers across networks

1. Black lies

In the previous section, we have shown that the network
structure affects the final densities of liars and believers. The
previous section, however, does not allow to answer the ques-
tion of which types of liars and believers are more or less likely
to evolve in small-world networks and the one-dimensional
ring, compared to the complete network. Indeed, there are two
types of liars: those who, when acting as receivers, believe the
sender’s message; and those who, when acting as receivers,
do not believe the sender’s message. Similarly, there are two

types of believers: those who, when acting as senders, tell the
truth; and those who, when acting as sender, lie. Therefore,
to have a better understanding of what type of agents evolve,
here we analyze, across the four networks under considera-
tion, the time evolution of each of the four pure strategy pro-
files (T,B), (L,B), (T,N), and (L,B). For each lie type, we
study one pair (s, r). To select this pair, we follow a pragmatic
approach. We start from black lies.

Figure 1 and Figure 2 suggest that, in the domain of black
lies (r < 0, s > 0), the differences are concentrated below the
diagonal r = −s, and, in particular, for s small and r close to
−1. Therefore, we select r = −1 and s = −0.2.

Figure 3 reports the time evolution of the four pure strategy
profiles for these values of r and s. Comparing the upper left
panel (well-mixed population) with the other panels, we find a
number of differences. The strategy profile (T,N) (blue line),
which survives in well-mixed populations, quickly vanishes
in all other networks. The strategy (L,B) (black line) sur-
vives in all networks, although with different frequencies: in
the well-mixed population it survives with frequency around
0.15, while, in the other networks, the final density more than
doubles. The strategy (L,N) (red line) too survives in all net-
works, although with different frequencies: in the well-mixed
population it survives with frequency 0.8, while in all other
networks the final density is around 0.5. But the most inter-
esting case is the case of the strategy profile (T,B) (green
line). This strategy profile quickly vanishes in well-mixed
populations, but it survives with a relatively high frequency
(around 0.1) in all other networks. Importantly, the vanish
of (T,N) is more than compensated by the emergence of
(T,B). Indeed, in well-mixed populations, (T,N) survives
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FIG. 3: Time evolution of the four pure strategy profiles (T,B), (L,B), (T,N), and (L,B) for s = 0.2, r = −1 for a) well-mixed, b) one-
dimensional ring, and two small-world networks, c) p = 0.00025 and d) p = 0.001. System size N = 500, average over 3000 independent
realizations, random initial conditions.

with frequency less than 0.05, while, in the other networks,
(T,B) survives with frequency around 0.1 and, in some cases
(e.g., p = 0.001) even close to 0.2 Therefore compared to
well-mixed populations, small-world networks and the one-
dimensional ring have a net positive effect on honesty among
senders. A similar argument holds for believers: the frequen-
cies of both the strategy profile (T,B) and (L,B) are greater
in the small-world networks and the one-dimensional ring,
compared to the complete network. Therefore, there is a net
overall positive effect on believing among receivers, although
this net effect is stronger in the small-world networks com-
pared to the one-dimensional ring.

2. Altruistic white lies

Next, we study the time evolution of the four pure strat-
egy profiles in a case in which lying benefits the receiver at a
cost to the sender. Specifically, since Figure 1 and Figure 2
suggest that the differences between the networks are concen-
trated below the diagonal r = −s, we opted for illustrating
the time evolution of the four pure strategy profiles using the
parameters r = 0.3 and s = −1.

Figure 4 reports the outcomes of our numerical simulations.
Compared to the upper left panel (well-mixed population), we
find several differences. One clear difference concerns the
evolution of (T,B): while this strategy profile quickly van-
ishes in well-mixed populations, it survives in all other cases.

In particular, in the two small-world networks, it survives with
a density around 0.2, while in the case of the one-dimensional
ring, it survives with frequency around 0.08. A similar pat-
tern, although slightly less evident, emerges in case of the
strategy profile (T,N): in well-mixed populations, it sur-
vives with frequency less than 0.03; in small-world networks
it survives with frequency around 0.08; in case of the one-
dimensional ring, the final density is even above 0.1. Clearly,
the emergence of (T,B) and (T,N) when passing from com-
plete to non-complete networks comes at the price of the other
two strategy profiles, (L,B) and (L,N), both of which are
less likely to evolve. Particularly evident is the case of (L,B),
which survives with non-zero frequency in well-mixed popu-
lations, but it quickly vanishes in all other cases. In sum, as in
the black lie case discussed in the previous section, also in this
case the presence of a non-complete network favours the evo-
lution of honesty among senders. By contrast, the evolution of
believing among receivers is favoured, compared to the well-
mixed case, only in the two small-world networks, where the
increase in the frequency of (T,B) (equal to 0.2) more than
counterbalance the decrease in the frequency of (L,B) (equal
to 0.06); in the one-dimensional ring, the increase in the fre-
quency of (T,B) (about 0.07) is very similar to the decrease
in the frequency of (L,B) (equal to 0.06).
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FIG. 4: Time evolution of the four pure strategy profiles (T,B), (L,B), (T,N), and (L,B) for s = −1, r = 0.3 for a) well-mixed, b) one-
dimensional ring, and two small-world networks, c) p = 0.00025 and d) p = 0.001.. System size N = 500, average over 3000 independent
realizations, random initial conditions.

3. Pareto white lies

Then, we study the time evolution of the four pure strategy
profiles in a case in which lying benefits both the sender and
the receiver. Specifically, since Figure 1 and Figure 2 suggest
that the differences across networks are located slightly above
the diagonal r = s, we opted for illustrating the evolution for
r = 0.4 and s = 0.6.

Comparing the upper left panel of Figure 5 (well-mixed
population) with the other panels, we note an important dif-
ference. In well-mixed population, at the steady state, there
is a co-existence of three pure strategy profiles, (L,B) with
frequency slightly below 0.8, (T,N), with frequency slightly
below 0.2, and (L,N) with a small frequency around 0.09. By
contrast, in small-world networks and in the one-dimensional
ring, only the strategy profile (L,B) survives, while all other
strategy profiles quickly vanish, apart from the case p =
0.001, where there is a small residual of the pure strategy pro-
file (T,N), which survives with density below 0.02. In sum,
compared to the complete network, small-world networks and
the one-dimensional ring have the effect of favouring the evo-
lution of lying among senders and believing among receivers.

4. Spiteful lies

We finally report the time evolution of the four strategy pro-
file in the case of spiteful lies. Figure 1 and Figure 2 suggest

that the evolution does not depend on the network, and that
senders quickly learn that their best strategy is to tell the truth,
while receivers quickly learn that their best strategy is to be-
lieve the sender’s message. Our simulations confirm this find-
ing. In Figure 6 we report the results of the simulations for
r = s = −0.5. As expected, only the strategy profile (T,B)
survives, while all others quickly vanish.

C. Steady state spatial configuration

We have also conducted a set of simulations to explore the
spatial configuration of the steady state. Our aim was indeed
to explore whether certain strategy profiles tended to cluster
together. However, interestingly, all the simulations that we
have conducted converged to a unique strategy profile. There-
fore, the final densities discussed above should be interpreted
as the probability that a single realization evolves in such a
way that all agents end up playing a given strategy profile.

IV. DISCUSSION

We have used the Monte Carlo method to study the evolu-
tion of lying in a set of networks including small-world net-
works and the one-dimensional ring. As a measure of dis-
honesty, we have used the sender-receiver game [16, 52], a
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FIG. 5: Time evolution of the four pure strategy profiles (T,B), (L,B), (T,N) for s = 0.6 and r = 0.4 for a) well-mixed, b) one-dimensional
ring, and two small-world networks, c) p = 0.00025 and d) p = 0.001.. System size N = 500, average over 3000 independent realizations,
random initial conditions.

game that is fundamentally different from those that have been
used in previous research applying the Monte Carlo method to
evolutionary game theory on networks, such as the prisoner’s
dilemma and the ultimatum game. Our research shows that the
spatial structure has a non-trivial effect on the evolution of the
strategies, which depends significantly on the consequences
of lying and telling the truth. The only trivial case is when ly-
ing harms both the sender and the receiver, i.e., when we have
spiteful lies. In this case, regardless of the network, senders
quickly learn that their best strategy is to tell the truth and re-
ceivers quickly learn that their best strategy is to believe the
sender’s message. In the case of black lies, that is those that
harm the receiver at a cost for the sender, we found major dif-
ferences across networks located below the diagonal r = −s.
In this domain, Monte Carlo simulations show that honesty is
more likely to evolve in small-world networks and, to a lesser
extent, in the one-dimensional ring, compared to the well-
mixed case. A slightly different result holds for receivers,
where the differences are concentrated in a region in which
s is very small. Here, believing the sender’s message is more
likely to evolve in the one-dimensional ring and, to a lesser ex-
tent, in the small-world network, compared to the well-mixed
case. In the case of altruistic white lies, that is those that ben-
efit the receiver at a cost to the sender, we find that the regions
in which the differences between the networks are located de-
pend on the network topology. In the one-dimensional ring,
we find that honesty is more likely to evolve, compared to the
well-mixed case, regardless of the specific payoffs r and s.
By contrast, in small-world networks, honesty is more likely

to evolve, compared to the well-mixed case, but only below
the r = −s diagonal. Slightly different are the results for
receivers. In this case, the evolution of believing in the one-
dimensional ring is identical to that in the well-mixed popu-
lation. By contrast, the evolution of believing is favored in
small-world networks, compared to well-mixed populations,
but only below the r = −s diagonal. Finally, in the case of
Pareto white lies, that is those that benefit both the sender and
the receiver, the major differences across networks are slightly
above the r = s diagonal, where both lying and believing are
more likely to evolve compared to the well-mixed case. In
sum, our findings show that the spatial structure has a highly
non-trivial effect on the evolution of honesty and lying in the
sender-receiver game. We stress that, with the exception of
spiteful lies, our analysis shows that the final densities largely
depend on the specific parameters, r and s, even within a given
lie type. This implies that the steady states almost never coin-
cide with the equilibria of the game. The only case in which
this happens is in the domain of spiteful lies, where the time
evolution quickly converges to one of the equilibria, the pure
strategy profile (T,B), while discarding the other two equilib-
ria, (L,N) and the mixed one x(T,B) = 1/6, x(L,N) = 5/6.
The reason why these latter two equilibria are discarded in fa-
vor of the former one is because (T,B) maximizes the payoff
of both players, and therefore it is more likely to be imitated.

Most previous work on the evolution of lying used games
different from the sender-receiver game. For example, a
stream of research used the Philip Sidney game [57, 60–
62], where the sender is with some probability initially either
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FIG. 6: Time evolution of the four pure strategy profiles (T,B), (L,B), (T,N), and (L,B) for s = −0.5 and r = −0.5 for a) well-mixed,
b) one-dimensional ring, and two small-world networks, c) p = 0.00025 and d) p = 0.001.. System size N = 500, average over 3000
independent realizations, random initial conditions.

healthy, or with the remaining probability needy. The sender
can then either pay a cost to signal his state to the receiver or
do nothing. If the sender decides to signal his state, he can
lie about it. Indeed, the receiver does not know the state of
the sender, but can only observe the signal. After observing
the signal if the latter is sent, the receiver decides whether to
donate his resource to the sender. The sender-receiver game
used here departs from the Philip-Sidney game along two di-
mensions. Firstly, in the sender-receiver game the signalling
is cost-free. Even in this case, our results demonstrate that
honesty can evolve in some circumstances, even when lying is
self-serving (black lies). Secondly, the sender-receiver game
differs from the Philip Sidney game in that it allows to study
the evolution of lying not only in the domain of black lies, but
also in the domains of spiteful lies, Pareto white lies, and al-
truistic white lies. Therefore, the sender-receiver game math-
ematically describes a much broader class of lies, and accord-
ingly richer are the insights it affords. Another stream of pre-
vious research focused on cooperation games preceded by a
commitment phase in which agents can make promises about
what they will do in the subsequent cooperation game [63–
65]. Our approach differs from this line of work in that we fo-
cus on honesty and believing, with no consequences on subse-
quent games. This allows us to clearly identify the four types
of lies, and to study the evolution of honesty as a function of
the type of lie.

As any research, also ours has some limitations. In the first
place, we studied the evolution of lying only on a specific fam-
ily of networks. This one-parameter family allows us to con-

tinuously move from complete networks to small-world net-
works and further to the one-dimensional ring. Therefore, this
left out a number of other networks that are thought to emerge
in many social settings, such as scale-free networks [66] or
echo chambers [67]. Previous work has explored the evo-
lution of cooperation in these networks [36, 68–70]. Future
works should therefore investigate the evolution of lying in
these networks, as well as others, such as interdependent and
multilayer networks [29, 30, 71]. Secondly, we studied the
evolution of lying in a somewhat natural condition, in which
there is no punishment or reward. These mechanisms are well-
known to favor cooperative behavior [72–83], and it is likely
that they might also favor honest behavior along similar mech-
anisms reported for cooperation. Accordingly, future works
should explore mechanisms to promote the evolution of hon-
esty, starting with punishment and rewarding, as well as by
other means, such as reputation or shame, which are by ex-
perience often fit to work in reality. Thirdly, we studied the
evolution of lying in situations in which the players are forced
to play every round of the interaction. In reality, it sometimes
happens that players are unable to participate in an interac-
tion, due to unforeseen circumstances, or simply because they
decide to opt out from one particular interaction. Previous re-
search has explored the effect of opting out on the evolution
of cooperation [84]. Future research should extend this line
of work in the context of lying. Finally, we studied the evolu-
tion of lying in the sender-receiver game as proposed by Erat
and Gneezy [16]. In this game, the set of potential private
pieces of information available to the sender has cardinality
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six, and this ultimately generates the coefficient 4
5 in the bi-

matrix representing the game. Of course, one could general-
ize the sender-receiver game to information sets of any (finite)
cardinality and study the evolution of lying as a function of a
new parameter, representing the cardinality of the information
set. Future work should explore the evolution of lying in this
generalization of the sender-receiver game.
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100, 28005 (2012).
[49] L. Deng, C. Wang, W. Tang, G. Zhou, and J. Cai, J. Stat. Mech.

2012, P11013 (2012).
[50] J. Iranzo, L. M. Floria, Y. Moreno, and A. Sanchez, PloS ONE

7, e43781 (2012).
[51] K. Miyaji, Z. Wang, J. Tanimoto, A. Hagishima, and S. Kokubo,

Chaos, Solitons & Fractals 56, 13 (2013).
[52] U. Gneezy, Am. Econ. Rev. 95, 384 (2005).
[53] D. Vilone, A. Sánchez, and J. Gómez-Gardeñes, J. Stat. Mech.
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